14. Atoms in a Magnetic Field:
Quantum Mechanical Treatment

14.1 Quantum Theory of the Ordinary Zeeman Effect

The ordinary Zeeman effect is a beautiful example of the fact that even with classical
physics, one can obtain results similar to those of strict quantum theory. In order to set
our earlier results on a firm basis, however, we shall now go through the strict quantum
theoretical treatment.

This chapter is somewhat more demanding, because we shall have to make use of
some of the basic theory of electromagnetism. As is shown in this theory, a magnetic
field B can be expressed as the curl of the vector potential 4:

B=curl4 . (14.1)

The electric field strength F ! can be obtained in a similar way from the electric poten-
tial ¥ and the vector potential A according to the rule

F= —gradV— ad (14.2)
dt

Furthermore, we remember that the equation of motion of a particle with charge —e
(we are thinking specifically of electrons here) and mass my is

moF=(—e)(F)+(—e)(vxB). (14.3)
The second term on the right is the so-called Lorentz force, v is the particle velocity. It
can be shown that this equation of motion can be obtained, using the Hamilton
equations

p= —grad,H(p,r) and (14.4)

r=grad,H(p,r), (14.5)
from the Hamiltonian function

1
Zm()

H= p+ed)+V. (14.6)
The potential energy V of the electron is related to the electric potential V:V = —eV.

! In order to avoid confusion between the energy E and the electric field strength, we denote the latter by F
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At this point, it is only important to remember that in quantum theory, we always
start from a Hamiltonian function. As we saw in Sect. 9.3.4, the Hamiltonian function
is converted to an operator in quantum mechanics by using the Jordan rule to replace
the momentum, according to

p—grad. (14.7)
1

By applying this technique here, we arrive at the Hamiltonian operator
H =[(1/2mg)[h/i)grad +eA)*+ V. (14.8)

When we multiply out the squared term, taking care to maintain the order of the
factors, we obtain

2 242
L Vit i A grad + he'gradA+EA

H= — -
2my 2 mypi o 2myi 2my

+ V. (14.9)

In applying the various differential operators, however, we must be careful, since we
know that J# is to operate on the wavefunction . Thus we must interpret

grad A (14.10)
exactly as
grad(A ) . (14.11)

On differentiating the product in (14.11) and then again applying (14.7), we obtain for
the Hamiltonian

2 242
#=e 2 apr T Giva s €4

LV, (14.12)
2m0 luh szl 2m0

(The operators gradient, divergence, and curl used here are vector differential
operators which are often abbreviated using the Nabla symbol V, with Vf = gradf,
V-F=divF, VxF=curlF, and V-Vf=Vf=Laplacian f, where f is a scalar
function and F a vector function.)

We now choose, as always in this book, the constant magnetic field B in the z
direction:

B=(0,0,B,). (14.13)

It can be demonstrated that the vector potential 4 in (14.1) cannot be uniquely deter-
mined. One possible representation, which is convenient for the present calculation, is

Ax=_%y, A,=Bap a,-0. (14.14)
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With this, the Schrodinger equation with the Hamiltonian (14.12) becomes

2 2np2
{— W oryp, l(x%y;)Jr;Bz (x2+y2)+V(r)}w=Ew.

2m0 sz i My (14‘15)
In the following, we shall assume a spherically symmetrical potential for V.
We recall the following relation from Sect. 10.2:
h .
LY L Y S (14.16)
i oy 0x 1 0¢

where /7 is the angular momentum operator in the z direction. In general, the term in
(14.15) containing (x*+ »?) can be neglected in comparison to the preceding term with
fz, if the magnetic field is not too large, and as long as the magnetic quantum number
m +0. Leaving out the term with x>+ y?, and using the usual formula for the wave-

function,
w(r) =R, (r) e P]'(cosB) (14.17)
we recognise that (14.15) is identically satisfied. The energy is now

E:ES+Bzzeh m,  —l=m=<l. (14.18)
my

The energy £ is thus shifted with respect to the unperturbed energy Ef,’ by an amount
which depends on the magnetic quantum number m, and the energy level is split. The
factor ug = eh/(2mg) is the Bohr magneton which was introduced earlier. With the
addition of the selection rules for optical transitions,

Am=0 or +1,

the above derivation leads to the splitting of spectral lines known as the ordinary
Zeeman effect (Sect. 13.3).

14.2 Quantum Theoretical Treatment of the Electron and Proton Spins

14.2.1 Spin as Angular Momentum

As we saw in Sect. 12.4, the electron has three degrees of freedom in its translational
motion, and a fourth in its spin. As we know, a number of other elementary particles,
including the proton, have spins too. Our quantum mechanical calculations to this
point, especially our derivation of the Schrédinger equation and its application to the
hydrogen atom, have not included spin. In the following, we shall show how spin is
included in the quantum theoretical treatment of atomic states. This is necessary, for
example in spin-orbit coupling, in the anomalous Zeeman effect, in spin resonance,
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and in an adequate formulation of the Pauli principle, which will be discussed later.
Like every angular momentum, the spin of the electron is a vector with three spatial
components sy, s, and s:

5= (Sy, Sy, 5;) . (14.19)

In the following development of the spin formalism, we must account for the ex-
perimental observation that the spin has only two possible orientations such that the
spin component in a chosen direction, e.g. the z direction, can only have the value
+ h/2 or — h/2. In this sense, it is a genuine two-level system.

