7. Some Basic Properties of Matter Waves

7.1 Wave Packets

In the two preceding chapters it was shown that light, electrons and other elementary
particles can have both wave and particle characteristics. In this chapter we will
examine more closely how the wave properties of matter can be understood and
described mathematically.

For both light and material particles there are basic relationships between energy
and frequency, and between momentum and wavelength, which are summarised in the
following formulae:

Light Matter
E=hv E=hv=hw
(7.1)
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p=2 p=—=hk.
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Fig. 7.1. Instantanecous view of a wave with
- A amplitude A, and wavelength A

We now wish to expand these relationships into a more exact theory. We are
familiar with descriptions of wave motion from the study of light. If we consider a
plane monochromatic wave (Fig. 7.1) travelling in the x direction, the wave amplitude
A at time ¢ and point x is A4 (x, t) = Ay cos(kx — wt). The wave number £ is related to
the wavelength A by k = 27/A. The circular frequency w is related to the frequency by
w = 2 v. In many cases it is more useful to use complex notation, in which we express
the cosine by exponential functions according to the formula

cosa=L(e+e 7). (7.2)
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We accordingly expand A (x, 1):
Ax, 1) = Agtlexp(ikx—iwt)+exp(—ikx+iwi)] . (7.3)

Applying the relations (7.1), we obtain

exp(ikx—iwt) = exp [% (px—Et)} . (7.4)

The wave represented by (7.4) is an infinitely long wave train.

On the other hand, since we ordinarily assume that particles (“point masses”) are
localised, we must consider whether we can, by superposing a sufficient number of
suitable wave trains, arrive at some spatially concentrated sort of “wave”. We are
tempted to form what are called wave packets, in which the amplitude is localised in a
certain region of space. In order to get an idea of how such wave packets can be built
up, we first imagine that two wave trains of slightly differing frequencies and wave-
numbers are superposed. We then obtain from the two amplitudes A4 (x, ) and A4, (x, ¢)
a new amplitude A4 (x, ¢) according to

Ao, 1) = Ay (x, 1)+ Ay (x, 1), (7.5
or, using cosine waves of the same amplitude for 4, and A,
Ax, 1) = Aglcos(kix— wqt) +cos(kax — wst)] . (7.6)

As we know from elementary mathematics, the right-hand side of (7.6) may be ex-
pressed as

2Agcos(kx—wt)cos(Akx— Awt), (7.7)
where

k=3(ki+ky), w=l(w+w),
and

Ak:%(kl—kz), Aw=%(w1—co2).

The resulting wave is sketched in Fig. 7.2. The wave is clearly amplified in some regions
of space and attenuated in others. This suggests that we might produce a more and
more complete localisation by superposing more and more cosine waves. This is, in
fact, the case. To see how, we use the complex representation. We superpose waves of
the form (7.4) for various wavenumbers k and assume that the wavenumbers form a
continuous distribution. Thus, we form the integral

ko+ Ak
| aexplitkx—w)]dk = w(x,1), (7.8)
ko~ Ak

where a is taken to be a constant amplitude.
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LA (X,t} Fig. 7.2. Superposition of two waves of the
same amplitude. Fundamental wave 1:
(—--), fundamental wave 2: (— —) same
amplitude as 1. Resulting wave A4: (——).
The envelope cos(Akx— Awt) for constant ¢
is also shown as a dashed curve

In taking this integral, we must notice that  and k are related to one another, since
the energy and the momentum of an electron are connected by the relation
E=p*/(Q2 myg), and this in turn means that w and k are related according to (7.1). To
evaluate the integral we set

k = ko+ (k — ko) (7.9)

and expand  about the value k( using a Taylor series in (k — k), which we terminate
after the second term:

dw

w=wot+ | — J(k—kg)+... . 7.10
0 (dk ) 0 (7.10)
In the following, we abbreviate dw/dk as w'. Inserting (7.9) and (7.10) in (7.8), we

obtain

k
w(x, 1) = aexp[—i(wol - kox)] AS exp[-i(w'71-x)¢]dE, (7.11)
- Ak

where we have set (k— k) = & The remaining integral may be evaluated in an elemen-
tary manner and (7.11) finally takes the form

sin[(e' t—x) Ak]
w't—x '

wix, 1) =aexp(—iwyt+ikox) -2 (7.12)

The real part of y is shown in Fig. 7.3.

We can draw two important conclusions from (7.12):

1) The wave packet represented by i is strongly localised in the region of x = w'1.
The maximum amplitude moves with a velocity w’ = dw/dk. With the help of (7.1),
we can express w and £ in terms of £ and p, obtaining ' = 0E/dp, or, if we use the
standard relation F = pz/ 2my, finally @’ = p/my = vyanice. In order to understand this
result, we recall the concepts of phase velocity and group velocity.
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b Re[Vi(x,t)]

7. Some Basic Properties of Matter Waves

Fig. 7.3. The real part of w(x,1) as a func-
tion of the position x. The rapid oscillations
are described by cos(kgx — 1) with £ fixed.
The envelope is given by sin[(w' ¢~ x) Ak]/
(' t—x) with ¢ fixed. Note that the scale of
the x axis has been greatly reduced in com-
parison to Fig. 7.2

If we let the time variable increase in the wavefunction cos(kx— wt), then the
position x,,, at which a particular wave maximum is to be found moves according to
the relation kx . — wt =0, i.e. Xy = (w/k) 1. The position x,, thus moves with the
phase velocity vipa.. = w/k.

If we replace w by E and k by p according to (7.1), we find immediately that this v
does not equal the particle velocity. On the other hand, we have just seen that the
maximum of a wavepacket moves with the velocity vg = dw/dk. This velocity of a
wave group (wavepacket) is called the group velocity. Thus the group velocity of the
de Broglie waves (matter waves) is identical with the particle velocity.

We could be tempted to unify the wave and particle pictures by using wave packets
to describe the motion of particles. This is unfortunately not possible, because in
general, wave packets change their shapes and flow apart with time. We are therefore
compelled to adopt a quite different approach, as will be shown below.

2) A second implication of the result (7.12) is the following: The width of a wave
packet is roughly the distance between the first two zero points to the left and right of

b vkt

N A~
\/ A .
Fig. 7.4. The envelope of the real

part of the wave packet (7.12) (Fig.
7.3). The first node is at x, = 7/ 1k
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the maximum (Fig. 7.4). Since the first zero point is at x, = n/Ak, the width of the
wave packet would be Ax = 2 7/ Ak. The more we wish to concentrate the wave packet,
i.e., the smaller we make Ax, the larger we must make the k-region, or Ak.

In order to clarify the relationship between the particle and the wave descriptions,
we shall consider the experiment described in the following section as we have already
for light.

7.2 Probabilistic Interpretation

We wish to illustrate, using the electron as an example, how one can unify the wave and
particle descriptions. To determine the position of an electron in the x direction
(Fig. 7.5), we allow an electron beam to pass through a slit with a width Ax. We can
thus ensure that the electron coming from the left must have passed through this
position. Now, however, the wave properties come into play, and the electron is
accordingly diffracted by the slit. A diffraction pattern is produced on the screen S
(Fig. 7.5). According to wave theory, the intensity of the diffraction pattern is propor-
tional to the square of the amplitude. When we consider the electron as a wave, and
take y as its wave amplitude, we obtain the intensity 7= |w(x, 1‘)|2 at time ¢ and
position x on the observation screen. It is better, for both mathematical and physical
reasons, not to speak of the intensity at a poinf in space, but rather of the intensity in
the three-dimensional region dx, dy, dz around the point x, y, z.

b X
[
— |
—
- . AX
—
—_— N
Fig. 7.5. An electron beam (arrows at left)
passes through an aperture and generates a
N diffraction pattern on a screen. The intensity
Aperture Screen Diffraction distribution on the screen is shown schemat-

pattern ically on the right

Therefore, in the following we shall consider the intensity in a volume element
dV =dxdydz:

Tdxdydz = |y(x,,2,t) *dxdydz . (7.13)

(Compare this to the one-dimensional example in Fig. 7.6.)
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Fig. 7.6. |y (x) [ as a function of x at a given time 7. The shaded area corresponds to the probability that the
clectron is located in the interval x; to xy + dx

Now comes the essential point. The screen can also be considered as an apparatus
which detects electrons individually as particles. A fluorescent screen flashes at the
point of impact each time an electron hits it. The electron is thus highly localised, and
there is no diffraction pattern. If we repeat the experiment, we observe other flashes of
light, and in general these are at different points on the screen. Only when we carry out
many experiments, or allow many electrons to pass through, do we obtain a diffraction
pattern of the form described by (7.13). This is the key to the explanation of the phe-
nomenon of “wave-particle duality”. On the one hand, the intensity of the diffraction
pattern in a volume A V' is proportional to the absolute square of the amplitude,

lw]*av, (7.14)

and on the other, it is proportional to the probability of finding the electron in A V.
\w\zd V' is thus itself proportional to the frequency of finding the electron in AV.
\w(x,¥,2,t) |*dx dy dz must therefore be seen as the probability of finding the electron
in a volume element ¢V about the point x, y, z.

Because the statistical interpretation of quantum mechanics will be mentioned fre-
guently, and is absolutely necessary to an understanding of the subject, we shall spend
a bit more time on the concept of probability. Let us compare a quantum mechanical
experiment with a game of dice. Since a die has six different numbers on its faces, it
has, so to speak, six different experimental values. We cannot say in advance, however,
which face, i.e. which experimental value we will obtain in any given throw. We can
only give the probability P, of obtaining the value n. In the case of a die, P, is very easy
to determine. According to a basic postulate of probability theory, the sum of all prob-
abilities P, must be one (i.e., one face must come up on each throw):

YP,=1. (7.15)

Since all the numbers n =1, 2,...6 are equally probable, the six values of P, must be
equal, so P,=1/6.
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It is not so easy to determine |y \2dx dydz. We can infer from the above, however,
that there must be a normalisation condition for |y |*dx dy dz. If we integrate over all
points in space, the particle must be found somewhere, so the total probability must
therefore be equal to 1. We thereby obtain the basic normalisation condition

§lwx,y,2)Pdxdydz=1. (7.16)

We shall illustrate the use of this normalisation condition with two examples.
1) We assume that the electron is enclosed in a box with volume V. The integral
(7.16) must then extend only over this volume. If we use for y the wavefunction

w=Ayexp(ik - x—iwi), ‘ (7.17)
where k - x = k,x+k,y+k_z, then 4, must be
Ag=V V2, (7.18)

2) If the space extends to infinity, there is a difficulty, because here 4,= 0 if we
simply allow V to go to infinity in (7.18). It can be shown, however, that a generalised
normalisation condition can still be derived. In one dimension the normalised wave-
function is

wi(e 1) = (1/)/2 1) exp(ikx—iwt) , (7.19)
and the normalisation condition is
Sy Dy, dx = 3(k—k') . (7.20)

Here d(k — k') is the Dirac d function (see Appendix A).

