cHAPTER B

The Quantum Theory

In wave mechanics there are no impenetrable barriers, and, as the
British physicist R. H. Fowler put it after my lecture on that subject at
the Royal Society of London . . . "Anyone at present in this room has a
finite chance of leaving it without opening the door—or, of course,
without being thrown out the window.”

George Gamow

E uring the early 1920s physicists strove to correct the deficiencies of Bohr’s
atomic model. The hydrogen atom was the subject of intensive investiga-
tion. The origination of the quantum theory, called quantum mechanics, is gen-
erally credited to Werner Heisenberg and Erwin Schrodinger, whose answers
were clothed in very different mathematical formulations. Heisenberg (with his
colleagues Max Born and Pascual Jordan) presented the mairix formulation of
quantum mechanics in 1925. The mathematical tools necessary to introduce ma-
trix mechanics are not intrinsically difficult, but would require too lengthy an ex-
position for us to study them here. The other solution, proposed in 1926 by
Schrodinger, is called wave mechanics; its mathematical framework is similar to
the classical wave descriptions we have already studied in elementary physics.
Paul Dirac and Schrodinger himself (among others) later showed that the ma-
trix and wave mechanics formulations give identical results and differ only in
their mathematical form. We shall study only the formalism of Schrodinger here.

In this chapter we will determine wave functions for some simple potentials
and use these wave functions to predict the values of physical observables such
as position and energy. We will learn that particles are able to tunnel through po-
tential barriers to exist in places that are not allowed by classical physics. Several
applications of tunneling will be discussed.

6.1 The Schroadinger Wave Equation

After the Austrian physicist Erwin Schrédinger (Nobel Prize, 1933) learned of
de Broglie’s wave theory for particles, it was suggested to him while presenting
a seminar in Berlin that particles must therefore obey a wave equation.
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Time-dependent
Schrédinger wave equation

Erwin  Schrodinger  (1887-
1961) was an Austrian who
worked at several European uni-
versities before fleeing Nazism
in 1938 and accepting a posi-
tion at the University of Dublin
where he remained until his
retirementin 1956. His primary
work on the wave equation was
performed during the period
he was in Zurich from 1920~
1927. Schrodinger worked in
many fields including philoso-
phy, biology, history, literature,
and language. AIP Emilio Segre
Visual Archives.

Schrédinger then quickly found a suitable wave equation based on the relation-
ship between geometrical optics and wave optics.

In our study of elementary physics, we learned that Newton’s laws, especially
the second law of motion, govern the motion of particles. We need a similar set
of equations to describe the wave motion of particles; that is, we need a wave
equation that will be dependent on the potential field that the particle experi-
ences. We can then find the wave function ¥ (discussed in the previous chapter)
that will allow us to calculate the probable values of the particle’s position, en-
ergy, momentum, and so on.

We must realize that although our procedure is similar to that followed in
classical physics, we will no longer be able to calculate and specify the exact posi-
tion, energy, and momentum simultaneously. Our calculations now must be con-
sistent with the uncertainty principle and the notion of probability. We will dis-
cuss this subject again in Section 6.2, but these notions take time and experience
to get used to, and we will gain that experience in this chapter.

There are several possible paths by which we could plausibly obtain the
Schrodinger wave equation. Because none of the methods is actually a deriva-
tion, we prefer to present the equation and indicate its usefulness. Its ultimate
correctness rests on its ability to explain and describe experimental results. The
Schrédinger wave equation in its time-dependent form for a particle of energy E
moving in a potential Vin one dimension is

2
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(6.1)

where i =V—1 is an imaginary number and we have used partial derivatives.
Both the potential Vand wave function ¥ may be functions of space and time,
V(x, t) and W(x, ¢).

The extension for Equation (6.1) into three dimensions is fairly straight-
forward.
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We will restrict ourselves to the one-dimensional form until Section 6.5.
Let’s compare Equation (6.1) with the classical wave equation given by

0%V (x, t) g ol *W(x, t)

dx2 v? ot?

In this equation the wave function may be as varied as the amplitude of a water
wave, a guitar-string vibration, or even the electric field E or magnetic field B.
Notice that the classical wave equation contains a second-order time derivative,
whereas the Schrédinger wave equation contains only a first-order time deriva-
tive. This already gives us some idea that we are dealing with a somewhat new
phenomenon.

Equations (6.1) and (6.2) are the starting points that we will need for this
chapter. We emphasize that the time-dependent Schrédinger wave equation
(6.1) has not been derived. There is no derivation because we need new physical
principles (such as those Newton formulated in his laws). The Schrodinger wave
equation is a plausible guess that describes nature. Its worth and acceptability de-
pend on the fact that it adequately describes experimental results. In most of the
remainder of this chapter, we shall apply the Schrédinger wave equation to sev-
eral simple situations in order to illustrate its usefulness.

) + V¥(x, 3,2 t)

(6.3)
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Example 6.1 | {11 LU EEEEEEEE
l.

|
The wave equation must be linear for us to use the super-
position principle to form wave packets using many waves. oW v
Prove that the wave equation (6.1) is linear by showing that ;‘ﬁ(a N Nl ) =
t

it is satisfied for the wave function J ot
= -+ 2 ﬁ2 32‘1’ a?‘l’t:
W(x t) = a¥,(x 1) + b¥s(x, t) ————(a 21 P ) + V(a¥, + by)
where @ and b are constants, and ¥, and ¥, describe two 2m ox ox

waves each satisfying Equation (6.1). Rearrangement of this equation gives

tion (6.1) and insert them in a straightforward manner. gl

Solution: We take the derivatives needed for Equa- v, h? 92,
al ih
dt 2m  dx?

_V‘P]]z
v v, o,

il + v, h2 02V,
TR TR T —blih—= + 2y,
ot 2m  dx* *
v ¥ v
— =a—t+bhb—> Because ¥, and V¥, each satisfy Equation (6.1), the quanti-
dx ox dx . . 4 1
ties in brackets are identically zero, and W is therefore also
i — . *V, g 0*W, a solution. The Schrodinger wave equation cannot include
dx? dx? ax? any nonlinear terms in the wave functions.

NSRS

In Section 5.4 we discussed wave motion and the formation of wave packets
from waves. We discussed a wave of wave number k and angular frequency w mov-
ing in the +x direction.

V(x, t) = Asin(kx — wt + ¢) (5.18)

Equation (5.18) is not the most general form of a wave function, which may in-
clude both sines and cosines. Our wave function is also not restricted to being
real. Only the physically measurable quantities must be real, and Equation (6.1)
already has an imaginary number. A more general form of a wave function is

W(x, t) = Aei*~ ) = A[cos(kx — wt) + isin(kx — wt)] (6.4)

which also describes a wave moving in the +x direction. In general the ampli-
tude A may also be complex.

Example 6.2 L 800

Show that A¢i**~«" satisfies the ime-dependent Schrédinger  Inserting these results into Equation (6.1) yields
wave equation.

%2
(—k%¥) + V¥

ih(—ioWV) = —
Solution: We first take the appropriate derivatives ( ) 2m
needed for Equation (6.1). K2p2
. (fm— — - )\p 0
— = —jwAe** ) = —ju¥ =
dt If we use E = hv = fiw and p = fik, we obtain
o 2
— = k¥ B = .P_ s V=0
dx ( Om )
v — 242 = — 2P which is zero in our nonrelatvistic formulation. Thus

dx? ikt appears to be an acceptable solution at this point.
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We showed in Example 6.2 that ¢/**~ " represents an acceptable solution to
the Schrodinger wave equation. It is not true that all functions of sin(kx — wt)
and cos(kx — wt) are solutions. We show this in the following example.

il it e

Determine whether W(x, ) = Asin(kx — wt) isan acceptable  After we insert these relations into Equation (6.1), we have

solution to the time-dependent Schrodinger wave equation. A2

2m

: : =ik s(kx — wt) = + V¥
Solution: We take the necessary derivatives needed for IOk ( V)
Equation (6.1).

o
di

h2k?
pl ( 2m

+ V)A sin(kx — wt) (not true) (6.5)
= —wA cos(kx — wt)
This equation is generally not satisfied for all x and ¢

v 2 i ; )
kA Gos(hi— ) and A sin(kx — of) is, therefore, not an acceptable wave

Il

@ function. This function is, however, a solution to the classi-
. cal wave equation (Equation [6.3]).
°¥ .
= —k2A sin(kx — wt) = —k2¥
dx?
Normalization and Probability
We begin by reviewing the probability interpretation of the wave function that we
discussed in Section 5.6. The probability P(x)dx of a particle being between x
and x + dx was given in Equation (5.33).
Pix)dx = W*(x, [}W(x e (6.6)
The probability of the particle being between x; and x5 is given by
a2
Probability P= f b e 1 (6.7)
X1
The wave function must also be normalized so that the probability of the parti-
cle being somewhere on the x axis is one.
Normalization J VH(x, HW(x, )dx =1 (6.8)
Example 6.4 L CLaaanenen

Consider a wave packet formed by using the wave function = Because the wave function is symmetric about x = 0, we can
Ae~el¥l where A is a constant to be determined by normal-  integrate from 0 to ¢, multiply by 2, and drop the absolute
ization, Normalize this wave function and find the probabil-  value signs on |x ,
ities of the particle being between 0 and 1/a, and between

-}

2A2?

and ¢ QJ‘ A2 e gy =] = g aE
1/ and 2/ax. A o 5
Solution: This wave function is sketched in Figure 6.1. i = A* e - 3
. . 1= {0549
We use Equation (6.8) to normalize V. o a

The coefficient A = Va, and the wave function ¥ is

i 2 ,~2alx| 4. =
| aeetlan= ¥ = Var-al
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We use Equation (6.7) to find the probability of the particle Wave function
being between 0 and 1/a, where we again drop the absolute A

signs on | x| because x is positive.
/e
P= J’ a2 dy
- o

The integration is similar to the previous one.

e} 1/ex 1

_ —2ax 2 1y —
P= “og ¢ o L = 2(()* 1) = 0.432 | | | | |
The probability of the particle being between 1/a and 2/« is %‘ _[_f %‘ _?3 %‘ 0 (lr f: ‘_i g (_: :
P= e e 29% (x Position
- FIGURE 6.1 The wave function Ae—*l is plotted as a func-
Do 9’ | - _% (et — ¢2) = 0.059 tion of x. Note that the wave function is symmetric about
—2a /e E x=0.

The wave function ¢/**~«" represents a particle under zero net force (con-
stant V') moving along the x axis. There is a problem with this wave function, be-
cause if we try to normalize it, we obtain an infinite result for the integral. This
occurs because there is a finite probability for the particle to be anywhere along
the x axis. Over the entire x axis, these finite probabilities add up, when inte-
grated, to infinity. The only other possibility is a zero probability, but that is not
an interesting physical result. Because this wave function has precise k and w val-
ues, it represents a particle having a definite energy and momentum. According
to the uncertainty principle, because AL = 0 and Ap = 0, we must have At =
and Ax = ». We cannot know where the particle is at any time. We still can use
such wave functions if we restrict the particle to certain positions in space, such
as in a box or in an atom. We can also form wave packets from such functions in
order to localize the particle.

Properties of Valid Wave Functions

Besides the Schrodinger wave equation, there are certain properties (sometimes
called boundary conditions) that an acceptable wave function W must also satisfy.
These are

1. W must be finite everywhere in order to avoid infinite probabilities.

2. W must be single valued in order to avoid multiple values of the
probability.

3. W and 0¥/ dx must be continuous for finite potentials. This is re-
quired because the second-order derivative term in the wave equation
must be single valued. (There are exceptions to this rule when Vis
infinite.)