14.2.2 Spin Operators, Spin Matrices and Spin Wavefunctions

Since it is intuitive to think of one of the states of spin as “spin up” and the other as
“spin down”, we shall first introduce in a purely formal way two “wave” functions
which correspond to these spin directions, i.e. ¢7 and ¢,. If we proceed strictly accord-
ing to quantum formalism, measurement of the z component of the spin corresponds to
applying the operator §, to a wavefunction. (As with the angular momentum [, we
distinguish the spin operator from the corresponding classical parameter by using the
“hat” sign.) We can choose the wavefunctions in such a way that the application of the
operator gives the observed values of the wavefunction. Because we have only two
observed values, namely #/2 and — A/2, we expect that

S,¢01= %(})T, and (14.20a)
$:01=— ; |- (14.20b)

These can be summarised as
S:pm,= hmsppy,_, (14.21)

where m, = +1/2 (corresponding to T) or

mg= —1/2 (corresponding to 1).

my is thus the quantum number of the z component of the spin.

We are now looking for a formalism which will more or less automatically give us
the relations (14.20a, b). It has been found that this is most easily done by using
matrices. A matrix, in mathematics, is a square array, for example

a b
M= . 14.22
(C d) ( )

There is a multiplication rule for this array. As an example, let us imagine a vector v

. . X
with the components x and y in a plane, or v = ) . We can produce a new vector
y
N X .. .
x', ¥" by multiplying ( ) by M. This is done according to the rule
y
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()-m()=(c o)) ()

We thus are looking for a “vector” ¢ and a matrix M such that M ¢ yields exactly either

h h
—¢or — —gp.
2 ? 2 ¢
We shall simply give the result, and then verify it. We choose §, in the form
h{1 0 '
§,=— 14.24
= (0 N ) (14.24)

and the spin functions in the form

1 0
= - . 14.2
o1 <0> o) (1 ) (14.25)

With the help of (14.23), it can be immediately calculated that substitution of (14.24
and 25) in (14.20a and b) actually yields the relations M@: = (h/2)¢1, M| =
—(h/2) ¢,. We obtain the most general spin function by superposition of ¢ and ¢,
with the coefficients ¢ and b, as we have done before with wave packets:

p=apr+bo, = (Z) (14.26)

In order to arrive at a normalisation condition, we must now introduce the “scalar
product” for the ¢’s. If we have a general ¢, in the form

a,
= 14.27
®1 ( bl) ( )

and another ¢, in the form

az
_ , 14.28
o2 (b2> ( )

we define the scalar product as

a

P1 92 = (@}, bY) ( Y ) = (af ay+ b by) . (14.29)

2

These are calculation rules, which_shou_ld be familiar to the reader from vector calcula-
tions. If we substitute in (14.29) ¢, = ¢1, ¢, = ¢, we obtain

Pro1=1 (14.30)
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and correspondingly,
dro=1. (14.31)

Thus the wavefunctions are normalised. With ¢, = ¢| and ¢, = ¢+, we have

Pup: =0, (14.32)

i.e. the wavefunctions are mutually orthogonal.

With (14.24), we have the first part of the solution of the entire problem. The repre-
sentation of the operators for the x and y directions of the angular momentum is
naturally still open. Because we are talking about angular momenta, it seems reason-
able to require the usual commutation relations for angular momenta (10.14). We do
not wish to go into the mathematics of the problem here. For the purposes of this book,
it is sufficient simply to choose §, and §, appropriately. It turns out that

§x=j 0 1 _ (14.33a)
2\1 0
and
h{0 —i
§. =1 14.33b
’ Z(i 0) ( )

are suitable. If we calculate §* = §2+ ﬁf + §Z2 with the matrices (14.24, 33a and 33b), we
obtain after a short calculation

2
gr= P (30 _ 31 0 w2 (unit matrix) .
4 \0 3 4\0 1 4

Therefore, it we apply § 2 to any spin function ¢, in particular to ®m,, it will always yield
§2¢’ms = ‘ﬁz%‘pms .

The analogy between this equation and the eigenvalue equation for the orbital angular
momentum /% with the eigenvalue A2/(/+ 1) (10.6) is especially clear if we write h> 3/4
in the form hzs(s+ 1), with s = 1/2:

§2Pm = Ws(s+1) 9, . (14.34)
14.2.3 The Schrodinger Equation of a Spin in a Magnetic Field

We shall now proceed to the formulation of a Schrédinger equation for the spin in a
magnetic field. A magnetic moment

eh
2m0

(14.35)

Mg =
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is associated with the electron spin of 4/2. Here my is the rest mass of the electron and e
is the positive unit charge. This magnetic moment, the “Bohr magneton”, was
presented in Sect. 12.2. Since the magnetic moment is a vector oriented antiparallel to
the electron spin, we can write more generally

p= -5, (14.36)

mgy

where the factor 4/2 is now naturally included in the angular momentum s. The
following calculations can be directly applied to the spin of a proton, if the Bohr
magneton up is consistently replaced by the so-called nuclear magneton — uy and
—e/mgby e/my,. uy is defined as — (mq/my) ug, and m,, is the mass of the proton. The
negative sign comes from the fact that the charge of the proton is the negative of the
electron charge.