The probabilistic interpretation of the wavefunction is also necessary for the fol-
lowing reason: if the impact of an electron on the screen were to cause it to flash at
more than one point, this would mean that the electron had divided itself. All experi-
ments have shown, however, that the electron is not divisible. The determination of
| |*dV allows us only to predict the probability of finding the electron in that volume.
If we have found it at one position (localised it), we are certain that it is not somewhere
else as well. This is evidently a “yes-no” statement and leaves no ambiguity for an
individual electron. If we consider the reflection of electrons in this way, and observe
that 5% are reflected, it means this: if we carry out a very large number of experiments,
5% of all the electrons would be reflected. It would be completely false, however, to
say that 5% of a single electron had been reflected.

7.3 The Heisenberg Uncertainty Relation

We now consider some of the implications of the fact that the electron sometimes acts
as a particle and sometimes as a wave. As we calculated earlier, the one-dimensional
distribution of the wave packet is

sin(x Ak)

wi(x) ~ (7.21)
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If we take the position of the first zero point as a measure of the uncertainty in the
position, we obtain from (7.21) (Fig. 7.4) the relation

==, (7.22)

The uncertainty in the position is clearly connected with the uncertainty in the wave-
numbers k. But the wavenumber is related to the momentum by the equation

p=nhk. (7.23)

If we insert this in (7.22), we obtain the basic Heisenberg uncertainty relation

AxAp=h (7.24)

(a mathematically precise formulation and derivation can be found in Appendix C).
This relation states that it is impossible to measure the position and the momentum of
an electron exactly at the same time. A lower bound to the simultaneous measurability
is given by (7.24). Indeed, if we wished to let Ax go to zero (exact determination of the
position), we would have to allow Ap to become infinite, and vice versa. The fact that
we notice nothing of this uncertainty relation in daily life is a result of the smallness of
Planck’s constant A. If, on the other hand, we consider the microscopic world, then we
can only understand the results of experiments if we take the finite size of the constant
h into account. We will clarify the meaning of (7.24) with the example of an experi-
ment.

An electron is moving in a horizontal direction (v). We wish to determine its co-
ordinate in the perpendicular (x) direction. For this purpose, we set up a collimator per-
pendicular to the direction of motion with a slit of width d = Ax. If the electron passes
through this slit, then we know that it was at that position with the uncertainty Ax.
Now, however, we must take into account the wave nature of the electron. From the
theory of diffraction we know that a wave produces a diffraction pattern on the obser-

X

First
<«——————— Diffraction

7 1 p-sin ¢ Minimum

y Fig.7.7. Diffraction of a wave
by a slit
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vation screen after passing through a slit of width d (Fig. 7.7). The angle ¢ at which the
first diffraction minimum occurs is given by

singg = A/d . (7.25)

If we denote the total momentum of the electron by p, the projection of the momentum
on the x axis is p sin ¢. This x component in the momentum is produced by diffraction
of the electron wave at the slit; the resulting uncertainty in the momentum is then

Ap,=psing. (7.26)
If we once again use the relation
p="h/i (7.27)

and insert (7.26) and (7.27) in (7.25), we again obtain the Heisenberg uncertainty
relation (7.24).

This example shows clearly that a measurement of one quantity, here the position,
immediately produces a perturbation of the complementary quantity, namely the
momentum. Before we set up the collimator with its slit, we could have determined the
momentum of the electron. The result would have been that the electron was moving
exactly in the y direction, i.e., that its momentum component in the x direction was
exactly equal to zero. In the above experiment, we were able to determine the position
with a certain accuracy, but we had to accept the fact that the momentum thereby
became uncertain in the x direction. There is also a relation between energy and time
which is analogous to (7.24).

7.4 The Energy-Time Uncertainty Relation

In the wavefunction ~exp(ikx—iew¢), which was the starting point of this chapter, the
position x and the time ¢ occur in a symmetric fashion. Just as we could form wave
packets which exhibited a certain concentration in space, we can also construct wave
packets which have a concentration about a time 7 with an uncertainty A¢. Instead of
the relation Ax Ak =2n, we then have

AtAw=2m. (7.28)
Utilising the relation £ = hw, we find from this that
AEAt=h. (7.29)

This relation, which we shall discuss in more detail at a later point in the book, states
among other things, that one must carry out a measurement for a sufficiently long
time, in order to measure an energy with good accuracy in quantum mechanics.
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7.5 Some Consequences of the Uncertainty Relations for Bound States

In the preceding sections of this chapter we have explicitly considered free electrons. In
the next chapters we shall be concerned with the experimental and theoretical questions
associated with bound electrons, for example in the hydrogen atom. In this section we
shall to some extent anticipate the presentation in the rest of the book. The reader will
recognise even in this section that wave mechanics will play a fundamental role in the
treatment of bound states.

We will consider the hydrogen atom as the simplest case of a bound state. We
assume that the electron travels around the nucleus in an orbit, as a planet around the
sun. Why the electronic shells of the atom have a finite extent — why there is a smallest
electron orbit — was an insoluble problem in classical physics.

The energy of an electron is equal to the sum of the kinetic and the potential energy,

Ejass = Eyin t+ Epol . (7.30)

If we express the kinetic energy of a particle Ey, = (1m,/2) v in terms of the
momentum p, and substitute the Coulomb potential energy — e*/(4 meyr) for Eyo, the
expression for E is

2 2
E=L __ ¢ (7.31)
2my  dmegr

Here ris the distance of the electron from the nucleus.

It can be shown in classical mechanics that E = —e*/(2 - 4 megr).

If we allow r to go to zero, the energy naturally goes to — oo. In other words, the
energy decreases continually and there is no smallest orbital radius. Let us now
consider the expression (7.31) from a “naive” quantum mechanical point of view. Then
“orbit” would mean that we have the electron concentrated at a distance of approxi-
mately r from the nucleus. The positional uncertainty would therefore be of the order
of r. This, however, would entail uncertainty in the momentum p of the order of h/r,
which in turn establishes a minimum for the order of magnitude of the kinetic energy
(Fig. 7.8). If we therefore substitute

p=lt (7.32)

in (7.31), we realise that the minimum of the energy expression

po_ 1 hto e
2my r?

= Min (7.33)
47[80!‘

is no longer at r=0. If we let r go to zero, the kinetic energy would increase very
rapidly. We shall leave the determination of the minimum of (7.33) to the reader as an
simple exercise in differential calculus and give the result immediately. The radius is

2
P 4?!;‘0_ (7.34)
mye
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4 Elr) Fig. 7.8. This figure is meant to clarify the competition between kinetic and
potential energies as a function of the distance r < position uncertainty in the
' hydrogen atom, based on the Heisenberg uncertainty relation. (—-—) poten-
r'. tial energy, (— —) kinetic energy, (—) total energy = sum of potential and
1 kinetic energies. An energy minimum is seen to result
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If we substitute this r in (7.33), the corresponding energy is

1 e'mg (7.35)
2 (4meg)’h? ' '

When we substitute the known numerical values for Planck’s constant, and the mass
and charge of the electron, we obtain a radius of about 10 % cm, which is the right

order of magnitude for the hydrogen atom. As we shall see later, the exact quantum
mechanical calculation of the energy yields

1 edmo
1 em 7.36
2 (dmey)’h? (7.36)

The only difference between (7.35) and (7.36) is the factor A” = (h/2m)?> which re-
places /2.

The Heisenberg uncertainty principle also allows us to calculate the so-called zero-
point energy of a harmonic oscillator. Here we consider the motion of a particle elas-
tically bound by a spring with a spring constant f. Since the elastic energy increases
quadratically with the displacement x and the kinetic energy again has the form
p*/2my, the total energy is

2
E=2 4L (7.37)
2m0 2
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A E (xo) Fig. 7.9. Illustrating the competition between

kinetic and potential energies as a function of
the displacement < position uncertainty in the
harmonic oscillator. (—-—) potential energy,
(— —) kinetic energy, (——) total energy. The
classical energy minimum at x, = 0 is shifted to a
finite value

:Xo

In classical physics this energy is at a minimum when both the momentum and the
position are zero, i.e., the particle is at rest. However, since according to the Heisen-
berg relation an exact position is associated with an infinite momentum, we allow a
positional uncertainty of the same magnitude as the oscillation amplitude x, and have
the corresponding momentum uncertainty according to (7.24), where x, assumes the
role of r (Fig. 7.9). We again require that the total energy is minimised by the appro-
priate choice of xy:

2

E=h—2+ix5=Min. (7.38)
2 MpXo

Solving this equation for x; yields the amplitude of the harmonic oscillator,

4

2
Xo= . (7.39)
my f
The energy then has the form
E=hw. (7.40)

As we shall see later, an exact quantum mechanical calculation yields the relations

E=lhw (7.41)

xo= |/ P (7.42)
2m0(.u
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It follows from these considerations that atomic, elastically bound particles are
fundamentally incapable of being at rest. Such elastically coupled particles occur, for
example, in crystal lattices. The quantum theory predicts that these atoms will con-
stantly carry out zero-point oscillations.

Problems

7.1 Normalise the wave packet

2

+ o0
=N s
wx, ) LGXD{ YT

} ei[kxf(.()(k)t]dk

for 1= 0. Then calculate w(x, ¢) for a free particle of mass m, for ¢ > 0. Does the nor-
malisation hold for # > 0? On the basis of the occupation probability, decide whether
the wave packet falls apart. What is the significance of -

exp | — i— ?
2(Ak)?

Hint: Use the relation

+ o0

[ TN R T
(completing the square!)

The second integral can be converted to the Gaussian integral by changing the
coordinates.

7.2 By the appropriate choice of Ak in Problem 7.1, let the probability of locating the
wave packet outside Ax = 10~ %cm be zero. How long would it take Ax to attain the
size of the distance between the earth and sun (=150 million km)?

