16. General Laws of Optical Transitions

16.1 Symmetries and Selection Rules

16.1.1 Optical Matrix Elements

Selection rules and symmetry considerations play a basic role in modern physics. This
holds for the atomic shells, the nucleus, elementary particles and for many other areas.
We shall present only a small but typical sample here, taking up the perturbation theory
discussed in Sect. 15.2. We began with the unperturbed wavefunctions ¢,. The per-
turbation Hamiltonian in one example contained the dipole moment ez. In the follow-
ing, we shall first choose the x coordinate instead of the z coordinate. We became
acquainted with matrix elements of the form

Hpp = [pk(r)exp,(r)dV (16.1)

as important parameters. As we observed at that time, there are a number of realistic
cases in which matrix elements vanish when the indices m and n are equal, on the basis
of symmetry alone. We shall now examine these cases.

16.1.2 Examples of the Symmetry Behaviour of Wavefunctions

As an unperturbed wavefunction, let us consider that of a particle in a box (Sect. 9.1)
or of a harmonic oscillator. We recognise (see Figs. 16.1, 2) that these wavefunctions
are either “symmetric” or “antisymmetric”.
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Fig. 16.1. Example of a symmetric wavefunction. Fig. 16.2. Example of an antisymmetric wavefunction. When the wavefunction
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A symmetric wavefunction is converted into itself when every x is converted to —x. In
an antisymmetric wavefunction, this process reverses the sign of the function. We shall
now show two things:

1) How this symmetry property of the wavefunction can be derived directly from
the Schrédinger equation, without solving it explicitly, and

2) how these symmetry properties can be used to prove that

HE, =0. (16.2)

We first consider the symmetry properties of the Hamiltonian and select the
harmonic oscillator as an example. If we replace x by —x, we obviously obtain

X (—x)?=x2. (16.3)

x? is thus unchanged when x is replaced by —x, or in other words, x? is “invariant”
with respect to the transformation

X——Xx. (16.4)

Since the potential energy of the harmonic oscillator is proportional to x?, this
invariance property naturally applies to the oscillator potential itself:

V(-x)=V(x). (16.5)

In analogous fashion, one can show that the second derivative with respect to x is also
invariant with respect to the transformation (16.4):

d? d? d?
dx>  d(-x)? dx*’

(16.6)

We can now assume in general that for a certain one-dimensional problem, the
Hamiltonian is invariant with respect to the transformation (16.4). If we take the
appropriate Schrédinger equation

H (X)y(x) = Ey(x) (16.7)
and replace each x by —x, we naturally obtain
H(=x)y(—x)=Ey(-x). (16.8)

However, since the Hamiltonian is supposed to be invariant with respect to the trans-
formation (16.4), we can replace # (—x) by # (x) in (16.8),

HX)y(—x)=Epy(-x). (16.9)

This tells us that if y(x) is an eigenfunction of (16.7), w(—x) is also an eigenfunc-
tion of (16.7). We now make the simplifying assumption that there is only a single
eigenfunction for the energy E. The word “single” should be taken with a grain of salt,
in that eigenfunctions can differ from one another by a constant numerical factor.
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As we see from (16.7) and (16.8), the eigenfunctions y(x) and w(—x) belong to the
energy E. They can differ at most by a constant factor, which we shall call ¢, due to our
assumption above. We thus have the relation

y(=x)=ay(x). (16.10)

If we replace x by —x on both sides of (16.10), the relation becomes
wx)=aw(—x). (16.11)

We now replace w(x) on the right side of (16.10) by w(—x) according to (16.11),
obtaining as the overall result

w(—x) = ap(x) =’ y(—x). (16.12)

Since we know that y does not vanish identically, we can divide both sides by w( —x),
yielding

=1, (16.13)
or, taking the square root,

a=+1. (16.14)
Inserting this result now into (16.10), we obtain the relation

p(—x)=tykx). (16.15)

This, however, is just the relation we were searching for. As may be seen in Figs. 16.1
and 16.2, the plus sign means that the wavefunction is symmetric, and the minus sign
means that it is antisymmetric. We thus see that from the symmetry of the Hamil-
tonian, it follows automatically that the wavefunctions will have a particular symmetry
behaviour.

The argumentation which we have just carried out may be immediately generalised
to three dimensions, by utilising consistently the replacement

X—r (16.16)
and by replacing the transformation (16.14) by the transformation
e (16.17)

If the Hamiltonian is invariant with respect to (16.17), it follows, in complete analogy
to the derivation of (16.15), that

w(—r)=+y(r). (16.18)

The transformation behaviour described by (16.18) is denoted as parity. If the positive
sign is valid, one speaks of positive (or even) parity; if the negative sign holds, the



284 16. General Laws of Optical Transitions

parity is negative (or odd). Correspondingly, the oscillator wavefunctions of Figs.
9.9a,b have positive parity for even n=0,2,4,... and negative parity for odd
n=1,3,5,...

Up to now we have assumed that only a single wavefunction (up to a constant
factor) belongs to E, or, in other words, that the wavefunctions are not degenerate with
one another. It can be shown by the detailed theory that even in the case of degeneracy,
the degenerate wavefunctions may be so defined that here, too, the relation (16.18) is
fulfilled, as long as the Hamiltonian is invariant with respect to the transformation
(16.17).

Before we show by means of symmetry arguments that (16.2) is valid, let us
consider another example of a symmetry. Keeping in mind the hydrogen atom
problem, which is three dimensional, we investigate symmetry with respect to rotations
in three-dimensional space; as a concrete example, we consider a rotation by the angle
¢ around the z axis. We assume, as is for example fulfilled in the hydrogen atom, that
the Hamiltonian remains unchanged when we rotate the coordinate axes through the
angle ¢ = ¢, about the z axis (Fig. 16.3):

H(r,p+¢)=H(r,¢), ) (16.19)

where we have not shown the constant angle @ as an argument.

Fig. 16.3. Rotation of the coordinate system around
the z axis by an angle ¢,

If, in the corresponding Schrodinger equation, we replace ¢ everywhere by ¢+ ¢4,
we obtain

H(r g+ o) w(r,¢+¢1) = Ep(r,o+¢1), (16.20)
or, using rotational invariance,

H(r,@)y(r, ¢+ ¢1) =Ewp(r,¢g+¢1). (16.21)
Since the wavefunction which occurs in (16.21) must be an eigenfunction of the original

Schrodinger equation, we must have (without degeneracy) in analogy to the example
treated before,

w(r, @+ ¢1) = oy wir, ¢). (16.22)
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Here the constant o can, as we have explicitly indicated, be a function of the angle of
rotation ¢;. We should like to determine this functional dependence exactly. For this
purpose, we write (16.22) again for a second rotation angle ¢,:

w(r, g+ ¢2) = oy y(r, ¢) . (16.23)
We imagine now that ¢ in (16.22) has been replaced by ¢ + ¢,. This gives us

wr o+ g1+ ¢2) = ap w(r.¢+ o), (16.24)
or, using (16.23) on the right side,

W(r @+ g1+ ¢2) = ay oy w(r, @) . (16.25)

On the other hand, we could have replaced ¢, in (16.22) on both sides of the equation
by ¢+ ¢, which would have led immediately to

w(r @+ Q1+ ¢2) = ey .y, w(r, @) | (16.26)
(Fig. 16.4).

Fig. 16.4. Addition of rotations: two rotations which
are carried out one after the other may be replaced by a
single rotation

We now compare (16.26) with (16.25). We see immediately that the a’s are
connected to one another by the relation

a¢l+¢2: a¢1 a¢,2- (16.27)

It may be shown mathematically in an exact way that (16.27) can only be fulfilled by

a,=e"?, (16.28)

where m is still an unknown parameter. (Addition of arguments leads to multiplication
of the functions — exponential function.) Now, however, we recognise that every wave-
function must go into itself when we rotate the coordinate system completely around in
a circle, that is, when we rotate by an angle of 2 7. From this fact, we obtain directly the
requirement

elmm=1, (16.29)

This may be fulfilled by requiring m to be a positive or a negative integer.
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To utilise this result, we employ (16.22) again, setting ¢ = 0 in it:

w(r,0+¢)) = ay,y(r,0) . (16.30)
If we leave off the index j and use (16.28), we finally obtain the relation

w(r, @) =e"?y(r,0), mintegral. (16.31)

Thus we have found that the wavefunction  is dependent on the angle ¢, and in a way
which is in perfect agreement with (10.82), the result which we obtained for the
hydrogen atom.

As this example indicates, extremely general conclusions about the structure and the
transformation behaviour of wavefunctions may be drawn from symmetry considera-
tions. Naturally, one can also consider rotations around other axes, and rotations
around various axes may also be added to give new rotations. The corresponding trans-
formation behaviour of the wavefunctions is treated by what is called the theory of
representations of the rotation group, which, however, is beyond the subject matter of
this book. We hope, however, that the reader has gained a feeling for the way in which
the symmetries of the original problem (i.e. of the Hamiltonian) can lead to a certain
transformation behaviour of the wavefunctions.

16.1.3 Selection Rules

We have already met selection rules several times in this book. As we have seen, the
coupling of an atom to external fields, especially to the radiation field (light), produces
transitions between the electronic states in the atom. However, these transitions only
occur (at least in first order) when the corresponding matrix element of the external
field, H ,‘,’m, is nonzero. If it is zero, the transition is forbidden; we thus obtain selection
rules for the occurrence of transitions. We shall now show, using several simple
examples, how it follows from the symmetry properties of the wavefunctions that
certain matrix elements are identically equal to zero. This is valid independently of the
form which the wavefunctions may happen to have.

As a first example we consider an integral which results from leaving out the factor
e from the matrix element (16.1). If we replace the functions ¢, and ¢,, by the wave-
function  which we are now considering, we have

I= Tby/*(x)xy/(x)dx, (16.32)

where we have chosen a one-dimensional example (for an intuitive picture of this in-
tegral, see Fig. 16.5). We rename the variable of integration x, in that we replace x by
—X:

X—> —X. (16.33)

The value of the integral naturally remains the same. However, the following
individual changes are made in the integral (16.32):

I= [ (=) (—x) p(~x)d(~x). (16.34)
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T |W(><)|2 Fig. 16.5. Explanation of the integral (16.32). The inte-

gral is obtained by multiplying the value of the func-
tion x (= - —) by the value fo the function |w|*(—) at
each point along the x axis and then integrating the pro-
ducts over all values of x. As can be seen from the
diagram, the product for each value of x has the same
magnitude as the product for —x, but the opposite sign.
When added, each pair has a sum of zero, and thus the
integral vanishes

By exchanging the limits and accordingly changing the sign of the differential, we obtain
+ oo
[ w*(—x)(~x)p(~x)dx. (16.35)

Now we make use of a symmetry property of the wavefunction, namely the trans-
formation relation (16.15). The transformation (16.4) leaves w*y invariant, so that the
integral (16.35) differs from the original integral (16.32) only with respect to its sign.
We thus obtain the relation

I=-1T1, (16.36)
which, of course, can only be satisfied by
I=0. (16.37)

This result is enormously important. It shows us that we have found the value of the
integral to be 0 without having done any integrating. We have used only symmetry rela-
tionships.

What would have happened if we had calculated a matrix element with different
indices m and n? If the perturbation operator were again x, we would then have
obtained the following: if ¢, and ¢,, have the same parity, the result is still zero. The
integral can only have a non-zero value if the parity of ¢, and ¢,,are different. Here we
have the simplest example of a selection rule.

As a second example, which is particularly important for atomic shells, we will
again consider a dipole matrix element, but now between eigenfunctions of the
hydrogen atom. We shall examine a matrix element of the form

L={wkimT)2Wn 1 m(r)dV . (16.38)
In the following, it is useful to employ polar coordinates, in which (16.38) has the form
L={dV y} m(r, 0,0)rcos Oy, p(r, 0, 0) . (16.39)

In order to determine when the matrix element 7, is identical to zero, we again make
use of symmetry relationships. This time, however, we consider rotations about the
z axis. We allow a rotation through the angle ¢,. This converts (16.39) into
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Izze—i(mfm')(l)u]z, (16.40)

as one can easily see from the transformation property expressed in (16.31). The left
side must naturally remain /.. Equation (16.40) can be satisfied in two ways. Either
I.,=0, or I, + 0, but in the latter case m must be equal to m'. This is another example of
a selection rule. If the perturbation operator contains the dipole moment in the z direc-
tion, a matrix element can only be different from 0 if m = m'.

We shall now derive a selection rule for the x and y components of the dipole
moment, by considering the integrals

L= §dV gk 1 m(r, 0, 0) X W g (1, 6, ) (16.41)
and
I,=§dV i w(r,0,0)y Wop,m(r, 6,0) . (16.42)

We shall multiply the second line by 7 and add it to the first, and also express x and y in
spherical polar coordinates. We then obtain

L+il,=[dV sk ursin0e y, . (16.43)

If we again carry out a rotation through the angle ¢, about the z axis, we obtain, in
complete analogy to the preceding case,

L+il,=exp[—i(m—1-m")gol (I +il,) . (16.44)
From this it immediately follows that

I,+il,=0 for m+m'+1 (16.45)
and similarly by subtraction of (16.41) and (16.42)

I.—il,=0 for m+m'—1. (16.46)
In summary, if m+m' + 1 and m + m' — 1, then

I,=0 and [,=0. (16.47)
Here we have discovered another selection rule: /, or /, can have non-zero values only
whenm=m'+1orm=m'—1.

It can be derived from the rules (16.40, 45 and 46) which transitions in an atom can
be induced by a radiation field. If the radiation field is polarised in the z direction, only
transitions with m = m' are possible. However, if it is polarised in the x or the y direc-
tion, the transitions with

m=m'=+1 (16.48)

are possible. These are the 7 or ¢ transitions which were introduced in Sect. 13.3.2.
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The selection rule of the angular momentum of the electron,
I=0I'+1, (16.49)

can be derived from the matrix element (16.38) on the basis of considerations which are
similar in principle to the above, but require somewhat more extensive mathematics.
The basic matrix element occurs just when light, or more exactly, light quanta, are
-absorbed or emitted (see also Sect. 16.1.4). Since the total angular momentum of
electron and light quantum is conserved, it can be deduced from (16.49) that a quantum
of light has the angular momentum (spin) A.

We can summarise what has been learned in this chapter as follows: The invariance
properties of the Hamiltonian operator lead to certain transformation properties of the
wavefunctions. From the transformation properties of the wavefunctions and of the
perturbation operator (in the present case this is the dipole operator) it can be
rigorously determined which matrix elements vanish identically and which can in
principle differ from zero. However, these considerations give no information about
the magnitude of the matrix elements, and it can happen that still other matrix elements
vanish for other reasons. As it turns out, symmetry considerations allow quite exact
predictions, and it is therefore not surprising that such considerations, appropriately
generalised, have a basic role in the physics of elementary particles.

16.1.4 Selection Rules and Multipole Radiation*

In this chapter we have been primarily concerned with the matrix element

§prr)exg,(r)dV. (16.50)

We met this earlier, in Sect. 15.3, where we examined the effect of a light wave on an
atom. Conversely, the matrix element (16.50) is also found to apply to the production
of light by atomic transitions. Within the limits of this introduction we cannot go into
details, but we will describe the basic ideas. As we know from classical electro-
dynamics, an oscillating dipole generates electromagnetic waves. The dipole is mathe-
matically described by the dipole moment

P=—er(r) (16.51)

where r is the vector from the positive charge to the oscillating negative charge. As
usual, we assume that the oscillation is purely harmonic, r(#) = ry sinwt. The dipole
moment (16.51) then appears in the Maxwell equations for electromagnetism as a
“source term”. (For the more interested reader, we can formulate this somewhat more
exactly: In the Maxwell equation curl H = j + dD/dt, the polarisation P appears in D if
matter, in the present case atoms, is present. In the classical case, this can be expressed
by (16.51) or, if several atoms are present, by a summation of several expressions of the
form of (16.51).) The question now arises whether there is a quantum theoretical
analogue to this source term of the form of (16.51). Let us recall the translation table in
Sect. 9.3.4, and accordingly, assign to the classical observable “dipole moment
—er(t)” an operator — er and, finally, the expectation value

fw*r,0)(—er)y(r,0)dVv. (16.52)
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What does the wavefunction (r, 1) mean here? To obtain an insight, let us imagine
an atom with two energy levels E; and E, and the related wave functions ¢,(r) and
@>(r). To generate an oscillation, we form a superposition in the form of a “wave
packet”,

() = —— e B (1) 4 L 1B ) (16.53)

V2 V2

where the factors 1/ L/E serve to normalise y(r). Let us substitute (16.53) in (16.52) and
multiply out the individual terms. The result is a sum over expressions of the form of
(16.50), in which m and n can take on the values 1 and 2. Let us assume, as above, that

[pferg,dV and [@YerpdV
vanish. Then (16.52) takes the form

Ligtr)(—er)py(r)dV-e " +cct, (16.54)
where we have also introduced the abbreviation w = (£, — E;)/h. The expectation value
of the dipole moments thus actually oscillates as a classical dipole and generates the
corresponding classical electromagnetic field. In this way the relationship between a
dipole matrix element and dipole radiation becomes clear.

