Wave Properties of Matter

| thus arrived at the following overall concept which guided my studies:
for both matter and radiations, light in particular, it is necessary
to introduce the corpuscle concept and the wave concept at the

same time.

E hapter 3 presented compelling evidence that light (electromagnetic radi-
ation) must be particlelike in order to explain phenomena such as the
photoelectric effect and Compton scattering. The emission and absorption of
photons in atoms allow us to understand the optical spectra of hydrogen atoms.

In this chapter we will learn another surprising result: wavelike properties
are also exhibited by “particles” of matter. This is the only way we can interpret
certain experimental observations. We begin the chapter by discussing experi-
ments that prove that photons, in the form of x rays, behave as waves when pass-
ing through crystals. De Broglie’s suggestion that particles may also behave
as waves was verified by the electron-scattering experiments of Davisson and
Germer.

We then present a short review of wave phenomena, including a description
of the localization of a particle in terms of a collection of waves. A major hurdle
is to understand how wavelike and particlelike properties can occur in nature in
the same entity. Niels Bohr’s principle of complementarity convinces us that both
wavelike and particlelike properties are needed to give a complete description of
matter (electrons, protons, etc.) and radiation (photons). We shall see that cer-
tain physical observables can only be determined from probabilities by using
wave functions W (x, t). Heisenberg’s uncertainty principle plays a major role in
our understanding of particlelike and wavelike behavior. This principle prohibits
the precise, simultaneous knowledge of both momentum and position or of both
energy and time. We will see that no experiment exhibits both wave and particle
properties simultaneously. Although modern quantum theory is applicable pri-
marily at the atomic level, there are many macroscopic observations of its effects.

Louis de Broglie, 1929
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152 Chapter 5 Wave Properties of Matter
5.1 X-Ray Scattering

Following Roentgen’s discovery of x rays in 1895, intense efforts were made to
determine the nature and origin of the new penetrating radiation. Charles
Barkla (Nobel Prize, 1917) made many x-ray measurements at Liverpool Uni-
versity during the early 1900s and is given credit for discovering that each ele-
ment emits x rays of characteristic wavelengths and that x rays exhibit properties
of polarization.

By 1912 it became clear that x rays were a form of electromagnetic radiation
and must therefore have wave properties. However, because it had proved diffi-
cult to refract or diffract x rays as easily as visible light, it was suggested that their
wavelengths must be much shorter than those of visible light. Max von Laue
(1879-1960), a young theoretical physicist at the University of Munich, became
interested in the nature of x rays primarily because of the presence at Munich of
Roentgen and the theorist Arnold Sommerfeld (1868-1951), who would later
play an important role in understanding atomic structure. Wilhelm Wien (1864
1928) and Sommerfeld, among others, estimated the wavelength of an x ray to
be between 10719 and 10" m. Knowing the distance between atoms in a crystal
to be about 1079 m, von Laue made the brilliant suggestion that x rays should
scatter from the atoms of crystals and, if x rays were a form of electromagnetic
radiation, interference effects should be observed. From the study of optics, we
know that wave properties are most easily demonstrated when the sizes of aper-
tures or obstructions are about equal to or smaller than the wavelength of the
light. Von Laue suggested that crystals may act as three-dimensional gratings,
scattering the waves and producing observable interference effects.

Max von Laue (Nobel Prize, 1914) designed the experiment and convinced
two experimental physicists at Munich, Walter Friedrich and Paul Knipping, to
perform the measurement. A schematic diagram of the transmission Laue
process is shown in Figure 5.1, along with one of Friedrich and Knipping’s earli-
est experimental results. By rotating the crystals, the positions and intensities of

Photographic
plate

Incident x rays

(a) (b)

FIGURE 5.1 (a) Schematic diagram of Laue diffraction transmission method. A wide
range of x-ray wavelengths scatter from a crystal sample. The x rays constructively inter-
fere from certain planes producing dots. (b) One of the first results of Friedrich and
Knipping in 1912 showing the symmetric placement of Laue dots of x-ray scattering from
ZnS. The analysis of these results by von Laue, although complex, convincingly proved
that x rays are waves. Photo from W. Friedrich, P. Knipping, and M. Laue, Sitzungsberichte der Bayerischen
Akademie der Wissenschaften (1912), 303-322 und 5 Tafeln, reprinted in Max von Laue, Gesammelte Schriften
und Vortrige, Band 1, Vieweg & Sohn, Braunschweig, 1961.




5.1

FIGURE 5.2 The crystal structure of NaCl (rock salt) showing two of the possible sets of
lattice planes (Bragg planes).

the diffraction maxima were shown to change. Von Laue was able to perform the
complicated analysis necessary to prove that x rays were scattered as waves from
a three-dimensional crystal grating. We emphasize that von Laue was able to
prove convincingly not only the wave nature of x rays but also the lattice struc-
ture of crystals.

Two English physicists, William Henry Bragg and his son, William Lawrence
Bragg, fully exploited the wave nature of x rays and simplified von Laue’s analy-
sis. W. L. Bragg pointed out in 1912 that each of the images surrounding the
bright central spot of the Laue photographs could be interpreted as the reflec-
tion of the incident x-ray beam from a unique set of planes of atoms within the
crystal. Each dot in the pattern corresponds to a different set of planes in the
crystal (see Figure 5.1b).

Is x-ray scattering from atoms within crystals consistent with what we know
from classical physics? From classical electromagnetic theory we know that the
oscillating electric field of electromagnetic radiation polarizes an atom, causing
the positively charged nucleus and negatively charged electrons to move in op-
posite directions. The result is an asymmetric charge distribution, or electric di-
pole. The electric dipole oscillates at the same frequency as the incident wave
and in turn reradiates electromagnetic radiation at the same frequency, but in
the form of spherical waves. These spherical waves travel throughout the matter
and, in the case of crystals, may constructively or destructively interfere as the
waves pass through different directions in the crystal.

If we consider x rays scattered from a simple rock salt crystal (NaCl, shown
in Figure 5.2), we can, by following the Bragg simplification, determine condi-
tions necessary for constructive interference. We will study solids in Chapter 10,
but for now, note that the atoms of crystals, like NaCl, form lattice planes, called
Bragg planes. We can see from Figure 5.3 that it is possible to have many Bragg

FIGURE 5.3 Top view of NaCl (cubic crystal), indicating possible lattice planes.
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Proof of wave nature of
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154 Chapter 5 Wave

FIGURE 5.4 Schematic dia-
gram illustrating x-ray scatter-
ing from Bragg lattice planes.
The path difference of the two
waves illustrated is 2dsin 6.
Notice that the actual scatter-
ing angle from the incident
wave is 20,

Conditions for
constructive interference

Bragg’s law

FIGURE 5.5 Schematic dia-
gram of Bragg spectrometer. X
rays are produced by electron
bombardment of metal target.
The x rays are collimated by
lead and scatter from a crystal
and are detected as a function
of the angle 26.

Properties of Matter

Incident
plane
wave

2d sin 0

planes in a crystal, each with different densities of atoms. Figure 5.4 shows an in-
cident plane wave of monochromatic x rays of wavelength A scattering from two
adjacent planes. There are two conditions for constructive interference of the
scattered x rays:

1. The angle of incidence must equal the angle of reflection of the outgo-
ing wave.

2. The difference in path lengths shown in Figure 5.4 (2d sin 6) must be
an integral number of wavelengths.

We will not prove condition 1 but will assume it.* It is referred to as the law
of reflection (Gincidence = Oreneciion ), although the effect is actually due to diffrac-
tion and interference. Condition 2 will be met if

nA = 2d sin 0 n = integer (5.1)
as can be seen from Figure 5.4, where D is the interatomic spacing (distance be-
tween atoms) and d is the distance between lattice planes. Equation (5.1) was
first presented by W. L. Bragg in 1912 after he learned of von Laue’s results. The
integer n is called the order of reflection, following the terminology of ruled dif-
fraction gratings in optics. Equation (5.1) is known as Bragg’s law and is useful

*See L. R. B. Elton and D. F. Jackson, Am. J. Phys. 34, 1036 (1966), for a correct proof.
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5.1 X-Ray Scattering 18585

for determining either the wavelength of x rays or the interplanar spacing d of
the crystal if A is already known.

W. H. Bragg and W. L. Bragg (who shared the 1915 Nobel Prize) constructed
an apparatus similar to that shown in Figure 5.5, called a Bragg spectrometer,
and scattered x rays from several crystals. By rotating the crystal and the detec-
tor, the intensity of the diffracted beam as a function of scattering angle is de-
termined. The Braggs’ studies opened up a whole new area of research that con-
tinues today.

The Bragg and Laue methods are complementary. In the Bragg method, the
crystal is normally placed so that a certain set of planes produces constructive in-

A computer graphic of the
: : ; DNA double helix is shown.
terference. The Bragg method is best for measuring x-ray wavelengths, and  This complex structure was

monochromatic x rays usually are used. The Laue method emphasizes x-ray understood only after hun-
transmission and is best for actually studying the crystal structure. Each of the dreds of x-ray diffraction pho-
symmetric Laue dots represents planes for which the two Bragg conditions are tos were carefully studied.
fulfilled. This technique of studying crystals is widespread, and many incident  Copyright Nelson Max/LLNL, Peler
wavelengths normally are used simultaneously in order to obtain many dots. Ameld Inc.
These techniques tell us almost everything we know about the structures of
solids, liquids, and even complex molecules such as DNA.
There is still another possibility for study, although more than just a brief
mention of the process is beyond the level of this text. If a single large crystal is
not available, then many small crystals may be used. If these crystals are ground
into a powdered form, the small crystals will then each have random orienta-
tions. Because of random orientations, when a beam of x rays passes through the
powdered crystal, the dots become a series of rings. A schematic diagram of the
powder technique is shown in Figure 5.6a along with the film arrangement to
record powder photographs in Figure 5.6b. The lines indicated in part (b) are
sections of rings called the Debye-Scherrer pattern, named after the discoverers. Fig-
ure 5.6¢ is a sequence of four photographs, each with an increasingly larger
number of crystals, which indicates the progression from the Laue dots to the
rings characteristic of the powder photographs.
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FIGURE 5.6 (a) Diagram showing the experimental arrangement of producing powder photographs from random-
oriented crystals. (b) Film arrangement to record powder photographs. (c) The four photos show a progression of x-ray
photographs for fluorite from a single crystal (clearly showing dots), through a few crystals, to a large number of crystals,
which gives the rings the characteristic of an ideal powder photograph. (a) and (b) are taken from N. F. M. Henry, H. Lipson, and
W. A. Wooster, The Interpretation of X-ray Diffraction Photographs. London: MacMillan, 1960. (c) is from H. S. Lipson, Crystals and X-Rays. London:
Wykeham Publications, 1970.