Hint: Choose Ax so that w(Ax,0) =1/¢ [e =exp(1)!]

7.3 Treat Problems 7.1 and 7.2 in three dimensions.
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8.1 Basic Principles of Spectroscopy

In the following chapters we shall take up the detailed analysis of the spectra of atoms
in every wavelength region. The most important sources of information about the elec-
tronic structure and composition of atoms are spectra in the visible, infrared, ultra-
violet, x-ray, microwave and radio frequency ranges. Figure 8.1 summarises these
spectral regions.

Optical spectra are further categorised as line, band and continuous spectra. Con-
tinuous spectra are emitted by radiant solids or high-density gases. Band spectra consist
of groups of large numbers of spectral lines which are very close to one another. They
are generally associated with molecules. Line spectra, on the other hand, are typical of

atoms. They consist of single lines, which can be ordered in characteristic series.

Wave- Frequency Spectral Photon  Wave-
number region energy length
7 [em™) EfeV] Afem] A [A]
| Gamma i i
107 - 102 radiation L 108 L 10710
i 7 B -
| 7 .
108 rays Lot 10 b
8 | x-rays 7
] . / i i i
108 % é v L 102 L1075 Fo?
10 g
i V/: | |
10 - R S
102 1 1072
"1 ood @ -0
| g i i
-2 | ) é -6 | 2
10 8 10 10
10® 4 Radar UHF
107 - 106 VHF L o8 f10f
107 . Radio L0 |io®
10° frequencies
7 | B B Fig. 8.1. The electromagnetic
spectrum. Regions and units
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Optical spectra can be observed either by emission or by absorption. The former
mode requires that the substance to be examined be made to emit light; this can be
achieved by transferring energy to the atoms by means of light, electron collisions,
X-ray excitation or some other process. If a substance re-emits the light it has absorbed,
the process is called resonance fluorescence. The best known example of this is the
resonance fluorescence of sodium vapour (Fig. 8.2).

Resonance Iight =

vaNgur __ Transmitted light
P (attenuated) Fig. 8.2. Resonance fluorescence of

sodium vapour. Sodium metal is
///\ h;i"

heated in an evacuated glass sphere.
The resulting sodium vapour absorbs
the light of a sodium vapour lamp
and emits the same light as resonance
fluorescence in all directions

Details of apparatus will be discussed in the following sections in connection with

particular problems.
Spectra are traditionally measured in several different units, due to the features of

the apparatus or for practical reasons:
— In wavelength units. These can be determined absolutely with a diffraction grating.
Usually, however, one uses a calibrated comparison spectrum, which allows greater

accuracy.
One wavelength standard is the yellow 8K r line, that is a yellow line in the spectrum

of the *Kr atom. For this line,
Jyae = 6057.80211 A 2 v = 16507.6373 cm ' (see below) .

In general the wavelengths are referred to vacuum. The corresponding wavelength
in air is somewhat smaller, because the index of refraction of air is somewhat greater
than 1, and the velocity of light in air is thus somewhat less than in a vacuum. To
convert wavelengths measured in air (“normal” air, 15°C, 760 Torr), the formula is

Aair = Avac/1 .

The refractive index of air is a function of the wavelength. At 6000 A, n = 1.0002762.
For the yellow *Kr line in normal air,

Agir = 6056.12941 A

— Specifying the frequency is more general, since it is not dependent on the medium.
We have:

V=10 Ayae = /(N Ayy) .
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— A frequently cited quantity is the wavenumber:
Vi=wle, =1/ Avae =17 (1 Agir)-

The wavenumber is, like the frequency, a quantity proportional to the energy; con-
version may be made according to the equation

E=Vvhe.

— Finally, the unit electron volt (eV) is often used as a measure of the energy.
Several units which are important and practical in atomic physics as well as conver-
sion factors are set out in Table 8.1 and in Fig. 8.1.

Table 8.1. Frequently used units and conversion factors (see also the table on the inner side of the front
cover)

Quantity Unit and conversion factor
Wavelength A 1A=10""m=0.1nm
Wavenumber ¥ 1 em™! (=1 kayser)
v=1/1 7= 8066 E(eV) cm ™!
1cm™ ' =29.979 GHz
Energy E 1 electron volt = 1.602 - 107" J = 1.96 - 106 mc?

E=hv=he/k = hev
1eV 2241810 Hz 2 8066 cm !
E(eV)=1.24-10"4

cm
Mass m 1 electron mass = 9.11 - 103! kg = 511 keV/c?
Charge e 1 elementary charge = 1.6-10" 1 C

Planck’s constant A h=414-10""eV s

h=h/2n=658-10 "¢

8.2 The Optical Spectrum of the Hydrogen Atom

Kirchhoff and Bunsen, the founders of spectroscopic analysis, were the first to discover
in the mid-19th century that each element possesses its own characteristic spectrum.
Hydrogen is the lightest element, and the hydrogen atom is the simplest atom, con-
sisting of a proton and an electron. The spectra of the hydrogen atom have played an
important role again and again over the last 90 years in the development of our under-
standing of the laws of atomic structure and of the structure of matter.

The emission spectrum of atomic hydrogen shows three characteristic lines in the
visible region at 6563, 4861 and 4340 A (H,, 4,,)- The most intense of these lines was
discovered in 1853 by Angstrom; it is now called the H, line. In the near ultraviolet
region, these three lines are followed by a whole series of further lines, which fall closer
and closer together in a regular way as they approach a short-wavelength limit (H,,)
(Fig. 8.3).

Balmer found in 1885 that the wavelengths of these lines could be extremely well
reproduced by a relation of the form

ni
= G. 8.1
] (n%_“ (8.1)
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Fig. 8.3. Balmer series in the hydro-
gen emission spectrum. The conver-
gence of the lines to the series limit
H_, is clearly seen

Hy Hg
6562.8 A 48613 A

Hy Hs
43405A 41017 A

Here n, is an integer, ny = 3,4, ... and G is an empirical constant. Today, we write the
Balmer formula somewhat differently. For the wavenumbers of the lines we write

1

v=1/1=Ry <A - iz) , nmaninteger >2 (8.2)
n

22

The quantity Ry(=4/G) is called the Rydberg constant and has the numerical value

Ry = 109677.5810cm ',

The series limit is found for n— o to be

Voo = Ryg/4.

For the further investigation of the hydrogen spectrum, astrophysical observations
have played an important rdle. In the spectra of stars, photographically recorded as
early as 1881 by Huggins, a large number of lines from the hydrogen spectrum are seen.

Table 8.2. The first 20 lines of the Balmer series of hydrogen. The numbers quoted are wavelengths in air, the
wavenumbers in vacuum, and the values calculated from the Balmer formula

n Aair [A] ""vac [Cm kl] R!—l (21—2 - %)
H, 3 6562.79 15233.21 15233.00
H, 4 4861.33 20564.77 20564.55
H, 5 4340.46 23032.54 23032.29
H; 6 4101.73 24373.07 24372.80
H, 7 3970.07 25181.33 25181.08
H, 8 3889.06 25705.84 25705.68
H, 9 3835.40 26065.53 26065.35
Hy 10 3797.91 26322.80 26322.62
H, 11 3770.63 26513.21 26512.97
H, 12 3750.15 26658.01 26657.75
H; 13 3734.37 26770.65 26770.42
H, 14 3721.95 26860.01 26859.82
H, 15 3711.98 26932.14 26931.94
H 16 3703.86 26991.18 26990.97
H, 17 3697.15 27040.17 27039.89
H_ 18 3691.55 27081.18 27080.88
H, 19 3686.83 27115.85 27115.58
H, 20 3682.82 27145.37 27145.20
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Using modern radio-astronomical techniques, transitions between states with extremely
large n-values have been found; levels with n between 90 and 350 could be identified.

The reason that many lines were discovered first in astrophysical observations and
not by experiments on the earth is connected with the difficulty of preparing pure
atomic hydrogen in the laboratory. Gas discharges, in which H, gas is decomposed into
atomic hydrogen and excited to fluorescence, always contain fluorescing hydrogen
molecules as well, whose spectrum overlaps the atomic-hydrogen spectrum.

Above the series limit we observe the so-called series-limit continuum, a region in
which the spectrum shows no more lines, but is, instead, continuous.

A comparison of the calculated spectral lines obtained from the Balmer formula
(8.2) with the observed lines (Table 8.2) shows that the formula is not just a good
approximation: the series is described with great precision. The whole spectrum of the
H atom is represented by equations of the form

n12

g 1 1 . .
v=Ry (_ - —2> with n” < n being integers . (8.3)
n
The numbers » and n' are called principal quantum numbers. Table 8.3 contains some
of the lines from the first four series.

Table 8.3. The wavelengths of some lines of the various spectral series in hydrogen. The series with n' = §
was observed in 1924 by Pfund; it begins with a line of 1 = 74000 A, but is not shown in the table

n' 1 2 3 4
n Lyman Balmer Paschen Brackett
2 1216 A
2 82257 cm !
3 1026 A 6563 A
2 97466 cm ™! 215233 ¢cm !
4 973 A 4861 A 18751 A
2102807 cm ! 220565 cm ! 2 5333 cm ™!
5 950 A 4340 A 12818 A 40500 A
2105263 cm ! 223033 cm ! 2 7801 em ! 2 2467 cm !
Year of 1906 1885 1908 1922
discovery

The relation (8.3) was formulated first by Rydberg in 1889. He found, “to his great
joy”, that the Balmer formula (8.1) is a special case of the Rydberg formula (8.3).
Table 8.3 also illustrates the Ritz Combination Principle, which was found empirically
in 1898. It states:

The difference of the frequencies of two lines in a spectral series is equal to the fre-
quency of a spectral line which actually occurs in another series from the same atomic
spectrum. For example, the frequency difference of the first two terms in the Lyman
series is equal to the frequency of the first line of the Balmer series, as can be seen from
the wavenumber entries in Table 8.3.
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Fig. 8.4. a) Term diagram of the lines of the hydrogen spectrum b) This represents the lines of the hydrogen spectrum in the term
and series classification. The wavelengths of the transitions are scheme of Grotrian [Struktur der Materie VII (Springer, Berlin
given in A. The energies can be given as (negative) binding energies, 1928)]. The symbols / and k appearing in the upper margin of the
with the zero of energy being the ionisation limit, or they can be figure will be explained later (Sect. 8.9)

given as excitation energies, beginning with the ground state, so
that the energy of the term n,, is equal to the ionisation energy

We-can conclude from observation and inductive reasoning that the frequencies (or
wavenumbers) of all the spectral lines can be represented as differences of two terms of
the form R/n” As we shall see in the following, these are just the energy levels of the
electron in a hydrogen atom. The spectral lines of the hydrogen atom can be graphical-
ly pictured as transitions between the energy levels (terms), leading to a spectral energy
level diagram (Fig. 8.4).