The energy of a spin in a spatially homogeneous magnetic field B is, as is shown in
electrodynamics,

Vi= —u-B. (14.37)

We are trying to find an equation analogous to the Schrodinger equation, and we
realise from the previous discussion of quantum mechanics that the Schrédinger
equation was obtained from energy expressions (Sect. 9.2). There the energy expres-
sions were the Hamilton functions, which were then converted to the Hamiltonian
operator. In a similar way, we now make the energy expression (14.37) into an operator
and write the equation

L Bs¢p=Ep. (14.38)
my

If the magnetic field has the components B,, B, and B, the left side of (14.38) is

& (B, +B,5,+B,5)6. (14.39)
my

Now §,, §, and §; are the matrices (14.33a, b and 24), respectively. Therefore (14.39) is
also a matrix. According to the rules for the addition of matrices, it is

eh B, B.—iB, . (14.40)
2my \ B,+iB, —B,

The characteristic of being an operator thus accrues to the left side of (14.38) from
§, which was defined above as the spin operator. If we choose the field B in the z
direction, as above,

B=(0,0,B,, (14.41)
the left side of (14.38) is the same, except for the numerical factor eB_/my, as the left

side of (14.20a or b) which shows us that the functions introduced above (14.25) are
also eigenfunctions of the operator in (14.38) with the corresponding eigenvalues
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E= +uB,. (14.42)

The spin energy in a constant magnetic field in the z direction is thus just given by the
expression which we would expect in classical theory for the interaction of an anti-
parallel spin moment with a magnetic field. Of course, instead of (14.38), we could
have formulated the corresponding time-dependent Schrédinger equation

¢ Bsp—inl? (14.43)

my dt

This equation must be used, in particular, if we are dealing with a time-dependent
magnetic field.

14.2.4 Description of Spin Precession by Expectation Values

It is, however, also interesting to determine the time-dependent solution of (14.43) for a
constant magnetic field. If we choose a magnetic field in the z direction, the Schrédin-
ger equation is given by

1 0 .. do
B =ih—. 14.44
Up b ( 0 -1 ) (4] di ( )
The general solution is found as a superposition of ¢ and ¢, (14.26). Since the

Schrodinger equation contains a derivative with respect to time on the right-hand side,
we have to include in ¢ and ¢ the corresponding time functions

exp(—iEst/h) and  exp(—iE|t/h),

where Et and E| may be written in the form

Er=(h2)wy, E =—-(h2)w,, and wO:iBZ. (14.45)
my

Since a linear combination may also contain constant coefficients, we use the more
general trial solution for (14.44):

@(1) = aexp(—iwgt/2) g1+ bexp(iwt/2) ¢, . (14.46)

We require ¢ to be normalised, as always in quantum mechanics, i.e. that the scalar
product ¢ ¢ (14.29) be equal to one. This means

la|*+ |b|*=1. (14.47)

The physical meaning of (14.46) will become clear when we form the expectation
value of the spin operator § with this wavefunction. To do this, we must first recall how
expectation values are to be calculated, and refer to Sect. 9.3. The “recipe” given there
states:
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1) Take the wavefunction ,

2) allow the “operator for the measurable quantity” € of which the expectation value
is to be found, to operate on it,

3) then multiply with y* and integrate:

fy* () Qu(x)dx .

The steps 1—3) can easily be transformed into three analogous rules for calculating
with the spin formalism:
1) Take the spinfunction ¢, e.g. (14.46),
2) let the spin operator $,, §,, or §; operate on (14.46), i.e. form, for example §, ¢;
3) multiplication by ¢ and integration are replaced by the rules for calculating the
scalar product:
we multiply §, ¢ from the left by ¢.
As an abbreviation we set

aexp(—iwgt/2) = a,

(14.48)
bexp(iwyt/2)=f.
The individual steps 1 — 3) are now as follows:
o
1) ¢—Uf¢1+ﬁ¢1=<ﬂ>, (14.49)

h/f1 0 o
2) 5.¢=— . 14.50
) 5.0 2<0_1>(ﬁ> (14.50)

Using the rule (14.23), this is equal to

i( “). (14.51)
2\-8

— - h a
3) 98 0=0p— " 14.52
) 95.0 ¢2(_ﬁ> (14.52)

According to rule (14.29), the right-hand side is equal to

h 2 2

—(le|*=[B]7).

~(al~ 151
Writing the expectation value of §_ as (§_), we have found:

. h

(8> = —(al~ 18P (14.53)

We leave it to the reader as an exercise to show that

8y = ;(a*ﬁﬁ- af*), (14.54)
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and

(5, = %i(aﬁ*fa*ﬁ) . (14.55)

Since we can see all the essentials by assuming @ and b in (14.48) to be real numbers,
we shall do so and insert (14.48) into (14.53 — 55). This yields

(§,) = ;(HZ— b*) = const w.r.t. time . (14.56)

The expectation value of the z component of the spin thus remains constant in time.
(8.) = abhcos wyt , (14.57)
(8§, =abhsinwyt. (14.58)

The component of the spin in the x — y plane rotates with the angular velocity . The

expectation values (14.56 — 58) can be interpreted as a precessional motion of the spin
(Fig. 14.1). Thus the model used in Chap. 13 is justified by quantum theory.

