9. The Mathematical Framework of Quantum Theory

As we saw in the previous chapter, classical physics is unable to offer a satisfactory
explanation of the structure of even the simplest atom, that of hydrogen. This was first
achieved by quantum theory. We shall therefore go into the theory in more depth,
beginning where Chap. 7 left off. We shall be particularly, but not exclusively,
concerned with bound states, of which the simplest example is

9.1 The Particle in a Box

In order to become more familiar with the formalism of quantum theory, which will
then lead to quantitative predictions, we first consider the one-dimensional motion of
an enclosed particle. “Enclosed” means that it can only move in a “box” of length a.
The probability of finding the particle outside the box is zero (Fig. 9.1). We shall now
attempt to construct the appropriate wavefunction. We require that

w=0 for x<O0,

w=0 for x>a,

9.1)

because the particle cannot be outside the box. We further postulate that the wavefunc-
tion y(x) inside the box is continuous with the function outside, i.e. that

w0 =0, w@=0. 9.2)
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We are seeking wavefunctions which describe a particle in this box and simultaneously
guarantee that the particle always has a certain definite energy. We recall the de Broglie
waves

Aexp [i (kx — wt)]. (9.3)
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According to the basic laws of quantum theory, the wavenumber k and the frequency
w are related to the particle’s energy and momentum by the relations

E=hw (9.4)
and
p=hk. (9.5)

From the experiments described above, we know that we can use the relationship
from classical physics,

2

E= 9.6)

2m0 :

If we express p in terms of k, and solve for k, we obtain two possible values for k,

V2myE , ; (9.7)

k1‘2= +

for the given value of total energy E.
In addition to the wavefunction (9.3), the wavefunction

Aexp(—ikx—iwt) (9.8)

yields the same energy. This will help us out of a difficulty. As one can see by substi-
tuting x = 0 and x = ¢ in (9.3), the wavefunction (9.3) does not satisfy the boundary
conditions (9.2). One way out is the following: since electron waves display diffraction
and interference, we may infer that we can superpose waves in quantum mechanics, as
we did in fact with wave packets in Sect. 7.1. We therefore generate a new wavefunc-
tion by superposing (9.3) and (9.8):

w(x, 1) = (Ce*+ Ce~F¥)e 1ot (9.9)

where the constants C; and C, are still unknown.
To abbreviate, we write (9.9) in the form

w(x, 1) = p(x)e 1 ' (9.9a)
where
P(x) = Cre*+ Cre 1, (9.9b)

In order to determine the constants C; and C,, we substitute (9.9) in the first equation
(9.2) and obtain

9(0)=0: Ci+C,=0. (9.10)
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Thus C; can be expressed in terms of Cy. (9.9) then takes the form
P(x) = Cy(e™ —e %) = 2iC, sinkx; (9.11)

here we have made use of the definition of the sine function. To fulfil the second
condition of (9.2), we substitute (9.11) in (9.2) and obtain:

because ¢(a)=0; thecondition sinka=0. (9.12)

Since the sine can only be zero if its argument is a whole multiple of &, we can only
satisfy (9.12) by the choice of

k=", n=1,2,3,4.... (9.13)

This result means that the only waves which will fit into the box have a half-wavelength
equal to a whole fraction of the length of the box, a (Fig. 9.2). If we substitute (9.13) in
the expression for kinetic energy (9.6), we obtain

2 2
E=_" (f_”> (9.14)

2my \ a

for the energy of the particle, with the condition that n =1 must be an integer. The
parameter n cannot be equal to zero, because otherwise the wavefunction would be
identically equal to zero. In other words, there would be no particle.

The result (9.14) is typical for quantum theory. The energies are no longer con-
tinuous as in classical physics, but are quantised. In order to determine C, in (9.11),
which is still open, we remember that the wavefunction must be normalised. We thus
have the condition [y*wdx = 1 to fulfil. If we substitute (9.11) in this, we first obtain

a a .2nn _:2nn

flo(x) |Pdx = |C [ —e"a *—e a ¥)dx. (9.15)
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Fig. 9.2. Potential barriers, energies and wavefunctions of the

E particle in the box. Two different parameters are plotted in the
f/2 same figure. 1) The energies E,, E,, E; of the first 3 states are

plotted along the E (=energy) axis. (There is an infinite series of
higher energies above these.) 2) The x axis is drawn to the right of
each of the E values, and the wavefunction appropriate to each
/E_' B o energy is shown on it. One should notice that the number of times
x the wavefunction crosses the x axis inside the box increases by 1 for
0 a each higher energy state
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This integral is easy to evaluate and yields
f|p(c) [Pdx = |Cy[* 2a. (9.16)
0

Because the integral (9.15) has to be equal to 1 to fulfil the normalisation condition, the
normalisation constant C; has the form

o -1 (9.17)

/2a

It should be remembered that C; can only be determined up to the constant phase
factor exp(i@). As we shall see later, this type of phase factor has no physical meaning,
because it disappears during the calculation of expectation values (see below). Our final
result thus has the form

P(x) =

——exp(ixnn/a) - exp(—ixnmn/a), (9.18)
1/2a 1/2a

or in another notation,

P(x) = \/? -isin(x-nn/a). (9.19)
a

As we have seen, the wavefunction (9.18) is associated with a definite energy. Does
this also hold for the momentum? This is clearly not the case, because it describes both
a wave with k = nn/a and a wave with k = —nn/a. If we should measure the momen-
tum, we would thus find values p = hk and p = — hk with equal frequencies. In order
to derive the probability of occurrence of a given momentum from the wavefunction,
let us first consider the wavefunction

exp(ixnn/a) (9.20)

—
/a

which is obviously normalised in the region from 0 to a:

1 s
—exp|1—x
Ja a

When we measure the momentum, it means that we determine a particular value of
k, i.e., we select one of the components of (9.18). This component is a factor of I/L/E
smaller than the corresponding component of (9.20). On the other hand, we expect for
symmetry reasons that both components occur with equal probability =1/2. To go
from 1/ L/Z to 1/2, of course, we square 1/ ]/2. This observation can be generalised: The
probability of measuring a given momentum & can be obtained by taking the square of
the absolute value of the coefficient in front of the normalised plane wave.

We leave it to the reader as an exercise to explain the relationship between the wave-
function (9.18) and the momentum (9.5) using the Heisenberg uncertainty relation.

2 a

dx:ljdx=1. (9.21)
a o

|




9.2 The Schrodinger Equation 129
9.2 The Schrodinger Equation

As we saw in the preceding example, there are for a given problem, in this case the
particle in a box, infinitely many solutions, each with a corresponding energy level
(9.14). In this case it was relatively easy to find these solutions, which is decidedly not
the case for other quantum mechanical problems. In such cases it is often useful first to
look for an equation which determines . In the case of the electron which is not sub-
jected to any forces, we find it as follows: we ask if there is an equation for w such that
its solutions automatically fulfil the relation

2,2
heaw = zk . (9.22)
my

Since the parameters k and w are found in the de Broglie wave exp(ikx —iw?), we can
formulate the question thus: what must be done to obtain A%k%/2 my from exp(ikx)
and A w from exp(—1iwi), so that the relation

hik?
2m0

=hw ' (9.23)

will be fulfilled? If we differentiate exp(ikx) twice with respect to x and multiply by
—h%2 my, we obtain the left side of (9.23) as a factor. Correspondingly, the right side
of (9.23) is obtained if we differentiate exp(—iw¢?) with respect to time and multiply by
i . In this way we obtain the basic Schrodinger equation for the force-free particle:

h* d* o
- 2m0 WW=IHW. (9.24)

It must be said, however, that it is generally not possible to derive the basic equa-
tions of physics from still more fundamental principles. Instead, one must try to com-
prehend the physics by heuristic thought processes, to arrive at an equation, and then
to compare the possible solutions with experimentally testable facts. In this way it has
been found that the Schrédinger equation is completely valid in nonrelativistic
quantum mechanics. We generalise (9.24) to three dimensions by writing the kinetic
energy in the form

1

my

E=

(pi+p5+p?2) - 9.25)

It seems reasonable to generalise the wavefunction to
exp(ikx+ik,y+ik,z)exp(—iwt). (9.26)

Instead of (9.23) we have the relation

1

zmo

A ki+ki+ kD) =ho. (9.27)
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The left side of (9.27) is obtained from (9.26) by taking the second derivatives of (9.26)
with respect to the position coordinates x, y and z, adding these and multiplying the
result by — h%/2 my. The right side of (9.27) results by differentiation of (9.26) with
respect to time and multiplication by i A. We thus obtain the equation

m* [ 8 8% 9 .9
- + + =ih— . 9.28
2my <6x2 ay: 0z’ v of v ¢ )

The left side can be abbreviated by introducing the Laplace operator

2 2 2
V2= 82+62+82’ (9.29)
ox oy 0z

which yields the usual form of the Schrédinger equation for the force-free particle in
three dimensions,

nt o, .. 9
- Viw=1ih—y. 9.30
2m0 v or v ( )

Now we are naturally not so interested in the force-free motion of the particle as in
its motion in a force field. However, (9.30) gives us a hold on the subject. We see that
the left side was derived from the expression p2/2m, for the kinetic energy by replacing
it by a differentiation rule — (#%/2 mg) 2. This rule acts on w and is called the kinetic
energy operator. In the presence of a potential field, the total energy according to clas-
sical mechanics is the sum of the kinetic and the potential energy:

1

mo

pi V) =E. (9.31)

We can arrive heuristically at the fotal energy operator of the quantum treatment by
simply adding ¥V to the kinetic energy operator. We thus obtain the time-dependent
Schrédinger equation in the presence of a potential field:

( o, ) B
- Vet V) |y, 6) =1h— y(r, 1) . (9.32)
2m0 81‘

The expression

hZ
H = — Vi V(r) (9.33)
my

is called the Hamiltonian (operator).

The beginner may not be used to working with operators. One can quickly become
accustomed to them, if one remembers that they are only convenient abbreviations.
One must also remember that such operators are always to be applied to functions.

If the potential field on the left side of (9.32) does not depend on time, we can
proceed from the time-dependent to the time-independent Schrodinger equation. In
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doing so, just as in (9.9a), we separate a time factor exp(—ic?) from w(r, 7). In quan-
tum mechanics it is customary to write E/h instead of , so that we write

wir,t)=¢ 'Ep ). (9.34)

Since the time differentiation only applies to y on the right side of (9.32), we need here
only to differentiate the exponential function with respect to time, which yields the
factor E. If we then divide both sides of the corresponding equation by the exponential
function, we obtain as the result the time-independent Schrodinger equation

2
<— LMV V(f)) ¢(r) = Eplr). (9.35)

2m0

As we saw in the preceding example, the wavefunction must ordinarily be subject to
boundary conditions (9.2). If these are not specified, we apply the so-called natural
boundary conditions, which require that  vanishes at infinity, so that the wavefunc-
tion can be normalised, i.e.

flwlPdv=1. | (9.36)

Before we proceed to the solution of the Schrédinger equation, we shall again take
up the question of observations, measured values and operators.

9.3 The Conceptual Basis of Quantum Theory

9.3.1 Observations, Values of Measurements and Operators
Determination and Probability of Position

In the preceding sections, we saw that the explanation of microcosmic processes
required new ways of thinking which are fundamentally different from the ideas of
classical physics. In classical mechanics, the motion of a body, such as the fall of a
stone or the flight of a rocket, can be precisely predicted by the laws of motion.
According to these laws, the position and momentum of a body can be determined to as
great a precision as is desired.