8.3 Bohr’s Postulates

In the early years of this century, various models were suggested to explain the relation-
ship between atomic structure and the spectral lines. The most successful of these is due
to Bohr (1913). Following the Rutherford model, he assumed that the electrons move
around the nucleus in circular orbits of radius r with velocity v, much as the planets
move around the sun in the Solar System. A dynamic equilibrium between the cen-
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trifugal force and the Coulomb attraction of the electrons to the nucleus is assumed to
exist. Thus, for the hydrogen atom, one has

82

mz mora)z. (8.4)

The corresponding energy is the sum of the kinetic and the potential energies of the
electrons:

E= Ekin+Ele ’

where the kinetic energy, as usual, is given by m01=2/2 or myr’w?/2. The potential
energy is defined as the work which one obtains on allowing the electron to approach
the nucleus under the influence of the Coulomb force from infinity to a distance r.
Since the work is defined as the product of force and distance, and the Coulomb force
changes continuously with the distance from the nucleus, we must integrate the contri-
butions to the work along a differential path dr; this gives

A e’ e’
Eop=)|—dr=- . (8.5)
P i 47{80r’2 dmeyr

E,, as a binding energy, may be seen to be negative, with the zero point being the state
of complete ionisation. The total energy is thus found to be

1 e’
E=—myrtw’- . (8.6)
2 drmeyr

Thus far, the model corresponds to that of Rutherford.
We may rewrite (8.6) by using (8.4):

eZ

1 4 N1/3
E— — S (e mow™)'”. (8.7)
2-dmegyr 2(4 ey !

If, however, one attempts to understand the emission and absorption of light using this
model and the known laws of classical electrodynamics, one encounters fundamental
difficulties. Classically, orbits of arbitrary radius and thus a continuous series of
energy values for the electron in the field of the nucleus should be allowed. But on
identifying the energy levels which are implied by the spectral series with the values of
the electron’s energy, one is forced to assume that only discrete energy values are
possible. Furthermore, electrons moving in circular orbits are accelerated charges, and
as such, they should radiate electromagnetic waves with frequencies equal to their
orbital frequencies, v= w/2xr. They would thus lose energy continuously, i.e. their
orbits are unstable and they would spiral into the nucleus. Their orbital frequencies
would change continuously during this process. Therefore, the radiation emitted would
include a continuous range of frequencies.

In order to avoid this discrepancy with the laws of classical physics, Bohr
formulated three postulates which describe the deviations from classical behavior for
the electrons in an atom. These postulates proved to be an extremely important step
towards quantum mechanics. They are:
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— The classical equations of motion are valid for electrons in atoms. However, only
certain discrete orbits with the energies E,, are allowed. These are the energy levels
of the atom.

— The motion of the electrons in these quantised orbits is radiationless. An electron
can be transferred from an orbit with lower (negative) binding energy E, (i.e. larger
r) to an orbit with higher (negative) binding energy E,, (smaller r), emitting radia-
tion in the process. The frequency of the emitted radiation is given by,

E,—E,=hv. (8.8)
Light absorption is the reverse process.
By comparing (8.8) and (8.3), Bohr identified the energy terms E,. and E, as

Rhe Rhe
E, = - —, Eyp= s ) (8.9)
n n

where the minus sign again implies that we are dealing with binding energies.

— Finally, for the calculation of the Rydberg constant R in (8.9) from atomic quan-
tities, Bohr used the comparison of the orbital frequencies of the electrons with the
frequency of the emitted or absorbed radiation. In classical physics, these fre-
quencies would be equal, as mentioned above. However, using (8.4), one can easily
calculate that this is not at all the case in the hydrogen atom for small orbital radii r.
Bohr’s decisive idea was then to postulate that with increasing orbital radius r, the

laws of quantum atomic physics become identical with those of classical physics. The

application of this “Correspondence Principle” to the hydrogen atom allows the deter-
mination of the discrete stable orbits.

We consider the emission of light according to the first two postulates for a transi-
tion between neighboring orbits, i.e. for (n—n') =1, and for large n. From (8.3) we
have for the frequency v, withn—n' =1

1 1 1 1
v=Rc (T_?)=RC (W?) (8.10)

)'ilci2 %_1 chz—:
n (1-1/n) n

or, with t=1,

2Rc

n]

(8.11)

This frequency is now set equal to the classical orbital frequency w/2 7 in (8.7), setting
(8.7) equal to (8.9) and inserting in (8.11); this yields an equation from which R can
be calculated:

271/3
Rhe 11 [ (212Re
n®  2(4ne)*? SUEE

and

mye*

_ , (8.12)
8edhic
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From (8.12), we find for the Rydberg constant R (which we denote by R, for reasons
which will become apparent below) the numerical value

R, =(109737.318+0.012) cm . (8.13)

This may be compared with the empirical value in (8.2). In Bohr’s model, R is just the
ionisation energy of the ground state of the atom, n= 1.
From (8.12), with (8.7) and (8.9), we find the radius r, of the nth orbital to be

242
_ n ﬁ2471’80 ) (3.14)
e my
The quantum number » which occurs in these expressions is called the principal quan-
tum number.

In addition, we may calculate the orbital angular momentum [=r xp of an
electron having velocity v, and orbital frequency w, in the orbit with radius r, and find,
using (8.11) and (8.14), the quantisation rule

\|= mov,r,=moraw,=nh with n=1,2,3,.... (8.15)

This quantisation rule is often (but incorrectly) taken to be one of Bohr’s postulates.

The essential common feature of the Bohr postulates is that they make no state-
ments about processes, but only about states. The classical orbital concept is aban-
doned. The electron’s behaviour as a function of time is not investigated, but only its
stationary initial and final states. Figure 8.5 illustrates the model.

Whether spectral lines are observable, either in emission or in absorption, depends
on the occupation of the energy terms (also referred to as energy states). Absorption
from a state presupposes that this state is occupied by an electron. In emission transi-
tions, an electron falls from a higher state into an unoccupied lower one; the electron
must be previously raised to the higher state by an excitation process, i.e. by an input of
energy. At normal temperatures only the Lyman series in hydrogen is observable in
absorption, since then only the lowest energy term (n = 1 in Fig. 8.4) is occupied. When
the Balmer lines are observed in the spectra of stars as Fraunhofer lines (that is, these

Lyman series
(ultraviolet)

Paschen series
— (infrared)
-

Brackett
series

Pfund
series

Fig. 8.5. Schematic representation of the Bohr atomic
[P S model, showing the first five spectral series
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lines are missing in the continuous spectrum because of absorption of light on the way
through the stellar atmosphere), then it can be concluded that the temperature of the
atmosphere is so high, that the first excited state of the H atom (n = 2) is also occupied.
This is the basis of spectroscopic temperature determination utilising the Boltzmann
distribution (2.8). For example, in the sun, with a surface temperature of 6000 K, only
1073 of the hydrogen atoms in the solar atmosphere are in the n = 2 state.

8.4 Some Quantitative Conclusions

We will now treat the Bohr model with arbitrary nuclear charge for hydrogen-like
systems such as He ", Li?*, etc. quantitatively. The nucleus with charge Z is orbited by
an electron in a circular orbit » at a distance r, and with the velocity v,. There is an
equilibrium between the Coulomb force and the centrifugal force:

Ze? movz

= = myryw;, (8.16)
dmegry Iy

where w, = v,/r, is the circular frequency of the electron in its orbit n and my is its
mass. For the possible orbital radii follows, see (8.14)

n*h4ne,
ry = ———

5 (8.17)
Ze“my

With Z=1, n=1 we find for the smallest orbital radius r; in the hydrogen atom
ri(H) = 0.529 A, the right order of magnitude for the spatial extension of the neutral
hydrogen atom. r(H) is referred to as the Bohr radius of the hydrogen atom in the
ground state, abbreviated aj.

For the possible circular frequencies of the electronic motion we obtain

o, — 1 Zze4m0
" ne)?  n'h

(8.18)

For Z =1, n =1, the largest possible circular frequency is seen to be
w(H) =10'"Hz;

w, would be the “classical” frequency of the emitted light if the electron behaved like a
classical dipole in the atom. This is, however, not the case, see Sect. 8.3. The emitted
frequency corresponds to the difference of the energy states of two orbits n and n'
according to (8.9). The total energy is according to (8.6)

2
E,=mpv2/2— 2 (8.19)
dmeyr,

Substituting for r, from (8.17) and v,, which can be obtained from (8.15), yields the
possible energy states:
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Zze“mo 1
b= g (8-20)

For Z=1, n=1 we find the lowest energy state of the hydrogen atom:
E/(H)= —13.59¢V.

This is the ionisation energy of the H atom.
For arbitrary Z, n =1, one obtains

E(Z)= -Z%*-13.59¢eV .

For the wavenumbers of the spectral lines we find, according to (8.3) and (8.9)

1 e*myz* 1 1
V=— (E,—E,) = - . 8.21
hc( ) 647:386713(‘ n'* n? ( )

Comparison of this result with the empirically found Balmer formula (see Sect. 8.2)
shows complete agreement with respect to the quantum numbers n and n'. The
quantum number n which was introduced by Bohr is thus identical with the index n of
the Balmer formula.

8.5 Motion of the Nucleus

The spectroscopically measured quantity Ry (Sect. 8.2) does not agree exactly with the
theoretical quantity R, (8.13). The difference is about 60 cm ~'. The reason for this is
the motion of the nucleus during the revolution of the electron, which was neglected in
the above model calculation. This calculation was made on the basis of an infinitely
massive nucleus; we must now take the finite mass of the nucleus into account.