CAVENDISH
LABORATORY

B efore the 1870s most of our scientific knowledge
resulted from the research of persons working in
their own private laboratories or in a private college
room. Lord Kelvin established a laboratory at Glasgow
in the 1840s, and in the 1860s efforts began at both
Oxford and Cambridge to build physical laboratories.
In 1871 James Clerk Maxwell was called from his
Scottish home to become the first Cavendish Profes-
sor. Maxwell began planning and supervising the con-
struction of the laboratory on Free School Lane in
central Cambridge with an unexpected fervor while
he gave regular lectures to students. The publication
of Maxwell’s treatise on electricity and magnetism in
1873 made him famous. The most important work of
the day was to demonstrate the existence of Maxwell’s
electromagnetic waves, but they were “scooped” by
Heinrich Hertz in Germany. However, the Cavendish
research on waves was extensive and productive.
Maxwell died in 1879, and his successor was Lord
Rayleigh, a famous physicist who had not yet done his
most important work. The line of Cavendish profes-
SOrs is impressive:

James Clerk Maxwell 1871-1879
Lord Rayleigh 1879-1884
Sir J. J. Thompson 1884-1919
Lord Rutherford 1919-1937
Sir W. Lawrence Bragg 1938-1953
Sir Nevill Mott 1954-1971
Sir Brian Pippard 1971-1982
Sir Sam Edwards 1984-1995
Richard H. Friend 1995—

Rayleigh remained only five years and then went back
to his estate farm where most of his discoveries (noble
gases) were made at his private laboratory. Neverthe-
less, in his five years at Cavendish, Rayleigh published
50 papers, setting the recognition for his Nobel Prize
of 1904.

The appointment of the young J. J]. Thomson at
age 28 as Cavendish Professor in 1884 was the begin-
ning of a long and fruitful era in atomic physics. The
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discovery of the electron in 1897, the arrival of the
young Ernest Rutherford from New Zealand as a stu-
dent, and the early work of C. T. R. Wilson that led to
the development of the cloud chamber all helped the
Cavendish Laboratory expand, prosper, and grow in
stature under Thomson’s leadership. Young William
Lawrence Bragg started his Nobel Prize-winning re-
search as a Cavendish student in 1912 with his father
who was then a Professor of Physics at Leeds. Thom-
son’s 35-year leadership was remarkable in many ways,
particularly in the manner he stepped down in 1919
upon the opportunity of attracting Rutherford back to
Cavendish to be the next Professor.

During Rutherford’s 19-year reign, the Cavendish
became the most renowned center of science in
the world. It attracted the best students and re-
scarchers and received visitors from all over the world.
Rutherford was a team leader, and he surrounded
himself with a collection of young physicists whom he
called “his boys.” Lectures by Thomson on “Conduc-
tion of Electricity in Gases,” by F. W. Aston on isotopes,
by Chadwick on the discovery of the neutron, by
P. M. S. Blackett on nuclear disintegration, and
reports on the research of Cockcroft and Walton
were on the forefront of physics. By the end of the
Rutherford era in 1937, the laboratory was moving
into new directions with particle accelerators and
cryogenic labs. In one year, 1927-1928, the Cavendish
published 53 papers.

World War II would change the face of the
Cavendish forever. Physicists spread out to perform
wartime research, particularly on the development of
the atomic bomb and the development of radar that
were to play large roles in the allied victory. William
Lawrence Bragg returned as Cavendish Professor to
succeed Rutherford in 1937, and the field of x-ray
crystallography flourished. The vyears after World
War II were uncertain ones, but the people at the
Cavendish have had an uncanny ability to choose pro-
ductive research areas. It can be said that the fields of
molecular biology and radio astronomy started at the
Cavendish in the late 1940s, and Bragg must be given
credit for the foresight in supporting these fledgling
subjects in the face of “Big Science” in the United
States. Bragg’s tenure as Cavendish Professor ended
in 1953 just when Watson and Crick succeeded in dis-

(Special Topic text continues on p. 158)



In the upper left photo is shown the old Cavendish Laboratory on Free Schoc Cambridge. The original building
is to the left of the gate. Pictured are also the first four Cavendish Professors, James Clerk Maxwell in the upper right, Lord
Rayleigh in the bottom left, and Sir J. J. Thomson (left) and Lord Rutherford in the bottom right.




covering the DNA structure. Bragg also supported
J. A. Ratcliffe and Martin Ryle, who had worked on
radar at the Cavendish during the war, to construct
the first radio telescope. This occurred because Ryle
had heard of radar operators’ reports of signals com-
ing from the stars and galaxies. This effort led to the
discovery of quasars and pulsars.

When Sir Neville Mott succeeded Bragg as
Cavendish Professor in 1954, the lab made a turn to-
wards solid state physics. Mott had worked on collision
theory and nuclear problems in the 1930s, but even-
tually turned to theoretical investigations of electronic
systems. Brian Josephson did his pioneering theoreti-
cal work on the supercurrent through a tunnel barrier

while a student, graduating in 1964 with his Ph.D. In
1974 the Cavendish moved to a new site in West Cam-
bridge. Condensed matter physics now accounts for
the greater part of research at the Cavendish, but the
groups in radio astronomy and high energy physics
are still important.

We end with a list of Nobel Prizes awarded to
those who did their most important work at the
Cavendish Laboratory. The asterisks (for example,
Rutherford and Rayleigh) indicate examples where
the Nobel Prizes were awarded primarily for work
done elsewhere, but those persons are still widely as-
sociated with the Cavendish Laboratory.

Cavendish Laboratory Nobel Prizes

Density of gases, discovery of argon
Investigations of electricity in gases
Element disintegration

X-ray analysis of crystals

Secondary x rays

Isotopes discovery

1904 Physics Lord Rayleigh*

1906 Physics Sir J. J. Thomson

1908 Chemistry Lord Rutherford*

1915 Physics Sir William Lawrence Bragg

1917 Physics Charles G. Barkla

1922 Chemistry Francis W. Aston

1927 Physics Charles T. R. Wilson

1928 Physics Sir Owen W, Richardson

1935 Physics Sir James Chadwick

1937 Physics Sir George P. Thomson

1947 Physics Sir Edward V. Appleton*

1948 Physics Lord Patrick M. S. Blackett

1951 Physics Sir John D. Cockeroft and

Ernest T. S. Walton

1962 Physiology or  Francis H. C. Crick and
Medicine James D. Watson

1973 Physics Brian D. Josephon

1974 Physics Sir Martin Ryle and

Anthony Hewish

1977 Physics Sir Nevill F. Mott

1978 Physics P. L. Kapitsa*

1982 Chemistry Sir Aaron Klug

Cloud chamber

Thermionic emission

Neutron discovery

Electron diffraction

Upper atmosphere investigations
Discoveries in nuclear physics

Nuclear transmutation
DNA discoveries

Supercurrent in tunnel barriers

Radio astrophysics, pulsars

Magnetic and disordered systems
Low temperature physics

Nuclei acid protein complexes
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Example 5.1

X rays scattered from rock salt (NaCl) are observed to have
an intense maximum at an angle of 20° from the incident di-
rection. Assuming n = 1 (from the intensity), what must be
the wavelength of the incident radiation?

Solution: Notice that the angle between the incident
beam and scattered wave for constructive interference is al-
ways 26 (see Figures 5.4 and 5.5). Thus = 10°, but in order
to find A we must know d, the lattice spacing. In Section 4.1
we showed that

Number of molecules — Nyp

Volume M

where N, is Avogadro’s number, p is the density, and M is
the gram-molecular weight. For NaCl, p = 2.16 g/cm® and
M = 58.5 g/mole.

lecules
(6.02 X 1023 10— e”)(zlﬁ g%)
C

Nap mole m
i 58.5—5—
" mole
, molecules o, Atoms
= 299 X 1022 == & G5 K 1022 :
cm’ cm-”
atoms

= 4.45 X 10% —,
m-

5.2 De Broglie Waves 18589

Because NaCl has a cubic array, we take d as the distance be-

tween Na and Cl atoms, so we have a volume of d® per atom.
1 . g5 Atoms
E =445 X 10 -

d=282 X 107" m = 0.282 nm

This technique of calculating the lattice spacing only works
for a few cases because of the variety of crystal structures.
We use Equation (5.1) to find A.
% = 2dsin (2)(0.282 nm) (sin 10°)
n 1

= 0.098 nm

which is a typical x-ray wavelength. NaCl is a useful crystal
for determining x-ray wavelengths and for calibrating ex-
perimental apparatus.

5.2 De Broglie Waves

By 1920 many physicists believed that a new, more general theory was needed to
replace the rudimentary Bohr model of the atom. An essential step in this devel-
opment was made by a young French graduate student, Prince Louis V. de Broglie
(1892-1987), who began studying the problems of the Bohr model in 1920.

De Broglie was well versed in the work of Planck, Einstein, and Bohr. He
was aware of the duality of nature expressed by Einstein in which matter and
energy were not independent but were in fact interchangeable. De Broglie was

W. E. Meggers Collection.

After serving in World War I, Prince Louis de Broglie re-
sumed his studies towards his doctoral degree at the Uni-
versity of Paris in 1924, where he reported his concept of
matter waves as part of his doctoral dissertation. De
Broglie spent his life in France where he enjoyed much
success as an author and teacher. AIP/Niels Bohr Library,
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Wave properties of matter?

De Broglie wavelength
of a particle

Matter waves

Example 5.2

Calculate the de Broglie wavelength of (a) a tennis ball of
mass 70 g traveling 25 m/s (about 56 mph) and (b) an elec-

tron of energy 50 eV.

Properties of Matter

particularly struck by the fact that photons (electromagnetic radiation) had both
wave and corpuscular (particlelike) properties. The concept of waves is needed
to understand interference and diffraction, but localized corpuscles are needed
to explain phenomena like the photoelectric effect and Compton scattering. If
electromagnetic radiation must have both wave and particle properties, then why
should material particles not have both wave and particle properties as well? The
symmetry of nature encourages such an idea, according to de Broglie, and no
laws of physics prohibit it.

When de Broglie presented his new hypothesis in a doctoral thesis to the
University of Paris in 1924, it aroused considerable interest. De Broglie used
Einstein’s special theory of relativity together with Planck’s quantum theory to
establish the wave properties of particles. His fundamental relationship is the
prediction that

A= — (5.2)

That is, the wavelength to be associated with a particle is given by Planck’s con-
stant divided by the particle’s momentum. De Broglie was guided by the con-
cepts of phase and group velocities of waves (see Section 5.4) to arrive at Equa-
tion (5.2). Recall that for a photon

E= pc
but E = hy, so that
hv = pc= pAv
h=pA
and
A= = (5.3)
P

De Broglie extended this relation for photons to all particles. Particle waves
were called matter waves by de Broglie, and the wavelength expressed in Equa-
tion (5.2) is now called the de Broglie wavelength of a particle.