The wavefunction is the new concept which is central to quantum physics. As the
solution of the time-dependent Schrodinger equation, it describes the time evolution of
physical processes in the microcosm. In this section we shall explore the physical impli-
cations of the wavefunction, or in other words, which experimental results the theo-
retical physicist can predict for the experimental physicist. The (conceptually) simplest
experiment would be to determine the position of a particle. As we already know, the
wave function y can only make a probabilistic prediction. The expression

lw(x,y,2)Pdxdydz (9.37)

gives the probability that the particle will be found in a volume element dx dy dz about
the point x, ¥, z. We now ask whether the wavefunction can also predict the results of
observations of momentum.
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9.3.2 Momentum Measurement and Momentum Probability

Let us first consider as an example the wavefunction of the particle in a box (Sect. 9.1),

1 1 . 1 1 .
P(x) = 7 Wexp(lkX) - [—6 L/L_z exp(—ikx). (9.38)
| | I I S S
uy(x) uy(x)

The two underlined wavefunctions each satisfy the normalisation conditions (9.36).
According to the basic rules of quantum mechanics, the momentum associated with the
wavefunction uy(x) is given by hk, while the momentum of the second wavefunction
uy(x)is hi(—k) = —hk.

Both of these momenta are thus represented by the wavefunction (9.38). If we
determine the momentum of the particle in the box described by the wavefunction
(9.38), we expect to observe either + hk or — hk. However, we cannot predict which of
the two momenta we will observe. If we imagine that the particle flies back and forth in
the box, it is intuitively clear that we will observe the momenta Ak and — hk with a
probability of 1/2 each. As we saw in Sect. 9.1, the squares of the absolute values of the
coefficients C; and C, give the probability of finding the corresponding momentum.
We generalise this insight to the determination of the probability distribution of the
momenta of a generalised wave packet. Here the particle is no longer confined in a box.
This type of wave packet has the general form

+ o

w(x)= | ace™dk. (9.39)

- oo

In order to connect the coefficients @, with a probabilistic interpretation, we must
be sure that the wavefunctions exp(ikx) are normalised in infinite space. This is some-
what difficult, and will not be demonstrated here (see Appendix A). We shall simply
state the result. If we introduce the momentum variable p in the place of the integration
variable k£, and at the same time use the correct normalisation of the wavefunction in
one dimension, we obtain

+ oo 1 _
px)= | C(p)u?h e dp . (9.40)
e /27
I

The underlined wavefunction is normalised. As a generalisation of our considerations
above, we see [c(p) |2dp as the probability of observing momentum p in the interval p,
..., p+dp. This result can be immediately expanded to three dimensions: if we rep-
resent a wavefunction w(x, y,z) as a superposition of normalised plane waves,

+ oo

w(x,9,2) = {§{c(pepy,p)2Qnh) " explip-r/h)d’p,  with (9.41)

— oo

p-r=px+p,y+p.z, then

| C(px,pyspz) |2dpx dpy dpz



9.3 The Conceptual Basis of Quantum Theory 133

is the probability that the components of the observed momentum of the particle p will
lie in the intervals p,...py+dpy, p,...p,+dp,, p;...p.+dp;.

9.3.3 Average Values and Expectation Values

To explain these concepts, we think again about the example of the dice. The individual
possible “observed values” are the numbers of spots, 1, 2,...,6. For a single throw we
cannot predict which of these numbers we will obtain. We can only make predictions if
we throw many times and keep track of the frequency F, with which we obtain the
number n (n=1,2,...,6). The average number # is then given by

n=— (9.42)

This average value can be predicted statistically (in the limiting case of an infinite
number of throws) through the use of the concept of probability. This is the ratio of the
number of times the desired result is obtained divided by the total number of attempts.
The probability of obtaining n spots (“desired result” is n) is denoted by P,,. Since each

6
number of spots is equally probable, P, = P,... = P;. Further, since ¥ P,=1 must
n=1

hold, we use the equality of the individual probabilities to obtain immediately
P,=1/6, n=1,2,...6. (9.43)

(We exclude loaded dice.) According to probability theory, 7 may be expressed in terms
of P, as follows:

(9.44)

. L
)

These relatively simple concepts may be applied directly to the definition of the
mean value of position and of momentum in quantum mechanics. In general, we can
make no definite predictions as to which position or which momentum will be meas-
ured; we can only give probabilities. If we repeat the measurement of position or of
momentum many times and calculate the mean value, the latter may be defined exactly
as for the dice. The theoretician can, as we saw in the dice game, predict this mean
value for the experimentalist. This mean value is therefore called the expectation value;
it is defined as follows: Expectation value = Sum over the individual values measured,
times the probability that that value would be found.

Let us apply this definition to some examples.

a) Mean Value of the Position (one-dimensional example), Fig. 9.3

A single measurement yields the result that the particle is to be found in the interval
x...x+dx. The corresponding probability is |y(x) lzdx. Since the position x is con-
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Fig. 9.3. Explanation of the mean value of the position. The loca-
tion of a vertical line indicates the value of a measurement of the
position coordinate x and the length of the line is proportional to
the frequency with which that value is found (probability density).
If we interpret the latter as a weight, the calculation of X corre-
sponds to the calculation of the centre of gravity X of an object

x (= Position)

tinuously variable, while the number of spots on the die was discrete, we use an integral
instead of the sum (9.44). The mean value of the position is thus defined as

¥= +jmx|w(x) [dx . (9.45)

]

In the calculation of (9.45) and in the following, the normalisation of the wavefunction
was assumed, i.e.

fjm;w(x) Pdx=1. (9.46)

Correspondingly, we can take the nth power of x, x”, and then generalise the definition
(9.45) to obtain the mean value of the nth power:

+ o0
= | x"|w(x) | dx. (9.47)
If we replace the function x" quite generally by the potential energy function V(x), we

obtain the definition of the mean value of the potential energy,

V= [ Voo wix) Pdx . (9.48)

— oo

b) Mean Value of the Momentum (one-dimensional example), Fig. 9.4.

letp)|”

P Fig. 9.4. Explanation of the mean value of the momentum.
See caption of Fig. 9.3
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In this case, we first take the wavefunction to be given by a superposition of plane
waves:

+ 0o

v = [ cp) l—{;e”’””dp. 9.49)

If we now measure the momentum, the probability of finding its value in the interval
p...p+dp is given by |c(p)|*dp. In complete analogy to the mean value of the
position, we find the definition of the mean value of the momentum to be

+ oo

p= [ plew)dp, (9.50)

— o

or for the nth power

Py

| ="+

“p"ep) Pdp - (9.51)

As we shall see later, wavefunctions are normally expressed as functions of
position, in the form w(x). It is therefore difficult to calculate the expansion (9.49) in
detail in order to determine the mean of the momentum, because the coefficients c¢(p)
would first have to be calculated. We shall now show that there is a very simple com-
putational rule which allows us to calculate the mean value of the momentum without
following the indirect route via (9.49).

We assert that the mean value of the momentum is given by the basic formula

— oo

p= | v (i i) w(x)dx . ©9.52)
i dx

The notation (4/i) (d/dx) y(x) may seem unfamiliar to the reader; it is a common form
in quantum mechanics. It means that we are to differentiate w(x) by x, that is, we
calculate

h dy
i dx

(9.53)

This notation (9.52) is also referred to as applying the “momentum operator”
(h/1)(d/dx) to the wavefunction y(x). The proof that (9.52) is the same as (9.50) is
relatively simple, but requires some basic mathematical knowledge. We begin by sub-
stituting (9.49) in (9.52). After differentiation with respect to x and exchanging the
order of integration with respect to x and p, we obtain

+ co
% | exp(—ipx/h)exp(ip'x/h)dx . (9.54)
i !

+ + o
p= Jdp[dp'pcp)e@p’)

The underlined part, however, is merely the Dirac ¢ function, d(p —p') (Appendix A).
The definition of the & function eliminates the integration over p’, and leads to p' = p,
so that p’ is replaced by p. We then obtain directly
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p= 1 dpple)P*. (9.55)

If we go through the calculation again in detail, we recognise that we have replaced the
factor pin (9.50) by the differential operator (4/i) d/dx. In order to arrive at (9.51), we
would have had to apply this operator n times to the wavefunction w(x).

c) Average Values of Energy

Our results to this point enable us to calculate average energy values. The kinetic energy
of a particle is p*/2m,. The probability of observing the momentum p in the interval
p...p+dpis given by |c(p) \2dp.

Thus the average kinetic energy is given by

= e » pl
Exin= | |c(p)] (9.56)
— 2 My
If we use the computational rule discussed above, we immediately obtain
_ oo o,
Eyin= |} w* (— ——V*y |dxdydz, (9.57)
— o 2 My

where we have used the abbreviation

2 2 2
Vi= 82+82+82 (9.58)
ox ay 0z

and generalised the result to three dimensions. Equation (9.48) can be extended in the
same way, which yields the expectation value for the potential energy:

Epo = SH w*V(r) wdxdydz. (9.59)

Since the total energy is equal to the sum of the kinetic and the potential energy, the
expectation value for the total energy is, finally,

hZ

E = [Tj w* {— Vi V(r)} wdxdydz . (9.60)
e o

9.3.4 Operators and Expectation Values

With the help of the above results, we can now discuss the conceptual framework and
the computational rules of quantum theory. In classical physics, we have certain me-
chanical parameters, like the position x(f), momentum p(7), energy, etc. In quantum
theory, these classical parameters are assigned certain expectation values [compare
(9.45, 52, 60)]. These quantum mechanical expectation values can be obtained from
classical physics by means of a very simple translation process according to the follow-
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ing “recipe”: The classical parameters are assigned operators, which are nothing but
multiplication or differentiation rules, which act on the wavefunctions following them.
The position operator x is assigned to x(¢), which simply says that one multiplies the
wavefunction y(x) by x. It may seem strange at first that a time-independent operator
x can be assigned to a time-dependent parameter x(¢). As we shall see below, however,
the time-dependence is reintroduced in the process of finding the average, if the wave-
function itself is time-dependent. The momentum is assigned the operator —ik(d/dx)
which differentiates the wavefunction. After carrying out the appropriate operator
multiplication or differentiation, one multiplies the result by y* and integrates over all
space to obtain the quantum mechanical expectation value.

Using these rules, we can define still other operators which we have not yet con-
sidered. One important parameter is the angular momentum /, which has the com-
ponents /,, /, and /.. In classical physics, /,, for example, is defined as Xpy =YDy In
quantum theory we obtain the corresponding operator by replacing Py and p, by
(h/1)8/dx and (A/i)8/dy, respectively. The z component of the angular momentum
operator is thus

L="x——y— . ' (9.61)

In order to prevent confusion between the classical angular momentum and the angular
momentum operator, we use here and in the following text the symbol "~ (read “hat”)
over the angular momentum operator.

The following table summarises what has been said above.

Classical Operator Quantum theoretical
variable Expectation value
Position x (1) x % = wre, Dxpix, ndx
Momentum p(¢) j— i(Jorr;ian’s rule) p= _[w*(x,f)i -d— wix, t)dx

i dx i dx

2 2 2 2

Energy h d 2 T h d

- + Vix E = x, 0| — —s + V(x x, 1) dx
E = #(x(0),p(1) 2y a Jwrean | =5l g Ve fwen
Angular momentum rxfhv - jW* rxfhv wdxdydz
I=[rxp] i ) i

In the preceding discussion, we have given no consideration to the wavefunction ,
which has, so to speak, fallen from heaven. We must still consider the principles by
which we can determine the wavefunction, in case it is not determined by the
Schrodinger equation.