In mechanics it can be shown that the motion of two particles, of masses m; and m,
and at distance r from one another, takes place around the common centre of gravity.
If the centre of gravity is at rest, the total energy of both particles is that of a fictitious
particle which orbits about the centre of gravity at a distance r and has the mass

pu=_Tm2 (8.22)
my+ m,

referred to as the reduced mass. In all calculations of Sect. 8.4 we must therefore
replace the mass of the orbiting electron, mj,, by u and obtain, in agreement with
experiment,

1

R=R, — (8.23)
1 +m0/M

Here my= m,, the mass of the orbiting electron, and M= m,, the mass of the
nucleus. The energy corrections due to motion of the nucleus decrease rapidly with in-
creasing nuclear mass (Table 8.4).
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Table 8.4. Energy correction for motion of the nucleus for the Rydberg numbers of several one-electron
atoms

Atom H('H) D(*H) T(H) He* Li%*
A 1 2 3 4 7
—ﬁ“—Eﬂ'm‘* 5.45 2.75 1.82 1.36 0.78
E
AE
T %y 0.0545 0.0275 0.0182 0.0136 0.0078

This observation makes possible a spectroscopic determination of the mass ratio
M/my, e.g.

Mprolon/melegtron = 1836.15.

Due to the motion of the nucleus, different isotopes of the same element have
slightly different spectral lines. This so-called isotope displacement led to the discovery
of heavy hydrogen with the mass number A = 2 (deuterium). It was found that each
line in the spectrum of hydrogen was actually double. The intensity of the second line
of each pair was proportional to the content of deuterium. Figure 8.6 shows the H pline
with the accompanying Dy at a distance of about 1 Ain a 1:1 mixture of the two gases.
The nucleus of deuterium contains a neutron in addition to the proton. There are easily
measurable differences in the corresponding lines of the H and D Lyman series, namely

RH=Rm-ﬁm1—: 109677.584 cm ', (8.24)
14+ my/ My

Rp=Ro — 109707419 cm ! . (8.25)
1+mg/MD

The difference in wavelengths A4 for corresponding lines in the spectra of light and
heavy hydrogen is:

Ad=dg—dp=dg (1 =2 =2, (1 Ru). (8.26)
An Rp

Fa Dg

Fig. 8.6. 8 lines of the Balmer series in a mixture of equal parts hydrogen ('H) and
deuterium (*H). One sees the isotope effect, which is explained by motion of the nucleus.
The lines are about 1 A apart and have the same intensity here, because the two isotopes
are present in equal amounts [from K. H. Hellwege: Einfiihrung in die Physik der Atome,
Heidelberger Taschenbiicher, Vol. 2, 4th ed. (Springer, Berlin, Heidelberg, New York
1974) Fig. 40a]
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Table 8.5 gives the measured values. The agreement between the calculated and
measured values is excellent.

Historical remark: a difference of about 0.02% had been found between the values
of the molecular weight of hydrogen determined chemically and by mass spectroscopy,
because D is present in the natural isotopic mixture of hydrogen. Its mass was included
in the results obtained by chemical means, but not by mass spectroscopy. In 1931,
however, Urey discovered spectral lines which, according to their Rydberg number,
belonged to D by observing a gas discharge through the vapour of 3 litres of liquid
hydrogen evaporated into a 1 cm® volume (Fig. 8.6).

Table 8.5. Comparison of the wavelengths of corresponding spectral lines in hydrogen and deuterium. The
lines belong to the Lyman series

Ap/A A/ A

1215.31 1215.66

1025.42 1025.72
972.25 972.53

8.6 Spectra of Hydrogen-like Atoms

According to Bohr, the spectra of all atoms or ions with only one electron (one-electron
systems) should be the same except for the factor Z? and the Rydberg number. The
spectrum of hydrogen should thus explain those of the ions He ™, Li**, Be** or any
other ions which have only one electron. This has been completely verified experi-
mentally (see Table 8.6 and the energy diagram in Fig. 8.7).

For He ", astronomers found the Fowler series

- 1 1
Vg =4 Ry, (?_?‘) (8.27)

Table 8.6. Wavelengths A, of the first Lyman lines, i.e. the spectral lines with n’ = 1, n = 2, of hydrogen and
hydrogen-like atomic ions. The mass correction (first column) is used to calculate the Rydberg number
(second column) and thus 4, (third column). The calculated values are in good agreement with the measured
values (fourth column)

14 1Mo Rnucil A2 Ayz

Mol [em™ "] }cga]lc) %r}:}eas)
'H 1.00054447 109677.6 1215.66 1215.66
H 1.00027148 109707.4 1215.33 1215.33
‘He* 1.00013704 109722.3 303.8 303.6
Litt 1.00007817 109728.7 135.0 135.0
IBei+ 1.00006086 109730.6 75.9 75.9
logd+ 1.00005477 109731.3
g+ 1.00004982 109731.8 48.6 48.6

1205+ 1.00004571 109732.3 33.7 33.7
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and the Pickering series

_ 1 1
"P:“Rm(ﬁ*?)'

which can also be represented as

1 1
Jp=Rye|————], n=56....
" “(22 (n/2)2>

8. Bohr’s Model of the Hydrogen Atom

Table 8.7. Comparison of the spec-
tral lines of the Balmer series in hy-
drogen and the Pickering series in the
helium ion, in A

He* H

6560.1 6562.8 (H,)
5411.6

4859.3 4861.3 (Hﬁ)
4561.6

4338.7 4340.5 (Hy)
4199.9

4100.0 4101.7 (Hy)

Fig. 8.7. Some energy levels of the atoms H, He*
and Li?*

(8.28)

(8.29)

Every other line of the Pickering series thus almost corresponds to one of the Balmer

lines of H. This is shown in Table 8.7.

Later other He* series were found, such as the

1st Lyman series vy = 4Ry, (% -
o 1
2nd Lyman series Vi, = 4Ry, 5

1

, 8.30
nz) (8.30)
1
—. 8.31
n2> (8.31)

For Li**, Be®* and still heavier highly ionised atoms, spectral lines have been
observed which can be calculated by multiplying the frequencies of the lines of the



8.7 Muonic Atoms 109

H atom by Z? and insertion of the corresponding Rydberg constant. With increasing
nuclear charge Z, we quickly reach the region of x-ray wavelengths.

In 1916, the collected spectroscopic experience concerning the hydrogen-similarity
of these spectra was generalised in the displacement theorem of Sommerfeld and
Kossel, which states:

The spectrum of any atom is very similar to the spectrum of the singly charged
positive ion which follows it in the periodic table.

Hydrogen-like heavy atoms, i.e. heavy atoms from which all the electrons except
one have been removed, can be prepared by accelerating the singly-ionised atoms to
high energies and passing them through a thin foil; their electrons are “stripped off”
on passing through the foil. For example, in order to strip all the electrons from a
uranium atom and produce U”** ions, they must be accelerated to energies greater
than 10 GeV. By permitting the U?>* ions to recapture one electron each, one can
then obtain the hydrogen-like ion U’ *. The corresponding spectral lines are emitted
as the captured electron makes transitions from orbits of high » to lower orbits. For
U®'*, the Lyman series has been observed in the spectral region around 100 keV and
the Balmer series is in the region between 15 and 35 keV (Th. Stohlker, Phys. Bl. 52,
42 (1996)).

8.7 Muonic Atoms

With the simple Bohr model, the muonic atoms, first observed in 1952, can be
described. They contain, instead of an electron, the 207-times heavier 4 meson or muon
and are, in contrast to the Rydberg atoms, extremely small, in extreme cases hardly
larger than the typical diameter of an atomic nucleus.

To produce them, matter is bombarded with energetic protons (about 440 MeV),
giving rise to other elementary particles, the pions, according to the following reaction
schemes:

p+n-n+n+nt  or p+nop+p+n .

Here p denotes the proton, n the neutron, and x the pion.
Pions have a charge +e or —e and mass m,= 273 m,. They decay into other
particles, the muons, according to the reactions

ntout+v, or woou +v,.

Here, the symbols v or ¥ mean a neutrino or an antineutrino, the index u means muon
neutrino (neutretto), and electron neutrinos carry the index e to distinguish them. The
neutrinos are only shown for completeness.

The half-life for this decay is 7;,, = 2.5 - 10 ®s. Muons may be characterised as
heavy electrons; they have a charge e, a mass equal to 206.8 m,, and a half-life
T,,=22-10"%s,

Muons decay into electrons (e ) or into positrons (e ') according to the reactions

utoeTH v+ v, p e .ty

Before they decay, they can be captured into outer atomic orbits by atomic nuclei and
can occupy these orbits in the place of electrons. In making transitions from the outer
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to inner orbits, the muons radiate light of the corresponding atomic transition fre-
quency; this is light in the x-ray region of the spectrum. Since muons behave like heavy
electrons, we can simply apply the results of the Bohr model. For the orbital radii we
have, see (8.17)

4megh?
=707 p2,

8.32
Zezm# ( )

n

1y is thus smaller than the radius of the corresponding orbit which is occupied by an
electron by the ratio of the electron to the muon mass.

A numerical example: for the magnesium atom '"Mg we find

Electron: ry(e”) = %A =4.5-10""m,

- rie”) —14
Muon: r =— 2 =22-10""m.
1) 07

The muon is thus much closer to the nucleus than the electron. For the radiation
from a transition between the levels with principal quantum numbers 1 and 2 the
following expression holds:

2 4
gy Zem (11 (8.33)
R2rledn® 12 27
that is, the quantum energy is larger by the ratio of the masses than the energy of the
corresponding transition in an electronic atom. Finally, the muon decays as described
above, or else it is captured by the nucleus, which then may itself decay.

Muonic atoms are observed for the most part by means of the x-radiation which
they emit; this radiation decays in intensity with the half-life characteristic of muons.
Muonic atoms are interesting objects of nuclear physics research. Since the muons
approach the nucleus very closely, much more so than the electrons in an electronic
atom, they can be used to study details of the nuclear charge density distribution, the

Fig. 8.8. The probability W of finding a
muon at a distance r from the center of the
nucleus of a muonic atom, in arbitrary units,
for various shells; also showing the nuclear
charge distribution (shaded area). The plot
is for the lead nucleus, with Z =82 and
nuclear radius R = 6.687-10" " m (fm). The
symbols used to indicate the shells will be ex-
plained later. (After E. Boric and G.A.
———= r/107""m  Rinker: Rev. Mod. Phys. 54, 68 (1982))
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Fig. 8.10. Lyman series (np—1s) of the muonic transitions in a titanium atom.
Note the energy scale
A

Fig. 8.9. Muonic terms for an atom with Z = 60. The fully drawn levels correspond to the assumption of a point nucleus; the dashed levels take
account of the finite nuclear size. The notation used for the transitions corresponds to that used for x-ray lines (Chap. 18). Note the energy
scale

distribution of the nuclear magnetic moment within the nuclear volume and of nuclear
quadrupole deformation.