Now as we know from classical physics, radiation fields are generated not only by
oscillating dipoles, but also by other oscillating charge or even current distributions. A
loop conducting an electric current acts like a magnetic dipole. If we vary the current in
the loop, for example in a sine wave, the magnetic dipole moment oscillates and
generates “magnetic dipole radiation”. Can such a radiation field also be generated by
an atomic transition? This is in fact possible, but the matrix element (16.52) or (16.54)
is no longer sufficient to describe it mathematically. Instead we must base it on a more
exact theory of the interaction between light and electrons.

With the exception of constants, the corresponding part of the Schrédinger
equation is

ep-A, (16.55)

where p = —iAh V is the momentum operator and A is the vector potential of the light
field. We have already encountered the interaction expression (16.55) in Sect. 14.1, e.g.
in (14.9). There the vector potential referred to a constant magnetic field; here it
describes the electromagnetic field. If we express A4 in terms of plane waves (in complex
notation), we have instead of (16.55) expressions of the form

ep-ee” (16.56)

in which e is the polarisation vector of the light wave with the wavenumber vector k.
The matrix element which now appears in perturbation theory,

efprr)p-ee* g, (rdV, (16.57)

I Here and in the following, c.c. indicates the complex conjugate of the preceding expression
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takes the place of (16.50). Since the wavelength A is generally large compared to the
extent @ of the wave function ¢, we can assume k - r=27nr/A <1 and expand the
exponential function

e* = 1+ik-r+... . (16.58)
If we substitute this in (16.57), the first term is
foxriep-ep,(rydVv. (16.59)

In the special case that e is parallel to the x axis and n = 1, m = 2, we have

[ot(ep,gr(r)dV . (16.60)
As is demonstrated exactly in quantum mechanics, (16.60) is identical to
—imw|gf(rex ¢,(r)dV  where = (E,—E)/h, m:particle mass,(16.61)

or, except for a numerical factor, the familiar dipole matrix element. There are cases of
atomic transitions, however, where (16.61) vanishes. (These are “forbidden electric
dipole transitions™.) Then the matrix element derived from the second term in (16.58),

iefpr(r)(p-e)k-r) g (r)dV, (16.62)

becomes important. This can also be rearranged (which will not be demonstrated here)
and becomes (except for the factor wme)

for)[—er(k-r)g(r)dV. (16.63)

To establish the connection with classical physics, let us think of the integral over r
being replaced by a discrete sum over points r;, each with the charge (—e;). Then

(16.63) > X (—ejr;(k - r)) . (16.64)
J

However, just this sum appears as the “source term” in the classical theory of electro-
magnetic fields (it appears as the “Hertz vector”). It is known from this theory that the
sum represents a superposition of the electric quadrupole moment and the magnetic
dipole moment, the oscillations of which produce the corresponding radiation fields.
(In the case of the magnetic dipole, use is made of the fact that r =iwr.) Thus we
recognise a one-to-one correspondence between quantum theory and classical physics
with regard to the radiation properties of atoms and classical sources, just as the Bohr
correspondence principle requires.

The radiation fields of electric and magnetic dipoles are shown in Figs. 16.6 and
16.7. The theory sketched above, in which the radiation field is treated classically,
according to the Maxwell equations, but the “source term” is introduced as a quantum
mechanical expectation value, is often referred to in the literature as the “semiclassical”
theory.
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Fig. 16.6. Radiation field for electric dipole radiation. The
dipole oscillates in the z direction. The lines connect
elements of the electric field E which have the same phase.
The radiation field of magnetic dipole radiation is formally
the same as that for electric dipole radiation if we replace
the electric dipole moment p by the magnetic dipole moment
u and simultaneously make the substitution £— B and
B—E

Fig. 16.7. Visualisation of the time dependence of the »
radiation of a Hertzian dipole. T is the period of oscillation

16.2 Linewidths and Lineshapes

As we showed in the Schrodinger theory, electrons can assume certain energy states in
the atom. If an electron is in an excited state, it can go from there to an energetically
lower state by emitting a quantum of light. The result of this is that the lifespan of the
excited state is no longer infinite. In classical electrodynamics, it is shown that the
energy of a Hertzian oscillator (= oscillating dipole) decays exponentially with time.
Measurements on excited atoms show (Fig. 16.8) that their radiation intensity also
decays exponentially. Such behaviour is to be expected, according to the corre-
spondence principle (Sect. 8.11). In fact, the quantum mechanical treatment of radia-
tion, which cannot be given here in detail, shows that the number N of excited atoms
decreases according to

N=Nge 2", (16.65)

1/(2y) is the time ¢, in which the number N decays to N/e. ;is called the lifetime of the
state. In the sense of the statistical interpretation of quantum mechanics, (16.65) refers
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[} Fig. 16.8. The decay times of excited atomic states can be measured, for
//f !Electron beam example with the arrangement shown here. Atoms in a neutral beam are lifted
el - into defined excited states by irradiation with electrons of the appropriate
: /\ kinetic energy or with laser light. A movable device for measuring radiation

intensity along the line of flight is used. The velocity of the atoms is known, so
# that the radiative decay of the excited state during the flight through the
Window chamber can be used to calculate the decay time, or lifetime, of the excited
state

|
Atomic -l
beam N

oven

intensity, movable

|
|

To pump l Detector for light
I in the z direction

to the quantum mechanical average which describes the behaviour of many atoms, i.e.
of the ensemble. For a single atom, the emission occurs at a completely random time.
In analogy to (16.65), the amplitude of the emitted light decreases exponentially. The
radiation field amplitude F therefore has the form (Fig. 16.9) in complex notation

F(t) = Fy(e 7"Fi®lice), >0, (16.66)
Y FIt)
\
\
"\
\
I\
N\
/
/
/
/
f Fig. 16.9. Exponential decay of the radiation field amplitude F'(16.66)

Here wy is given by (E,— E;)/ h, where E, and Eare the energies of the initial and final
atomic states, respectively. F,is a real amplitude.

We can imagine that the excitation occurs at time ¢ = 0, so that for f <0 there is no
light wave. If we use a spectrometer to examine the emitted light, we find that this light
is composed of monochromatic components, i.e. waves of the form

c(w)e'®  (in complex notation) ,
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where w =2mc/A (A: wavelength, c: velocity of light). The radiation field amplitude
(16.66) can be represented as a superposition of such waves:

oo

F(t) = oA | c(w)e'“'dw. (16.67)
2n

— 00

This decomposition is known in mathematics as a Fourier transformation. It is shown
in Fourier theory that the Fourier coefficients ¢(w) are given by

c(w) = +ij(:)e—iw’af:. (16.68)

The intensity of monochromatic light with frequency w is then given by
le(w) |?. (16.69)

For an exponentially decaying light field (16.66), the spectral distribution is thus

c(w) = —F0< ! + ! ) (16.70)

Hwp—w)—y  i(—wy—w)—y

Since (wo— w) <(wo+ w) and y <(wy+ w), (w>0), the second term in (16.70) is
much smaller than the first and can be neglected. The intensity distribution is then
1

c(w)|?= F? .
e = F oy

(16.71)

b lclw)|?

E___kAﬁ___A
o

Fig. 16.10. Lorentzian line

A spectral line with the intensity distribution given in (16.71) and shown in Fig.
16.10 is called a Lorentzian line. Its width at half height is given by the atomic decay
time 7o according to y = 1/(24y). The linewidth introduced here is also called the natural
linewidth. Typical numerical values are 7, =10 %~ 10" ?s (10 s 25.10 *cm ' 2 15
MHz), and thus y = 10°-10% s !,

It is intuitively reasonable that the electron orbitals of gas atoms can also be dis-
turbed by collisions between the atoms. This constantly causes changes in the resulting
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light emissions, resulting in a line broadening which is called collision broadening. If
atoms are incorporated into solids, they interact constantly with the lattice oscillations,
which again disturb the electron orbitals and lead to line broadening. In these cases, the
atoms are all completely identical, and the resulting line broadening is “homo-
geneous”. “Inhomogeneous line broadening” occurs when individual atoms, which
were originally identical, become distinguishable through additional physical condi-
tions. For example, atoms in solids can occupy different types of positions within the
lattice, so that the energies of individual electrons are differently displaced. These dis-
placements often lie along a continuum and their intensities assume a Gaussian dis-
tribution.

Another example of inhomogeneous line broadening is Doppler broadening in
gases. According to the Doppler principle, the frequency of light emitted by an atom
moving toward the observer with velocity v differs from that emitted by an atom at
rest by

w=wy(ltv/c), (16.72)

where ¢ is the velocity of light. The frequency is increased when the atoms are moving
toward the observer, and decreased when they are moving away. Let us now imagine a
gas at thermal equilibrium. According to the Boltzmann distribution (2.8) the number
of gas atoms whose velocity components v in the direction of the observed light wave lie
in the interval (v, v + dv) is given by

1/2 P

my myv
nw)ydv=N| —— ex — dv . 16.73
@) <2nkT> p( 2kT> ( )

N is the total number of atoms, k is the Boltzmann constant, 7" the absolute tempera-
ture and m, the atomic mass. (The difference between (2.7) and (16.73) is based upon
the fact that (2.7) refers to the three dimensional motion of the gas atoms, while (16.73)
refers to one velocity component v.) Since, according to (16.72), a frequency displace-
ment is associated with the velocity v, we obtain an intensity distribution given by

2 2
myc(wy— w)
I(w)=const-exp| - ———— ), (16.74)
( 2kTw} )
‘as is shown in Fig. 16.11. The total linewidth at half height is given by
172
2 kT :
Awp =220 (2 In2- _> . (16.75)
C my

4 Tw)

w Fig. 16.11. Gaussian line shape
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According to (16.75), the Doppler width of a spectral line, Awp = 27 Avpis thus pro-
portional to both the frequency and the square root of the temperature. For the yellow
D line of sodium, at 7=3500K, the Doppler width is Avp= 1700 MHz, or
(1/4)p=0.056 cm '. For optical spectral lines, this width is generally significantly
greater than the natural linewidth y [see (16.71)].

In contrast, the Doppler broadening of microwave or radiofrequency transitions
between excited atomic states (which can be studied by double resonance methods, see
Sect. 13.3.7) is generally smaller than the natural linewidth. At frequencies v < 10'° Hz,
the Doppler width at the same temperature is, according to (16.75), <10* Hz. The
spectral resolution of such double resonance methods is thus no longer limited by
Doppler broadening,.

Doppler broadening also occurs in atoms which are incorporated into solids and are
vibrating there at high temperatures.

As we saw in Chaps. 8 and 12, there are a number of interesting line shifts and split-
tings. In order to measure these exactly, the linewidth must be small compared to these
shifts or splittings. Therefore, in Chap. 22 we shall discuss methods by which line
broadening, and in particular Doppler broadening, can be avoided, thus permitting the
experimenter to carry out Doppler-free spectroscopy. A simple method of reducing the
Doppler broadening consists of cooling the source of the atomic beam which is being
investigated. In order to reduce collisional broadening, one must ensure that the mean
time between two collisions of one atom with other atoms is longer than the mean life-
time of the excited state. This is done by reducing the pressure in the experimental
apparatus.
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17.1 The Spectrum of the Helium Atom

The simplest many-electron atom is the helium atom. In the ground state, its two s
electrons exactly fill the innermost shell with the principal quantum number n= 1.
There is no room for more electrons in this shell, as we shall see below.

In the excited state, one electron remains behind in the half-filled first shell, while
the other is excited into a higher shell. Therefore we have

electron1 instaten=1 /=0, and

electron?2 instaten>1, [=0...n—1.

In the previous chapters, we treated the spectra of atoms in which the quantum
numbers of only one electron were sufficient to characterise the terms. Other electrons
were either not present — as in the H atom — or they were all in so-called closed shells
or closed subshells. That means, as we shall also see presently, that they make no con-
tribution to the total angular momentum or magnetic moment of the atom.

The experimentally derived term scheme for helium (Fig. 17.1) is similar in some
respects to those of the alkali atoms. It differs from them, however, in that there are
two term systems which do not combine with each other, as if there were two kinds of
helium atoms: a singlet and a triplet system. These names come from the fact that in the
singlet system, all the terms are single, while in the triplet system, they are generally
split into triplets.

What is important for practical applications, such as gas discharges and lasers, is
that both the lowest state of the triplet system (2°S in Fig. 17.1) and the second-lowest
state of the singlet system (2'S in Fig. 17.1) are metastable in the helium atom.
“Metastable” means that the lifetime of the system is long compared to 10~ %s, which is
the usual lifetime of a state which can be emptied by an allowed optical transition. An
atom which is excited to one of these states can thus radiate its energy of about 20 eV
only in a time that is long compared to 107 8s.

Helium in the singlet state is also called parahelium. Unlike the alkali atoms, it has
no fine structure. All its lines are single. The lowest term is given the symbol 1 'S. Here
the first 1 stands for the principal quantum number, the superscript 1 for the
multiplicity (here singlet), and the letter S for the total orbital angular momentum,
which in this case is zero. The higher terms are 2 1s,2'p,3's,3'P, 3'D, etc. From the
lack of fine structure, one can conclude that the spins of the two electrons are
antiparallel, and add vectorially to a total spin S = 0. The same holds for the magnetic
moment, us = 0. Here the upper case letters indicate quantum states which result from
the coupling of many (here 2) electrons.

Triplet helium, which in contrast to the singlet system has fine structure, is called
orthohelium. Its lowest level is 23S. Here the 2 stands for the excited electron with



298 17. Many-Electron Atoms

Triplet Fig. 17.1. Term scheme of the He atom.
38 3P SD 3F Some of the allowed transitions are in-
0 1 210 321 "432| dicated. There are two term systems, be-
_ = = = tween which radiative transitions are forbid-
4L — den. These are the singlet and triplet systems.
The transitions in the singlet system span an
energy range of 25eV, while those in the
> 2F triplet system span only 5eV. The threefold
© splitting of the triplet terms (except for >S)
'-: 3 F due to spin-orbit coupling is not indicated
<) here. The indices 0, 1, and 2 on the term
S 4t 23P0'1'2 symbol *P, | , stand for the 3 possible quan-
1T} (15} (2p)' tum numbers J=0, 1, 2
S 233, (15)2s)
23 F
24 -
R He
24.47 — 1180 (15)2
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n = 2, the superscript 3 for the multiplicity (triplet), and the letter S for L = 0. Unfor-
tunately, both the total spin quantum number and a term with the total orbital angular
momentum L = 0 are represented by the same letter, S. The reader must be aware of
this difference.

In this system, the spins of the two electrons are parallel to each other. The quan-
tum number of the total spin is s, +5, = § = 1. The magnetic moment ug = U, + s, is
different from zero. The resulting total spin has three possible orientations with respect
to an internal magnetic field B; which is coupled to the orbital angular momentum of
the electrons. The spin-orbit coupling resulting from this leads to a triple fine structure
splitting of the terms which have non-vanishing total orbital angular momentum.

The spectrum of parahelium lies mostly in the ultraviolet, while that of orthohelium
is in the infrared and visible. Combinations between the systems are not observed, i.e.
there are no optical transitions between the singlet and triplet systems. If one compares
corresponding configurations in the two non-combining systems, one discovers con-
siderable differences in energy, especially for the low quantum numbers. The 2 180 state
lies about 0.8 eV above the 2°S;, and the 2 ' P, state about 0.25 ¢V higher than the 2 °P,
(the notation in this sentence is explained in Sect. 17.3.2). This energy difference
between the singlet and triplet configurations is a result of the differences in the
electrostatic interactions of the two electrons in parallel and antiparallel spin orienta-
tions. It is also called the symmetry energy, because it arises from the difference in
the average distance between two electrons with symmetrical and antisymmetrical
wavefunctions (see Sect. 17.2). For P states, this can also be seen in Fig. 17.9.
More information about the theory will be given in Chap. 24, “the quantum theory
of chemical bonding™; in particular, see Fig. 24.7.
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17.2 Electron Repulsion and the Pauli Principle

Compared to the one-electron atom, the new factor in the helium atom is the repulsive
interaction of the two electrons. For the total binding energy of the He atom, one must
therefore write
Ze? Ze? e’
E= - - + . (17.1)
47’.’.’80"1 471'80!‘2 47’[80!‘12
——— — ——

Nucleus — Nucleus — Electron1 —
electron 1 electron 2 electron 2
attrac- attrac- repulsion
tion at tion at at mutual
distance distance distance
n r T2

The repulsion energy of the two electrons naturally depends on the n, / states they
occupy, because the spatial distribution of the electrons depends on the quantum
numbers. This repulsion energy thus lifts the / degeneracy to a considerable degree.

