CHAPTER J

The Hydrogen Atom

The atom of madern physics can be symbolized only through a partial
differential equation in an abstract space of many dimensions. All its
qualities are inferential; no material properties can be directly attributed
to it. That is to say, any picture of the atom that our imagination is able
to invent is for that very reason defective. An understanding of the
atomic world in that primary sensuous fashion . . . is impossible.

Werner Heisenberg

n n Chapter 6 we studied the Schrodinger equation and its application to
several model systems. We now have the tools to apply quantum theory to
real physical systems, which we will do in the next few chapters. Our first major
subject is atomic physics, and we begin by applying the Schrédinger equation to
the hydrogen atom. We will learn that additional quantum numbers are needed
in order to explain experimental results. A couple of the sections in this chapter
(sections 7.2 and 7.6) are advanced topics and may be skipped without losing
continuity.

7.1 Application of the Schrodinger
Equation to the Hydrogen Atom
The hydrogen atom is the first system we shall consider that requires the full

complexity of the three-dimensional Schrodinger equation. To a good approxi-
mation the potential energy of the electron—proton system is electrostatic,
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We rewrite the three-dimensional time-independent Schrédinger Equation

(6.43) as
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As was discussed in Chapter 4, the correct mass value m to be used is the re-
duced mass p of the proton and electron. We can also study other hydrogenlike
(called hydrogenic) atoms such as He* or Li** by inserting the appropriate u and
by replacing ¢ in Equation (7.1) with Ze2, where Z is the atomic number.

We note that the potential V(r) in Equation (7.2) depends only on the dis-
tance r between the proton and electron. To take advantage of this radial sym-
metry, we transform to spherical polar coordinates. The transformation is given
in Figure 7.1, where the relationships between the cartesian coordinates x, 5.2
and the spherical polar coordinates r, 6, ¢ are shown. The transformation of
Equation (7.2) into spherical polar coordinates is straightforward, but tedious.
After inserting the Coulomb potential into the transformed Schrodinger equa-
tion, we have
1 0/, 0y 1 g1 oY 1 0%y
i e L S (6 e s e
r 81( ar) r?sin 6 89( 89) r?sin? 6 d¢?

(7.3)
e i—‘; (E—=V)g=0

The wave function ¢ is now a function of 7, 6, ¢ [(r, 6, ¢®) ], but we will write it
simply as ¢/ for brevity. In the terminology of partial differential equations, Equa-
tion (7.3) is separable, meaning a solution may be found as a product of three
functions, each depending on only one of the coordinates 7, 6, ¢. (This is exactly
analogous to our separating the time-dependent part of the Schrodinger equa-
tion solution as ¢~ #¢%) Let us try a solution of the form

$(r, 0, d) = R(r)f(6) g() (7.4)

This substitution allows us to separate the partial differential in Equation (7.3)
into three separate differential equations, each depending on one coordinate:
1, 0, or ¢.

From Chapter 6 we have a good idea what to expect the results will look
like. For each of the three differential equations we must apply appropriate
boundary conditions on the functions R(r), f(0), and g(¢). This will lead
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FIGURE 7.1 Relationship be-
tween spherical polar coordi-
nates (r, 0, ¢) and cartesian
coordinates (x, y, z).
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to three quantum numbers, one for each of the three separate differential
equations (or one quantum number for each dimension of motion available—
recall that in the previous chapter we obtained one quantum number for one-
dimensional motion).

7.2 Solution of the Schrédinger Equation
for Hydrogen

The first step will be to substitute the trial solution, Equation (7.4), into Equa-
tion (7.3). Then we can separate the resulting equation into three equations:
one for R(r), one for f(6), and one for g(¢). The solutions to those equations
will then allow us to understand the structure of the hydrogen atom, in the
ground state and excited states as well.

Separation of Variables

Starting with Equation (7.4), we find the necessary derivatives to be
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We substitute these results into the Schrédinger equation (7.3) and find
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Next we multiply both sides of Equation (7.6) by r%sin26/Rfrand rearrange to have
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Look closely at Equation (7.7). Notice that only the variables r and 6 (and
their functions R and f) appear on the left side, whereas only ¢ and its func-
tion g appear on the right side. We have achieved a separation of variables, com-
pletely isolating ¢. What does this mean? The left side of the equation cannot
change as ¢ changes, because it does not contain ¢ or any function depending
on ¢. Similarly, the right side cannot change with either r or 6. The only way for
this to be true is for each side of Equation (7.7) to be equal to a constant. For
reasons that will be clear later, we choose to let this constant have the value — me?.
If we set the constant —m,* equal to the right side of Equation (7.7), we have
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g oz
or, after rearranging,
. : d’g 2
Azimuthal equation 15? = —me’g (7.8)

Notice that because ¢ is the only variable, we have replaced the partial deriva-
tive with the ordinary derivative. Because the angle ¢ in spherical coordinates
corresponds to the azimuth angle in astronomy, Equation (7.8) is traditionally
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referred to as the azimuthal equation. This is just the equation of a harmonic os-
cillator that we have studied in introductory physics, and the solutions for g(¢)
will take the form of sines and cosines.

An important restriction on the values of the quantum number m, can be
obtained if we consider solutions to Equation (7.8) for the function ¢™%, One
may easily verify by direct substitution that ¢ satisfies Equation (7.8) for any
value of my. However, in order to have a physically valid solution for any value
of ¢, it is necessary that the solution be single valued, that is g(¢) = g(¢ + 2m).
This means, for example, that g(¢ = 0) = g(¢é = 27), which requires that
¢’ = ¢?™™¢_The only way for this to be true is for m, to be zero or an integer (ei-
ther positive or negative). The quantum number m is therefore restricted to be
zero or a positive or negative integer. If the sign on the right-hand side of Equa-
tion (7.8) were positive rather than negative, the solution is not physically real-
ized, because it can’t be normalized and is not single valued in ¢. We shall defer
further discussion of solutions for Equation (7.8) until later. For now it is suffi-
cient to realize that readily obtainable solutions exist.

Now we set the left side of Equation (7.7) equal to the constant —m,? and re-
arrange to have
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Notice that we have again achieved a successful separation of variables, with
everything depending on r on the left side and everything depending on 6 on
the right side. We can set each side of Equation (7.9) equal to a constant, which
this time we call €£(€ + 1). Doing so with each side of the equation in succession
vields (after more rearrangement) the two equations,
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where, after separation, we have again replaced the partial derivatives with the
ordinary ones.

The process of separation of variables is now complete. The original
Schrodinger equation has been separated into three ordinary second-order dif-
ferential equations [(7.8), (7.10), and (7.11)], each containing only one variable.

Relation Between the Quantum Numbers € and m,

Equation (7.11), which we shall call the angular equation, was first solved by the
famous mathematician Adrien Marie Legendre (1752-1833). It is well known in
the theory of differential equations as the associated Legendre equation. Appli-
cation of the appropriate boundary conditions to Equations (7.10) and (7.11)
(this process is too tedious to present here) leads to the following restrictions on
the quantum numbers € and m,:

€=0,1,2,3,... (7.12)
me=—€—€+1,...,-2,-1,0,1,2,...,£—1,¢

That is, the quantum number € must be zero or a positive integer, and the quan-
tum number m; must be a positive or negative integer, or zero, subject to the

Radial equation

Angular equation

The associated Legendre
equation
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The associated Laguerre
equation

restriction that |mg| = €. The choice of €({ + 1) as the constant for Equation
(7.9) provides in the succinct results in Equation (7.12).

