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CHAPTER

The Experimental Basis
of Quantum Theory

As far as | can see, our ideas are not in contradiction to the properties
of the photoelectric effect observed by Mr. Lenard.

Max Planck, 1905

m s was discussed in Chapter 1, during the final decades of the 1800s scien-
tists discovered phenomena that could not always be explained by what we
now call classical physics. Many scientists, however, were not concerned with
these discrepancies. The level of experimentation was such that uncertainties
were large, and the results of the experiments were often slow in being reported
to other investigators. But perhaps more important was the confident attitude of
physical scientists that Newton’s laws and Maxwell’s equations contained the fun-
damental description of nature.

In this atmosphere it is indeed surprising that the few exceptions to the clas-
sical laws discovered during the latter part of the nineteenth century led to the
fabulous thirty-year period of 1900-1930, when our understanding of the laws of
physics was dramatically changed. We have already discussed in Chapter 2 the
first of these new developments, the special theory of relativity, which was intro-
duced by Einstein in 1905 and successfully explained the null result of the
Michelson-Morley experiment. The other great conceptual advance of 20th-
century physics, the quantum theory, began in 1900 when Max Planck intro-
duced his explanation of blackbody radiation.

We begin this chapter by learning of Rontgen’s discovery of the x ray and
Thomson'’s discovery of the electron. Millikan later determined the electron’s
charge. We shall see that, although it was necessary to assume that certain phys-
ical quantities may be quantized, scientists found this idea hard to accept. We will
discuss the difficulties of explaining blackbody radiation with classical physics
and how Planck’s proposal solved the problem. Finally, we will see that Einstein’s
explanation of the photoelectric effect and Compton’s understanding of x-ray
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scattering data made the quantum hypothesis difficult to refute. After many
difficult and painstaking experiments, it became clear that quantization was not
only necessary, it was also the correct description of nature.

3.1 Discovery of the X Ray
and the Electron

In the late 1800s scientists and engineers were familiar with the “cathode rays”
that could easily be generated from one of the metal plates in an evacuated tube
across which a large electric potential had been established. The origin and con-
stitution of these cathode rays were not known. The concept of an atomic sub-
structure of matter was widely accepted because of its use in explaining the re-
sults of chemical experiments. Therefore, it was felt that cathode rays might have
something to do with atoms. It was known, for example, that cathode rays could
penetrate matter. Cathode rays were of great interest and under intense investi-
gation in the late 1800s.

In 1895 Wilhelm Rontgen (1845-1923), who had received early training as
a mechanical engineer but was at the time a professor of physics at the Univer-
sity of Warzburg in Germany, was studying the effects of cathode rays passing
through various materials. During one such experiment he noticed that a nearby
phosphorescent screen was glowing vividly in the darkened room. Rontgen soon
realized he was observing a new kind of ray, one that, unlike cathode rays, was
unaffected by magnetic fields and was far more penetrating than cathode rays.
These x rays, as he called them, were apparently produced by the cathode rays New penetrating ray: x ray
bombarding the glass walls of his vacuum tube. Rontgen studied their transmis-
sion through many materials and even showed that he could obtain an image of
the bones in a hand when the x rays were allowed to pass through as shown in
Figure 3.1. This experiment created tremendous excitement, and medical ap-
plications of x rays were quickly developed. For this discovery, Rontgen received
the first Nobel Prize award for physics in 1901.

Hand

Glass tube

FIGURE 3.1 In Rontgen’s experiment “x rays” were produced by cathode rays (elec-
trons) hitting the glass near the anode. He studied the penetration of the x rays through
several substances and even noted that if the hand was held between the glass tube and a
screen, the darker shadow of the bones could be discriminated from the less dark shadow
of the hand. Photo courtesy of Deutsches Museum, Miinchen.
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Sir Joseph John Thomson, uni-
versally known as “J.J.,” went to
Cambridge University at age
20 and remained there for the

rest of his life. Thomson's ca-
reer with the Cavendish Labo-
ratory spanned a period of
over 50 years during which
seven Nobel Prizes in physics
were awarded. He served as Di-
rector from 1884 until 1918
when he stepped down in fa-
vor of Rutherford. AIP Emilio
Segré Visual Archives.

Measurement of
electron’s e/m

FIGURE 3.2 Apparatus of
Thomson's cathode-ray experi-
ment. Thomson proved that
the rays emitted from the cath-
ode were negatively charged
particles (electrons) by de-
flecting them in electric and
magnetic fields. The key to the
experiment was to evacuate
the glass tube.

For several years before the discovery of x rays, J. J]. Thomson (1856-1940),
professor of experimental physics at Cambridge University, had been studying
the properties of electrical discharges in gases. Thomson’s apparatus was similar
to that used by Rontgen and many other scientists because of its simplicity (see
Figure 3.2). Thomson believed that cathode rays were particles, whereas several
respected German scientists (such as H. Hertz) believed they were wave phe-
nomena. Thomson was able to prove in 1897 that the charged particles emitted
from a heated electrical cathode were in fact the same as cathode rays. The main
features of Thomson’s experiment are shown in the schematic apparatus of Fig-
ure 3.2. The rays from the cathode are attracted to the positive potential on aper-
ture A (anode) and are further collimated by aperture B to travel in a straight
line to impinge on the fluorescent screen in the rear of the tube, where they can
be visually detected by a flash of light. A voltage across the deflection plates sets
up an electrostatic field that can deflect charged particles. Previously, in a simi-
lar experiment, Hertz had observed no effect on the cathode rays due to the de-
flecting voltage. Thomson at first found the same result, but upon further evac-
uating the glass tube observed the deflection and proved that cathode rays
had a negative charge. The previous experiment, in a poorer vacuum, had failed
because the cathode rays had interacted with and ionized the residual gas.
Thomson also studied the effects of a magnetic field upon the cathode rays by
placing current coils outside the glass tube. He proved convincingly that the
cathode rays acted as charged particles (electrons) in both electric and magnetic
fields and received the Nobel Prize in 1906.

Thomson’s method of measuring the ratio of the electron’s charge to mass,
¢/m, is now a standard technique and generally studied as an example of charged
particles passing through perpendicular electric and magnetic fields as shown
schematically in Figure 3.3. With the magnetic field turned off, the electron
entering the region between the plates is accelerated upward by the electric field

F (3.1)

y = ma,= gk

where m and q are, respectively, the mass and charge of the electron. The time
for the electron to traverse the deflecting plates (length = €) is = €/v,. The
exit angle 6 of the electron is then given by

U, a.t gk ¢
tan = —=— = —
U, Up m

(3.2)

9
Yy

The ratio ¢/m can be determined if the velocity is known. By turning on the mag-
netic field and adjusting the strength of B so that no deflection of the electron

Deflecting plates

High voltage Fluorescent screen

Magnet
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FIGURE 3.3 Thomson’s method of measuring the electron’s charge to mass ratio was to
send electrons through a region containing a magnetic field (B into paper) perpendicu-
lar to an electric field (E down). The electrons having v = E/B go through undeflected.
Then, using the same energy electrons, the magnetic field is turned off and the electric
field deflects the electrons, which exit at angle 6. The ratio of ¢/m can be determined
from B, E, 6, and €, where € is the length of the field distance and 6 is the emerging an-
gle. See Equation (3.5).

occurs, the velocity can be determined. The condition for zero deflection is that
the net force on the electron must be zero.

F=gE+ gvXxXB=0 (3.3)
Hence,
E=-vXB

or because v and B are perpendicular, the electric and magnetic field strengths
are related by

|E|=]v|[B]
so that
E
U= 5 = Vo (3.4)

If we insert this value for v, into Equation (3.2), we extract the ratio of g/m.

q vp> tan 6 _ Ewng (3.5)

m E¢€ B(

Example 3.1

In an experiment similar to Thomson’s, we use deflecting  Because we use all units for Eand Bin the international sys-
plates 5 cm in length with an electric field of 1.0 X 10" V/m.  tem (SI), the answer must be in meters/second.

- Without the magnetic field we find an angular deflection of Now we can determine ¢/m by using Equation (3.5):
30°, and with a magnetic field of 8 X 10~* T (8 gauss) we
find no deflection. What is the initial velocity of the electron q Ewnf (10X 10*V/m) (tan 30°)
and its g/m? m B¢ (8 X 107*T)2(0.05 m)
Solution: We find the electron’s velocity », from Equa- = 1.80 X 10'" C/kg
tion (3.4).

E  1.0X10*V/m

= IR =1.25 X 107" m/s

Ug =
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Thomson’s actual experiment, done in the manner of the previous example,
obtained a result about 35% lower than the presently accepted value of 1.76 X
10'! C/kg for ¢/m. Thomson realized that the value of ¢/m (e = absolute value of
electron charge) for an electron was much larger than had been anticipated and
a factor of 1000 larger than any value of g/m that had been previously measured
(for the hydrogen atom). He concluded that either m was small or ewas large (or
both), and the “carriers of the electricity” were quite penetrating as compared to
atoms or molecules, which must be much larger in size.

3.2 Determination of Electron Charge

After Thomson’s measurement of ¢/m and the confirmation of the cathode ray
as the charge carrier (called electron), several investigators attempted to deter-
mine the electron’s charge, which was poorly known in 1897. In 1911 the Amer-
ican physicist Robert A. Millikan (1865-1953) reported convincing evidence for
an accurate determination of the electron’s charge. Millikan’s classic experiment
Millikan’s oil drop began in 1907 at the University of Chicago. The experiment consisted of visual
experiment observation of the motion of uncharged and both positively and negatively
charged oil drops moving under the influence of electrical and gravitational
forces. The essential parts of the apparatus are shown in Figure 3.4. As the drops
emerge from the nozzle, frictional forces sometimes cause them to be charged.
Millikan’s method consisted of balancing the upward force of the electric field

between the plates against the downward force of the gravitational field.
When an oil drop falls downward through the air, it experiences a frictional

force F,proportional to its velocity due to the air’s viscosity:

F,=—bv (3.6)

The force has a minus sign because it always opposes the drop’s velocity. The
constant b is determined by Stokes’s law and is proportional to the oil drop’s ra-
dius. Millikan showed that Stokes’s law for the motion of a small sphere through

Atomizer, to produce oil drops

DC

power

supply

Reversible voltage

Microscope

(a) (b)

FIGURE 3.4 (a) Diagram of the Millikan oil-drop experiment to measure the charge of
the electron. Some of the oil drops from the atomizer emerge charged, and the electric
field (voltage) is varied to slow down or reverse the direction of the oil drops, which can
have positive or negative charges. (b) A student looking through the microscope is ad-
justing the voltage between the plates to slow down a tiny plastic ball that serves as the
oil drop.
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Three great physicists (foreground), 1931: Michelson, Einstein, and Millikan. Courtesy of

California Institute of Technology.

a resisting medium becomes incorrect for small-diameter spheres because of the
atomic nature of the medium, and he found the appropriate correction. The
bu()‘yancy of the air produces an upward force on the clrop, but we can neglec[
this effect for a first-order calculation.

To suspend the oil drop at rest between the plates, the upward electric force
must equal the downward gravitational force. The frictional force is then zero
because the velocity of the oil drop is zero.

F,=qE=—mg (when v =10) (3.7

The magnitude of the electric field is £ = V/d and Vis the voltage across large,
flat plates separated by a small distance 4. The magnitude of the electron charge
g may then be extracted as

mgd

7= (3.8)

To calculate ¢ we have to know the mass m of the oil drops. Millikan found he
could determine m by turning off the electric field and measuring the terminal
velocity of the oil drop. The radius of the oil drop is related to the terminal ve-
locity by Stokes’s law (see Problem 7). The mass of the drop can then be deter-
mined by knowing the radius r and density p of the type of oil used in the
experiment:

m = = mrip (3.9)

3

If the power supply has a switch to reverse the polarity of the voltage and an
adjustment for the voltage magnitude, the oil drop can be moved up and down

85
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in the apparatus at will. Millikan reported that in some cases he was able to ob-
serve a given oil drop for up to six hours and that the drop changed its charge

several times.
Measurement of
electron charge

Millikan made thousands of measurements using different oils and showed
that there is a basic quantized electron charge. Millikan’s value of ¢ was very close

to our presently accepted value of 1.602 X 10~'? C. Notice that we always quote
a positive number for the charge e. The charge on an electron is then —e.