Figure 8.8 shows the spatial distribution of a muon in several orbits of a lead atom.
It can be seen that the muons in these orbits spend a considerable amount of time in the
nucleus or in its immediate neighbourhood. Since the muons approach the nuclear
charge Ze very closely, the binding and excitation energies become extremely large.

Figure 8.9 shows a term diagram of the muonic-atom levels for a nuclear charge
number Z = 60. The analogy with the hydrogen atom is evident; however, the transi-
tions here are in the energy region of MeV, i.e. in the region of hard x-rays and of
gamma rays. For the investigation of such muonic atoms, one therefore requires the
tools of nuclear physics. Detection of the radiation is carried out with scintillator or
solid-state detectors.

Finally, Fig. 8.10 shows an example of the measurement of radiation from a
muonic atom, the Lyman series in the muonic spectrum of titanium. The notations
s, p,d, etc. in Figs. 8.8 —10 refer to the orbital angular momentum of the electrons
(muons). They will be further described in Sect. 8.9.

8.8 Excitation of Quantum Jumps by Collisions

Lenard investigated the ionisation of atoms as early as 1902 using electron collisions.
For his measurements, he used an arrangement following the principle of the experi-
mental scheme shown in Fig. 8.11. The free electrons produced by thermionic emission
are accelerated by the positive grid voltage V;; and pass through the open-meshed grid
into the experimental region. Between the grid and the plate A at the right of the
drawing, which serves as the third electrode, a plate voltage Vj is applied. The plate is
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Fig. 8.11. Experimental arrangement for detecting ionisa- Fig. 8.12. Experimental arrangement of Franck and Heriz for investigating
tion processes in gases. Only positive ions, which are form- inelastic collisions between electrons and atoms. Electrons on the way from
ed by collisions with electrons, can reach the plate A. In the the grid to the anode can transfer their kinetic energies partially (particle 1)
lower part of the figure, the plate current is plotted as a or completely (particle 2) to the gas atoms. The anode current as a func-
function of the grid voltage V. ¥V} is the voltage with which tion of the grid voltage is plotted in the lower part of the figure. At high
the electrons must be accelerated in order to be able to grid voltages, several energy-transfer processes can occur one after the
ionise the atoms other

negatively charged relative to the grid. The voltages are chosen so that the electrons
cannot reach the plate; they pass through the grid and are repelled back to it. When an
electron has ionised an atom of the gas in the experimental region, however, the ion is
accelerated towards the plate A. [onisation events are thus detected as a current to the
plate.

The current is plotted as a function of the grid voltage V; in the lower part of
Fig. 8.11. Only when the electrons have a certain minimum energy e V; does the current
appear. The corresponding accelerating potential V; is the ionisation potential of the
atoms.

Franck and Hertz showed for the first time in 1913 that the existence of discrete
energy levels in atoms can be demonstrated with the help of electron collision processes
independently of optical-spectroscopic results. Inelastic collisions of electrons with
atoms can result in the transfer of amounts of energy to the atoms which are smaller
than the ionisation energy and serve to excite the atoms without ionising them.

The experimental setup is shown schematically in Fig. 8.12. Electrons from a heated
cathode are accelerated by a variable voltage Vg applied to a grid. They pass through
the grid and are carried by their momenta across a space filled with Hg vapour to an
anode A. Between the anode and the grid is a braking voltage of about 0.5 V. Electrons
which have lost most of their kinetic energy in inelastic collisions in the gas-filled space
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can no longer move against this braking potential and fall back to the grid. The anode
current is then measured as a function of the grid voltage V;; at a constant braking po-
tential V3.

The result is shown in the lower part of Fig. 8.12. As soon as F; is greater than V,
the current increases with increasing voltage (space-charge conduction law). At a value
of Vg =5V (in mercury vapour) the current 7 is strongly reduced; it then increases
again up to V5 =10V, where the oscillation is repeated. The explanation of these
results is found by making the following assumptions: when the electrons have

Gas at
low pressure

Indirectly
heated
cathode ¥

Experimental

arrangement
I
|
|
I
I
::I ] Fig. 8.13. Improved experimental setup for determining
I I hed atomic excitation energies by electron collisions. The colli-
/",' '\' . sions take place in the field-free space between the two grids
L7 49 5358 67 Vg V] G. In this way, a high resolution is reached. In the lower
vV, part of the figure, an experimental result obtained with Hg
Typical measurement vapour is shown in part

reached an energy of about 5 eV, they can give up their energy to a discrete level of the
mercury atoms. They have then lost their energy and can no longer move against the
braking potential. If their energy is 10 eV, this energy transfer can occur twice, etc.
Indeed, one finds an intense line in emission and absorption at £ =4.85¢V in the
optical spectrum of atomic mercury, corresponding to a wavelength of 2537 A. This
line was also observed by Franck and Hertz in the optical emission spectrum of Hg
vapour after excitation by electron collisions. The excitation or resonance voltages are
denoted in Figs. 8.12, 13 as V..

The resolving power for the energy loss of the electrons may be improved by using
an indirectly heated cathode and a field-free collision region. In this way, one obtains a
better uniformity of the energies of the electrons. With an improved experimental
arrangement (Fig. 8.13), a number of structures can be seen in the current-voltage
curve; these correspond to further excitations of the atoms. The step at 6.73 eV, for
example, corresponds to a further intense line in the Hg spectrum; 6.73 eV 2 1850 A.

Not all the maxima in the current-voltage curve can be correlated with observed
spectral lines. To explain this fact, we have to assume that optically “forbidden” transi-



- 033cm—=
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tions can, in some cases, be excited by collisions. We shall see later that there are selec-
tion rules for optical transitions between energy terms of atoms, according to which not
all combinations of terms are possible — one says “allowed”. The selection rules for
collision excitation of atoms are clearly not identical with those for optical excitation
(or de-excitation).

In this connection, the following experiment is interesting: Na vapour at low pres-
sure can be excited to fluorescence by illumination with the yellow Na line (quantum
energy 2.11 eV). The excitation occurs only when the light used for illumination has
exactly the quantum energy 2.11 eV. Both smaller and larger quantum energies are in-
effective in producing an excitation.

Excitation by means of collisions with electrons are in this respect quite different: in
this type of excitation, the yellow line is emitted whenever the energy of the electrons is
equal to or larger than 2.11 eV. This can be explained as follows: the kinetic energy of
free electrons is not quantised. After excitation of a discrete atomic energy level by
electron collision, the exciting electron can retain an arbitrary amount of energy,
depending on its initial value. This remaining energy can, if it is sufficiently large, serve
to excite still other atoms in the gas volume.

All in all, these electron collision experiments prove the existence of discrete excita-
tion states in atoms and thus offer an excellent confirmation of the basic assumptions
of the Bohr theory. In modern atomic and solid state physics, energy-loss spectra of
electrons represent an important aid to the investigation of possible excitation stages of
atoms and of the structure of the surfaces of solids.

8.9 Sommerfeld’s Extension of the Bohr Model
and the Experimental Justification of a Second Quantum Number

The finished picture of the Bohr model still contained some fuzzy details: exact spectral
measurements at high resolution showed that the lines of the Balmer series in hydrogen
are, in fact, not single lines. Each of them consists rather of several components; how
many one can distinguish depends on the resolution of the spectrometer employed.

The H,, line of hydrogen with ¥ = 15233 cm ' consists, for example of a multiplet
with a wavenumber splitting of Av =0.33 cm ™' between the strongest components
(Fig. 8.14). In order to observe this structure, a spectral resolution of nearly
v/Av = 100000 is needed. In the spectrum of the one-electron ion He *, these multiplet
lines are more strongly separated, and the splitting is therefore easier to observe.
We shall see in Chap. 12 that the splitting increases as the 4th power of the nuclear
charge number Z.

From observations of this type, Sommerfeld derived an extension of the Bohr
model. It is well known from classical mechanics that, according to Kepler’s Laws, not
only circular orbits, but also elliptical orbits are possible, having the same energies,

From this, Sommerfeld drew the conclusion that the same is true in atoms also. In
order to distinguish the elliptical orbits from the circular ones, a new, second quantum
number is required. Since Sommerfeld’s chain of reasoning was on the one hand of
great historical importance in introducing a second quantum number, but has, on the
other hand, been made obsolete by the later quantum mechanical treatment, we will
only give a brief summary here.

The principal quantum number » remains valid; it continues to determine the total
energy of a term according to (8.20), i.e.
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According to Sommerfeld, n also determines the major semiaxis of the ellipse. The
minor semiaxis is determined by the second quantum number in such a fashion that the
absolute value of the angular momentum remains a whole multiple k& of A, with k < n.
The length of the minor semiaxis, that is the eccentricity of the ellipse, has in this model
no influence on the total energy. Each principal quantum number n corresponds to one
major semiaxis a,, but to various orbital shapes, characterised by the minor semiaxis
b, ;. We say that the energy term is n-fold degenerate, by which is meant that different
orbits with two quantum numbers # and k belong to one and the same energy value.
We should mention at this point that in quantum theory, the Sommerfeld second
quantum number k£ became the orbital angular momentum quantum number /(/ =
k—1). The orbital angular momentum of the electron is given by (as we shall show in
Chap. 10)

=110+ 0)h with [=0,1,2,...n—1. (8.35)

In order to distinguish the orbital angular momentum itself, /, from its quantum
number /, we shall henceforth use the symbol |I|for the absolute value of the angular
momentum vector /.

For the various numerical values of the angular momentum quantum number, letter

symbols s, p, d, f, g, h, etc. have become firmly established; these are listed in the
following table:

Quantum number =0 1 2 3 4 5
Angular momentum |I|=0 |/2h }/6h |/12h /20h |/30h
Name (Symbol) s p d f g h-electron or state.

What this means in terms of the spatial form of the electron orbitals will be
explained later, together with the solution of the Schrédinger equation (Chap. 10).

8.10 Lifting of Orbital Degeneracy by the Relativistic Mass Change

We still have no explanation for the doublet or multiplet structure of the spectral lines
mentioned at the beginning of the last section. However, we now know that each level
is n-fold degenerate; by this we mean the fact that each energy level has various pos-
sibilities for the spatial distribution of the electrons occupying it. The number of levels
with differing energies, and thus the number of observable spectral lines, however still
remains the same.