Solution of the Radial Equation

Equation (7.10), appropriately called the radial equation, is another well-known
differential equation. It is known as the associated Laguerre equation after the
French mathematician Edmond Nicolas Laguerre (1834-1886). The solutions R
to this equation that satisfy the appropriate boundary conditions are called asso-
ciated Laguerre functions. We shall consider these solutions in some detail in
Section 7.6. We can obtain some idea of how the ground-state wave function
looks if we assume that the ground state has the lowest possible quantum num-
ber € = 0 of the system. Our conditions in Equation (7.12) then require that
me = 0. Notice that € = 0 greatly simplifies the radial wave Equation (7.10) to be
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The derivative of the bracketed expression in the first term of Equation (7.13)

yields two terms by using the derivative product rule. We write out both of those
terms and insert the Coulomb potential energy, Equation (7.1), to find
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Those students with some experience in solving differential equations will recog-
nize that an exponential solution is required. We try a solution having the form

R= Ae "%

)R=0 (7.14)
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where A is a normalization constant and a, is a constant with dimensions of
length (we shall see ‘that it was no accident that we chose the name a,!). It is
reasonable to try to verify the trial solution by inserting it into the radial equa-
tion (7.14). The first and second derivatives are

aR R R

AR P S R oL,
dr ag dr? ag®

We insert these derivatives into Equation (7.14) and rearrange terms to vield
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By the same reasoning that we applied in the separation of variables method,
the only way for Equation (7.15) to be satisfied for any value of ris for each of the
two bracketed expressions to be equal to zero. We set the second bracket term
equal to zero and solve for a, to find

47re h?
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We see that a, is in fact equal to the Bohr radius [see Equation (4.24) ]! Now we
set the first bracket in Equation (7.15) equal to zero and solve for E to find
B2

E=-——=-E
2“,&02 0

Again this is equal to the Bohr result, with E, having the value 13.6 eV.
Because we are not prepared to deal with the full scope of the associated
Laguerre functions in this book, we shall not consider higher energy states here.
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Rather, we shall summarize some of the key results. The full solution to the ra-
dial wave equation requires (not surprisingly) the introduction of another quan-
tum number, which we shall call n, such that n is a positive integer (but not zero).
There is a further restriction that the quantum number € can only take on val-
ues less than n. The consequences of this, along with a full consideration of al-
lowed sets of the three quantum numbers n, €, and m,, will be considered in Sec-
tion 7.3. Let us note, however, that the predicted energy levels turn out to be
E,

2
n2

E

“n

in agreement with the Bohr result.

Solution of the Angular and Azimuthal Equations

We now return to the azimuthal Equation (7.8). We note that its solutions can be
expressed in exponential form as ¢ or ¢ ™¢®. But because the angular equa-
tion also contains the quantum number m,, solutions to the angular and az-
imuthal equations are linked. It is customary to group these solutions together
into what are called the spherical harmonics Y (6, ¢), defined as

Y(0, ¢) = f(0)g(P) (7.16)
The f(0) part of the
order €. See Table 7.1 for a listing of the normalized spherical harmonics up
tof = ¢

TABLE 7.1
Normalized Spherical Harmonics Y(6, ¢)
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Y (0, ¢) is always a polynomial function of sin 6 and cos 6 of

Spherical harmonics
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The probability density for the electron in the hydrogen atom is given by
¥*y, therefore, the spherical harmonics together with the radial wave function
Rwill determine the overall shape of the probability density for the various quan-
tum states. The total wave function (7, 6, ¢) will depend on the quantum num-
bers n, £, and m,. We can now write the wave function as

Uneme (1, 6, @) = Rye(r) Yoy, (6, ) (7.17)

where we indicate by the subscripts that R(r) depends only on n and ¢ and
Y (6, ¢) depends only on € and m,, We shall look at these wave functions again
in Section 7.6.

7.3 Quantum Numbers

The three quantum numbers obtained from solving Equation (7.3) are
n principal quantum number
14 orbital angular momentum quantum number
mg  magnetic quantum number
Their values are obtained by applying the boundary conditions to the wave func-

tion Y¥(r, 6, ¢) as discussed in Section 6.1. The restrictions imposed by the
boundary conditions are

7 —=o), 20 3 T Integer
£=0,1.2 3. 1 =] Integer (7.18)
iy =il gl o coliiel o s s el Integer

These three quantum numbers must be integers. The orbital angular momen-
tum quantum number must be less than the principal quantum number, € <
and the magnitude of the magnetic quantum number (which may be positive or
negative) must be less than or equal to the orbital angular momentum quantum
number, |m,| < €. We can summarize these conditions as

n>0

E<n (7.19)

|m€| =¢

The lowest value of nis 1, and for n = 1, we must have ¢ = 0, m¢ = 0. For n = 2,
we may have € =0, m =0aswellas € =1, my = —1, 0, +1.

Example 7.1 0 | . onanne

What are the possible quantum numbers for a n = 4 state in n { my
atomic hydrogen?
4 0 0
Solution: The possible values of € are ¢ =0, 1, 2, 3, 4 1 -1,0,1
because €., = n — 1. For each value of €, m, goes from —¢ 4 2 —-2,-1,0,1,2
to +€. 4 3 =4 a1, 58 3

As yet these quantum numbers have little physical meaning to us. Let us
examine each of them more carefully and try to find classical analogies where
possible.



7.3 Quantum Numbers

Principal Quantum Number n

The principal quantum number n results from the solution of the radial wave func-
tion R(7) in Equation (7.4). Because the radial equation includes the potential
energy V(r), it is not surprising to find that the boundary conditions on R(r)
quantize the energy E. The result for this quantized energy is

i 2 2 l I

" 2 \dwesh | n n°

which is precisely the value found in Chapter 4 from the Bohr theory [Equa-
tions (4.25) and (4.26) ]. The energy levels of the hydrogen atom depend on the
principal quantum number 7 only. The negative value of the energy I indicates
that the electron and proton are bound together.

Itis perhaps surprising that the total energy of the electron does not depend
on the angular momentum. However, a similar situation occurs for planetary
motion, where the energy depends on the semimajor axis of the elliptical plan-
etary orbits and not on the eccentricity of the orbits. This peculiarity occurs for
the solar system and the hydrogen atom because both the gravitational and
Coulomb forces are central; they also both have inverse-square-law dependences
on distance.

Orbital Angular Momentum Quantum Number ¢

The orbital angular momentum quantum number € is associated with the R (r) and
/(8) parts of the wave function. The electron—proton system has orbital angular
momentum as the particles pass around each other. Classically, this orbital an-
gular momentum is L=r X p or

I‘ = MU bital’

(7.21)
where 4,5 is the orbital velocity, perpendicular to the radius. The quantum
number ¢ is related to the magnitude of the orbital angular momentum L by

L=Ve{ + )k (7.22)

This curious dependence of L on €(I2~ €(€ + 1) rather than €?) is a wave
phenomenon—it results from the application of the boundary conditions
on U(r, 0, ¢). We will present a justification for it later in the section. The
quantum result disagrees with the more elementary Bohr theory of the hy-
drogen atom, where L = n#. This is most obvious in an £ = 0 state, where
L="VO0(1)A = 0. Apparently we will have to discard Bohr'’s semiclassical “plane-
tary” model of electrons orbiting a nucleus.

In Figure 7.2 we show several classical orbits corresponding to the same to-
tal energy. For an electron in an atom, the energy depends on #; for planetary
motion, the energy depends on the semimajor axis. Do not take the elliptical or-
bits literally for electrons; only probability functions can describe their positions,
which must be consistent with the uncertainty principle. We say that a certain en-
ergy level is degenerate with respect to € when the energy is independent of the
value of € (see Section 6.5). For example, the energy for an n = 3 level is the
same for all possible values* of €({ = 0, 1, 2).

*This statement is true for single-electron atoms like hydrogen. We will learn later in Chapter 8 that
for many-electron atoms (atoms with more than 1 electron) electrons with lower € values lie lower in
energy for a given n value,

(.

\y

FIGURE 7.2 Various possible
electron (or planetary) classi-
cal orbits. The energy depends
only on the principal quantum
number 7z and not on the an-
gular momentum of the hy-
drogen atom. There is a finite
probability for an € = 0 elec-
tron to be present within the
nucleus. Of course, none of
the planets has € = 0, and (ob-
viously) they do not pass
through the sun.




RYDBERG ATOMS

R ydberg atoms are highly excited atoms with their
outermost electron in a high energy level, very
near ionization. They are named after Johannes Ryd-
berg who developed the empirical relation bearing his
name that produces the correct wavelengths of hydro-
gen atoms [Equation (3.13)]. Rydberg atoms are sim-
ilar to hydrogen atoms because the highly excited
electron is in such a large orbit that it stays well out-
side the orbits of the other electrons. A Rydberg atom
of atomic number Z has an electron outside a positive
core of charge +e¢[Z protons and (Z — 1) electrons],
just like the hydrogen atom.