Example 3.2

For an undergraduate physics laboratory experiment we of-
ten make two changes in Millikan’s procedure. First, we use
plastic balls of about 1 micrometer (um or micron) in di-
ameter, for which we can measure the mass easily and accu-
rately. This avoids the measurement of the oil drop’s termi-
nal velocity and the dependence on Stokes’s law. The small
plastic balls are still sprayed through an atomizer in liquid
solution, but the liquid soon evaporates in air. The plastic
balls are easily seen by a microscope. One other improve-
ment is to bombard the region between the plates occasion-
ally with ionizing radiation (such as x rays or « particles
from radioactive sources). This radiation ionizes the air and
makes it easier for the charge on a ball to change. By mak-
ing many measurements we can determine whether the
charges determined from Equation (3.8) are multiples of
some basic charge unit.

One problem in the experiment is that occasionally
one obtains fragments of broken balls or clusters of several
balls. These can be eliminated by watching the flight of balls
in free fall. The majority of balls will be single and fall faster
than fragments, but slower than clusters. With a little expe-
rience one can select single unbroken balls.

In an actual undergraduate laboratory experiment the
mass of the balls was m = 5.7 X 107'% kg and the spacing

eween the plates was d = 4 mm. Therefore ¢ can be found

from Equation (3.8).

mgd (5.7 X 107'° kg) (9.8 m/s?) (4 X 10 % m)
s v

BRIV

43 V

where V is the voltage between plates when the observed
ball is stationary. Two students observed 30 balls and found
the values of Vshown in Table 3.1 for a stationary ball. In
this experiment the voltage polarity can easily be changed,
and a positive voltage represents a ball with a positive
charge. Notice that charges of both signs are observed.

The values of | ql are plotted on a histogram in units of
Ag=10.2X 107" C. These are shown by the solid area in
Figure 3.5. When 70 additional measurements from other
students are added, a clear pattern of quantization develops
with a charge ¢ = ng, especially for the first three groups.
The groups become increasingly smeared out for higher
charges. The areas of the histogram can be separated for
the various n values, and the value of ¢, found for each
measurement is then averaged. For the histogram shown we
find ¢, = 1.7 X 10~ '9 C for the first 30 measurements and
go = 1.6 X 10719 C for all 100 observations.

TABLE 3.1
Student Measurements in Millikan Experiment
Particle Voltage (V) g(x10~1 C) Particle Voltage q Particle Voltage q
1 —30.0 =7 4% 11 —=126.3 =17 21 =315 —7.08
2 +28.8 +7.74 42 =—hgd —2:6b 22 —66.8 —3.34
3 —28.4 —7.85 13 —44.6 —5.00 23 +41.5 +5.37
4 +30.6 +7:29 14 =bh.b —3.40 24 —54.8 —6.41
5 —136.2 —1.64 15 —139.1 —1.60 5] =443 =503
6 —134.3 —1.66 16 —64.5 —3.46 26 —143.6 —1.05
7 +82.2 +2.71 17 =287 =L 27 7.2 +2.89
8 +28.7 7T 18 —30.7 ~2.26 28 —39.9 =5H5Y
9 =389 —5.59 19 +32.8 +6.80 29 —57.9 =3.8H
10 +54.3 +4.11 20 —140.8 +1.58 30 +42.3 +5.27
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FIGURE 3.5 A histogram of the number of observations for the charge on a ball in a
student Millikan experiment. The histogram is plotted for Ag= 0.2 X 107'? C. The solid
area refers to the first group’s 30 measurements, and the open area to another 70 measure-
ments. Notice the peaks, especially for the first three (n = 1, 2, 3) groups, indicating the elec-
tron charge quantization. When the basic charge ¢, is found from g = ng, (n = integer),
go = 1.6 X 10719 C was determined in this experiment from all 100 observations.

3.3 Line Spectra

In the early 1800s optical spectroscopy became an important area of experi-
mental physics, primarily because of the development of diffraction gratings. It
had already been demonstrated that the chemical elements produced unique
colors when burned in a flame or when excited in an electrical discharge. Prisms
had been used to investigate these sources of spectra.

An example of a spectrometer used to observe optical spectra is shown in
Figure 3.6. An electrical discharge excites atoms of a low-pressure gas contained in
the tube. The collimated light passes through a diffraction grating with thousands
of ruling lines per centimeter, and the diffracted light is separated at angle 6 ac-
cording to its wavelength A. The equation expressing diffraction maxima is

dsin 0 = nA (3.10)

where d is the distance between rulings, and n (an integer) is called the order
number (n =1 has the strongest scattered intensity). The resulting pattern of

High
voltage

Diffraction

Slit

i ratin A
Discharge grahng :
tube to
excite gases Screen

FIGURE 3.6 Schematic of an

optical spectrometer. Light pro-
duced by a high-voltage dis-
charge in the glass tube is col-
limated and passed through a
diffraction grating, where it is
deflected according to its wave-
length. See Equation (3.10).



THE DISCOVERY OF
HELIUM

I t might seem that the discovery of helium, the sec-
ond simplest of all elements, would have occurred
centuries ago. As we shall see, this is not the case, and
in fact the discovery happened over a period of several
years in the latter part of the 19th century as scientists
were scrambling to understand unexpected results.
The account here is taken from Helium, by William H.
Keesom.*

Spectroscopes, optical devices used to measure
wavelengths of light, normally consist of a slit, a colli-
mating lens, and a prism to refract the light. Their
first use in a solar eclipse was on August 18, 1868, to
investigate the sun’s atmosphere. Several persons
traveled to the total eclipse region in India and
Malaysia (including P. J. C. Janssen, G. Rayet, C. T.
Haig, and ]J. Herschel) and all reported, either di-
rectly or indirectly, to have observed an unusual yel-
low line in the spectra that would later be proven due

to helium. It occurred to Janssen the day of the
eclipse that it must be possible to see the sun’s spec-
trum directly without the benefit of the eclipse, and
he did so with a spectroscope on the days following
the eclipse. The same idea had occurred to J. N.
Lockyer earlier, but he did not succeed in measuring
the sun’s spectrum until October, 1868, a month or so
after Janssen. This method of observing the sun’s at-
mosphere at any time was considered to be an im-
portant discovery, and Janssen and Lockyer are
prominently recognized not only for the evolution of
helium’s discovery but for the means of studying the
sun’s atmosphere as well.

The actual discovery of helium was delayed by the
fact that the new yellow line seen in the sun’s atmos-
phere was very close in wavelength to two well-known
yellow lines of sodium. This is apparent in the atomic
line spectra of both helium and sodium seen on the
inside back cover of this text. Certainly the line spec-
tra of many elements were known by 1898, and scien-
tists were busy cataloguing each element’s characteris-

Characteristic line spectra
of elements

Balmer’s empirical result

light bands and dark areas on the screen is called a line spectrum. By 1860 Bunsen
and Kirchhoff realized the usefulness of the wavelengths of these line spectra in
allowing identification of the chemical elements and the composition of materi-
als. It was discovered that each element had its own characteristic wavelengths as
shown on the inside back cover. The field of spectroscopy flourished because
finer and more evenly ruled gratings became available, and improved experi-
mental techniques allowed more spectral lines to be observed and catalogued.
Particular interest was paid to the sun’s spectrum in hopes of understanding the
origin of sunlight. The helium atom was actually “discovered” by its line spectra
from the sun before it was recognized on Earth (see Special Topic).

Many scientists believed that the lines in the spectra somehow reflected the
complicated internal structure of the atom, and that by carefully investigating
the wavelengths for many elements, the structure of atoms and matter could be
understood. That belief was eventually partially realized.

For much of the 19th century scientists attempted to find some simple un-
derlying order for the characteristic wavelengths of line spectra. Hvdrogen ap-
peared to have an especially simple-looking spectrum, and because some
chemists thought hydrogen atoms might be the constituents of heavier atoms,
hydrogen was singled out for intensive study. Finally, in 1885, Johann Balmer, a
Swiss schoolteacher, succeeded in obtaining a simple empirical formula that fit
the wavelengths of the fourteen lines then known in the hydrogen spectrum.
Four lines were in the visible region, and the remaining ultraviolet lines had



tic spectra. By December, 1868, Lockyer, A. Secchi,
and Janssen each independently recognized that the
vellow line was different than that of sodium.

Another difficulty was to prove that the new yel-
low line, called Dy, was not due to some other
known element, especially hydrogen. For many years
Lockyer thought that D5 was related to hydrogen
and he and E. Frankland performed several experi-
ments that were not able to prove his thesis. Lockyer
wrote as late as 1887 that D3 was a form of hydrogen.
However, in contradiction, Lord Kelvin reported in
1871 during his presidential address to the British
Association that Frankland and Lockyer could not
find the Dy line to be related to any terrestrial (from
Earth) flame. Kelvin reported that it seemed to rep-
resent a new substance, which Frankland and Lock-
yer proposed to call helium (from the Greek word
for “sun™).

It was not until 1895 that helium was finally
clearly observed on Earth by Sir William Ramsay,
who had received a letter reporting that W. F. Hille-

brand had produced nitrogen gas by boiling ura-
nium ores (pitchblende) in dilute sulphuric acid. Ram-
say was skeptical of the report and proceeded to re-
produce it. He was astounded, after finding a small
amount of nitrogen and the expected argon gas, to
see a brilliant yellow line that he compared with
those from sodium, finding the wavelengths to be
different. Sir William Crookes measured the wave-
length and reported the following day that it was the
Dj line, proving the terrestrial existence of helium.
Later in 1895 H. Kayser found the helium line in
spectra taken from a gas that had evolved from a
spring in Germany’s Black Forest. Eventually, in
1898, helium was confirmed in the Earth’s atmos-
phere by E. C. Baly. No one person can be credited
for the discovery of helium.

The remarkable properties of fliguid helium are
discussed in Section 9.7.

*W. H. Keesom, Helium. Amsterdam, London, and New York:
Elsevier, 1942.

been identified in the spectra of white stars. This series of lines, called the Balmer
series, is shown in Figure 3.7. Balmer found that the expression

9

A = 364.56 —— nm

(3.11)

(where k= 3,4,5,...; k> 2) fitall the visible hydrogen lines. Wavelengths are
normally given in units of nanometers™ (nm). It is more convenient to take the
inverse of Equation (3.11) and write Balmer’s formula in the form

1 1 k-4 4 1 _1y_, (1 _1
A 36456 nm k2 364.56 nm(fz2 k?) ”(22 k?)

(3.12)

*Wavelengths were formerly listed in units of angstroms (one angstrom (A) = 10~ 10'm), named af-
ter Angstrom who was one of the first persons to observe and measure the wavelengths of the four

visible lines of hydrogen.

2 1nm

365
397
410
434
486

-

657 nm

FIGURE 3.7 The Balmer se-

=R

ries of line spectra of the hy-
drogen atom with wavelengths

I =~ Blue-

i
Violet green

Series
limit

Red indicated in nm. The four visi-
ble lines are noted as well as

the lower limit of the series.
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TABLE 3.2
Hydrogen Series of Spectral Lines

Discoverer (year) Wavelength 0 ik

Lyman (1916) Ultraviolet =]
Balmer (1885) Visible, ultraviolet 2 >2
Paschen (1908) Infrared 3 =3
Brackett (1922) Infrared 4 >4
Pfund (1924) Infrared By ooy

where Ry is called the Rydberg constant (for hydrogen) and has the more accu-
rate value 1.096776 X 107 m~ !, and k is an integer greater than two (k> 2).

Efforts by Johannes Rydberg and particularly Walther Ritz eventually re-
sulted in 1890 in a more general empirical equation for calculating the wave-
lengths called the Rydberg equation.

A n2 R
where n = 2 corresponds to the Balmer series and k > n always. Some 20 years
after Balmer’s contribution, other series of the hydrogen atom’s spectral lines
were discovered in the early 1900s. By 1925 five series had been discovered, each
having a different integer n (see Table 3.2). The understanding of the Rydberg

equation (3.13) and the discrete spectrum of hydrogen were important research
topics early in the 20th century.