The lifting of this degeneracy occurs, according to Sommerfeld (1916), through the
effect of the relativistic mass change, m = m(v), which we have neglected up to now.
We can understand this qualitatively as follows: exactly as in planetary motion accord-
ing to Kepler’s Laws, the electrons are accelerated when they come near to the nucleus.
This is a result of Kepler’s Law of Areas, which requires that the moving electron sweep
out equal areas between its orbit and the nucleus in equal times. In the neighbourhood
of the nucleus, the electrons are thus faster and, from special relativity, more massive.
This leads, in turn, to a decrease in energy: increased mass means, according to Bohr, a
smaller radius, and this leads to a larger (negative) binding energy, i.e. to a decrease in
total energy. The smaller the minor semiaxis of an ellipse, the more significant these
relativistic corrections must become.
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Fig. 8.15. Rotation of the perihelion point in the motion of an
electron around the nucleus in a many-electron atom according
to the Sommerfeld theory. The shaded region is the electronic
shell of the atom. The outer electron follows a so-called “diving
orbit” in its motion, i.e., it dives into the atomic shell. This
model provides an intuitive explanation of the lifting of orbital
degeneracy due to the relativistic mass effect (Sect. 8.10) and to
the shielding of the nuclear charge (see Sect. 11.2)

We will not repeat Sommerfeld’s calculation here; we just give the result. The rela-
tivistic mass change leads to a rotation of the perihelion point of the orbits; in an intui-
tive picture, the electron then has a “rosette motion” about the nucleus (Fig. 8.15).

In Sommerfeld’s calculation, the “fine structure constant” plays a role:

A Velocity of the electron in the 1st Bohr orbit

Velocity of light

ez _
2e0he 137

(dimensionless) .

For an electron orbit with the quantum numbers » and k, the result of
Sommerfeld’s calculation of the relativistic mass effect is

Z? AR 3 : \
Epx=—-Rhc— [1 + ot_2 (% — ?> + higher-order correctlons} : (8.36)
n n

The relativistic energy change is thus of the order of @ = 107, i.e. small, but observ-
able (see Fig. 8.14). Applying the models developed by Sommerfeld, the structures of
the hydrogen atom mentioned thus far can be described both qualitatively and quan-
titatively. However, further experiments, which we shall describe in Chap. 12, pointed
out the limits of these models. An adequate description of the relativistic motion of
the electron is provided by the Dirac equation (cf. Sect. 14.6).

8.11 Limits of the Bohr-Sommerfeld Theory.
The Correspondence Principle

The Bohr-Sommerfeld model is theoretically unsatisfying: on the one hand, classical
mechanics is set aside, and only certain particular orbits are allowed; on the other
hand, classical physics is used to calculate the orbits, see Sect. 8.3. It is as though, “On
Mondays, Wednesdays and Fridays one uses the classical laws, on Tuesdays, Thurs-
days, and Saturdays the laws of quantum physics” (Bragg). Furthermore, the model
predicts only the frequencies but not the intensities or the time dependence of emitted
or absorbed light.

The gap which had opened between classical physics and the (early) quantum theory
was bridged by Bohr with his Correspondence Principle.

According to this principle, for large quantum numbers, the classical and quantum
theories approach one another; or, the behaviour of an atom approaches that expected
from classical, macroscopic physics, the larger its energy relative to the energy change
which occurs in the process considered, i.e. all the more, the higher the level and the
smaller the level difference.
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Starting from considerations such as the above, one arrives at the following general
formulation of the Correspondence Principle:

Every non-classical theory must, in the limit of high energies and small energy
changes, yield the results of classical theory.

The intensities, polarisations, and selection rules for spectral lines may be
calculated from the laws of classical physics. The Correspondence Principle allows us,
within limits, to translate these results, by using a prescription for quantisation, into
the quantum theory.

In spite of a series of successes, the application of the Bohr-Sommerfeld theory led
to fundamental difficulties. The results were wrong even for atoms with two electrons.
The magnetic properties of atoms were not correctly described. The removal of these
difficulties was accomplished with the development of modern quantum mechanics. In
Chap. 10, we will treat the hydrogen atom problem exactly with the help of quantum
theory; we shall find there that some of the results of the Bohr-Sommerfeld theory
remain valid, while others must be modified.

8.12 Rydberg Atoms

Atoms in which an electron has been excited to an unusually high energy level illustrate
well the logical continuity between the world of classical physics and quantum
mechanics.

Such atoms, called Rydberg atoms, have extraordinary properties. They are
gigantic: Rydberg atoms are known with diameters reaching 10~? mm, corresponding
to a 100000-fold increase over the diameters of atoms in the ground state. Further-
more, these excited states have extremely long lifetimes. While typical lifetimes of
lower excited states of atoms are about 10~ %s, there are Rydberg atoms which have
lifetimes of 1s. The difference in energy between two neighboring states n and n’
becomes very small when n is large. The long lifetimes of such states are in part a result
of the fact that the probability of a spontaneous transition between two states n and n'
is, according to Einstein (Sect. 5.2.3), proportional to v, In addition, Rydberg atoms
may be strongly polarised by relatively weak electric fields, or even completely ionised.

When the outer electron of an atom is excited into a very high energy level, it enters
a spatially extended orbit — an orbital — which is far outside the orbitals of all the
other electrons. The excited electron then “sees” an atomic core, consisting of the
nucleus and all the inner electrons, which has a charge + e, just the same as the charge
of the hydrogen nucleus. As long as the excited electron does not approach the core too
closely, it behaves as though it belonged to a hydrogen atom. Rydberg atoms behave
therefore in many respects like highly excited hydrogen atoms.

In interstellar space, there are atoms whose outer electrons are in states with principal
quantum numbers zn up to 350; this has been observed by radio astronomical methods.
In the laboratory, Rydberg atoms with principal quantum numbers between 10 and 290
have been studied. A recent example of still larger values of n is shown in Fig. 8.18.

The orbital radius of an electron in an atom is proportional to n? (8.17). The
spacing between neighbouring energy levels decreases as n 3. It is because these higher
powers of n have especially large effects for large n-values that Rydberg atoms have
their unusual properties.
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Fig. 8.16. Apparatus for the detection of Rydberg 100
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tion energy of a Rydberg state. The Rydberg atoms n=31
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Fig. 8.17. An example of the detection of Rydberg P
states of the lithium atom with n = 28 to 39, measured
with an apparatus like that shown in Fig. 8.16. The 140 & fn=28

distance (in wave number units) to the series limit is
plotted as the ordinate lon detector signal

Rydberg atoms are produced by exciting an atomic beam with laser light. To detect
the highly excited atoms, an electric field is applied between the plates of a condenser
through which the atomic beam passes. Through field ionisation, the atoms can be con-
verted to ions with the aid of small electric fields of the order of a few hundred Vem ~ 1.
The ions can be detected by means of their charge, for example with the aid of an
electron multiplier or channeltron. An example of an experimental setup is shown in
Fig. 8.16; Fig. 8.17 shows some experimental results. In Fig. 8.17, the result of exciting
a beam of lithium atoms with three laser beams is shown. The first two excite the atoms
into intermediate excited states (e.g. here n = 3, / = 0), while the third is continuously
variable within a small energy range and adds the last necessary energy contribution to
put the atoms into a Rydberg state. By continuously changing the frequency of this last
laser, the experimenter can excite a series of Rydberg states of the atoms one after
another — in the figure, the states with » = 28 to 39. Thus, a particular Rydberg state
can be chosen and selectively excited in order to investigate its physical properties.

When a Rydberg atom reduces its principal quantum number by 1 in emitting a light
quantum, the light is in the far infrared or microwave region of the electromagnetic
spectrum. With this radiation, isolated Rydberg atoms were first discovered in 1965 in
interstellar space. The density of atoms is so low there that collisions are extremely
rare.

It has been possible to investigate Rydberg atoms in the laboratory since narrow-
band, tunable lasers have been available (especially dye lasers, see Chap. 21). Since
then, the energy levels, lifetimes, spatial extension of the wavefunctions, and the in-
fluence of electric and magnetic fields have been studied for quantum numbers which
were previously only theoretical. The predictions of theory have been fully confirmed.
Table 8.8 contains an overview of the properties of Rydberg atoms.



8.13 Positronium, Muonium, and Antihydrogen

119

Ba

Fig. 8.18. Rydberg excitation states of barium atoms with the principal
quantum number #, observed using Doppler-free spectroscopy. The abcissa
gives the distance from the series limit in units of GHz. From J. Neukammer

et al.: Phys. Rev. Lett. 59, 2947 (1987)
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Table 8.8. Some properties of Rydberg atoms, valid for unperturbed electronic states

Property General Rydberg atoms,
n=30
Size a'=a0n2 10° A
Binding energy -E, = Rm/n2 10-2 eV
Transition energy AE =2R/n? 1077 eV 210 cm™!
An=1
Lifetime rocn? 30-107%s

8.13 Positronium, Muonium, and Antihydrogen

It is possible to make artificial atoms in which one or both of the atomic components
of hydrogen, the proton and the electron, are replaced by their corresponding antipar-
ticles. The antiparticle of the proton is the antiproton, p; that of the electron is the
positron, e”. As far as is currently understood, particles are distinguished from their
antiparticles only through the opposite sign of their electric charges and magnetic
moments, cf. Sect. 14.6. Therefore, all the conclusions of the Bohr model concerning
atomic radii, energy levels, and transition frequencies derived in Sects. 8.4 and 8.5
should also apply to atoms containing antiparticles. Here, we shall treat briefly the
“exotic” atoms positronium, muonium, and antihydrogen.

Positronium, an “atom” consisting of an electron, e, and a positron, e, was
discovered in 1949 by M. Deutsch. It is formed when positrons and electrons enter a
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Table 8.9. The reduced mass m_ in units of the electron mass, the binding energy Fy, the energy spacing be-
tween the n = 1 and n = 2 levels, and the first Bohr radius a, for positronium and muonium in comparison
to the H atom

i E, E,—E

" B 2By ap
Hydrogen phe” =1 13.6eV 10.2eV 0.53 A
Positronium ete” 0.5 6.8eV 5.1eV 1.06 A
Muonium ute” =1 13.6eV 10.2eV 0.53 A

(short-lived) bound state (e e ), before they annihilate each other with the emission
of two y-quanta. If the particles have no kinetic energy before their annihilation, each
of the y-quanta has an energy equal to moc2 = 511 keV, where m, is the mass of the
electron. The lifetime of socalled parapositronium, with overall spin S=0 (see
Sect. 17.3), is 1.25-10 Vs, Orthopositronium, with S = 1, is produced with a smaller
probability and has a longer lifetime of 1.4-10~7s. It decays into 3 or more y-quanta.