9.3.5 Equations for Determining the Wavefunction

We have already presented equations which were explicitly or implicitly applicable to
the determination of . As the simplest example, let us take the plane wave
w ~exp(ikx). As we already know, this wave determines the propagation of a particle
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with momentum /k. Can we regard this plane wave as a solution of an equation which
relates directly to momentum? This is in fact the case, because if we differentiate the
plane wave with respect to x and multiply by A/i, we obtain the relation

B d ik pgeitr = peitr (9.62)
i dx

The plane wave thus satisfies an equation of the following form: The momentum
operator (h/1)d/dx applied to the plane wave yields p = hk times the plane wave.

As a second example, let us consider the time-independent Schrédinger equation.
The application of the Hamiltonian operator to the wavefunction gives an energy E
times the wavefunction. A glance at the above table shows that the Hamiltonian is
precisely that quantum mechanical operator associated with the classical energy expres-
sion Ekin+Ep0['

When we extract what is common to these examples, we see that these functions are
so-called eigenfunctions which satisfy the following equation:

Operator - Eigenfunction = Eigenvalue - Eigenfunction .

If we denote the operator by £, the eigenfunction by ¢ and the eigenvalue by w, this
relationship is

Qop=we. (9.63)

The eigenvalue indicated here and in Sect. 9.3.6 following should not be confused with
a frequency. It can have quite different physical meanings, e.g. momentum. In the
example (9.62), we had

o= 4 sk G-k,
i dx

We must now make use of a few basic facts of the mathematical treatment of such
eigenvalue equations without being able to derive them here. As can be shown mathe-
matically, eigenfunctions and eigenvalues are determined by (9.63), if appropriate
boundary conditions for the wavefunction (eigenfunction) are given. One example for
a set of boundary conditions is the particle in a box. If no explicit boundary conditions
are given, we must require that the wavefunction be normalisable, which implies that
the wavefunction must go to zero rapidly enough as infinity is approached.

When the operator 2 in (9.63) and the boundary conditions are given, there is a
particular sequence of eigenvalues, e.g. discrete energy values as in the particle in the
box, etc. The calculation of these eigenvalues and the associated eigenfunctions is thus
the task of mathematicians or theoretical physicists. In order to make them agree with
experimental observations, one makes use of the basic postulate of the quantum
theory: the eigenvalues are identical with the observed values. This basic postulate has
enormous significance, and we can accept it, because it has been repeatedly confirmed
in innumerable experiments. If we measure the energy of the electron in a hydrogen
atom, for example, this must agree with the quantum mechanically calculated eigen-
values E,. If there is a discrepancy, one does not impute this to a failure of quantum
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theory, but rather looks for interactions which have not yet been taken into account. In
this way, an excellent agreement has so far been attained.

As we can see from our example (9.62), the Schrodinger equation is only one of
many possible ways to determine the wavefunction. We are always concerned here with
the physical problem. Thus whenever we use the Schridinger equation, we would
always assume that we have access to observations which measure the energy exactly.
When we have then measured the energy, we have identified the associated eigenfunc-
tions as solutions of the Schrédinger equation. We might also wish to measure the
momentum. Since the wavefunction is known and, as one can easily demonstrate by
Fourier analysis, this function contains several momentum eigenfunctions, we are no
longer able to predict exactly the momentum of the particle, but can only calculate the
expectation value. The simplest example for this is again the particle in the box.

9.3.6 Simultaneous Observability and Commutation Relations

As we saw above, there is a very close relationship between wavefunctions and eigen-
values on the one hand and individual observations on the other. If a wavefunction is
an eigenfunction for a particular operator — that is, if it satisfies an equation like
(9.63) — then we know that the eigenvalue will be found by measurement. If we repeat
this measurement, we shall find exactly the same eigenvalue. If follows from this that:

If w, is an eigenfunction of a specific operator 8, the eigenvalue w; agrees with the
expectation value Q. In fact, if we know the operator © and the associated eigenvalue
w;, then

Qui; = wy;: Q= [yl Qu,dx = fyiwwdx = wfytydx = w,.

What happens, though, when we want to determine another parameter with the
second measurement? One example for this was examined in more detail in Sect. 7.3,
where we wanted to measure first the momentum and then the position of the particle.
In that case, the measurement of position destroyed the results of the previous momen-
tum determination. On the other hand, we can measure first the momentum and then
the kinetic energy of a particle. In the first measurement, we obtain a certain value p.
We have then “prepared” the particle into a particular state which is an eigenfunction
of the momentum operator; the wavefunction after the measurement is thus (aside
from a normalisation factor) given by exp(ipx/h). If we now measure the kinetic
energy, this measurement corresponds to the mathematical operation of applying the
kinetic energy operator, — (h%/2mgy)d*/ dx?. In the process, the “prepared” plane wave
yields the eigenvalue E = p*/2 my, and the plane wave remains as wavefunction. In this
case, the second measurement does not destroy the result of the first measurement.
There exist, apparently, measurements which do not disturb each other, or, in other
words, which can be simultaneously carried out with arbitrary accuracy.

We will now derive a necessary criterion for simultaneous measurability. For this
purpose, we consider the operators Q) and Q®, which could, for example, be
operators for the momentum and the kinetic energy. We now require that the wave-
function  be simultaneously an eigenfunction of both characteristic equations

QVy =Wy (9.64)

QPy=wPy. (9.65)
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If we apply operator 2@ to the left side of the first equation and operator 2" to the
second equation, then subtract one equation from the other, rearrange, and finally
apply (9.64) and (9.65) again, we obtain

(_Q(U_Q(Z)_ Q(Z)Q(I)) W= (OJ“)(U(Z)— w(Z)w(U) w=0. (9.66)

The simultaneous measurability of a// wavefunctions which simultaneously fulfil (9.64)
and (9.65), not merely special cases, should be guaranteed. Therefore the y in (9.66) is
omitted in quantum theory, and one writes

QW@ _@P oW _q, (9.67)

This, however, should be understood to be an abbreviation. When one sees such an
equation, one should always remember that any desired wavefunction  stands to the
right of the operators, i.e., (9.66) applies. It can be mathematically shown that the
converse of the above is also true: if two operators Q'Y and Q® fulfil the commutation
relation (9.67), then eigenfunctions of 2 can always be determined to be eigenfunc-
tions of 2 as well; they fulfil (9.64) and (9.65). If there is only a single eigenfunction
belonging to the eigenvalue ™ of QW this is itself an eigenfunction of Q@
However, if there are several eigenfunctions of QW associated with 'Y, then it will
alg)ays be possible to find linear combinations of these which are also eigenfunctions of
Q.

Let us consider a few examples. If we choose as Q" the momentum operator
(h/1)d/dx, and the kinetic energy operator (— K2 mg)dz/ dx?as Q?, these operators
commute. The result of differentiating a wavefunction twice and then once with respect
to x is naturally the same as that of differentiating first once and then twice with respect
to x:

2 2 2
S A i.d_z_d_z._d_ —o0. (9.68)
2my i \dx dx dx”  dx

It can be shown in the same way that the x components of the momentum and the y
components of the position mutually commute.

Let us take as a second example the x component of the momentum and the
coordinate x itself. Thus Q" = (h/i)d/dx and QP = x:

@@ _ ooy, - (A 4  h d), (9.69)
1 dx i dx

We now evaluate this expression. First we remove the parentheses:

XyYy—X— ——. (9.70)
dx v i dx

d/dx means, of course, that everything to the right of the operator is to be differen-
tiated, and
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X
—(xy)=—y+x——. (9.71)
X X X

If we substitute this in (9.70), we obtain

. 9.72)
1

If we again write out the right side of (9.69), we obtain the relation
(g A h 1) _hy, ©.73)

Since this relationship holds for any function y, one can also write in abbreviated form

xox 4 _ 0 (9.74)

hod
i dx i dx 1

This is the famous Heisenberg commutation relation between the momentum operator
and the position operator. It says that the momentum and the position operators do not
commute, which means that the position and momentum cannot be simultaneously
determined to any desired degree of precision (see Sect. 7.3).

The following formulation is often used to express the commutation relation
between the two operators Q" and Q®:

[Q(l)’ Q(Z)] =W @ _ 2ol 9.75)

In this form, the Heisenberg commutation relation is

[ﬂ d ] _h ©.76
1

i dx

We leave it to the reader to derive the following relations:

e, )] =1kl (9.77)
[, I)=inl,, (9.78)
L] =inl,, 9.79)

[A11=0, j=xy2z. (9.80)
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These equations say that the components of the angular momentum are not simul-
taneously measurable, although one component and the square of the angular momen-
tum can be simultaneously measured.

9.4 The Quantum Mechanical Oscillator

Aside from the particle in the box, the harmonic oscillator is one of the simplest
examples of quantum theory. Although this example does not apply to the motion of
an electron in an atom, because a different force law applies there, the harmonic oscil-
lator has innumerable applications in all areas of quantum physics. We shall return to it
repeatedly In classical physics, the equation of motion of the harmonic oscillator is
given by mg¥ = —kx (Flg 9.5). The associated kinetic energy is (19/2) % and the po-
tential energy (k/2) x°. To convert this to quantum mechanics, we express the velocity x
in terms of the momentum: myx = p. We also make use of the classical relation
between oscillation frequency o, mass and force constant, w?2 = k/my. In this way we
obtain the following expression for the total energy (or mathematically expressed, for
the Hamiltonian function):

(9.81)

Force = -kx

Fig. 9.5. The harmonic oscillator. Above, as an example, a point mass on a
spring. Middle, force as a function of the displacement x. Below, potential
% energy as function of the displacement x

The corresponding Schrodinger equation is

2 2
(_ L j_+ ﬂw X ) wix)=Ew(x). (9.82)

As one can easily convince oneself, the energy E can only have positive values. We
ensure this by multiplying both sides of (9.82) by y*(x) and integrating from x = — o
+ oo

to x = + . The integral on the right side of (9.82), [ y*wdx, is positive, because

— 00
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+ oo
w*w = |w|* = 0. The same applies to the term containing x%4 | (mg/2) w?x? |y dx
+ o o

on the left side of (9.82). The remaining term, | [—(h%/2my)y*- d*y/dx*1dx, is
rearranged by partial integration to yield -

2 =+ 2 ©
ey TN T dyr
2my dX |ye—w  2my —w dx  dx

dx . (9.82a)

If we substitute the limits of integration in the first term, it disappears, since we require
+ oo
that w—0 as x— + co. (Otherwise the normalisation integral | |w[*dx =1 would

not exist!) The integral in (9.82a) is positive, and thus, so is the entire expression corre-
sponding to the left side of (9.82). It now immediately follows that £ = 0.

Since the Schrodinger equation includes several constants, we first carry out a trans-
formation to a new, dimensionless coordinate ¢ and a new energy, by setting

v= |/ o= B - 9.83)
My hw
w(x) = @(&) . (9.84)

Then (9.82) becomes

Fp=r(- s + &) (&) = ep(O) (9.85)
' 2 de? ' )

If the differentiation operator d/d¢ were an ordinary number, we could use the rule

—a*+b?=(—a+b)(a+b). Although this is naturally not possible with operators, we
shall use it as an heuristic aid and write, so to speak, experimentally,

1 d 1 d
S —(—+ . 9.86
% ( dz + C) % (dﬁ é) P(&) (9.86)

b* b

The order of the differentiation steps must be strictly observed here, that is, operators
on the right must be applied before operators to the left of them. Let us now
“multiply” out the parentheses, strictly observing the order of operations:

1 d* ) 1 d d
oy 4+ -+ E— . 9.87

This is the left side of (9.85), with an extra term. Just as we did with the Heisenberg
commutation relation (9.69), we can apply the differentiation in the extra term to the
wavefunction, and we obtain — ¢(&)/2 for the second expression in (9.87). Equation
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(9.86) thus differs from the middle expression in (9.85) only by the term — ¢/2. If we
observe this and introduce, as shown in (9.86), the abbreviations b and b, the original
Schrodinger equation (9.82) can be given in the form

bthop=(H#-p=(c—1)¢. (9.88)

In the following it is important to remember that » and ™ are only certain abbrevia-
tions for operators, which are defined in (9.86). If we also substitute ¢ — 1 = n and
provide the wavefunction ¢ and this # with an index A, the justification for which will
be given below, we finally obtain the Schrédinger equation in the form

b be,=n,p;. (9.89)
The operators b and b satisfy the commutation relation
bbb —b*b=1. (9.90)

We shall leave the proof of (9.90) to the reader as an exercise. One needs only to sub-
stitute the definition of 5 and b and then proceed as above with the Heisenberg com-
mutation rule.