4. In order to normalize the wave functions, ¥ must approach zero as
x approaches *,

Solutions for W that do not satisfy these properties do not generally correspond
to physically realizable circumstances.
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Time-independent
Schrodinger wave equation

Time-Independent Schrodinger Wave Equation

In many cases (and in most of the cases discussed here), the potential will not
depend explicitly on time. The dependence on time and position can then be
separated in the Schrédinger wave equation. Let

W(x, 1) = (x)f(1) (6.9)
We insert this W(x, ¢) into Equation (6.1) and obtain
ofty) _ _ #3f(¥) azl!l(x)

thip(x) 5 e 32 (x) ¢ () f(2)
We divide by ¢r(x) f(?) to yield
udn 4l _ = § pleaiiel -, V(x) (6.10)

f(y dt - 2m P(x) dx®

The left side of Equation (6.10) depends only on time, the right side only on spa-
tial coordinates. We have changed the partial derivatives to total derivatives, be-
cause each side depends only on one variable. It follows that each side must be
equal to a constant (which we label B) because one variable may change inde-
pendently of the other. We integrate the left side of Equation (6.10) in an effort
to determine the value of B.

17
LA =B
j di
ih j Y- [pa
J
We integrate both sides and find
i In f= Bl
Bt
In f=
From this equation we determine fto be
/(f) = eBt/iﬁ — E,—z‘B!/ﬁ (61])

If we compare this function for f(t) to the free-particle wave function that has
the time dependence ¢/, we see that B = fiw = E. This is a general result.
We now have, from Equation (6.10),

1 4y _
T (6.12)
itk Wik o V(x)(x) = Eg(x) (6.13)

2m  dx?

Equation (6.13) is known as the time-independent Schrédinger wave equation.
Equation (6.11) can be rewritten as

JUT) = g™ s (6.14)
and the wave function W(x, t) becomes
W(x, t) = P(x)e ! (6.15)

We will restrict our attention for the present to time-independent potentials in
one space dimension. Many important and useful results can be obtained from



6.2 Expectation Values

this nonrelativistic and one-dimensional form of quantum mechanics, because
usually only the spatial part of the wave function ¢/(x) is needed. Therefore, we
need only use Equation (6.13), the time-independent form of the Schrodinger
wave equation.

Let’s examine the probability density W*W discussed in Section 5.6. For the
case of Equation (6.15), where the potential does not depend on time, we have

P\ = (!;Q(X)(E:wrefiwt)
VY = 2 (x) (6.16)

The probability distributions are constant in time. We have seen in introductory
physics certain phenomena called standing waves (for example, oscillations of
strings fixed at both ends). Such standing waves can be formed from traveling
waves moving in opposite directions. In quantum mechanics, we say the system
is in a stationary state.

Comparison of Classical and Quantum Mechanics. It is worthwhile to
look briefly at the similarities and differences between classical and quantum
mechanics. Newton’s second law (F = dp/dt) and Schrodinger’s wave equation
are both differential equations. They are both postulated to explain certain
observed behavior, and experiments show they are successful. Actually it is pos-
sible to derive Newton's second law from the Schrodinger wave equation, so
there is no doubt which is more fundamental. Newton’s laws may seem more
fundamental—because they describe the precise values of the system’s param-
eters, whereas the wave equation only produces wave functions which give prob-
abilities—but by now we know from the uncertainty principle that it is not pos-
sible to simultaneously know precise values of both position and momentum and
of both energy and time. Classical mechanics only appears to be more precise be-
cause it deals with macroscopic values. The underlying uncertainties in macro-
scopic measurements are just too small to be significant.

An interesting parallel between classical mechanics and wave mechanics can
be made by considering ray optics and wave optics. For many years in the 1700s,
scientists argued which of the optics formulations was the more fundamental;
Newton favored ray optics. Finally, it was shown that wave optics was the more
fundamental. Ray optics is a good approximation as long as the wavelength of
the radiation is much smaller than the dimensions of the apertures and obsta-
cles it passes. Rays of light are characteristic of particlelike behavior: a narrow
beam of light is formed of corpuscles. However, in order to describe interference
phenomena, wave optics is required. For macroscopic objects, the de Broglie
wavelength is so small that wave behavior is not apparent. However, at the atomic
level, wave descriptions and quantum mechanics supplant classical mechanics.
As far as we know now, there is only one correct theory: that of quantum me-
chanics. Classical mechanics is a good macroscopic approximation and is correct
in the limit of large quantum numbers.

6.2 Expectation Values

In order to be useful, the wave equation formalism must be able to determine
values of the measurable quantities like position, momentum, and energy. We
shall discuss in this section how the wave function is able to provide this infor-
mation. We will do this here in only one dimension, but the extension to three
dimensions is straightforward. We will also evaluate the values of the physical

Stationary states

Ray and wave optics
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Expectation value

Physical observables

quantities for a given time ¢, because in general the whole system, including the
values of the physical quantities, evolves with time.

Consider a measurement of the position x of a particular system (for example,
the position of a particle in a box). If we make three measurements of the posi-
tion, we are likely to obtain three different results. Nevertheless, if our method of
measurement is inherently accurate, then there is some physical significance to
theaverage of our measured values of x. Moreover, the precision of our result im-
proves as more measurements are made. In quantum theory we use wave functions
to calculate the expected result of the average of many measurements of a given
quantity. We call this result the expectation value; the expectation value of xis de-
noted by (x). Any measurable quantity for which we can calculate the expectation
value is called a physical observable. The expectation values of physical obsery-
ables (for example, position, linear momentum, angular momentum, and en-
ergy) must be real, because the experimental results of measurements are real.

Let’s first review the method of determining average values. Consider a par-
ticle that is constrained to move along the x axis. If we make many measurements
of the particle along the x axis, we may find the particle N; times at x,, N, times
at xy, N, times at x;, and so forth. The average value of x, denoted by x [or (x)

is then
ZMxi
lel it NQxQ 13 N3x3 e N4x4 = (oo oy i
Ny +No+Ny+ Ny+ -0 >N

'c'l\-'] ?

X =

We can change from discrete to continuous variables by using the probability
P(x, 1) of observing the particle at a particular x. The previous equation then
becomes

f[: xP(x)dx

=2 (6.17)
f_ P(x)dx

In quantum mechanics we must use the probability distribution given in
Equation (6.6), P(x)dx = W*(x, t)W(x, {)dx, to determine the average or ex-
pectation value. The procedure for finding the expectation value (x) is similar to
that followed in Equation (6.17):

r XU (x, W (x, 1) dx

—oo
20

f W*(x, HW(x, t)dx

(x) = (6.18)

If the wave function is normalized, the denominator becomes 1. The expectation
value is then given by

(x) = f xW*(x, )W (x, t)dx (6.19)
It the wave function has not been normalized, then Equation (6.18) should
be used.
The same general procedure can be used to find the expectation value of
any function g(x) for a normalized wave function ¥ (x, ).

@) = | WH(x, 0g(x)W(x, )dx (6.20)



6.2 Expectation Values

We emphasize again that the wave function can only provide us with the expec-
tation value of a given function g(x) that can be written as a function of x. It can-
not give us the value of each individual measurement. When we say the wave
function provides a complete description of the system, we mean that the ex-
pectation values of the physical observables can be determined.

Any knowledge we might have of the simultaneous values of the position x
and momentum p must be consistent with the uncertainty principle. To find the
expectation value of p, we first need to represent pin terms of x and ¢ As an ex-
ample, let’s consider once more the wave function of the free particle, W(x, t) =
pitkx—wl) 1f we take the derivative of W (x, ¢) with respect to x, we have

oV d
a a [E,z(kx wl)] = z‘ker(kx*w!) _— Ik\lr
X X
But because k = p/#, this becomes
v p
ox "1 b
After rearrangement, this yields
a‘lf(x t)
W(x, t
pIV(x, 0)] = Ix

An operator is a mathematical operation that trdnsforms one function into an-
other For example an operator, denoted byA transforms the function f(x)by
Af . In the previous wave function equation, the quantity —if(d/dx)
is operatmg on the function ¥ (x, ¢) and is called the momentum opemtorﬁ, where
the / sign over the letter p indicates an operator.
A L d

p ih ™ (6.21)

The existence of the momentum operator is not unique. As it happens, each
of the physical observables has an associated operator that is used to find that ob-
servable’s expectation value. In order to compute the expectation value of some
physical observable A, the operator A must be placed between ¥* and W so that
it operates on W (x, t) in the order shown:

Ay =[ We(x nAV(x, dx (6.22)
Thus, the expectation value of the momentum becomes
R oV (x, t)
(py=—iti| Wiz pT=t (6.23)

The position x is its own operator. Operators for observables that are func-
tions of both x and p can be constructed from x and p.
Now let’s take the time derivative of the free-particle wave function.
Jv 0

— _[e,?(kx—wt)] o __,?:wgr'(kx—wr) = — oW

dt di

We substitute w = E/h, and then rearrange to find

B‘I’(x, t)

E[¥(x, t)] = 3

(6.24)

Momentum operator
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We call the quantity operating on W(x, ) the energy operator.

g
Energy operator E =ih 3 (6.25)
It is used to find the expectation value (E) of the energy.

oV (x, t) 7

aarssrrenal )]
ot

Although we have found the momentum and energy operators only for the free-

particle wave functions, they are general results. We shall have occasion later to
use these operators.

(E) = ifi f W (x, 1) (6.26)

Example 6.5

Use the momentum and energy operators with the con- The application of the operators on the right side of Equa-
servation of energy to determine the Schrodinger wave tion (6.27) on W gives

equation. g
1 1 d \?
(ﬁ(f})‘ﬂ - V)\If = — (—m a_) ¥+ Vv
Solution: We begin by setting the energy E equal to the Am m v
sum of the kinetic and potential energies. Because our treat- 72 92wy
ment is entirely nonrelativistic, we can write the energy as T D g v
E=K+V= Lz e 4L (6.27) Now we set the previous equation equal to Equation (6.28)
e and obtain
We allow the operators of both sides of this equation to act v 2 92w
: P P e N i S (6.29)
on the wave function. The left side gives ot Om Ox2
f«}'\[r = ik ﬂ (6.28) Which is the time-dependent Schrédinger wave equation,
ot Equation (6.1). It should be noted that this example is not

a determination of the Schrédinger wave equation, but
rather a check of the consistency of the definitions.

6.3 Infinite Square-Well Potential

We have thus far established the time-independent Schrodinger wave equation
and have discussed how the wave functions can be used to determine the physi-
cal observables. Now we would like to find the wave function for several possible
potentials and see what we can learn about the behavior of a system having those
potentials. In the process of doing this we will find that some observables, in-
cluding energy, have quantized values. We begin by exploring the simplest such
system—that of a particle trapped in a box with infinitely hard walls that the par-
ticle cannot penetrate.

The potential, called an infinite square well, is shown in Figure 6.2 and is
given by

V(x) = (6.30)

o0, x=) x=0
0, 0= x< T

The particle is constrained to move only between x = 0 and x = L, where the
particle experiences no forces. Although it is a simple potential, we will see that
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itis useful because so many physical situations can be approximated by it. We will
learn also that requiring the wave function to satisfy certain boundary conditions
leads to energy quantization. We will use this fact to explore energy levels of sim-
ple atomic and nuclear systems.