Rydberg equation .10 RH( 1‘ . ) (3:E0Y

Example 3.3

The visible lines of the Balmer series were observed first be- For the Balmer series (n = 2) we find
cause they are most easily seen. Show that the wavelengths

of spectral lines in the Lyman (n=1) and Paschen (n=3) k=3 e 1.0968 % 107 (l L l) m2
series are not in the visible region. Find the wavelengths of A sl
the four visible atomic hydrogen lines. Assume the visible A=6.565X10-7 m = 656.5 nm (Red)
wavelength region is A = 400 to 700 nm. ; T
k- (4 (BN R, G
Solution: We use Equation (3.13) first to examine the B A F09R8540 (4 lﬁ)m
Lyman series (n = 1)
1 i A =4.863 X 1077 m = 486.3 nm (Blue-green)
bonfi-)
A k2 1 1 1 e
= =i X107 (— - — 1
: k=5 R 0968 X 10 (4 o5 |™
= 71 — SN
= 1.0968 X 10 (1 42 )‘“ A=4342%X10"7m =4342nm  (Violet)
1 1 1 1 1 s
_ A 7(1 - ). —1 k=6 —=1.0968X 107(— - —|m!
k=2 A 1.0968 X 10 (1 4)m 3 (4 36)“1
A=1216X10"7m=121.6 nm  (Ultraviolet) A=4103X10""m =4103nm  (Violet)
k=38  +=1.0068x107(1 - L)m k=7 ~=1.0068x 107(% = L)1
i o g | ( g)m v 4 49
A=1.026x%10"7m = 102.6 nmn (Ultraviolet) A=3971 X 1077 m = 397.1 nm (Ultraviolet)
Because the wavelengths are decreasing for higher k Therefore k=7 and higher k values will be in the ul-

values, all the wavelengths in the Lyman series are in the ul-  traviolet region. The four lines k= 3, 4, 5, and 6 of the
traviolet region and not visible by eye. Balmer series are visible, although the 410 nm (k = 6) line
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N A 1
1.0968 X 10’(9 )m‘

by o0

8.206 X 1077 m = 820.6 nm (Infrared)

Thus the Paschen series has wavelengths entirely in the
infrared region. Notice that the series limit is found for
k = . The higher series, n = 4, will all have wavelengths

is difficult to see because it is barely in the visible region and 1
is weak in intensity. k=00 3 =
The next series, n = 3, named after Paschen, has wave-
lengths of A=
1 1 1
k=4 — =1.0968 X 107 — — —|m™!
A 9 16
_— —6 - -
A =1.876 X 107 m = 1876 nm (Infrared) longer than the visible region.
k=05

11
= 1.0968 X 107~ = —|m""!
(9 25)‘“

=1.282 X 1075 m = 1282 nm (Infrared)

3.4 Quantization

As we discussed in Chapter 1, some early Greek philosophers believed that mat-
ter must be composed of fundamental units that could not be divided further.
The word “atom” means “not further divisible.” Today some scientists believe, as
these ancient philosophers did, that matter must eventually be indivisible. How-
ever, as we have encountered new experimental facts, our ideas about the fun-
damental, indivisible “building blocks” of matter have changed. More will be said
about the “elementary” particles in Chapter 14.

Whatever the elementary units of matter may eventually turn out to be, we
suppose there are some basic units of mass-energy of which matter is composed.
This idea is hardly foreign to us: we have seen already that Millikan’s oil drop ex-
periment showed the quantization of electric charge. Current theories predict
that charges are quantized in units (called quarks) of *¢/3 and *2¢/3, but
quarks can not be directly observed experimentally. The charges of particles that
have been directly observed are quantized in units of *e.

In nature we see other examples of quantization. The measured atomic
weights are not continuous—they have only discrete values which are close to in-
tegral multiples of a unit mass. Molecules are formed from an integral number
of atoms. The water molecule is made up of exactly two atoms of hydrogen and
one of oxygen. The fact that an organ pipe produces one fundamental musical
note with overtones is a form of quantization arising from fitting a precise num-
ber (or fractions) of sound waves into the pipe.

The line spectra of atoms discussed in the previous section again show that
characteristic wavelengths have precise values and are not distributed continu-
ously. By the end of the 19th century, radiation spectra had been well studied.
There certainly didn’t appear to be any quantization effects observed in black-
body radiation spectra emitted by hot bodies. However, these radiation spectra
were to have a tremendous influence on the discovery of quantum physics.

3.5 Blackbody Radiation

It has been known for many centuries that when matter is heated, it emits ra-
diation. We can feel the heat radiation emitted by the heating element of an
electric stove as it warms up. As the heating element reaches 550°C, its color be-
comes dark red, turning to bright red around 700°C. If the temperature were in-
creased still further, the color would progress through orange, yellow, and finally
white. We can determine experimentally that a broad spectrum of wavelengths is

Is matter indivisible?

Electric charge is
quantized

Quantization occurs often
in nature
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Radiation emission and
absorption

Blackbody radiation is
unique

FIGURE 3.8 Blackbody radia-
tion. Electromagnetic radiation
(for example, light) entering a
small hole reflects around in-
side the container before be-
ing eventually absorbed.

FIGURE 3.9 Spectral distri-
bution of radiation emitted
from a blackbody for different
blackbody temperatures.

emitted when matter is heated. This process was of great interest to physicists of
the nineteenth century. They measured the intensity of radiation being emitted
as a function of material, temperature, and wavelength.

All bodies simultaneously emit and absorb radiation. When a body’s tem-
perature is constant in time, the body is said to be in thermal equilibrium with its
surroundings. In order for the temperature to be constant, the body must absorb
thermal energy at the same rate as it emits it. This implies that a good thermal
emitter is also a good absorber.

Physicists generally try to study the simplest or most idealized case of a prob-
lem first in order to gain the insight that is needed to analyze more complex sit-
uations. For thermal radiation the simplest case is a blackbody, which has the
ideal property that it absorbs all the radiation falling on it and reflects none. The
simplest way to construct a blackbody is to drill a small hole in the wall of a hol-
low container as shown in Figure 3.8. Radiation entering the hole will be re-
flected around inside the container and then finally absorbed. Only a small
fraction of the entering rays will be re-emitted through the hole. If the blackbody
is in thermal equilibrium, then it must also be an excellent emitter of radiation
as well.

Blackbody radiation is theoretically interesting because of its universal char-
acter: the radiation properties of the blackbody (that is, the cavity) are indepen-
dent of the particular material of which the container is made. Physicists could
study the previously mentioned properties of intensity vs. wavelength (called
spectral distribution) at fixed temperatures without having to understand the de-
tails of emission or absorption by a particular kind of atom. The question of pre-
cisely what the thermal radiation actually consisted of was also of interest, al-
though it was assumed, for lack of evidence to the contrary (and correctly, it
turned out!), to be electromagnetic radiation.

The intensity & (A, T) is the total power radiated per unit area per unit wave-
length at a given temperature. Measurements of . (A, 7') for a blackbody are dis-
played in Figure 3.9. Two important observations should be noted:

1. The maximum of the distribution shifts to smaller wavelengths as the
temperature is increased.
2. The total power radiated increases with the temperature.

)
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The first observation is commonly referred to as Wien’s displacement law,

Max T=2.898 X 1073 m+K (3.14) Wien’s displacement law

where A, is the wavelength of the peak of the spectral distribution at a given
temperature. Wilhelm Wien received the Nobel Prize in 1911 for his discoveries
concerning radiation. We can quantify the second observation by integrating the
quantity (A, 7') over all wavelengths to find the power per unit area at 7.

o0

R(T) =J LA, T)dr

0

(3.15)

Josef Stefan found empirically in 1879, and Boltzmann demonstrated theoreti-
cally several years later, that R(T) is related to the temperature by

R(T) = ecT* (3.16) Stefan-Boltzmann law

This is known as the Stefan-Boltzmann law, with the constant o experimentally
measured to be 5.6705 X 107 W/(m?-K?*). The Stefan-Boltzmann law equa-
tion can be applied to any material for which the emissivity is known. The emis-
sivity € (e = | for an idealized blackbody) is simply the ratio of the emissive
power of an object to that of an ideal blackbody and is always less than 1. Thus,
Equation (3.16) is a useful and valuable relation for practical scientific and en-
gineering work.

Example 3.4 IR

A furnace has walls of temperature 1600°C. What is the
wavelength of maximum intensity emitted when a small
door is opened?

T = (1600 + 273)K = 1873 K
A (1873 K) = 2.898 X 103 m - K

Amax = 1.55 X 1078 m = 1550 nm
Solution:
mine A

max

If we assume blackbody radiation, we deter-
from Equation (3.14).

Example 3.5 geg L |

The wavelength of maximum intensity of the sun’s radiation
is observed to be near 500 nm. Assume the sun to be a
blackbody and calculate (a) the sun’s surface temperature,
(b) the power per unitarea R(7') emitted from the sun’s sur-
face, and (c) the energy received by the Earth each day from
the sun’s radiation.

The power per unit area R(7T) at this temperature can be
found by again assuming a blackbody:

R(T) = 5.67 X 1078 (5800 K)*

m?-K*
=6.42 X 107" W/m? (3.18)

Because this is the power per unit surface area, we need to

Solution: From Equation (3.14) we calculate the sun’s
surface temperature with A, . = 500 nm.

109
(500 nm) T, = 2.898 X 103 m+ K ———
2,898 X 10°
Ton= """ K=5800K (3.17)
500

multiply this by 47772, the surface area of the sun. The radius
of the sun is 6.96 X 10° km.

Surface area (sun) = 47(6.96 X 10®* m)? = 6.09 X 10'® m?

Thus the total power, P, ,,, radiated from the sun’s surface is

T

Py = 6.42 X 10712 (6.09 X 10'8 m2) = 3.91 X 1026 W
m (3.19)
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The fraction F of the sun’s radiation received by Earth
is given by the fraction of the total area over which the radi-
ation is spread.

)
47R, 2

where r, = radius of Earth = 6.37 X 10° m, and R,, = mean

and in one day the Earth receives

J 60s 60 min

s min h

24h

day

Ugarmy = 1.79 X 1017 = 1.55 X 1022

(3.21)

The power per unit exposed area received by the Earth is

Earth-sun distance = 1.49 X 10! m. Then

]
4 w™wr.;"
F= =

(6.37 X 105 m)?

1.79 X 1017 W
7(6.37 X 105 m)2

Bl ox = = 1400 W/m? (3.22)

47R,?

Thus the radiation received by the Earth from the sun is
Pran (received) = 4.57 X 10710 (391 X 1026 W)
=1.79 X 107 W

Blackbody radiation
problem

Max Planck (1858-1947) spent
most of his productive years as
a professor at the University of
Berlin (1889-1928). His the-
ory of the quantum of action was
slow to be accepted because of
its contradiction with the heat

radiation law of Wilhelm Wien.
Finally, after Einstein’s photo-
electric effect explanation and
Rutherford and Bohr’s atomic
model, Planck’s contribution
became widely acclaimed. A/P
Emilio Segré Visual Archives.

4(1.49 X 10" m)*?

=457x10"10

Needless to say, this is the source of most of our energy on
Earth. Measurements of the sun’s radiation outside the
Earth’s atmosphere give a value near 1400 W/m?*, so our cal-
culation is fairly accurate. Apparently the sun does act as a
blackbody, and most of the energy received by the Earth
comes primarily from the surface of the sun.

(3.20)

Attempts to understand and derive from basic principles the shape of the
blackbody spectral distribution (Figure 3.9) were unsuccessful throughout the
1890s despite the persistent effort of some of the best scientists of the day. Black-
body radiation was one of the outstanding problems of the late nineteenth cen-
tury because it presented physicists with a real dilemma. The nature of the
dilemma can be understood from classical electromagnetic theory, together with
statistical thermodynamics. The radiation emitted from the blackbody can be ex-
pressed as a superposition of electromagnetic waves of different frequencies
within the cavity. That is, radiation of a given frequency is represented by a stand-
ing wave inside the cavity. The equipartition theorem of thermodynamics assigns
equal average energy k7 to each possible wave configuration. For long wave-
lengths A there are only few configurations whereby a standing wave can form in-
side the cavity. However, as the wavelength becomes shorter the number of
standing wave possibilities increases, and as A — 0 the number of possible con-
figurations increases without limit. This means the total energy of all configura-
tions is infinite, because each standing wave configuration has the nonzero en-
ergy k7. This problem for small wavelengths became known as “the ultraviolet
catastrophe.”