The Schridinger equation of this relatively simple two-electron problem cannot
be solved exactly. The potential no longer has spherical symmetry and a separation
into radial and angular parts is no longer possible. As a first approximation, in the
independent-particle model, one neglects the third term and sets the total energy
equal to the sum of two H-atom terms. The binding energy is then

2 2
e (RhCZZ ) - (RhCZZ ) .
h 1 h 2

where the indices 1 and 2 refer to the two electrons. One would then expect the energy
of the ground state to be

Eye=2-(—-54.4)eV = —-108.8¢eV.

The experimental value is distinctly different from this. The total work of removing
both electrons is 79 eV, 24.6 eV for removing the first electron (ionisation of the He to
the singly charged positive ion He ™) and 54.4 eV for the removal of the second electron
(ionisation of the singly charged He" to the doubly charged positive ion He?"). The
second value is the same as one would expect from a comparison with the hydrogen
atom. There the ionisation energy is 13.6 eV. For helium, one would expect the energy
to be four times as great, because the nucleus is doubly charged. The work of removing
the first electron, however, is much smaller. The model for the binding energy must
therefore be refined by taking into account the energy of the interaction of the two elec-
trons. We shall present an approximation process in Sect. 19.4.

The observation that the helium atom has a 1'S state but not a 135 state was the
starting point for the Pauli principle (Paul/i 1925). In its simplest form, it says:

The electronic states of an atom can only be occupied in such a way that no two
electrons have exactly the same set of quantum numbers.

The electrons must therefore differ in at least one quantum number. In addition to the
orbital quantum numbers #, / and m,, the spin quantum number s or m, is taken into
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account here. An atomic state with a certain set of spatial quantum numbers (n, I,
my) can thus be occupied by at most two electrons Their spin (projection) quantum
numbers m =+1/2 must be different. In the 1°S configuration, both electrons would
have exactly the same quantum numbers, as we shall show in detail below. For
more details see Sect. 19.4.

This principle is the generalisation of the previously stated empirical rule for all
atoms with more than one electron: There is always a unique ground state which has
the lowest principal quantum number. It has the highest multiplicity which is compati-
ble with the principal quantum number. We discuss this point further in Sect. 19.3.

17.3 Angular Momentum Coupling

17.3.1 Coupling Mechanism

We have already learned that in the one-electron system, the individual angular
momenta / and s combine to give a resultant angular momentum j. There is a similar
coupling between the angular momenta of different electrons in the same atom. We
have already inferred, as an important result of empirical spectral analysis, that the
total angular momentum of filled shells is equal to zero. This follows directly from the
observation that the ground state of all noble gas atoms is the ’SO state. In calculating
the total angular momentum of an atom, it is therefore necessary to consider only the
angular momenta of the valence electrons, i.e. the electrons in non-filled shells. These
angular momenta are coupled by means of magnetic and electric interactions between
the electrons in the atom. They combine according to specific quantum mechanical
rules to produce the total angular momentum J of the atom. These quantum rules are
those which have already been discussed. The vector model provides insight into the
composition of the angular momentum. There are two limiting cases in angular
momentum coupling: the LS or Russell-Saunders coupling, and jj coupling.

17.3.2 LS Coupling (Russell-Saunders Coupling)

If the interactions (s;- [;) between the spin and orbital angular momenta of the indi-
vidual electrons / are smaller than the mutual interactions of the orbital or spin angular
momenta of different electrons [coupling (/;-1;) or (s;- s5;)], the orbital angular
momenta /; combine vectorially to a total orbital angular momentum L, and the spins
combine to a total spin S. L couples with § to form the total angular momentum J;
cf. Fig. 13.11.

of two electrons /; and /, to the total angular

momentum L. Coupling to D, P and §, correspond-

ing to L =2, 1, and 0. The picture is schematic.

Exact addition of the angular momenta is accom-
D term P term S term plished as shown in Fig. 12.16

l =1 ll'1 L= | Il - Fig. 17.2. Coupling of the orbital angular momenta
I 1~ 2"

For a two-electron system like the He atom, the resulting behaviour is shown in
Fig. 17.2. The orbital angular momentum L of the atom is the sum of the two electron
orbital angular momenta

L=1+1. (17.3)
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For the absolute value of L it again holds that |L|=|/L(L+1)h with the quantum
number L, for which the following values are possible:

L=!1+12,11+12—1...[1—!2, where 11312.
The quantum number L determines the term characteristics:
L=0,1,2...indicates §, P, D ... terms.

It should be noted here that a term with L = 1 is called a P term but this does not neces-
sarily mean that in this configuration one of the electrons is individually in a p state.
For optical transitions the following selection rules hold:

Al= +1  for the single electron ,

AL =0,+1 forthetotal system .

AL = 0 means here that the quantum states of two electrons change simultaneously,
and in opposite directions. This is only possible when the coupling is strong, which is
the case in heavy atoms.

Furthermore, for the total spin,

S=s5,+5, with |S|=}/SS+1)hA. (17.4)
The total spin quantum numbers S can take one of two values here, either
S=1/2+1/2 or S8=1/2-1/2, 1ie. S§=0 or S=1.

The selection rule for optical dipole radiation is A4S = 0. This means that combina-
tions between states with different total spins are not allowed, or in other words, that
spin flipping is not associated with optical dipole radiation.

Finally, the interaction between § (or its associated magnetic moment us), and the
magnetic field B; , which arises from the total orbital angular momentum L, results in a
coupling of the two angular momenta L and § to the total angular momentum J:

J=L+S, |J|=)JUJ+1)h. (17.5)
The quantum number J can have the following values:

for S=0, J=L,
for S=1, J=L+1,L,L-1,

in which case all terms are triplets.

The individual angular momenta are combined according to exactly the same quan-
tum rules with which we became acquainted in Chap. 13.

In the general case of a several-electron system, there are 2S5+ 1 possible orienta-
tions of S with respect to L, i.e. the multiplicity of the terms is 2S+1 (if S<L). As an
example, Fig. 17.3 shows the possible couplings in the case of S=1, L = 2.
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4 3=3 Fig. 17.3. Combination of spin (§) and orbital (L)

angular momenta to form the total (J) angular

momentum. If L =2 and §=1, J can assume the

J=2 L=2 values 3, 2, or 1. This is a schematic representation.
Figure 12.16 explains the method of exact addition
of the angular momenta in the vector model

J=1

Using the helium atom as an example, we shall show once more which atomic terms

can be derived from the given electron configurations. The lowest states of the helium
atom have the following term symbols and quantum numbers:

If both electrons are in the lowest shell, the electron configuration is 1s 1s, or in
the common notation 152 They then have the following quantum numbers:

n1=n2=1, 11:12:0, S1=1/2, 32:1/2.
The resulting quantum numbers for the atom are then either

L=0, S=0 for mg = —m,, J=0,

the singlet ground state 1S; or

L=0, S§=1 for mg=m,, J=1,

the triplet ground state 3Sl. Only the singlet ground state is actually observed. The
triplet ground state is forbidden by the Pauli Principle, because in it the two
electrons would not only have the same quantum numbers n and /, but they would
also have the same spin orientation m,.

However, when one electron remains in the shell with » = 1, while the other is raised
into the state with n = 2, that is in the electron configuration 1s2s, we have the
following quantum numbers:

n1=l, n2:2, 11=12:O, S1=1/2, 52:1/2.
This yields either L =0, S =0, J = 0, the singlet state 'Sg; or L=0, S=1, J=1,
the triplet state ’S;. Both states are allowed and are observed.

In the same way, the states and term symbols can be derived for all electron
configurations. More on this subject is to be found in Sect. 19.1.

We finally arrive at the term scheme with the allowed optical transitions by taking

into account the selection rules. Intercombination lines with A5 =1 are forbidden,
because there is no spin flipping with optical dipole radiation. This is the reason for the
existence of non-combining term systems like that in Fig. 17.1.

The complete nomenclature for terms or energy states of atoms, which we have

already used, is then

n2SHp,.
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One first writes the principal quantum number n of the most highly excited
electron, which is called the valence electron. The superscript is the multiplicity 25+ 1.
It is followed by the alphabetical symbol S, P, D... for the total orbital angular
momentum L; the subscript to this symbol is the quantum number J for the total

angular momentum of the atom.

For many-electron systems, this must be expanded over the possible multiplicities as

shown below:

For two electrons S=0 S=1
Singlet Triplet
For three electrons S=1/2 S=3/2
Doublet  Quartet
For four electrons §=0 S=1 S§=2
Singlet Triplet Quintet
For five electrons S=1/2 §=3/2 §=5/2 etc.
Doublet  Quartet  Sextet

According to the rules for coupling of angular momenta, which have been treated in
this section, the possible atomic states can now be easily derived from known electron
configurations. We shall only explain a simple example here. In the configuration

Doublet S =1/2 Quartet  5=3J2
2 [ns) (ns) (ns)
(2p)7Ind) (np) (nd) (np) (nd) (np) (np) (nd) (np) (nd) (np) (nd)
5 p p P g ig 4p p ip bp LF
0 — 0
= —— —5
A== 4 — 4 4
-9 L — 3
) { 20
— -4 | T
> €
2 140 m”
w
> b g-
o >
o 4160
c
-8 | i)
w E
=
-10 | 18 ¢
©
=
_12 -
- 100 l
-4 - 245y
~s3 (1) (2502 (2p)3 4120

Fig. 17.4. Term diagram for the nitrogen atom (only simple terms, no J
splitting). Nitrogen as a doublet and a quartet system. The electronic con-
figuration of the valence electrons is given at the top

Fig. 17.5. Term diagram for the carbon atom (only simple terms, no J split- P
ting). Carbon has a singlet and a triplet system. The configuration of the
valence electrons is given at the top

Singlet S=0 Triplet  s=1
o (ns) (ns)
(2s)(2p) (nd) (nd) (np) (nd)  (np) (np)  (nd) np)  (nd)
'F,'D,'D,'P, 'R 'S, | s, P P D D F
0
== = = —
L = 4

-1}

Energy E [eV]
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s
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nsn's, i.e. with two non-equivalent s electrons, the total orbital momentum is neces-
sarily L = 0, because /; = [, = 0. The spins of the two electrons can be either parallel or
antiparallel. This means that the total spin quantum number S =1 or § = 0. In either
case, the total angular momentum J=S. The possible terms of the configuration
nsn's are therefore the triplet term S, and the singlet term 'S,.

We shall discuss other examples in Chap. 19, when we know somewhat more about
the energetic order of these possible terms.

To make the above somewhat more clear, Figs. 17.4 and 17.5 show the Grotrian
diagrams for the nitrogen and carbon atoms. Here, only those terms are taken into
account which result from the excitation of a single electron, the so-called valence elec-
tron. Of the remaining electrons, only those need be considered which are in non-closed
subshells. The remaining electrons form the spherically symmetric core of the electron-
ic shell. The terms and term symbols resulting from L S coupling and from the quantum
states of the individual electrons can now be immediately understood, and can be
derived from the electron configuration, which is also given. We shall return to these
many-electron atoms in Chap. 19.

17.3.3 jj Coupling

The second limiting case for coupling of electron spin and orbital angular momenta is
the so-called j;j coupling, which occurs only in heavy atoms, because the spin-orbit
coupling for each individual electron increases rapidly with the nuclear charge Z.

In jj coupling, the spin-orbit interaction (/;- s;) for a single electron is large com-
pared to the interactions (/;- [;) and (s;- s;) between different electrons. This type of
coupling is shown schematically in Fig. 17.6b. For comparison, LS coupling is shown
in Fig. 17.6a.

Fig. 17.6. a) Schematic representation of LS
coupling between two electrons. b) jj coupling
between two electrons. In jj coupling, the
angular momenta L and § are not even defined

In jj coupling, the angular momenta of individual electrons couple according to the
pattern

Li+si—=j1,  L+s:—ja,

and so on to give individual total angular momenta j. These then combine vectorially to
give the total angular momentum J of the atom. Here J = X j; and

=TI+ 1)h.

In this type of coupling, the quantum number J arises from a generalised quantum
mechanical vector model. A resultant orbital angular momentum £ is not defined.
There are therefore no term symbols S, P, D, etc. One has to use the term notation
(/1, J2) etc., where j are the angular momentum quantum numbers of the individual
electrons. It can easily be shown that the number of possible states and the J values are
the same as in LS coupling.
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Fig. 17.7. Simplified energy diagram of the mercury atom as an example
of a heavy atom with term symbols corresponding to LS-coupling. The
wavelengths [A] of a few of the more important lines are given. The
strongest line in the spectrum of a mercury lamp is the line at 2537 A which
results from the intercombination of the 6'S, and the 6° P, states. Inter-
combination between terms of different multiplicity is strictly forbidden in
light atoms. In heavy atoms it is possible. This line corresponds to the

-2 .
energy loss of 4.9V in the Franck-Hertz experiment, Sect. 8.8
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Fig. 17.8. Photographically recorded spectrum of a low-pressure mercury
-10 lamp: segment between 2500 and 5800 A. Due to the superposition of the
1044 different series in the spectrum, which are shown in the energy diagram

Fig. 17.7, a series structure cannot be immediately recognised in the spec-
trum of a heavy, several-electron atom, as might be inferred from the

energy diagram

Purely jj coupling is only found in very heavy atoms. In most cases there are inter-
mediate forms of coupling, in such a way, for example, that the intercombination be-
tween terms of different multiplicity is not so strictly forbidden. This is called inter-
mediary coupling. The most prominent example of this is the strongest line in the spec-
trum of mercury high-pressure lamps, A = 253.7 nm (compare the energy diagram in
Fig. 17.7 and the photograph of the spectrum of a low-pressure mercury lamp in
Fig. 17.8). In the frequently used high-pressure mercury lamps, the intensity distribu-
tion of the spectrum is different from that of a low-pressure lamp. The 253.7 nm line is
relatively most strongly emitted, in addition broadened, and reabsorbed. This is an
intercombination line between the singlet and triplet systems. The selection rule for
optical transitions is AJ =0, =1, and a transition from J = 0 to J = 0 is forbidden. An
example for the transition from LS to jj coupling is shown in Fig. 17.9.

LS il

atoms to j/ coupling in heavy atoms in the series

C-Si—Ge—Sn—Pb. In carbon the ‘PP,

and *P, - *P, distance are 20 and 40 cm ~ ', while

the 'P, - 3P, distance is 1589 cm~'. The term

(112 1/2), nomenclature is that of LS coupling for carbon,

(112, ”'2}0 :ml‘j (}ffjjhcoupling for lead. 'll"he quantum sym-

; ols of the two outermost electrons are given.

C Si Ge Sn Pb The symbol (3/2, 1/2), means j, = 3/2, j, = 1/2,
2p3s 3pis 4Lpb5s 5pbs 6pTs J=1

(3/2,1/2),
/_/ (3[2'1[2)2 Fig. 17.9. Transition from LS coupling in light




306 17. Many-Electron Atoms

17.4 Magnetic Moments of Many-Electron Atoms

Having calculated the total angular momentum of many-electron atoms, we shall now
also calculate the total magnetic moment. The treatment exactly follows that of the
one-electron system in Chap. 13. In the case of LS coupling, the magnetic moment is
composed of

HrtHus=HJ.

Here u, is antiparallel to L and ug is antiparallel to §, but because of the different g
factors of orbital and spin magnetism, & ;and J are not antiparallel to each other. Their
directions do not coincide; instead the total moment g precesses around the direction
of J. As was mentioned in Chap. 13 and illustrated in Fig. 13.9, the observable
magnetic moment is only that component of u; which is parallel to J. For this
component (), as was shown in Sect. 13.5,

)| = SJUADESEHD ZLERY ) VT 1) (17.6)
21/ J(J+1)
with the Landé factor
=1+ JU+D+SE+) - LL+1) a7

2J(J+1)

In one chosen direction z, the only possible orientations are quantised and they are
described by whole or half-integral values of the quantum number m;, depending on
the magnitude of J.

(uy)g .= —m;ygug (17.8)
with
m]:J,J—l,...—J.

The contents of this chapter are the quintessence of years of spectroscopic work:
measurement of spectra, setting up of term schemes, determination of quantum num-
bers, and so on. Measurements in magnetic fields have also been an essential tool. If
one applies the insights discussed in Chap. 13 to many-electron atoms, one can deter-
mine the magnetic quantum numbers of the atomic states from measurements of the
splitting of spectral lines. The same considerations which were discussed in Chap. 13 on
the behaviour of atoms in magnetic fields apply to many-electron atoms. Here too, the
normal and anomalous Zeeman effects and the Paschen-Back effect are important
limiting cases. The LS coupling can be broken in sufficiently strong magnetic fields,
and in very strong fields, even the jj coupling breaks down.