Even though Rydberg atoms may have properties
similar to hydrogen, they have some distinctly exotic
properties. For example, they are gigantic, being as
much as 100,000 times larger than normal atoms. De-
spite being in such a highly excited energy state, they
are surprisingly long lived because the selection rules
do not allow them to easily decay to lower energy lev-
els. Their lifetime can be as long as a second, which is
over a million times the lifetime of a normal excited
atom. On the atomic scale, these long-lived Rydberg
atoms live almost forever.

We recall from Chapter 4 that the energy levels of
the hydrogen atom are given by —E;/n® and the ra-

dius is given by n2a, where E,=13.6 eV and
ap = 5.3 X 107" m. Rydberg atoms have been ob-
served in radio astronomy measurements from outer
space with n values near 400, but those produced in
the laboratory are rarely larger than 100 and are more
commonly studied near 30. Note that a Rydberg atom,
acting like hydrogen and having » = 400 would have
a diameter of 10°> X 107 m or 10 wm, an incredibly
large atom! A transition from n = 401 — 400 results
in a 4 X 1077 eV photon emission having a wave-
length near 3 m, a radio wave.

Rydberg atoms can be made in the laboratory by
bombarding gaseous atoms with charged particles. A
revolution in their study came about, however, from
the use of tunable lasers (see Chapter 10), which al-
lows specific states to be excited by transferring a laser
photon of precise energy to an electron. The density
of atoms must be kept low because a collision between
Rydberg atoms and normal atoms may quickly lead to
de-excitation. The reason Rydberg atoms are so easily
found (relatively speaking, of course) in interstellar
space is because once created, a Rydberg atom has a
poor chance of colliding with another atom.

The most dramatic, and most useful, property of
Rydberg atoms is due to the effect of electric fields on
their energy levels, called the Stark effect. Because of
their large values of n, Rydberg atoms are highly de-

Itis customary for historical reasons to use letter names for the various ¢ val-

ues. These are

€=0 1 2 5 4.0 B
letter = s P - Sl d g h

These particular letter designations for the first four values resulted from em-
pirical visual observations from early experiments: sharp, principal, diffuse,
and fundamental. After ¢ = 3, ( [ state), the letters generally follow alphabet-

ical order.

Atomic states are normally referred to by the n number and ¢ letter. Thus a
state with n = 2 and € = 1 is called a 2p state. Examples of other various atomic

states are ls(n=1,€ =0

),25(n=2,€=0),4d(n=4,£ =2),6g(n=6,¢=4).

A state such as 24 is not possible, because this refers to n =2 and ¢ = 2. Our
boundary conditions require n > ¢.
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Energy

Stark shift

Electric field

FIGURE A The thin black line represents the degenerate
energy level, and the blue lines represent the maximum en-
ergy shift for a given electric field. Because of the large de-
generacy, states may have many of the energies between the
extremes.

generate. Remember that two states are degenerate
when they have different quantum numbers, but have
the same energy. Many states can have the same high
value of n, but have different values of £ and my,. In
highly degenerate Rydberg atoms, the Stark effect is
significant because the splitting of the many energy
levels varies linearly with the electric field as shown in
Figure A. It re'quires only a weak electric field to either
ionize or change the energy level of a Rydberg atom.
In contrast to the electric field, a magnetic field
squeezes an atom and changes its shape. This prop-
erty allows the magnetic properties of Rydberg atoms
to be studied under exotic situations. This area of
research has received much less attention than the
Stark effect.

Several applications have been proposed for
Rydberg atoms besides that of fundamental atomic
measurements. Detectors sensitive to electromagnetic
radiation from the infrared to microwave wavelengths
could be built using the very small differences be-
tween atomic energy levels in Rydberg atoms. Such
long-wavelength radiation (and low frequency) is dif-
ficult to detect using normal atoms because of the
larger energy differences between adjacent energy
states. The use of electric fields allows the energy level
differences to be fine-tuned for Rydberg atoms. Such
a detector, for example, might be useful in astronomy
where suitable detectors are difficult to find.

The use of Rydberg atoms has also been sug-
gested for the separation of isotopes for uranium en-
richment. A laser could be used to promote the atoms
of one particular isotope, but not the others, to mod-
erate atomic excitation, while a second laser excites
the atoms of all other isotopes to highly excited states.
These other atoms could then be isolated by ioniza-
tion leaving the single isotope. To date, few applica-
tions* have been realized for Rydberg atoms, but they
remain a useful object of experimental and theoreti-
cal inquiry.

*D. Kleppner, M. G. Littman, and M. L. Zimmerman, Scientific Amer-
ican 244, 130 (May 1981).

Magnetic Quantum Number m,

The orbital angular momentum quantum number € determines the magnitude
of the angular momentum L, but because L is a vector, it also has a direction.
Classically, because there is no torque in the hydrogen atom system in the ab-
sence of external fields, the angular momentum L is a constant of the motion
and is conserved. The solution to the Schrodinger equation for f(6) specified
that £ must be an integer, and therefore the magnitude of L is quantized.

The angle ¢ is a measure of the rotation about the z axis. The solution for
g(®) specifies that m, is an integer and related to the z component of the angu-
lar momentum L.

L.= meh (7:25)
The relationship of L, L, €, and m, is displayed in Figure 7.3 for the value
¢ = 2. The magnitude of L is fixed (L= V€ + 1)k = V6h). Because L. is
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232 Chapter 7 The Hydrogen Atom

FIGURE 7.3 Schematic dia-
gram of the relationship be-
tween L and L, with the al-
lowed values of m,.

Space quantization
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quantized, only certain orientations of L are possible, each corresponding to a
different m, (and therefore L,). This phenomenon is called space quantization,
because only certain orientations of L are allowed in space.

We can ask whether we have established a preferred direction in space by
choosing the z axis. The choice of the z axis is completely arbitrary unless there
1s an external magnetic field to define a preferred direction in space. It is cus-
tomary to choose the z axis to be along B if there is a magnetic field. This is why
my is called the magnetic quantum number.

Will the angular momentum be quantized along the x and y axes as well?
The answer is that quantum theory allows L to be quantized along only one di-
rection in space. Because we know the magnitude of L, the knowledge of a sec-
ond component would imply a knowledge of the third component as well be-
cause of the relation L? = L > + L2 + L2 The following argument shows that
this would violate the Heisenberg uncertainty principle: if all three components
of L were known, then the direction of L would also be known. In this case we
would have a precise knowledge of one component of the electron’s position in
space, because the electron’s orbital motion is confined to a plane perpendicu-
lar to L. But confinement of the electron to that plane means that the electron’s
momentum component along L is exactly zero. This simultaneous knowledge of
the same component of position and momentum is forbidden by the uncertainty
principle.

Only the magnitude |L| and L, may be specified simultaneously. The values
of L, and L, should be consistent with 1.2 = L.? + L ? + L.? but cannot be spec-
ified individually. Physicists refer to the known values of L and L as “sharp”
and the unknown L, and L, as “fuzzy.” The angular momentum vector L never

oints in the z direction (see Figure 7.3) because L = V{(£ + 1)A and |L| 5
FLme = {h. Our results from solving the Schrodinger equation of the hydro-
gen atom are consistent with the uncertainty principle.

The space quantization just mentioned is an experimental fact. The values
of L, range from —¢ to +£ in steps of 1, for a total of 2¢ + 1 allowed values. Be-
cause there is nothing special about the three directions x, y, and z, we expect
the average of the angular momentum components squared in the three direc-
tions to be the same, (L,?) = (L,?) = (L.?). The average value of (I?) is equal to
three times the average value of the square of any one of the components, so
we choose the z component, (I?) = 3(L.?). To find the average value of L., we



7.4 Magnetic Effects on Atomic Spectra—The Normal Zeeman Effect 233
Just have to sum up all the squares of the quantum numbers for L, and divide by
the total number, 2¢ + 1.

3 .2

(L2) =3(L2) = ——— > m2h2=¢€(f + 1)A2

7.24)
26+ 1,5, (

where we have used a math table for the summation result. This rather simple
argument to explain the €(€ + 1) dependence for the expectation value of 1.2
(rather than using a sophisticated quantum mechanical calculation) was origi-

nally due to Richard Feynman and simplified by P. W. Milonni.*

Example 7.2

What is the degeneracy of the n = 3 level? That is, how
many different states are contained in the energy level,
EB " _E{;/ga

Solution: The energy eigenvalues for atomic hydrogen
depend only on the principal quantum number »n (in the
absence of a magnetic field). For each value of n, there
can be n different orbital angular momentum ¢ states (£ =
0,1,..., n—1). For each value of €, there are 2¢ + 1 dif-
ferent magnetic quantum states (my = —f, =€ +1,...,
0,1,..., +€). Therefore to find the total degeneracy for
n =3 we have to add up all the possibilities.

n 4 m; 26 +1

3 0 0 1

3 1 i i M | 3

i 2 s el o § T 5
total = 9

The n = 3 level is degenerate (in the absence of a magnetic
field) because all nine states have the same energy but dif-
ferent quantum numbers. Their wave functions, however,
are quite different. You may notice that, in general, the de-
generacy is n> (see Problem 16).