As we stated previously, most of the situations we encounter will allow us to
use the time-independent Schrodinger wave equation. Such is the case here. If
we insert V= = in Equation (6.13), we see that the only possible solution for the
wave function is ¢(x) = 0. Therefore, there is zero probability for the particle to
be located at x = 0 or x = L. Because the Kinetic energy of the particle must be
finite, the particle can never penetrate into the region of infinite potential. How-
ever, when V= 0, Equation (6.13) becomes, after rearranging,

d*y _ 2mkE
dx? h?
where we have used Equation (6.13) with V=0 and let the wave number

k= V2mE/h*. A suitable solution to this equation that satisfies the properties

given in Section 6.1 is

b=~k

P(x) = Asin kx + Bcos kx (6.31)

The wave function must be continuous, which means that s(x) = 0 at both x = 0
and x = L as already discussed. The proposed solution in Equation (6.31) there-
fore must have B = 0 in order to have ¢(x = 0) = 0. In order for ¢y(x = L) = 0,
then A sin(kl) = 0 and because A = 0 leads to a trivial solution, we must have

kL = nm (6.32)

where n is a positive integer. The value n = 0 leads to ¢ = 0, a physically unin-
teresting solution, and negative values of n do not give different physical solu-
tions than the positive values. The wave function is now

b (x) = Asin(g) n=123, ... (6.33)

The property that diy/dx be continuous is not satisfied in this case, because
of the infinite step value of the potential at x = 0 and x = L, but we were warned
of this particular situation, and it creates no problem. We normalize our wave
function over the total distance —% < x < %,

[ wiu,xdx=1
Substitution of the wave function vields
s nwx
AQJ in? dx=1
s Sin ( I ) x

This is a straightforward integral (with the help of integral tables, see Appen-
dix 2) and gives 1./2, so that

ek
2

and

Vix)

= <]

0

L

Position

FIGURE 6.2

everywhere
where V=10,

Infinite square
well potential. Potential V= =

but

0=x=L
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Quantized energy levels

The normalized wave function becomes

—\/E' i ~123 6.34
U, (x) = Lsm( L) wi= k28 iy (6.34)

These wave functions are identical to the ones obtained for a vibrating string
with its ends fixed that we studied in elementary physics. The application of the
boundary conditions here corresponds to fitting standing waves into the box.
It is not a surprise to obtain standing waves in this case, because we are consid-
ering time-independent solutions. Because &, = nw/L from Equation (6.32),
we have

nar 2mE,,
L h?
Notice the subscript n on k, and E, denoting that they depend on the integer n
and have multiple values. The previous equation is solved for E,, to yield
222
3 Wi

omL2 p= 123 ... (6.35)

E,=n

The possible energies £, of the particle, called energy levels, are quantized.
The integer n is called a quantum number. Notice that the results for the quan-
tized energy levels in Equation (6.35) are identical to those obtained in Exam-
ple 5.6, when we treated a particle in a one-dimensional box as a wave. The quan-
tization of the energy occurs in a natural way from the application of the
boundary conditions (standing waves) to possible solutions of the wave equation.
Each wave function #,(x) has associated with it a unique energy E,. In Fig-
ure 6.3 we show the wave function ¢, probability density |¢1n |2. and energy £,
for the lowest three values of n (1, 2, 3).

The lowest energy level given by n = 1, is called the ground state, and its en-
ergy is given by

24,2
E| o il =
2ml?

Note that the lowest energy cannot be zero because we have ruled out the possi-
bility of n = 0 (5, = 0). Classically, the particle can have zero or any positive en-
ergy. If we calculate E, for a macroscopic object in a box (for example, a tennis
ball in a tennis court), we will obtain a certain number for E,. Adjacent energy
levels would be so close together that we could not measure their differences. Ac-
tual macroscopic objects must have very large values of n.

f Energy
Wy v/\ |usf?
25 E;
2
L iz 16 E,
; 9L,
o P 4E,
£
0 L 0 i
Position

FIGURE 6.3 Wave functions ,, probability densities |1/, and energy levels E, for the
lowest quantum numbers for the infinite square-well potential.
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Classically, the particle has equal probability of being anywhere inside the
box. The classical probability function (see Section 6.2) is P(x) = 1/L (for
0 < x < L, zero elsewhere) in order for the probability to be 1 for the particle to
be in the box. According to Bohr’s correspondence principle (see Section 4.4),
we should obtain the same probability in the region where the classical and
quantum results should agree, that is, for large n. The quantum probability is
(2/L) sin*(k,x). For large values of n, there will be many oscillations within the
box. The average value of sin”f over one complete cycle is 1/2. The average value
of sin”6 over many oscillations is also 1/2. Therefore, the quantum probability is

also 1/L in agreement with the classical result.

Example 6.6

Show that the wave function W, (x, ¢) for a particle in an in-
finite square well corresponds to a standing wave in the box.

Solution: We have just found the wave function i, (x)
in Equation (6.34). According to Equation (6.14), we can
obtain W, (x, t) by multiplying the wave function ¢, (x) by

o iemt,

2
‘]—",,(x, t) = \/; Siﬂ(knx).{’i”‘u"!

)

We can write sin (& X) as
rn
(,ik,,'c g—ak,,.\'

sin(k,x) = 9;
!

Example 6.7

Determine the expectation values for x, x%, p, and p° of a
particle in an infinite square well for the first excited state.

Solution: The first excited state corresponds to n = 2,
because n = 1 corresponds to the lowest energy state or the
ground state. The wave function for this case, according to
Equation (6.34), is

du(x) = \/15 sin(gz")

The expectation value (x),_o is

2 * S 2
(*)mg = T L xsinz( Ix)dx= L/2

We evaluate all these integrations by looking up the integral
in Appendix 3. As we expect, the average position of the par-
ticle is in the middle of the box (x = L/2), even though
the actual probability of the particle being there is zero
(see [iio[? in Figure 6.3).

so that the wave function® becomes

2 ei(k,,x*w”f) =% e*i(iinx'i-w,,r)

"I-’”(x, f) = z 9;

This is the equation of a standing wave for a vibrating string,
for example. It is the superposition of a wave traveling to the
right with a wave traveling to the left. They interfere to pro-
duce a standing wave of angular frequency w,,

*The imaginary number 7 should be of little concern, because the
probability values are determined by a product of ¢*i, which gives
a real number.

The expectation value (x?), _, of the square of the po-
sition is given by

<

2 . . 2
(x%),—9 = T L x? sinz(

mX

”

) dx = 0.32/2

The value of V{(x?),_o is 0.57L, larger than (x),_, = 0.5L.
Does this seem reasonable? (Hint: Look again at the shape
of the wave function in Figure 6.3.)

The expectation value (p),_, is determined by using
Equation (6.23).

L { 3
(Pln=se = (*iﬁ)% J:] sln(QTc)(‘ic sin(zzx ))(ix

which reduces to

4ih

L 97x 2mx
_FJ:) sm( 7 )COS(

Because the particle is moving left as often as right in the
box, the average momentum is zero.

(peis = ) dx =0
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The expectation value (p?),,_o is given by

2 L (2qx o d ody . [2mx

LLsm( 3 )( zﬁdx)( zﬁdx)sm( 3 )dx
21rx 27 d 2mx

. 2_

8 2
) = sin(m)sm(m)dx
0 L

B n=2

II

L
41242
12

A typical diameter of a nucleus is about 10~ '* m. Use the in-
finite square well potential to calculate the transition energy
from the first excited state to the ground state for a proton
confined to the nucleus.

Solution:
tion (6.35), is

The energy of the ground state, from Equa-

5 7% 1 w2%(197.3 eV - nm)?
d] =i Deadl

2me? L2 me? 2(1075 nm)?

1
ﬁ(l.gg X 1015 EVQ)

The mass of the proton is 938.3 MeV/c? which gives

1.92 X 1015 V2
|- ~ 9.0 MeV
17 79883 X 10° eV ¢

This value can be compared with E, (Equation (6.35)),
_ 4T (D

h =
27 omi2 2m

which is correct, because nonrelativistically we have E =
p%*/2m + Vand V= 0.

The first excited state energy is found from E, = 4FE, =
8 MeV, and the transition energy is AE = E, — E; = 6 MeV.
This value is a reasonable one for protons in the nucleus. If
we had done a similar calculation for an electron in the nu-
cleus, we would find energies on the order of 10* MeV,
much larger than the rest energy of the electron. A correct
relativistic treatment is necessary, and it would give electron
energies of significantly less than 10* MeV but still much
larger than those electrons actually observed being emitted
from the nucleus in B decay. Such reasoning indicates that
electrons do not exist inside the nucleus.

6.4 Finite Square-Well Potential

We gained some experience in the last section in dealing with the time-
independent Schrodinger wave equation. Now we want to look at a more realis-
tic potential—one that is not infinite. The finite square-well potential is similar
to the infinite one, but we let the potential be Vj rather than infinite in the re-

gion x<=0and x= L.

V(x) =

Vo x=0 region I
0 0<x<lL region II (6.36)
Vo x= 1 region III

The three regions of the potential are shown in Figure 6.4. We will consider a
particle of energy E < Vj, that classically is bound inside the well. We will find that
quantum mechanics allows the particle to be outside the well. We set the potential
V=V, in the time-independent Schrodinger Equation (6.13) for regions I and
III outside the square well. This gives

B dy

2m ¢ dx?

=E—V, regions I, III (6.37)
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Vix)
Yy

Region I | Region II | Region I1I

Position
FIGURE 6.4 A finite square-well potential has the value V;, everywhere except 0 < x < I,
where V = 0. The three regions I, 11, and III are indicated.
We rewrite this using a? = 2m(V,, — E) /A2, a positive constant.

d2
¢y
dx*

The solution to this differential equation has exponentials of the form ¢“* and
¢ ** In the region x > L, we can reject the positive exponential term, because it
would become infinite as x— . Similarly, the negative exponential can be re-
jected for x < 0. The wave functions become

Ji(x) = Ao
Y (x) = Be *

(6.38)
(6.39)

region I, x < 0

region III, x> L

Inside the square well, where the potential V is zero, the wave equation
becomes

a2y
dx?

where k =V (2mE) /h?. Instead of a sinusoidal solution, we can write it as

Yy = Ce'tx + Deikx region I, 0 < x < L, (6.40)

We now want to satisfy the properties of Section 6.1. We have already made
sure that all but properties 2 and 3 have been satisfied. The wave functions are
finite throughout the x region, even at infinity. In order for the wave functions
to be single valued, we must have {; = fy; at x = 0 and yi; = gy at x = L. Both
tand di/dx must be continuous at x = 0 and x = L. We will not perform these
tedious procedures here, but the results for the wave functions are presented
graphically in Figure 6.5.

E Wave function

AN

—~ J
: Exponential
E, 2 e N

0|0 L : 0 L

y 4
v, =

Position Position
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FIGURE 6.5 The energy lev-
els £, and wave functions i,
for the lowest quantum num-
bers for the finite square-well
potential. Notice that ¢ ex-
tends past x<0 and x> [,
where classically the particle is
forbidden. From R. Eisberg and R.
Resnick, Quantum Physics of Atoms,
Molecules, Solids, Nuclei, and Parti-
cles, 2nd ed. New York: Wiley, 1985.
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The application of the boundary conditions leads to quantized energy values
E, and to particular wave functions ,(x). One remarkable result is that the
particle has a finite probability of being outside the square well, as is indicated
by Figure 6.5. Notice that the wave functions join smoothly at the edges of the
well and decrease exponentially outside the well.