In the late 1890s the German theoretical physicist Max Planck (1858-1947)
became interested in this problem. By this time, different empirical expressions
for the blackbody spectrum had been separately fit to the data for both short
wavelengths and long wavelengths, but no one had explained the whole spec-
trum. Planck tried various functions of wavelength and temperature untl he
found a single formula that fit the measurements of L (A, T) over the entire
wavelength range. He announced this result in October of 1900, and immedi-
ately his equation was compared with recent data of Rubens and Kurlbaum. The
result was that Planck’s formula was even more accurate over the entire spectrum
than the previous empirical ones, which were only valid for either short or long
wavelengths.

Planck became quite excited and started working to find a sound theoretical
basis for his empirical equation. He was an expert in thermodynamics and
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statistical mechanics. Following Hertz’s work using oscillators to confirm the ex-
istence of Maxwell’s electromagnetic waves, and lacking detailed information
about the atomic composition of the cavity walls, Planck assumed that the radia-
tion in the cavity was emitted (and absorbed) by some sort of “oscillators” that
were contained in the walls. Whereas we would now refer to the radiation of the
electromagnetic field in the cavity, Planck referred to the radiation produced by
the “oscillators,” a term we will briefly continue to use. When adding up the en-
ergies of the oscillators, he assumed (for convenience) that each one had an en-
ergy that was an integral multiple of 4v, where v is the frequency of the oscillat-
ing wave. He was applying a technique invented by Boltzmann and ultimately
expected to take the limit #— 0, in order to include all the possibilities.

However, he noticed that by keeping 4 finite he arrived at the equation needed
for L(A, T),

2mc?h 1

AS g}:r/.\k]" -1

(A, T) =

Planck’s radiation law

(3.23)

Equation (3.23) is Planck’s radiation law. (The derivation of Equation (3.23) is
sufficiently complicated that we have omitted it here.) No matter what he tried,
he could only arrive at the correct result by making two important modifications
of classical theory:

1. The oscillators (of electromagnetic origin) can only have certain dis-
crete energies determined by E, = nhv, where n is an integer, v is the
frequency, and % is called Planck’s constant and has the value

h=6.6261 X 10734 ]-s Planck’s constant h

(3.24)

2. The oscillators can absorb or emit energy in discrete multiples of the
fundamental quantum of energy given by
AE= hv (3.25)

Planck himself found these results quite disturbing and spent several years
trying to find a way to keep the agreement with experiment while letting 2 — 0.
Each attempt failed.

Example 3.6

Show that Planck’s radiation law avoids the ultraviolet
catastrophe.

in Equation (3.23) is infinite, and the value of d(A, T)—0.
Note that as the wavelength gets smaller, the frequency be-
comes larger (Av = ¢), and hv => kT. Few oscillators will be
able to obtain such large energies, partly because of the

Solution: The ultraviolet catastrophe occurs because
the number of configurations (~ intensity) in the classical
calculation becomes infinite as A — 0. If we let A— 0 in
Equation (3.23), the value of ¢"/**" — = The exponential
term dominates the A® term as A — 0, so the denominator

large energy necessary to take the energy step from 0 to Av.
The probability of occupying the states with small wave-
lengths (large frequency and high energy) is vanishingly
small, so the total energy of the system remains finite. The
ultraviolet catastrophe is avoided.
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Example 3.7

Show that Wien’s displacement law follows from Planck’s ra-
diation law.

Solution: Wien’s law, Equation (3.14), refers to the
wavelength A for which { (A, T') is a maximum for a given
temperature. Therefore, to find this maximum we let
dd /dX = 0 and solve for A.

dJd (A, T)

=0
dA

for A = A

d
92 h— [A=5 (/AT — )17 =
me d)t[ (e )711=0
_5/\];fx(€hr//"mnxkr— 1)_] == A—B (i;kc/;\“mkaL l)kQ

. (%) gkcf/’\maka = 0

max

Multiplying by Aj, . (e max®? — 1) results in

hc eh /A max kT
o Amaxkj‘ ( ghc/AnkaT_ 1 ) =0
Let
he
x =
‘)"nmka

Example 3.8

TR R

Use Planck’s radiation law to derive the Stefan-Boltzmann
law.

Solution: To determine R(7T) we integrate (A, T)
over all wavelengths

R(T) = f:&u, T)dA

:cI 1
= Z’?TCQhL F_;;‘-M——l dA
et el i L i e e
€ x—MiT, en ax kT )L2l €11 W€ nave

L (O(KT\6 . 1 1 [ hc)\?
R(T) = *chzhj (;) x5 o F(%) dx
3

o RTN\ ™ «x
= % 2 racEsl
A (izc‘)Jue"—l

dx

then

and
xe® = h(e*— 1)

This is a transcendental equation and can be solved numer-
ically (try it!) with the result, x = 4.966, and, therefore,

Amaka

= 4.966

1079 m

nm

e he 1240 eV - nm
S 4.966 k

eV
4.966 (8.617 X 10‘5?)

and finally,
AmaxT=2.898 X 1073 m-K

which is Wien’s displacement law.

We look up this integral in Appendix 7 and find it to be
wt/15.

5 k 41]-4
T) = —\)—=
R(T) 27:'512(]”) 15
275k
T) = ——— T*
#(T) 15h3¢? i

Putting in the values for the constants &, £, and ¢ results in

W
m?- K*

R{T) = HB7T X 108 T4
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3.6 Photoelectric Effect

Perhaps the most compelling, and certainly the simplest, evidence for the quan-
tization of radiation energy comes from the only acceptable explanation of the
photoelectric effect. The photoelectric effect, discovered by Hertz in 1887 as he
confirmed Maxwell’s electromagnetic wave theory of light, is one of several ways
in which electrons can be emitted by materials. By the early 1900s it was known
that electrons are bound to matter. In metals the valence electrons are “free”—
they are able to move easily from atom to atom, but are not able to leave the sur-
face of the material. The methods known now by which electrons can be made
to completely leave the material include

1. Thermionic emission—application of heat allows electrons to gain
enough energy to escape.

2. Secondary emission—the electron gains enough energy by transfer from
another high-speed particle that strikes the material from outside.

3. Field emission—a strong external electric field pulls the electron out of
the material.

4. Photoelectric effect—incident light (electromagnetic radiation) shining
on the material transfers energy to the electrons allowing them to
escape.

It is not surprising that electromagnetic radiation acts on electrons within
metals giving the electrons increased kinetic energy. Because electrons in metals
are weakly bound, we expect that light can give electrons enough extra kinetic
energy to allow them to escape. We call the ejected electrons photoelectrons.
The minimum extra Kinetic energy that allows electrons to escape the material
is called the work function ¢. The work function is the minimum binding energy
of the electron to the material. The work functions of alkali metals are smaller
than those of other metals. We shall see why this is so in Chapter 8.

Experimental Results of Photoelectric Effect

Experiments carried out around 1900 showed that photoelectrons were pro-
duced when visible and/or ultraviolet light falls on clean metal surfaces. Photo-
electricity was studied using an experimental apparatus shown schematically in
Figure 3.10. Incident light falling on the emitter (also called the photocathode
or cathode) ejects electrons. Some of the electrons travel toward the collector

Incident
light

Collector
=
et LLEEE S
S e
Emitter AT

l
T
C A Amn‘letel‘

Vacuum tube

Power supply

————0 ©

(Voltage V)

a7

Methods of electron
emission

Photoelectrons

Work function

FIGURE 3.10 Photoelectric
effect. Electrons, emitted when
light shines on a surface, are
collected, and the photocur-
rent [ is measured. A negative
voltage, relative to that of the
emitter, can be applied to the
collector. When this retarding
voltage is sufficiently large, the
emitted electrons are repelled,
and the current to the collec-
tor drops to zero.
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I

Photocurrent Light frequency v = constant
FIGURE 3.11 The photoelectric current / is shown as a func- d=34,
tion of the voltage Vapplied between the emitter and collector
for a given frequency v of light for three different light intensi- d=24,
ties. Notice that no current flows for a retarding potential more 4=4
negative than —V;, and that the photocurrent is constant for po- -
tentials near or above zero (this assumes that the emitter and v
collector are closely spaced or in spherical geometry to avoid W 0 Applied voltage

loss of photoelectrons).

FIGURE 3.12 The photoelec-
tric current [ is shown as a
function of applied voltage for
three different light frequen-
cies. The retarding potential
=V, is different for each v and
is more negative for larger ».

(also called the anode), where either a negative (retarding) or positive (acceler-
ating) applied voltage Vis imposed by the power supply. The current / measured
in the ammeter (photocurrent) arises from the flow of photoelectrons from
emitter to collector.

The pertinent experimental facts about the photoelectric effect are these:

The kinetic energies of the photoelectrons are independent of the light
intensity. In other words, a stopping potential (applied voltage) of —V,,
is sufficient to stop all photoelectrons, no matter what the light intensity, as
shown in Figure 3.11. For a given light intensity there is a maximum
photocurrent, which is reached as the applied voltage increases from
negative to positive values.

The maximum kinetic energy of the photoelectrons, for a given emit-
ting material, depends only on the frequency of the light. In other
words, for light of different frequency (Figure 3.12) a different retard-
ing potential —Vj, is required to stop the most energetic photoelectrons.
The value of V, depends on the frequency » but not on the intensity
(see Figure 3.11).

The smaller the work function ¢ of the emitter material, the smaller is
the threshold frequency of the light that can eject photoelectrons. No
photoelectrons are produced for frequencies below this threshold fre-
quency, no matter what the intensity. Data similar to Millikan’s results
(discussed later) are shown in Figure 3.13, where the threshold frequen-
cies v, are measured for three different metals.

When the photoelectrons are produced, however, their number is pro-
portional to the intensity of light as shown in Figure 3.14. That is, the
maximum photocurrent is proportional to the light intensity.

Photoelectric
current Photon intensity {L= constant

V| = Vo = Vg

Applied voltage
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Vo Cs
Li
Retarding Ag
potential
Slope = h
. 1 2
2t e Yy
*
*
Rt o Light frequency
> ,"
"
"' . .
e FIGURE 3.13 The retarding potential ¢V
\Imerce])t =—¢ (maximum electron kinetic energy) is plotted
vs. light frequency for three different emitter
materials.

5. The photoelectrons are emitted almost instantly (=3 X 1079 s) follow-
ing illumination of the photocathode, independent of the intensity of
the light.

Except for (5), these experimental facts were known in rudimentary form by
1902, primarily due to the work of Philipp Lenard, a German experimental
physicist who won the Nobel Prize in 1905 for this and other research on the
identification and behavior of electrons.

Classical Interpretation

As stated previously, we can understand from classical theory that electromag-
netic radiation should be able to eject photoelectrons from matter. However, the
classical theory predicts that the total amount of energy in a light wave increases
as the light intensity increases. Therefore, classically the electrons should have
more kinetic energy if the light intensity is increased. However, according to re-
sult (1) earlier and Figure 3.11, a characteristic retarding potential —Vj, is suffi-
cient to stop all photoelectrons for a given light frequency v, no matter what the
intensity. Classical electromagnetic theory is unable to explain this result. Simi-
larly, classical theory cannot explain result (2), because the maximum kinetic en-
ergy of the photoelectrons depends on the value of the light frequency v and not
on the intensity.

The existence of a threshold frequency, as shown in experimental result (3)
is completely inexplicable in classical theory. Classical theory cannot predict the
results shown in Figure 3.13. Classical theory does predict that the number of

Light frequency v = constant
Voltage V= constant
Photoelectric
current

Light intensity

Difficulties of classical
theory

FIGURE 3.14 The photoelec-
tric current 7 is a linear func-
tion of the light intensity for a
constant v and V.
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photoelectrons ejected will increase with intensity in agreement with experi-
mental result (4).

Finally, classical theory would predict that for extremely low light intensities,
a long time would elapse before any one electron could obtain sufficient energy
to escape. We observe, however, that the photoelectrons are ejected almost im-
mediately. Experiments have shown that a light intensity equivalent to the illu-
mination produced over a 1-cm? area by a 100-watt incandescent bulb at a dis-

tance of 1000 km is sufficient to produce photoelectrons within a second.

Example 3.9

Photoelectrons may be emitted from sodium (¢ = 2.3 eV)
even for light intensities as low as 107® W/m?. Calculate clas-
sically how long the light must shine in order to produce a
photoelectron of kinetic energy 1 eV.

Solution: Let’s assume that all of the light is absorbed
in the first layer of atoms in the surface. First calculate the
number of sodium atoms per unit area in a layer one atom
thick.