Let us first consider (9.89) generally and multiply it from the left by the operator b,
i.e., we apply the operator b to the left and right sides of (9.89). We then obtain

bb bg,=nbe,. (9.91)

According to the commutation relation (9.90), we can substitute 1+ 5" b for bb™.
When we do this with the first two factors on the left side of (9.91), we obtain

b+b(b¢4)+b¢l=nﬂb¢i, (9.92)
or, if we combine the terms containing b ¢, on the right,

b b(bg,) =(n,—1)(bg;) . (9.93)

As we see, application of b to the wavefunction ¢, produces a new wavefunction
¢ =(bg;) which satisfies (9.89), although its eigenvalue is 1 less: n,—n;—1. The
operator b thus reduces the number n by 1. We refer to it as an annihilation operator.
Since, as we observed earlier, the energy E must be positive, n must have a lower limit.
There must therefore be a lowest number 7, and a corresponding wavefunction ¢, for
(9.89). If we were to repeat this formalism on the lowest eigenstate with 41 =0, we
would introduce a contradiction. We would have found a wavefunction with a still
smaller eigenvalue, contrary to the assumption that ¢, is already the lowest eigenstate.
The contradiction is only resolved if bh¢y is identically equal to zero. Then (9.89) is
fulfilled trivially for each value of n; zero is, however, not a genuine eigenvalue. For
the lowest state, we then have the condition

bpy=0. (9.94)
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If we replace b with the operator which it symbolises (9.86), then (9.24) is equivalent to

d
= =0. 9.95
( é+é)¢0 ( )

This first-order differential equation can also be written in the form

dey
0

_ _eae, (9.96)

from which we obtain on integration

Ingy=—1&*+C", (9.97)
or, taking the antilogarithm,

po=Cexp(— 1 ¢&%). - (9.98)

The constant C must be determined by the normalisation condition.

[
b e L
3 - . 3
E I
2 I
1 Fig. 9.6. Illustration of the effect of the creation and annihilation
operators. Left: Application of b* means climbing up the “ladder”

n=0 "1" n= U+ of states n = 0,1,... by one rung. Right: Application of b corre-
sponds to climbing down by one rung

We will now investigate what happens if we apply not the annihilation operator b
but rather the operator 5" on both sides of (9.89). By analogy to the steps (9.91 —93),
we obtain using (9.90) the relation

bbb ¢;) = (n+1)(b" 9;), (9.99)

i.e. by application of ™ to ¢,, we increase the eigenvalue by one unit. Therefore, b is
called a creation operator (Fig. 9.6). If we choose the ground state ¢ for ¢,, we obtain
a proportionality

¢l o b+ ¢{] ’

and a second application of ™ gives

procb gy (b¥) gy, ete.
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Here we have used a proportionality sign and not an equals sign, since we do not yet
know whether the functions b* ¢, (b+)2¢0, etc. are normalised. In general, we obtain

¢:=Ci(b*) ¢y, (9.100)

where the constant factor C; serves as normalisation factor.

Since n always increases by an integer on application of 5, but the lowest eigen-
value is zero (ny = 0), we may identify the index A with n.-Including the normalisation
factor (which we will not derive here), C, = 1/]/n!, we find the normalised wavefunc-
tions:

1
Pn=—=(0")"¢o. (9.101)

/!
|/n!

Relation (9.101) still looks terribly abstract. We shall therefore show by means of
several examples how the explicit wavefunctions may be derived; for this purpose, we
shall leave the normalisation factor out of consideration. For n = 0 we have already
obtained (poocexp(—d_fz/z). Using (9.88, 83), we find for the lowest energy value
Ey= hw/2, the same zero-point energy which we have already discussed in Sect. 7.5.
For n =1 we obtain

¢1°‘b+¢0=

or, using the explicit expressions for b ' and ¢,
d 2
proxc| ——+ &)exp(—+&7).
1 ( df 2
After carrying out the differentiation we have
procEexp(— L&Y
The corresponding energy is

E=032hw.

For n = 2 we obtain
+ d 1 g2
prxb” x| ——+ ) Lexp(—5<),
dé
or, after differentiating,

Py (282~ 1)exp(— L &%)

vl

For the energy we find

E=(5/2)hw.
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If we continue this procedure, we obtain polynomials through multiplication by ¢
or differentiation with respect to £. In general, for the nth wavefunction we obtain an
expression of the type

p.=c¢ 2TH, (), (9.102)

where H,, is a polynomial which is known in the mathematical literature as a Hermite
polynomial. The corresponding energy is given by

E,=(n+Yhw, n=0,1,2... (9.103)

(Fig. 9.7). For completeness, we shall give the formula for finding the Hermite poly-
nomials. It states

(—1)"eézd”e'éz 1
/2" d¢" /m)/n

If we return from the coordinate & to the original coordinate x, the correctly normalised
eigenfunctions of the Schrédinger equation of the harmonic oscillator are given by

4
Wal(x) = l/ ’";“’ exp(— +x*mge/h) - H,(x)/mow/h) . (9.105)

H,(&) = (9.104)

In Fig. 9.8, we have plotted the potential V(x). Furthermore, the energy levels
(n+1/2)hw are given along the ordinate, as are, finally, the wavefunctions them-
selves. The first four wavefunctions in the energy scale are shown in more detail in Figs.
9.9a, b. Although we will for the most part use the configuration representation y(x)
for the wavefunctions in this book, the creation and annihilation operators " and b
are indispensable in many areas of modern quantum theory.
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Fig. 9.7. The energy levels of
the harmonic oscillator

4 Fig. 9.8. A representation of the quantum mechan-
ical harmonic oscillator which is often found in
books. This figure contains three drawings in one: 1)
The ordinate means total energy £. The horizontal
lines (above the x axis) give the quantised energy
levels. 2) The ordinate gives the potential F(x). The
dashed curve shows the shape of the potential curve
as a function of position x. 3) Each of the horizontal
lines serves as an x axis, on which the shape of the

X wavefunction of the corresponding energy is plotted

4 Fig. 9.9. a) The wavefunctions of the harmonic oscillator for n = 0,1. b) The wave-
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Problems

9.1 By substituting the wave packet with w = ik ?*/(2m,) from Problem 7.1 into the
Schrédinger equation, convince yourself that it is a solution for a particle which
experiences no forces.

9.2 Let the wavefunctions ¢, and ¢, be solutions of the Schrodinger equation (9.35)
with the eigenenergies E; and E,. Show that

w(r,t) =ciexp(—1iE1t/h) ¢1(r)+ cyexp(—iEyt/h) ¢pa(r)

is a solution of the Schrédinger equation (9.32). What conditions must ¢; and ¢, satisfy,
in order to normalise w(r,7)? Generalise this exercise to the wavepacket

w(r,0) = X cexp(—iEjt/R) g,(r) .
Hint: ’ 7
=0 fi i+ k

w,*(rwk(r)deéjk{ .

=1 for j=k.

9.3 The potential V(r) is represented in one dimension by — fd(x), where d(x) is the
Dirac ¢ function (see the Mathematical Appendix). Solve the Schrodinger equation for
bound states, i.e. for E < 0.

Hint: Solve the Schrodinger equation for x <0 and x>0, in other words where
d(x)=0.
Where x = 0, the solutions found for y_ and . must join in a continuous fashion.

Also, derive a second boundary condition (“jump condition™) for ' and ' by
integrating the Schrodinger equation over — & <x < g, £— 0. Write the wavefunction so
that it can be normalised, and find the normalisation constants and the energy.

9.4 Find the bound states of a particle in a one-dimensional box, for which the
potential is

V(x)=0 for x< -L
Vix)= -Vy<0 for —-L<x<L
V(ix)=0 for x>1L.

Hint: Solve the Schrddinger equation in the three subregions. Require w(x)—0 for
X — +oo; w(x) and ' (x) are continuous at x = + L. Display the eigenvalue spectrum
for £ <0, and discuss its dependence on L and Vj,

9.5 Calculate the “scattering states”, in which £ =0, for a particle moving in the d
potential of Problem 9.3.

Hint: Use the trial solution w(x)=exp(ikx)+aexp(—ikx) for x<0 and w=2»5
exp(ikx) for x =0, and determine @ and b. What is the physical interpretation of this
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trial solution in the field of wave optics? It does not need to be normalised. How do «
and b change when the sign of £ is changed, i.e., when the potential is repulsive?

9.6 Let an otherwise free particle collide with an infinitely high potential barrier.
What is its wavefunction (without normalisation)?

9.7 For the one-dimensional wave packet of Problem 7.1, calculate the expectation
values of the position x, momentum p, kinetic energy, and x> Why is the expectation
value of x% more informative than that of x?

9.8 Express the energy expectation value for the wave packet of a free particle in
Problem 7.1 in terms of the energy eigenvalues of the kinetic energy operator.

9.9 Prove the commutation relations (9.77 — 80) for angular momentum.

Hint: Use the quantum mechanical definition of the angular momentum operator and
the commutation relations between position and momentum in three dimensions.

9.10 Demonstrate the commutation relations between fx and x, and between fx and the
central potential ¥(r) which depends only on r = |r|.

9.11 The two functions y; and w, are to vanish at infinity.

Show that

*
+ oo + oo
§ wi“xu/de=( § wfxundX)
‘e hod > hod )
vt — —wyndx=|{ [y — —pdx
" i dx “oo i dx

*
+ oo + oo
§ U/ffli/zdx:( § W’zk~}f',l/1dx> .

. hod n* d? ;
The properties of the operators x, p = — —, #' = —> + V(x), which are to
i dx 2my dx

be proved here, indicate that these operators are Hermitian.

Hint: Carry out partial integrations over d/dx and d*/dx”.

9.12 Prove the Ehrenfest theorem

mdx—p dp:-ﬂ
T 7 dx

for the one-dimensional quantum mechanical motion of a particle.
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Hint: Use the definition of the operators x, p and d V/dx, and the fact that w (and yw*)
satisfy a Schrodinger equation with the potential ¥ (x). Make use also of the result of
Problem 9.11.

What is the expression for this theorem in three dimensions?

9.13 Calculate the wavefunctions and energy values of a particle which is subjected to
a force F = —kx+kg, (k = myw?).

Hint: Set up V(x) and derive the new Schrodinger equation from the “old” one for the
harmonic oscillator by means of a coordinate transformation.

9.14 Prove the commutation relation (9.90)
bb'—b'b=1

for the operators b and b~ of the harmonic oscillator.

Hint: Use the definitions of »* and b (9.86) and the commutation relation between x

and i 4974,
i dx

9.15 Construct the wavepacket

LW 3w
W= yyexp —171 + wy exp —1Tt

from the first two states of the harmonic oscillator and examine the change in || with
time by means of a graphical representation.