The atomic magnetic moments can also be measured by determining the macro-
scopic material constant magnetic permeability, u,, according to the equation
B = u.uyH (H is the magnetic field strength). Details are given in H. Haken and H. C.
Wolf, Molecular Physics and Elements of Quantum Chemistry, Sect. 3.6.
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17.5 Multiple Excitations

Let it be only briefly mentioned here that observed spectra can be made much more
complicated by multiple excitation processes, such as those in which several electrons
are involved and change their states in the atom. This is especially likely in systems
where there is strong mutual interaction between the electrons. In ionisation processes,
for example, it is possible that a second electron is simultaneously excited. Excitation
energies higher than the ionisation limit can be obtained if a light quantum simul-
taneously removes one electron (ionisation) and raises a second one to a discrete excita-
tion level. This makes the analysis of heavy-atom spectra much more difficult.

Problems

17.1 The energy levels of helium-like atoms with one electron in the ground state
(n = 1) and the other in an excited state (n >1) can be expressed as

_ Rhe(z-1)?

nZ

E= —RhcZ?

This expression is based on the assumption that the ground state electron completely
shields one unit of nuclear charge. Discuss the plausibility of the expression. Calculate
the energy levels for helium with n =2, 3 and 4 and compare them with the experi-
mental results. Why does the accuracy of the above expression for E increase as n
increases?

17.2 Show that the sum ¥ (2J+ 1) over all possible values of J for a given pair of
quantum numbers L and S is equal to the product (2L +1)(2S +1). What is the physi-
cal meaning of this product?

17.3 Discuss a two-electron system with a 2p and a 3d electron for the case of jj
coupling and show that the number of possible states and their total angular momen-
tum J are the same as in LS coupling.

17.4 a) Ignoring spin-orbit coupling, determine the number of possible terms of an
excited carbon atom with the electronic configuration 1s*2s5%2p 3d.

b) Calculate the effective magnetic moment of an atom in the ground state with the
configuration 15*2s5*2p%3s?4s5%3d 3, assuming that L has the largest possible value
consistent with Hund’s rule (Sect. 19.2) and the Pauli principle.

¢) Calculate the ground state of the atoms with the electronic configurations 4d 5s
(Y) or 4d 2552 (Zr). [The closed shells are not given. L is determined as under b).]

d) The manganese atom (Z = 25) has in its ground state a subshell which is exactly
half-filled with 5 electrons. Give the electronic configuration and the ground state of
the atom.
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308 17. Many-Electron Atoms

17.5 a) Calculate the maximum components of the magnetic moments in the direction
of the magnetic field for vanadium (‘F), manganese (6S) and iron (°D), if beams of
these atoms are split into 4, 6 or 9 parts in a Stern-Gerlach experiment.

b) What is the term symbol of the singlet state with a total splitting of v=1.4 cm
in a magnetic field Bg= 0.5 tesla?

1



18. X-Ray Spectra, Internal Shells

18.1 Introductory Remarks

Up to this point, the discussion has been concerned with the energy states and spectra
of the most weakly bound electrons. In the lighter atoms, these are usually the outer-
most or valence electrons. If we now turn to x-ray spectra, we shall be concerned with
the energy states of electrons in inner shells. We shall see, however, that x-ray spectra
can for the most part be treated as one-electron spectra, although they belong to many-
electron atoms.

Historically, it was the x-ray spectra which led to the theory of the shell structure of
the atom (Kossel 1914). At present, however, we shall assume that the shell structure is
familiar as we turn to the x-ray spectra.

X-rays

Heater ‘
Cathode Anode Fig. 18.1. An x-ray tube, schematically

X-rays are usually generated by irradiating an anode, which is often called the anti-
cathode, with fast electrons (Fig. 18.1). We point out here that x-rays may also be pro-
duced by electron impact or collisional excitation of free atoms, and thus independent-
ly of solid-state influences. The x-rays are detected by photographic plates, film, count-
ing tubes, or more recently, by semiconductor detectors. The latter are made as silicon
or germanium diodes. Absorption of x-rays in the “space-charge” zone releases charge
carriers. These can be measured as in an ionisation chamber. Pulse-height analysis per-
mits the apparatus to be used both to measure the energy of the x-ray quanta and as
a simple spectrometer. For higher resolution spectroscopy and wavelength measure-
ments, one still uses the crystal spectrometer described in Sect. 2.4.5. One can also ob-
tain a rough estimate of the wavelength of x-rays by measuring their “hardness” —
their ability to penetrate solids.

18.2 X-Radiation from Outer Shells

By “x-rays”, we usually mean electromagnetic radiation (light) which has a wavelength
shorter than that of ultraviolet light — though there is no sharp boundary. The range is
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usually considered to be 0.1 to 10 A, which corresponds to quantum energies of 1 — 100
keV. The x-ray region is attained according to the series formula (Sect. 8.2)

v=RZ*(1/n*—1/n'?)

for hydrogen-like atoms, i.e. atoms with only one electron, if the nuclear charge is large
enough. For Z = 20, the quantum energies are already 400 times as large as the energies
of corresponding transitions in the hydrogen atom with Z =1. It is generally not
possible to generate such “Balmer series” for highly ionised atoms in the laboratory,
but these spectra can be observed in stellar atmospheres. Recently, such experiments
have also become feasible through the use of particle accelerators; cf. Sect. 8.6. The
Balmer series of U%'* was observed in the spectral range from 15 to 35 keV, and the

Lyman series near 100 keV.

18.3 X-Ray Bremsstrahlung Spectra

If an anticathode is bombarded with electrons which have passed through an accelerat-
ing voltage V,, x-rays are generated. Spectral analysis of these reveals that

— there is always a continuum, the x-ray bremsstrahiung (Fig. 18.2),
— and under certain conditions, there is in addition a line spectrum, the characteristic

spectrum (Fig. 18.3).

If the intensity is plotted against the frequency, see Fig. 18.4, rather than the
wavelength (as in Fig. 18.2), and if care is taken to ensure that the intensity distribution
of the x-ray spectrum is not modified by reabsorption in the anticathode (cf.
Sect. 18.6), the bremsstrahlung spectrum for an accelerating voltage V is described,
to a good approximation (outside the low-energy range) by

I(v) = const - Z(vpux— V),
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Fig. 18.2. X-ray bremsstrahlung. Spectral energy distribution of the
x-rays emitted from a massive tungsten anticathode at various
accelerating voltages for the bombarding electrons. The intensity is
given in arbitrary units
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Fig. 18.3. Line spectrum of a Rh anticathode doped with Ru
impurity. The lines are superimposed on the bremsstrahlung
spectrum. The intensity is plotted against the grazing angle of the
crystal spectrometer instead of the wavelength
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8 <« Fig. 18.4. The intensity / in the x-ray bremsstrahlung spec-
T trum as a function of the frequency for different primary
7+ energies of the electrons used for excitation. The measure-
ment was carried out with a thick anticathode (after
6l Kulenkampf)
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2 10 12 Fig. 18.5. Origin of x-ray bremsstrahlung. An electron with

energy £, is deflected in the field of a nucleus and slowed
v[10'1851] —» down. In the process a quantum of light is emitted

where [ is the intensity of the radiation (energy per time and frequency interval and
solid angle) and Z is the atomic number of the anticathode material. The limiting fre-
qUENCY V. 1S given by

hvpax =€+ Vy. (18.2)

This means that the high-energy or short-wavelength limit of the x-ray spectrum
Vmax 18 given by the energy equivalent e ;. The bremsstrahlung spectrum is a result of
the fact that when electrons pass close to the atomic nuclei, they are deflected and
slowed down (Fig. 18.5). A positive or negative accelerated charge will, according to
classical electrodynamics, emit electromagnetic radiation. This is “white” or con-
tinuous x-ray bremsstrahlung. In terms of quantum theory, this can be understood as
follows: for each braking incident, a quantum of light hv = E,— E is emitted. How-
ever, since the beginning and end states are not quantised — the electrons are free, not
bound — a “white” spectrum arises when there are many individual events.

The reaction equation is

Atom + e (fast) - Atom + e (slow) + hv.

In the limiting case, the entire energy of the electron is emitted in a single quantum in
the course of a single braking event. This x-ray quantum then has the energy
hvp, = eVy. The measurement of this short-wave limit is one method of determining
Planck’s constant & with great precision. However, one must be careful about such
precision measurements, because the work of escaping the solid, and the band structure
of the solid, lead to uncertainties or corrections of a few electron volts in the energies
at the short-wavelength limit of the bremsstrahlung spectrum. The bremsstrahlung
spectrum thus gives very little information about atomic structure.

The spatial distribution of the radiation can also be explained in terms of the
classical view of bremsstrahlung. With a thin anticathode, in which multiple events are
less probable, and with energies e 4, which are not too high, the distribution is the same
as with the classical Hertzian dipole. The maximum is perpendicular to the direction
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Braking direction
of the electron Fig. 18.6. Spatial distribution of the bremsstrahlung

from which the electrons are coming, and thus to the direction in which braking is oc-
curring. The minimum of radiation intensity is in the direction of electron travel
(Fig. 18.6). At higher accelerating voltages V, a relativistic calculation is required and
the radiation pattern folds “ahead”, i.e. in the beam direction.

18.4 Emission Line Spectra: Characteristic Radiation

Characteristic radiation consists of a relatively small number of lines. Figure 18.3 gives
an example of this. The lines are again grouped into series, which converge to a short-
wavelength limit, which is called an “edge”. With a rhodium anticathode, for example,
one can observe the following lines and series by increasing the accelerating voltage on
the electrons in steps:

For accelerating voltages ¥, > 0.5 kV, the lines of the M series,
For accelerating voltages ¥, > 3.0 kV, the L series also,
For accelerating voltages ¥, > 23 kV, the K series as well.

The lines of the K series are doublets.

In general it holds for characteristic spectra that while optical spectra contain a
large number of lines which depend on the nuclear charge Z in a rather complicated
way, and which are strongly influenced by chemical bonding, X-ray spectra include a
limited number of lines which can be grouped into a few series. There is also a clear
relationship to the nuclear charge (Fig. 18.7). Corresponding lines and edges are found
at increasing quantum energies as the nuclear charge increases. The series are
designated by the letters K, L, M, N, ... and the lines within the series by Greek lower
case letters beginning with e. The fine structure splitting of the lines is indicated by
numbers written as subscripts.

To a good approximation, the first line of the K series, the line K, can be described
for atoms with different nuclear charge numbers Z by the expression

vk, = R(Z-1’=R(Z-1)*(1/1*~1/2%). (18.3)
The first lines of the L series (L) are described by
V., = %R(Z-1.4°=R(Z-7.4%(1/2*~1/3%). (18.4)

A linear relationship between }/v and the nuclear charge number Z for analogous
x-ray lines or edges (see Sect. 18.6) in the spectra of different elements was discovered
in 1913 by Moseley (Moseley lines; see Fig. 18.8). Comparison with the Balmer for-
mula for hydrogen suggests that for the K line the nuclear charge is screened by one
unit of charge, while for the L line, it is screened by almost eight units.
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Chemical bonding of an atom has only a slight influence on its x-ray spectrum.
However, exact measurement of this effect does provide important information about
the behaviour of electrons in chemical bonds. This is of importance in molecular and
solid-state physics.

The emission of x-rays can be elicited not only by bombarding an anticathode with
electrons, but also by irradiation of atoms, molecules or solids with x-rays. This is
called x-ray fluorescence.

The wavelength of the x-radiation is greater than, or at least equal to, that of the
exciting light, but other than that, it is independent of the wavelength of the exciting
radiation within certain limits. The lines of a series appear in a fluorescence spectrum,
and then all of them at once, only when the quantum energy of the exciting radiation is
at least as great as the quantum energy of the highest-energy, or shortest-wavelength
line in the characteristic spectrum. It is the same with excitation of x-radiation by
electron bombardment: the kinetic energy of the elctrons e ¥, must be at least as great
as the quantum energy of the shortest-wavelength line of the series before this series
appears in the emission spectrum. Thus emission of the K, line cannot be excited by the
quantum energy of K; instead it is necessary to supply the energy of the K edge. This is
the energy to which the lines of the K series converge, the series limit. From this and
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other observations, it was concluded that x-ray lines correspond to states of “inner”
electrons which are bound in filled shells, in contrast to the more loosely bound outer
electrons, which give rise to the optical spectra.

In 1916, Kossel interpreted the generation of the x-ray line spectra as follows: first
the exciting electron must remove an atomic electron from an inner shell. The resulting
hole is filled by outer electrons, and their binding energy is released in the form of char-
acteristic light quanta. All transitions which end on the same inner shell occur together,
and form a series (Fig. 18.9).
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series in x-ray spectra. Left: An electron hole is formed Lq LB LY
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The quantitative observations described by (18.3) and (18.4) thus become
understandable: the atomic number Z is screened by one elementary charge in the K
shell and by 7.4 ¢, in the L shell for the electron making the transition.

The transitions involving inner shells are much more energetic than those in the
outermost shell, because the nuclear charge is shielded only by those electrons in still
lower shells. This results in screening to a charge (Z—1) for the K, lines, and to
(Z—17.4) for the L, lines. The field strength in the interior of a sphere with a uniformly
charged surface is zero, so the external electrons make no contribution to the field ex-
perienced by the inner ones.

18.5 Fine Structure of the X-Ray Spectra

The x-ray transitions indicated by Greek letters, K, K p» Lgs Lg, etc. thus start from
terms with different principal quantum numbers n. To understand the “fine structure”
of x-ray spectra, that is the occurrence of several components in a given transition, one
must also take into account the orbital angular momentum and spin of the electrons.
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For electrons in inner shells, orbital degeneracy (/ degeneracy) is naturally lifted.
The reason for this, the different degrees of screening for electrons with different
orbital angular momenta and the associated differences in the Coulomb potential, has
already been discussed in the case of the spectra of alkali atoms (Sect. 11.2). Further-
more, we must also take into account the actual fine structure due to spin-orbit
coupling. The energy of this coupling increases rapidly with nuclear charge, as Z*
(Sect. 12.8). In heavy atoms such as uranium the spin-orbit splitting amounts to as
much as 2 keV! One can understand the structure of x-ray spectra if one realises that a
missing electron, or a hole, in an otherwise full shell is equivalent to a single electron in
an otherwise empty shell or also to an added positron. The angular momentum of the
remainder of the atom clearly has the same magnitude, but the opposite sign, compared
to the angular momentum of the electron which was removed. Naturally this
equivalence goes only as far as the sign: to remove an electron from the atom we must
apply energy. If we consider the binding energy of the electron to be negative, then we
must consider the energy required to generate a hole to be positive.

X-ray spectra can thus be understood, similarly to the spectra of alkali atoms, as
one-electron (or one-hole) spectra. The terms may be characterised, as in the alkalis,
by the quantum numbers of one electron; we thus arrive at a term diagram of the type

shown in Fig. 18.10.

In the K shell, n =1, / can have only the value 0, j is equal to 1/2, and the state

is denoted by the symbol %S, /2-

For optical transition, the selection rules are A/ = + 1 and 4j = 0, + 1. The longest-
wavelength lines of the K series, K, and K,,, are thus produced in a manner analo-
gous to the two sodium D lines; see Sect. 12.9. They connect the state n = 1, %S, ,, with
the states n = 2 2P, ,, and 2P;,,, which are split by the spin-orbit interaction.
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Fig.18.10. Fine structure diagram for the x-ray spectra of a
platinum anode with Z = 78. The notations for the series,
the lines, and the quantum numbers are shown. Arrows
pointing upwards mean absorption, those pointing down-
wards mean emission. The use of Greek letters to denote the
individual lines is not systematic and is not uniform in the
literature. — The spacings between the L subshells L,, L,
Ly and the M subshells M;— My, are not shown to scale.
For a given /-value, they result from the normal doublet
splitting; otherwise, they are produced by differing screen-
ing of the nuclear charge and are therefore not all equal.
The Greek-letter symbols for x-ray lines are of historical
origin and are not identical to the systematic notation used
in Fig. 18.9
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Correspondingly, we can understand all of the fine structure of x-ray spectra. The
shells which are characterised by the quantum numbers # are also split up into sub-
shells. The latter are numbered using Roman numerals (e.g. Ly, Ly, Ly in Fig. 18.10).
A subshell is characterised by a triplet of quantum numbers », /, and j. The energy
splitting between the edges L;, Ly, and Ly has, as indicated in Fig. 18.10, a variety
of origins. The spacing between Ly and Ly, i.e. between 2P, ,, and %P, ,, is the well-
known doublet splitting, which increases with the fourth power of the screened nuclear
charge Z (cf. Sects. 12.8 and 18.4). The spacing between L; and Ly, on the other
hand, results from variations in screening. The latter is produced only by the inner elec-
trons and is less dependent on Z. This is clarified in the Mosely diagram (Figs. 18.7
and 8).

