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CHAPTER 6
Quantum Mechanics IIQuantum Mechanics II

I think it is safe to say that no one understands quantum mechanics. Do 
not keep saying to yourself, if you can possibly avoid it, “But how can it 
be like that?” because you will get “down the drain” into a blind alley 
from which nobody has yet escaped. Nobody knows how it can be like 
that.

- Richard Feynman
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6.1: The Schrödinger Wave Equation

 The Schrödinger wave equation in its time-dependent form for a 
particle of energy E moving in a potential V in one dimension is

 The extension into three dimensions is

where   is an imaginary number.
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General Solution of the Schrödinger 
Wave Equation
 The general form of the wave function is 

which also describes a wave moving in the x direction. In 
general the amplitude may also be complex.

 The wave function is also not restricted to being real. 
Notice that the sine term has an imaginary number. Only 
the physically measurable quantities must be real. 
These include the probability, momentum and energy.
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Normalization and Probability

 The probability P(x) dx of a particle being between x and X + dx 
was given in the equation

 The probability of the particle being between x1 and x2 is given 
by

 The wave function must also be normalized so that the 
probability of the particle being somewhere on the x axis is 1.
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Properties of Valid Wave Functions

Boundary conditions
1) In order to avoid infinite probabilities, the wave function must be finite 

everywhere.

2) In order to avoid multiple values of the probability, the wave function 
must be single valued.

3) For finite potentials, the wave function and its derivative must be 
continuous. This is required because the second-order derivative term 
in the wave equation must be single valued. (There are exceptions to 
this rule when V is infinite.)

4) In order to normalize the wave functions, they must approach zero as x 
approaches infinity.

 Solutions that do not satisfy these properties do not generally 
correspond to physically realizable circumstances.
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Time-Independent Schrödinger Wave 
Equation
 The potential in many cases will not depend explicitly on time.
 The dependence on time and position can then be separated in the 

Schrödinger wave equation. Let        ,

which yields:

Now divide by the wave function:

 The left side of Equation (6.10) depends only on time, and the right side 
depends only on spatial coordinates. Hence each side must be equal to 
a constant. The time dependent side is
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 We integrate both sides and find:

where C is an integration constant that we may choose to be 0. Therefore

This determines f to be

 This is known as the time-independent Schrödinger wave equation, and it is a 
fundamental equation in quantum mechanics.

Time-Independent Schrödinger Wave 
Equation Continued
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Stationary State

 The wave function can be written as:

 The probability density becomes:

 The probability distributions are constant in time. This is a standing 
wave phenomena that is called the stationary state.
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Momentum Operator
 To find the expectation value of p, we first need to represent p in terms 

of x and t. Consider the derivative of the wave function of a free particle 
with respect to x:

With k = p / ħ  we have

This yields

 This suggests we define the momentum operator as            .

 The expectation value of the momentum is



 10

 The position x is its own operator as seen above.
 The time derivative of the free-particle wave function is

Substituting ω = E / ħ  yields

 The energy operator is

 The expectation value of the energy is

Position and Energy Operators
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Comparison of Classical and Quantum 
Mechanics
 Newton’s second law and Schrödinger’s wave equation are 

both differential equations.

 Newton’s second law can be derived from the Schrödinger 
wave equation, so the latter is the more fundamental.

 Classical mechanics only appears to be more precise because 
it deals with macroscopic phenomena. The underlying 
uncertainties in macroscopic measurements are just too small 
to be significant.
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6.2: Expectation Values

 The expectation value is the expected result of the average of 
many measurements of a given quantity. The expectation value 
of x is denoted by <x>

 Any measurable quantity for which we can calculate the 
expectation value is called a physical observable. The 
expectation values of physical observables (for example, 
position, linear momentum, angular momentum, and energy) 
must be real, because the experimental results of 
measurements are real.

 The average value of x is 
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Continuous Expectation Values

 We can change from discrete to 
continuous variables by using the 
probability P(x,t) of observing the 
particle at a particular x.