9.16 Let the Schrodinger equation of the harmonic oscillator be

b*bp,=ng, (n=01,2,..),

where b* = (1/]/2) (- ng + g), b=(01/)2) (dié + c), ¢ = ¢(&). Forb,b", thecom-

mutation relation [, '] = 1 holds.
Prove the following relations. The integrals extend from — oo to + oo,

a) [[b" (O w(OdE= [p*(O)bw(&)dé
DO w(O)de = [p(&)*b " w(&)de
b) J(bTp)* (" @)dl=(n+1)[pFp,dE

c) If ¢, is normalised, then ¢, = 1/Lf"E+ 1b" ¢, is also normalised.
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d) The normalised functions ¢, can be expressed as
0,=1/)/n1 (b)) dy, bpy=0.
¢) b+¢n= l’fl’;rﬁ¢n+1 ’ bop,= L"/Egﬁ?n,] .

0 b —b)'b=nb")"",  bTB)'—(b)'b = —nb)" " = - L

b

Hints: a) Use the explicit expressions for »* and b in terms of &, i and partial inte-
gration. dg

b) Use a), the exchange relation and the Schrodinger equation.

¢) Follows from a).

d) Mathematical induction method.

e) Follows from d) and the commutation relations.

f) Solve by the induction method (write b(b*)"—(b")"basb(b™)"—(b")"" bt b).

9.17 Calculate the expectation value of the momentum, the kinetic energy and the
potential energy for the nth excited state of the harmonic oscillator.

Hint: According to (9.83 and 84), change from x to &, transform ¢ and d/d¢ into b*
and b, and use

f?(é)cbm(é)dé:am:{? for m=n

forr m=n,

nm=0,1,2,... .

9.18 Prove for the wavefunctions of the harmonic oscillator, ¢,(£):

[Om(&) p(O)AE= Sy

Hint: Use the fact that

1
¢n = (b+)f1¢0 4
I/n!
b¢0= 0 N

and the result a) of Problem 9.16. Proceed by induction.

9.19 The bra and ket notation

The English physicist Dirac introduced a very concise notation, especially for expecta-
tion values and wavefunctions, which we shall demonstrate here for the case of the
harmonic oscillator.

Instead of ¢,, one writes |n). The integral [¢(&) ¢,(&)d¢& is presented as (n|ny, and
the expectation value [@*(&)bg,(&)dE as (n|b|n). Since () is a “bracket”, (n|is
called “bra”, and |n} is called “ket”. Using the results of Problems 9.16 and 9.18, show
that
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a) b'lny=1n+1|n+1)
b |ny=n|n-1)
b) (n|m) =90,
c) (n|blny=20
(n|b*|ny=0
d) Calculate <n|(b* +b)*|nyand (n|(b* —b)?|n).

What is the physical significance of these expectation values?



10. Quantum Mechanics of the Hydrogen Atom

10.1 Motion in a Central Field

In this chapter, we shall solve the Schrédinger equation of the hydrogen atom. For our
calculations, we will not initially restrict ourselves to the Coulomb potential of the
electron in the field of the nucleus of charge Z, V(r) = — Ze?/ (4megr), but rather will
use a general potential F(r), which is symmetric with respect to a centre. As the reader
may know from the study of classical mechanics, the angular momentum of a particle
in a spherically symmetric potential field is conserved; this fact is expressed, for
example, in Kepler’s law of areas for the motion of the planets in the solar system. In
other words, we know that in classical physics, the angular momentum of a motion in a
central potential is a constant as a function of time. This tempts us to ask whether in
quantum mechanics the angular momentum is simultaneously measurable with the
energy. As a criterion for simultaneous measurability, we know that the angular
momentum operators must commute with the Hamiltonian. As we have already noted,
the components /,, /,, and /, of the angular momentum [ are not simultaneously meas-
urable; on the other hand, /, and / 2 for example, are simultaneously measurable. A
long but straightforward calculation reveals that these two operators also commute
with the Hamiltonian for a central-potential problem. Since the details of this calcula-
tion do not provide any new physical insights, we shall not repeat it here.

In quantum mechanics as well as in classical mechanics, we may thus measure the
total energy, the z component of the angular momentum, and the square of the angular
momentum simultaneously to any desired accuracy. In the following, we shall there-
fore seek the simultaneous eigenfunctions of /%, I, and #. We remind the reader that
we denote the angular momentum operators by a ~ (hat), in order to distinguish them
from the classical quantities /. Since we are here dealing with a spherically symmetric
problem it is reasonable not to use Cartesian coordinates, but to change to another
coordinate system which better reflects the symmetry of the problem. This is naturally
the spherical polar coordinate system. If we choose a particular point x,y,z in
Cartesian coordinates, we shall describe its position by means of the following coor-
dinates (Fig. 10.1):

Fig. 10.1. Illustration of spherical polar coordinates
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1) its distance from the origin, r,

2) the angle 6 between the z axis and the vector r,

3) the angle ¢ between the x axis and the projection of ron the X-y plane
Recalculating the Laplace operator V2= 98%dx2+ 9% By +9%/8z% in terms of

spherical polar coordinates is a lengthy mathematical procedure, which however con-

tributes nothing to the understanding of quantum mechanics. We shall therefore

simply write down the kinetic energy operator in polar coordinates; it is

2 2
S gl 10203, 1 2 (10.1)
2my 2my r* or ar 2myr?
with
2
Pt B [Ghg D +_1T_a_2 . (10.2)
sinf 90 o0 sin“f 0¢

We note that the operator /% is nothing other than the square of the angular
momentum operator, and contains only derivatives with respect to angles. Since the
potential of our problem depends only on the radius coordinate r, it is reasonable to
separate the radial and angular functions in a trial wavefunction as follows:

w(r, 0,¢) = R(r)F(6,9), (10.3)

i.e., we write the wavefunction as the product of a function which depends only on r
with a second function which depends only on the angles @ and ¢. If we insert (10.3)
into the Schrédinger equation

hz
2m0

Vit V(r)] w=Ey, (10.4)

we obtain

2 .
#Hy=F(0,¢) [— A~ 10820, V(r) | R(r) + ZR("):,_ I’F(6, ) = ERF .
8r myr (10.5)
We now make use of our recognition of the fact that the wavefunction (10.3) can be
chosen to be an eigenfunction of /% and of I.as well as of #. We write the correspond-

ing elgenvalues in the (arbitrary) form 42w and hm. These new, additional equations
are then'

I*F(6,¢)= h*wF(0,¢) and (10.6)
I.LF(6,¢) = hmF(6, ) . (10.7)

Note that s in (10.7) is the “magnetic quantum number” and must not be confused
with the mass.

' In literature one often uses ¥ instead of F.



10.2 Angular Momentum Eigenfunctions 155

By assuming that (10.6) is already solved, we can express the term R(r)/
(2myr®)I*F(6, ¢) in (10.5) in a simple form through the eigenvalue A2w. We then
have eliminated all derivatives with respect to # or ¢ on the left side of (10.5), and we
may divide both sides of (10.5) by F(6, ¢). We thus obtain an equation for the radial
part R(r) alone:

2 2
[ h iz j—(ﬂ%) + V(r) + 2h ‘”Z]R(r):ER(r). (10.8)

2my r° Or mor

We have reduced the task of solving the three-dimensional Schrodinger equation
(10.4), to that of solving the (as we shall see) simpler equations (10.6, 7 and 8).

Since the quantity 4% in (10.8) is still an unknown parameter, which occurs as an
eigenvalue in (10.6), our first problem is to determine this eigenvalue. We thus begin
with the task of solving (10.6) and (10.7).

10.2 Angular Momentum Eigenfunctions

The first part of this section is somewhat more abstract. For the reader who would like
to see the results first we give them here in compact form:
The eigenvalues of the square of the angular momentum /2 are

P11+ 1), (10.9)
where /is an integer,
I=0,1,2....
According to (10.7), the eigenvalues of the z component of the angular momentum are
hm.
The integer m is called the magnetic quantum number, and takes on the values
—-l=mz=l.

The wavefunctions F(6, ¢) naturally depend on the quantum numbers / and m and
have the form

F; (0, ¢) =e"™P/"(cosd) . (10.10)

These functions are drawn in Fig. 10.2. P{” is called a Legendre polynomial, and Py
with m # 0 is called an associated Legendre function. The entire function (10.10) is
called a spherical harmonic function.

We first address ourselves to the task of finding the eigenfunctions F as the
solutions to (10.6, 7). We write (10.6) again, giving the components of [ explicitly:

B+ T+ ) Fim= R w/F . (10.11)
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Fig. 10.2a —j. Legendre polynomials (a, d, g) and associated Legendre functions.
To illustrate the functions P{"(cos ), they are plotted as polar diagrams: in the
direction of a radius vector which makes an angle # with the z axis, the value of the
function is plotted as a distance from the origin. The plots are to be imagined as
having rotational symmetry around the z axis i




10.2 Angular Momentum Eigenfunctions 157

Furthermore, we derive a new equation from (10.7) by applying the operator 1 to both
sides and then using (10.7) once more. This yields

I2F) = h*m*F,,,. (10.12)
If we subtract (10.12) from (10.11), we obtain
B+ T Fym= h(w—m*)Fy . (10.13)

If we multiply both sides of this equation from the left by F}* I m and integrate over the
coordinates @ and ¢, we can show, in a way similar to that used with the harmonic
oscillator, that

w—-m*=0. (10.13a)

In analogy to the harmonic oscillator, it seems reasonable to write /2 + f2 as the
product of two factors [, =/, + 11 and /_=17.-— i/,. We might suspect that these new
linear combinations, like the operators &% and b w1th the harmonic oscillator, are a
kind of creation and annihilation operators. As already stated in (9.77 — 80), the fol-
lowing commutation relations hold between the angular momentum operators:

% L1=0, j=xz,

1] =inl,

(7,, ] = ihl,,

(I, I,] =ihl,. (10.14)

Further commutation relations can be derived from these by simple algebraic trans-
formations:

%7.1=0, (10.15)?
(7, 01.] = +hl,, (10.16)
., I = Fhl,. (10.17)

In order to demonstrate that 7, is a kind of creation operator and 7 a correspond-
ing annihilation operator, we consider

[.Fy . (10.18)

To find an equation for this quantity, we apply I to the left of each side of (10. 6) and
then obtain, due to the commutativity with 72, the equation

PP(T.Fym) = K ay(I.Fp) . (10.19)

This means that if F; ,, is an eigenfunction of (10.6), so is the function (10.18). We now
apply 7, to the left of both sides of (10.7) and then, because of the commutation
relation (10.17), we obtain after rearranging

LA Fp ) =hm+ 1)1, F,,,). (10.20)

2 [, means that (10.15) holds for both I, and 7_.(10.16) and (10.17) are to be understood in the same way.
In each case, the two upper signs belong together, as do the two lower signs.
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I thus increases (or decreases) the eigenvalue m by 1. Leaving off the normalisation
factor, we can therefore write

I.Fy = F, . - (Numerical normalisation factor) . (10.21)

Equation (10.13a), which requires that m? cannot be larger than wy, applies here.
Therefore the series of new eigenfunctions fiF,,m must terminate at a maximum
m = My, and at a negative, minimum m = m,,;,. Thus, just as in the case of the
harmonic oscillator, we must require that

[\Fip =0 (10.22)
and
[_F,,, =0. (10.23)

»min

If we apply /_ to the left of (10.22), and make use of the relations
[0, =R+ 5Lh=1-T(1,+h) (10.24)

and the fact that F, ,, is an eigenfunction of /> and 7., we obtain the basic equation
I,m z

[T F = h* (0 Mpax— M) Fp =0 (10.25)

max

In analogous fashion, by applying /. to (10.23), we obtain

LT Fyy, = W2 (01— M+ Mugin) Fp = 0. (10.26)

min

Since the eigenfunctions F, ,, are not zero, the factors by which they are multiplied
must vanish. It must therefore hold that