Positrons can be obtained from the radioactive decay of nuclei, e.g. of **Na, and
are thus relatively readily available. Positronium atoms are formed when positrons
pass through a gas or impinge on solid surfaces, where the positron can capture an elec-
tron. During the brief lifetime of the atoms, their binding energies and excitation
energies can be measured and the results of the Bohr model thus confirmed.

According to (8.20) and (8.22), the energies of the levels should be proportional to
the reduced mass, and therefore half as large as in the hydrogen atom. The orbital radii
and the wavelengths of the emitted radiation should be twice as large as in hydrogen.
Both effects are observed as predicted; cf. Table 8.9.

In condensed-matter physics and in modern medicine, positronium atoms are used
as probes for structures and dysfunctions, because the emission of their annihilation
radiation, and thus their lifetimes, is dependent on their material surroundings. In
medicine, positron emission tomography is used for example to form an image of
diseased tissue in the brain.

Muonium, (u™ e”), is so to speak the lightest muonic atom (cf. Sect. 8.7). It is
formed in a similar way to positronium, when positive muons, x4 *, enter into a bound
state with electrons on passing through a gas or on a solid surface. Like negative
muons, x © particles are unstable (see Sect. 8.7), and the lifetime of muonium is cor-
respondingly only 2.2-10%s. According to (8.20) and (8.22), its binding energy is
13.5eV, only slightly different from that of hydrogen, due to the nearly equal reduced
masses. The orbital radii are obtained from (8.17), and the lowest optical excitation
from the state with n = 1 (1S state) to the state with n =2 (25) is found from (8.21)
to be 10.15eV; cf. also Table 8.7. These atoms have been studied extensively by spec-
troscopic methods, but we will not discuss the results further here. They are particular-
ly relevant to the refinements of the Bohr model by Dirac’s relativistic quantum
mechanics, which we will treat in Chap. 12.

Particularly interesting is the antihydrogen atom, (pe’), which consists of a
positron bound to a negatively-charged antiproton. According to the postulates of
quantum mechanics, antimatter should behave just like ordinary matter. An experi-
mental test has yet to be performed, since antimatter was not available until very
recently. In 1995, the successful preparation of antihydrogen was reported for the first
time. It was carried out as follows:
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Antiprotons can be produced in accelerators having particle beams of sufficiently
high energy, for example at CERN in Geneva. When they pass through the Coulomb
field of an atomic nucleus (xenon gas was used), a portion of the kinetic energy of the
antiprotons is converted into e” /e~ pairs. With a small probability, the slowed anti-
proton p can capture a positron e’ , giving rise to an atom of antihydrogen, (pe™).
It is electrically neutral and therefore leaves the accelerator ring on a tangential orbit.

Thus far, these antihydrogen atoms have been detected only via their decays: the
e” is stripped off the atom when it passes through a Si semiconductor particle detec-
tor. This positron annihilates with a negative electron, and the resulting annihilation
radiation is detected and measured by a Nal scintillation counter. The remaining p is
analysed with respect to its mass, charge, and velocity by additional detectors. In the
first report (by the group of W. Oelert, in Phys. Lett. B (1996)), the detection of 8 anti-
hydrogen atoms is described; they were produced by a beam of 10'° antiprotons
during a beam time of 15 hours. Their lifetime was about 40 ns.

One goal of such efforts is the spectroscopic investigation of the antihydrogen
atoms, as a test of the symmetry of the interactions between matter and antimatter.
For this purpose, e.g. for the observation of the Balmer series of antihydrogen, the very
few atoms as yet produced, which in addition have high kinetic energies and short
lifetimes, are naturally not sufficient.

Another experiment designed to produce antihydrogen is planned to yield the atoms
in a state of rest, without kinetic energy, by using a combination ion trap for positive
heavy and negative light particles (cf. Sect.2.4.6) and trapping antiprotons and
positrons in it at the same time. The group of Th. Hinsch has already reported the
simultaneous trapping of positive and negative particles in such a combined trap (Phys.
Rev. Lett. 75, 3257 (1995)). The binding of trapped particles to antihydrogen has how-
ever not yet been observed.

Problems

8.1 Calculate the recoil energy and velocity of a hydrogen atom in a transition from
the state n = 4 to the state n = 1, in which a photon is emitted.

8.2 Five of the Balmer series lines of hydrogen have the wavelengths 3669.42 A,
3770.06 A, 3835.40 A, 3970.07 A and 4340.47 A. Plot v as a function of n for the
Balmer series. From this, determine the value of n for the upper level of each of the five
wavelengths above.

8.3 The absorption spectrum of hydrogen can be obtained by allowing white light to
pass through hydrogen gas which is in the ground state and contains atomic hydrogen
(not just H,). Which photon energies are observed in the hydrogen absorption spec-
trum? Give the wavelengths of these “Fraunhofer lines”.

8.4 a) The emission spectrum of the hydrogen atom is taken with a diffraction grating

(line spacing d = 2 um). A line of the Balmer series is observed in the second order at an
angle 6= 29°5". What is the quantum number of the excited state from which the

transition starts?

b) What is the minimum number of lines necessary in a diffraction grating if the
first 30 spectral lines of the Balmer series of the hydrogen atom are to be resolved in the
first-order diffraction spectrum?
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Hint: In this case, the number of lines corresponds to the required resolution A/AA.

8.5 s it true that in a circular Bohr orbit, the potential energy is equal to the kinetic
energy? If not, where does the energy difference go which arises if we assume that the
electron and the nucleus are initially infinitely far apart and at rest? How large is E|,
compared to E\;, for the various Bohr orbits?

8.6 The attractive force between a neutron (mass M) and an electron (mass m) is
given by F = GMm/r% Let us now consider the smallest orbit which the electron can
have around the neutron, according to Bohr’s theory.

a) Write a formula for the centrifugal force which contains m, r and v; r is the radius
of the Bohr orbit, and v is the velocity of the electron in this orbit.

b) Express the kinetic energy in terms of G, M, m and r.

¢) Express the potential energy in terms of G, M, m and r.

d) Express the total energy in terms of G, M, m and r.

e) Set up an equation which corresponds to the Bohr postulate for the quantisation of
the orbits.

f) How large is the radius r of the orbit with n = 1? Express r in terms of #, G, M and
m; give the numerical value of r.

8.7 For the Bohr model of the atom, calculate the electric current and the magnetic
dipole moment of the electron in the first three orbits (n =1, 2, 3).

Hint: Use (12.1 —7) to calculate the magnetic dipole moment.

8.8 “Positronium” is a bound electron-positron pair. The positron is the anti-particle
corresponding to the electron. It has a charge +e and the same rest mass as the elec-
tron. On the assumption that e~ and e™ — in analogy to the H atom — circle the com-
mon centre of gravity, calculate the rotational frequency e, the radius r and the
binding energy of the system in the ground state.

8.9 A muonic atom consists of an atomic nucleus with nuclear charge Z and a
captured muon, which is in the ground state. The muon is a particle with a mass 207
times that of the electron; its charge is the same as that of the electron.

a) What is the binding energy of a muon which has been captured by a proton?

b) What is the radius of the corresponding Bohr orbit with n =17

¢) Give the energy of the photon which is emitted when the muon goes from the state
n = 2 to the ground state.

8.10 Estimate the number of revolutions N an electron makes around the nucleus in
an excited hydrogen atom during the average lifetime of the excited state — 10~ *s — if
a) it is in the state with n = 2, and b) in the state with n = 15, before it returns to the
n =1 state. ¢) Compare these numbers with the number of revolutions the earth has
made around the sun in the 4.5 x 10° years of its existence.

8.11 In addition to the isotope “He, natural helium contains a small amount of the
isotope *He. Calculate the differences in the wavenumbers and energies of the first and
third lines of the Pickering series which result from these mass differences. The relative
isotopic masses are:

‘He:3.01603u  and  *He: 4.00260u .
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8.12 Which lines of the hydrogen spectrum lie in the visible region of the spectrum
(between 4000 A and 7000 A)? Which helium lines fall in the same region? How could
one tell whether a helium sample has been contaminated with hydrogen?

8.13 Estimate the relative relativistic correction AE,, ,/E, for the n = 2 levels in the
hydrogen atom.

Hint: Compare (8.29).

8.14 To excite the hydrogen atom into its Rydberg states, one uses the additive
absorption of the light from two lasers. Let the first of these have a fixed emission
wavelength A, which corresponds to 11.5 eV. What wavelengths must the second laser
have in order to pump atoms into the state with n = 20, 30, 40 or 50? How large are the
radii and binding energies for these states? What is the maximum possible linewidth for
both lasers if only a single n state is to be populated?

8.15 a) Calculate the frequency of the orbital motion of an electron in a hydrogen
atom for a level with the quantum number n.

b) Calculate the frequency of the radiation emitted in the transition from the state n
to the state n—1.

¢) Show that the results of a) and b) agree if n is very large.

8.16 [Estimate the magnitude of the correction terms which must be applied to the
energies of the stationary states of the lightest atoms, i.e. 'H, *H, *H, He* and Li**, to
account for the motion of the nucleus.

8.17 If one did the Franck-Hertz experiment on atomic hydrogen vapour, which lines
in the hydrogen spectrum would one see if the maximum energy of the electrons were
12.5eV?

8.18 Four lines in the Balmer series of He' have the wavelengths 164.05 nm,
121.52 nm, 108.45 nm, and 102.53 nm. Plot the wavenumbers v as a function of n. Is
there a more reasonable way to plot these data? Find the value of n in the upper level
for each of the wavelengths given.

Hint: What is the meaning of the Balmer series? He™ is analogous to H.

8.19 A Wannier exciton is a bound state between an electron and a hole in a solid.
Apply the Bohr model to such an electron-hole pair, taking the effective masses and
the dielectric constant of the semiconductor (surrounding medium) into account.

a) What are the energies of the excited states with 2<n=<35?
b) What does the absorption spectrum of such an exciton book like?

Hint: A hole is a missing electron, which ideally has the same properties as an electron
except for its positive charge. As an example, consider Cu,0O, with ¢ = 10, reduced
mass u=0.7 my. Literature: C. Kittel: Infroduction to Solid State Physics.