 Using the wave function, the 
expectation value is:

 The expectation value of any 
function g(x) for a normalized wave 
function:
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Some expectation values are sharp some 
others fuzzy

Since there is scatter in the actual positions 
(x), the calculated expectation value will 
have an uncertainty, fuzziness (Note that x 
is its own operator.)
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Some expectation values are sharp some 
others fuzzy, continued I

For any observable, fuzzy or not
If not fuzzy, ΔQ = 0

Because <Q2>= <Q>2

x may as well stand 
for any kind of 
operator Q
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Some expectation values are sharp some 
others fuzzy, continued II
 Eigenvalues of operators are always sharp (an actual – physical - 

measurement may give some variation in the result, but the 
calculation gives zero fuzziness

 Say Q is the Hamiltonian operator
A wavefunction that solves this 
equation is an eigenfunction of this 
operator, E is the corresponding 
eigenvalue, apply this operator 
twice and you get E2 – which sure is 
the same as squaring to result of 
applying it once (E)
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6.3: Infinite Square-Well Potential

 The simplest such system is that of a particle trapped in a box with 
infinitely hard walls that the particle cannot penetrate. This potential 
is called an infinite square well and is given by

 Clearly the wave function must be zero where the potential is 
infinite.

 Where the potential is zero inside the box, the Schrödinger wave

equation becomes          where   .

 The general solution is .



 18

Quantization
 Boundary conditions of the potential dictate that the wave function must 

be zero at x = 0 and x = L. This yields valid solutions for integer values 
of n such that kL = nπ.

 The wave function is now

 We normalize the wave function

 The normalized wave function becomes

 These functions are identical to those obtained for a vibrating string with 
fixed ends.
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Quantized Energy
 The quantized wave number now becomes
 Solving for the energy yields

 Note that the energy depends on the integer values of n. Hence the 
energy is quantized and nonzero. 

 The special case of n = 0 is called the ground state energy.
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6.4: Finite Square-Well Potential

 The finite square-well potential is

 The Schrödinger equation outside the finite well in regions I and III is

       or using

yields     . Considering that the wave function must be zero at 

infinity, the solutions for this equation are
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 Inside the square well, where the potential V is zero, the wave equation 

becomes where

 Instead of a sinusoidal solution we have 

 The boundary conditions require that

and the wave function must be smooth where the regions meet.

 Note that the 
wave function is 
nonzero outside 
of the box. 

Finite Square-Well Solution
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Penetration Depth

 The penetration depth is the distance outside the potential well where 
the probability significantly decreases. It is given by

 It should not be surprising to find that the penetration distance that 
violates classical physics is proportional to Planck’s constant.
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 The wave function must be a function of all three spatial coordinates. 

We begin with the conservation of energy
 Multiply this by the wave function to get

 Now consider momentum as an operator acting on the wave 
function. In this case, the operator must act twice on each 
dimension. Given:

 The three dimensional Schrödinger wave equation is

6.5: Three-Dimensional Infinite-Potential Well
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Degeneracy

 Analysis of the Schrödinger wave equation in three dimensions 
introduces three quantum numbers that quantize the energy. 

 A quantum state is degenerate when there is more than one wave 
function for a given energy.

 Degeneracy results from particular properties of the potential energy 
function that describes the system. A perturbation of the potential 
energy can remove the degeneracy.
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6.6: Simple Harmonic Oscillator
 Simple harmonic oscillators describe many physical situations: springs, 

diatomic molecules and atomic lattices.  

 Consider the Taylor expansion of a potential function:

Redefining the minimum potential and the zero potential, we have

Substituting this into the wave equation:

Let           and  which yields   .
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Parabolic Potential Well

 If the lowest energy level is zero, this violates the uncertainty principle.
 The wave function solutions are           where Hn(x) are Hermite 

polynomials of order n.