7.4 Magnetic Effects on Atomic Spectra—
The Normal Zeeman Effect

As early as 1896 it was shown by the Dutch physicist Pieter Zeeman that the spec-
tral lines emitted by atoms placed in a magnetic field broaden and appear to
split. Sometimes a line is split into three lines (normal Zeeman effect), but
often more than three lines are found (anomalous Zeeman effect). The normal
Zeeman effect can be understood by considering the atom to behave like a small
magnet and will be discussed here. The anomalous Zeeman effect is more com-
plicated (see Section 8.3). By the 1920s considerable fine structure of atomic
spectral lines from hydrogen and other elements had been observed.

As a rough model, think of an electron circulating around the nucleus as a
circular current loop. The current loop has a magnetic moment u = A where
the current /= dq/dt is simply the electron charge (¢ = —¢) divided by the pe-
riod 7 for the electron to make one revolution (7 = 27r/v).

i o (W ey e
A R - 2 2
where L = muvr is the magnitude of the orbital angular momentum. Both the
magnetic moment w and angular momentum L are vectors so that

(7.25)

= (7.26)

2m

*P. W. Milonni, Am. . Phys. 58, 1012 (1990).
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The Dutch physicist Pieter
Zeeman (1865-1943) studied
at the University of Leiden
under the famous physicists
H. Kamerlingh Onnes and
H. A. Lorentz and received
his degree in 1890. While at
Leiden he showed that atomic
spectral lines were split under
the influence of an applied
magnetic field. After his dis-
covery he left Leiden in 1897
of the University of Amster-
dam where he remained until
1935. He shared the 1902 No-
bel Prize in physics with his
mentor Lorentz. AIP Emilio
Segre Visual Archives, W. F. Meggers

collection.

Bohr magneton

Example 7.3

Chapter 7 The Hydrogen Atom
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FIGURE 7.4 Representation of the orbital angular momentum L and magnetic moment
p of the hydrogen atom due to the electron orbiting the proton. The directions of L and
i are opposite because of the negative electron charge.

The relationship between p and L is displayed in Figure 7.4.

In the absence of an external magnetic field to align them, the magnetic mo-
ments g of atoms point in random directions. In classical electromagnetism, if a
magnetic dipole having a magnetic moment w is placed in an external magnetic
field, the dipole will experience a torque T = . X B tending to align the dipole
with the magnetic field. The dipole also has a potential energy Vy in the field
given by

Vg=—n-*B (7.27)

If the system can change its potential energy, the magnetic moment will align it-
self with the external magnetic field.

Note the similarity with the case of the spinning top in a gravitational field.
The gravitational field is not parallel to the angular momentum, and the force
of gravity pulling down on the top results in a precession of the top about the
field direction, not a falling down of the top. Precisely the same thing happens
here with the magnetic moment. The angular momentum is aligned with the
magnetic moment, and the torque between w and B causes a precession of w
about the magnetic field (see Figure 7.4), not an alignment. The magnetic field
establishes a preferred direction in space along which we customarily define the
z axis. Then we have

My = 5 Mg = —pp Mg (7.28)
2m

where g = eh/2m is a unit of magnetic moment called a Bohr magneton.
Because of the quantization of L, and the fact that L = V(£ + 1) > meh, we
cannot have ||.1.| = u.; the magnetic moment cannot align itself exactly in the
z direction. Just like the angular momentum L, the magnetic moment p has
only certain allowed quantized orientations. Note also that in terms of the Bohr
magneton, p = —ugL/%.

Determine the precessional frequency of an atom having Solution: We have already seen that the torque T is

magnetic moment p in an external magnetic field B. This
precession is known as the Larmor precession.

equal to p X B, but from mechanics we also know that the
torque is dL/dt. The torque in Figure 7.5 is perpendicular
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to w, L, and B and is out of the page. This must also be
the direction of the change in momentum dL as seen in F ig-
ure 7.5. Thus L and w precess about the magnetic field. The
magnitude of dL is given by Lsin 8d¢ (see Figure 7.5). The
Larmor frequency w; is given by de/dt,

_db_ 1 ar
“L dt Lsin@ dt

(7.29)
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FIGURE 7.5 An atom having
magnetic moment p feels a
torque T=wu X B due to an
external magnetic field B. This
torque must also be equal to
dL/dt. The vectors w and L
are antiparallel, so the vector
dL/dt must be perpendicular
to w, B, and L. As shown in the
figure, dL/dt requires both
and L to precess (angle ¢)
about the magnetic field B.

We now insert the magnitude of L= 2mu/e from Equa-
tion (7.26). The value of dL/dt, the magnitude of w X B,
can be determined from Figure 7.5 to be uBsinf. Equation
(7.29) becomes

£
w; =

e T 7.30
2mu sin ( )

B
)}L.B sin § = =
m

2

What about the energy of the orbiting electron in a magnetic field? It takes
work to rotate the magnetic moment away from B. With B along the z direction,

we have from Equations (7.16), (7.17), and (7.27)

V= —p.B= +ugmB

(7.31)

The potential energy is thus quantized according to the magnetic quantum num-
ber mg; each (degenerate) atomic level of given € is split into 2¢ + 1 different en-
ergy states according to the value of m,. The energy degeneracy of a given nf

level is removed by a magnetic field (see Figure 7.6a).

Example 7.4

What is the value of the Bohr magneton? Use that to calcu-
late the energy difference between the m, = 0 and m, = +1
components in the 2p state of atomic hydrogen placed in an
external field of 2 T.

Solution: We first find the Bohr magneton to be

Mg =

(1,602 X 10719 C)(1.055 X 103 ] + 5)
2(9.11 X 103! kg)

=9.27 X 10724 /T

(7.32)

The international system of units has been used (T = tesla
for magnetic field). The energy splitting is given by (see Fig-
ure 7.6a)
AE = ppBAm, (7.33)
where Amy = 1 — 0 = 1. Hence, we have
AE= (927X 107 ]/T)(2T) = 1.85 X 1072 ]
=1.16 X 10~* eV

An energy difference of 107* eV is easily observed by optical
means.
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FIGURE 7.6 The normal Zee-
man effect. (a) An external
magnetic field removes the de-
generacy of a 2p level and re-
veals the three different en-
ergy states. (b) There are now
transitions with three different
energies between an excited
2p level and the 1s ground
state in atomic hydrogen. The
energy AE has been grossly ex-
aggerated along the energy
scale.

FIGURE 7.7 An inhomoge-
neous magnetic field is cre-
ated by the smaller south pole.
Two bar magnets representing
atomic magnetic moments
have w in opposite directions.
Because the force on the top
of the bar magnets is greater
than that on the bottom, there
will be a net translational force
on the bar magnets (atoms).

i
' 4
=1
2p 0
=1
Energy
=1 e
_‘ 1
. ¢ = L AE
. Far | AL ot Y Yy
— —1 :
B=20 B =B,k
B=0 B = B,k i
(a) (b)

The splitting of spectral lines can be partially explained by the application
of external magnetic fields. This result, the normal Zeeman effect, is displayed
in Figure 7.6. When a magnetic field is applied, the 2p level of atomic hydrogen
is split into 3 different energy states with the energy difference given by Equa-
tion (7.33). A transition for an electron in the excited 2p level to the 1s ground
state results in three different energy transitions as shown in Figure 7.6b. The
energy differences are shown greatly exaggerated in Figure 7.6b, but as instru-
ments were improved, such differences could be observed. The application of
external magnetic fields eliminates much of the energy degeneracy, resulting in
more quantized states having different energies between which electrons are

greater

Net
force

lower
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Screen

= +1
=0
i prstate = —1
Atomic atoms
beam
oven

FIGURE 7.8 Schematic diagram of expected result of Stern and Gerlach experiment if
atoms in a p state are used. Three patterns of atoms, due to m, = *1, 0, are expected on
the screen. The magnet poles are arranged to produce a magnetic field gradient as shown
in Figure 7.7. The experiment performed by Stern and Gerlach reported only two lines,
not three (see Section 7.5).

able to move while emitting or absorbing electromagnetic radiation. We will see
in Section 7.6 that the selection rule for m, will not allow more than three dif-
ferent lines in the normal Zeeman effect (see Problem 29).