What other differences can we easily discern between the infinite and finite
square well? For example, by examination of Figures 6.5 and 6.3, we can see that
the de Broglie wavelength is larger for the finite square well because the waves
extend past the square well. This in turn leads to a smaller momentum and lower
energy levels. The number of energy levels will, of course, be limited because of
the potential height V;, (see Figure 6.5). When E >V, the particle is unbound, a
situation that will be discussed in Section 6.7.

The occurrence of the particle outside the square well is clearly prohibited
classically, but it occurs naturally in quantum mechanics. Note that because of
the exponential decrease of the wave functions ¢y and iy, the probability of the
particle penetrating a distance greater than dx= 1/a begins to decrease
markedly.

1 h
Ox~= — =
a  V2m(V, - E)

However, we will later find values of 6x as large as 10/a and 20/a for electrons
tunneling through semiconductors (Example 6.11) and for nuclear alpha decay
(Example 6.13), respectively. The fraction of particles that successfully tunnel
through in these cases is exceedingly small, but the results are quite important.

It should not be surprising to find that the penetration distance that violates
classical physics is proportional to Planck’s constant . This result is also consis-
tent with the uncertainty principle, because, in order for the particle to be in the
barrier region, the uncertainty AE of the energy must be very large. According
to the uncertainty principle (AL At = #/2), this can only occur for a very short
period of time At

(6.41)

6.5 Three-Dimensional
Infinite-Potential Well

In order to use quantum theory to solve the atomic physics problems that we
shall face in Chapters 7 and 8, it is necessary to extend the Schrodinger equation
to three dimensions. This is easily accomplished with the operator notation al-
ready developed in Section 6.2. After obtaining the three-dimensional equation,
we shall use it to study the problem of a three-dimensional infinite-potential well.

We anticipate that there will be time-independent solutions, so we shall start
with the time-independent Schrodinger wave equation. The wave function
must be a function of all three spatial coordinates, that is, ¢ = /(x, y, z). We
could just directly modify Equation (6.13) to three dimensions, but we prefer to
use a simple method to arrive at the Schrodinger equation. We begin with the
conservation of energy.

2
E=K+ V= P +V

We multiply this equation times the wave function ¢ which gives
2

L+ Vip= Ey (6.42)
2m
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We now use Equation (6.22) to express p* as an operator to act on . But be-
cause p? = p2 + p? + p? we must apply the momentum operator in all three

dimensions.
Dot = —if %
f/’\.\"’b = —ih g_;h
pay=—ih %'f

The application of fn\? in Equation (6.42) gives

2y Y

2080

2m \ dx? dy? 022

) )+V¢:=E(p

(6.43) Time-independent
Schrédinger wave equation

in three dimensions

This is the time-independent Schrodinger wave equation in three dimensions.
You may recognize the expression in parentheses as the Laplacian operator
in mathematics. It is usually written with the shorthand notation

) d? 02 0?
P = -|— e + —iy
dx?  9y? 022
With this notation, we can write
#2
—-—V2y+ V= Eys
2m

Example 6.9

Consider a free particle inside a box with lengths L, Lo,
and L along the x, y, and z axes, respectively, as shown in
Figure 6.6. The particle is constrained to be inside the box.
Find the wave functions and energies. Then find the ground
energy and wave function and the first excited state energy
for a cube of sides L.

Solution: Inside the box V=0, so the wave equation
we must solve is

2
_‘_ﬁ__VQq!,: Elﬂf

om (6.46)

We employ some of e same strategies (o safve (s
problem as we used for the one-dimensional case. First, be-
cause we are considering the walls of the box to be ab-
lutely closed, they are infinite potential barriers, and the
‘Wave function iy must be zero at the walls and outside. We
€xpect to see standing waves similar to Equation (6.31).

But how should we write the wave function so as to
operly include the x, y, and z dependence of the wave
nction? In this case the mathematics will follow from the
ics. The particle is free within the box. Therefore, the
¥, ) and z-dependent parts of the wave function must be

(6.44)

(6.45)

independent of each other. It is therefore reasonable to try
a wave function of the form

(6.47)

where A is a normalization constant. The quantities k(i = 1,
2, 3) are determined by applying the appropriate boundary
conditions, For example, the condition that ¢y = 0 at x = L,
requires that kL., = nymor ky = n,7/L,. The values for the
k; are

P(x, y, z) = Asin(kyx) sin(kgy) sin(kgz)

NoTr

(6.48)

ks = =
2 L2 3

FIGURE 6.6 A three-dimensional box that contains a free
particle. The potential is infinite outside the box, so the par-
ticle is constrained to be inside the box.
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where n;, ny, and ng are integers. Not surprisingly, we have
found that in three dimensions, it is necessary to use three
quantum numbers to describe the physical state.

To find the energies, we simply substitute the wave func-
tion into the Schrodinger equation and solve for E. If we do
this in Equation (6.43), we find

i 5 g
TR fmt met  ome?
E=— L = B

Z?H I‘l‘_ I‘?" 143"

(6.49)

The allowed energy values also depend on the values of the
three quantum numbers n,, ng, and ns.

Let us now consider the special case of the cubical
box, with L, = Ly = Ly = L. The energy values of Equa-
tion (6.49) can be expressed

e ﬂ.?ﬁ‘..’
E=

For the ground state we have n; = ny = ng = 1, so the
ground state energy is

3m2h?
s T 972 (6.51)
and the ground state wave function is
Yo = A sin(ﬂ) sin( f—’-) sin( 15) (6.52)
/£ L L

What is the energy of the first excited state? Higher val-
ues of the quantum numbers n; correspond to higher ener-
gies, therefore, it is logical to try something like n; = 2, no = 1,
and n3 = 1. But we could just as well assign quantum num-
bers ny = 1, no = 2, ng = 1 to the first excited state, or n; = 1,
ne = 1, ng = 2. In each of these cases the total energy is

3m2h2

9.F O

(1,2 + ng? + ng?) (6.50) E. = (22 + 12 + 12) =

2ml*

2ml? i

Degenerate state In physics we say that a given state is degenerate when there is more than one
wave function for a given energy. We have this situation in the previous example,
where all three possible wave functions for the first excited state have the same
energy. The degeneracy in this case is a result of the symmetry of the cube. If the
box had sides of three different lengths, we say the degeneracy is removed, because
the three quantum numbers in different orders would result in three different
energies. Degeneracy is not a new phenomenon. It also occurs in classical
physics, for example, in planetary motion. Degeneracy results from particular
properties of the potential energy function that describes the system. A perturba-
tion of the potential energy can remove the degeneracy. Energy levels can be split
(and the degeneracy removed) by applying external magnetic fields (Zeeman
effect, Section 7.4) and external electric fields (Stark effect, Special Topic on
Rydberg Atoms, Chapter 7).

6.6 Simple Harmonic Oscillator

Because of their wide occurrence in nature, we now want to examine simple har-
monic oscillators. We have already studied in introductory physics the case of a
mass oscillating in one dimension on the end of a spring. Consider a spring hav-
ing spring constant k* that is in equilibrium at x = x,. The restoring force (see
Figure 6.7a) along the x direction is F = —k(x — x;), and the potential energy
stored in the spring is V= k(x — x4)?/2 (see Figure 6.7b). The resulting motion
is called simple harmonic motion (abbreviated as SHM), and the equations de-
scribing it are well known.

Besides springs and pendula (small oscillations), many phenomena in na-
ture can be approximated by SHM, for example, diatomic molecules and atoms
in a lattice. Systems can also be approximated by SHM in a general way. As an

Many things in nature, includ-
ing this pendulum, respond

naturally in simple harmonic
motion. Other examples in-
clude leaves blowing in the
wind and atoms vibrating in

*We let « be the spring constant in this section rather than the normal k to avoid confusion with the
molecules. '

wave number. It is important to note the context in which variables like k and k are used, because ei-
ther might be used as wave number or spring constant.

Leonard  Lessin/Peter
Arnold, Inc.
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Vix)
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FIGURE 6.7 (a) The restoring force for a spring having a spring constant « is F=
—k(x — xy). (b) The potential energy has the form k(x — x,)2/2.

example, consider a lattice in which the force on the atoms depends on the
distance x from some equilibrium position x,. If we expand the potential in a
Taylor series in terms of the distance (x — x;) from equilibrium, we obtain

1
Vix) = Vo + Vi(x— xo) + 5 Vo (6 —.2p)% v - (6.53)
where V;, V}, and V;, are constants, and we have kept only the three lowest terms
of the series, because (x — x,) = 0 for small excursions from the equilibrium
position x;. At x = x, we have equilibrium (e.g., a minimum of the poten-
tal), so (dV/dx) = 0 at x = x,,. This requires that V; = 0, and if we redefine the
zero of potential energy to require V;, = 0, then the lowest term of the potential
V(x) is
1 g
V(x) = —2"V2(x - xo)z
This is the origin of the V= kx?/2 potential energy term that occurs so often.
Near the equilibrium position many potentials may be approximated by a para-
bolic form as displayed in Figure 6.8.

_ Vi

=

g Simple

) harmonic
= motion

=

=

g

5]

=

Diatomic
molecule

FIGURE 6.8 Many potentials in nature can be approximated near their equilibrium po-
sition by the simple harmonic potential (black dashed curve). Such is the case here for
the potential energy V(r) of a diatomic molecule near its equilibrium position 7, (blue
curve).

203
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We want to study the quantum description of simple harmonic motion
by inserting a potential kx*/2 (we let xo = 0, see Figure 6.9a) into the time-
independent Schrédinger wave equation (6.13).

d> 2m K x? OmE  mkx?
Ao 2 pd - & 6.
A
If we let o= oo (6.55a)
2 mE
and B= ﬁmQ (6.55b)
d*y 3
then 2 = (o2 - B)Y (6.56)
dx?

Before discussing the solution of Equation (6.56), let us first examine what
we can learn about the problem qualitatively. Because the particle is confined to
the potential well, centered at x = 0, it has zero probability of being at x = .
Therefore, §f(x) — 0 as x— %,

What is the lowest energy level possible for the harmonic oscillator? Is £ = 0
possible? If E = 0, then x= 0 and V= 0 in order to allow £= V. But if £Eand V
are zero, then K.E. = 0, and the momentum p = 0. Having both x = 0 and p = 0
(that is, both x and p are known exactly) simultaneously violates the uncertainty
principle. Therefore, the minimum energy E cannot be zero. In fact, the energy
levels must all be positive, because £ > V= 0. The state having the lowest energy,
denoted here by E, will have an energy like that shown in Figure 6.9a, and the
wave function i, for that state will most likely be a simple wave fitting inside
the region defined by the potential (see Figure 6.9b). Let £y = V, = ka®/2. The
distances *a define the classical limits of the particle, but we know from the pre-
vious section that the particle has a small probability of being outside the po-
tential well dimensions of *=a. Therefore, the wave function will not be zero at

Vix)
6
=
o
=
:¥]
) U(x)
=
o
2 V==kx
Eq
| ] 5
| | Yo Exponential
I 1
I |
1 1
I | X i |
=3 a |
Position : : i
—a a

(a) (b)

FIGURE 6.9 (a) The potential V= kx?/2 for a simple harmonic oscillator. The classical
turning points *a are determined for the ground state when the lowest energy £, is equal
to the potential energy. (b) Notice that the wave function ¢,(x) for the ground state is
symmetric and decays exponentially outside *=a where V> E,,.
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x = *a, but will have a finite value that decreases rapidly to zero on the other
side of the barrier. Thus a plausible guess for the lowest-order wave function i,
is like that shown in Figure 6.9b. We find the minimum energy E,, called the zero-
point energy, in the next example.