1240 eV * nm

= 0.17 nm

= V2(0.511 X 10° &V) (50 V)

Solution: (a) For the tennis ball, m = 0.07 kg, so Note that because the kinetic energy of the electron is

Lo b _ 663x10°%).

so small, we have used the nonrelativistic calculation. Calcu-
s

P (0.07 kg) (25 m/s)

(b) For the electron, it is more convenient to use eV units,

so we rewrite the wavelength A as

=38X 10~ m lations in modern physics are normally done using eV units,
both because it is easier and also because eV values are more

appropriate for atoms and nuclei (MeV, GeV) than are
Joules. The values of /ic and some masses can be found in-
side the front cover.
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How can we show whether such objects as the tennis ball or the electron in
the previous example exhibit wavelike properties? The best way is to pass the
objects through a slit having a width of the same dimension as the object’s
wavelength. We expect it to be very difficult to demonstrate interference or
diffraction for the tennis ball, even if we could find a slit as narrow as 1073* m
(which we can’t!). It is unlikely we will ever be able to demonstrate the wave
properties of the tennis ball. But the de Broglie wavelength of the electron, in
this case ~0.2 nm, is large enough that we should be able to demonstrate its wave
properties. Because of their small mass, electrons can have a small momentum
and in turn a large wavelength (A = A/p). Electrons offer perhaps our best
chance of observing effects due to matter waves.

Bohr’s Quantization Condition

One of Bohr’s assumptions concerning his hydrogen atom model was that the
angular momentum of the electron-nucleus system in a stationary state is an
integral multiple of #/27. Let's now see if we can predict this result using de
Broglie’s result. Represent the electron as a standing wave in an orbit around the
proton. This standing wave will have nodes and be an integral number of wave-
lengths. We show an example of this in Figure 5.7. In order for it to be a correct
standing wave, we must have

nA = 2ar

where r is the radius of the orbit. Now we use the de Broglie relation for the
wavelength and obtain

h
2Tr=nA =n—

The angular momentum of the electron in this orbit is L. = rp, so we have, using
the above relation,

nh

21

L=rp= = nh

We have arrived at Bohr’s quantization assumption by simply applying de
Broglie’s wavelength for an electron in a standing wave. This result hardly seems
fortuitous, but though firm experimental proof was still lacking, it was soon
to come.

5.3 Electron Scattering

In 1925 C. Davisson and L. H. Germer worked at Bell Telephone Laboratories in-
vestigating the properties of metallic surfaces by scattering electrons from vari-
ous materials when a liquid air bottle exploded near their apparatus. Because
the nickel target they were currently bombarding was at a high temperature
when the accident occurred, the subsequent breakage of their vacuum system
caused significant oxidation of the nickel. The target had been specially pre-
pared and was rather expensive, so they tried to repair it by, among other pro-
cedures, prolonged heating at various high temperatures in hydrogen and un-
der vacuum to deoxidize it.

FIGURE 5.7 A schematic dia-
gram of waves in an electron
orbit around a nucleus. An in-
tegral number of wavelengths
fits in the orbit. Note that the
electron does not “wiggle”
around the nucleus. The dis-
placement from the dashed
line represents an amplitude.
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A lucky accident?

Diffraction of electrons
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electron
detector

Electron 4
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FIGURE 5.8 Schematic diagram of Davisson-Germer experiment. Electrons are pro-
duced by the hot filament, accelerated, and focused onto the target. Electrons are scat-
tered at an angle ¢ into a detector, which is movable. The distribution of electrons is mea-
sured as a function of ¢. The entire apparatus is located in a vacuum.

A simple diagram of the Davisson-Germer apparatus is shown in Figure 5.8.
Upon putting the refurbished target back in place and continuing the experi-
ments, Davisson and Germer found a striking change in the way electrons were
scattering from the nickel surface. They had previously seen a smooth variation
of intensity with scattering angle, but the new data showed large increases for
certain energies at a given scattering angle. Davisson and Germer were so puz-
zled by their new data, that after a few days, they cut open the tube in order to
examine the nickel target. They found that the polycrystalline structure of the
nickel had been modified by the high temperature. The many small crystals of
the original target had been changed into a few large crystals as a result of the
heat treatment. Davisson surmised it was this new crystal structure of nickel—the
arrangement of atoms in the crystals, not the structure of the atoms—that had
caused the new intensity distributions. Some 1928 experimental results of Davis-
son and Germer for 54-eV electrons scattered from nickel are shown in Figure 5.9.
The scattered peak occurs for ¢ = 50°.

The electrons were apparently being diffracted much like x rays, and Davis-
son, being aware of de Broglie’s results, found that the Bragg law applied to their
data as well. Davisson and Germer were able to vary the scattering angles for a
given wavelength and vary the wavelength (by changing the electron accelerat-
ing voltage and thus the momentum) for a given angle.

Intensity = radial distance along dashed
line to data at angle ¢.

, Peak
" J Data e
*—-*’ " 2
i 500 /-
!” "}’/
0
44 eV 48 eV 54 eV 64 eV 68 eV

FIGURE 5.9 Davisson and Germer data for scattering of electrons from Ni. The peak
¢ = 50° builds dramatically as the energy of the electron nears 54 ¢V. From C. J. Davisson,
Journal of The Franklin Institute 205, 597-623 (1928).
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Incident beam

Scattered beam

FIGURE 5.10 The scattering of electrons by lattice planes in a crystal. This figure is use-
ful to compare the scattering relations nA = 2d sin f and nA = D sin ¢ where 6 and ¢ are
angles shown, D = interatomic spacing, and d = lattice plane spacing.

The relationship between the incident electron beam and the nickel crystal
is shown in Figure 5.10. In the Bragg Law, 26 is the angle between the incident
and exit beams. Therefore, ¢ = m — 20 = 2a. Because sin 6 = cos(¢/2) = cos «a,
we have for the Bragg condition, nA = 2d cos a. However, d is the lattice plane
spacing and is related to the interatomic distance D by d = D sin « so that

nA = 2dsin 6 = 2d cos o« = 2D sin « cos a

nA = Dsin 2a = Dsin ¢ (5.4)
or
D KT
s LRy (5.5)
n

For nickel the interatomic distance is D = 0.215 nm. If the peak found by
Davisson and Germer at 50° was n = 1, then the electron wavelength should be

A= (0.215 nm) (sin 50°) = 0.165 nm

Let us now compare this wavelength with that expected for a 54-eV electron.
We can determine the electron’s momentum nonrelativistically from the kinetic
energy.

p*

2m

= KE. = ¢V (5.6)

where V, is the voltage through which the electrons are accelerated. We find the
momentum to be p =V (2m) (¢V;). The de Broglie wavelength is now
h  he he 1240 eV-nm

R L :
b pe V(2me?) (eV,) V(2)(0.511 X 106 eV) (eV,)

(5.7)

1.296 nm - V2
VvV,

where the constants &, ¢, and m have been evaluated and Vj, is the voltage. For
Vo = 54V, the wavelength is

i 1.226 nm V2 0.167
= — = (0.167 nm
V54V

Clinton ]. Davisson (1881-
1958) is shown here in 1928
on the right looking at the
electronic diffraction tube held

by Lester H. Germer (1896-
1971). They performed their
work at Bell Telephone Labo-
ratory. Davisson received the
Nobel Prize in physics in 1937.
AIP Emilio Segre Visual Archives.
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(a) (b)

FIGURE 5.11 Examples of transmission electron diffraction photographs. (a) Produced by scattering 120-keV electrons
on the quasicrystal AlgyMng,. (b) An early pattern from polycrystalline SnO,. Notice that the dots in (a) indicate that the
sample was a crystal whereas the rings in (b) indicate that a randomly oriented sample (or powder) was used. (a) is courtesy
of David Follstaedl, Sandia National Laboratory. (b) is from G. P. Thomson and W. Cochrane, Theory and Practice of Electron Diffraction. London:
Macemillan, 1939,

This value of the wavelength is in good agreement with that found earlier forthe
peak at 50°.

Shortly after Davisson and Germer reported their experiment, George P.
Thomson (1892-1975), son of J. ]. Thomson, reported seeing the effects of elec-
tron diffraction in transmission experiments. The first target was celluloid, and
soon after that gold, aluminum, and platinum were used. Beautiful rings are ob-
tained, as is shown for SnO, in Figure 5.11. Davisson and Thomson received the
Nobel Prize in 1937 for their investigations, which clearly showed that particles
exhibited wave properties. In the next few years hydrogen and helium atoms
were also shown to exhibit wave diffraction. An important modern measurement
technique uses diffraction of neutrons to study the crystal and molecular struc-
ture of biologically important substances. All these experiments are consistent
with the de Broglie hypothesis for the wavelength of a massive particle.

Example 5.3

9 C
In introductory physics, we learned that a particle (ideal £ w KE. = — kT (5.8)
i ’ AV S . : 2m 2
gas) in thermal equilibrium with its surroundings has a ki-
netic energy of 3kT/2. Calculate the de Broglie wavelength p="V3mkT
for (a) a neutron at room temperature (300 K) and (b) a
“ ” Arrdcs e h h he
cold” neutron at 77 K (liquid nitrogen). A= = —— =
P V3mkT  V3(mc?)kT
Solution: We begin by finding the de Broglie wave- 1 1240 eV nm

length of the neutron from the momentum. ~ T2 1/3(938 X 10° eV) (8.62 X 10~ eV/K)



It again has been convenient to use eV units,
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These wavelengths are thus suitable for diffraction by crys-
tals. “Supercold” neutrons, used to produce even larger
wavelengths, are useful because extrancous electric and
magnetic fields do not affect neutrons as much as electrons.

(5.9)

A{%OOK)—M—OI% (5.92)

- — \/@m = 2 Nin d.7a
9.52 nm - K12 |

ATTR) = =222 —0987nm  (5.9b)

5.4 Wave Motian

Because particles exhibit wave behavior, it must be possible to formulate a wave
description of particle motion. Our development of quantum theory will be
based heavily on waves, so now we digress briefly to review the elementary physics
of wave motion, which we shall ultimately apply to particles.

In elementary physics, we study waves of several kinds, including sound
waves and electromagnetic waves (including light). The simplest form of wave
has a sinusoidal form; at a fixed time (say, t = 0) its spatial variation looks like

W(x, t)

{27
=Asin[— x (5.10)
(=0 ( A )
as is shown in Figure 5.12. The function W(x, ¢) represents the instantaneous am-
plitude or displacement of the wave as a function of position x and time . In the
case of a wave moving down a string, W is the displacement of the string; in the
case of a sound wave, ¥ is the displacement of the air molecules; and in the case
of electromagnetic radiation, V¥ is the electric field E or magnetic field B. The
maximum displacement A is normally called the amplitude, but a better term for
a harmonic wave such as we are considering may be harmonic amplitude.
As time increases the position of the wave will change, so the general ex-

pression for the wave is

Y(x, t) = A Sin[%(x Ut)J (5.11)

The position at time ¢ = ¢, is also shown in Figure 5.12. The wavelength A is de-
fined to be the distance between points in the wave with the same phase, for ex-
ample, positive wave crests. The period 7'is the time required for a wave to travel
a distance of one wavelength A. Because the velocity [actually phase velocity, see
Equation (5.17)] of the wave is v, we have A = vT. The frequency (= 1/T) of a

N7
Y

vly —t=0
to

FIGURE 5.12 Wave form of a wave moving to the right at speed v shown at = 0 and

Wave form
Wavelength

Period
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Wave number and angular
frequency

Phase velocity

Principle of superposition

Wave packet

harmonic wave is the number of times a crest passes a given point (a complete
cycle) per second. A traveling wave of the type described by Equation (5.11) sat-
isfies the wave equation,*

0*¥ 1 %%
dx2 N ;‘? "é?"“_ (19
If we use A = v7, we can rewrite Equation (5.11).
quz)=Ash{éw(f-——iﬂ (5.13)
A T

We can write Equation (5.13) more compactly by defining the wave number k
and angular frequency w by
2 2w

T and w = 7 (5.14)

k

Equation (5.13) then becomes
V(x, t) = Asin(kx — wt) (5.15)

This is the mathematical description of a sine curve traveling in the positive x di-
rection that has a displacement ¥ = 0 at x = 0 and ¢ = 0. A similar wave travel-
ing in the negative x direction would have the form

W(x, t) = Asin(kx + wt) (5.16)

The phase velocity v,, is the velocity of a point on the wave that has a given phase
(for example, the crest) and is given by

Uy = — = — (5.17)

If the wave does not have ¥ = 0 at x = 0 and ¢ = 0, we can describe the wave us-
ing a phase constant ¢

W(x, t) = Asin(kx — wt + ¢) (5.18)
For example, if ¢ = 90°, Equation (5.18) can be written
Y(x, t) = A cos(kx — wt) (5.19)

Observation of many different kinds of waves has established the general re-
sult that when two or more waves traverse the same region, they act indepen-
dently of each other. According to the principle of superposition, we add the dis-
placements of all waves present. A familiar example is the superposition of two
sound waves of nearly equal frequencies: The phenomenon of beats is observed.
Examples of superposition are shown in Figure 5.13. The net displacement de-
pends on the harmonic amplitude, the phase, and the frequency of each of the
individual waves.