Efforts were begun in the 1920s to detect the effects of space quantization
(m¢) by measuring the energy difference A E as in Example 7.4. In 1922 O. Stern
and W. Gerlach reported the results of an experiment that clearly showed evi-
dence for space quantization. If an external magnetic field is inhomogeneous—
for example, if it is stronger at the south pole than at the north pole—then there
will be a net force on a magnet placed in the field as well as a torque. This force
is represented in Figure 7.7, where the net force on w (direction of S to N in bar
magnet) is different for different orientations of w in the inhomogeneous mag-
netic field B.

Now if we pass an atomic beam of particles in the € = 1 state through a mag-
netic field along the zdirection, we have from Equation (7.31), V= —u.B, and
the force on the particles is ¥, = — (dVp/dz) = p,(dB/dz). There will be a differ-
ent force on each of the three possible m, states. A schematic diagram of the
Stern-Gerlach experiment is shown in Figure 7.8. The m, = +1 state will be de-
flected up, the my = —1 state down, and the m, = 0 state will be undeflected.

Stern and Gerlach performed their experiment with silver atoms and ob-
served two distinct lines, not three. This was clear evidence of space quantiza-
tion, although the number of m, states is always odd (2¢ + 1) and should have
produced an odd number of lines if the space quantization were due to the mag-
netic quantum number m,.

Example 7.5

237

Otto Stern (1888-1969) was
born in a part of Germany that
is now in Poland, where he
was educated and worked in

several universities until he left
Germany in 1933 to avoid per-
secution and emigrated to the
United States. He was educated
and trained as a theorist, but
changed to experimentation
when he began his molecular
beam experiments in 1920 at
the University of Frankfurt with
Walter Gerlach. He continued
his distinguished career in
Hamburg and later at Carne-
gie Tech in Pittsburgh. He re-
ceived the Nobel Prize in 1943,
AIP Emilio Segré Visual Archives, Segré

collection.
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In 1927 T. E. Phipps and J. B. Taylor of the University of

Illinois reported an important experiment similar to the
Stern-Gerlach experiment but using hydrogen atoms in-
stead of silver. This was done because hydrogen is the sim-
plest atom, and the separation of the atomic beam in the in-
homogeneous magnetic field would allow a clearer
interpretation. The atomic hydrogen beam was produced in
a discharge tube having a temperature of 663 K. The highly
collimated beam passed along the x direction through an
inhomogeneous field (of length 3 cm) having an average
value of 1240 T/m along the zdirection. If the magnetic mo-

ment of the hydrogen atom is 1 Bohr magneton, what is the
separation of the atomic beam?

Solution: The force can be found from the potential
energy of Equation (7.31).

av_ ap
dz

F,= d

2 B
The acceleration of the hydrogen atom along the zdirection
is a, = F./m. The separation of the atom along the z direc-
tion due to this acceleration is d = a.t*/2. The time that the
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atom spends within the inhomogeneous field is 1= Ax/v,
where Ax is the length of the inhomogeneous field, and v,
is the constant speed of the atom within the field. The sepa-
ration d is therefore found from

1 - F, 1 dB\ [ Ax\?
d=—at?’=—(—=|#= Phsr- | hwas
5 2(m) 2m (M“ dz )(v.)

X

We know all the values needed to determine d except the
speed v,, but we do know the temperature of the hydrogen
gas. The average energy of the atoms collimated along the

The separation d of the one atom is now determined to be

L q?’:‘xl[]_z‘ll. 1‘)40l
2(1.67 X 10727 kg) \ T T m

d=

(0.03m)*
(1.64 X 107 m?/s?)

=0.19 X 10%m

Phipps and Taylor found only two distinct lines as did Stern
and Gerlach for silver atoms, and the separation of the lines
from the central ray with no magnetic field was 0.19 mm as

1 38 ok )
x direction is = m{v,?) = — kT. We calculate (v,%) to be

2

we just calculated! The total separation of the two lines (one
deflected up and one down) was 0.38 mm. The mystery still
remained as to why there were only two lines.

_ 3(1.38 X 1072 J/T) (663 K)

m o 1.67 X 10727 kg
= 1.64 X 107 m2/s?

Intrinsic spin quantum
number

Magnetic spin quantum
number

7.5

Intrinsic Spin

By the early 1920s there was clearly a problem. Wolfgang Pauli was the first to
suggest that a fourth quantum number (after n, €, m;) assigned to the electron
might explain the anomalous optical spectra. His reasoning for four quantum
numbers was based on relativity, where there are four coordinates—three space
and one time. The physical significance of this fourth quantum number was not
made clear.

In 1925 Samuel Goudsmit and George Uhlenbeck, two young physics grad-
uate students in Holland, proposed that the electron must have an intrinsic angular
momentum and therefore a magnetic moment (because the electron is charged).
Classically, this corresponds in the planetary model to the fact that the Earth ro-
tates on its own axis as it orbits the sun. However, this simple classical picture
runs into serious difficulties when applied to the spinning charged electron.
Ehrenfest showed that the surface of the electron (or electron cloud) would
have to be moving at a velocity greater than the speed of light! If such an intrin-
sic angular momentum exists, we must regard it as a purely quantum-mechanical re-
sult (see Problems 38 and 39).

In order to explain experimental data, Goudsmit and Uhlenbeck proposed
that the electron must have an intrinsic spin quantum number s = 1/2. The
spinning electron reacts similarly to the orbiting electron in a magnetic field.
Therefore, we should try to find quantities analogus to the angular momentum
variable L, L., €, and m,. By analogy, there will be 2s + 1 = 2(1/2) + 1 = 2 com-
ponents of the spin angular momentum vector s. Thus the magnetic spin quan-
tum number m, has only two values, m, = £1/2. The electron’s spin will be
oriented either “up” or “"down” in a magnetic field (see Figure 7.9), and the elec-
tron can never be spinning with its magnetic moment ., exactly along the z axis
(the direction of the external magnetic field B).

For each atomic state described by the three quantum numbers (n, €, my)
discussed previously, there are now two distinct states, one with m, = +1/2 and
one with m; = —1/2. These states will be degenerate in energy unless the atom is
in an external magnetic field. In a magnetic field these states will have different
energies due to an energy separation like that of Equation (7.33). We say the
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splitting of these energy levels by the magnetic field has removed the energy
degeneracy.

The intrinsic spin angular momentum vector S has a magnitude of [S| =
Vs(s + 1)h = V3/4#. The magnetic moment is w, = —(¢/m) S, or —2upS/h.
The fact that the coefficient of S/% is —2uy rather than — ug as with the orbital
angular momentum L is a consequence of the theory of relativity (Dirac equa-
tion), and we will not pursue the matter further here. This numerical factor re-
lating the magnetic moment to each angular momentum vector is called the
gyromagnetic ratio. It is designated by the letter g with the appropriate subscript
(€ or s), so that g, = 1 and g, = 2. In terms of the gyromagnetic ratios, then,

_ _ 8l _ ppL

e = % 5 (7.34a)
gsJu‘BS Ju'BS
B R = = 7.34
The z component of S is S, = mh = +#/9.

We can now understand why the experiment of Stern and Gerlach only pro-
duced two distinct lines. If the atoms were in a state with € = 0, there would be
no splitting due to m,. However, there is still space quantization due to the in-
trinsic spin that would be affected by the inhomogeneous magnetic field. The
same arguments used previously for p, (we now use the subscript € to indicate
the magnetic moment due to the orbiting electron and the subscript s to indi-
cate the magnetic moment due to intrinsic spin) can now be applied to p,, and
the potential energy, Equation (7.27), becomes

VB=—|-L,'B=+LS'B
m

(7.85)

If we look at the hydrogen atom in the frame of the orbiting electron, we have
the classical result shown in Figure 7.10. This classical picture indicates that the
orbiting proton creates a magnetic field at the position of the electron. There-
fore, even without an external magnetic field, the electron will feel the effects of
an internal magnetic field, and Equation (7.35) predicts an energy difference
depending on whether the electron’s spin is up or down. Many levels are effec-
tively split into two different states called doublets.