If the atoms are not free, but instead are bound in a solid, then the upper occupied
electronic energy levels are broadened into energy bands. X-ray lines resulting from
transitions between the broad uppermost occupied energy band and an inner electronic
level, which is not broadened by solid state effects, have a characteristic structure.
Their width and intensity distribution can give a direct picture of the width of the up-
permost energy band and its occupation by the electrons.

18.6 Absorption Spectra

X-rays, like any other electromagnetic radiation, are absorbed and scattered on passing
through matter. The primary experimentally determined quantity is the extinction coef-
ficient u, defined by the equation I = Iyexp(—ux), where x is the thickness of the
material irradiated, I, is the incident intensity, and [ is the transmitted intensity. The
result of a measurement is often given as the half-absorption thickness, d = u 'n2.
The half-absorption thickness depends, in general, on the material irradiated and on
the energy of the x-ray quanta. Table 18.1 gives some numerical data.

Table 18.1. Half-absorption thickness [cm] for x-rays in aluminium and lead

¥y [kV] Al Pb
10 1.1-1072 7.5-1074
100 1.6 1.1-1072

The extinction is the sum of scattering — which does not interest us here — and
absorption. The dependence of the absorption coefficient on quantum energy, i.e. the
spectral distribution in absorption spectra, is represented schematically in Fig. 18.11,
where the emission spectra at various excitation energies are also shown for com-
parison.

X-ray absorption spectra typically display a large decrease in the absorption coef-
ficient with increasing quantum energy, and absorption “edges”, which are quantum
energies at which the absorption coefficient jumps to a higher value. These “edges”
correspond to the series limits for the K, L, M, ... series, and they are correspondingly
labelled. The subshells also appear as edges, for example Ly, Ly, and Lyyin Fig. 18.11.

The position of the K edge for lead at 88 keV (Fig. 18.12) means that the work of
removing an electron from the K shell, where it experiences the field of the nearly
unshielded nuclear charge of the lead nucleus, is 88 keV. The screening for lead
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Fig. 18.11a—e. Comparison of x-ray absorption
and emission spectra. a) Absorption coefficient, e.g.
of platinum for x-rays, as a function of frequency,
schematically. The spectrum consists primarily of
superimposed absorption edges and series-limit con-
tinua. b—e) Emission spectrum of platinum at
various excitation energies. All the line series are ex-
cited in b, in ¢ the K series is lacking, in d the K and
L, series are absent, and in e the K, L; and L series
are missing. The spectral intensity distribution of the
continuous (bremsstrahlung) spectrum is modified
here, relative to the shape given by (18.1), as a result
of frequency-dependent absorption. For platinum,
the frequency value of the K edge is ca. 19108~ !
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(Z =82) can be calculated. For the innermost electron, the work of separation is
ZZ¢-13.6, where Z. = Z —s is the effective nuclear charge and 13.6 eV is the ionisa-
tion energy for the hydrogen atom (Sect. 8.4). From (82—s5)>-13.6 ¢V = 88 keV,
s=1.61.

In order for an atom to absorb x-radiation, an electron must be excited from an
inner shell into a less strongly bound state. Since the neighbouring shells are already
occupied, discrete absorption lines due to transitions from one shell into another are
scarcely observable. There is, however, a continuum of free states on the other side of
the series limit into which the absorbing electron can be lifted. Therefore, absorption is
usually associated with ionisation, and the absorption spectra are the superimposed
series-limit continua of the various shells and subshells. This is shown in Fig. 18.11.

Going from lower to higher frequencies, absorption edges, or jumps in the absorption
coefficient, are located at those points where the energy of the x-ray quantum is just suf-
ficient to allow an absorptive transition from a new (lower) shell into the limiting con-
tinuum.

At lower frequencies, the quantum energy /v is only sufficient to release electrons
from outer shells. As Ay increases, an energy is reached which is sufficient to release even

and that of the L, edge is ca. 3-10 '¥5~!
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Fig. 18.12. Absorption cross section of lead for x-rays in the region
of the L and K edges. The absorption coefficient is expressed in
terms of the absorption cross section of an atom

Absorption cross section [cm?]
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K electrons, and at this point the absorption coefficient increases abruptly. The fine
structure of the absorption edges is further evidence for the existence of shells and
subshells: there is one K edge, but 3 L edges, 5M edges, and so on.

In addition, if the spectral resolution is good enough, it is possible to detect effects of
chemical bonding on the energies and fine structures of the absorption edges.

Aside from the edges, the frequency dependence of the absorption coefficient is
essentially expressed by

Maps = ZY/(hv)  with 3 <sx=<4 (18.5)

OF lgps = A2 Z7,

The v *-dependence of the absorption coefficient can be derived using the
Hertzian model of a free electron as a forced oscillator. The hardness or penetrating
ability of the x-rays thus increases as the wavelength decreases, or as the accelerating
voltage increases. Figure 18.12 shows the frequency dependence of the atomic absorp-
tion cross section (see Sect. 2.4.2) of lead in the region of the K and L edges.

18.7 The Auger Effect

Not all atoms from which electrons have been removed from inner shells by electron
bombardment or other forms of energy transfer return to the ground state by emitting
x-rays. Instead, the observed quantum yield for x-ray emission is frequently less than 1.
It is defined here as

Number of x-ray emitting atoms

o Number of K, L ... ionised atoms

Thus it must be possible for the atoms to return to the ground state without emitting
radiation. The probability of such non-radiative processes, which compete with x-ray
emission, has been found to decrease with increasing nuclear charge. In light atoms, the
non-radiative processes far outweigh emittive processes (Fig. 18.13).

The non-radiative return to ground state is accomplished by the Auger effect. After
an electron has been removed from an inner shell, the excess energy can be released
either in the form of an x-ray quantum or through the emission of an electron from a
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X-ray emission

Fig. 18.13. The quantum yield for the emission of x-rays as a Fig. 18.14. Auger electron emission
function of the Z number (schematically) (right) competes with x-ray emission
(left)

shell farther out. The Auger effect is thus similar to an “inner photoeffect”. If one elec-
tron falls into a lower shell and another is simultaneously emitted, the Coulomb inter-
action between the two must be responsible for the process.

The Auger effeet is represented schematically in Fig. 18.14. First the K shell is
ionised. An L electron falls from the L to the K shell, and fills the hole there. The
energy released by this is used to remove a second L electron from the L shell, and this
one escapes from the atom. The result is that the L shell loses two electrons. These are
then replaced by electrons from shells farther out, namely the M shell and so on.

The kinetic energy of the Auger electron is given by

Ekin:thﬂ,_EL:EK_ELfEL=EK72EL’ y (18.6)

where E,; and Eg are the binding energy of the electrons in the L and K shells,
respectively.

Auger electrons can also be observed directly in a cloud chamber. Their energy can
be determined from the length of their tracks in the cloud chamber, or by means of a
braking field method, and thus can be used to verify the explanation of the Auger
effect.

Finally, a numerical example: Silver is bombarded with K, radiation from a
tungsten anticathode (energy = 59.1 keV). Electrons with the following energies are
observed:

1) 55.8 keV  Interpretation: Photoelectrons from the Ag L shell
Because: the ionisation energy of the Ag L shell is
Ei(mL = 3.34 keV
Therefore: 59.1 —3.34 = 55.76 keV.

2) 33.8 keV  Interpretation: Photoelectrons from the Ag K shell
Because: Ej,x=25.4 keV
Therefore: 59.1 —25.4 = 33.7 keV.

3) 21.3 keV  Interpretation: Auger electrons
Because: EKH(Ag) — Eionp =24.9-3.34
= 21.56 keV.
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4) 18.6 keV  Interpretation: Auger electrons
Because: Ex (Ag) — Ejony = 22.1-3.34
= 18.76 keV,

18.8 Photoelectron Spectroscopy (XPS), ESCA

A relatively new method for investigating the energy states of the inner electrons of an
atom is photoelectron spectroscopy. This technique is a modern application of the
photoelectric effect (Sect. 5.3).

Electrons are ejected from the shells of an atom by exciting them with light of a
known quantum energy. The kinetic energies of the photoelectrons correspond to the
difference between the quantum energy of the photons and the binding energies of the
electrons in the atom, following the energy-balance equation of the photoelectric ef-
fect, Ey;, = hv — Ey;,4. The principle is illustrated in Fig. 18.15. Figure 18.16 shows as
an example the binding energies in some light atoms. An example of a measurement
for the Hg atom is given in Fig. 18.17. With this method, the binding energies of inner-
shell electrons can be determined directly, in contrast to x-ray absorption spectroscopy,
which gives only the energy of the absorption edge.

The measurement of the kinetic energy of the photoelectrons is performed with
high-resolution analysers, which allow a precise determination of the velocities of the
electrons using the principle of the determination of e/m (deflection in electric and
magnetic fields) described in Sect. 6.4. (Simultaneous measurement over a wide range
of electron kinetic energies is also possible using time-of-flight analysers, with some-
what poorer energy resolution.) The best energy resolutions currently available allow
determination of the electron energies to about 20 meV.

The light source provides either UV light of short wavelengths, e.g. the resonance
lines from the Ne and the He spectra in the region between 15 and 50 eV, or else, for the

Valence N
bond H Li F
Inner cores B B 0 ] ] i5'4 T i
hv o 13.6 — 2s(Ly) 74
| i
N b o ——i5(K) !
Nucleus *, A A ’/\ =~ 201 2p(L,, Ly)
2 37.9
o 58.0
2 Y
- - @ 401
Binding energy | Kinetic energy e 2s(Ly)
- c
Eg = hv—Eyis of photoelectrons, Eyip, S
c
@ o — 1s(K)
=l 590 4 694
Fig. 18.15. Illustration of photoelectron spectroscopy. The kinetic energy 1560
of the photoelectrons is the difference between the quantum energy Av of 200+ s

the excitation photons and the binding energy of the electrons in an atom

or a solid. The dashed lines represent the orbitals of the electrons. One Fig. 18.16. Binding energy of the electrons in the H, Li, and F
should note, however, that here the binding energies, and not the dis-  atoms; the atomic K, L, L,, and L, shells are indicated. The
tance from the nucleus, are indicated zero point for the binding energy is the ionisation limit
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3830c[5080¢ Fig. 18.17. The photoelectron spectrum
Ny | N of Hg vapour, after K. Siegbahn (over-
view of the spectrum). All the levels
3 NNy which can be excited with the K, radia-
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Fig. 18.18. The spectral distributions of different excitation light sources for photoelectron spectroscopy and
of synchrotron radiation from different primary electron energies. The ordinate scales are in arbitrary units
and are each different. After Bethge and Gruber

investigation of states with higher binding energies, the characteristic x-ray lines, e.g.
the K, lines from Cu (8048 ¢V), from Al (1487 eV), or from Mg (1254 e¢V). Synchrotron
radiation, which has a continuously variable photon energy in the whole UV and x-ray
region (cf. Sect. 5.1), is a particularly suitable light source. An overview is given in
Fig. 18.18.

The binding energies of the electrons are characteristic of the particular atoms being
investigated, so that the method can also be used for chemical analysis of a sample.
Furthermore, the chemical bonding between atoms in molecules or in solids leads to a
redistribution of the valence electrons. This, in turn, changes the entire bonding poten-
tial in the atoms, whereby even the inner electrons are affected. The resulting small
shifts in the inner-shell binding energies due to changes in the state of the outer (val-
ence) electrons are termed chemical shifts and can be measured, e.g. between atoms in
different ionisation states. The corresponding analytical method, called ESCA
(Electron Spectroscopy for Chemical Analysis), was developed in particular by K. Sieg-
bahn and coworkers. It has become an important experimental technique in chemistry
and in molecular and solid state physics.
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Problems

18.1 What is the shortest possible wavelength for bremsstrahlung observed when an
electron which has been accelerated through a potential difference of 40 kV is stopped
by the anticathode of an x-ray tube? In what region of the electromagnetic spectrum
does this wavelength lie?

18.2 The K, line of cobalt is at 1.785 A. What is the energy difference between the 1s
and 2p orbitals in cobalt? Compare this result with the energy difference between the
1s and 2p orbitals in hydrogen (that is, the first Lyman line). Why is the difference
much greater for cobalt than for hydrogen?

18.3 The most intense line in the x-ray spectrum arises from the transition in which an
electron goes from the shell with n = 2 to the shell with #» = 1. The transition is de-
scribed by Moseleys rule (cf. Sect. 18.4). What is the wavelength of this line for copper?

18.4 The maximum energy of the characteristic x-rays emitted by a sample of un-
known composition corresponds to the wavelength 2.16 A. Of what element does the
sample consist?

18.5 X-rays are allowed to pass through aluminium foils, each 4 x 10 > m thick.
A Geiger counter registers 8 x 10°, 4.7 x 10°, 2.8 x 10°, 1.65 x 10° and 9.7 x 10>
events/min when the rays have passed through 0, 1, 2, 3 and 4 foils, respectively.
Calculate the linear absorption coefficient of aluminium.

18.6 Gamma rays with energies of 0.05, 0.3 and 1 MeV, but the same intensities, fall
onto a lead absorber. The linear absorption coefficients for these energies are 8 x 10°,
5x10%and 78 m ",

a) Calculate the thickness of lead required to reduce the intensity of each beam of
gamma rays to one tenth of its original value.

b) What is the relation of the total intensity (at each photon energy) at a depth of 5 mm
to the total incident intensity?

18.7 How many times the half-absorption thickness of a material is required to
reduce the intensity of an x-ray beam to (a) 1/16, (b) 1/20, or (c) 1/200 of the incident
intensity?

18.8 a) The K absorption edge of tungsten is at 0.178 A, and the wavelengths of the
lines of the K series are (ignoring the fine structure) K, = 0.210 A, Kp=10.184 A, and
K,=0.179 A. Sketch the energy levels of W and give the energies of the K, L, M and N
shells

b) What is the minimum energy required to excite the L series in tungsten? What is
the wavelength of the L line?

18.9 The L, absorption edge in tungsten is at 1.02 A. Assume that a K, photon is
“absorbed” by one of the 2s electrons by an Auger process. Determine the velocity of
the photoelectron released.



19. Structure of the Periodic System.

Ground States of the Elements

19.1 Periodic System and Shell Structure

It is one of the goals of atomic physics to understand the ordering and the properties of
the chemical elements in the periodic system. The empirically determined physical and
chemical properties of the atoms and their dependence on the atomic number Z ought
to be explainable starting from the electronic structures of the atoms. After having, in
the previous chapters, discussed one-electron spectra, many-electron spectra, and the
spectra of the inner shells in detail, we are now in a position to understand, at least in
principle, the spectra of any atom in any state of excitation. We will outline and extend
this understanding in the present chapter.
In particular, in the discussions of alkali atoms and x-ray spectra, we have met with
some important experimental facts which led to the concept of the shell structure of
atoms. It is known that the noble gases are chemically particularly stable. Furthermore,
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Fig. 19.1. Electronic shells of the ions of
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if the electrochemical valency of an ion is compared to the distance of the correspond-
ing neutral element from the nearest noble gas in the periodic table, it is found that the
atoms have been ionised to such an extent that the ions have assumed the electron
number of a neutral noble gas. The observed ionisation levels of the atoms are shown in
a way that makes this clear in Fig. 19.1. Thus when an ion is formed, those electrons
which are in excess of the electron number of a noble gas are most easily lost, or the
electrons which are lacking from the electron number of the next heavier noble gas are
most easily acquired. Consider, for example, the elements around the noble gas neon
(Z = 10). The next element in the periodic table is sodium (Z = 11), which preferentially
forms singly charged positive ions. The next element, magnesium (Z = 12), forms
doubly charged positive ions. The next lighter element than neon, fluorine (Z =9),
forms singly charged negative ions (by acquisition of an electron) and so on.

It can be seen from Fig. 19.1 that nickel and palladium also have preferred electron
numbers, because the atoms of neighbouring elements tend to assume these numbers
when they become ionised. The stable electron configurations are thus not limited to
the noble gases. This is made clear in the discussion of Table 19.3.

We know from the spectroscopic studies of atoms discussed in earlier chapters that
the unusually stable electron configurations are characterised by complete mutual com-
pensation of all angular momenta and magnetic moments. Furthermore, the shell and
subshell structure of the electron distribution of atoms appears especially clearly in x-
ray spectra as a system of absorption edges.

We now turn to the question of which electronic configurations are possible in
atoms, which are particularly stable, and how the electrons of an atom are distributed
among the possible quantum states.

To understand this, one first needs the quantum numbers with which each atomic
electron can be characterised:

the principal quantum number n,

the orbital angular momentum quantum number /=0,1...n—-1,
the magnetic quantum number m;=0, +1... +/,

the magnetic spin quantum number m, = +1/2.