Minax(Mmax+ 1) = Mpin(Myin—1) = . (10.27)
This can be rearranged to
(M max + Mgin) (Mpax— Myin +1) = 0. (10.28)

Since M,y = Moy, it follows that the second factor in (10.28) must be different from
zero, and therefore that the first factor is equal to zero. From this,

Mmax = — Mmpin - (10.29)

As we have seen, each application of 7, to F, ;, m iNcreases the eigenvalue m by 1. There-
fore the difference m,, — m1,,;, must be an integer. If follows from (10.29) that
integer

So far we have only made use of the fact that F, , satisfies the Eqgs. (10.6) and
(10.7), and that the commutation relations (10.14) apply. As we shall see later, we must
require for the orbital motion of the electron that all values of 7, and thus in particular
My, Must be integers. Interestingly, the electron and also a few other elementary
particles have their own angular momentum, which is independent of the orbital
angular momentum, for which m ., = 1. This independent angular momentum is

2
called “spin”. We shall return to it in Sect. 14.2.1.
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If we set M,y = /, there are 2/+ 1 integers m between +/and —/ which satisfy the
condition

—l=m=l. (10.31)
From (10.27) we know that the parameter «;, which appears in (10.6), is

w=1(l+1). (10.32)
The eigenvalue of the operator “angular momentum squared” is thus

Mo (M + 1) B2 = I(1+ 1) B> (10.33)

With these results, we can give the original equations (10.6) and (10.7) with their
exact eigenvalues

[°F) =R+ 1) F) s (10.34)
LE,m=hmF,,,. (10.35)

The application of 7, to F; , leads to a new function F; ,, ,, for which the normal-
isation factor N remains undetermined:

Fimi1=NI F; . (10.36)
It can be shown that

_1 1 |
T Yammaeme

(10.37)

We again proceed in analogy to the harmonic oscillator. There we constructed the
eigenfunctions in space, in that we applied the operators b and b* successively to the
ground state. Here we do exactly the same. First, one can express the angular momen-
tum operators, which were given in Cartesian coordinates according to (9.61), in polar
coordinates. As can be shown mathematically, the result is

~ h d

=" , 10.38

=T 3o ( )

I.= G sin¢i’_+cot9cos¢i , (10.39)
i a0 B¢

-~ h ) U

[,=—|cos¢p— —cotlsing— | . (10.40)

g i( 00 Bq))

Using (10.35) and (10.38), we represent F ,, as the following product:

Fim=e""f1 (0, (10.41)
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where we write the second factor on the right in the form
P/"(cos @) (10.42)

for later use. If we increase ¢ by 2 7, we must naturally obtain a single-valued function
F} - This can only be guaranteed if m is an integer. Therefore the odd multiples of 1/2
which would satisfy (10.30) are excluded.

We now calculate F;, for m = —/ from the condition (10.23). If we substitute
(10.39) and (10.40) into this equation, we obtain in simple fashion

(I,—il)F, ;= —he™'? _”{ae !cotﬁ}f; (0 = (10.43)

The exponential functions can be removed from the second equation to give

0f;,—1(6)

=/lcotBf, _;(0). (10.44)
o0

The solution of this differential eduation is
Ji,-1(8) = C(sing)’, (10.45)

as the reader can be convinced by substitution. Here C must be determined by the nor-
malisation. The condition

2n n
| JIFPsinododg =1 (10.46)
00

yields the coefficient C after carrying out the integration:

C= 1 QI+ 1) .

Van 12!

If we now apply /, to F),, consecutively in the form
R |
[ F) = he ﬁ—mcotﬁ Fiom, (10.47)

we can construct all the angular momentum eigenfunctions.

In the following, we give the expressions obtained thus for / = 0, 1, and 2. The func-
tions F, ,, are normalised according to (10. 46). They are given both as functions of the
angular coordmates 0 and ¢ and as functions of the Cartesian coordinates x, ¥,z (with
r=x*+y%+z ) they are denoted in the standard notation by Y, (6, 0).

=0

Yo,0=——= (10.48)
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Yio0= —cosf)
l/ 4n (10.49)
Y, .= F I/ —— sinfe*?= ¥ i X*1y
8n r

,f 5 /3 ./ 5 2z7—x2—y? 1
Y, = Zcosth- — | =—|/
»0- (2 ) 4 r2

1 1 (x+ipy)z

2 +1= F— smf}cosﬂe— F—|) — —— 10.50
2 2n 2 2n r? ¢ )

. \2
51 et 2i0 _ 15 xX+1iy .
4 27: r - )

10.3 The Radial Wavefunctions in a Central Field *

[,

II

B

H

Before we turn to the problem of hydrogen, let us consider the general case of an
electron in a centrally symmetrical potential field V(r), of which we assume only that it
vanishes at infinity. The starting point is then (10.8), which we repeat here:

2
( i LZ a (ﬁ“') +m+ V(r)} R(r)=ER(r). (10.51)

2m(] r dr dr 2m0r

Let us rewrite the underlined differential expression:

d* 2 d
—_— = 10.52
dr* r dr ( )
and multiply the equation by — Zm[,/hz to obtain
d*R 2 dR I(1+1)
S Ty A-V(D) - R=0, 10.53
dr* rodr [ e r ( )

where we have used the abbreviations

_ g2
A= 2my E - K for E<0
h* k* for E>0,
7 2’?;0 V). (10.54)
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We shall now see what happens to the solution R(r) if we allow r to become very
large. We begin with the function

R=140 (10.55)
r
If we substitute this in (10.53), we obtain
2
%u(r)Jr [A—V(r)w [(IJ;])}u(r):O. (10.56)
r r

Since both ¥ and 1/r? go to zero at infinity, we neglect these two parameters. The
remaining equation has two types of solution:

1) E>0, ie. A>0.

In this case the general solution of (10.56) is

u=crer +ce” ¥ : (10.57)

and thus the original solution R(r), according to (10.55), is

R =l(c1e”"+ cye” k. (10.58)
r

To illustrate the meaning of this solution, let us imagine it to be multiplied by the
time-dependence factor exp(—icw#) which would occur in the solution of the time-
dependent Schrédinger equation. We see then that rlexp(ikr) exp(—iw!) represents
a spherical wave propagating outwards, while rlexp(—ikr)exp(—iwt) is a spherical
wave coming inwards. These spherical waves which come in from infinity and travel
outwards again correspond to the hyperbolic orbits in the classical Kepler problem.

Now let us investigate the case

2) E<0, ie. A<O0.
Then the solution of (10.56) is
u=ce " +ce . (10.59)

Since the solution naturally must not become infinite at large distances, which the
exponential function exp(xr) would do, we must require that the coefficient ¢; = 0. We
then obtain according to (10.55) a solution of the type

R="Serr, (10.60)
’

Since the absolute square of R represents the probability of finding the particle, and
this quantity decreases exponentially for increasing r, we see that in (10.60), the
electron is localised within a certain area in space. This is the quantum mechanical
analogy to the closed elliptical orbits of classical physics (see Sect. 8.9).
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10.4 The Radial Wavefunctions of Hydrogen

We will now attack the problem of solving (10.51) for the case of a Coulomb potential

Ze®

V=— .
dreyr

(10.61)

For this purpose it is convenient to use dimensionless quantities. We thus introduce a
new distance variable

o=2kr (1062)
with x defined by (10.54). Corresponding to this, we introduce a new function ﬁ(g),

which is related to R(r) by R(r) = R(2kr) = R(0). We then divide (10.53) by (4x2)
and obtain:

- 2 . -
R GRS SR CEAY B (10,63
© 4 ko 1%

in which we have used the abbreviation

2
B= MZe (10.64)
h 47!80

The primes on R denote derivatives with respect to o.

Having seen before that the wavefunction decays exponentially at large distances, it
would appear reasonable for us to use an exponential function as trial solution. It will
later prove useful to adopt the form

R=¢"%1(0). (10.65)

If we insert this trial solution in (10.63) and carry out the differentiation of the
exponential function and of the function v(g), we obtain

Urr+(2_1>vr+Kﬁ_1>1_ "“*21)}%0. (10.66)
0 K e o

It is shown in the study of differential equations that (10.66) is satisfied by a trial
solution in the form of a power series in o, which we will express in the convenient form

v=0"Y a0 = g a, 0", (10.67)

in which it is assumed that @, # 0.
In this expression, the exponent u and the coefficients @, are still to be determined.
We insert the trial solution (10.67) in (10.66), re-order according to powers of o, and
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require that the coefficient of each power of o should be independently equal to zero.
The lowest power which occurs is 0”2 The corresponding coefficient is

agu(pu—1)+ag2u—agl(l+1)=0. (10.68)

Since we have assumed that @, is nonvanishing, the common factor of @y must be
Zero, i.e.

up+1)=10/+1). (10.69)

Of the two possible solutions ¢ =/ and u = —/—1, only the first is usable for us, since
the other solution leads to a function v which diverges at the origin (10.67), causing the
trial solution for R also to diverge (10.65); however, we require the solutions of the
Schrédinger equation to be well-behaved in the entire range.

We now investigate the coefficients of the higher powers of o(v=+0). For o
find

VJ”LZWG

a,(v+(v+1- 1)+a,,2(v+l)favl({+ H—a,_v+I-D+a,_(n—1)=0, (10.70)
where the abbreviation
n=B/x (10.71)

has been employed. Relation (10.70) connects the coefficient @, with the preceding
coefficient @,_,. We thus obtain from (10.70), after an elementary rearrangement, the
recursion formula

v+il—n B
v(iv+21+1)

. (10.72)

This recursion relation permits two quite different types of solutions, depending on
whether the chain of the @’s is terminated or not. If it is not, the sum in (10.67) contains
infinitely many terms, and it may be shown mathematically that then v(g) is practically
equal to an exponential function which diverges at infinity. We must therefore restrict
ourselves to the case when the chain of the a’s does terminate; this is in fact possible if n
is an integer. We then obtain a cutoff for v = v, where

vo=n—1I. (10.73)
Since we must have vy = 1, we obtain from this a condition for /:
l=n—1. (10.74)

In the following, we shall refer to n as the principal quantum number and to / as the
angular momentum quantum number. According to (10.74), the angular momentum
quantum number cannot be larger than n—1.

We now calculate the energy value, which, as we will see immediately, is already
determined in principle by our assumptions. For this purpose, we express E in terms of
i (10.54); k is, however, already determined by (10.71).
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In (10.71), as we have just seen, n is an integer, n=1,2,... . Furthermore, B is

defined in (10.64). We thus obtain for E:
2 4
_ —%-17 (10.75)
2h*(dmey)” n

If we think back through the whole derivation, we see that the energy values E came
about through the requirement that the series (10.72) be terminated, or, in order to find
the actual solution, that the wavefunction should vanish at infinity. n is allowed to take
on integral values 1,2,3,... in (10.75), so that we obtain the energy level diagram of
Fig. 8.4. The same energy values have already been derived in Chap. 8, starting with the
Bohr postulates.

For E >0, i.e. for non-bound states, the energies form a continuous distribution of
values. We will not give the corresponding wavefunction here.