The relativistic quantum theory proposed by P. A. M. Dirac in 1928 showed
that the intrinsic spin of the electron required a fourth quantum number as a con-
sequence of the theory of relativity.

R =
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FIGURE 7.9 (a) A purely clas-
sical schematic of the intrin-
sic spin angular momentum,
S, of a spinning electron. (b)
The quantization of S, which
can have only two positions
in space relative to z (direction
of external magnetic field).
The z component of S is §, =

*h/2,

Intrinsic spin angular
momentum vector

Gyromagnetic ratio

P

FIGURE 7.10 The hydrogen
atom in the frame of reference
of the electron. In this case,
the orbiting proton creates a
magnetic field at the position
of the electron.
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Example 7.6

How many distinctly different states (and therefore wave the 4d level (n=4, { = 2) there are 2¢ + 1 = 5 different
functions) exist for the 4d level of atomic hydrogen? values of my. For each of these m,(—2, —1, 0, 1, 2), there are

two m, states (*£1/2). Therefore there are 10 different possi-

Solution: With the inclusion of the magnetic spin  ble individual states for a 4d level of atomic hydrogen.
quantum number the number of states has multiplied. For

FIGURE 7.11 Energy-level di-
agram of hydrogen atom with
no external magnetic field.
Also shown are allowed pho-
ton transitions between some
levels.

Note that (in the absence of an applied magnetic field) the fourth quantum
number makes the degeneracy of the nth quantum level 2n2.

7.6 Energy Levels and Electron
Probabilities

We are now in a position to discuss a complete description of the hydrogen atom.
Every possible state of the hydrogen atom has a distinct wave function that is
specified completely by four quantum numbers: (7, €, mg, my). In many cases the
energy differences associated with the quantum numbers m,; and m, are insignif-
icant (that is, the states are nearly degenerate), and we can describe the states
adequately by n and £ alone: for example, 1s, 2p, 25, 3d, and so on. Generally, cap-
ital letters (that is, S, P, D) are used to describe the orbital angular momentum
of atomic states and lowercase letters (that is, s, p, d) to describe those for indi-
vidual electrons. For hydrogen it makes little difference because each state only
has a single electron, and we will use either specification.

In Figure 7.11 we show an energy-level diagram for hydrogen in the absence
of an external magnetic field. The energy levels are degenerate with respect to

Energy S Vs D F G
(e_:) ATy 9 3 4
-08 4 ~ - %—-—
=]l \\ ! /7 —F series

D series

-34 2

——Pseries

-136 1 -t
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¢, my, and m,, but in a-magnetic field this degeneracy is removed. For heavier
atoms with several electrons, the degeneracy is removed—either because of in-
ternal magnetic fields within the atom or because the average potential energy
due to the nucleus plus electrons is non-coulombic. In atoms with Z> 1 the
smaller € values tend to lie lower in energy for a given n (see Section 8.1). For
example, in sodium or potassium, E(4S) < E(4P) < E(4D) < E(4F). For hy-
drogen, the energy levels depend only on the principal quantum number n and
are given to great accuracy by the Bohr theory.

We have previously learned that atoms emit characteristic electromagnetic
radiation when they make transitions to states of lower energy. An atom in its
ground state cannot emit radiation; it can absorb electromagnetic radiation, or
it can gain energy through inelastic bombardment by particles, especially elec-
trons. The atom will then have one or more of its electrons transferred to a
higher energy state.

Selection Rules

We can use the wave functions obtained from the solution of the Schrodinger
equation to calculate transition probabilities for the electron to change from
one state to another. The results of such calculations show that electrons
absorbing or emitting photons are much more likely to change states when
Af = *1. Such transitions are called allowed. Other transitions, with A€ # *1,
are theoretically possible but occur with much smaller probabilities and are
called forbidden transitions. There is no selection rule restricting the change An
of the principal quantum number. The selection rule for the magnetic quantum
number is Am, = 0, =1. The magnetic spin quantum number m, can (but need
not) change between 1/2 and —1/2. We summarize the selection rules for al-
lowed transitions:

An = anything
Al = +] (7.36)
Am{ = 0, |

Some allowed transitions are diagrammed in Figure 7.11. Notice that there are
no transitions shown for 3P— 2P, 3D — 28, and 35— 1S because those transi-
tions violate the A€ = =1 selection rule.

If the orbital angular momentum of the atom changes by 2 when absorption
or emission of radiation takes place, we must still check that all conservation laws
are obeyed. What about the conservation of angular momentum? The only ex-
ternal effect on the atom during the absorption or emission process is that due
to the photon being absorbed or emitted. If the state of the atom changes, then
the photon must possess energy, linear momentum, and angular momentum.
The Af = *1 selection rule strongly suggests that the photon carries one
unit (%) of angular momentum. By applying quantum mechanics to Maxwell’s
equations, it is possible to show* that electromagnetic radiation is quantized into
photons having E = kv and intrinsic angular momentum of #i. A consequence of
the photon’s intrinsic angular momentum is the circular polarization of an elec-
tromagnetic wave.

*See Leonard Schiff’s Quantum Mechanics 3rd ed. New York: McGraw-Hill, 1968 for a discussion of
both the semiclassical and quantum treatment of radiation.

Transition probabilities

Allowed and forbidden
transitions

Selection rules
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SRBERLCOCOL

Which of the following transitions for quantum numbers (b) A€ = 0, Am, = 0; not allowed, because Af # *1.

(n, €, mg, m_‘? are aIlowed‘for the hydrogen atom, and if al- (c) A€ = —1, Am, = 1; allowed. Notice that An = —2 and
lowed, what is the energy involved?
(o) £2,00. 0, LA (3,.1; 1,1,62)

c C C 1
(b) (2,0,0,1/2) > (3,0,0,1/2) . _ISGCV(_ B _)

Example 7.7

Am, = +1 does not affect whether the transition is allowed.

(c) 42, -1, —1/2)2,1.0,1/2) R
Solution: We want to compare A{ and Am, with the se- - = —2.55 eV, corresponding to emission of a 2.55-eV
lection rules of Equation (7.36). If allowed, the energies photon.

may be obtained from Equation (7.20) with £, = 13.6 eV.
(a) A€ = +1, Am, = 1; allowed.

1
AE=E; - 3=—1‘%66V(——'—)

= 1.89 eV, corresponding to absorption of a 1.89-eV
photon.

Probability Distribution Functions

In the Bohr theory of the hydrogen atom, the electrons were pictured as orbit-
ing around the nucleus in simple circular (or elliptical) orbits. The position vec-
tor r of the electron was well defined. In the wave picture of the atom, we must
use wave functions to calculate the probability distributions* of the electrons.
The “position” of the electron is therefore spread over space and is not well
defined. The distributions can be found by examining the separable wave func-
tions R(r), f(8), and g(¢). The g(¢) distribution is simplest because it leads to
uniform probability—all values of ¢ are equally likely. It is easy to see why. Be-
cause the azimuthal part of the wave function is always of the form e™¢®, the
probability density *i will contain a corresponding factor of (e™e®)*gmed =
e Mmebeimed = 0 = 1,

We may use the radial wave function R(r) to calculate radial probability dis-
tributions of the electron (that is, the probability of the electron being at a given
7). As was discussed in Section 5.6, the probability of finding the electron in a dif-
ferential volume element dVis

AP = y*(r, 0, d)Y(n, 0, )dV (7.37)

We are interested in finding the probability P(r)drof the electron being between
rand r + dr. The differential volume element in spherical polar coordinates is

dV = r?sin 0 dr dO do

Therefore,
T 29T
P(rydr=rPR* (R dr [ |f0)Fsin0a0 [ |g@)|dp  (7.38)
0 0

We are integrating over 6 and ¢, because we are only interested in the radial
dependence. If the integrals over f(0) and g(¢) have already been normal-

*It may be useful at this time to review Section 5.6, where the relationships between probability and
wave functions were discussed.
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TABLE 7.2
Hydrogen Atom Radial Wave Functions
n ¢ R, (r)
1 O 2 —r/a
R g ocouidy R Bl )]
8o 2
2 0 2 L e r/2ag
( ) (2a0)%2
2 ) r e-r_/2uu
ay \/5(2(10)3”2
1 o r2
3 0 ~1/8a,
Cag) 2 81\/_( B o )e
1 -+ r r
3 1 6 S ey L
(ap) (ag)¥? 81V6 ( an) @ .
2
3 9 1 4 SRS o

((1(])3/2 81V 30 a(}z

ized to unity, the probability of finding the electron between rand » + dr re-
duces to

P(r)dr=r2|R(1)|2 dr (7.39) Radial probability
The first few radial wave functions are listed in Table 7.2, where a, = Bohr ra-
dius = 0.53 X 1071 m. The radial probability density is
P(r) = r2|R(n) |2 (7.40)

This probability density depends only on n and €. In Figure 7.12 we display both
R(r) and P(r) for the lowest-lying: states of the hydrogen atom.