Fig. 14.1. Precessional motion of the spin

14.3 Quantum Mechanical Treatment of the Anomalous Zeeman Effect
with Spin-Orbit Coupling*

In this section we shall continue the complete quantum mechanical treatment of spin-
orbit coupling. The goal is to give an exact justification for the vector model of spin-
orbit coupling introduced in Chap. 12. Specifically, we are concerned with LS coupling
and wish to show the justification for the rule that /%, s* and j2 can be replaced by
[(I+1), s(s+1) and j(j+1), respectively. If we ignore spin-orbit coupling for a
moment, then the energies of the orbital motion and of the spin (magnetic moment) in
a magnetic field are additive. This means that the total Hamiltonian is simply the sum
of the Hamiltonians for orbital motion (14.8) and for the spin (14.38). Thus we have
the Schrodinger equation

2
' (P gradrea) +ve 5.8 y=inlY. (14.59)
Zmo i my of
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This is also known in the literature as the Pauli equation.

Because the Hamiltonians (14.8) and (14.38) are additive and apply to entirely dif-
ferent degrees of freedom, the wavefunction i can be written as a product of the wave-
function of the orbital motion and that of the spin motion. Finally, we can also treat
the spin-orbit coupling introduced in Sect. 12.8 quantum mechanically. For this we
need only to introduce the previously derived expression (12.27), which represents an
interaction energy, into quantum mechanics. This is done, as usual, by assigning the
angular momentum / to the angular momentum operator I (Sect. 9.3.4.) and the spin s
to the spin operator § [compare with (9.61)]. The resulting term

“ Zet 1 . VA -
Wi,§) =225 (7-8) = L% i fain) (14.60)
8nmy r dar

is introduced into the Schrédinger equation to give the Schrédinger equation of an
electron with spin in a magnetic field, where spin-orbit coupling is taken into account.
The time-independent form of this equation is

2 242
M grad s dgiva s £y
2m0 Myl ngl 2m0
e uoZe* 1 .
+—§-B+ 5 —5 U8 |y=Ey. (14.61)
my 8nmy r

As we saw in Sect. 13.3, spin-orbit coupling dominates in low magnetic fields.
Therefore we shall first examine the Schrédinger equation in the absence of a magnetic
field:

2

2 2 2

1 .

_ h VZA Ze 4 ,uGZe 3(13)
2my dmaegr 8mmy r

} w(r) = Ep(r). (14.62)

Equation (14.62) includes the spin operator § which, as we know, is a matrix. Therefore
the wavefunction w(r) has two components:

wi(r)
wir)=( " )
ya(r)
where y; corresponds to spin T and , to spin ..
Spin-orbit coupling mixes orbital and spin states, and makes it necessary to

introduce new quantum numbers. Without spin-orbit coupling, the wavefunction
would have the form

W, t,m,m, = R ((r) Fy (0, @) @i (14.63)*
—_—

orbit spin

2 The letter ¢ in (14.63) has two entirely different meanings: in F; (8, ¢), it indicates an angular coordinate,
while in [ it indicates one of the spin wavefunctions (14.25)
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It is characterised by the principal quantum number n, the orbital angular momentum
quantum number /, the magnetic quantum number m(=m,) and the spin quantum
number mg. In order to determine the quantum numbers applicable to spin-orbit
coupling, we must expand on the considerations on orbital angular momentum
presented in Sect. 10.2, and examine the parameters to decide which can be observed
simultaneously. As we know, this can be done with the help of commutation relations
(Sect. 9.3). If, as in Sect. 12.7, we introduce the total spin operator f = [ + §, and its
component in the z direction, fz, the following parameters can be observed to any
desired precision simultaneously:

The square of the orbital angular momentum />
The square of the spin s>

The square of the total angular momentum j 2
Component j,

I-s and j-s5.

Because [ - s occurs in (14.62), we can characterise the wavefunction by choosing those
quantum numbers which are eigenvalues for the operators j2, [%, §? and Jz- We there-
fore obtain the following relations between operators and quantum numbers

J 2. quantum number J  Jz: quantum number m;

- (14.64)
§* quantum number s /% quantum number /.

Since the spin-orbit coupling is much smaller than the term spacing, the prin-
cipal quantum number 7 is still a good quantum number, i.e. it still characterises
the eigenfunction to a good approximation. The wavefunction is now character-
ised by

Wn,jm,bs = R(r) - (Function of angle and spin) . (14.65)

The spin-orbit coupling leads to the relative orientations of the spin and orbital
moments, as was discussed in detail in Sect. 12.8.

We now examine the effect of a magnetic field on an electron, taking spin-
orbit coupling into account. It can be shown that in the Schridinger equation (14.59),
the A% term is much smaller than the other terms, if the magnetic field is not too
large, and can be ignored. Let us again choose the magnetic field B in the z direc-
tion and

Ay=-3B,, A,=}B, and A,=0.

divA is then zero. The Schroédinger equation is then
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n? Ze? e - e . zZe? .
- v +—— Bl4+—§B+—— L0 (.5)|y=Ey. (14.66)
2mg dregr  2my my 8mmyr
'%00 Wmagn Wspin—orbil

We are treating the case of a weak magnetic field in which the spin-orbit coupling is
larger than the interaction with the external magnetic field. We are now in a position to
justify quantum mechanically the vector model introduced in Chap. 13. Let us consider
the operator occurring in (14.66):

B (.+85,) (14.67)
Zmo

W,

magn

5,) =

(it leads toan additional mﬂagnetic energy, which we called V,, in Sects. 13.3.4, 5). If we
here had /_+ 3, instead of /_+ 25, the solution would be very simple, and analogous to
the treatment of an electron without a spin in the magnetic field (Sect. 14.1). In that
case, the wavefunction w, which is already characterlsed by the quantum number m;,
would also be an eigenfunction of the operator j, = I+ §,. We must therefore see how
we can deal with the additional §, in (14.67). Let us c0n51der