How might we use waves to represent a moving particle? In Figure 5.13 we
see that when two waves are added together, we obtain regions of relatively large
(and small) displacement. If we add many waves of different amplitudes and fre-
quencies in particular ways, it is possible to obtain what is called a wave packet.
The important property of the wave packet is that its net amplitude differs from

*The derivation of the wave equation is presented in most introductory physics textbooks for a wave
on a string, although it is often an optional section and skipped. It would be worthwhile for the stu-
dent to review its derivation now, especially the use of the partial derivatives.
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FIGURE 5.13 Superposition of waves. The heavy blue line is the resulting wave. (a) Two
waves of equal frequency and amplitude that are almost in phase. The result is a larger
wave. (b) Asin (a) but the two waves are almost out of phase. The result is a smaller wave.
() Superposition of two waves with the same frequency, but different amplitudes. (d) Su-
perposition of two waves of equal amplitude but different frequencies. (e) Superposition
of three waves of different amplitudes and frequencies. (f) Superposition of two waves of
almost the same frequency over many wavelengths, indicating the phenomenon of beats.

zero only over a small region A x as shown in Figure 5.14. We can localize the po-
sition of a particle in a particular region by using a wave packet description.

Let us examine in detail the superposition of two waves. Assume both waves
have the same harmonic amplitude A but different wave numbers (k, and ko)
and angular frequencies (@, and w,). The superposition of the two waves is
the sum

V(x t) =W(x, t) + Wo(x, t) = Acos(k;x— wt) + A cos(kox — wot) (5.20)

1
x— —(w; — wy)

C

1 1
=2A cos[g(kl—kg) t]cos{g(h%-kg)x— %(wl-f-wg)t}

Ak

il

Aw

: (5.21)

=24 cos( t) €oS (kX — wyyt)
where Ak = kl - kz, Aw = W) — We, kav = (kl + kz)/?, and w,, = ((1)1 5 w2)/2
We exhibited similar waves in Figure 5.13a—d, where the heavy solid line indi-
cates the resulting wave. In Figure 5.13f the blue dashed line indicates an enve-

lope which denotes the maximum displacement of the combined waves. The

FIGURE 5.14 An

idealized
wave packet localized in space
over a region Ax is the super-
position of many waves of dif-
ferent amplitudes and fre-
quencies,



168 Chapter 5 Wave Properties of Matter

Phase and group velocities

Fourier series and integral

wave still oscillates within this envelope with the wave number k,, and angular
frequency w,,. The envelope is described by the first term of Equation (5.21),
which has the wave number Ak/2 and angular frequency Aw/2. The individual
waves each move with their own phase velocity: w,/k; and w,/k,. The combined
wave has a phase velocity w,,/k,,. When combining many more than two waves,
one obtains a pulse, or wave packet, which moves at the group velocity, as will be
shown later. Only the group velocity, which describes the speed of the envelope
(ug, = Aw/Ak), is important when dealing with wave packets.

In contrast to the pulse or wave packet, the combination of only two waves is
not localized in space. However, for purposes of illustration, we can identify a
“localized region” Ax = x, — x; where x; and x, represent two consecutive
points where the envelope is zero (see Figure 5.13f). The term Ak- x/2 in Equa-
tion (5.21) must be different by a phase of 7 for the values x; and x,, because
x9 — x; represents only one half of the wavelength of the envelope confining
the wave.

1 1
EAka_ EAkxl =117

Ak(xo — x1) = Ak Ax =27 (5:22)

Similarly, for a given value of xwe can determine the time A7 over which the wave
is localized and obtain

Aw At =27 (5.23)

The results of Equations (5.22) and (5.23) can be generalized to the case where
there are many waves forming the wave packet. The equations, Ak Ax = 27 and
Aw At = 27, are significant because they tell us that in order to know precisely
the position of the wave packet envelope (Ax small), we must have a large range
of wave numbers (Ak large). Similarly, to know precisely when the wave is at a
given point (A¢ small), we must have a large range of frequencies (Aw large).
Equation (5.23) is the origin of the bandwidth relation important in electronics.
A particular circuit component must have a large bandwidth Aw in order for its
signal to respond in a short time (A¢).

If we are to treat particles as matter waves, we have to be able to describe the
particle in terms of waves. An important aspect of a particle is its localizing in
space. That is why it is so important to form the wave packet that we have been
discussing. We extend Equation (5.20) by summing over many waves with possi-
bly different wave numbers, angular frequencies, and amplitudes.

W(x, t) = ZA,— cos(k;x — w;t) (5.24)

Such a result is called a Fourier series. When dealing with a continuous spec-
trum, it may be desirable to extend Equation (5.24) to the integral form called
a Fourier integral.

W(x, 1) = [A(B) cos(hx — wi)dk (5.25)
The amplitudes A; and A (k) may be functions of k. The use of Fourier series and

Fourier integrals is at a more advanced level of mathematics than we want to pur-
sue now.* We can, however, indicate their value by one important example.

*See John D. McGervey, Iniroduction to Modern Physies, Chap. 4. Orlando, FL: Academic Press, 1983,
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Gaussian Wave Packet. Gaussian wave packets are often used to represent
the position of particles, as illustrated in Figure 5.15, because the associated in-
tegrals are relatively easy to evaluate. At a given time ¢, say ¢ = 0, a Gaussian wave
can be expressed as

W(x, 0) = (x) = Ae 2 cos(kyx) (5.26)

where Ak expresses the range of wave numbers used to form the wave packet.
The cos(k(x) term describes the wave oscillating inside the envelope described
by the (Gaussian) exponential term ¢ %", The intensity distribution { (k) for
the wave numbers leading to Equation (5.26) is shown in Figure 5.15a. There
is a high probability of a particular measurement of k being within one stan-
dard deviation of the mean value k. The function ¢(x) is shown in Fig. 5.15b.
For simplicity, let the constant A be one. There is a good probability of find-
ing the particle within the values of x =0 (¥(x) = 1) and x= Ax/2 (Y(x) =
exp(—Ak*Ax?/4)). Roughly, the value of (x) at the position x = Ax/2 is about
0.6 (see Figure 5.15b), so we have

P—Ak?i‘.xz,’4 = (0.6

We take the logarithm of both sides and find
B AR2A x?

1 ~ —0.5 or AkAx=14 (b.27)

This has been a very rough calculation, and the answer depends on the assump-
tions we have made. A more detailed calculation gives Ak Ax = 1/2. The impor-
tant point is that with the Gaussian wave packet, we have arrived at a result simi-
lar to Equation (5.22), namely, that the product Ak Ax is about unity. The
localization of the wave packet over a small region Ax to describe a particle re-
quires a large range of wave numbers; that is, Ak is large. Conversely, a small
range of wave numbers cannot produce a wave packet localized within a small
distance.

¥ (x)

Gaussian 5 J
J

(a) (b)

FIGURE 5.15 The form of the probability distribution or intensity < (k) shown in (a) is
taken to have a Gaussian shape with a standard deviation of Ak (determined when the
function exp[— (k — ky)%/20?] has k = k, + Akand Ak = o, the standard deviation). This
J(k) leads to (x), as is shown in (b). The envelope for ii(x) is described by the
exp(—Ak*x?) term with the oscillating term cos(kyx) contained by the envelope. At the
given time ¢ = 0, the wave packet (particle) is localized to the area x =~ 0 = Ax with wave
numbers k= k, = Ak.

Gaussian function

169
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Group velocity

FIGURE 5.16 Progression
with time of wave packet for
which ug = v,,/2. Note how
the individual wave (arrow and
dot alternate) moves through
the wave packet (letter X) with
time.

To complete our study of waves and the representation of particles by wave
packets, we must be convinced that the superposition of waves is actually able to
describe particles. We found earlier for the superposition of two waves that the
group velocity, u,, = Aw/Ak, represented the motion of the envelope. We can
generalize this for the case of the wave packet and will find that the wave packet
moves with the group velocity u,, given by

dw
Ugr = (5.28)
Because the wave packet consists of many wave numbers, we should remember
to evaluate this derivative at the center of the wave packet (that is, k = k).

For a de Broglie wave, we have E = hv and p = h/A. We can rewrite both of

these equations in terms of #.

E=hr=h127my) = how

h 2
P08 s i

where we have used the relations @ = 27v and k = 27/A. If we multiply the de-
nominator and numerator in Equation (5.28) by #i, we have
u - dow _ dhe) _ dE
8 dk d(hk) dp
We use the relativistic relation E? = p?¢? + m?¢* and the derivative of E to find

2F dE = 2pc? dp

or
dl pE
U, = — = __LJ(

g e i (5.29)

This is the velocity of a particle of momentum p and total energy E. Thus, it is
plausible to assume that the group velocity of the wave packet can be associated
with the velocity of a particle.

The phase velocity of a wave is represented by

Uy = AR = o (5.30)
so that @ = ku,,.
Then, the group velocity is related to the phase velocity by

dw d du,y,
Uy = — = — (v, k)=vph+k d;

B 4k dk - P"
Thus, the group velocity may be greater or less than the phase velocity. A
medium is called nondispersive when the phase velocity is the same for all fre-
quencies and u,, = v, An example is electromagnetic waves in vacuum. Water
waves are a good example of waves in a dispersive medium. When one throws a
rock in a still pond, the envelope of the waves moves more slowly than the indi-
vidual waves moving outward (see Figure 5.16).

Dispersion plays an important role in the shape of wave packets. For exam-
ple, in the case of the Gaussian wave packet shown in Figure 5.15 at ¢ = 0, the
wave packet will spread out as time progresses. A packet that is highly localized
at one time will have its waves added together in a considerably different man-
ner at another time due to the superposition of the waves.