Example 6.10

Estimate the minimum energy of the simple harmonic os-  the minimum value of Ax = #/2Ap. Now we have for the

cillator allowed by the uncertainty principle. lowest energy E,,

Solution: In introductory physics we learned that the E, = k(Ax)2 = K( Ap )( A )
average Kinetic energy is equal to the average potential en- Vomk ]\ 2Ap
ergy for simple harmonic oscillators over the range of mo- ﬁ f ®

tion (from —xto +x), and both the average potential and E 2 =

kinetic energies are equal to one half the total energy.
Our estimate for the zero-point energy of the harmonic

1 1 .
5 E= § k(x2),, = 9m (p Y oscillator is fiw/2. This agrees with the zero-point energy
found by more rigorous means.
The mean value of x is zero, but the mean value of (x%),, is The zero-point energy is not just a curious oddity. For

the mean square deviation (Ax)®. Similarly, (p%),, = (Ap)*.  example, the zero-point energy for *He is large enough to

From the prcvmus equation, we therefore have the energy prevent liquid *He from freezing at atmospheric pressure,
= :c(_\x) (Ap)?%/m and, as a result, we must have Ax = no matter how cold the system, even near () K.

_Xp/\/ mi. From the uncertainty principle ApAx = #/2, and

The wave function solutions i, for Equation (6.56) are
Y, = H,(x)e ***/2 (6.57)

where H, (x) are polynomials of order n, where n is an integer = 0. The func-
tions H,, (x) are related by a constant to the Hermite polynomial functions tabulated
in many quantum mechanics books. The first few values of #, and Il[f,z ,2 are
shown in Figure 6.10. In contrast to the particle in a box, where the oscillatory
wave function is a sinusoidal curve, in this case the oscillatory behavior is due to
the polynomial, which dominates at small x, and the exponential tail is provided
by the Gaussian function, which dominates at large x.
The energy levels are given by

E”:(-n+ %)ﬁ\/x/m—(n-i- é)ftw (6.58)

where @* = k/m, and w is the classical angular frequency. From Equation (6.58)
we see that the zero-point energy E, is

1
Eo= 3 hw (6.59)
Notice that this result for E, is precisely the value found in Example 6.10 by
using the uncertainty principle. The uncertainty principle is solely responsible
for the minimum energy of the simple harmonic oscillator. In Section 5.7 we
mentioned that the minimum value (that is, the equality sign) of the uncer-
tainty principle is found for Gaussian wave packets. We note here that the wave
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FIGURE 6.10 Results for sim-
ple harmonic oscillator poten-
tial. (a) The energy levels for
the lowest four energy states
are shown with the corre-
sponding wave functions listed.
(b) The wave functions for the
four lowest energy states are
displayed. Notice that even
quantum numbers have sym-
metric i, (x), and the odd
quantum numbers have ant-
symmetric i, (x). (c) The prob-
ability densities |y,[2 for the
lowest four energy states are
displayed.
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functions for the simple harmonic oscillators are of just the Gaussian form (see
Figure 6.10). The minimum energy E, allowed by the uncertainty principle,
sometimes called the Heisenberg limit, is found for the ground state of the simple
harmonic oscillator.

Finally, let us compare the motion as described by classical and quantum the-
ory. Classically, we recall the motion of the mass at the end of a spring. The speed
is greatest as it passes through its equilibrium position. The speed is lowest
(zero) at the two ends (compressed or extended positions of the spring), as the
mass stops and reverses direction. Classically, the probability of finding the mass
is greatest at the ends of motion and smallest at the center (that is, proportional
to the amount of time the mass spends at each position). The classical probabil-
ity is shown by the black dashed line in Figure 6.11.
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FIGURE 6.11 The probability
distribution |y;0|? for the n =
10 state is compared with the

classical probability (dashed
line). As n increases, the two

probability distributions be-
come more similar.

The quantum theory probability density for the lowest energy state (2, see
Figure 6.10) is completely contrary to the classical one. The largest probability is
for the particle to be at the center. We are not surprised to see such a marked
difference between classical (see Section 4.4) and quantum predictions. How-
ever, from the correspondence principle we would expect the classical and quan-
tum probabilities to be similar as the quantum number n becomes very large. In
Figure 6.11 we show ¢,” for the case of n = 10, and we see that the average prob-
abilities become similar. As n continues to increase, the peaks and valleys of the
quantum probabilities are hardly observable, and the average value mirrors the

classical result.

Example 6.11

Normalize the ground state wave function i, for the simple

harmonic oscillator and find the expectation values (x)
and {x?).

Solution: Let's assume that all we know about the wave
function , is the form given in Equation (6.57). H,(x) has
no dependence on x, so we take it to be a constant A. The
ground state wave function is then

fo(x) = Ag=ox*/2
We must normalize in order to determine A.
| wiwmdx=1
A2J’ e dx =1

2A2f ey = 1
4]

We determine this integral with the help of integral tables
(see Appendix 6), with the result:

1 T
2_ Th— —
2/’1(2 a) 1

Jroy
T

o \ 1/
(3)
m

This gives for the ground state wave function,

1/4 )
Yo(x) = (2) g ax/?

m

(6.60)

This is precisely the wave function given in Figure 6.10 and
is of the Gaussian form.
The expectation value of x is

) = [ w0 dx

a ([ -
= _[— f e
' —oo

The value of {x) must be zero, because we are integrating an
odd function of x over symmetric limits from —« to +%« (sce
Appendix 6). Both classical and quantum mechanics predict
the average value of x to be zero because of the symmetric
nature of the potential, kx?/2.

The expectation value (x*), however, should be positive.

(x%) = fr U (x) x4 (x) doe = E F x2em e

o 9
=92 [— f x2e 9 dx
m Jo

This integral can be found in a table of integrals (see Ap-
pendix 6), and the result is

V7

o= ?g(r_)‘ =

Inserting the value of the constant & from Equation (6.55a)
gives

h
2V mk

(x?) =
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Because w = V k/m, we have

and showed that E, = fiw/2, the minimum energy allowed
by the uncertainty principle. We can now see that these re-

(x2) = = h (6.61)  sults are consistent, because
maw
E hw ho h
2 = 2 = 0 = e——— - —
In Example 6.10 we argued that {x2) = (x2),, = 5 i = e
(x2),, = (Ax)?2 = —I::(U as we determined in Equation (6.61).

6.7 Barriers and Tunneling
Potential Barrier with E> V,

Consider a particle of energy E approaching a potential barrier of height V;, for
0 < x < L. The potential elsewhere is zero. First, let us consider the case where
the particle’s energy is £ > V; as shown in Figure 6.12. Classically we know the
particle would pass the barrier, moving with reduced velocity in the region of
Vo(mv%/2 = E — V,, rather than mv?/2 = E). On the other side of the barrier,
where V = 0, the particle will have its original velocity again. According to quan-
tum mechanics, the particle will behave differently because of its wavelike char-
acter. In regions I and III (where V= 0) the wave numbers are
V2mE

ki =k = o T where V=0 (6.62a)

In the barrier region, however, we have

Vom(E — Vy)
%

We can consider an analogy with optics. When light in air penetrates an-
other medium (for example, glass), the wavelength changes because of the in-
dex of refraction. Some of the light will be reflected, and some will be transmit-
ted into the medium. Because we must consider the wave behavior of particles
interacting with potential barriers, we might expect similar behavior. The wave
function will consist of an incident wave, a reflected wave, and a transmitted
wave (see Figure 6.13). These wave functions can be determined by solving the
Schrodinger wave equation, subject to appropriate boundary conditions. The
difference from classical wave theories is that the wave function allows us to com-
pute only probabilities.

k=

where V=1V, (6.62b)

Vix)
E
P m | ————————— ———-
Particle
Vo
X
0 L

Region I Region Il  Region IIT

FIGURE 6.12 A particle having energy E approaches a potential barrier of width L and
height V, with £ > V;,. The one-dimensional space is divided into three regions as shown.
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Vix)
Incident
AVAVAVAV. o

W
“NNNS Transmitted
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X
0 I

FIGURE 6.13 The incident particle in Figure 6.12 can be either transmitted or reflected.

Classical mechanics allows no reflection it £> V, and total reflection for
E<V,. Quantum mechanics predicts almost total transmission for £ >=> V|, and
almost complete reflection for £ << V. In the regime where Eis comparable to Vj,
unusual nonclassical phenomena may appear.

The potentials and the Schrédinger equation for the three regions are as
follows:

d? p
Region I (x < 0) V=20 i T 2_TE¢1:0
dx? h=
. dy 2m
Region I (0 < x<L) V=1V, EQ‘—‘ + o5 (E= V)¢ =0
d* Y

_ 2m
Region III (x> L) V=0 t 22 EYm =0

dx?

The wave functions obtained for these equations are

Region I (x < 0) iy = Ae'fi* + Bemthi¥ (6.63a)
Region II (0 < x< L) Yy = Ce*n* + D¢~ thux (6.63b)
Region III (x> L) Uy = Fettrs + Ge—ikrx (6.63¢)

We assume that we have incident particles coming from the left moving along
the +x direction. In this case the term Ae’*1* in region I represents the incident
particles. The term Be™ *1* represents the reflected particles moving in the —x di-
rection. In region III there are no particles initially moving along the —x direc-
tion, so the only particles present must be those transmitted through the barrier.
Thus G = 0, and the only term in region III is Fe*1*, We summarize these wave
functions:

Incident wave iy (incident) = Ae'*1* (6.64a)
Reflected wave i (reflected) = Be *ki* (6.64b)
Transmitted wave Y (transmitted) = Fe'kr® (6.64¢)

The probability of particles being reflected or transmitted is determined by
the ratio of the appropriate ¢ *i. They are

Uy (reflected)*  B*B
_ E

R= — o= — (6.65)
|4 (incident) |2 A*A
s 102 *
T |vjfm(ul‘an.sm|ttcd)| _ F (6.66)
|41 (incident) |2 A*A

Probability of reflection

Probability of transmission
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Vix)

Ea Classical

( behavior

H’:
1 11 I

Lo Vo
X
0 L

FIGURE 6.14 A particle hav-
ing energy E approaches a po-
tential barrier of height 1}
with E<YV,. Classically, the
particle will be reflected.

Tunneling

FIGURE 6.15 According to
quantum mechanics, the parti-
cle approaching the potential
barrier of Figure 6.14 may ac-
tually pass into the barrier and
has a small probability of tun-
neling through the barrier
and emerging at x = L. The
particle may also be reflected
at each boundary.

where R and T are reflection and transmission probabilities, respectively.
Because the particles must be either reflected or transmitted, we must have
R+ T = 1; the probability of the wave either being reflected or transmitted has
to be unity.

The values of R and T are found by applying the properties(boundary con-
ditions) of Section 6.1 as x— *%, x = 0, and x = L. These conditions will result
in relationships between the coefficients A, B, C, D, and F. We will not go through
that tedious math here, but the result for the transmission probability is

7= (1 g VoZsin® (ky; L) )_I

4E(E — Vp)

Notice that there is a situation when the transmission probability is one. This
occurs when k. = nm, where n is an integer. It is possible for particles moving
along the +x direction to be reflected both at x = 0 and x = L. Their path dif-
ference back toward the —x direction is 2. When 2L equals an integral number
of the wavelengths inside the potential barrier, the reflected wave functions are
completely out of phase and will completely cancel.