One also needs the Pauli principle. In non-mathematical terms, this says that only
those atomic states can exist in nature in which any two electrons differ, in at least one
of their quantum numbers. This results in limitations in the possible combinations of
quantum numbers in an atomic state.

Strictly speaking, in order to define the quantum numbers of an electron in the
atom, one would have to solve the Schrédinger equation for a many-particle problem,
namely for all the electrons in the atom. The problem is solved approximately using the
Hartree-Fock technique, which is based on the model of independent particles (Sect.
19.4). The basic idea is that instead of trying to calculate the interactions of N—1 elec-
trons with the Nth electron, one replaces the Coulomb attraction of the nucleus for the
Nth electron by an effective potential. One then calculates the eigenstates and eigen-
values of the Nth electron in this potential field. These one-particle functions are often
referred to in the literature as orbitals.

Figure 19.2 shows, as the result of such calculations, the shell structure of the
hydrogen atom and the positive ions of lithium, sodium and potassium. As the figure
shows, the shells overlap, and thus have no unique geometric significance. As the
nuclear charge increases, they are drawn closer to the nucleus. Another example of a
calculated electron density distribution was discussed in Fig. 11.8.
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Fig. 19.2. Radial density distribution of electrons in the
hydrogen atom, and the singly charged positive ions of
lithium, sodium and potassium. It is especially noticeable
how the K shell electrons move closer to the nucleus as the
nuclear charge increases
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In the absence of an external magnetic field, the magnetic quantum numbers would
seem (o lose their function, because of degeneracy. In order to apply the Pauli principle
to atomic terms in such cases, we make use of of Ehrenfest’s adiabatic invariance
principle, which states that if a parameter changes continuously, the states of an atom
also change in a continuous and uniquely determined way. In the present case, this
means that the states of the atom in the absence of a magnetic field must derive from
those in the presence of a strong field — where the LS-coupling and the m-degeneracy
are lifted — in a continuous and uniguely determined way as the field is slowly turned
off.

With the Pauli principle it is easy to count the maximum number of electrons with
a given principal quantum number n which can be bound to an atom:

— For a given value of the principal quantum number » there are n different values for
the orbital angular momentum quantum number /.

— For every value of / there are 2/+1 different values of the magnetic quantum
number m,.

— For each pair of quantum numbers / and m; there are two different values of the
spin quantum number ;.

— Thus for each pair of numbers n, / there are at most 2(2/+ 1) electrons.

The maximum number of electrons in a shell with a given value of # is then

n—1

Y 2Q1+1) =2n2. | (19.1)
1=0

Table 19.1 gives the possible combinations of quantum numbers for n = 1, 2 and 3.

If a shell is defined as the group of all electrons with the same principal quantum
number #n, then the atoms with closed shells are helium (n = 1), neon (n = 2), nickel
(n=3, Z=28) and neodymium (n = 4, Z = 60). Nickel and neodymium are neither
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Table 19.1. Possible quantum numbers and numbers of electrons in the shells with n=1,2,3

n / my my Number Configuration Shell
of electrons
1 0 0 +1/2 2 152 K shell
2 0 0 +1/2 1-2 252 p0 L shell
1 1 +1/2 _g
0 +1/2
—1 +1/2 3.2
3 0 0 +1/2 1:2)
1 1 +1/2
0 +1/2
-1 +1/2 32
2 2 +1/2 =18 3s2pbdl? M shell
1 +1/2
0 +1/2
-1 +1/2
-2 +1/2

+ 5-2

l
|
|
|
|
|
|
|

noble gases nor chemically very inactive. The simple equation of a closed shell with a
noble gas configuration breaks down for higher electron numbers. In the He atom, the
K shell is fully occupied; in Ne, the K and L shells; and in Ar, also the s- and p-subor-
bitals of the M shell.

Instead, it is observed that the closure of a partial shell, that is occupation of all
states with the same value of / for a given value of n, leads to especially stable electron
configurations. This is understandable in light of the fact that even for fully occupied
partial shells, the angular momentum and magnetic moments add up to zero, so that
the atom is outwardly spherically symmetric. In fact, this is the case with the third
noble gas, argon, which has the electronic configuration 15*2s?2p°3s3p®. In other
words, all of the s and p electrons are present in the third shell, but there are no d
electrons. The cases of the noble gases krypton and xenon are similar, as is shown in
Table 19.2.

Table 19.2. Electronic configuration for the highest occupied shells or partial shells of the noble gases. Only
helium and neon have completely filled highest shells. The particular stability of the other noble gases is due
to completion of partial shells

Highest VA Element 1st ionisation
occupied state potential [eV]
(1s)? 2 He 24.58
(2% 2p)° 10 Ne 21.56
3523 p)° 18 Ar 15.76
(45)23d)!%(4p)° 36 Kr 14.00
(55)2(4ad)'°(5p)° 54 Xe 12.13
624N 5" (6p)° 86 Rn 10.75

Having seen that each partial or complete shell can only accommodate a certain
maximum number of electrons, we can turn to the configurations of all the atoms of
the periodic system. Table 19.3a and b shows all the elements with their electronic con-
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figurations. Closed complete and partial shells are shaded in. The table also shows the
first ionisation energy for each element.

With increasing atomic number Z, the added electrons successively occupy the un-
filled shells and subshells. The order of this filling depends on the binding energies;
in particular, for heavy atoms it does not correspond simply to the numerical order.
The first deviation is found in the K atom: there, it is energetically more favorable for
the last electron to occupy the 4s subshell rather than the 3d. Compare also Sect. 11.3.

The interaction energies of the electrons with the nucleus and with each other,
which play a key réle in determining the energetic positions of the subshells and thus
the structure of the Periodic Table, are dominated for lighter elements by purely elec-
trostatic interactions, particularly screening of the nuclear charge by the other elec-
trons. With increasing atomic number Z, the magnetic interactions, specifically the
spin-orbit interaction, become comparably large and, for the heaviest elements, finally
determine the ordering of the electronic states.

Figure 19.3 again summarises the energetic ordering of the subshells for the suc-
cessive addition of electrons, corresponding to the shell structure. It is characterised
by the fact that at certain energies, large gaps between the energy levels are found.
These mark the especially stable configurations, for example those of the noble gases.

The shell structure that we have described here, which is important for understan-
ding the Periodic System, is — as we again emphasize — that of the /ast electron added
to the atom. When the initially outermost electrons move inwards, as the atomic num-
ber increases and further electrons are added to the outer shells, they become more and
more subject to the effective potential of the other electrons and the ordering of their
energy levels changes. This is illustrated in Fig. 19.3. The energetic order of the sub-
shells then becomes a function of the principal quantum number # only. This shell
structure, determined only by n, is the one we have already met with in treating the
x-ray spectra of atoms. It can also be investigated using photoelectron spectroscopy.
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Table 19.3a. Periodic Table with electron configurations, ground state terms, and ionisation energies. The
filled shells and subshells are shaded

Atomic  Element Shells LS First
number e configuration ionisation
Z K L M N 0 of the ground potential
n=1 n=2 n=3 n=4 n= state [eV]
s s p s p d s p d s p
1 Hydrogen H 1 8., 13.60
2 Helium He 2 'S, 24.58
3 Lithium Li [ 1 25, 5.39
4 Beryllium Be 2 3 150 9.32
5 Boron B 2 2 1 2Py 8.30
6 Carbon C ” 4 z 2 P, 11.26
7 Nitrogen N 2 2 3 S 14.54
8 Oxygen o] 2 2 4 3P, 13.61
9 Fluorine F 2 2 5 2Py, 17.42
10 Neon Ne 2 * s 15y 21.56
11 Sodium Na 2 2 6 1 28, 5.14
12 Magnesium Mg 2 140 2 'So 7.64
13 Aluminium Al 2 26 21 Py, 5.98
14 Silicon Si 2 2.6 22 2Py 8.15
i5 Phosphorous P z 2 6 2 3 4832 10.55
16 Sulphur S 2 26 2 4 *p, 10.36
17 Chlorine Cl 2 2 6 2.5 Py, 13.01
18 Argon Ar 2 Tab 2% 'So 15.76
19 Potassium K 2 J 6 26 1 81 4.34
20 Calcium Ca 2 2.6 26 2 1S, 6.11
21 Scandium Sc . A a6 1 2 2Dy, 6.56
22 Titanium Ti 2 2.6 2 6 2 2 3F, 6.83 2
23 Vanadium ~ V . 26 26 3 -2 *Fy, 6.74 g
24 Chromium Cr 2 26 28 5 1 'S, 6.76 2
25 Manganese ~ Mn 2 26 26 5 68 743 o
26 Iron Fe 2 206 25 6 B D, 700 -2
27 Cobalt Co 2 26 6 71 2 g 786 2
28 Nickel Ni 2 36 36 5 2 F, 7.6 &
29 Copper Cu 2 2 6 2 6 a0 | 2812 7.72
30 Zinc Zn 2 26 26 10, 2 'S, 9.39
3 Gallium Ga 2 26 2 6 100 2 | 2Py 6.00
32 Germanium Ge 2 2 b 2 6 10 2 2 3P0 7.88
33 Arsenic As 2 2.6 2 6 10 2 3 453,2 9.81
34 Selenium Se 2 26 2. 6 10 2 4 P, 9.75
35 Bromine Br 2 2.6 -2 6 10 2 5 Py, 11.84
36 Krypton Kr 2 2 6 200 W, 206 'S, 14.00
37 Rubidium Rb 2 2.6 2 6 10 2.6 1 sz 4.18
38 Strontium Sr 2 2.6 2 6 10 2.8 2 'Sy 5.69
39 Yttrium Y 2 26 2610 26 1 .2 D, 6.38
40 Zirconium Zr 2 26 26 13 3 6 2 2 3F, 6.84
41 Niobium Nb 2 Tib oo 006 ol 26T 4 1 Dy, 688 £
42 Molybdénum Mo 2 P61 W 2E 5 | S, 713§
43 Technetium Te 2 2.0 2 6 10 %6 6 1 “Dyy 723 ©
44 Ruthenium Ru 2 26 2610 26 1 1 SFs 737 8
45 Rhodium Rh 2 36 oleid TR 3 Ry, 146 F
46 Palladium Pd 2 2 6 268 10 2 6 10 'So 8.33 =
47 Silver Ag /] 26 26 10 28 10 | S, 751 F
48 Cadmium Cd 2 2 b 2 6 10 2 6 10 r 'Sy 8.99
49 Indium In 2 26 26 10 2 610 2 1 Py 5.79
50 Tin Sn 2 2 6 2 6 10 296 10 2 2 3P, 7.33
51 Antimony sb 2 9F 0k I w ey 3 s, 8.64
52 Tellurium Te 2 2 6 2 6162 b 10 2 4 P, 9.01
53 Todine J 2 2 6 2 5 10 2 6 10 2 5 Py 10.44
54 Xenon Xe 2 2 8 26 40 2 0 10 i 'Sy 12.13




Table 19.3b. Periodic Table with electron configurations, ground state terms, and ionisation energies. The
filled shells and subshells are shaded. (The subshells 5¢ and 6f, 6g, 6/ are not shown, since there are no
atoms which have electrons in these shells in their ground states). The transuranium elements with atomic
numbers from 106 to 118, which have recently been artificially produced, are not shown here

Atomic Element Shells LS First
number _ - configuration ionisation
V4 N 0 P Q of the ground potential
n=4 n=>5 n==6 n=7 state [eV]
s pd f s d f s pd s
55 Cesium Cs 2 6 10 2 6 2514'2 3.89
56 Barium Ba 2. 6 10 2 6 2 'S, 5.21
57 Lanthanum La -2 6 10 26 | > Dy, 5.61
58 Cerium Ce T8 40 2 276 vk 3H, 5.6
59 Praseodymium Pr 2.6 10 3 i3 A& 2 o 5.46
60 Neodymium Nd 2’6 10 4 2 6 D 51, 5.51
61 Promethium Pm 2 6 10 5 .2 6 2 SH,,,
62 Samarium Sm 2 6 18 6 .2 .6 2 Fo 5.6 2
63 Europium Eu 22 -8 218 7 3 6 2 S22 5.67 B
64  Gadolinium Gd 2 6 10 7 2 6 1 2 D, 6.16 3
65 Terbium T (26 10 9 [2 6 D — 5.98 2
66 Dysprosium Dy 2 6 10 10 2 6 2 I, 6.8 =
67 Holmium Ho ' 2 6 10 11 2 § 2 s,
68 Erbium Er (2 6 10 12 2 § 2 *H, 6.08
69 Thulium Tm | 2 6 10 13 72 6 2 Fops 5.81
70 Yiterbium Yo .2 6 10 14 2 6 2 'So 6,22
71 Lutetium Lu 2.6 10 14 5§ | 2 Dy 6.15
72 Hafnium Hf 2 6 106 14 2 6 2 2 3F, 5.5
73 Tantalum Ta [ 2.6 10 & 2 § 3 2 Fy, 7.7 2
74 Tungsten W 2 6 10 I8 2 6 4 2 °D, 7.98 2
75 Rhenium Re 2 6 10 14 2 6 5 2 5852 7.87 2
76 Osmium Os .2 6 10 14 2 & ¢ 2z D, 8.7 =
77 Iridium Ir 2R th T 6 o ., 9.2 2
78 Platinum Pt 2 6 .10 14 2 6 9 1 3D, 9.0 g
79 Gold Au ©2 6 1014 2 6 HD 1 28, 9.22 &
80 Mercury Heg 26 16 14 2 6 10 2 1S, 10.43
81 Thallium Tl 2:6 10 14 2 6 10 < 1 Py, 6.11
82 Lead Pb 206 1014 26 10 2 2 P, 7.42
83 Bismuth Bi 26 10 M 26 10 B 8. 7.29
84 Polonium Po 2.6 10 14 2 & 10 2 4 2 8.43
85 Astatine At 2.6 10 14 2 6 10 2 5 9.5
86 Radon Rn % 60 11 26 10 g 'S, 10.75
87 Francium Fr 2 6 10 14 2 6 10 6 4
88 Radium Ra 2 6 10 14 2 10 2 6 2 5.28
89 Actinium Ac 2 6 10 14 2 6 19 88 1 (=
90 Thorium Th 2 6 10,14 2 6 10 T s 2 =
91 Protactinium Pa .2 6 10 14 2 6 10 2 .2 6 1 2
92 Uranium [8) 2.5 10 98 2.6 .10 3 0 & 1 2
93 Neptunium Np .2 & 10 14 2 6 10 4 2 6 1| 2
94 Plutonium Pu 26 10 14 26 0 6 1 8 2
95 Americium Am "2 610 4 2 640 7 2 & 2 a
96 Curium Cm 2 6 10 14 2 6 10 7 2 6 1 [2 2
97 Berkelium Bk 2 6 10 14 2.6 10 8 2 6 1 2 B
98 Californium Cf 2.6 10 M 2610 10 2 6 v <
99 Einsteinium Es 2.6 10 d44 2 810 11 2 6 f
100 Fermium Fm 2.6 10 14 2 6 10 12 2 6 2
101 Mendelevium Md 2 6 10 14 2 6 10 13 2 6 2
102 Nobelium No 2 6 10 14 2 6 18 14 2 6 2
103 Lawrencium Lr 2 6 10 14 2.6 10 14 2.6 1 2
104 Rutherfordium Rf 2 6 10 14 2 6 10 14 2 6 2 2
105 Dubnium Db 2.6 100 14 2 6 10 14 2 6 3 2
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As discussed in Sect. 18.8, this is a technique for studying quantitatively the binding
energies of the inner (and outer) electrons of atoms.

The occupation of the shells and subshells is responsible for the physical and
chemical properties of the atoms. The alkali atoms Li, Na, K, Rb, Cs, and Fr have a
single electron in a newly-begun shell, i.e. in the L shell, the M shell, the 4s subshell
of the N shell, etc. They are therefore easily ionised — they have low ionisation poten-
tials — and are chemically monovalent. The halogen atoms F, Cl, Br, and I are also
monovalent: here, just one electron is lacking to fill the outermost p subshell in the L,
M, N, and O shells, respectively. As a result, these elements have a large electron affini-
ty; this means that the “electronic hole” can easily be filled as a result of a chemical
reaction.

The changed energetic ordering of the subshells is especially noticeable in the case
of the transition elements and the rare earths. The elements of the first transition series
from Sc to Ni owe their characteristic properties, such as their colours and paramagne-
tism, to their partially-filled 3d shells. Their chemical valence is determined by the
outer (valence) electrons. Since these are close neighbours to the 3d electrons, the latter
can readily switch between shells, giving the transition elements a variety of different
possible valencies.