507 =8+ 13 +7D), (14.68)
which can be rewritten as

TG 1)+ Gl =T8T+ Gody =80, - (14.69)

v

q

It can be shown that the matrix elements of the operator g disappear when it is
applied to wavefunctions with the same quantum number j, or, in other words, the
operator g can only couple wavefunctions with different values of j. If the externally
applied field is small, we can also expect that such transitions will make only a small
contribution and can therefore be ignored. In the following, we shall therefore leave
out the operator g. With this approximation, (14.68) can then be written as

§J =7 A0 -1+5%), (14.70)

where we have replaced § - f by the corresponding expression on the right side of
(14.70). It is important to note that all the parameters in (14.70) are operators. We now
apply both sides of (14.70) to a wavefunction y, which is characterised by the quantum
numbers j, m;, [, and s. We obtain

STiwo= S - Gy

(N 7 T

Operators  Operator Numbers

=R LG+ D)=+ D +ss+ D] w. (14.71)
(I . y

Operator Numbers
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If we divide the right half of the double equation (14.71) by A%j(j + 1), we obtain

Sy = J([+1)—](‘[-.|-1)+S(S+1) Fow, s=1/2. (14.72)
2j(+1)

If we write W,,,, (14.67) in the form

eB

Wonagn = (;+5,), (14.73)
Mo t 1
Operators
we finally obtain
Wy = 5 ljz_|i1+1(]+1)l'(.l'-i-l)+S(S+l) .
my 't . 2j(G+1)
Operator Numbers

The additional energy due to the orientation of the total moment j in the magnetic field
is represented by (14.74).
If we write the energy change of a quantum state n, j, /, m; in the form

eh
AEJJ.mj = 2

Bg-m;, (14.75)
My

we can infer the Landé factor by comparison with (14.74) to be

g:1+j(j+1)f[(1+1)+s(s+1) ' (14.76)
2j(G+1)

We derived this Landé factor earlier, in an intuitive way with the help of the vector

model, but we had to make use of the law of cosines in an ad hoc fashion when we

replaced j 2 by j(j+ 1) k% 1* by I(I+ 1) h* and s? by s(s+ 1) 2. The quantum mechanical

calculation presented here gives the exact basis for this substitution.

14.4 Quantum Theory of a Spin in Mutually Perpendicular
Magnetic Fields, One Constant and One Time Dependent

A number of important experiments on spin have been carried out with the following
arrangement: both a constant, spatially homogeneous magnetic field in the z direction
and an oscillating field in the x-y plane are applied. We shall see that this leads to the
interesting phenomenon of spin flipping. These experiments make possible, among
other things, the exact measurement of magnetic moments, and permit detailed
analysis of the structure of and relaxation processes in liquids and solids.

We shall see that we can easily solve these problems using the spin formalism
introduced in Sect. 14.2. We write the magnetic field expressed as a time-dependent and
a time-independent part:
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B=B,+B(1), (14.77)
where the vectors of the magnetic fields are defined as

By=(0,0,BY) and (14.78)

B*(1) = (Bx(1), B}(1),0) . (14.79)

Naturally we cannot expect that the spin will always point up or down in a time-
dependent magnetic field. Rather, we must expect time-dependent transitions. We take
these into account by writing the wave function which is to be a solution of the
Schrodinger equation (14.43) in the general form

(1) = ci(D) g1+ () 9y = ( ?8 ) . (14.80)
2

To arrive at equations for the still unknown coefficients ¢; and ¢,, we substitute (14.80)
in (14.43), observing the decomposition (14.77 —79). If we multiply (14.39) out like a
normal scalar product and observe the matrix form of §,, §y,and §, — see (14.40) — we
obtain the Schrédinger equation (14.43) in the form

0 S_:ipS .
u( B B 1fy A ) =in ). (14.81)
B:+iB;, —B; c, ¢,

If we multiply the matrices according to the rule (14.23), we obtain these equations
instead of (14.81):

(3 hawo)cy+ ug(By—iBy) ey = ihéy, (14.82)

up(Bi+iB5) e, — Lhawge, = ihé, . (14.83)
Here we have introduced the frequency )

hawo=2upB? (14.84)

as an abbreviation. In order to simplify the following calculation, let us think of the
transverse magnetic field as rotating with the frequency w. In other words, the
magnetic field has the form
B} = Fcoswt,
(14.85)
B} =Fsinwt.

Since By and Bj appear in (14.82, 83) in a combined form, let us first consider these
expressions. We can express them as an exponential function, due to elementary rela-
tionships between sines and cosines:

Bi+iB) = F(coswt +isinwt) = Fexp(+iwt). (14.86)

Then (14.82, 83) simplify to
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(hwo/2)ei+upFexp(—iwt)c,=1héy, (14.87)
ugFexp(iwt)ey—(hwo/2)c; =1hé,. (14.88)

We shall solve these two equations in two steps. In the first, we put the coefficients
¢;(t) into the form

ci() = di(t) exp(—iwet/2); (1) = dy(t) exp(iwyt/2) . (14.89)
If we differentiate (14.89) with respect to time and rearrange slightly, we obtain
ihey = (hwy/2) ey +ihd, exp(—iwyt/2). (14.90)