(6.67)

Potential Barrier with E< /5

Now we consider the situation where classically the particle does not have
enough energy to surmount the potential barrier, E < V;,. We show the situation
in Figure 6.14. In the classical situation, the particle cannot penetrate the barrier
because its kinetic energy (K.E. = E — 1{)) would be negative. The particle is re-
flected at x = 0 and returns. The quantum mechanical result, however, is one of
the most remarkable features of modern physics, and there is ample experi-
mental proof of its existence. There is a small, but finite, probability that the par-
ticle can penetrate the barrier and even emerge on the other side. Such a sur-
prising result requires a careful inspection of the wave functions. Fortunately,
there are only a few changes to the equations already presented, and they occur
in region II. The wave function in region II becomes Yy, = Ce** + De” ** where
k =V (2m(V, — E))/h is a positive, real number, because V, > E. The applica-
tion of the boundary conditions will again relate the coefficients of the wave
functions.

The equations for the reflection and transmission probabilities of Equa-
tions (6.65) and (6.66) are unchanged, but the results will be modified by chang-
ing iky — k. Quantum mechanics allows the particle to actually be on the other
side of the potential barrier despite the fact that all the incident particles came
in from the left moving along the +x direction (see Figure 6.15). This effect is
called tunneling. The result for the transmission probability in this case is

7 2sinh2(kL) \~!
T=11+ }Q?IH—U(?_) (6.68)
4E(V, — E)
h(x) Quantum
behavior

I
I

Eﬁcponential
{‘:\
V.

/ 0 I e P

L Sinusoidal
Sinusoidal
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Note that the sine term in Equation (6.67) has been replaced by the hyperbolic
sine term (sinh). When kL => 1, the transmission probability equation reduces to

-~

E E ;
reied (1o L)

(6.69)
0 V(J

The probability of penetration is dominated by the exponentially decreasing
term (although note that for a finite thickness L, the coefficient Cin Equation
(6.63b) is not zero). The exponential factor in Equation (6.69) depends linearly
on the barrier width but only on the square root of the potential barrier height
(k ~ V'V, — E). Thus, the width of the barrier is more effective than the poten-
tial height in preventing tunneling. It comes as no surprise that tunneling is ob-
served only at the smallest distances on the atomic scale.

A simple argument based on the uncertainty principle explains tunneling.
Inside the barrier region (where 0 < x < L), the wave function ¢ is dominated
by the ¢ ** term, and I;bul‘—J = ¢ 2% 50 that over the interval Ax = k™!, the prob-
ability density of observing the particle has decreased markedly (¢ 2 = 0.14). Be-
cause Ap Ax = fi, then Ap = f/Ax = fik. The minimum Kkinetic energy in this in-
terval must be
B (_,_\p)?. B ﬁ‘_’KE

= =Wy =8
2m 2m

KE

smin

where we have substituted for k in the last step. The violation allowed by the un-
certainty principle (K.E. ;) is precisely equal to the negative kinetic energy re-
quired! The particle is allowed by quantum mechanics and the uncertainty prin-
ciple to penetrate into a classically forbidden region.

Let us return briefly to our analogy with wave optics. If light passing through
a glass prism reflects from an internal surface with an angle greater than the crit-
ical angle, total internal reflection occurs as seen in Figure 6.16a. However, the
electromagnetic field is not totally zero just outside the prism. If we bring an-
other prism up very close to the first one, experiment shows that the electro-
magnetic wave (light) appears in the second prism (see Figure 6.16b). The situ-
ation is analogous to the tunneling described here. This effect was observed by
Newton and can be demonstrated with two prisms and a laser. The intensity of
the second light beam decreases exponentially as the distance between the two
prisms increases.*

Example 6.12

In a particular semiconductor device, electrons accelerated
through a potential of 5 V attempt to tunnel through a bar-
rier of width 0.8 nm and height 10 V. What fraction of the
electrons are able to tunnel through the barrier if the po- x =
tential is zero outside the barrier?

the appropriate energies.
V2m(V, — E)
fi

(a)

f

(b)

FIGURE 6.16 (a) A light wave
will be totally reflected inside a
prism if the reflection angle is
greater than the critical angle.
(b) If a second prism is brought
close to the first, there is a
small probability for the wave
to pass through the air gap and
emerge in the second prism.

Tunneling occurs for light
waves

g’

JRBROCROC00Co T

We find the value of k by using the mass of the electron and

_ V2(0.511 X 105 €V/c?) (10 eV — 5 eV)

Solution: We use either Equation (6.68) or (6.69) to
calculate the tunneling probability, depending on the value
of kL. The energy I of the electrons is K= 5 eV. The po-

B4 X10%e 848X 10

6.58 X 10~ 16 eV -5

=1.15 X 101" m™!

tential barrier has V;, = 10 eV and is zero outside the barrier. ¢

¥See D. D. Coon, Am. J. Phys. 34, 240 (1966).

3 X 10° m/s
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The value of kL = (1.15 X 101 m~1) (0.8 X 107? m) = 9.2,
which might be considered to be much greater than 1, so
Equation (6.69) could be used. Let’s calculate the transmis-
sion probability using both equations. The approximate
Equation (6.69) gives

o163V \(; - BV
(mev)(

10 eV

)9_18'4 =4.1x%x10"8

Example 6.13

Consider a particle of kinetic energy I approaching the step
function of Figure 6.17 from the left, where the potential
barrier steps from 0 to Vj, at x = 0. Find the penetration dis-
tance Ax, where the probability of the particle penetrating
into the barrier drops to 1/e. Calculate the penetration dis-
tance for a 5-eV electron approaching a step barrier of 10 eV.

Soplution: We can use the results of this section to find
the wave functions in the two regions x < 0 and x > 0.
!Ib: — A?ikx + Be—ék:;

Yy = Cex= + De

x<0
x>0
where

\V2mE

h

V2o2m(Vy, — E)
h

k=

K =

Because the wave function ¢;; must go to zero when x— %,
the coefficient C = (), so we have

‘1‘!’1[ = De ** $= 0

The probability distribution for x>0 is [ry|2. The
probability has dropped to ¢ ! for the penetration distance
Ax, so we have

—2kAx

ol o P G ARY
‘ ‘f’112(x=0)

Potential Well

The more accurate Equation (6.68) gives

{1+ (10 eV)%sinh?(9.2) \ !
B ( 4(5 eV) (5 eV) )

=41x10"8

The approximate equation, valid when kL => 1, works well
in this case.

Vix)
Vo
o - - ——
Particle
5 x
Position

FIGURE 6.17 A particle of energy E approaches a potential
barrier from the left. The step potential is V=0 for x <0
and V=V, for x> 0.

From this equation we have 1 = 2kAx, and the penetration
distance becomes
1 fi
A =—m——
*= 9 Vem(V, - E)
This is the result we needed.
Now we find the penetration distance for the 5-eV
electron.

fic
oVvome(V, — E)
197.3 eV * nm

_ , — 0.044
9V2(0.511 X 10° €V) (10 eV — 5 eV) am

Ax =

Electrons do not penetrate very far into the classically for-
bidden region.

Consider a particle of energy E > 0 passing through the potential well region
(Figure 6.18), rather than a potential barrier. Let V= =1V, in the region
0 < x< L and zero elsewhere. Classically, the particle would speed up passing
the well region, because mv?/2 = E + V,. According to quantum mechanics, re-
flection and transmission may occur, but the wavelength inside the potential well
is smaller than outside. When the width of the potential well is precisely equal to
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Vix)
Particle E

il X
V= 0

0 L

FIGURE 6.18 A particle of energy E approaches a potential well from the left. The po-
tential is V= 0 everywhere except between 0 < x < L, where V= =1V},

half-integral or integral units of the wavelength, the reflected waves may be out
of phase or in phase with the original wave, and cancellations or resonances may
occur. The reflection/cancellation effects can lead to almost pure transmission
or pure reflection for certain wavelengths. For example, at the second boundary
(x = L) for a wave passing to the right, the wave may reflect and be out of phase
with the incident wave. The effect would be a cancellation inside the well.

Alpha-Particle Decay

The phenomenon of tunneling explains the alpha-particle decay of heavy, ra-
dioactive nuclei. Many nuclei heavier than lead are natural emitters of alpha par-
ticles, but their emission rates vary over a factor of 10'%, whereas their energies
tend to range only from 4 to 8 MeV. Inside the nucleus, an alpha particle feels
the strong, short-range attractive nuclear force as well as the repulsive Coulomb
force. The shape of the potential well is shown in Figure 6.19. The nuclear force
dominates inside the nuclear radius 7y, and the potential can be approximated
by a square well. However, outside the nucleus, the Coulomb force dominates.
The so-called Coulomb potential energy barrier of Figure 6.19 can be several
times the typical kinetic energy £(~5 MeV) of an alpha partcle.

The alpha particle therefore is trapped inside the nucleus. Classically, it does
not have enough energy to surmount the Coulomb potential barrier. According
to quantum mechanics, however, the alpha particle can “tunnel” through the
barrier. The widely varying rates of alpha emission from radioactive nuclei can
be explained by small changes in the potential barrier (both height and width).
A small change in the barrier can manifest itself greatly in the transmission prob-
ability, because of the exponential behavior in gzl

Vir)

|
5 Coulomb potential
Ep :
o /( energy
) )
=)
5}

Ve

’
™ r'=mnyt+L
Radius

FIGURE 6.19 An « particle of
energy £, is trapped inside a
heavy nucleus by the large nu-
clear potential. Classically, it
can never escape, but quan-
tum mechanically it may tun-
nel through and escape.



SCANNING PROBE
MICROSCOPES

S canning probe microscopes, consisting at present
of two types, scanning tunneling microscopes
(STM) and atomic force microscopes (AFM), have rev-
olutionized the imaging of atomic surfaces. Gerd Bin-
nig and Heinrich Rohrer (Nobel Prize, 1986) invented
the STM in the early 1980s at the IBM Research
Laboratory in Zurich, Switzerland. Later in 1985 while
Binnig was on leave at Stanford University and IBM’s
Almaden Research Center, he thought up the concept
of the AFM which he developed with Christoph Gerber
of IBM and Calvin Quate of Stanford.

In the most common form of the STM a constant
bias voltage of appropriate polarity is applied between
the atoms of a tip and the sample to be examined (see
Figure A). Electrons tunnel across this gap, and the
sensitivity of the tunneling current to the gap distance
is the key to the STM capability. The tunneling cur-
rent can be as small as a few pA (107'2 A), and a
change in the tunneling gap of only 0.4 nm can cause
a factor of 10* in the tunneling current. In order to
keep the tunneling current constant, a feedback sys-
tem based on the current causes the tip to be moved
up and down tracing out the contours of the sample
atoms. The path of the tip is shown by the solid black
line in Figure A. There are variations to this method.

Ammeter

Bias
voltage

Sample
atoms

Tunneling
electrons

FIGURE A Highly schematic diagram of the scanning tun-
neling microscope process. Electrons, represented in the
figure as small dots, tunnel across the gap between the
atoms of the tip and sample. A feedback system that keeps
the tunneling current constant causes the tip to move up
and down tracing out the contours of the sample atoms.