(5.31)
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Example 5.4

Newton showed that deep-water waves have a phase velocity Now we can take the necessary derivative for Equation
of VigA/2m. Find the group velocity of such waves and dis-  (5.31).

cuss the motion. 7 d 7 1
= (& 4+ p—|Ver12|= [& &+ A o
uge = [ kdk[ gk } \/; k\/g_—[ o ]

Solution: We use Equation (5.31) to relate the group

and phase velocities, but first we need to write the phase ve- g 1 [g 1 [g 1
locity vy, in terms of k. If we use A = 27/k, we have = \/; TNody  gay 9 ek
i = B e Vo k12 The group velocity is determined to be one half of the phase
ph 2 k g % .
77 velocity. Such an effect can be observed by throwing a rock

in a still pond. As the radial waves move out, the individual
waves seem to run right through the wave crests and then
disappear (see Figure 5.16).

5.5 Waves or Particles?

By this point it is not unusual to be a little confused. We have been led to believe
that electromagnetic radiation behaves sometimes as waves (interference and
diffraction) and other times as particles (photoelectric and Compton effects).
We have been presented evidence in this chapter that particles also behave as
waves (electron diffraction). Can all this really be true? If a particle is a wave,
what is waving? In the preceding section we learned that, at least mathematically,
we could describe particles by using wave packets. Can we represent matter as
waves and particles simultaneously? And can we represent electromagnetic radi-
ation as waves and particles simultaneously? We must answer these questions of
the wave—particle duality before proceeding with our study of quantum theory. ~ Wave—particle duality

Young’s Double-Slit Experiment with Light. To better understand the dif-
ferences and similarities of waves and particles, we analyze Young's double-slit
diffraction experiment, which is studied in detail in elementary physics courses
to show the interference character of light. Figure 5.17a shows a schematic

Incident

light waves T
+ I

a ’ '
1

- I%{?—)-

FIGURE 5.17 (a) Schematic
diagram of Young’s double-slit
experiment. This experiment
is easily performed with a laser
as the light source (£ >>4,
where d = slit distance). (b)
The solid line indicates the in-
terference pattern due to both
slits. If either of the slits is cov-
ered, singleslit diffraction
gives the result shown in the
(b) dashed curve.

Screen
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FIGURE 5.18 Computer sim-
ulation of Young's double-slit
interference experiment for
light or electrons. This calcula-
tion was performed for a (slit
width) = 4A, and d (slit dis-
tance) = 20A. The four pic-
tures are for increasing num-
ber of counts: 20, 100, 500,
4000. The pat-
tern clearly has emerged for
500 counts. Simulation and photos
courtesy of Julian V. Noble.

interference

FIGURE 5.19 Demonstration
of electron interference using

two slits similar in concept
to Young's double-slit experi-
ment for light. This result by
Claus Jonsson clearly shows
that electrons exhibit wave be-
havior (see also Example 5.5).
Reprinted with permission -from C.
Jonsson, American Journal of Physics,
42, 4 (1974). © 1974 American Asso-

ciation of Physics.

(a) 20 counts

ok

<5
.
W
e
[ 4

(c) 500 counts (d) ~4000 counts

diagram of the experiment. This experiment is easily performed with the use of
a low-power laser. With both slits open, a nice interference pattern is observed,
with bands of maxima and minima. When one of the slits is covered, this inter-
ference pattern is changed, and a rather broad peak is observed. Thus, we con-
clude that the double=slit interference pattern is due to light passing through
both slits—a wave phenomenon (see Figure 5.17b).

However, if the light intensity is reduced, and we observe the pattern on a
screen, we learn that the light arriving on the screen produces flashes at various
points, entirely representative of particle behavior! If we take pictures of the

screen after varying lengths of time, the pictures will look like those shown in Fig-
ure 5.18. Eventually the interference pattern characteristic of wave behavior
emerges. There is therefore no contradiction in this experiment. If we want to
know the precise location of the light (photon), we must use the particle de-
scription and not the wave description.

Electron Double-Slit Experiment. Now let us examine a similar double-slit ex-
periment that uses electrons rather than light. If matter also behaves as waves,
should not the same experimental results be obtained if we use electrons rather
than light? The answer is yes, and physicists did not doubt the eventual result.
This experiment is not as easy to perform as the similar one with light. The dif-
ficulty arises in constructing slits narrow enough to exhibit wave phenomena.
This requires A ~ a, where a is the slit width. For light of A = 600 nm, slits can
be produced mechanically. However, for electrons of energy 50 keV, A =5 X
107% nm, which is smaller than a hydrogen atom (~0.1 nm). Nevertheless,
C. Jonsson* of Tubingen, Germany, succeeded in 1961 in showing double-slit
interference effects for electrons (Figure 5.19) by constructing very narrow slits
and using relatively large distances between the slits and the observation screen.
Copper slits were made by electrolytically depositing copper on a polymer strip
printed on silvered glass plates. This experiment demonstrated that precisely the
same behavior occurs for both light (waves) and electrons (particles). We have
seen similar behavior previously from the Debye-Scherrer rings produced by the
diffraction of x rays (waves) and electrons (particles).

*C. Jonsson, Am. J. Phys. 42, 4 (1974), translation of Zeitschrift f. Physik 161, 454 (1961).



Example 5.5

In the experiment by Jonsson, 50-keV electrons impinged
on slits of width 500 nm separated by a distance of 2000 nm.
The observation screen was located 350 mm beyond the
slits. What was the distance between the first two maxima?

Solution: The equation specifying the orders of max-
ima and the angle 6 from incidence is (see Figure 5.17)
(5.32)

The order n=0 has #=0, and the next maximum,
n=1,1s

dsin 0 = nA

N S
MY T4 T 2000 nm

We have already calculated the wavelength for electrons of
energy ¢V}, in Equation (5.7).

_ 1.226 nm-V12
VB0 X 103V

Because 50 keV may be too high an energy for a nonrela-
tivistic calculation such as that done in Equation (5.7), we
had better perform a relativistic calculation to be certain.
We first find the momentum and insert that into A = A/p.

=5.48 X 107% nm

(p)? = B2 = By = (K+ Eg)? — Ey?
= (50 X 10% eV + 0.511 X 10% eV)2 —
(0.511 X 10% eV)2 = (0.231 X 10° eV)2
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Now we can determine the wavelength.
h _ he _
p  pe

Therefore, we find the more accurate relativistic value to be

somewhat less (2%) than the nonrelativistic value. Now we
can determine the angle.

5.36 X 1073 nm
2000 nm

1240 eV nm

N ——
0.231 X 10° eV

=5.36 X 1073 nm

sin 6 = =2.68 X 107°
The distance of the first maximum along the screen is y =
{ tan 6, but for such a small angle, sin@ = tan 6.

y=+¢tan 6= £ sin § = 350 mm(2.68 X 10-9)

106
=0.38 X 10~* mm ———= = 938 nm

mm

Such a diffraction pattern is too small to be viewed by eye.
Jonsson magnified the pattern by a series of electronic
lenses and then observed a fluorescent screen with a ten-
power optical microscope.

Another Gedanken Experiment. If we were to cover one of the slits in the pre-
ceding Jonsson experiment, the double-slit interference pattern would be de-
stroyed—just as it was when light was used. But our experience tells us the elec-
tron is a particle, and we know that it can go through only one of the slits. Let’s
devise a gedanken experiment, shown in Figure 5.20, to determine which slit the
electron went through. We set up a light shining on the double slit and use a
powerful microscope to look at the region. After the electron passes through

one of the slits, light bounces off the electron; we observe the light, so we know

which slit the electron came through.

Screen

Which slit does the
electron pass through?

FIGURE 5.20 An attempt to
measure which slit an electron
passes through in the double-
slit experiment. A powerful
light source scatters a photon
from the electron, and the
scattered photon is observed.
The motion of the electron is
affected.
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Principle of
complementarity

Physical observables

Solution of wave—particle
duality

In order to do this experiment, we need to use light having wavelength nar-
rower than the slit separation d, in order to determine which slit the electron
went through. We use a subscript ph to denote variables for light (photon).
Therefore, we have A,;, < d. The momentum of the photon is

ps h % h
p=—
B A'ph d
For us to show the interference effects for the electrons passing through the slits,
the electrons must also have a wavelength on the order of the slit separation d,
A ~ d. The momentum of the electrons will be on the order of
R h
f)cl T g

Adl d

The difficulty is that the momentum of the light photons used to determine
which slit the electron went through is sufficiently great to strongly modify the
momentum of the electron itself, thus changing the direction of the electron!
The interference pattern on the screen will be changed just by requiring us to
know which slit the electron went through. We will take a closer look at this ex-
periment in Section 5.7. In trying to determine which slit the electron went
through, we are examining the particlelike behavior of the electron. When we
are examining the interference pattern of the electron, we are using the wave-
like behavior of the electron.

Bohr resolved this dilemma by pointing out that the particlelike and wave-
like aspects of nature are complementary. Both are needed—they just can’t be ob-
served simultaneously.

Bohr’s principle of complementarity: I is not possible to simultaneously de-
seribe physical observables in terms of both particles and waves.

Physical observables are those quantities such as position, velocity, momentum,
and energy that can be experimentally measured. In any given instance we must
use either the particle description or the wave description. Usually the choice is
clear. The interference pattern of the double-slit experiment suggests that the
light (or electron) had to go through both slits, and we must use the wave de-
scription. In our description of nature, we cannot describe phenomena by dis-
playing both particle and wave behavior at the same time.

By the use of the principle of complementarity, we can solve the wave-
particle duality problem, which has been plaguing us. It is not unusual for stu-
dents to feel uncomfortable with this solution, because it cannot be directly
proven. However, as a “principle” and not a “law,” the complementarity princi-
ple does seem to describe nature, and, as such, we use it. We must pay close at-
tention to the fact that we do not use waves and particles simultaneously to de-
scribe a particular phenomenon. Experiments dictate what actually happens in
nature, and we must draw up a set of rules to describe our observations. These
rules naturally lead to a probability interpretation of experimental observations.
If we set up a series of small detectors along the screen in the electron double-
slit experiment, we can speak of the probability of the electron being detected
by one of the detectors. The interference pattern can guide us in our probabil-
ity determinations. But once the electron has been registered by one of the de-
tectors, the probability of its being seen in the other detectors is zero. Matter and
radiation propagation is described by wavelike behavior, but matter and radia-
ton interact (that is, creation/annihilation or detection) as particles.
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5.6 Relationship Between Probability
and Wave Function

We learned in elementary physics that the instantaneous wave intensity of elec-
tromagnetic radiation (light) is €,cE? where Eis the electric field. Thus the prob-
ability of observing light is proportional to the square of the electric field. In the
double-slit light experiment we can be assured that the electric field of the light
wave is relatively large at the bright spots on the screen and small in the region
of the dark places.