Avogadro’s number

X Density =
Na gram molecular weight v

Number of Na atoms

If all the light is absorbed in the first layer of atoms, the
number of exposed atoms per m? is

atoms atoms

2.54 X 10%8 s X 3.40 X 1071 m = 8.64 X 10'®

2

With the intensity of 107® W/m?, each atom will receive en-
ergy at the rate of

W 1

— X — =116 X 10727 W
m?  8.64 X 10'® atoms/m?

10+

J 1
&=
s 1.6 X 10710 J/eV
=7.25 X 1079 eV/s

—L36 T)=2d

Volume We have assumed that each atom absorbs, on the average,

6,02 X 10 atoms/mole ¢ the same energy and that a single electron in the atom ab-
23 2/mol X097 —= = sorbs all the energy. The energy needed to eject the photo-

Bl ERG o electron is 2.3 eV for the work function and 1 eV for the ki-
__atoms __atoms netic energy, for a total of 3.3 eV. Using the rate of energy

2.54 X 1022 e = 2.54:X 10% A (3.26) absorption of 7.25 X 1079 eV/s, we can calculate the time T

needed to absorb 3.3 eV:
To estimate the thickness of one layer of atoms, we assume

a cubic structure.

Ti=33eV

7.25' X 10~ eV /s

S REEROR T R = 4.55 X 10% s

dﬂ m?

= 14 years
d=340X10"1m

The time calculated classically to eject a photoelectron is
14 years!

= thickness of one layer of sodium atoms

Einstein’s Theory

Albert Einstein was intrigued by Planck’s hypothesis that the electromagnetic ra-
diation field had to be absorbed and emitted in quantized amounts. Einstein
took Planck’s idea one step further and suggested that the electromagnelic radia-
tion field itself is quantized, and that “the energy of a light ray spreading out from
a point source is not continuously distributed over an increasing space but con-
sists of a finite number of energy quanta which are localized at points in space,
which move without dividing, and which can only be produced and absorbed as
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complete units.”™ We now call these energy quanta of light photons. According
to Einstein each photon has the energy quantum,

E= hv (3.27)

where v is the frequency of the electromagnetic wave associated with the light
and A is Planck’s constant. The photon travels at the speed of light in a vacuum,
and its wavelength A is given by

Av = (3.28)

In other words, Einstein proposed that in addition to its well-known wavelike as-
pect, amply exhibited in interference phenomena, light should also be consid-
ered to have a particlelike aspect. Einstein suggested that the photon (quantum
of light) delivers its entire energy hv to a single electron in the material. In
order to leave the material, the struck electron must give up an amount of en-
ergy ¢ to overcome its binding in the material. The electron may lose some ad-
ditional energy by interacting with other electrons on its way to the surface.
Whatever energy remains will then appear as kinetic energy of the electron as it
leaves the emitter. The conservation of energy requires that

Energy before (photon) = Energy after (electron)
hv = ¢ + K.E. (electron) (3.29)

Because the energies involved here are on the order of eV, we are safe in using
the nonrelativistic form of the electron’s kinetic energy, 3mv?. The electron’s
energy will be degraded as it passes through the emitter material, so, strictly
speaking, we want to experimentally detect the maximum value of the kinetic
energy.

1
hv= ¢ + §mv;211ax (3.30)

The retarding potentials measured in the photoelectric effect are thus the op-
posing potentials needed to stop the most energetic electrons.

1
eVy = ) MUZ, (3.31)

Quantum Interpretation

We should now re-examine the experimental results of the photoelectric effect
to see whether Einstein’s quantum interpretation can explain all the data. The
first and second experimental results are easily explained because the kinetic en-
ergy of the electrons does not depend on the light intensity at all, but only on
the light frequency and the work function of the material.

1

Emvfmx =eVy=hvr— ¢ (3.32)
A potential slightly more positive than —V;, will not be able to repel all the elec-
trons, and, for a close geometry of the emitter and collector, practically all the
electrons will be collected when the retarding voltage is near zero. For very large

*See the English translation of A. Einstein, Ann. Physik 17, 132 (1905) by A. B. Arons and M. B.
Peppard, Am. J. Phys. 33, 367 (1965).

Energy quantum

101
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Millikan believed Einstein
was wrong

Quantization
of electromagnetic
radiation field

positive potentials all the electrons will be collected, and the photocurrent will
level off as shown in Figure 3.11. If the light intensity increases, there will be
more photons per unit area, more electrons ejected, and therefore a higher pho-
tocurrent, as displayed in Figure 3.11.

If a different light frequency is used, say v,, then a different stopping po-
tential is required to stop the most energetic electrons [see Equation (3.32)],
Voo = hvs — ¢. For a constant light intensity (more precisely, a constant number
of photons/area/time), a different stopping potential Vj, is required for each v,
but the maximum photocurrent will not change, because the number of photo-
electrons ejected is constant (see Figure 3.12). The quantum theory easily ex-
plains Figure 3.14, because the number of photons increases linearly with the
light intensity, producing more photoelectrons and hence more photocurrent.

Equation (3.32), proposed by Einstein in 1905, predicts that the stopping
potential will be linearly proportional to the light frequency, with a slope A, the
same constant found by Planck. The slope is independent of the metal used to
construct the photocathode. The data available in 1905 were not sufficiently ac-
curate either to prove or to disprove Einstein’s theory, and the theory was re-
ceived with skepticism, even by Planck himself. R. A. Millikan, then at the Uni-
versity of Chicago, tried to show Einstein was wrong by undertaking a series of
elegant experiments that required almost ten years to complete. In 1916 he re-
ported data confirming Einstein’s prediction. From data similar to that shown
in Figure 3.13, Millikan found the value of A to be in almost exact agreement
with the one determined for blackbody radiation by Planck. Equation (3.32) can
be rewritten

|

eVy = é-mvﬁm = hv — hy, (3.33)
where ¢ = hy, represents the negative of the y intercept. The frequency v, rep-
resents the threshold frequency for the photoelectric effect (when the kinetic
energy of the electron is precisely zero). Einstein’s theory of the photoelec-
tric effect was gradually accepted after 1916; finally in 1922 he received the
Nobel Prize for the year 1921, primarily for his explanation of the photoelec-
tric effect.*

We should summarize what we have learned about the quantization of the
electromagnetic radiation field. First, electromagnetic radiation consists of pho-
tons which are particlelike (or corpuscular), each consisting of energy

he
E=Shys— (3.34)
A
where v and A are the frequency and wavelength of the light, respectively. The
total energy of a beam of light is the sum total of the energy of all the photons
and for monochromatic light is an integral multiple of Ahv (generally the integer
is very large).

This representation of the photon picture must be true over the entire elec-
tromagnetic spectrum from radio waves to visible light, x rays, and even high-
energy gamma rays. This must be true because, as we saw in Chapter 2, a photon
of given frequency, observed from a moving system, can be redshifted or
blueshifted by an arbitrarily large amount, depending on the system’s speed and

*R. A. Millikan also received the Nobel Prize in 1923, partly for his precise study of the photoelectric
effect and partly for measuring the charge of the electron. Millikan’s award was the last in a series of
Nobel Prizes spanning 18 years that honored the fundamental efforts to measure and understand the
photoelectric effect: Lenard, Einstein, and Millikan.
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direction of motion. We will examine these possibilities later. During emission or
absorption of any form of electromagnetic radiation (light, x rays, gamma rays,
etc.), photons must be created or absorbed. The photons have only one speed:
the speed of light (= ¢ in vacuum).

Example 3.10 | [[1[TT{TTT TR OO

Light of wavelength 400 nm is incident upon lithium (¢ = For a wavelength of A = 400 nm we have for the photon’s
2.9 eV). Calculate (a) the photon energy and (b) the stop-  energy:
ping potential Vj, . 1.240 X 10% eV+-nm — 81 eV

400 nm

Solution: (a) Light is normally described by wave-

lengths in nm, so it is useful to have an equation to calculate ~(P) We determine the stopping potential from Equa-

the energy in terms of A. tion (3.32).
oo gy he_ (6:626X107%]-5) (2,098 X 10° m/s) eVo=hv—¢=E-¢
T T A(1602 X 1079 ] /eV) (10-° m/nm) =31eV—29eV=02eV
E= 1.240 X 10% eV nm (3.35) V=02V
A ) A retarding potential of 0.2 V will stop all photoelectrons.

Example 3.11 | [[[[{11/ {11 /FHHERE s

What frequency of light is needed to produce electrons of The photon frequency is now found to be
kinetic energy 3 eV from illumination of lithium? L E (5.9eV)(16 X 10-1°]/eV)

Solution: We determine the photon energy from Equa- =% (6.626 X 10734 ] -s)

o (3.50). = 1.42 X 1013 s71 = 1.42 X 10" Hz
1

o= ¢ + om0

=29eV+3.0eV=59¢eV

Example 3.12 | die L o

For the light intensity of Example 3.9, { = 107® W/m?, then
a wavelength of 350 nm is used. What is the number of

photons/area/s in the light beam? N=—=
E, (1.6 X10719]/eV)(3.5 eV/photon)

x} 10~2]-5"1m—2

Solution: From Equation (3.35) we have
photons

124X 10%eV-nm = B\ = LEx 10 m?-s
Y 350 nm e

Thus even a low-intensity light beam has a large flux of pho-
where E, represents the photon’s energy. Because tons, and even a few photons can produce a photocurrent
(albeit a very small one!).

Intensity d = [N

photons & energy
area time ][ ? photon :|

energy
¥ area time
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Bremsstrahlung process
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FIGURE 3.15 Bremsstrahlung
is a process by which an elec-
tron is accelerated while under
the influence of the nucleus.
The accelerated electron emits
a photon.

3.7 X-Ray Production

In the photoelectric effect, a photon gives up all of its energy to an electron,
which may then escape from the material to which it was bound. Can the inverse
process occur? Can an electron (or any charged particle) give up its energy and
create a photon? The answer is yes, but the process must be consistent with other
laws of physics. Recall that photons must be created or absorbed as whole units.
A photon cannot give up half its energy. Rather, it must give up all its energy. If
in some physical process only part of the photon’s energy were required, then a
new photon would be created to carry away the remaining energy.

However, electrons do not act as photons. An electron may give up part or
all of its kinetic energy and still be the same electron. As we now know, a photon
is electromagnetic radiation. When an electron interacts with the strong electric
field of the atomic nucleus and is consequently accelerated, the electron will ra-
diate electromagnetic energy. According to classical electromagnetic theory, it
would do so continuously. In the quantum picture we must think of the electron
as emitting a series of photons with varying energies; this is the only way that the
inverse photoelectric effect can occur. An energetic electron passing through
matter will radiate photons and lose kinetic energy. The process by which pho-
tons are emitted by an electron slowing down is called bremsstrahlung, from the
German word for “braking radiation.” The process is shown schematically in Fig-
ure 3.15 where an electron (energy E;) passing through the electric field of a nu-
cleus slows down and produces a photon (E = Av). The final energy of the elec-
tron is then

E;=E — hv (3.36)

from the conservation of energy. The nucleus absorbs very little energy in order
to conserve linear momentum. One or more photons may be created in this way
as electrons pass through matter.

In Section 3.1 we mentioned Rontgen’s discovery of x rays. The x rays are
produced by the bremsstrahlung effect in apparatus shown schematically in Fig-
ure 3.16. Current passing through a filament produces copious numbers of elec-
trons by thermionic emission. These electrons are focused by the cathode struc-
ture into a beam and are accelerated by voltages of thousands of volts until they
impinge on a metal anode surface, producing x rays by bremsstrahlung (and
other processes) as they stop in the anode material. Much of the electron’s ki-
netic energy is lost by heating the anode and not by bremsstrahlung. The x-ray
tube is evacuated so that the air between the filament and anode will not scatter

,J( X rays
«
Hot ﬁ]amem\
253 /

TR st i

Evacuated F“] amtirr“
tube Heny

Target

+
|

=
|

High voltage
power supply

FIGURE 3.16 Schematic of x-ray tube where x rays are produced by the bremsstrahlung
process of energetic electrons.
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the electrons. The x rays produced pass through the sides of the tube and can
be used for a large number of applications, including medical diagnosis and
therapy, fundamental research in crystal and liquid structure, and, in engineer-
ing, the diagnosis of flaws in large welds and castings. X rays from a standard
tube include photons of many wavelengths. By scattering x rays from crystals we
can produce strongly collimated monochromatic (single wavelength) x-ray
beams. Early x-ray spectra produced by x-ray tubes of accelerating potential
35 kV are shown in Figure 3.17. These particular tubes had targets of tungsten,
molybdenum, and chromium. The smooth, continuous x-ray spectra are those
produced by bremsstrahlung, and the sharp “characteristic x rays” are produced
by atomic excitations and will be explained in Section 4.6. X-ray wavelengths typ-
ically range from 0.01 to 1 nm. However, high-energy accelerators can produce
x rays with wavelengths as short as 10~% nm.