Laser

Laser beam
position
detector

il
Path of tip — —~—~—~——
X X X |

[ X X )

: Cantilever

Sample
atoms

FIGURE B Highly schematic diagram of the atomic force mi-
croscope. A feedback signal from the detection of the laser
beam reflecting off the mirror that is mounted on the can-
tilever provides a signal to move the sample atoms up or down
to keep the cantilever force constant. The movement of the
sample atoms traces out the contours of the sample atoms.

The AFM depends on the interatomic forces be-
tween the tip and sample atoms as shown in Figure B.
In some systems, the sample atoms are scanned hori-
zontally while the sample is moved up and down to
keep the force between the tip and sample atoms con-
stant. The interatomic forces cause the very sensitive
cantilever to bend. By reflecting a laser off the end of
the cantilever arm into an optical sensor, the feedback
signal from this sensor controls the sample height, giv-
ing the topography of the atomic surface. The tip is
scanned over the surface for a constant cantilever de-
flection and a constant interatomic force between tip
and atom.

The interaction between tip and sample is much
like that of a record player stylus moving across the
record, but is about a million times more sensitive.
The optical feedback system prevents the tip from ac-
tually damaging or distorting the sample atoms. Can-
tilevers having spring constants as small as 0.1 N/m
have been microfabricated from silicon and silicon
compounds. The cantilever lateral dimensions are
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FIGURE C These three photos, taken with a STM, show xenon atoms placed on a nickel
surface. The xenon atoms are 0.16 nm high and adjacent xenon atoms are 0.5 nm apart
(the vertical scale has been exaggerated). The small force between the STM tip and an
atom is enough to drag one xenon atom at a time across the nickel. The nickel atoms are
represented by the black and white stripes on the horizontal surface. See also Figure 1.7.
The image is magnified about 5 million times. Courtesy of International Business Machines.

on the order of 100 wm with thicknesses of about 1
pm. In comparison the spring constant of a piece of
household aluminum foil 4 mm by 1 mm is about 1
N/m. The tapered tips may have an end dimension
of only 50 nm. The tracking forces felt by the can-
tilever can be as small as 107 N. Daniel Rugar and
Paul Hansma have written an excellent description
of the AFM.*

The primary disadvantage of the STM compared
to the AFM is that a conducting surface is required
for the STM. This limits the applications of the STM,
because either conductors must be scanned or a thin
conductive metal coating must be placed on the sam-
ple. Because the AFM works for both insulators and
conductors, it can be used for ceramics, polymers, op-
tical surfaces, and biological structures. We showed in
Figure 1.7 a photo indicating individual atoms taken
using an STM. Those atoms can be individually
moved as shown in Figure C. It is not only individual
atomic images that make the STM and AFM so useful.
They are perhaps more useful in showing gross fea-
tures such as the flatness of materials, grain struc-
tures, the breakup of thin films, magnetic bit shapes,
integrated circuit topography, lubricant thicknesses,
inspection of optical disk stampers (see Figure D),
and measurement of linewidths on integrated circuit

*D. Rugar and P. Hansma, Physics Today 43, 23 (Oct. 1990).

masks. Biological applications of AFM include the
imaging of amino acids, DNA, proteins and even leaf
sections from a perennial cranberry vine. The AFM
has been used to observe the polymerization of blood
clotting protein fibrin. Real-time imaging of biologi-
cal samples offers incredible possibilities, for exam-
ple, the attachment of the AIDS virus onto cell mem-
branes. Both STM and AFM instruments are now
commercially available, and new variations are being
developed.

FIGURE D An atomic force microscope scan of a stamper
used to mold compact disks. The numbers given are in nm.
The bumps on this metallic mold stamp out 60-nm-deep

holes in tracks that are 1.6 pm apart in the optical disks. Photo
courtesy of Digital Instruments/Veeco Metrology Group, Santa Barbara, CA.
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Example 6.14

Consider the a-particle emission from a ***U nucleus, which
emits a 4.2-MeV a particle. We shall represent the potentials
as displayed in Figure 6.19. The a particle is contained
inside the nuclear radius of ry=7 X 107> m. Find the
barrier height and the distance the « particle must tunnel,
and, using a square-top potential, calculate the tunneling
probability.

Solution: We shall calculate the barrier height (V; (r =
ry) in Figure 6.19) by calculating the Coulomb potential be-
tween an « particle and the remainder of the uranium nu-
cleus for a separation of the nuclear radius, 7 X 1071 m

VAY A
41reyry

2(90) (1.6 X 10719 C)2(9 X 10° N - m2/C2)
7 X 107% m

Vo=

10~° MeV
X I e K- S
(1.6 % 10“‘9])
= 37 MeV

We determine the distance r’ through which the a par-
ticle must tunnel by setting K.E. = V. (r=r") at that dis-
tance (see Figure 6.19). Because the K.E. = 4.2 MeV, we
have

We solve this equation for »" which yields

. 37 MeV 2 y
r = mr\r= 6.2 %10~ m'=62 fm
where we have used the result above for Vi and ry.
We make a simple, but rough, approximation of a
square-top potential where V= 37 MeV for 7 fm < r< 62

fm. We then find
V2m(V— E)
K= ——eer
h

\V/2(3727 MeV/2) (37 MeV — 4.2 MeV)
6.58 X 10722 MeV - s

=25X 10 m™!

where the mass of the alpha particle is 3727 MeV/c?. The
barrier width L is the difference between " and ry,.

Idz'fr_TN
62 fm — 7 fm = 55 fm

The value of k.= (2.5 X 10> m~1)(55 X 107" m) =
138. Because kL >=> 1, we use Equation (6.69) to calculate
the tunneling probability.

T=16
0 37 MeV 38 MeV

= 1.6¢7275 = 6 X 107120

4.2 MeV( 42 MeV) i

which is an extremely small number.

Our assumption of a square-top potential of the full
height and full width is very unrealistic. A closer approxi-
mation to the potential shown in Figure 6.19 would be a
square-top potential of only half the maximum Coulomb po-
tential (18 MeV rather than 37 MeV) and a barrier width of
only half L (28 fm rather than 55 fm). If we use 18 MeV in
the calculation of « we obtain 1.7 X 10" m~!. The wnnel-
ing probability now becomes

oo H2MEV (| 42MeV
18 MeV ( 18 MeV )
X exp[—2(1.7 X 10" m™1)(2.8 X 10714 m)]
=29¢PB=16X%X10"4

This still seems like a very low probability, but let us see
if we can determine how long it takes the a particle to tun-
nel out. If the a particle has a kinetic energy of 4.2 MeV, its
velocity is determined nonrelativistically by

KE = Sk
" UM va

[2KE. \/ 2(4.2 MeV)

o 8727 MeV/c?
The diameter of the nucleus is about 1.4 X 107" m, so it
takes the a particle 1.4 X 107" m/ (1.4 X 107 m/s) = 1072 s
to cross. The a particle must make many traverses back and
forth across the nucleus before it can escape. According to
our probability it must make about 10*! attempts, so we es-
timate the a particle may tunnel through in about 1020 s,
The halflife of a #*®*U nucleus is 4.5 X 10 yr or about
10'7 5. Our rough estimate does not seem all that bad.

= 0.047¢= 1.4 X 10" m/s
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Summary 217

An extremely useful application of tunneling is that of a

tunnel diode, which is a special kind of semiconductor. In a tunnel diode, elec-
trons may pass from one region through a junction into another region. We can
depict the behavior by considering a potential barrier over the region of the
junction, which may be only 10 nm wide. Both positive and negative bias voltages
may be applied to change the barrier height to allow the electrons to tunnel ei-
ther way through the barrier. In a normal semiconductor junction, the electrons
(and holes) diffuse through, a relatively slow process. In a tunnel diode, the elec-
trons tunnel through quite rapidly when the tunneling probability is relatively
high. Because the applied bias voltage can be changed rapidly, a tunnel diode is
an extremely fast device and, as such, has important uses in switching circuits

and high-frequency oscillators.

Werner Heisenberg and Erwin Schrodinger developed mod-
ern quantum theory in the 1920s. The time-dependent
Schrédinger wave equation for the wave function W(x, ¢) is
expressed as

oW(x,5) _ . A* W (x, t)

i Jt T 9m dx2

+ VW¥(x,t) (6.1)

The time-independent form for the spatial dependence (in

one dimension) of (x), where W(x, t) = ¢(x)e "FVh is
B diy

— 5 t V(x)¥(x) = E(x)

5 6.13
2m  dx* ( )

Certain properties of ¥ and d¥/dx lead to quantized be-
havior. The wave function W(x, t) must be finite, single val-
ued, and continuous; ¥ /dx must be continuous. The wave
function must be normalized in order to use it to determine
probabilities.

Average values of the physical observables are deter-
mined by calculating the expectation values using the wave
functions. The expectation value of a function g(x) is found
from

(g(x)) = J’; W (x, ) g(x)W(x, t)dx

To find the expectation values of the momentum and en-
ergy, we need to know the appropriate operators. In these
two cases the operators are

(6.20)

d
oo ity g
b ih W (6.21)
E = ih —a (6.25)

dt

and the expectation values (p) and (E) are

(b = —ih fx W (x, 1) Q%%” dx  (6.29)
(E) = ik E W (x, 1) a—q’(a—’;‘—t—)— dx (6.26)

The infinite square-well potential is a particularly sim-
ple application of the Schrédinger wave equation, and it
leads to quantized energy levels and quantum numbers. The
three-dimensional infinite square-well potential leads to
the concept of degeneracy, different physical states with the
same energy.

The simple harmonic oscillator, where the potential
is V(x) = kx?/2, is an important application of the
Schrodinger wave equation because it approximates many
complex systems in nature but is exactly soluble. The en-
ergy levels of the simple harmonic oscillator are E, =
(n + 1/2)hw, where n = 0 represents the ground state en-
ergy £y = fiw/2. The fact that the minimum energy is not
zero—that the oscillator exhibits zero-point motion—is a
consequence of the uncertainty principle.

Finite potentials lead to the possibility of a particle en-
tering a region that is classically forbidden, where V, > E
(negative kinetic energy). This quantum process is called
tunneling and is studied by considering various potential bar-
rier shapes. Important examples of quantum tunneling are
alpha decay and tunnel diodes. Tunneling is consistent
with the uncertainty principle and occurs only for short
distances.
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1

Why can we use the nonrelativistic form of the kinetic
energy in treating the structure of the hydrogen
atom? :

How do you reconcile the fact that the probability
density for the ground state of the quantum harmonic
oscillator (Figure 6.10c) has its peak at the center and
its minima at its ends, while the classical harmonic os-
cillator’s probability density (Figure 6.11) has a mini-
mum at the center and peaks at each end? If you do
this experiment with an actual mass and spring, what
experimental result for its position distribution would
you expect to obtain? Why?

Notice for the finite square-well potential that the
wave function i is not zero outside the well despite
the fact that E < V.. Is it possible classically for a par-
ticle to be in a region where E < V7 Explain this
result.

In a given tunnel diode the p-n junction width is fixed.
How can we change the time response of the tunnel
diode most easily? Explain.

A particle in a box has a first excited state that is 3 eV
above its ground state. What does that tell you about
the box?

Does the wavelength of a particle change after it
tunnels through a barrier as shown in Figure 6.157
Explain. '

The Schrodinger Wave Equation

Try to normalize the wave function ¢ «t). Why
can’t it be done over all space? Explain why it is not
possible.