A similar picture is found for the second transition series or 44 transition elements,
30Y through 4Pd, as well as for the 4/ transition elements, the lanthanoids or rare
earths s;La through ;,Yb, where the 4/ subshell is being filled while the 65 subshell is
already full; for the 5d elements ;;Lu through ,3Pt; and for the 5f elements (ac-
tinoids) ¢,Pa through y;Lr.

The rare earths are the most impressive example of the special properties of atoms
in which energetically higher but spatially more contracted shells are being filled.
Chemically, they are all very similar, since their valence configurations in the 6s (and
5d) subshells are identical or quite similar. Their colours and paramagnetism result
from their inner 4/ electrons. The screening of the 4 f shell by the outer 65 electrons
is also the reason that the optical spectra of rare earths exhibit sharp lines, even when
they are in the solid state. Rare earth atoms or ions in solids are therefore especially
well suited as laser media (see Chap. 21). Neodymium has been mainly used for this
purpose up to now.

Palladium, with Z = 46, is also quite interesting: it has a fully closed subshell con-
figuration. The fact that it is nevertheless not a noble gas becomes understandable
when one considers the previous element, rhodium. The 5s electron which is still pre-
sent in Rh has switched to the 4d shell in Pd; it requires only a small amount of energy
to raise it again to the 5s shell. For this reason, Pd is not chemically inactive and not
a noble gas, although it is considered to be a noble metal.

19.2 From the Electron Configuration to the Atomic Term Scheme.
Atomic Ground States

We are now familiar with the electronic configurations of the atoms, as far as the quan-
tum numbers » and / are concerned. It remains to discuss the energetic order of the
states with different values of m, and m, and the combination of the angular momenta
of individual electrons to form the total angular momentum of the atom.

Figure 19.4 shows the ground states and the electronic configurations of the first 11
elements. For the beryllium and carbon atoms the lowest excited state is also given.
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Hydrogen and helium, with the ground states S, ,, and 'S, have already been discussed
at length. In lithium, the second shell is started, with a 25 electron. Beryllium, with a
closed 2s subshell, has a 150 ground state. It can easily be excited to the 2p configura-
tion, which is energetically very close to the ground state. The occupation of the 2p
subshell begins with boron; from its spectrum it is clear that this element has a *P;,
ground state, i.e. that its orbital and spin angular momenta point in opposite direc-
tions. The spectrum of carbon indicates that the spins of the two 2 p electrons are paral-
lel, so the ground state is PO The excited state C* shown in Fig. 19.4, in which there
are one 2s and three 2 p electrons, is responsible for the valence of 4 which carbon dis-
plays in organic chemistry. The four electrons in the second shell are coupled in this
state so that they are energetically equivalent. This leads to what is called sp* hybridisa-
tion (cf. Sect. 23.7) which effectively determines the character of the chemical bonding.

It turns out that in nitrogen, the three p electrons have parallel spins, so that they
form a S3/2 ground state. Spin saturation of the p electrons then begins with oxygen.
Fluorme lacks only one electron in the p subshell. With neon, the noble gas ground
state SO is reached again. The occupation of the M shell with n = 3 begins with the
alkali atom sodium.

There are several rules for the energetic ordering of the electrons within the sub-
shells, which hold in addition to the Pauli principle. In LS coupling, i.e. in all light
atoms, the angular momenta in the ground state are governed by Hund’s Rules. They
are:

1) Full shells and subshells contribute nothing to the total angular momenta L
and §. We have already shown this earlier.

2) The electrons having the same value of / which are divided among the corre-
sponding m; subshells — called equivalent electrons — are placed into the ground state
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in such a way that the resulting total spin § is maximised. States with the highest multi-
plicities thus lie energetically lowest, e.g. triplet states are lower than singlet states. This
is a consequence of the Pauli principle, which requires that the total wavefunction be
antisymmetric (see Sects. 19.4, where this “antisymmetry” will be discussed in more
detail). The higher the multiplicity, the more parallel spins there are, which are thus
completely symmetrical in their symmetry properties. Therefore their spatial functions
must be antisymmetric. As a result, their binding energy is maximised, because the
mutual Coulomb repulsion of the electrons is lowest for antisymmetric spatial
functions.

Let us consider the nitrogen ground state as an example. Nitrogen has three elec-
trons in the outermost subshell. It therefore has a doublet and a quartet system, i.e.
S=1/2 and S=3/2 (Fig. 17.4). Given the possible combinations of the quantum
numbers m, for the three p electrons of the configuration 1s22s22p7, the overall state
can be either *P, °D or “S. Of these, the one with the lowest energy is S, which is the
state with the highest multiplicity. The other two states actually occur at somewhat
higher energy in the doublet part of the nitrogen term scheme (Fig. 17.4).

3) When the highest value of the quantum number S is reached, the Pauli principle
requires that the electrons be distributed among the substates m; in such a way that
L.= Y m;h=m his maximised. The resulting angular momentum quantum number
L is then equal to|m|. For a given multiplicity S, the higher values of L give states of
lower energy.

4) Finally, when the spin-orbit coupling is also taken into account, the terms with the
smallest quantum numbers J have the lowest energy in “normal” multiplets, but other-
wise the converse holds. “Normal” means here that the subshells are less than half full.

This rule is a consequence of the fine structure calculation which was carried out
earlier for the one-electron atom (Sect. 12.8). As the negative charge circulates around
the positive nucleus, the orbital magnetic field at the position of the electron is directed
in such a way that an antiparallel orientation of L and § corresponds to a minimum
energy. If the shell is more than half full, however, each electron which would be
needed to fill the shell is equivalent to a positively charged “hole”. The sign of the
magnetic field B, then changes, and the state with the highest J has the lowest energy.
In Fig. 19.4 this is shown by comparison of the one-electron atom lithium (ground state
28, ,2) and the “one-hole” atom fluorine (ground state 2Ps,,).

The carbon atom can serve as an example here. Its term scheme is shown in
Fig. 17.5. In the ground state, the carbon atom has two electrons in the outermost
subshell. It therefore has a singlet and a triplet system with S=0 and §=1. The
possible ground states for the electronic configuration 1s22s*2p*are 'S, 'D and *P.
Because it has the largest multiplicity, *P has the lowest energy, as can also be seen in
Fig. 17.5. If the angular momentum quantum number Jis included, the possibilities are
Py, *Pyand Py, i.e. J=0,1 and 2. In a “normal” order of terms, the state 3P, has the
lowest energy, by rule 4. The singlet terms are also observed, at somewhat higher
energy, as the term scheme in Fig. 17.5 and Fig. 19.5 shows.

In the oxygen atom, however, the possible ground states for the 15225221)4 con-
figuration are 'S, 'D and *P. According to rule 2, 3P has the lowest energy. Now,
however, with an inverted term order, the state with the largest value of J (rule 4) has
the very lowest energy. The ground state is therefore p,.

Table 19.3 contains the LS-ground state terms which are actually observed for all
atoms. When the atomic number Z becomes large, they can often not be simply derived
from the electron configurations, as they can near the beginning of the Periodic Table.
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19.3 Excited States of Atoms and Possible Electronic Configurations.
Complete Term Schemes

Several complete term schemes for atoms have already been shown in the figures. Each
of the energy terms indicated there corresponds to a particular electron configuration
and to a certain type of coupling of the electrons in non-filled shells. The energetic posi-
tions of these terms are uniquely determined by the energies of interaction between the
nucleus and electrons and between the electrons, themselves. Quantitative calculations
are extremely difficult, because atoms with more than one electron are complicated
“many-particle” systems.

However, using a few examples, we shall consider how many different terms are
possible for a given electronic configuration and how these are arranged energetically.

Our first example is an atom with two p electrons in unfilled shells, in the configura-
tion (np)'(n'p)'. If n = n’, the two electrons are equivalent and the configuration is
np*. Carbon is a concrete example of this case.

Figure 19.5 shows the terms discussed already in Sect. 19.2 which are possible if the
two p electrons are coupled. First of all, the two spins can be either parallel or an-
tiparallel. The position functions associated with these alignments differ with respect to
Coulomb repulsion, so that according to Hund’s rule, the state with the spin quantum
number S =1 has a lower energy. Thus one obtains an S =1 (triplet) and an S=0
(singlet) term scheme, with the triplet scheme having lower energies. In addition, the or-
bital angular momenta /, =1 and /, = 1 can couple to give L =2, 1 and 0. This pro-
duces a D, a P and an S state. The state with the highest value of L has the lowest energy.
This, like the other Hund rules, is not adequately understandable by intuition alone.

For the triplet terms *P and *D, the spin-orbit interaction leads to a further splitting
into three states each. The singlet terms and the 3S term are not subject to fine structure
splitting, as we have seen earlier. Thus we obtain, in all, 10 spectral terms. In an
external magnetic field, all those terms which have a total angular momentum J not
equal to zero are further split into the mstates. The terms indicated by dashed lines in
Fig. 19.5 are not possible for equivalent electrons (i.e. in the np* configuration) due to
the Pauli principle. Since the quantum numbers n and / are the same for the two
electrons in these configurations, they must differ in their #; or m; quantum numbers.
In this case, the terms 'P, 3S and *D would disobey the Pauli principle, and they are
thus forbidden for equivalent electrons. For these terms, it is impossible to construct an
antisymmetrical wavefunction for two p electrons with the same principal quantum
number #.
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two electrons are equivalent (np2 configura-
tion), the terms indicated by dashed lines are
forbidden by the Pauli principle. The pres-
ence of an external magnetic field lifts the J
degeneracy and leads to further splitting of
the terms, which is not shown here




334 19. Structure of the Periodic System. Ground States of the Elements

For two non-equivalent s electrons, i.e. for the configuration (ns)'(n's)", the only
possible spectral terms are °S; and 'S. For the configuration (nd)'(n'p)", 'P,, 'D,, 'Fs,
BPD,L a5 3D1!2, sand 3F2,3,4 are possible. It is left to the reader to confirm this. For heavy
atoms, LS coupling is replaced by jj coupling.

In the general case, the possible atomic terms for a given configuration of
equivalent or nonequivalent electrons can be obtained in the following manner: only
the electrons in open shells (n,/) must be considered. Each electron, denoted by the in-
dex i, is characterised by the four quantum numbers, n;, l;, my;, and mg. These can
be determined by applying a hypothetical magnetic field which is so strong that all the
magnetic couplings are removed. According to Ehrenfest, a virtual, infinitely slow
(adiabatic) change in the coupling conditions leaves the quantum numbers unchanged,
and in particular, the number of terms remains constant in this case.

In order to derive all the possible terms, we have to consider all the possible varia-
tions of the couplings. The following rules hold:

— For each value of L, we have for M, = ¥mj; the possible values L,L—1,... L
for the component of the total orbital angular momentum parallel to the applied
field;

— Likewise, for each S, we have the possible values Mg=8,8-1,...-8§=2m,;
— When the electrons are completely decoupled by a strong magnetic field, the in-
dividual electrons are quantised according to m;=/,/—1,... -/ and me= 4.

Using these rules, one can write down all the possible electronic configurations (taking
the Pauli principle into account). Table 19.4 shows this for the case of an np* con-
figuration. One starts with the highest value of M,, which corresponds to the highest
possible L-value. In the case shown in the table, this is M, =2, with Mg =0; the
corresponding term is thus 'D. It also corresponds to four additional configurations.
The next highest value of M; is M, = 1, with the largest M-value being Mg = 1; the

Table 19.4. Possible Russell-Saunders terms for the electron configuration (np*). The table is intended only
to demonstrate the counting of the possible orientations of M, and My from the allowed combinations of
the one-electron quantum numbers /m; and my (indicated by arrows). If one wishes to construct the wave-
functions belonging to the quantum numbers, it is necessary to formulate singlet and triplet functions from
the four possible arrangements. (L4, 11, |1, L1) of two unpaired spins. More details are given in Sect. 19.4.2

my =1 ;=0 m=—1 M, Mg Term symbol
Tl Tl 2 0
Tl 1 ! 1 0
1 1 l 0 0 'D
1 1 Tl -1 0
Tl Tl -2 0
Tl 1 1 1 1
T 1) 1 1 0
Tl 1 1 1 —1
T Tl T 0 1
1 Tl 1 0 0 P
1 T4 i 0 -1
T 1 T -1 1
1 T Tl -1 0
1 1 Tl -1 -1
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corresponding °P term contains all together 9 configurations. Finally, only one con-
figuration remains, namely that corresponding to 'S. Therefore, four equivalent
p-electrons yield the terms 'D, °P, and 'S, and no others, since only thus is a unique
correspondence between terms and configurations achieved.

All those terms which arise from allowed electronic configurations of the atom are
given in the term schemes, for example those in Fig. 17.4, 5. Together with the selec-
tion rules for optical transitions

AJ=0,+1 [except for (J=0)—(J = 0)]
Am;=0,+1  [except for (m ;= 0) - (m;= 0) where AJ = 0]
A8=0
AL=0,+1
Al= +1 for the electron changing its configuration

} for the atom
} in LS coupling

Aj =0, £1 for one of the electrons in jj coupling ,

the term schemes and the spectra of all atoms are understandable.

19.4 The Many-Electron Problem. Hartree-Fock Method *

19.4.1 The Two-Electron Problem

In Chap. 10, we were able to solve exactly the hydrogen problem, in which only a single
electron orbits the nucleus. Unfortunately, there is no exact solution for any other
atom with more than one electron. In spite of this, it is possible, usually to a very good
approximation, to calculate wavefunctions and energies. In order to demonstrate
the problems which arise here, we shall consider an atom with two electrons, for
example the helium atom or a multiply ionised atom in which only two electrons remain
(Fig. 19.6). We distinguish the coordinates of the two electrons by using the subscripts
Jj=1orj=2.1If only one electron were present, the Hamiltonian would be

2 2
#y= -y L& (19.2)
Zmo 4 Hsofj
where the Laplace operator is defined by
2 2 2
Vi= 0 0 0 (19.3)
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@ Fig. 19.6. Atom with two electrons
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If we ignore the interactions between the electrons, in a classical treatment the
energy of the whole system of two electrons is simply equal to the energy of the in-
dividual electrons. The Hamiltonian of the whole system is thus equal to the sum of the
Hamiltonians of the two electrons. If we make use of the translation rule of quantum
theory, which says that the kinetic energy is always to be replaced by the Laplacian
(19.3), multiplied by — #%/ 2m,, we obtain for the two-electron system the Hamiltonian

H= A+ A, (19.4)

where the Hamiltonian (19.2) is used. Actually, however, there is a direct interaction
between the electrons. The most important part of this is the Coulomb interaction
energy, so that we must replace (19.4) by

2
H =+ oy —& (19.5)
47[80!‘12

where ry; is the distance between the two electrons. Our problem is to find an exact
solution to the Schrodinger equation belonging to (19.5). As we remarked above, this is
not possible in closed form. Therefore, we first consider the simpler problem in which
the Coulomb interaction between the two electrons is left out and the Hamiltonian
(19.4) is used in the Schrodinger equation. We make use of the fact that the single-
particle Schrédinger equation with the Hamiltonian (19.2) has already been solved. In
order to stay closer to reality, we include the spin of the electron and introduce the spin
variable along with the position vector ;. As an abbreviation, we use the variable R,
which is defined as

R, = (ry, spin variable) = (ry, k) . (19.6)

As we saw in Chap. 10, the wavefunction of the one-electron problem is charac-
terised by the quantum numbers n, [, m;, and mg: ¥, | my,m T he energy of this function
is E, 1y, me We now consider the Schrédinger equation for the total Hamiltonian
(19.4):

AY=E, (19.7)
where E, is an abbreviation for E . Since the Hamiltonian /#° (19.4) includes the two
variables Ry and R,, the wavefunction must naturally depend on these variables:
¥(R1,R,). In order to avoid writing out the quantum numbers explicitly in each of the

following expressions, we introduce the abbreviation Q for the total set of quantum
numbers,

Q:(n’[!mbms)E(Q»ms)' (198)
The Schrodinger equation (19.7) is solved by the wavefunction
P(R1,R>) = Yo, (R1) ¥p,(R>), (19.9)

as can be immediately demonstrated by substitution. The ¥’s on the right side of the
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equation are solutions for the one-particle Schrédinger equations. The total energy is,
as can also be easily demonstrated,

E,=Eqg+Eg,, (19.10)

where the energies E on the right side are the one-particle energies associated with the
quantum numbers Q; and Q,. It would thus appear that we have reproduced, with no
limitations, the above-mentioned classical result, that the one-particle energies are
simply additive, if we ignore the electron interactions.