Example 7.8

Find the most probable radius for the electron of a hydro-  2p state:
p )
gen atom in the lsand 2p states.

d g 1,1
Solution: To find the most probable radial value we dr ( 3(2ap)® ag>
take the derivative of the probability density P(r) with re- 1 4
. 4 : 2 P F—
spect to rand set it equal to zero. % (_ 2% 4,,_;) 0
1s state: 4ay @o
4
d 4 {dEeiag = T 443
— PN =0=—(—F—12 p
dr dr agy 0

r=4a, Most probable radius for 2p state electron (7.42)

4 ( 2 ,
0= — (— "2 + %)« 21/,

292

Notice that the most probable radii for the 1sand 2p states
agree with the Bohr radii. This occurs only for the largest
possible € value for each n (see Problem 32).

Il
ro

adp

r=ag Most probable radius for 1s state electron (7.41)
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FIGURE 7.12 (a) The radial
wave function R,.(r) plotted
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Example 7.9

(b)

Calculate the average orbital radius of a 1s electron in the so that
hydrogen atom. 4

{(r)= — 3a, = i a For the 1s state electron
Solution: The expectation (or average) value of r is g e 8 ag P

(see Section 6.3)

(ry=[d*(r, 6, §)rib(r, 6, p)dV
= [ rP(r) dr

where we have again integrated over 6 and ¢.

oa

(r) =
0

T e 2r/ay rSd,r
ao'

We look up this integral in Appendix 3 and find

4

- 3a
. g

J‘ r3e=21% dy =
0 8

Therefore, the average electron radius in the 1s state is
larger than the most probable value, the Bohr radius. We
can see that this result is reasonable by examining the radial
probability distribution for the 1s state displayed in Fig-
ure 7.12. The maximum (or most probable) value occurs at
ao, but the average is greater than a, because of the shape
of the tail of the distribution.




7.8 Energy Levels and Electron Probabilities

Example 7.10

What is the probability of the electron in the 1s state of the
hydrogen atom being at a radius greater than the Bohr
radius a,?

Solution: We simply integrate the radial probability
distribution from 7 = a, to ®, because P(r) is already nor-
malized (that s, it has a unit probability of being somewhere
between () and ).
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We look up the indefinite integral in Appendix 3 and evalu-
ate to find the result

1
Probability = — (

5
—a()se_g) = be 2 = (.68
o

4

The probability of the electron being outside the Bohr ra-
dius in a s state is greater than 50%. This explains why we
found (r),, = 1.5 a,. This result is consistent with the shape

of the 1s curve in Figure 7.12b.

Probability = J P(r)dr

aq

4 -]

=—F | e*%ridr

The probability distributions for the € = 0 state electrons are spherically
symmetric, because the wave functions have no 6 or ¢ dependence (see
Table 7.1). For € > 0 the distributions are interesting because of the f(60) de-
pendence. For example, consider a p orbital. Referring to Table 7.1, we see that
there are two possibilities for the angular part of the wave function. If € = 1 and
my = 0, the Y;, will be a factor in the wave function, and therefore cos?6 will be
a factor in the probability density ¢*i. In this case the probability density will
be highest near 0° and 180°, that is, near the +z axis and —zaxis. The other pos-
sible combinations for the quantum numbers of an electron in a p orbital are
¢ =1and m, = *1. Now Y, will go into the wave function, and hence sin? will
be a factor in the probability density *i. The probability is highest at 8 = 90°,
that is, in the xy plane. The probability distributions seen in Figure 7.13 are con-
sistent with this analysis.

When we look at d orbitals, the situation becomes a bit more complicated,
but a similar analysis will allow us to see at what angles 6 the probability density
is maximized. For the € = 2, m, = 0 state, we can see that Y3, must have a
maximum around 6 = 0° and 180°. Once again, these results are shown in Fig-
ure 7.13. Similarly Y3., (corresponding to the € = 2, m; = =2 states) has a max-
imum in the xy plane. For the ¢ = 2, my = *1 states, we find a factor sinZ6 cos>#

z

n
£
m

n
¢
1 myg

i+ =
o
(=T & ]
o
o MK Lo

n
4
my

o

=

FIGURE 7.13 Pictorial representation of the probability density |W(r, 6, $) P for the hydro-
gen atom for three different electron states. There is axial symmetry about the z axis in each
case. The shaded regions indicate those parts of space with the highest probability densities.
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coming from Y3.,. For these states the probability maxima are at 6= 45°

and 135°.

Itis interesting to consider in which state (for a given n) the electron is clos-
est to the origin. We can calculate (r) for the 2s and 2 states (see Problem 36)
and find that the 2p average radius is smaller. However, because the P(r) for the
25 state has two maxima, one with r < a,, the electron in the 2s state will actually
spend more time very close to the nucleus than will one in the 2 state. This ef-
fect can be seen in Figure 7.12, where the radial distribution for P(r) in the 2s
state extends farther out than that for 2p, but there is a secondary maximum for
P(r) for the 2s state near a,,.

The Schrodinger wave theory is applied to atomic physics,
beginning with the hydrogen atom. The application of the
boundary conditions leads to three quantum numbers:

n principal quantum number
€ orbital angular momentum quantum number
my magnetic quantum number

with the values and restrictions (all are integers)

n=11,2 3,4,... n=>0
£ =012 3. ... (n=1) {<n
m(-:“{},—f+l,...,0,1,...,€—1,€ lm(|$€

The energy of the electron-proton system is quantized and
depends to first order only on n. The orbital angular mo-
mentum L is quantized by L = V£(€ + 1)h and not by n# as
in the Bohr theory. We use letter names s, p, d, 1.8 B eyt
indicate the ¢ value for a given electron.

The zcomponent of L is quantized, and L, = myh. This

is referred to as space quantization, because L can only have
certain orientations in space. In the absence of a magnetic

field, the energy is degenerate with respect to € and m,. In
an external magnetic field each n€ level is split into 2€ + 1
different energy states (normal Zeeman effect).

In order to explain increasingly complex atomic spec-
tra, a fourth quantum number was introduced by Goudsmit
and Uhlenbeck. This quantum number s is related to the
electron’s intrinsic angular momentum, commonly referred
to as spin. The electron spin quantum number is s = 1/2,
and the values of the magnetic spin quantum number m,
are *1/2. Stern and Gerlach observed in 1922 the effects
of intrinsic spin, although at the time it was confused with
orbital angular momentum.

The selection rules for allowed transitions for a change
from one state to another are

An = anything
Ab = *]
Am(, = 0, = |

(7.36)

The probability of finding an electron between r and
r+ dris P(r)dr= rQIR(r)IEdTwhere R(r) is the radial wave
function.

1. Do the radial wave functions depend on m? Explain
your reasons.

2. Would the radial wave functions be different for a po-
tential V(7) other than the Coulomb potential? Ex-
plain.

3. For what energy levels in the hydrogen atom will we
not find € = 2 states?

4. What are the differences and similarities between
atomic levels, atomic states, and atomic spectral lines?
When do spectral lines occur?

5. Can the magnetic moment of an atom line up exactly
with an external magnetic field? Explain.

6. What are the possible magnetic quantum numbers for
an fstater

7. List all the reasons why you think a fourth quantum
number (intrinsic spin) might have helped explain
the complex optical spectra in the early 1920s.

8. Isit possible for the z component of the orbital mag-
netic moment to be zero, but not the orbital angular
momentum? Explain.

9. A close examination of the spectral lines coming from
starlight can be used to determine the star’s magnetic
field. Explain how this is possible.