Since the series (10.67) has a cutoff, v(g) is a polynomial. If we recall the trial
solution for ﬁ(g) and the abbreviation for o, (10.62),

R=¢"%(0), (10.76)
we finally arrive at an expression for the original R of the form
R, i(r) = Ny jexp(—r,r) L3 Qreyr) . (10.77)

The various quantities have the following meanings:
N, is the normalisation factor, which is determined by the condition

§Ra (ryridr=1. (10.78)
0

(The factor r? in the integrand results from the use of spherical polar coordinates.)
K, has the dimensions of an inverse radius and is given explicitly by (10.71, 64)

moZe2

ks b (10.79)
h24m:0

1
an_
I

Lﬁ"ﬂl is the mathematical symbol for the polynomial which occurs in (10.77), whose
coefficients are determined by the recursion formula (10.72). It may be shown that
L2+ can be obtained from the so-called Laguerre Polynomials L, ,; by (2/+ 1)-fold
differentiation:

Lyt =a*t L, /do?t . (10.80)
The Laguerre Polynomials, in turn, are obtained from the relation

Ly (0) = e%d" '[exp(~@)o""'I/do""". (10.81)

A series of examples of (10.77) is given in Fig. 10.3 for various values of the quan-

tum numbers. In Fig. 10.3a, the radial wavefunction is plotted as a function of the
dimensionless radius variable o (10.62). The parentheses (1,0), (2,0) etc. contain the
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Fig. 10.3. a) The radial wavefunctions R(0) = R(r) of the hydrogen atom (10.77) are plotted vs the dimen-
sionless coordinate o. The indices on the curves, (1,0), (2,0) etc. correspond to (n,/) where » is the principal
quantum number and / the angular momentum quantum number. b) The corresponding probability densities
in the radial coordinate, i.e. 470> R? (o) are plotted against the dimensionless coordinate o
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values of n and / (n,/). In Fig. 10.3b, 470*R?*(0) is plotted for various values of n
and I. R*(0)do gives the probability of finding the particle in a particular direction in
space in the interval o. ..o+ do. If, on the other hand, we wish to know the probability
of finding the particle at the distance ¢ in the interval o...o0+dg independently of
direction, we must integrate over a spherical shell. Since the volume of a spherical shell
is just 4mo’do, we are led to the above quantity, 4 7o>R?(g). The maxima of these
curves is displaced to regions of greater distance with increasing quantum number #, so
that here we see an indication, at least, of the classical orbits.

Let us summarise our results. The wavefunction of the hydrogen atom may be
written in the form

Wn,m(rs 6, 0) = PP (cos O)R,, (r) . (10.82)
Here n is the principal quantum number, / the angular momentum quantum number,

and m the magnetic quantum number or directional quantum number. These quantum
numbers can assume the following values:

H=1,2,...,
0<l/=n-1,
—l=mz=+I1. (10.83)

Some examples for the density distribution of the electron (= probability density
distribution |, ; m(r, 6, @) |2) are represented in Fig. 10.4.

The density of points shown here was calculated by computer. It represents the
probability density of the electron. Since the hydrogen functions are partially complex,
combination of functions which belong to +m and —m yields real functions. These
linear combinations are also solutions of the Schrodinger equation of the hydrogen
problem. They still have the quantum numbers n and /, but they are no longer eigen-
functions for the z component of the angular momentum, so that this quantum number
is lost. Figures 10.4a,b and e represent solutions with /= 0, which yield spherically
symmetrical distributions. The sections ¢, d, f and g represent / = 1. Here one notices
the dumbbell shaped distribution along one axis. There is a further linear combination
possible in each case, but not shown here, in which the long axis of the dumbbell would
lie along the third coordinate. Sections h and i represent /= 2, with m = 0 in h, and i
represents a linear combination of m = +1. Figure 10.4 does not show the wavefunc-
tions with /=2, m = +2.

The energy corresponding to (10.82) is given by (10.75). It clearly depends only on
the principal quantum number n. Since each energy level E, (with the exception of
n = 1) contains several different wavefunctions, these levels are called degenerate. This
degeneracy is typical of the hydrogen atom problem with the Coulomb potential.

The degeneracy with respect to / is lifted, i.e. the energy levels become dependent
upon /, if the potential no longer has the form —const/r, but is still spherically sym-
metric (Sect. 11.2). We will be led to consider effective departures from the Coulomb
potential for all atoms with more than one electron (see below). The / degeneracy is also
lifted even for hydrogen if we treat the problem relativistically, which is necessary for
the exact treatment of the spectra (Sect. 12.11). The m degeneracy can only be lifted by
superimposing a non-spherically symmetric potential on the central potential of the
atom, i.e. an electric or a magnetic field (Chaps. 13 and 14).
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Fig. 10.4a —i. The density distribution (= localisation probability
density \l,y|2) of the electron in the H atom represented by the
density of dots (according to H. Ohne). The wavefunctions
represented are:

a) (10.82), n=1,1=0,m=20

b) (10.82), n=2,1=0,m=0

¢ (10.82),n=2,1=1,m=0

d) linear combination (y, ; y+ w1 ) ——

12

i

e) (10.82),n=3,1=0,m=0

f) (10.82),n=3,1=1,m=0 .
. R i

g) linear combination (y;3 1 1+ y3,1, 1)~

h) (10.82), n=3,1=2, m=0 2

i) linear combination (3 5 1+ W32 4 );_

12
The linear combinations given are also solutions of the Schrédinger
equation of the hydrogen problem with the energies E,, but they
are not eigenfunctions of /,
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Problems

10.1 Calculate the expectation values of the kinetic and potential energies

a) for the ground state of the hydrogen atom, n=1, /= m =0,
b) for the wavefunctions n=2, /=0, m=0andn=2, /=1, m= +1,0.

Hint: Use spherical polar coordinates, so that for the volume element dV,
dV = sinfd@deridr.

10.2  As will be discussed in Sect. 15.2.3, in quantum mechanics dipole matrix
elements between two states with the wavefunctions y; and , are defined by

D = [ytery,dxdydz.

Why is D a vector? Calculate the components of 1) when

a) Y1 =¥2=¥1,00,

b) wi = w1005 2= w200
or V2= V210
or W= Wai1,+1-

Here y,, ; , is the wavefunction of the hydrogen atom with the quantum numbers n, /
and m.

10.3 Calculate « (10.79) and £, (10.75) numerically for the first three values of n for
the hydrogen atom.

10.4 Using the ground state of hydrogen as an example, we discuss here the variation
principle of quantum mechanics. This says, in general, that the wavefunction y of the
ground state of a Schrodinger equation .# i = E y can be found (aside from solving the
equation directly) by minimising the expectation value of the energy by a suitable
choice of w: E = [w* # wdxdydz = min. y must simultaneously satisfy the additional
condition that [y *wdxdydz = 1.

This principle can also be used to estimate wavefunctions, and especially energies.

Problem: a) Take the trial solution y = Nexp(—r%/ r%). Calculate the normalisation
factor N. Then calculate E as a function of r,, and minimise £ by a suitable choice of
ro. Then compare E_;, with the exact value of the energy.

b) Repeat the procedure for = Nexp(—r/ry).

10.5 Solve the one-dimensional Schroédinger equation

n* dry(x) o, 0
- -+ = x)=FE
2my  dx? x  x? vl =Ey

for x=0, ¢;>0, ¢, >0, E<0.
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Hint: First examine the limiting case x— oo and determine the asymptotic form of y(x).
Then try the solution

w(x) = x%e " g(x),

where o= L+ |/ L+ & with & = 2my c;/h*and e = —2myE/h%

Calculate g(x) with a power series which, however, must be terminated. Why?



11. Lifting of the Orbital Degeneracy in the Spectra
of Alkali Atoms

11.1 Shell Structure

After the spectra of atoms with only one electron, the next simplest spectra are those of
alkali atoms.

The alkali atoms have a weakly bound outer electron, the so-called valence electron,
and all other (Z— 1) electrons are in closed shells. What the atomic-physical meaning of
a closed shell is, we will discover later. At present we shall only say that even when
several electrons are bound to a nucleus, their individual electron states can be charac-
terised by the three quantum numbers », / and m, but the corresponding energies are
strongly modified, with respect to the one-electron problem, by the interactions of the
electrons with each other. The Pauli principle (Sect. 17.2) says that a state characterised
by specific values of n, / and m can be occupied by at most two electrons. In the ground
state of an atom, the states with the lowest energies are naturally the occupied ones. A
particular state of occupation of the energy levels or terms of an atom by electrons is
called the electron configuration of the atom in that state — in this case, the ground
state. A closed shell or noble gas configuration occurs whenever the next electron to be
added would occupy the s state of the next higher principal quantum number 7. It is not
necessary that all the states belonging to lower principal quantum numbers be filled;
more about this will be said in Chap. 20. The electrons in the closed shells are closer, as
arule, to the nucleus than the valence electron, and are more strongly bound. The total
angular momentum of a closed shell vanishes. The closed shell is spherically sym-
metrical and is especially stable.

How is this known? Firstly, from chemistry: all alkali metal atoms have a valence of
one. Each alkali metal is preceded in the periodic system by a noble gas, each of which
has one electron fewer and has a particularly stable electron configuration — a closed
shell. These gases are chemically inactive. Compared to those of their neighbours in the
periodic table, their ionisation potentials are large. The neighbours with one more
nuclear charge unit, the alkali metals, have very low ionisation potentials. For example,
the ionisation energy of the noble gas helium is 24.46 ¢V. The next element in the
periodic table, the alkali metal lithium, has an ionisation energy of only 5.40 eV. The
ionisation energies of the heavier alkali metal atoms are even lower, as can be seen from
Table 11.1. The table also shows that the ionisation energy for the removal of the
second electron from an alkali metal atom is very large, because the electron configura-
tion of the singly charged positive ion is a closed shell. In Fig. 11.1, the simplified term
diagrams of the alkali metals are compared to that of the H atom.

The comparison shows that in the alkali atoms, the / degeneracy is lifted. States
with the same principal quantum number n and different orbital angular momentum
quantum numbers / have different energies. Relative to the terms of the hydrogen
atom, those of the alkalis lie lower — this means a larger (negative) binding energy —
and this shift increases, the smaller / is. For larger principal quantum numbers, i.e.
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Table 11.1. Work of ionisation for the elements with Z = 1 to Z = 20. Values are given for the neutral atom,
and for singly, doubly and triply charged ions. The ionisation energy is always especially large for a noble gas
configuration (closed shell). It is especially low if there is only one electron more than a noble gas configura-
tion which is indicated by bold-face numbers

Element Work of ionisation [eV] for the transition from the —

neutral atom to singly to doubly to triply to

singly charged doubly charged triply charged quadruply charged
H 13.59 - - -
,He 24.5 54.1 — ~
5Li 5.4 75 122 -
4Be 9.3 18.2 154 217
5B 8.3 25.1 38 259
«C 11.3 24.5 48 64.5
4N 14.6 29.6 47 77.4
$0 13.6 35.2 55 77.4
oF 17.4 34.9 62.7 87.3
10Ne 21.6 41.0 63.9 96.4
11Na 5.14 47.3 7.7 98.9
Mg 7.64 15.0- 80.2 109.3
12Al 5.97 18.8 28.5 120
1451 8.15 16.4 33.5 44.9
15P 10.9 19.7 30.2 51.4
165 10.4 23.4 351 47.1
17Cl 12.9 23.7 39.9 53.5
1gAT 15.8 27.5 40.7 ca. 61
10K 4.3 31.7 45.5 60.6
20Ca 6.1 11.9 51 67

Li Na K Rb Cs H
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Fig. 11.1. Simplified term diagrams for the alkali metal atoms, showing the empirical positions of the most
important energy terms. The principal quantum number # is indicated by numerals, the secondary quantum
number / by the letters S, P, D, and F. For comparison, the levels of the H atom are given on the right
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greater orbital radii, the terms are only slightly different from those of hydrogen. Here
also, however, electrons with small / are more strongly bound and their terms lie lower
in the term diagram. This effect becomes stronger with increasing Z. We would like to
understand this effect, at least qualitatively.