Notice that in Figure 3.17 the minimum wavelength A, for all three targets
is the same. The minimum wavelength A,;, corresponds to the maximum fre-
quency. If the electrons are accelerated through a voltage V;, then their kinetic
energy is ¢V;,. The maximum photon energy therefore occurs when the electron

— To 15.2
—=To 37.2

12

11}

Relative intensity

10

A(X107% nm)

A

min

FIGURE 3.17 The relative intensity of x rays produced in an x-ray tube is shown for an
accelerating voltage of 35 kV. Notice that A, is the same for all three targets. From C. T.
Ulrey, Physical Review 11, 405 (1918).
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1068 Chapter 3 The Experimental Basis of Quantum Theory

gives up all of its kinetic energy and creates one photon (this is relatively un-
likely, however). This process is the inverse photoelectric effect. The conserva-
tion of energy requires that the electron kinetic energy equals the maximum
photon energy (where we neglect the work function ¢ because it is normally so
small compared to ¢V}).

he
eVo = hvga = W
or
Duane-Hunt rule Amin = E L o e LAl (3.37)

€ VO— Vo

The relation Equation (3.37) was first found experimentally and is known as the
Duane-Hunt rule. Its explanation in 1915 by the quantum theory is now consid-
ered further evidence of Einstein’s photon concept. The value A, depends
only on the accelerating voltage and is the same for all targets.

Only the quantum hypothesis explains all of the data. Because the heavier
elements have stronger nuclear electric fields, they are more effective in decel-
erating electrons and making them radiate. The intensity of the x rays increases
with the square of the atomic number of the target. The intensity is also ap-
proximately proportional to the square of the voltage used to accelerate the elec-
trons. This is why high voltages and tungsten anodes are so often used in x-ray
machines. Tungsten also has a very high melting temperature and can withstand
high electron-beam currents.

Example 3.13

If we have a tungsten anode (work function ¢ = 4.5 €V) and Using the Duane-Hunt rule of Equation (3.37) we de-
electron acceleration voltage of 35 kV, why do we ignore in  termine
Equation (3.36) the initial kinetic energy of the electrons 5
: 1.24 X 1076V-m B
from the filament and the work functions of the filaments Apiny = 5 =354 xX10""'m
and anodes? What is the minimum wavelength of the x rays? 35 x10°V

0.0354 nm
Solution: The inital kinetic energies and work func-

tions are on the order of a few electron volts (eV), whereas
the kinetic energy of the electrons due to the accelerating
voltage is 35,000 eV. The error in neglecting everything but
eV, is small.

which is in good agreement with the data of Figure 3.17.

3.8 Compton Effect

When a photon enters matter, it is likely to interact with one of the atomic elec-
trons. Classically, the electrons will oscillate at the photon frequency because of
the interaction of the electron with the electric and magnetic field of the pho-
ton and will reradiate electromagnetic radiation (photons) at this same fre-
Thomson scattering quency. This is called Thomson scattering. However, in the early 1920s Arthur
Compton experimentally confirmed an earlier observation by J. A. Gray that, es-
pecially at backward-scattering angles, there appeared to be a component of the
emitted radiation (called a modified wave) that had a longer wavelength than
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Scattered photon

E=hv'
_h
Incident photon TA
E=hv "
NN~ t*\
p= £ Target
A electron

- b .
E;= me* Recoil electron

E=E,

FIGURE 3.18 Compton scattering of a photon by an electron essentially at rest.

the original primary (unmodified) wave. Classical electromagnetic theory can-
not explain this modified wave. Compton then attempted to understand theo-
retically such a process and could only find one explanation: Einstein’s photon
particle concept must be correct. The scattering process is shown in Figure 3.18.

Compton proposed in 1923 that the photon is scattered from only one elec-
tron, rather than from all the electrons in the material, and that the laws of the
conservation of energy and momentum apply as in any elastic collision between
two particles. We recall from Chapter 2 that the momentum of a particle moving
at the speed of light (photon) is given by

E o ok

= —m —ms

3.38
c c A ( )

We treat the photon as a particle with a definite energy and momentum. Scat-
tering takes place in a plane, which we take to be the xy plane in Figure 3.18. Be-
cause momentum is a vector, both x and y components must be conserved. The
energy and momentum before and after the collision are given below (treated
relativistically).

Initial System Final System

Photon energy hv hv'

) ) ) h h
Photon momentum in x direction (p,) g ITCOS 0

. - . fi .
Photon momentum in y direction (p,) 0 Fsm 0
Electron energy me? £, = mc® + K.E.
Electron momentum in x direction (p,) 0 p.cos ¢
Electron momentum in y direction (p,) 0 —p.sin ¢

In the final system the electron’s total energy is related to its momentum by

EF =i{mig>)° + pre= (3.39)
We can write the conservation laws now as

Energy: hv+ mc? = ' + E, (3.40a)

h h
[ — = —cos 0+ p,cos ¢ (3.40b)

) A A

h .

by Ysin 0 = p.sin ¢ (3.40c¢)
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Professor Arthur Compton of
the University of Chicago is
shown here in 1931 looking
into an ionization chamber that

he designed to study cosmic
rays in the atmosphere. These
complex detectors had to be
quite sturdy and were carefully
tested and calibrated on Earth
before sending up with bal-
loons. UPI/Corbis-Bettmann.

Compton scattering
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Compton effect

Compton wavelength

We will relate the change in wavelength AA = A" — A to the scattering angle 6 of
the photon. We first eliminate the recoil angle ¢ by squaring Equations (3.40b)
and (3.40c) and adding them together, resulting in

- hye h\2 hy/ h i
= (5) ) 23 () o

Then we substitute E, from Equation (3.40a) and p, from Equation (3.41) into
Equation (3.39) (setting A = ¢/v).

[h(v — V') + mc?]?2 = m?ct + ()2 + (W')? — 2(hv) (hv')cos 6
Squaring the left-hand side and canceling terms leaves
me*(v— V') = hvv' (1 — cos 0)

Rearranging terms gives

‘ ¢
h v— v AN 1,
——= (1 —cos 0) = — = - = — (A —A)
me? vy c? c
AN
or
h
AA=A"—A=—(1 — cos ) (3.42)
me

which is the result Compton found in 1923 for the increase in wavelength of the
scattered photon.

Compton then proceeded to check the validity of his theoretical result by
performing a very careful experiment in which he scattered x rays of wavelength
0.071 nm from carbon at several angles and showed that the modified wave-
length was observed in good agreement with his prediction.* A part of his data
is shown in Figure 3.19 where both the modified (A") and unmodified scattered
waves (A) are seen.

The kinetic energy and scattering angle of the recoiling electron can also be
predicted. Experiments in which the recoiling electrons were detected were
soon carried out, thus confirming Compton’s theory completely. The process of
elastic photon scattering from electrons is now called the Compton effect. Note
that the difference in wavelength, AA = A" — A, only depends on the constants
h, ¢, and m, in addition to the scattering angle 6. The quantity A, = h/m,c =
2.43 X 107% nm is called the Compton wavelength of the electron. Only for wave-
lengths on the same order as A, (or shorter) will the fractional shift AA/A be
large. For visible light, for example with A = 500 nm, the maximum AX/A is of
the order of 1075, and AA would be difficult to detect. The probability of the oc-
currence of the Compton effect for visible light is also quite small. However, for
the x rays of wavelength 0.071 nm used by Compton, the ratio of AA/A is ~0.03
and could easily be observed. Thus, the Compton effect is important only for
x rays or y-ray photons and is small for visible light.

The physical process of the Compton effect can be described as follows. The
photon elastically scatters from an essentially free electron in the material. (The

#An interesting self-account of Compton'’s discovery can be found in A. H. Compton, Am. J. Phys. 29,
817-820 (1961).
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Molybdenum K,
line, primary

(b)

Scattered
from carbon
at 135°

Intensity —

Unmodified

| |

6°30° e 7°30'
Glancing angle from calcite
(proportional to wavelength)

FIGURE 3.19 Compton’s original data showing the primary x-ray beam from Mo un-
scattered in (a), and the scattered spectrum from carbon at 135° showing both the mod-
ified and unmodified wave in (b). Adapted from Arthur H. Compton, Physical Review 22, 409 (1923).

photon’s energy is so much larger than the binding energy of the almost free
electron that the binding energy can be neglected.) The newly created scattered
photon then has a modified, longer wavelength. What happens if the photon
scatters from one of the tightly bound inner electrons? Then the binding energy
is not negligible, and the electron may not be able to be dislodged. The scatter-
ing would then effectively be from a much heavier system (nucleus + electrons).
Then the mass in Equation (3.42) will be several thousand times larger than m,,
and AA would be correspondingly smaller. Scattering from tightly bound elec-
trons results in the unmodified photon scattering (A = A"), which also is ob-
served in Figure 3.19. Thus, the quantum picture also explains the existence of
the unmodified wavelength predicted by the classical theory (Thomson scatter-
ing) alluded to earlier.

The success of the Compton theory convincingly demonstrated the correct-
ness of both the quantum concept and the particle nature of the photon. The
use of the laws of the conservation of energy and momentum applied relativisti-
cally to pointlike scattering of the photon from the electron finally convinced
the great majority of scientists of the validity of the new modern physics. Comp-
ton received the Nobel Prize in 1927.

Example 3.14

An x ray of wavelength 0.05 nm scatters from a gold target. Solution: From Equation (3.35) the x-ray energy is

(a) Can the x ray be (301npt.0n-5(i;1ttered from an electron ) 1.94 X 10® eV - nm

bound by as much as 62,000 eV? (b) What is the largest E, ray = 0.05 nm = 24,800 eV = 24.8 keV
wavelength of scattered photon that can be observed? '

(¢) What is the kinetic energy of the most energetic recoil ~ Therefore, the x ray does not have enough energy to dis-
electron and at what angle does it occur? lodge the inner electron, which is bound by 62 keV. In this
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case we have to use the atomic mass in Equation (3.42),
which results in little change in the wavelength (Thomson
scattering). Scattering may still occur from outer electrons.

The longest wavelength A" = A + AA occurs when AA is
a maximum or when 6 = 180°.

S

A=A+

h
(1 —cos180°) =A+
m,c m,C

= 0.05 nm + 2(0.00243 nm) = 0.055 nm

The energy of the scattered photon is then a minimum and

Quantum Theory

The ditference in energy of the initial and final photon
must equal the kinetic energy of the electron (neglecting
binding energies). The recoil electron must scatter in the
forward direction at ¢ = 0° when the final photon is in
the backward direction (# = 180°) in order to conserve
momentum. The kinetic energy of the electron is then a
maximum.

=E. ...+ K.E. (electron)

Ex ray % ray
— E’

K.E. (electron) = E % rav

= 248 keV — 22.5 keV = 2.3 keV

X ray

has the value

Because AX does not depend on A or A', we can determine
the wavelength (and energy) of the incident photon by
merely observing the kinetic energy of the electron at for-
ward angles (see Problem 50).

, _ 1.24 X 10%eV-nm
i 0.055 nm

=225 X 10% eV = 22,5 keV

3.9 Pair Production and Annihilation

A general rule of nature is that if some process is not absolutely forbidden (by
some law like conservation of energy, momentum, or charge) it will eventually
occur. In the photoelectric effect, bremsstrahlung, and the Compton effect, we
have studied exchanges of energy between photons and electrons. Have we cov-
ered all possible exchanges? For example, can the kinetic energy of a photon be
converted into particle mass and vice versa? It would appear that if none of the
conservation laws are violated, then such a process should be possible.