10. If a hydrogen atom in the 2p excited state decays to
the Is ground state, explain how the following prop-
erties are conserved: energy, linear momentum, and
angular momentum.




7.1

15

7.2

10.

Application of the Schrédinger Equation to the
Hydrogen Atom

Assume that the electron in the hydrogen atom is
constrained to move only in a circle of radius « in the
xy plane. Show that the separated Schrodinger equa-
tion for ¢ becomes

1 d?%y . 2m

a de¢? h?
where ¢ is the angle describing the position on the
circle. This is similar to the Bohr assumption.
Solve the equation in the previous problem for .
Find the allowed energies and angular momenta.
After separating the Schrodinger equation using ¢ =
R(r) f(0)g(¢), the equation for ¢ is

1 &Er .,
g do*

where k = constant. Solve for g(¢) in this equation
and apply the appropriate boundary conditions. Show
that k& must be 0 or a positive or negative integer
(k = mg, the magnetic quantum number).
Using the transformation equations between cartesian
coordinates and spherical polar coordinates given in
Figure 7.1, transform the Schrodinger Equation (7.2)
from cartesian to spherical coordinates as given in
Equation (7.3).

|Elg =0

Solution of the Schrodinger Equation

for Hydrogen

Show that the radial wave function Ry, for n = 2 and
¢ = 0 satisfies Equation (7.14). What energy E results?
Is this consistent with the Bohr model?

Show that the radial wave function Ry, for n=2
and € = 1 satisfies Equation (7.10). What energy re-
sults? Is this consistent with the Bohr model?

Show that the radial wave function R4, for n = 2 and
£ = 1 is normalized.

The normalized wave function ¢ for the ground state
of hydrogen is given by

g g

Pro0(r, 0, P) =

Tay

Show that the wave function is normalized over all
space.

Quantum Numbers

List all the possible quantum numbers (n, €, m,) for
the n = 6 level in atomic hydrogen.

For a 3p state give the possible values of n, £, gy Ly Loy
L, and L,.

11.

14.

15.

16.

7.4

17.

18.

19.

20.

21.

22.

23.

Problems 247

Write down all the wave functions for the 3p level of
hydrogen. Identify the wave functions by their quan-
tum numbers, Use the solutions in Tables 7.1 and 7.2.
Prove that (L.2) = €(£ + 1)A? by actually performing
the summation for Equation (7.24).

. What is the degeneracy of the n = 6 shell of atomic

hydrogen considering (n, €, my) and no magnetic
field? '

For a 3d state draw all the possible orientations of the
angular momentum vector L. What is L2 + L? for
the my = —1 component?

What is the smallest value that € may have if L is within
37 of the z axis?

Prove that the degeneracy of an atomic hydrogen
state having principal quantum number nis »* (ignore
the spin quantum number).

Magnetic Effects on Atomic Spectra—
The Normal Zeeman Effect
Calculate the possible z components of the orbital
angular momentum for an electron in a 4p state.
For hydrogen atoms in a 4d state what is the maximum
difference in potential energy between atoms when
placed in a magnetic field of 2.5 T? Ignore intrinsic
spin.
Show that the wavelength difference between adja-
cent transitions in the normal Zeeman effect is given
approximately by
R e Ao* upB

he
For hydrogen atoms in a d state sketch the orbital an-
gular momentum with respect to the z axis. Use units
of # along the z axis and calculate the allowed angles
of p, with respect to the z axis.
For a hydrogen atom in the 6fstate, what is the mini-
mum angle between the orbital angular momentum
vector and the z axis?
The red Balmer series line in hydrogen (A = 656.5
nm) is observed to split into three different spectral
lines with AA = 0.04 nm between two adjacent lines
when placed in a magnetic field B. What is the value
of Bif AX is due to the energy splitting between two
adjacent m, states?
A hydrogen atom in an excited 5f state is in a mag-
netic field of 3 T. How many different energy states
can the electron have in the 5fsubshell? (Ignore the
magnetic spin effects.) What is the energy of the 5f
state in the absence of a magnetic field? What will be
the energy of each state in the magnetic field?
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24.

25.

7.5
26.

L

28.

7.6

29.

30.

31.

32.

33.

34.

The magnetic field in a Stern-Gerlach experiment
varies along the vertical direction as dB./dz = 20
T/cm. The horizontal length of the magnetis 7.1 cm,
and the speed of the silver atoms averages 925 m/s.
The mass of the silver atoms is 1.8 X 10~%> kg. Show
that the z component of its magnetic moment is
1 Bohr magneton. What is the separation of the two
silver atom beams as they leave the magnet?

An experimenter wants to separate silver atoms in a
Stern-Gerlach experiment by at least 1 cm (a large
separation) as they exit the magnetic field. To heat
the silver she has an oven that can reach 1000°C and
needs to order a suitable magnet. What should be the
magnet specifications?

Intrinsic Spin

In an external magnetic field can the electron spin
vector S point in the direction of B? Draw a diagram
with B = B, k showing S and S..

Using all four quantum numbers (n, £, m,, m,) write
down all possible sets of quantum numbers for the 5/
state of atomic hydrogen. What is the total degeneracy?
Prove that the total degeneracy for an atomic hydro-
gen state having principal quantum number 7 is 2n2.

Hydrogen Atom Energy Levels and Electron
Probabilities

Show that, for transitions between any two n states of
atomic hydrogen, no more than three different spec-
tral lines can be obtained for the normal Zeeman
effect.

Find whether the following transitions are allowed,
and if they are, find the energy involved and whether
the photon is absolrbed or emi[tedlfor the hydrogtl?n
atom: (a) (5,2, 1,5) — (5,2, 1, —3):(b) (4,3,0,3)
= (42,1, -3 (©) (5,2 -2 -3 > (1, 0, 0, —1);
(d) (2,1,1,3) — (4,2 1,3).

In Figure 7.12, the radial distribution function P(r)
for the 25 state of hydrogen has two maxima. Find the
values of r (in terms of @,) where these maxima occur.
Find the most probable radial position for the elec-
tron of the hydrogen atom in the 2s state. Compare
this value with that found for the 2 state in Ex-
ample 7.6.

Sketch the probability function as a function of r for
the 2sstate of hydrogen. At what radius is the position
probability equal to zero?

Calculate the probability of an electron in the ground

state of the hydrogen atom being inside the region of () 43.

the proton (radius = 1 X 107'> m). (Hint: Note that
r<< ag.)

35.

36.

0 37.

Calculate the probability that an electron in the
ground state of the hydrogen atom can be found be-
tween 0.95a, and 1.054a,,

Find the expectation value of the radial position for
the electron of the hydrogen atom in the 2s and 2p
states.

Calculate the probability of an electron in the 2s state
of the hydrogen atom being inside the region of the
proton (radius =1 X 10~ m ), Repeat for 2p elec-
tron. (Hint: Note that r << a).

General Problems

38.

39.

40.

41.
42,

Assume the following (incorrect!) classical picture of
the electron intrinsic spin. Take the electrical energy
of the electron to be equal to its mass energy concen-

trated into a spherical shell of radius R.
B

4menR

2

= mc

Calculate R (called the classical electron radius). Now
let this spherical shell rotate and calculate the velocity
in order to obtain the electron intrinsic spin.

v h

Angular momentum = /o = | — = —

R 2
where /= moment of inertia of a spherical shell =
2mR*/3. Is the value of v obtained in this manner con-
sistent with the theory of relativity? Explain.
As in the previous problem, we want to calculate the
speed of the rotating electron. Now let’s assume that
the diameter of the electron is equal to the Compton
wavelength of an electron. Calculate v and comment
on the result.
Consider a hydrogenlike atom such as He* or Lit+
that has a single electron outside a nucleus of charge
+Ze. (a) Rewrite the Schrodinger equation with the
new Coulomb potential. (b) What change does this
new potential have on the separation of variables?
(c) Will the radial wave functions be affected? Fx-
plain. (d) Will the spherical harmonics be affected?
Explain.
For the previous problem find the wave function .
Consider a hydrogen atom in the 3p state. (a) At what
radius is the electron probability equal to zero? (b) At
what radius will the electron probability be a maxi-
mum? (c) For m; = 1, at what angles 6 will the elec-
tron probability be equal to zero? What about for
me = —17
Consider a “muonic atom,” which consists of a proton
and a negative u~. Compute the ground state energy
following the methods used for the hydrogen atom.