The solution (19.9) also appears to allow the case of Q; = Q,, which would mean
that the two electrons would have exactly the same four quantum numbers. According
to the Pauli principle, however, this case is excluded. Theoretical physicists have there-
fore considered whether a wavefunction can be found which automatically excludes
this case. To find it, we make use of the fact that not only (19.9), but also the wave-
function

o, (R1) Po,(R>) (19.11)

satisfies the Schrodinger equation (19.7), and yields exactly the same energy (19.10) as
(19.9). As we know, any linear combination of wavefunctions which have the same
energy is also a solution of the Schrodinger equation and has the same energy. The
linear combination which automatically fulfils the Pauli principle is a difference
between (19.9) and (19.11), namely

PR, Ry) = 1/12 [P0, (R1) Fo,(R) — Po, (Ry) o, (R)] - (19.12)

This wavefunction vanishes identically if Q;= Q,. The factor 1/ ]/2 serves to
normalise the whole wavefunction. If we exchange the coordinates Ry and R, in
(19.12), the wavefunction is obviously converted to its additive inverse, or in other
words, the wavefunction is antisymmetric. This is now a formulation which makes pos-
sible a statement of the Pauli principle even when there is interaction between the elec-
trons: The wavefunction must be antisymmetric with respect to the coordinates Ry and
R;. It should be remembered that the variables R; include the spin variables.

Let us now investigate the role of the spin variables and of the corresponding spin
wavefunctions.

To this end, we separate the total set of quantum numbers Q, defined in (19.8) into

Qi = (g, my ;) (19.13)

as well as separating the variables R as in (19.6).

We now write the wavefunction ¥y, (Ry) as the product of a wavefunction y, (ry)
for the orbital motion (space function) and a spin wavefunction Pm, (k) (spin func-
tion). We then have instead of (19.12)

/

1
[P(Rla RZ) = ? (qu (1’1) qu(r2)¢ms‘1(1)¢mq‘2(2)

= Vg, (r2) W, (r) @ (2) P, , (1)). (19.14)
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For simplicity, we characterise the spin quantum numbers my= +1 by T (spin up) or |
(spin down). We then find the following possibilities:

) my=T1, m,=1 (19.15)
2) my=1, m,=1 (19.16)
3) my=T1, m,=1 (19.17)
4 my=1, m,y=1. (19.18)

In the wavefunctions belonging to 1) and 2), we can factor out the spin functions and
obtain

1
1) ¥11(Ry, R,) = l/—2 (Way (r1) Way(ra) = w, (r2) wa,(r)) X 91(1) 91(2) (19.19)
and

1
2) YI(R1, Ry) = ﬁ (Wa, (r1) Yo, (r2) = wg, (r2) W, (r)) X @1(1) 91(2) (19.20)

The wavefunction for two electrons may be written as a product of the space function
and the spin function:

PR, Ry) = w(ry,ry) ©(1,2) , where (19.21)
P11(1,2) = ¢+(1) 91(2)  and (19.22)
P1(1,2) = ¢1(1) 1(2) . (19.23)

Let us consider the precise meaning of the spin wavefunctions @. Since they refer to
two electrons, it seems reasonable of inquire into the total spin of the pair of electrons.
The z component of the latter corresponds to the operator

2;=0.1+0;, (19.24)

where g, ; is the operator for the z component of the spin of electron k. As one can
quickly verify, the following relations hold:

201 @1(2) = hp1(1) 91(2)  and (19.25)

2012 = —hep(1)9(2) , (19.26)

i.e. the spin functions (19.22, 23) are eigenfunctions of (19.24). Likewise, one can veri-
fy (cf. Problem 19.8) that they are simultaneously eigenfunctions of

3 =(01+ ay)? (19.27)

with the eigenvalue 2/4°.
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Let us now return to the possible spin arrangements (19.15— 18) and write down
the remaining wavefunctions which correspond to (19.17, 18):

1
3) Y(R1, Ry) = 5 Walry v 01(1) 912) — v (r2) Wi, (r1) 912 91(1)) (19.28)
1
4) P(Ry, Ry) = — (W, (r1) o, (r2) @ 1(1) @1(2) — vy, (ra) g, (r1) @ 1(2) ¢1(1)) .
/2 (19.29)
These may evidently not be written in the form of products (19.21). However, as we
know, we may take linear combinations of wavefunctions which belong to the same en-

ergy; in fact we must do so when applying perturbation theory to degenerate states. We
thus take the sum of 3) and 4) and obtain after rearranging

)=3)+4) = %(wa (r1) W, (r2) — vy, (r2) we,(r) x (@1(1) @1(2) + ¢1(2) 91(1))

= 11 1R, R) (19.30)
and

6) = 3)—4) = %(wq, (1) Wiy (1) + W, (72) Wiy, (7) X (01 (1) 91 2) — 91(2) 91 (1))
=¥ (R, Ry) . (19.31)

These new wavefunctions thus indeed have the desired form (19.21) and are further-
more eigenfunctions of . and X*:

2Apr (D) P11 p1(1) =0 (19.32)
1) 91(2) + 912 p1(1) = 2 A ($1(1) 912 + 1(2) P1(1) (19.33)
2 p1(1) 92— 912 91(1) =0 . (19.34)

Clearly, the wavefunction

@ =pr(1)p1(2)— 91(2) 91 (1) (19.35)

corresponds to a singlet state (S = 0), while the spin wave-functions

¢ (1) @1(2) (19.36)
=< ()P +91(2)@i(1) (19.37)
@ (1) @1(2) (19.38)

correspond to a triplet state (S = 1) with M .= 1,0, 1.

The corresponding space functions, which are the wavefunctions for the orbital mo-
tion, have differing symmetries with respect to the space coordinates in the singlet and
the triplet states.
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The triplet state has antisymmetric space functions; thus, the probability density for
both electrons being in the same place vanishes, and it becomes small when the elec-
trons approach each other. The positive Coulomb repulsion energy between the elec-
trons is thus lower for the triplet state than for the singlet state, which has a space func-
tion symmetric in the space coordinates. This forms the theoretical basis for Hund’s
rules (see Sect. 19.2).

19.4.2 Many Electrons Without Mutual Interactions

The considerations which led us to the wave function (19.12) can be generalised. We
shall give the results here without proof. In the general case, we are concerned with the
variables Ry, ... Ry of N electrons. In the absence of interactions among the electrons,
the Hamiltonian is a sum of one-electron Hamiltonians:

#0 = § #, (19.39)
. PESE )

J

The solution of the Schrodinger equation
AW =EW (19.40)
associated with (19.39) is naturally a function of the coordinates Ry, ... Ry:
Y(R,R»...Ry) . (19.41)

Retaining the notation introduced above, we can immediately show that the
Schrédinger equation (19.40) is solved by the product

PR, R ... RN) = Yo, (R1) ¥p,(R2) ... Yo (RN) - (19.42)

This approach is often called the Hartree method. The energy of the solution is given
by
E‘=EQI+EQZ+"'+EQN’ (19.43)

where the energies on the right side are again the energies of the individual electrons.

The solution (19.42) is not yet compatible with the Pauli principle, because it allows
solutions Q,;= Qy for the pair i, k. The solution which is compatible with the Pauli
principle is given by a determinant of the form

Po,(Ry) Yo (R2) ... Yo (RN)
1| Po,(R) ¥o,R2) ...

W(RlvRZ!-"RN)= E—
J/N!

(19.44)
Yo, (R1) Yo (R2) ... Yo (Ry)
A determinant changes its sign if two rows or two columns are exchanged. If we

exchange two variables R; and Ry, this is equivalent to exchanging two columns in
(19.44). Thus (19.44) guarantees the antisymmetry of the wavefunction. Since a deter-
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minant is zero if any two rows or columns are identical, we see that (19.44) vanishes if
Q; = Qy for any pair i, k.

We shall now discuss a special case of (19.44), namely the case that all the electrons
have parallel spins. Then the spin quantum number myis e.g. 1/2 for all j. If we also
ignore spin-orbit coupling, then the wavefunction of an individual electron can be
written as a product (where we write m, for the quantum number m;):

Po,R) =Wy 1m () 91() (19.45)

where y refers to the orbital motion and ¢ to the spin. As can be shown using elemen-
tary rules for determinants, substitution of (19.44) in (19.45) yields

1 WnI,-’],:m(rl)---Wn],ll,ml(rN)
P(Ry,...Ry)=—— :

VN c@r(1) ... (), (19.46)

WnN,iN.mN(rl)

i.e. the total wavefunction is now a product of a spin function which is symmetric
(because the spin quantum numbers of the electrons are identical) and an antisym-
metric wavefunction, which is represented by a determinant as in (19.46) and depends
only on the position variable r 'L

If we set the coordinates for a pair i, k equal, r; = ri, in the determinant, it will of
course vanish. This means that two electrons with parallel spins cannot occupy the
same position. Since the wavefunction y is continuous, so is ¥. This means that the
probability of finding two electrons at the same position goes to zero continuously if
the coordinates of the two become equal. The Pauli principle thus provides auto-
matically for a certain distance between electrons with parallel spins.

19.4.3 Coulomb Interaction of Electrons. Hartree and Hartree-Fock Methods

We now turn to the actual problem, in which the Coulomb interaction among the
electrons is taken into account. The energy of the Coulomb interaction between the
pair of electrons j, k is given by ez/(4 megrjg) (7 is the distance between the two elec-
trons), so the Hamiltonian is

2
e

o= § ) (19.47)
J

=1 i<k dmeor

The summation rule j <k prevents the interaction energy between pairs of electrons
being counted twice. If instead of using this rule, we sum over all indices J and k, with
the limitation that j+k, we must set a factor 1/2 in front of the interaction sum:

2
Ty € (19.48)

N
H =Y H+ .
i=1 2 j+k dmeori

Our next task is to solve the Schrodinger equation

AV=EY¥ (19.49)
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for the Hamiltonian (19.48). Since there is no exact solution we follow this train of
thought: First, since the one-electron problem has already been solved, the wavefunc-
tions of the individual electrons, in the form

Fo(R;) (19.50)

are already known. There is a charge density distribution associated with the wavefunc-
tion (19.50),

o(r)) =e| P(R)|*. (19.51)

As we know from electrostatics, there is an interaction energy between a charge at
position r and the charge distribution given by (19.51). This energy is given by the
product of the charge and the electrostatic potential. The latter can be calculated from
the charge distribution o. In all, the Coulomb interaction energy is expressed by

vy =2l 4
dmey ” |r—r,

T (19.52)

where the integral covers the total volume (the volume element is indicated here by d',
in order to distinguish it from the interaction energy V). If we substitute (19.51) in
(19.52), we obtain

1 jez|&UQ(RJ,-)|2d _

Vir)= 7. (19.53)

dmeg |r—rj|

The main idea of the Hartree and Hartree-Fock methods, which are discussed
below, is to reduce the many-electron problem to a one-electron problem. Let us
consider a single electron. It is moving not only in the field of the atomic nucleus, but
also in the field of all the other electrons. The simplifying assumption is then made that
the electron density distribution of all the other electrons can be given, as a first
approximation, by one-electron wavefunctions (19.50). In order to calculate the wave-
function of the chosen electron, we must solve a Schridinger equation in which both
the Coulomb potential of the nucleus and the interaction energy with all the other elec-
trons appear. If the chosen electron has the subscript &, and thus the coordinate R, the
Schrodinger equation is

R Ze ) Mmooy ()
Vi + Vil(ri) | wi (Ry) = Ewi (Ry) . (19.54)
2my dmegry

V% is the Coulomb interaction energy with all the other electrons, and is obtained from

EZ\U/QJ(RJ‘HZ 7

Vi) = 3 dr, (19.55)

i=1" Admeg|r—r|

by substituting, as a first approximation, the wavefunction y§) for g in (19.55)". The

! The prime sign (') on the sum in (19.55) indicates that j+k
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superscript (0) means that we use a given (or guessed) wavefunction to start the whole
procedure. In particular, ng.) may be a wavefunction belonging to a given potential.
Similarly, the superscript (1) indicates that this wavefunction for the electron & was
obtained from (19.54) in the first step of an iterative process. In the second step, we
now use the wavefunction y " for y in (19.55). This yields the new wavefunction y @
in a Schrodinger equation analogous to (19.54). The process is repeated until there are
no more significant changes in the wavefunctions "), or in other words, until the
method converges. Seen schematically, we have

W(O)_’V{D}‘*W(U_’V“)_’W(z)ﬂ V(Z)---WU)_’W- (19.56)

The method described above is somewhat heuristic, of course. It is desirable to set it
on a firm mathematical basis, which is possible, but we cannot go into the details here
because of space limitations. It can be shown that the Schrodinger equation (19.49)
may be solved by using a variational principle. According to this principle, the
expression

(.. w*#ydr.. .diy (19.57)

must be equal to an extremum (maximum or minimum) with the secondary condition
that the wavefunctions are normalised:

[P wdr,...diy=1. (19.58)

If we use a wavefunction ¥ of the form (19.42), i.e. a product wavefunction in such a
variational procedure, we find a set of Schrodinger equations for the individual wave-
functions:

(g _2Ze + V) | wo,(R) = Ewo (RY) (19.59)
2my ‘ dmegry ' k_ i et '

where Vi (ry) is defined by (19.55). The Hartree method just consists of solving these
Schrodinger equations (19.59) iteratively in the way indicated above.

The disadvantage of the Hartree method is obvious, in that it uses product trial
functions for ¥, which, as we know, violate the Pauli principle. The key to expanding
the Hartree method to include the Pauli principle lies in utilising the determinant trial
functions (19.44) for ¥ in the variation equations (19.57) and (19.58). The correspond-
ing calculations are rather long; we shall therefore simply give the result here. For the
individual wavefunctions, we find a set of Schrodinger equations of the form

Flz 2 282
- Vig—————+ Vilr R
[ <2m0> L k(. k):l Wo, (Ry)

2

ST R)— L wo )y o R = Evg Ry .
joAme T [rg—ry ’

(19.60)

The term in brackets on the left-hand side, and the right-hand side of (19.60) agree with
the Hartree equation (19.59). The additional term containing the sum over j is new; it is
referred to as an exchange term. The reason for this terminology is the following: if one
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compares V- g, from (19.60) with this exchange term, one recognises that the wave-
function y g, has exchanged roles with the wavefunction yg,, since the electron coor-
dinates R and R; have been exchanged. This exchange term is a direct result of the
determinant approach, i.e. of the antisymmetry of the wavefunctions. Intuitively ex-
plained, it means that the Coulomb interaction energy between electrons with parallel
spins is reduced relative to that between electrons with antiparallel spins. Since the
interaction potentials ¥ themselves depend on the wavefunctions w, a solution to
(19.60) is difficult to find. For a solution, one therefore resorts again to the Hartree-
Fock method, according to which (19.60) is solved iteratively following the scheme
(19.56).

Problems

19.1 How many electrons do those atoms have in which the following shells are filled
in the ground state:

a) the K and the L shells, the 3s subshell and half the 3p subshell?
b) the K, L and M shells and the 4s, 4p and 4d subshells?

What are the two elements in (a) and (b)?
19.2 Show that for a closed n/ shell, L =S =0.

19.3 a) Two equivalent p electrons have strong spin-orbit coupling. Calculate the
possible values of the total angular momentum quantum number, if the coupling is
purely jj. Remember to take the Pauli principle into account.

b) Consider the same problem in the case of weak spin-orbit coupling, so that LS
coupling of the two p electrons can be assumed. Do the same values of J occur with
equal frequency in the two cases?

Hint: Since the particles cannot be distinguished, configurations which are the same
except for the exchange of electron indices may only be counted once. In case (a), the
Pauli principle can be taken into account in this way, because the two electrons cannot
have identical sets of quantum numbers. In case (b), the Pauli principle is taken into
acount by the requirement that the wavefunction of the overall state must change its
sign when the particle indices are exchanged (antisymmetry under particle exchange).

19.4 Give the terms for the following configurations and indicate in each case which
term has the lowest energy:

(a) ns, (b) np>, () (np)*(n’s), (d) np>, (e) (nd*)(n'p), () (nd)(n'd).

19.5 In a diagram, show the occupied electronic states of the Si, Cl and As atoms
when the atoms are in the ground state configurations.
In each case, write the electronic configuration and the terms of the ground state.
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19.6  Give the ground state configuration and the number of unpaired electrons in the
following atoms:

a) S

b) Ca
¢) Fe
d) Br.

19.7 Calculate the terms for the np? configuration. Give the values of S, L and J for
the terms

la 2 1p 3p 3 5. 1 6
S0, ‘S1/2, Pi, "Ps, F4,°Dy, Dyand °Fy,.

Decide which of the terms correspond to the nd? configuration. Use your result to de-
termine the ground and first excited states of titanium.

19.8 Demonstrate that the relations (19.25, 26), and (19.32) are correct. Show also
that (19.35—38) are eigenfunctions of £ and confirm the eigenvalues given in the
chapter.

Hint: Write £ as (6, + 6,)’ =67 + 63+ 20, 0.

19.9 Is there a triplet state when the quantum numbers of the two electrons are identi-
cal? Justify your answer.

Hint: Consider the symmetry of the spatial wavefunction.