(a) In what direction does a wave of the form
Asin(kx — wt) move? (b) What about Bsin(kx + wt)?
(c) Is e**= @ 3 real number? (d) In what direction is
the wave in (¢) moving? Explain.

Show directly that the trial wave function W(x, t) =
A=t satisfies Equation (6.1).

Normalize the wave function Ae/** % in the region
x=0toa

Normalize the wave function Are 7 from r= 0 to ®
where a and A are constants.

Property (2) specifies that ¥ must be continuous in
order to avoid discontinuous probability values. Why
can’t we have such probabilities?

Consider the wave function Ae 2l that we used in
Example 6.4. (a) How does this wave function sat-

i(kx —

7
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Can a particle be observed while it is tunneling
through a barrier? What would its wavelength, mo-
mentum, and kinetic energy be while it tunnels
through the barrier?

Is it easier for an electron or a proton of the same
energy to tunnel through a given potential barrier?
Explain.

Can a wave packet be formed from a superposition of
wave functions of the type ¢'** = @97 Can it be nor-
malized?

Given a particular potential V and wave function W,
how could you prove that the given W is correct?
Could you determine an appropriate Eif the potential
is independent of time?

Compare the infinite square-well potential with the fi-
nite one. Where is the Schrodinger wave equation the
same? Where is it different?

Tunneling can occur for an electron trying to pass
through a very thin tunnel diode. Can a baseball tun-
nel through a very thin window? Explain.

For the three-dimensional cubical box, the ground
state is given by n; = ny = n3 = 1. Why is it not possi-
ble to have one n;= 1 and the other two equal to
zero?

isfy the boundary conditions of Section 6.17 (b) What
can we conclude about this wave function? (c) If

the wave function is unacceptable as is, how could it
be fixed?

Expectation Values

A set of measurements has given the following result
for the measurement of x (in some units of length):
34,39,52,4.7,4.1,3.8,3.9,4.7,4.1, 4.5, 3.8, 4.5, 4.8,
3.9, and 4.4. Find the average value of x, called x or
(x), and average value of x?, called (x?). Show that the
standard deviation of x, given by

> (= %)?

o= N

where x; is the individual measurement and N is
the number of measurements, is also given by o =

V{(x%) — (x)?. Find the value of o for the set of data.



If the potential Vis independent of time, show that
the expectation value for x is independent of time.

A wave function y = A(e™ + ¢ ™) in the region —7 <
x < 7 and zero elsewhere. Normalize the wave func-
tion and find the probability of the particle being be-
tween x = 0 and 7/8.

A wave function has the value A sin x between 0 and
, but zero elsewhere. Normalize the wave function
and find the probability that the particle is between
x =0 and w/4.

Infinite Square-Well Potential

Find an equation for the difference between adjacent
energy levels (AE,=E, ., —E,) for the infinite
square-well potential. Calculate AE;, AEg, and AEgq,.
Determine the average value of ,*(x) inside the well
for the infinite square-well potential for n» = 1, 5, 20,
and 100. Compare these averages with the classical
probability of detecting the particle inside the box.
An electron moves with a speed v= 10"*¢ inside a
one-dimensional box (V= 0) of length 48.5 nm. The
potential is infinite elsewhere. The particle may not
escape the box. What approximate quantum number
does the electron have?

For the infinite square-well potential, find the proba-
bility that a particle in its ground state is in each third
of the one-dimensional box: 0 =x=1/3, /3 =x=
2L/3,2L/8 =g =L,

Repeat the previous problem using the first excited
state.

Repeat Example 6.8 for an electron inside the nu-
cleus. Assume nonrelativistic equations and find the
transition energy for an electron. (See Example 6.8
for an interpretation of the result.)

What is the minimum energy of (a) a proton and (b)
an «a particle trapped in a one-dimensional region the
size of a uranium nucleus (radius = 7 X 10 '* m)?
An electron is trapped in an infinite square-well po-
tential of width 0.5 nm. If the electron is initially in
the n = 4 state, what are the various photon energies
that can be emitted as the electron jumps to the
ground state?

Finite Square-Well Potential

Consider a finite square-well potential well of width
3 X 10~ '> m that contains a particle of mass 2 GeV/c”.
How deep does this potential well need to be to con-
tain three energy levels? (Except for the energy levels,
this situation approximates a deuteron.)

Compare the results of the infinite and finite square-
well potentials. (a) Are the wavelengths longer or
shorter for the finite square well compared with the
infinite well? (b) Using physical arguments, do you ex-
pect the energies (for a given quantum number n) to
be (i) larger or (ii) smaller for the finite square well
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than for the infinite square well? (c¢) Why will there be
a finite number of bound energy states for the finite
potential?

Apply the boundary conditions to the finite square-
well potential at x= 0 to find the relationships be-
tween the coefficients A, C, and D and the ratio C/D.

Apply the boundary conditions to the finite square-
well potential at x = L to find the relationship be-
tween the coefficients B, C, and D and the ratio C/D.

Three-Dimensional Infinite-Potential Well

Find the energies of the second, third, fourth, and
fifth levels for the three-dimensional cubical box.
Which are degenerate?

Write the possible (unnormalized) wave functions for
each of the first four excited energy levels for the cu-
bical box.

Find the normalization constant A for the ground
state wave function for the cubical box in Equation
(6.52).

Complete the derivation of Equation (6.49) by substi-
tuting the wave function given in Equation (6.47) into
Equation (6.46). What is the origin of the three quan-
tum numbers?

Simple Harmonic Oscillator

In Figure 6.9 we showed a plausible guess for the wave
function i, for the lowest energy level E, of the sim-
ple harmonic oscillator. Explain the shape of the wave
function and explain why it is a maximum at x = 0
and not zero when E = V.

What is the energy level difference between adjacent
levels AE, = k£, — E, for the simple harmonic oscil-
lator? What is AE,, AE,, and AE;,? How many possi-
ble energy levels are there?

The wave function for the first excited state s, for the
simple harmonic oscillator is ¢, = Axe~***/2_Normal-
ize the wave function to find the value of the constant
A. Determine {x}, {x2), and Ax = V{x*)— (x)°

An atom of mass 3.32 X 10 2% kg oscillates in one di-
mension at a frequency of 10" Hz. What are its effec-
tive force constant and quantized energy levels?

One possible solution for the wave function s, for the
simple harmonic oscillator is

P, = A(2ax? — 1)9_“"2’2

where A is a constant, What is the value of the energy
level E,?

What would you expect for (p) and (p?) for the
ground state of the simple harmonic oscillator? (Hini:
Use symmetry and energy arguments.)

Show that the energy of a simple harmonic oscillator
in the n =1 state is 3 hw/2 by substituting the wave
function ¢, = Axe***/2 directly into the Schrodinger
equation.
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A Hs molecule can be approximated by a simple har-
monic oscillator having spring constant k= 1.1 X
10> N/m. Find (a) the energy levels, and (b) the pos-
sible wavelengths of photons emitted when the H,
molecule decays from the third excited state eventu-
ally to the ground state.

Barriers and Tunneling

The creation of elements in the early universe and in
stars involves protons tunneling into nuclei. Find the
probability of the proton tunneling through '*C. Let
the proton and carbon be inside a star of temperature
12,000 K.

Compare the wavelength of a particle when it passes a
barrier of height (a) +V|, (see Figure 6.12) and (b)
-V, where E > |10| (see Figure 6.18). Calculate the
momentum and kinetic energy for both cases.

(a) Calculate the transmission probability of an « par-
ticle of energy £ = 5 MeV through a Coulomb barrier
of a heavy nucleus that is approximated by a square
barrier with V, = 15 MeV and barrier width L = 1.3 X
10~ m. Calculate the probability (b) by doubling the
potential barrier height and (c) by using the original
barrier height but doubling the barrier width. Com-
pare all three probabilities.

Consider a particle of energy E trapped inside the po-
tential well shown in the accompanying figure. Sketch
a possible wave function inside and outside the po-
tential well. Explain your sketch.

Vix)

Energy

=]

Position

A potential well is infinite for x < 0 but increases lin-
early from V= —V,at x = (.

When a particle of energy E approaches a potential
barrier of height V,,, where £ => Vj,, show that the re-
flection coefficient is about ((Vysin(kL))/2E)>.

Let 11.0-eV elecurons approach a potential barrier of
height 3.8 eV. (a) For what barrier thickness is there
no reflection? (b) For what barrier thickness is the re-
flection a maximum?

A 1-eV electron has a 104 probability of tunneling
through a 2.5-eV potential barrier. What is the proba-
bility of a 1-eV proton tunneling through the same
barrier?

General Problems

43.

45,

50.

51.

A particle of mass m is trapped in a three-dimensional
rectangular potential well with sides of length L,
L/\/Q, and 2L. Inside the box V= 0, outside V= o=,
Assume

= Asin(kx) sin(koy) sin(kgz)

inside the well. Substitute this ¥ into the Schrodinger
equation and apply appropriate boundary conditions
to find the allowed energy levels. Find the energy of
the ground and first four excited levels. Which of
these levels are degenerate?

For a region where the potential V= 0, the wave func-
tion is given by \/% sin(3mx/a). Calculate the en-
ergy of this system.

Consider the semi-infinite-well potential in which
V=wforx=0, V=0for0<x< L, and V=V, for
x> L. (a) Show that possible wave functions are A sin
k,x inside the well and Be “»* for x > L, where k, =
V2mE, /h and k, = V2m(V, — E)/f. (b) Show that
the application of the boundary conditions gives k tan
(kL) = —k.

Assume that V, = #2/2ml? and show that the ground
state energy of a particle in the semi-infinite well of
the previous problem is given by 0.0442%/2ml 2.

Prove that there are a limited number of bound solu-
tions for the semi-infinite well.

Use the semi-infinite-well potential to model a
deuteron, a nucleus consisting of a neutron and a
proton. Let the well width be 3.5 X 107! m and
Vo — E = 2.2 MeV. Determine the energy E. How many
excited states are there, and what are their energies?
The wave function for the n = 2 state of a simple har-
monic oscillator is A(1 — 2ax?)e “**/2, (a) Show that
its energy level is 5 hw/2 by substituting the wave func-
tion into the Schrodinger equation. (b) Find (x) and
(&),

A particle is trapped inside an infinite square-well po-
tential between x = 0 and x = L. Its wave function is
a superposition of the ground state and first excited
state. Its wave function is given by

V3

1
V(%) = El-p](x) + TWQ(X)

Show that the wave function is normalized.

The Morse polential is a good approximation for a real
potential to describe diatomic molecules. It is given by
Vir) = D(1 — ¢ “ )2 where D is the molecular dis-
sociation energy, and 7, is the equilibrium distance be-
tween the atoms. For small vibrations, r — r, is small,
and V(r) can be expanded in a Taylor series to reduce
to a simple harmonic potential. Find the lowest term
of V(r) in this expansion and show that it is quadratic
in (r—r,).



52. Show that the vibrational energy levels L, for the

Morse potential of the previous problem are given by

R B Ao R
wlln ) o )

where w=a,|l—
and n is the vibrational quantum number, m, is the
reduced mass, and E£,<< D. Find the three lowest
energy levels for KCl where D =442 eV, and a=
7.8 nm .

53.
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Consider a particle of mass m trapped inside a two-
dimensional square box of sides L aligned along the

xand y axes. Show that the wave function and energy
levels are given by

e, 9) I TR Ty
x, y) = — sin sin
P L
h%m?
- 2 2
2 2ml? o)

Plot the first six energy levels and give their quantum
numbers.