If Young’s double-slit experiment is performed with very low intensity levels
of light, individual flashes can be seen on the observing screen. We show a sim-
ulation of the experiment in Figure 5.18. After only 20 flashes (Figure 5.18a) we
cannot make any prediction as to the eventual pattern. But we still know that the
probability of observing a tlash is proportional to the square of the electric field.
In elementary physics we calculate this result. If the distance from the central
ray along the screen we are observing in an experiment like that depicted in Fig-
ure 5.17a is denoted by y, the probability for the photon to be found between y
and y + dyis proportional to the intensity of the wave (E?) times dy. For Young’s
double-slit experiment, the value of the electric field E produced by the two in-
terfering waves is large where the flash is likely to be observed and small where
itis not likely to be seen. By counting the number of flashes we relate the energy
flux I (called the intensity) of the light to the number flux, N per unit area
per unit time, of photons having energy Av. In the wave description, we have
[ = €yc(E?) (where Eis the electric field), and in what appears to be the particle
description, I = NAv. The flux of photons N, or the probability P of observing
the photons, is proportional to the average value of the square of the electric
field (E?).

How can we interpret the probability of finding the electron in the wave de- .

scription? First, let’s remember that the localization of a wave can be accom-
plished by using a wave packet. We used a function W (x, t) to denote the super-
position of many waves to describe the wave packet. We call this function W (x, ¢)
the wave function. In the case of light, we know that the electric field E and mag-
netic field B satisfy a wave equation. In electrodynamics either E or B serves as
the wave function W. For particles (say electrons) a similar behavior occurs. In
this case the wave function W(x, ) determines the probability, just as the flux of
photons N arriving at the screen and the (electric field) E determined the prob-
ability in the case of light.

For matter waves having a de Broglie wavelength, it is the wave function W
that determines the likelihood (or probability) of finding a particle at a par-
ticular position in space at a given time.The value of the wave function ¥ has
no physical significance itself, and as we will learn later, it can have a complex
value. The quantity |W|? is called the probability density and represents the
probability of finding the particle in a given unit volume and at a given instant
of time.

In general, W (x, y, z, t) is a complex quantity and depends on the spatial co-
ordinates x, y, and z as well as time ¢. The complex nature will be of no concern
to us: we use W times its complex conjugate W* when finding probabilities. We
are only interested here in a single dimension y along the observing screen and
for a given time t. In this case W*W dy = |‘P|2dy is the probability of observing an
electron in the interval between y and y + dy at a given time, and we call this
P(y)dy.

P(y)dy = [W(y, t)|2dy (5.33)

Wave function

The wave function: waves
for matter

Probability density
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Because the electron has to have a probability of unity of being observed
somewhere along the screen, we integrate the probability density over all space by
Normalization integrating over y from — to %. This process is called normalization.

[ P(y)dy= | Wiy oy =1 (5.34)

The probability interpretation of the wave function was first proposed in
1926 by Max Born (Nobel Prize, 1954), one of the founders of the quantum the-
ory. The determination of the wave function W(x, ¢) will be discussed in much
more detail in the next chapter.

The use of wave functions ¥ (x, y, z, ¢) rather than the classical positions x(1),
y(2), z(t) represents a clean break between classical and modern physics. In or-
der to be useful in determining values of physical observables like position, mo-

mentum, and energy, a set of rules and procedures has been developed (see
Section 6.2).

Example 5.6

Consider a particle of mass m trapped in a one-dimensional
box of width €. Calculate the possible energies of the parti-
cle. What is the most probable location of the particle in the
state with the lowest energy at a given time, say ¢ = 0, so that
Wi(x, 0) = (x)?

Solution: Let us treat the particle as a sinusoidal wave.
The particle cannot physically be outside the confines of the
box, so the amplitude of the wave motion must vanish at the
walls and outside the box. In the language of the wave func-
tion, its probability of being outside is zero, so the wave
function must vanish outside. The wave function should be
continuous, and the probability distribution can have only
one value at each point in the box. Several possible waves
are shown in Figure 5.21. An integral number of half wave-
lengths A/2 must fit into the box, so

i ={ or An=%
2 n

= 1.2 5. (5.35)
The possible wavelengths are quantized, and the wave shapes
will have sin(nwx/€) terms. If we treat the problem nonrel-
ativistically and assume there is no potential energy, the en-
ergy £ of the particle is

p? hﬂ

]
|, = E‘ = — 2 - L_ = R
e 9 ™" T o  omaZ

iIf we insert the values for A,, we have
h:z,nz hQ

E =———= 2
" 2m(4€2)

=1,2,8,... (536
AT KhBE)
Therefore, the possible energies of the particle are quan-
tized, and the lowest energy E, = h?/8m{?. Each of these
possible energies is called an energy level.

The probability of observing the particle between xand
x + dx in each state is P,dx = |i,(x)|2dx. Notice that E, = 0
is not a possible state, because n = 0 corresponds to s, = 0.
The lowest energy level is, therefore E, and P, = ltifl(x)|2,
shown in Figure 5.21. The most probable location for the
particle in the lowest energy state is in the middle of
the box.

FIGURE 5.21 Possible ways of fitting waves into a one-
dimensional box of length €. The left side shows the wave
functions for the four lowest energy values. The right side
shows the corresponding probability distributions.
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The previous example is an important one. It is our first application of quan-
tum theory using waves. Notice how the quantization of energy arises from the
need to fit a whole number of half-waves into the box, and how we obtained
the corresponding probability densities of each of the states. We reintroduced
the concept of energy levels, first discussed in the Bohr model. The procedure
followed in the example is the same as finding the allowed modes of standing
waves inside the box. We can use all the results that we learned about waves in el-
ementary physics.

5.7 Uncertainty Principle

In Section 5.4, when we discussed the superposition of waves, we learned that
in order to localize a wave packet over a small region Ax, we had to use a
large range, Ak, of wave numbers. For the case of two waves we found in Equa-
tion (5.22) that Ak Ax = 2. If we examine a Gaussian wave packet closely, we
would find that the product Ak Ax = 1/2. The minimum value of the product
Ak Axis obtained when Gaussian wave packets are used.

In Section 5.4 we learned that it is impossible to measure simultaneously,
with no uncertainty, the precise values of k£ and x for the same particle. The wave
number £ may be rewritten as

C C 2
A h/p h f
and
A
Ak = L= (5.38)
f
so that, in the case of the Gaussian wave packet,
A
Ak Ax = TPAXZ 1/2
2
or
ApAx=h/2 (5.39)

for Gaussian wave packets.

The relationship in Equation (5.39) was first enunciated in 1927 by the
German physicist Werner Heisenberg, who won the Nobel Prize in 1932. This
uncertainty also applies in all three dimensions, so we should put a subscript on
Ap to indicate the x direction Ap,. Heisenberg’s uncertainty principle can there-
fore be written

Ap. Ax=1h/2 (5.40)
which establishes limits on the simultaneous knowledge of the values of p, and
x* The limits on Ap, and Ax represent the lowest possible limits on the uncer-
tainties in knowing the values of p, and x, no matter how good an experimental

measurement is made. It is possible to have a greater uncertainty in the values of

p.and x, but it is not possible to know them better than allowed by the uncer-
tainty principle. The uncertainty principle does not apply to the products of Ap,

*In some representations of the uncertainty principle, the factor 9 is absent. Our form represents
the lower limit.

177

Werner

Heisenberg (1901-
1976) was born in Germany
where he spent his entire ca-
reer at various universities in-
cluding Munich, Leipzig, and
Berlin where he was appointed
director of the Kaiser Wilhelm
Institute in 1942, the highest
scientific position in Germany.
After World War II Heisenberg
spent much of his effort to-
wards supporting research and
opportunities for young physi-
cists as well as speaking out
against the atom bomb. AIP
Emilio Segré Visual Archives.

Heisenberg uncertainty
principle for p, and x
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and A x or to that of Ap, and Az. The value of Ap,Ax can be zero. Equation (5.40)
is true not only for specific waves such as water or sound, but for matter waves as
well. It is a consequence of the de Broglie wavelength of matter. If we want to
know the position of a particle very accurately, then we must accept a large un-
certainty in the momentum of the particle. Similarly, if want to know the precise
value of a particle’s momentum, it is not possible to specify the particle’s location
very precisely. The uncertainty principle represents another sharp digression
with classical physics, where it is assumed that it is possible to simultaneously
specify precisely both the particle’s position and momentum. Because of the
small value of 7, the uncertainty principle becomes important only on the atomic
level as the following example shows.

Example 5.7 . L o i 1 _; *

Calculate the momentum uncertainty of (a) a tennis ball
constrained to be in a fence enclosure of length 35 m sur-
rounding the court, and (b) an electron within the smallest
radius of a hydrogen atom.

Solution: (a) If we insert the uncertainty of the loca-
tion of the tennis ball, Ax = 35 m, into Equation (5.39), we
have

—34 T
npm L A _ 105X 107%4]s

9 Ax 92(35 m)

=15 %1073 kg-m/s

We will have no problem specifying the momentum of the
tennis ball!

(b) The diameter of the hydrogen atom in its lowest energy
state (smallest radius) is 2a,. Let the uncertainty in x be
equal to the radius, Ax = g, (even if we let Ax = 24, the
conclusions are valid).

Ax=a,=0.53X107""m

o 105 X107*]-s
Ax  2(0.53 X 10710 m)

1
Ap= —
b 2

=099 X 1072 kg-m/s

It is likely that the momentum of the electron is at least as
big as its uncertainty, so we let p = (Ap) i, and calculate the
electron’s minimum kinetic energy from p*/2m.

KE. = ﬁ _ (AP)?nin o (099 X 10“24 kg'm/s)2
" 2m 2m (2)(9.11 X 10731 kg)
leV
=54Xx 1079 ———— | =3s.
: J(I.BX]O‘“’j) Ay

Remember that the binding energy of the electron in the
hydrogen atom is 13.6 ¢V, so that on the atomic scale, the
uncertainties can be large percentages of typical values
themselves. Similarly, from the value of Ap determined
above, we calculate

% _ 099 X 10"**kg-m/s
m 9.1 X 1073 kg

=1.1 X 10°m/s = 0.0036¢

In Chapter 4 we found v = 2.2 X 10° m/s = 0.0073¢ for this
state, so the uncertainty in the velocity is about 50%.

Av=

Equation (5.40) is not the only form of the uncertainty principle. We can

find another form by using Equation (5.23) from our study of wave motion.
When we superimposed two waves to form a wave packet we found Aw At = 2.
If we evaluate this same product using Gaussian packets, we will find

1
AwAt= £y (5.41)

just as we did for the product Ak Ax. A relationship like this is easy to understand.
If we are to localize a wave packet in a small time A¢ (instead of over an infinite
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time as for a single wave), we must include the frequencies of many waves in
order to have them cancel everywhere but over the time interval At. Because
E = hv, we have for each wave,

AE= ]iAV:ﬁ.E =hAw
21

therefore _
AE AE 1

h and AwAt:?Atz-g

We can therefore obtain another form of Heisenberg’s uncertainty principle:

fi
AEAt= —
2

(5.42)

There are other conjugate variables similar to p and x in Equation (5.40) that also
form uncertainty principle relations. These variables include the angular mo-
mentum £ and angle 6, for example, as well as the rotational inertia /and angu-
lar velocity w. Similar uncertainty relations can be written for them.