If we substitute this in (14.87), we see that the term (hw,/2)c, on both sides cancels
out. The same thing happens with ¢, in (14.88), so that (14.87) and (14.88) simplify to

upFexp[—i(w— wy)t1dy = ihd, , (14.91)
upFexpli(w—wo)t]d, =ihd,. (14.92)

These equations become very simple when we set the rotational frequency of the
magnetic field w equal to the spin frequency wy:

w=wyp. (14.93)
We then obtain

upFd,=ihd,, (14.94)

upFd, = ihd,. (14.95)
To solve these equations, we first take the time derivative of (14.94):

upFd,=ihd,, (14.96)
and then, according to (14.95), we replace dz by (ugFd,)/(ih), and thus obtain

2 2
. F
di+ “;2

dy=0. (14.97)

If we simplify the expression by setting ugF/h = Q, we recognise (14.97) as a typical
oscillator equation with the general solution

dy=asin(Qt+ @), (14.98)
where the amplitude @ and phase @ are free to vary. Using (14.98) and (14.94) we obtain
dy=1iacos(Qt+ &) . (14.99)

With the proper choice of the zero time, we can set @ = 0. The normalisation condi-
tions for the spin wavefunction require that @ = 1. If we substitute (14.99) in (14.89)
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and this in (14.80), and do the same with (14.98), we obtain the desired spin wavefunc-
tion

@(1) = sin(Q1) exp(—iwot/2) Py +icos(21) exp(iwyt/2) @, . (14.100)

The spin functions and the spin formalism naturally seem very unintuitive. In order
to see the meaning of the above equations, let us remember that the immediate predic-
tions of quantum mechanics can be read from the corresponding expectation values
(Sect. 9.3). We will first develop the expectation value of the spin operator in the z
direction. A comparison of (14.49) with (14.100) shows that we can now express the o
and S of (14.49) in the form

o =sin(Q1¢) exp(—iwyt/2),
(14.101)
f=1cos(t)exp(iwgt/2) .

These can be immediately substituted into the end results (14.53 — 55), however, to give

(8.) = (h/2) sin*(Q1) — cos*(Q1)

(14.102)

—(h/2) cos(201) .

According to (14.102), the z component of the spin oscillates with the frequency 2 Q. If
the spin is originally down at ¢ = 0, it flips up, then down again, and so on.
For the other components,

$)=— gsin(ZQt) sin(ewqt) , (14.103)

(§,)= —i-sin(ZQt) cos(wyt) . ‘ (14.104)

These equations indicate that the spin motion in the x-y plane is a superposition of two
motions, a rapid rotational motion with the frequency @, and a modulation with the
frequency 2 2. The entire result (14.102 — 104) can be very easily interpreted if we think
of the expectation value of the spin as a vector s with the components {(§,}, (§,), and
(§,>. Obviously the projection of the vector on the z axis is (— /4/2) cos(2 1), while the
projection in the x-y plane is (4/2) sin(2 Q¢). As can be seen from the formulae, the
spin gradually tips out of the — z direction toward the horizontal, and then further into
the + z direction, while simultaneously precessing. The spin thus behaves exactly like a
top under the influence of external forces, as we indicated in previous chapters.
We shall consider this process again, in more detail. At a time ¢ =0,

(8= —h/2. (14.105)

We now ask when the spin, considered intuitively, is in the horizontal position, i.e.
when

(5)=0. (14.106)
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This is clearly the case when the cosine function vanishes, that is when

2Qt=n/2 (14.107)
holds, or when the time

t=mn/(4Q)=nh/(4ugF) (14.108)

has passed. If one allows the transverse magnetic field to act upon the spins for this
time, they will be pointing in the horizontal position (Fig. 14.2). In other words, they
have been rotated by an angle n/2. We therefore speak of a 7/2 or of a 90° pulse.
Naturally, we may allow the magnetic field to act for a longer time, for example until
the spins are pointing up, i.e.

Sy =hn/2. (14.109)
This occurs when

cos(2Q21)= -1 (14.110)
is fulfilled, i.e. after the time

t=mnh/2QugF). (14.111)

In this case, we speak of a = or of a 180° pulse (Fig. 14.2).

|
\ /
/ Fig. 14.2. Left: Spin flip through n/2. Right:
Spin flip through =

With these considerations, we have sketched the most important traits of spin
resonance. By applying a rotating magnetic field, we can cause the spin to flip from one
direction to another. In practice, of course, one does not apply a magnetic field
rotating with the spin frequency, but a linearly oscillating magnetic field. This can be
pictured as a superposition of two fields rotating in opposite directions. Then one of
the fields rotates with the spin, as before, while the other rotates with twice the fre-
quency, as seen from the point of view of the rotating spin system.

The corresponding equations have practically the same form as those above, except
for an additional, rapidly oscillating term, which comes from the “oppositely rotating”
magnetic field. To a good approximation, this can be ignored; the result is the “rotat-
ing wave approximation”.
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14.5 The Bloch Equations

As we have just seen, the behaviour of the expectation values of the spin operators can
be very simply interpreted. It is thus reasonable to ask whether it would not be possible
to derive equations for these expectation values themselves. This is in fact the case. To
derive these equations, we use the explicit form which we have just derived for the
expectation values of the spin operator. We differentiate ¢§,.) with respect to time and
make use of (14.103) to obtain

di(§x) = —(h/2)2Qcos(221) sin(wpt) — (h/2) wosin(2 Q1) cos(wyt) . (14.112)
!