11.2 Screening

In order to understand the term diagrams of the alkali atoms, we will use the following
model (Fig. 11.2):

Fig. 11.2. Model of an alkali atom. The valence electron is screened
from the nuclear charge +eZ by the (Z— 1) inner electrons

A “valence electron” is located at a relatively large distance » from the nucleus. It
moves in the electrostatic field of the nuclear charge + eZ, which is for the most part
screened by the (Z—1) inner electrons. We describe the screening effect of the inner
electrons together with the nuclear potential by means of an effective potential V,(r)
for the valence electron. In this way we reduce the original many-body problem to a
single-particle system, and we can treat the energy levels of an alkali atom as terms of a
single-electron atom.

The shape of the effective potential V. (r) is shown schematically in Fig. 11.3. If
the valence electron moves at a great distance from the nucleus, its potential energy is
—e*/(4meyr). The nuclear charge which attracts the valence electron is in this case

V(r)

Fig. 11.3. Effective potential V(r) for an alkali atom. At small
3 electron-nuclear distances, Vg has the shape of the unscreened
nuclear Coulomb potential; at large distances, the nuclear charge is
screened to one unit of charge
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compensated down to one unit of charge by the inner electrons. However, the nearer
the valence electron approaches the nucleus, the more it experiences the unscreened
nuclear potential. The potential energy approaches V = — Ze?/(4 mgyr). The effective
potential V() is no longer proportional to 7~ !. This proportionality was, as we recall
(Chap. 10), responsible for the / degeneracy.

Fig. 11.4. Variation in screening for electrons with
different radial probability densities. In the Som-
merfeld model it is intuitively clear that electrons
with “diving orbits” approach the nucleus closely
and are affected at least partially by the unscreened
nuclear potential. It has to be remembered,
however, that in the modern quantum theory, the
electrons are described as charge clouds rather than
as orbiting particles

In the Sommerfeld picture, the so-called diving orbits demonstrate especially clearly
that electrons with differing orbital angular momenta, i.e. differing orbital shapes,
experience different degrees of screening. This is illustrated in Fig. 11.4. Quantum
mechanically, this picture remains valid to a large extent. In Chap. 10 it was shown that
the probability density of the electrons in the neighbourhood of the nucleus decreases
in the order /=0,1,2,... . The s electrons are thus most strongly affected by the un-
screened field of the nucleus. For a given principal quantum number n, the energy
terms of the s electrons are therefore shifted the most strongly to negative values
relative to the H atom (Fig. 11.1).

11.3 The Term Diagram

For the alkali atoms, we thus obtain a term diagram like that shown in Fig. 11.5 for
lithium. This term diagram permits a classification of the spectral lines to series, if one
employs the additional selection rule for optical transitions A/ = +1, i.e. in an optical
transition, the quantum number / must change by 1. Such selection rules will be treated
in detail in Chap. 16.

The series in the emission spectra of the neutral alkali atoms can be described by
series formulae similar to the Balmer series formula. For the energy terms E, ; which
are determined by the quantum numbers » and /, an effective principal quantum
number n.;; may be defined, so that, e.g. for sodium we have

L Rhi_l_}
Mt [n—A4(n, 0]

Here the multiplication by the factor Ac is necessary if the Rydberg number Ry, is
measured in cm ', as is customary. Here ne = n—A(n, /) is a principal quantum

E”,{= *RNahC
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2g 2p tp) 2E H Atom Fig. 11.5. Term diagram of the lithium atom
2 12,32 3R 5l2_512,712 0 with the most important transitions. This is
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number, in general not an integer, and A(n,/) = n— ng; is the so-called quantum defect
associated with the quantum numbers # and /. The empirically determined numerical
values for the quantum defects (see Table 11.2) are largest for s electrons, decrease with
increasing orbital angular momentum quantum /, and are largely independent of the
principal quantum number n. They increase down the column of alkali atoms from
lithium to cesium, or with increasing nuclear charge number Z. These quantum defects
are empirical expressions of the different degrees of screening of the s, p, d, etc. elec-
trons by the electrons of the inner shells.

For the sodium atom, the decomposition of the total spectrum into series is repre-
sented in Fig.11.6. Figure 11.7 shows the transitions in the form of a Grotrian

Table 11.2. Quantum defects A(n,/) for the spectra of the Na atom [from F. Richtmyer, E. Kennard,
1. Cooper: Introduction to Modern Physics, 6th ed. (McGraw-Hill, New York 1969)]. These are empirical
values

s 1.373 1.357 1.352 1.349 1.348 1.351
P 0.883 0.867 0.862 0.859 0.858 0.857
d 0.010 0.011 0.013 0.011 0.009 0.013
f - 0.000 —0.001 —0.008 —-0.012 —0.015

W= O
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Fig. 11.6. The three shortest-wave spectral series of the sodium § :
atom. The series limits are indicated by shading. The emission spec- g 3+ 8
trum is a composite of these series. In absorption spectra, normally L 2852.83 g
only the principal series is observed, because in the ground state of c
: : : 33023 S
the Na atom the highest occupied term is the 3s term. The yellow D.:5895.930 4
colour of sodium lamps is due to the longest-wave resonance line of ! : -1 30 g
the main series, the transition 35+ 3 p. This is the sodium D line, a V5 0,:5889.963
terminology which has been retained for historical reasons
Fig. 11.7. Term scheme (Grotrian diagram) of the sodium atom. m 5= - 40
Some of the shortest-wave transitions from the principal series, the 512 3
two secondary series and the Bergmann series have been included. :
The numbers in the diagram indicate the wavelength of the transi-

tion in Angstrom units. The term symbols indicated on the upper
edge of the figure also represent the quantum numbers for the
multiplicity and the total angular momentum. These are explained
in Chaps. 12 and 17

diagram. The most important series are the principal series, with transitions from p to s

electron terms:

1 1
[ng— A(no, 01> [n—A(n,1))* |

Vp=Rna nzngnyg=3,

the sharp or second secondary series with transitions from s to p electron terms:

1 1
[no— A(ng, D> [n—A(n,0)])°

‘_"SzRNa ] ngn0+11

the diffuse or first secondary series with transitions from d to p electron terms:

1 o 1 o
[no— A(ng, D> [n-A@®,2)? |~

Va= Rna o,
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and the Bergmann (fundamental) series with transitions from f to d electron terms:

fff—RN{ ! ! 1 n=ng+1.

[no— A, 21> [n—A(m3))

Ry, is again the Rydberg number of the sodium atom and nj is the integral principal
quantum number of the lowest state. This is 2 for Li, 3 for Na, 4 for K, 5 for Rb and 6
for Cs. We are jumping slightly ahead in saying that the valence electron of the alkali
atoms begins a new shell in each element. The principal quantum number of the ground
state therefore increases by one in each successive alkali element of the periodic system.

The names for the series and the system of indicating the electrons with orbital
angular momentum 0,1,2,3,4,...ass,p,d, f,g... are historic. p is for principal, s for
sharp, d for diffuse and / for fundamental.

Under normal conditions, only the principal series is observed by absorption spec-
troscopy, because unless the temperature is extremely high, only the ground state of the
atoms is sufficiently populated for transitions into higher states to be observed. The
lines of the principal series are thus resonance lines. The best known is the D line of
sodium, which is the transition 35— 3 p. The sum of the s terms can also be designated
S, and of the p terms, P, so that the sodium series can be written:

Principal series 3S<nP
Secondary series 3P < nS
3JPonD with n=3.

Capital letters are used for terms which apply to several electrons in an atom, and
lower case letters for the terms for individual electrons. In the alkali atoms, which have
only one valence electron, the two notations are equivalent.

The screening effect of the inner electrons can be quantitatively calculated, if one
knows their charge distribution with sufficient accuracy. Qualitatively, we wish to
demonstrate the effect of the nuclear charge on a single 3d or 45 electron in the atoms
H((Z=1)and K (Z=19).

In the H atom, the charge cloud of a 34 electron is, on the average, closer to the
nucleus than that of a 4s electron (Fig. 11.8). Therefore, the 3d electron is more
strongly bound to the H atom. It is different, however, in the K atom. The configura-
tion of the atomic core, i.e. the noble gas configuration of Ar, consists of two s elec-
trons with n = 1 (symbol 1s%), two s electrons with n = 2 (symbol 25?), six p electrons

}z L 3d is
il Fig. 11.8. Radial probability densities for a
45 and a 3d electron in the H atom. The 45
,’A electron is, on the average, farther from the
OGN . N | ) nucleus, but the probability of finding it near
0 4 8 12 16 20 24 28 32 36 the nucleus is greater than the probability of

Bohr radii r finding the 34 electron there
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with n = 2 (symbol 2p®), two s electrons with n = 3 (symbol 3s?) and six p electrons
with 7 = 3 (symbol 3 p°):

1522522p%35?3p°— or [Ar] for argon .

Now the question is, does K, with one more electron, have the configuration
[Ar]4s!, or does [Ar] 3d" have a greater binding energy? Is the 19th electron added as a
45 or a 3d electron?

From our consideration of the H atom, we would predict that the [Ar] 3d' con-
figuration is more stable. However, it must now be determined what the effects of
shielding are on the 3d and 4s electrons. Because the 45 electron has a higher prob-
ability of being very close to the nucleus, and thus unscreened, it turns out that the 45
energy level is energetically somewhat lower than the 3d. The 20th electron is also an s
electron; see Table 3.1. The element following potassium in the periodic table, calcium,
has the configuration [Ar] 4s° It thus becomes clear how decisively the screening
affects the binding energies of the outer electrons, in a manner dependent on the orbital
angular momentum quantum number /.
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Fig. 11.9. Left. Grotrian diagram for the neutral potassium atom in the visible and infrared regions. The
wavelengths for a few transitions (in nm) are indicated. The term symbols on the upper edge of the diagram
are explained in Sect. 12.8 and Chap. 17. Right. Term scheme for the potassium atom in the infrared, visible,
ultraviolet and x-ray regions. The term symbols used in this diagram are explained in Chaps. 12 and 17. (One
should observe that the energy ranges in the two halves of the figure are different.) The x-ray spectrum also
includes terms with lower principal quantum numbers than the visible spectrum. Terms with n=1,2,3...
are referred to in the x-ray region as the K, L, M. .. shells, see Chap. 18

Energy E [eV]
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11.4 Inner Shells

So far we have treated only the optical spectra of the alkali atoms. The valence electron
could only have the principal quantum number n = 2 for Li, =3 for Na, =4 for K, etc.
The states with lower principal quantum numbers were completely occupied. Transi-
tions involving these inner electrons were not discussed. However, they are also
possible. Since the inner electrons are more strongly bound, such transitions take place
at higher energies. We will introduce such transitions later, in the discussion of x-ray
spectra (Chap. 18).

Figure 11.9 shows, in addition to the optical term scheme for the valence electron of
the K atom, a complete term scheme. This includes the transitions in the x-ray region of
the spectrum, in which an electron is removed from a closed inner shell and replaced by
an electron from further out.

Problems

11.1 The energy levels of the valence electrons of an alkali atom are given, to a good
approximation, by the expression

E,= —Rhc-1/[n—A(n,D]?.

Here A(n,/) is the quantum defect (which depends on the values of n and / of the
valence electron in question). For lithium and sodium, A (#n,/) have been measured:

s )2 d
Li(Z=23) 0.40 0.04 0.00
Na (Z=11) 1.37 0.88 0.01

Calculate the energy of the ground state and the first two excited states of the valence
electron in lithium and sodium.

11.2 The ionisation energy of the Li atom is 5.3913 eV, and the resonance line
(25 2p) is observed at 6710 A. Lithium vapour is selectively excited so that only the
3 p level is occupied. Which spectral lines are emitted by this vapour, and what are their
wavelengths?

Hint: Start from the fact that the quantum defect is independent of », the principal
quantum number.

11.3 Explain the symbols for the 3*D—3°P transition in sodium. How many lines
can be expected in the spectrum?