First, let us consider the conversion of photon energy into mass. The elec-
tron, which has a mass, m = 0.51 MeV/c?, is the lightest particle within an atom.
Because an electron has negative charge, we must also create a positive charge
to balance charge conservation. However, in 1932, C. D. Anderson (Nobel Prize,
1936) observed a positively charged electron (¢") in cosmic radiation. This par-
ticle, called a positron, had been predicted to exist several years earlier by
P. A. M. Dirac (Nobel Prize, 1933). It has the same mass as the electron but an
opposite charge. Positrons are also observed when high-energy gamma rays
(photons) pass through matter. Experiments show that a photon’s energy can be
converted entirely into an electron and a positron in the reaction

Positron

Pair production y— et + e (3.43)

However, this process only occurs when the photon passes through matter, be-
cause energy and momentum are not conserved when the reaction takes place
in isolation: the missing momentum must be supplied by interaction with a mas-
sive object such as a nucleus. :

e

Example 3.15 ||| [ [ [ ][]/} {[1H{EHFHE Snee

)
o 7

o —

Show that a photon cannot produce an electron-positron  Energy hv=E, +E_ (3.44a)
pair in free space as shown in Figure 3.20a. Ay

Momentum, p, — =p_cos 6_ + p. cos 0. (3.44b)
Solution: Let the total energy and momentum of the b
electron and positron be E_, p_ and E,, p,, respectively. Momentum, b, 0=p_sin@_— p, sin 6, (3.44c)

The conservation laws are then



Equation (3.44b) can be written as

hv=p_ccos 0_ + p,ccos 6. (3.45)

Show that a photon cannot produce an electron—positron
P P p
pair in free space as shown in Figure 3.20a.

Solution: Let the total energy and momentum of the
electron and positron be E_, p_ and E,, p., respectively.
The conservation laws are then

Energy hv=FE_ + E_ (3.44a)
Momentum, p, h—: =p_cos 0_+ p, cos O, (3.44b)
Momentum, p, 0=p_sin6_ — p, sin 6, (8.44¢)
Equation (3.44b) can be written as

hv=p_ccos 6_ + p.ccos 6, (3.45)

If we insert £.2 = p.%c? + m?c* into Equation (3.44a), we
have

h="Vp, 22+ m2ct + Vp_ 2+ mict  (3.46)

The maximum value of Avis, from Equation (3.45),
v =pctp, e
But from Equation (3.46), we also have
hw>p c+ pic

Equations (3.45) and (3.46) are inconsistent and cannot si-
multaneously be valid. Equations (3.44), therefore, do not
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describe a possible reaction. The reaction displayed in Fig-

ure 3.20a is not possible, because energy and momentum
are not simultaneously conserved.

Photon

Before

Free space (cannot occur)

(a)

Photon
@ @
Nucleus Nucleus
Before After

(b)

FIGURE 3.20 (a) A photon cannot decay into an elec-

tron—positron pair in free space, but (b) near a nucleus, the
nucleus can absorb sufficient momentum to allow the
process to proceed.

Consider the conversion of a photon into an electron and positron (called
pair production) that takes place inside an atom where the electric field of a
nucleus is large. The nucleus recoils and takes away a negligible amount of en-
ergy but a considerable amount of momentum. The conservation of energy will
now be

hv=E, + E_ + K.E. (nucleus) (3.47)

A diagram of the process is shown in Figure 3.20b. The photon energy must be
at least equal to 2m,¢? in order to create the rest masses.

hv > 2m,c® = 1.02 MeV (for pair production) (3.48)

The probability of pair production increases dramatically both with higher pho-
ton energy and with higher atomic number Z of the nearby nucleus because of
the correspondingly higher electric field which mediates the process.

The next question concerns the new particle, the positron. Why is it not
commonly found in nature? We need to answer also the question posed earlier.
Can mass be converted to pure kinetic energy?

Positrons are found in nature. They are detected in cosmic radiation and as
products of radioactivity from a few radioactive elements. However, their lives are
doomed because of their interaction with electrons. When positrons and elec-
trons are in near proximity for even a short period of time they annihilate each
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Pair annihilation

mcz
E g 9
mc*

Positronium, before decay
(schematic only)

(a)

‘L-Lﬁal

After annihilation

(b)

hvs

FIGURE 3.21 Annihilation of
positronium atom (consisting
of an electron and positron),
producing two photons.

PET scan

Antiparticles

other, producing photons. A positron passing through matter will quickly lose its
kinetic energy through atomic collisions and with some probability will annihi-
late with an electron. After a positron slows down, it is drawn to an electron by
their mutual electric attraction, and the electron and positron may then form an
atomlike configuration called positronium, where they rotate around each other.
Eventually the electron and positron come together and annihilate each other
(typically in 107'° s) producing electromagnetic radiation (photons). The
process ¢ + ¢~ — y + yis called pair annihilation.

Consider a positronium “atom” in free space. It must emit at least two pho-
tons in order to conserve energy and momentum. If the positronium annihila-
tion takes place near a nucleus, it is possible that only one photon will be cre-
ated, the missing momentum being supplied by nucleus recoil as in pair
production, and under certain conditions three photons may be produced. Be-
cause the emission of two photons is by far the most likely annihilation mode, let
us consider this mode, displayed in Figure 3.21. The conservation laws for the
process ("¢ ), om— ¥ + ¥ will be (we neglect the atomic binding energy of
about 6.8 eV)

Energy 2m,c® =~ hv, + hvy (3.49a)
hvy  hwy

Momentum 0=—-— (3.49b)
c ¢

where the photons obviously emerge in precisely opposite directions with equal
energies, because the initial momentum is assumed to be zero (positronium at
rest). Hence v; = v, = v. Thus Equation (3.49a) becomes

2m,c® = 2hv
or

hv = m,c* = 0.511 MeV (3.50)

In other words, the two photons from positronium annihilation will move in op-
posite directions, each with energy 0.511 MeV. This is exactly what is observed
experimentally.

The production of two photons in opposite directions with energies of about
3 MeV is so characteristic a signal of the presence of a positron that it has useful
applications. Positron Emission Tomography (PET) scanning has become a stan-
dard diagnostic technique in medicine. A positron-emitting radioactive chemical
(containing a nucleus such as °O, ''C, '*N, or '*F) injected into the body causes
two characteristic annihilation photons to be emitted from the points where the
chemical has been concentrated by physiological processes. The location in the
body where the photons originate is identified by measuring the directions of
two gamma-ray photons of the correct energy that are detected in coincidence,
as shown in Figure 3.22. Measurement of blood flow in the brain is an example
of a diagnostic tool used in the evaluation of strokes, brain tumors, and other
brain lesions.

Before leaving the subject of positrons we should pursue briefly the idea of
antiparticles. The positron is the antiparticle of the electron, having the oppo-
site charge but the same mass.* In 1955 the antiproton was discovered by
E. G. Segré and O. Chamberlain (Nobel Prize, 1959), and by now, many an-
tiparticles have been found. Physicists love to find symmetry in nature. We now

#There are other particle properties (for example, spin) that will be described later (particularly in
Chapters 7 and 14) and also need to be considered.
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FIGURE 3.22 Positron emission tomography is a useful medical diagnostic to study the
path and location of a positron-emitting radiopharmaceutical in the human body. (a) Ap- .
propriate radiopharmaceuticals are chosen to concentrate by physiological processes in
the region to be examined. (b) The positron travels only a few mm before annihilation,
which produces two photons that, after detection, give the positron position. (¢) PET scan
of a normal brain. (a) and (b) are after G. L. Brownell, et al., Science 215, 619 (1982); (¢) National In-
stitute of Health/Science Photo Library.

believe that every particle has an antiparticle. In some cases, as for photons or
neutral pi mesons, the particle and antiparticle are the same, but for most other
particles (for example, the neutron and proton), particle and antiparticle are
distinct.

We know that matter and antimatter cannot exist together in our world, be-
cause their ultimate fate would be annihilation. However, we may let our specu-
lation run rampant! If we believe in symmetry, might there not be another world,
perhaps in a distant galaxy, that is made of antimatter? Because galaxies are so
far apart in space, annihilation would be infrequent. Modern cosmology predicts
that the universe should be made up almost entirely of real particle matter and
explains the obvious asymmetry this involves. However, if a large chunk of ant-
matter ever struck the Earth, it would tend to restore the picture of a symmetric
universe. As we see from Problem 49, however, in such an event there would be
no one left to receive the appropriate Nobel Prize.

e

Summéry

NS

In 1895 Rontgen discovered x rays, and in 1897 Thomson
proved the existence of electrons and measured their
charge to mass ratio. Finally, in 1911 Millikan reported an
accurate determination of the electron’s charge. Experi-
mental studies resulted in the empirical Rydberg equa-
ton to calculate the wavelengths of the hydrogen atom’s
spectrum:

1
3

1
=RH(—2——) k>n
"

2 (3.13)

o
A

where Ry = 1.096776 > 107 m™!.

In order to explain blackbody radiation Planck pro-
posed his quantum theory of radiation in 1900 to signal the
era of modern physics. From Planck’s theory we can derive
Wien's displacement law

Apax T= 2898 X107 * m+K (3.14)
and the Stefan-Boltzmann law,
R(T) = eaT* (3.16)
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Planck’s radiation law gives the power radiated per unit area
per unit wavelength from a blackbody.

2mc2h 1

/\5 ghr/)\k'l‘ =1

LA, T) = (3.23)
The oscillators of the electromagnetic radiation field can
only change energy by quantized amounts given by AE =
hv, where h = 6.6261 X 1073* J - s is called Planck’s constant.

Classical theory could not explain the photoelectric ef-
fect, but in 1905, Einstein proposed that the electromag-
netic radiation field itself is quantized. We call these parti-
clelike quanta of light photons, and they each have energy
E = hv and momentum p = h/A. The photoelectric effect is
easily explained by the photons each interacting with only
one electron. The conservation of energy gives

hv= ¢+ L mu?

2 max

(3.30)

where ¢ is the work function of the emitter. The retarding
potential required to stop all electrons depends only on the
photon’s frequency
1 .
eVy = 2 mo? . = hv — hpy
where ¢ = hy,. Millikan proved experimentally in 1916 that
Einstein’s theory was correct.
Bremsstrahlung radiation (x rays) is emitted when
charged particles (for example, electrons) pass through

(3.33)

matter and are accelerated by the nuclear field. These x rays
have a minimum wavelength

he

’\m'm =
eVo

(3.37)
where electrons accelerated by a voltage of 1}, impinge on a
target.

In the Compton effect a photon scatters from an elec-
tron with a new photon created, and the electron recoils.
For an incident and exit photon of wavelength A and A, re-
spectively, the change in wavelength is

h
AA=A"—A=—( —cos )
me

(3.42)

when the exit photon emerges at angle 6 to the original
photon direction. The Compton wavelength of the electron
is A, = h/m,c = 2.43 X 1073 nm. The success of the Comp-
ton theory in 1923 convincingly demonstrated the particle-
like nature of the photon.
Finally, photon energy can be converted into mass in
pair production
y—et + e (3.43)

where ¢* is the positron, the antiparticle of the electron.
Similarly a particle and antiparticle annihilate catastrophi-
cally in the process called pair annihilation.

ett+e oyt oy

Questions

1. How did the ionization of gas by cathode rays pre-
vent H. Hertz from discovering the true character of
electrons?

2. Why do television tubes generally deflect electrons
with magnetic fields rather than with electric fields, as
is done in cathode-ray-tube oscilloscopes?

3. In Thomson’s ¢/m experiment, does it matter whether
the electron passing through interacts first with the
electric field or with the magnetic field? Explain.

4. Women in the late 1890s were terrified about the pos-
sible misuse of the new Rontgen x rays. Why do you
think this fear occurred? Why was it no problem?

5. In Example 3.2, why would you be concerned about
observing a cluster of several balls in the Millikan elec-
tron charge experiment?

6. In Figure 3.5 why does the histogram start smearing
out for balls with multiple electron charges?

7. How is it possible for the plastic balls in Example 3.2
to have both positive and negative charges? What is
happening?

8. Why do you suppose Millikan tried several different
kinds of oil, as well as H,O and Hg, for his oil drop
experiment?

9. In the experiment of Example 3.2, how could you ex-
plain an experimental value of ¢ = 0.8 X 10~ '9C?

10. Why do you suppose scientists worked so hard to de-
velop better diffraction gratings?

11. Why was helium discovered in the sun’s spectrum be-
fore being observed on Earth? Why was hydrogen ob-
served on Earth first?