The first term on the right side contains — (4/2) cos(2 2¢), which, however, is none
other than the expectation value of the z component of the spin. We also recognise that
the second term on the right side contains the expectation value of the y component of
the spin. Equation (14.112) therefore has the form

%(fﬁ = h™ " 2upFsin(wyt) (8,) — wols,) - (14.113)

However, we have seen the factors in front of the expectation values on the right side
before. F sin(wyt) is just B, while wy is proportional to B,. If we also take into
account the relationships (14.84) and (14.85), (14.112) becomes

d . . A
Lo =2 5B, BUS,) . (14.114)
dt My M

In a similar way, we find that the time derivative of the y component of the spin is

sy = - GBS B (14.115)
dt my my

If we differentiate the expression (14.102) for (§,), we immediately obtain
4 sy-"a20snean. (14.116)
dt 2

Since we expect that the right side of (14.116) can be expressed in terms of the expecta-
tion values of the spin components, like (14.114) and (14.115), we take advantage of
the relation

sin?wqt + coswyl = 1 (14.117)
to write the right side of (14.116) in the form

hQ2sin(2 Q1) [sin(wyt) sin(wgt) + cos(wyt) cos(wet)] - (14.118)
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It is now easy to convince oneself that (14.116) can also be written in the form

gy — £ (89B,+-5 (5,B,. (14.119)
dt my myg

Equations (14.114, 115 and 119) can be written in the form

9 6= uxB, (14.120)
dt

as can be easily seen from the rules of vector multiplication. Here we have assembled
the expectation values of the three components of the spin operator into the vector

50
Ery=| G | . (14.121)
{8,

This is strongly reminiscent of the torque equation for a top, if we identify s as the
angular momentum and take into account that

u=— -2 (5. (14.122)
My

Equation (14.120) is not quite adequate for the interpretation of many experiments,
because in many cases, the spin of the particle interacts with its environment. For
example, the orbital motion of the spins is continually perturbed by lattice oscillations.
This results in continual phase shifts in the precession of the spin. In this case, it is no
longer sufficient to regard the equations of a single spin as representative for those of
all the spins, as we have implicitly done up to this point. Instead we must consider an
“ensemble” of spins, and accordingly, we must in a certain sense subject the pure
quantum mechanical expectation values we have used so far to another averaging
process. We have to take into account the fact, for instance, that the x component of
the spin no longer has a definite value at a definite time, but rather a distribution of
values. As time passes, the distribution of values widens out, so that the probability
that the value of {3,) is positive approaches the same value as the probability that it is
negative. This means, however, that in the course of time, the average value of s, goes
to zero. In order to take this decay into account, we add more terms to (14.120) which
reflect this incoherent spin motion.

These qualitative considerations are reflected by the phenomenological rule

d . 1 .
E<Sx>incoh = - E(s,f) . (14.123)

Since §, and §, play the same réle, we must naturally assume the corresponding rule for

(8

d 1
—<8)dincon = — —<8,) . (14.124
dt y> oh Tz y )
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Since the spins precess around the z axis, (14.123) and (14.124) indicate how quickly
the components transverse to s, decay. T is therefore often called the transverse relaxa-
tion time. It is a measure of the speed with which the individual precessional move-
ments of the spins get out of phase.

Since the z component of the spin is directed along a predetermined, constant field,
it must be treated differently from the other two. In this case, too, we would expect a
relaxation due to the interaction of the spin with its environment. It will naturally
depend upon the orientation of the spin with respect to the external magnetic field —
whether the field lies in the positive or negative z direction. The spin can give up energy
through its coupling to the environment, and will attempt to reach the lowest state if
the environment is at the absolute zero of temperature, 7 = 0. On the other hand, if the
environment is at a finite temperature, the system of the spins and their environment
will attempt to come to thermal equilibrium. At thermal equilibrium, some of the spins
will be in the higher state, and others in the lower. If the spin system is displaced from
thermal equilibrium, it will naturally attempt to return to it, and in a certain time
interval which we call 7. T is often referred to as the longitudinal relaxation time.
What we have just said can be put in mathematical form, if we take

So— <§Z>

14.125
T ( )

E;<§z)inc0h =

for the incoherent relaxation of {§,). Here s, is the value of (§.) which the spin com-
ponent would assume at thermal equilibrium. We arrive at the Bloch equations by
adding the “incoherent” terms (14.123 — 125) to the equation (14.120) describing the
“coherent” motion of the spin.

The Bloch equations thus have the form

(C 16y
——(8p
B X
Lsy= - oyxB+ | - (s | . (14.126)
dt my Té
S0_<§Z)
L

p.

The relaxation times 77 and 7; are a measure of the strength of the coupling of the
electron (or proton) spin to its environment. Measurement of 7; and T7; often provides
important information about processes in the environment of the spin being inves-
tigated, e.g. motion in liquids and solids. We shall discuss a typical and especially
elegant experiment in Sect. 15.4.

14.6 The Relativistic Theory of the Electron. The Dirac Equation

In order to correctly describe the interaction of an electron with a magnetic field, we in-
troduced spin operators, which represent the intrinsic degree of freedom of the elec-
tron. It was shown by Dirac that this intrinsic degree of freedom follows quite auto-
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matically from relativistic quantum theory. We therefore wish to treat the Dirac equa-
tion in this section. In order to arrive at a relativistic wave equation, it would seem
appropriate to attempt to derive it in the same manner as the non-relativistic Schrodin-
ger equation (see Sect. 9.2).