 In contrast to the particle in a box, where the oscillatory wave function is a 
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial, 
which dominates at small x. The exponential tail is provided by the Gaussian 
function, which dominates at large x.
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Analysis of the Parabolic Potential Well

 The energy levels are given by

 The zero point energy is called the Heisenberg 
limit:

 Classically, the probability of finding the mass is 
greatest at the ends of motion and smallest at the 
center (that is, proportional to the amount of time 
the mass spends at each position).

 Contrary to the classical one, the largest probability 
for this lowest energy state is for the particle to be 
at the center.
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6.7: Barriers and Tunneling
 Consider a particle of energy E approaching a potential barrier of height V0 and the 

potential everywhere else is zero.
 We will first consider the case when the energy is greater than the potential 

barrier.
 In regions I and III the wave numbers are:

 In the barrier region we have
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Reflection and Transmission
 The wave function will consist of an incident wave, a reflected wave, and a 

transmitted wave.
 The potentials and the Schrödinger wave equation for the three regions are 

as follows:

 The corresponding solutions are:

 As the wave moves from left to right, we can simplify the wave functions to:
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Probability of Reflection and Transmission
 The probability of the particles being reflected R or transmitted T is:

 The maximum kinetic energy of the photoelectrons depends on the 
value of the light frequency f and not on the intensity.

 Because the particles must be either reflected or transmitted we have:  
R + T = 1.

 By applying the boundary conditions x → ±∞, x = 0, and x = L, we arrive 
at the transmission probability:

 Notice that there is a situation in which the transmission probability is 1.  
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Tunneling
 Now we consider the situation where classically the particle does not have 

enough energy to surmount the potential barrier, E < V0.

 The quantum mechanical result, however, is one of the most remarkable features 
of modern physics, and there is ample experimental proof of its existence. There 
is a small, but finite, probability that the particle can penetrate the barrier and 
even emerge on the other side.

 The wave function in region II becomes

 The transmission probability that 
describes the phenomenon of tunneling is
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Uncertainty Explanation
 Consider when κL >> 1 then the transmission probability becomes:

 This violation allowed by the uncertainty principle is equal to the 
negative kinetic energy required! The particle is allowed by quantum 
mechanics and the uncertainty principle to penetrate into a classically 
forbidden region. The minimum such kinetic energy is:
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Analogy with Wave Optics

 If light passing through a glass prism reflects from an 
internal surface with an angle greater than the critical 
angle, total internal reflection occurs. However, the 
electromagnetic field is not exactly zero just outside 
the prism. If we bring another prism very close to the 
first one, experiments show that the electromagnetic 
wave (light) appears in the second prism  The situation 
is analogous to the tunneling described here. This 
effect was observed by Newton and can be 
demonstrated with two prisms and a laser. The 
intensity of the second light beam decreases 
exponentially as the distance between the two prisms 
increases.
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Potential Well

 Consider a particle passing through a potential well region rather than through a 
potential barrier.

 Classically, the particle would speed up passing the well region, because K = mv2 / 2 = 
E + V0.

According to quantum mechanics, reflection and transmission may occur, but the 
wavelength inside the potential well is smaller than outside. When the width of the 
potential well is precisely equal to half-integral or integral units of the wavelength, the 
reflected waves may be out of phase or in phase with the original wave, and 
cancellations or resonances may occur. The reflection/cancellation effects can lead to 
almost pure transmission or pure reflection for certain wavelengths. For example, at the 
second boundary (x = L) for a wave passing to the right, the wave may reflect and be 
out of phase with the incident wave. The effect would be a cancellation inside the well.
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Alpha-Particle Decay
 The phenomenon of tunneling explains the alpha-particle decay of heavy, 

radioactive nuclei.
 Inside the nucleus, an alpha particle feels the strong, short-range attractive 

nuclear force as well as the repulsive Coulomb force.
 The nuclear force dominates inside the nuclear radius where the potential is 

approximately a square well.
 The Coulomb force dominates 

outside the nuclear radius.
 The potential barrier at the nuclear 

radius is several times greater than 
the energy of an alpha particle.

 According to quantum mechanics, 
however, the alpha particle can 
“tunnel” through the barrier. Hence 
this is observed as radioactive decay.
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