12. Do you believe there is any relation between the wave-
lengths of the Paschen (1908) and Pfund (1924) series
and the respective dates they were discovered? Explain.

13. Itissaid that no two snowflakes look exactly alike, but
we know that snowflakes have a quite regular, al-
though complex, crystal structure. Discuss how this
could be due to quantized behavior.

14. Why do we say that the elementary units of matter or
“building blocks” must be some basic unit of mass-
energy rather than of only mass?

15. Why is a red-hot object cooler than a white-hot one of
the same material?

16. Why did scientists choose to study blackbody radiation
from something as complicated as a hollow container
rather than the radiation from something simple like
a solid cylindrical thin disk (like a dime)?
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Why does the sun apparently act as a blackbody?

In a typical photoelectric effect experiment, consider
replacing the metal photocathode by a gas. What dif-
ference would you expect?

Why is it important to produce x-ray tubes with high
accelerating voltages that are also able to withstand
electron currents?

For a given beam current and target thickness, why
would you expect a tungsten target to produce a

21.

22.
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higher x-ray intensity than targets of molybdenum or
chromium?

List all possible known interactions between photons
and electrons discussed in this chapter. Can you think
of any more?

What do you believe to be an optimum lifetime for a
positron-emitting radioactive nuclide used in brain tu-
mor diagnostics? Explain.

Discovery of the X Ray and the Electron

Design an apparatus that will produce the correct
magnetic field needed in Figure 3.2,

For an electric field of 2 X 105 V/m, what is the
strength of the magnetic field needed to pass an elec-
tron of speed 2 X 10° m/s with no deflection? Draw v,
E. and B directions for this to occur.

Across what potential difference does an electron
have to be accelerated in order to reach the speed
v=2 X 107 m/s? Should you use relativistic calcu-
lations?

An electron entering Thomson’s ¢/m apparatus (Fig-
ure 3.2) has an initial velocity (in horizontal direction
only) of 0.5 X 107 m/s. Lying around the lab is a per-
manent horseshoe magnet of strength 1.3 X 1072 T,
which you would like to use. What electric field will
you need in order to produce zero deflection of the
electrons as they travel through the apparatus? When
the magnetic field is turned off, but the same electric
field remains, how large a deflection will occur if the
region of nonzero E and B fields is 2 cm long?

Determination of Electron Charge

Consider the following possible forces on an oil drop
in Millikan's experiment: gravitational, electrical, [ric-
tional, and buoyant. Draw a diagram indicating the
forces on the oil drop (a) when the electric field is
turned off and the droplet is falling freely, and (b)
when the electric field causes the droplet to rise.
Neglecting the buoyancy force on an oil droplet, show
that the terminal speed of the droplet is v, = mg/Jf,
where fis the coefficient of friction when the droplet
is in free fall. (Remember that the frictional force F,
is given by F, = —fv where velocity is a vector).
Stokes’s law relates the coefficient of friction fto the
radius r of the oil drop and the viscosity 7 of the
medium the droplet is passing through: /= 6.
Show that the radius of the oil drop is given in terms
of the terminal velocity v, (see previous problem), 7,
£, and the density of the oil p by r= 3V nuv,/2gp.

In a Millikan oil drop experiment the terminal veloc-
ity of the droplet is observed to be 1.3 mm/s. The

10.

11

3.4

12.
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13.

14.

15.

16.

density of the oil is p = 900 kg,/m” and the viscosity of
air is = 1.82 X 107° kg/ms. Using the results of
the two previous problems, calculate (a) the droplet
radius, (b) the mass of the droplet, and (c) the coef-
ficient of friction.

Line Spectra

What is the series limit (that is, the smallest wave-
length) for the Lyman series? For the Balmer series?
Light from a slit passes through a transmission dif-
fraction grating of 400 lines/mm, which is located
2.0 m from a screen. What are the distances on the
screen (from the unscattered slit image) of the three
brightest visible (first order) hydrogen lines?

A transmission diffraction grating of 420 lines/mm is
used to study the light intensity of different orders
(n). A screen is located 2.5 m from the grating. What
is the separation on the screen between the three
brightest red lines for a hydrogen source?

Quantization

Quarks have charges *¢/3 and =2¢/3. What combi-
nation of three quarks could yield (a) a proton, (b) a
neutron?

Blackbody Radiation

Calculate A, for blackbody radiation for (a) liquid
helium (4.2 K), (b) room temperature (293 K), and
(c) a steel furnace (2500 K).

Calculate the temperature of a blackbody if the
spectral distribution peaks at (a) gamma rays, A =
10" m, (b) x rays, 1 nm, (c) red light, 670 nm, (d)
broadcast television waves, 1 m, and (e) AM radio
waves, 204 m.

A blackbody's temperature is increased from 900 K to
1900 K. By what factor does the total power radiated
per unit area increase?

For a blackbody at a given temperature 7, what is the
long-wavelength limit (A >> he/kT) of Planck’s radia-
tion law? (This is the Rayleigh-Jeans result known to
Planck in 1895).
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A tungsten filament of a typical incandescent light
bulb operates at a temperature near 3000 K. At what
wavelength is the intensity a maximum?

Use a computer to calculate Planck’s radiation law
for a temperature of 3000 K, which is the tempera-
ture of a typical tungsten filament in an incandes-
cent light bulb. Plot the intensity versus wavelength.
(a) How much of the power is in the visible region
(400-700 nm) compared with the ultraviolet and in-
frared? (b) What is the ratio of the intensity at 400 nm
and 700 nm to the maximum?

Show that the ultraviolet catastrophe is avoided for
short wavelengths (A — 0) with Planck’s radiation law
by calculating the limiting intensity { (A, T) as A — 0.
Estimate the power radiated by (a) a basketball at 20°C,
(b) the human body (assume a temperature of 37°C).
At what wavelength is the radiation emitted by the
human body a maximum? Assume a temperature of
37°C.

If we have waves in a one-dimensional box, such that
the wave displacement W(x, ) =0 for x=0 and
x = L, where Lis the length of the box, and

o s
c? 9 dx?

show that the solutions are of the form

=0 (wave equation)

nmwx

L

Wix, t) = a(r)sin( ) (=12, 8.5 )

and a(t) satisfies the (harmonic-oscillator) equation

d?al(t)

—5— + Q20 =0

nwe : .

where (1, = I B the angular frequency, 27v.

If the angular frequencies of waves in a three-
dimensional box of sides L generalize to

e e e
QO =—(n4+n%+n2)V2
I x y z

where all n are integers, show that the number of dis-
tinct states in the frequency interval v to v + dv(v =
Q/2) is given by (where v is large)

3
dN =47 —q vidv,
i

Let the energy density in the frequency interval v
to v+ dv within a blackbody at temperature 7T be
dU(v, T). Show that the power emitted through a
small hole of area AA in the container is

fﬂﬂuﬂnA

Derive the Planck radiation law emitted by a black-
body. Remember that light has two directions of po-
larization and treat the waves as an ensemble of har-
monic oscillators.
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Photoelectric Effect

An FM radio station of frequency 107.7 MHz puts
out a signal of 50,000 W. How many photons/s are
emitted?

How many photons/s are contained in a beam of
electromagnetic radiation of total power 150 W if
the source is (a) an AM radio station of 1100 kHz, (b)
3-nm x rays, and (c) 4-MeV gamma rays?

What is the threshold frequency for the photoelectric
effect on lithium (¢ = 2.9 €V)? What is the stopping
potential if the wavelength of the incident light is
400 nm?

What is the maximum wavelength of incident light
that can produce photoelectrons from silver (¢ =
4.7 eV)? What will be the maximum kinetic energy of
the photoelectrons it the wavelength is halved?

A 2-mW laser (A = 530 nm) shines on a cesium pho-
tocathode (¢ = 1.9 eV). Assuming an efficiency of
107 for producing photoelectrons (that is, one pho-
toelectron produced for every 10° incident photons),
what is the photoelectric current?

An experimenter finds that no photoelectrons are
emitted from tungsten unless the wavelength of light
is less than 230 nm. Her experiment will require pho-
toelectrons of maximum kinetic energy 2.0 eV. What
frequency light should be used to illuminate the
tungsten?

The human eye is sensitive to a pulse of light contain-
ing as few as 100 photons. For yellow light of wave-
length 580 nm how much energy is contained in the
pulse?

In a photoelectric experiment it is found that a stop-
ping potential of 1.0 V is needed to stop all the elec-
trons when incident light of wavelength 260 nm is
used and 2.3 V is needed for light of wavelength
207 nm. From these data determine Planck’s constant
and the work function of the metal.

What is the limit of energies and frequencies for visi-
ble light of wavelengths 400-700 nm?

X-Ray Production

What is the minimum x-ray wavelength produced for
an x-ray machine operated at 30 kV?

The Stanford Linear Accelerator can accelerate elec-
trons to 50 GeV (50 X 10° eV). What is the minimum
wavelength photons it can produce by bremsstrahlung?
Is this photon still called an x ray?

A television tube operates at 20,000 V. What is A, ;,, for
the continuous x-ray spectrum produced when the
electrons hit the phosphor?

Compton Effect

Calculate the maximum AA/A of Compton scattering
for green light (A =530 nm). Could this be easily
observed?
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A photon having 40 keV scatters from a free electron
at rest. What is the maximum energy that the electron
can obtain?

If a 6 keV photon scatters from a free proton at rest,
what is the change in the photon’s wavelength if the
photon recoils at 9072

Is it possible to have a scattering similar to Compton
scattering from a proton in Hy gas? What would be
the Compton wavelength for a proton? What energy
photon would have this wavelength?

An instrument has resolution AA/A = 0.4%. What
wavelength incident photons should be used in order
to resolve the modified and unmodified scattered
photons for scattering angles of (a) 30°, (b) 90°, and
(c) 170°7

Derive the relation for the recoil kinetic energy of the
electron and its recoil angle ¢ in Compton scattering.
Show that

CAA/A

I+A—'Jl
A

K.E. (electron) = hy

hv 0
cotp=[(1+—|tan —
( me*= ) 2
A gamma ray of 700 keV energy Compton scatters
from an electron. Find the energy of the photon scat-
tered at 110°, the energy of the scattered electron,
and the recoil angle of the electron.
A photon of wavelength 2 nm Compton scatters from
an electron at an angle of 90°. What is the modified
wavelength and the percentage change, AA/A?

Pair Production and Annihilation

How much photon energy would be required to pro-
duce a proton—-antiproton pair? Where could such a
high-energy photon come from?

What is the minimum photon energy needed to cre-
ate an ¢ —¢" pair when a photon collides (a) with a
free electron at rest and (b) with a free proton at rest?
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General Problems

48.

49.

0 50.

51,

52.

What wavelength photons are needed to produce
30 keV electrons in a Compton scattering?

The gravitational energy of the Earth is approximately
1}5 (GM,?/ R;) where M, is the mass of the Earth. This
is approximately the energy needed to blow the Earth
into small fragments (the size of asteroids). How large
would an antimatter meteorite the density of nickel-
iron (p ~ 5 X 10® kg /m?) have to be in order to blow
up the Earth when it strikes? Compute the energy in-
volved in the particle-antiparticle annihilation and
compare it with the total energy in all the nuclear
arsenals of the world (~2000 megaton (MT), where
1 MT = 4.2 X 10'° ).

Show that the maximum kinetic energy of the recoil
electron in Compton scattering is given by

2hv
9
me”

5 2hv

K.E. . (electron) = Av
a
me=

At what angles 6 and ¢ does this occur? If we detect a
scattered electron at ¢ = 0° of 100 keV, what energy
photon was scattered?

Using the Wien displacement law, make a log-log plot
of Ay (from 107% m to 1072 m) versus temperature
(from 10° K to 10° K). Mark on the plot the regions
of visible, ultraviolet, infrared, and microwave wave-
lengths. Put the following points on the line: sun
(5800 K), furnace (1900 K), room temperature
(300 K), and the background radiation of the uni-
verse (2.7 K). Discuss the electromagnetic radiation
that is emitted from each of these sources. Does it
make senser

(a) What is the maximum possible energy for a Comp-
ton-backscattered x ray (6 = 180°)? Express your an-
swer in terms of A, the wavelength of the incoming
photon. (b) Evaluate numerically if the incoming
photon’s energy is 100 keV.