We once again must emphasize that the uncertainties expressed in Equa-
tions (5.40) and (5.42) are intrinsic. They are not due to our inability to measure
more precisely. No matter how well we can measure, no matter how accurate an
instrument we build, and no matter how long we measure, we can never do any
better than the uncertainty principle allows. Many people, including Einstein,
have tried to think of situations in which it is violated, but they have not suc-
ceeded. At the 1927 Solvay conference Bohr and Einstein had several discussions
about the uncertainty principle. Every morning at breakfast Einstein would pre-
sent a new gedanken experiment that would challenge the uncertainty principle.
In his caretul, deliberate manner, Bohr would refute each objection. Eventually
Einstein conceded—he could not provide a valid example of contradiction.
These discussions continued off and on into the 1930s, because Einstein had dif-
ficulty accepting the idea that the quantum theory could give a complete de-
scription of physical phenomena. He believed the quantum theory could give a
statistical description of a collection of particles but could not describe the mo-
tion of a single particle. Einstein presented several paradoxes to support his
ideas. Bohr was able to analyze each paradox and present a reasonable answer.
Bohr stressed his complementarity principle, which precludes a simultaneous ex-
planation in terms of waves and particles, as well as Heisenberg’s uncertainty
principle, which surprisingly does allow small violations of the conservation laws
of energy and momentum.

It may seem paradoxical that energy conservation is violated in quantum
physics, but no paradox is involved because the energy violation AE cannot be
detected by any experiment. Suppose that one wishes to observe a deviation
from exact energy conservation by an amount AL, The uncertainty principle re-
quires that the time during which this violation takes place is on the order of
At = h/2AE. To observe a time interval this short, we need a clock ticking at in-
tervals less than A¢, that is, a train of pulses of frequency » = 1/At But the
quanta in this wave train have energies £ = hv = h/At = 47wAE, so the wave
quanta have plenty of energy to disturb the system by at least the energy AE. Any
attempt to measure AL must disturb the system by at least as much as the un-
certainty AL,

Heisenberg uncertainty
principle for energy and
time

Bohr and Einstein
discussions
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FIGURE 5.22 Niels Bohr’s coat
of arms was designed in 1947
when he was awarded the Dan-
ish Order of the Elephant. This
award was normally given only
to royalty and foreign pres-
idents. Bohr chose the Chi-
nese yin-yang symbol because
it stands for the two opposing
but inseparable elements of
nature. The translation of the
Latin motto is “Opposites are
complementary.” It was hung
near the king's coat of arms in
the church of Frederiksborg
Castle at Hillerod. AIP Niels Bohr
Library. Margarethe Bohr Collection.

Example 5.8

localized within a typical nuclear radius of 6 X 10

Solution:

is that due to the uncertainty principle with an uncertainty

Let’s return to the previous discussion of determining which slit an electron
passes through in the double-slit experiment (see Figure 5.20). We again shine
light on the electrons passing through the slits and look with a powerful micro-
scope. This time we will use the uncertainty principle and make a more detailed
calculation. The light photons bounce off the electron as it passes through one
of the slits and scatter into the microscope where we observe them. We must be
able to locate the electron’s position in y to at least within Ay < d/2 (where d is
the distance between the two slits) in order to know which slit the electron went
through. If the position of the electron is uncertain to less than d/2, then ac-
cording to the uncertainty principle, the electron’s momentum must be uncer-
tain to at least Ap, > fi/d. Just by scattering photons off the electrons in order
to know which slit the electron went through, we introduce an uncertainty in
the electron’s momentum. This uncertainty has been caused by the measure-
ment itself.

Consider an electron originally moving in a particular direction; let us
choose 6 = 0 for convenience. By scattering the photon we now have an uncer-
tainty in the angle € due to the “kick” given the electron by the photon in the
measurement process. The uncertainty in the electron’s angle due to a possible
momentum change along the yaxis is A6 = Ap, /p, but because p = h/A, we have

Apy,  (Ap)A (A A
» h dh 2wd

AG =

According to Equation (5.32) the first interference maximum will be at sin 6 =
A/ d and the first minimum at sin # = A/2d. For small angle scattering, sin 6 = 6,
and the angle of the first minimum is 6,,;, = A/2d. Note that the position of the
first minimum is on the same order as our llI'l(_‘t?l'taiI'lt}’ in A0, so the interference
pattern is washed out. If we insist on identifying the electrons as particles and
knowing which slit the electrons pass through, the wave characteristics of the
electron disappear. We cannot simultaneously treat the electron as both a part-
cle and a wave.

This limitation seems to be a fundamental characteristic of the laws of na-
ture. Only the smallness of Planck’s constant 4 keeps us from encountering this
limitation in everyday life. Niels Bohr tried to turn this limitation into a philo-
sophical principle. When he was awarded the Danish Order of the Elephant he
put on his coat of arms (see Figure 5.22) the Chinese yin-yang symbol, which
stands for the two opposing but inseparable elements in nature. The Latin motto
on the center of the coat of arms means “Opposites are Complementary.”

Calculate the minimum kinetic energy of an electron that is Ax=r=6x10"%m
15 o
m. . i
. h 6.58 X 10716 eV-s
Ap = -
g 2 ! 2Ax 1.2 X 107 m
Let’s assume the minimum electron energy
. oo 3% 108 m/s
=548 X107 % eV s/m———

Ax equal to the radius (Ax= *7).

¢

v

1.64 X 107 eV/c



Let's now assume that the momentum p is at least as large as
the uncertainty in p.

p=Ap=1.64 X 107 eV/c

Because we don’t yet know the electron’s energy, let’s be
careful and calculate it relativistically.

E?2 = (po)? + Ey?
vV ‘
- [(1.64 % 107 %H + (0.511 MeV)?2

= (16.4 MeV)? + (0.511 MeV)?

Example 5.9

Summary 181

E=16.4 MeV
KE. =E— E; =164 MeV — 0.51 MeV
= 15.9 MeV

Note that because K.E. > E, a relativistic calculation was ac-
tually needed. This value of K.E. is larger than that observed
for electrons emitted from nuclei in beta decay. We must
conclude that electrons cannot be confined within the nu-
cleus. Electrons emitted from the nucleus (during beta de-
cay) must actually be created when they are emitted.

An atom in an excited state normally remains in that state
for a very short time (—~107% s) before emitting a photon
and returning to a lower energy state. The “lifetime” of the
excited state can be regarded as an uncertainty in the time
Atassociated with a measurement of the energy of the state.
This, in turn, implies an “energy width,” namely, the corre-
sponding energy uncertainty AE. Calculate the characteris-
tic “energy width” of such a state.

Because AEAt=1/2

Al 658X 1071 eV-3
2At (2) (1078 s)

Solution:

AE = =33 % 1078 eV

This is a very small energy, but many excited energy states
have such energy widths. For stable ground states, 7= o,
and AE = 0. For excited states in the nucleus, the lifetimes
can be as short as 1072% s (or shorter) with energy widths of
100 keV (or more).

Max von Laue suggested the scattering of x rays from mat-
ter, thereby firmly establishing the wave nature of x rays and
the lattice structure of crystals. W. H. Bragg and W. L. Bragg
exploited the wave behavior of x rays by utilizing x-ray scat-
tering to determine the spacing d between crystal planes ac-
cording to Bragg’s law

nA = 2dsin 6 (5.1)

In an important conceptual leap, de Broglie suggested
that particles might also exhibit wave properties, with a
wavelength A determined by their momentum

h ;

A= ; de Broglie wavelength (5.2)

Davisson and Germer, and G. P. Thomson independently,

demonstrated the wave characteristics of particles by dif-
fracting low-energy electrons from crystals.

Particles may be described using waves by representing
them as wave packets, the superposition of many waves of
different amplitudes and frequencies. The group velocity
Uy, = dw/dk represents the speed of the particle described
by the wave packet.

Niels Bohr proposed a principle of complementarity,
stating that it is not possible to describe physical behavior si-
multaneously in terms of both particles and waves. We must
use either one form of description or the other. This princi-
ple avoids the conceptual wave—particle duality problem by
precluding a simultaneous description of experiments by
both wave and particle behavior.

We describe particles exhibiting wave behavior by using
wave functions ¥, which in general may be complex-valued
functions of space and time. The probability of observing a
particle between xand x + dx at time #is I‘I’(x, t) |2dx.

Werner Heisenberg pointed out that it is not possible to
krniow simultaneously both the exact momentum and posi-
tion of a particle or to know its precise energy at a precise
time. These relationships

Ap. Ax=H/2
AEAt=Hh/2

(5.40)
(5.42)

are called Heisenberg’s uncertainty principle and are consistent
with Bohr’s complementarity principle. No experiment, re-
gardless of how clever, can measure p, x, E, and ¢ better than
the uncertainties expressed in Equations (5.40) and (5.42).
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| Problems

In 1900 did it seem clear that x rays were electromag-
netic radiation? Give reasons why you think so. Was it
important to perform further experiments to verify
the characteristics of x rays?

In the early 1900s it was found that x rays were more
difficult to refract or diffract than visible light. Why
did this lead researchers to suppose that the wave-
lengths of x rays were shorter rather than longer than
those of light?

What determines whether a given photon is an x ray?
Could an x ray have a wavelength longer than ultravi-
olet light?

For a single crystal, transmission x-ray scattering will
produce dots. However, if there are randomly ori-
ented crystals, as in powder, concentric rings appear.
Explain the difference qualitatively.

How many particles can you think of that might be
shown experimentally to exhibit wavelike properties?
List at least three and discuss possible experiments.
Why are neutrons more widely used than protons for
studying crystal structure? What about using a hydro-
gen atom?

Why is it important to use “cold” neutrons for study-
ing crystal structure? How could one obtain “cold”
neutrons?

Are the following phenomena wave or particle behav-
lors? Give your reasoning (a) television picture, (b)
rainbows on a rainy day, (c) football sailing through

e

5.1 X-Ray Scattering

1.

X rays scattered from a crystal have a first-order dif-
fraction peak at 6 = 15°. At what angle will the sec-
ond- and third-order peaks appear?

X rays of wavelength 0.16 nm are scattered from NaCl.
What is the angular separation between first- and
second-order diffraction peaks? Assume scattering
planes that are parallel to the surface.

Potassium chloride is a crystal with lattice spacing of
0.314 nm. The first peak for Bragg diffraction occurs
at 14°. What energy x rays were diffracted? What other
order peaks can be observed (6 = 90°)?

A cubic crystal with interatomic spacing of 0.24 nm is
used to select y rays of energy 100 keV from a ra-
dioactive source containing a continuum of energies.
If the incident beam is normal to the crystal, at what
angle do the 100-keV vy rays appear?

e s e e e T T S

10.

11.

12.

13.

14.

15.

16.

goal posts, (d) telescope observing the moon, (e) po-
lice radar.

The experiment by Jénsson that showed the wavelike
properties of electrons passing through a double slit is
considered a pedagogically interesting experiment
but not a landmark experiment. Why do you suppose
this is true?

Can you think of an experiment other than those
mentioned in this chapter that might show the wave-
like properties of particles? Discuss it.

Why doesn’t the uncertainty principle restriction ap-
ply between the variables p, and x?

How does the uncertainty principle apply to a known
stable atomic system that apparently has an infinite
lifetime? How well can we know the energy of such a
system?

According to the uncertainty principle, can a particle
having a kinetic energy of exactly zero be confined
somewhere in a box of length €? Explain.

What is similar about the conjugate variable pairs
(p.x), (E, 1), (L, 8), and (/, w)?

What are the dimensions of the wave function ¥ (x, t)
that describes matter waves? Give your reasoning.
Soon after their discovery, Davisson and Germer were
using their experimental technique to point out new
crystal structures of nickel. Do you think they were jus-
tified? Explain how you think their results allowed
them to make such statements.

De Broglie Waves

Calculate the de Broglie wavelength of a 3.0 kg rock
thrown with a speed of 6 m/s into a pond. Is this wave-
length similar to that of the water waves produced?
Explain.

Calculate the de Broglie wavelength of a nitrogen
molecule in the atmosphere on a hot summer day
(35°C). Compare this with the diameter (less than
1 nm) of the molecule.

Work out Example 5.2b strictly using SI units of m, ],
kg, and so on, and compare with the method of the
example using eV units,

Assume that the total energy E of an electron greatly
exceeds its rest energy. If a photon has a wavelength
equal to the de Broglie wavelength of the electron,
what is the photon’s energy? What if £ = 2k for the
electron?

S
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9.

10.

11.

12.

13,

14.

15.

16.

9.3
17.

18.

20.

5.4
21.

Determine the de Broglie wavelength of a particle of
mass m and kinetic energy K Do this for both (a) a
relativistic and (b) a nonrelativistic particle.

The Stanford Linear Accelerator can accelerate elec-
trons to an energy of 50 GeV. What is the de Broglie
wavelength of these electrons? What fraction of a pro-
ton’s diameter (d ~ 2 X 1071 m) can such a particle
probe?

Find the kinetic energy of (a) photons, (b) electrons,
(c) neutrons, and (d) a particles that have a de
Broglie wavelength of 0.15 nm.

Find the de Broglie wavelength of neutrons in equi-
librium at the temperatures (a) 10 Kand (b) 0.1 K.
An electron initially at rest is accelerated across a po-
tential difference of 3 kV. What are its wavelength,
momentum, kinetic energy, and total energy?

What is the wavelength of an electron with Kinetic en-
ergy (a) 40 eV, (b) 400 eV, (c) 4 keV, (d) 40 keV,
(e) 0.4 MeV, and (f) 4 MeV? Which of these energies
are most suited for study of the NaCl crystal structure?
Calculate the de Broglie wavelength of (a) an oxygen
(Oy) molecule darting around the room at 480 m/s,
(b) a bacterium of mass 1.5 X 107'® kg moving at a
speed of 107 m/s.

What is the de Broglie wavelength of the 1 TeV pro-
tons accelerated in the Fermi National Laboratory
Tevatron accelerator?

Electron Scattering

In an electron-scattering experiment an intense re-
flected beam is found at ¢ = 32° for a crystal with an
interatomic distance of 0.23 nm. What is the lattice
spacing of the planes responsible for the scattering?
Assuming first-order diffraction, what are the wave-
length, momentum, kinetic energy, and total energy
of the incident electrons?

Davisson and Germer performed their experiment
with a nickel target for several energies. At what an-
gles would they find diffraction maxima for 48-eV and
64-eV electrons?

. A beam of 2-keV electrons incident on a crystal is re-

fracted and observed (by transmission) on a screen
35 cm away. The radii of three concentric rings on the
screen, all corresponding to first-order diffraction, are
2.1 cm, 2.3 cm, and 3.2 cm. What is the lattice-plane
spacing corresponding to each of the three rings?

A beam of thermal neutrons (K.E. = 0.025 €V) scat-
ters from a crystal with interatomic spacing 0.45 nm.
What is the angle of the first-order Bragg peak?

Wave Motion

A wave, propagating along the x direction according
to Equation (5.11), has a maximum displacement of
3 cm at x = 0 and ¢ = 0. The wavespeed is 4 cm/s, and
the wavelength is 7 cm. (a) What is the frequency?
(b) What is the wave’s amplitude at x = 10 cm and
t=13s?
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Problems 183

A wave of wavelength 4 cm has a wavespeed of 4 cm/s.
What is its (a) frequency (b) period (c) wave number
and (d) angular frequency?

Two waves are traveling simultaneously down a long
slinky. They can be represented by ¥, (x, t) = 0.003
sin(6.0x — 300¢) and Wy (x, t) = 0.003 sin(7.0x — 250¢).
Distances are measured in meters and time in seconds.
(a) Write the expression for the resulting wave. (b)
What are the phase and group velocities? (c) What is
Axbetween two adjacent zeros of W? (d) Whatis Ak Ax?
A wave packet describes a particle having momentum
p = mv. Show that the group velocity is B¢ and the
phase velocity is ¢/B (where B = v/c). How can the
phase velocity physically be greater than ¢?

For waves in shallow water the phase velocity is about
equal to the group velocity. What is the dependence
of the phase velocity on the wavelength?

Find the group and phase velocities of 8-MeV protons
and 8-MeV electrons (see Problem 24).

Use Equation (5.25) with ﬁ(k) = A, for the range of
k= ko — Ak/2 to ko + Ak/2 and A(k) = 0 elsewhere
to determine W(x, 0), that is, at = 0. Sketch the en-
velope term, the oscillating term, and [W (x, 0)[2. What
is approximately the width Ax over the full-width—
half-maximum part ofl‘I’(x, 0)|2? What is the value of
Ak Ax?

Show using Equation (5.29) that u,, correctly repre-
sents the velocity of the particle both relativistically
and classically.

Waves or Particles?

Light of intensity d, passes through two sets of appa-
ratus. One contains one slit and the other two slits.
The slits have the same width. What is the ratio of the
outgoing intensity amplitude for the central peak for
the two-slit case compared to the single slit?

Design a double-slit electron-scattering experiment us-
ing 1-keV electrons that will provide the first maximum
at an angle of 1°. What will be the slit separation d*
You want to design an experiment similar to the one
done by Jonsson that does not require magnification
of the interference pattern in order to be seen. Let
the two slits be separated by 2000 nm. Assume that
you can discriminate visually between maxima that
are as little as 0.3 mm apart. You have at your disposal
a lab that allows the screen to be placed 80 cm away
from the slits. What energy electrons will you require?
Do you think such low-energy electrons will represent
a problem? Explain.

Relationship Between Probability

and Wave Function

The wave function of a particle in a one-dimensional
box of length Lis W(x) = A sin (7x/L). If we know
the particle must be somewhere in the box, what must
be the value of A?
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A particle in a one-dimensional box of length L has
a kinetic energy much greater than its rest energy.
What is the ratio of the energy levels E,: Eq/E,,
Es/E,, E,/E? How do you explain this result?

Write down the normalized wave functions for the
first three energy levels in Example 5.6. Assume there
are equal probabilities of being in each state.

Uncertainty Principle

A neutron is confined in a deuterium nucleus (deu-
teron) of diameter =2 X 107! m. Use the energy-
level calculation of a one-dimensional box to calculate
the neutron’s minimum kinetic energy. What is the
neutron’s minimum kinetic energy according to the
uncertainty principle?

What is the ratio uncertainty of the velocities (Av/v)
of (a) an electron and (b) a proton confined to a one-
dimensional box of length 2 nm?

Show that the uncertainty principle can be expressed
in the form AL A6 = #/2, where 0 is the angle and
L the angular momentum. For what uncertainty in
L will the angular position of a particle be completely
undetermined?

Some physics theories indicate that the lifetime of the
proton is about 10*° years. What would such a predic-
tion say about the energy of the proton?

What is the bandwidth Aw of an amplifier for radar if
it amplifies a pulse of width 2 ps?

Find the minimum uncertainty in the speed of a bac-
terium having mass 3 X 107! kg if we know the posi-
ton of the bacterium to within 1 micron, that is, to
about its own size.

An atom in an excited state of 4.7 €V emits a photon
and ends up in the ground state. The lifetime of the
excited state is 10713 5. (a) What is the energy uncer-
tainty of the emitted photon? (b) What is the spectral
line width (in wavelength) of the photon?

An electron microscope is designed to resolve objects
as small as 0.14 nm. What energy electrons must be
used in this instrument?

Rayleigh’s criterion is used to determine when two ob-
jects are barely resolved by a lens of diameter d. The
angular separation must be greater than 6, where

ARE3 ISR
Op=1.22 7}
In order to resolve two objects 4000 nm apart at a dis-
tance of 20 cm with a lens of diameter 5 cm, what en-
ergy (a) photons or (b) electrons should be used? Is
this consistent with the uncertainty principle?

44.

45.

Calculate the de Broglie wavelength of a 5.5-MeV a
particle emitted from an ?*!Am nucleus. Could this
particle exist inside the 2*’Am nucleus (diameter =
1.6 X 1074 m)?

Show that the minimum energy of a simple harmonic
oscillator is Aw/2. What is the minimum energy in
joules for a mass of 2 g oscillating on a spring with a
spring constant 8 N/m?

General Problems

46.
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Consider a wave packet having the product of Ap Ax =
fvata ime ¢ = 0. What will be the width of such a wave
packet after the time m(Ax)2/A?

Analyze the Gaussian wave packet carefully and show
that Ak Ax=1/2. You must justify the assumptions
you make concerning uncertainties in k and x. Take
the Gaussian form given in Equation (5.26). (Hint:
the linear “spread” of the wave packet Ax is given by
one standard deviation, at which point the probability
amplitude (|¥|?) has fallen to one half its peak value.)
Most of the particles known to physicists are unstable.
For example the lifetime of the neutral pion, 7, is
about 10719 5. Its mass is 135 MeV/c®. What is the en-
ergy width of the 7" in its ground state?

The range of the nuclear strong force is believed to
be about 1.2 X 107> m. The particle that “mediates”
the strong force (similar to the photon mediating the
electromagnetic force) is the pion. Assume that the
pion moves at the speed of light in the nucleus, and
calculate the time At it takes to travel between nucle-
ons. Assume that the distance between nucleons is
also about 1.2 X 10~ !> m. Use this time A¢ to calculate
the energy AL for which energy conservation is vio-
lated during the time Az This AE has been used to es-
timate the mass of the pion. What value do you deter-
mine for the mass? Compare this value with the
measured value of 135 MeV/¢? for the neutral pion.
The planes of atoms in a cubic crystal lie parallel to
the surface, 0.8 nm apart. X rays having wavelength
0.5 nm are directed at an angle 6 to the surface. (a)
For what values of 6 will there be a strong reflection?
(b) What energy electrons could give the same result?
Aliens visiting Earth are fascinated by baseball. They
are so advanced that they have learned how to vary A
to make sure that a pitcher cannot throw a strike with
any confidence. Assume the width of the strike zone is
0.38 m, the speed of the baseball is 35 m/s, the mass
of the baseball is 145 g, and the ball travels a distance
of 18 m. What value of # is required? (Hint: there are
two uncertainties here: the width of the strike zone
and the transverse momentum of the pitched ball.)