The derivation given there can be summarised in the following “recipe” (cf. also
Sect. 9.3): one starts with the classical relation between energy and momentum for a
force-free particle

E=p*2m, (14.127)

and replaces the energy E and the components of the momentum p by operators
according to

Eain (14.128)
Y
and
h 8 ) hod
pot O, 00 BRC 14.129
Y ax Y ay P25 5, ( )

The last equivalence can be abbreviated as

PRNLE (14.130)
1

Following the computational rules of quantum mechanics (cf. Sect. 9.2, 3), these
operators act on wavefunctions ¥, whereby (14.127) thus becomes the well-known
Schrédinger equation

;) o,
ih—y=— Vig. (14.131)
ot ng

We shall now attempt to apply this recipe to the relativistic relation between energy and
momentum. The latter is

E=|/p*ct+mic*. (14.132)

If we replace £ and p by operators according to (14.128) and (14.130) and allow the
resulting expressions on both sides of (14.132) to act upon a wavefunction ¥, we obtain
the equation

m_'p |/ =R mict . (14.133)

This equation contains the Laplace operator ¥ under a square-root sign, which may
at first appear to be only a cosmetic defect. However, this approach failed utterly when
the attempt was made to include the effects of electric and magnetic fields on the elec-
tron in such a wave equation. The theory had entered a cul-de-sac. Physicists chose two
routes to lead it out again:



14.6 The Relativistic Theory of the Electron. The Dirac Equation 245

Route 1: The Klein-Gordon Equation

Since all of the difficulties stem from the square root in (14.133), one has to consider
ways to avoid it. To this end, we square both sides of (14.132) and obtain

E*=p*?+mict, (14.134)

which, of course, may be immediately translated into the wave equation

—h2: Y= (- +michHy, (14.135)
t

called the Klein-Gordon equation.
The latter may be arranged in a more elegant (and relativistically more obvious)
form by dividing both sides by ¢*4” and introducing the operator

1
o2

0= vi- _aiz' (14.136)
ot

The Klein-Gordon equation is then given as

méc*

Oly= 2 ' (14.137)

Let us examine its solutions. Since, for a force-free particle, we expect the solutions to
be de Broglie waves, we use the trial function

Y=explilk-r—wt)] (14.138)

in which, as usual,

w=— and p=hk. (14.139)

h
If we insert (14.138) in (14.135), we obtain (14.134) as the immediate result.

In order to determine the energy E itself, we must naturally take the square root.
We thus obtain not only a positive energy

E=+|/p*c*+mict (14.140)

but also a negative energy

E=-|/p*+mic (14.141)

Since free particles can have only positive energies, we are faced here with a difficulty!
Furthermore, the analysis of the solutions reveals that the particle density can also
become negative, which is also an unphysical result. The Klein-Gordon equation was
reinterpreted by Pauli and Weisskopf, who used the charge density instead of the mass
density, and thus found it to be applicable in quantum field theory to particles with
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spin zero. However, further development of that topic lies outside the framework of
this book.

Route 2: The Dirac Equation

Dirac considered the question as to whether the root in (14.132) could not be extracted
in some simple manner. In the limit p = 0, we find

|/p2c2+ mict - mge?;

and, for my= 0, (14.142)

/pr+mict >pe.

In order to understand Dirac’s approach, let us first consider the one dimensional case
and generalise (14.142) to

/pfr A+ mic® = acp+ [)‘mocz .- (14.143)

This relation can clearly not be fulfilled in the general case p, # 0, mg # 0 by ordinary
numbers ¢ and f; however, it can be, when ¢ and f are matrices, as we shall proceed to
demonstrate. We square both sides of (14.143), remembering that matrices do not com-
mute, in general, so that we must maintain the order of ¢ and f in multiplying out the
right-hand side of (14.143). We then obtain

pict+mict = a*cPpiv (af+ Baymycip,+ Brmict. (14.144)

For the left and right sides of this equation to be equal, we clearly require that
o*=1; af+Ba=0; B*=1. (14.145)
These relations are familiar from the (Pauli) spin matrices! (compare Problem 14.2).

Unfortunately, we cannot use the latter directly, since we wish to describe a three-
dimensional, not a one-dimensional motion. Thus, we require

]/(pi+pf,+p§) +mict = aep,+ epy+azep.+ fmg et (14.146)
Squaring (14.146) leads, analogously to the one-dimensional case, to
2 2
ai=1; =1; «op+pfa;=0; and
f B i B+ Ba; (14.147)
ajop+apo;=0 for j#k; j=1,2,3 and £k=1,2,3.

In addition, as always in quantum mechanics, the operators (matrices) are Hermitian.
These relations may be fulfilled in various (but physically equivalent) ways, for
example

0 g 10
— . p= , 14.148
o PR et
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where the g; are the Pauli spin matrices (cf. 14.24, 33 without 4). The “1”s in j repre-
sent 2 x 2 identity matrices, so that # may be written in the conventional notation as

(14.149)

=

Il
So o~
o =0

|
oS = OO
= =)

After these intermediate steps, we can again attack the Dirac equation, employing the
translation rules (14.128) and (14.130) and applying them to the equation

E=oaicpt+orcp,+ a;cpz+ﬁm0c2 . (14.150)

This leads to
.. 0 2
1ha‘P=(alcpx+o:2cpy+a3cpz+ﬁm0c V¥, (14.151)

the Dirac equation.
Since ¢; and f are 4 x4 matrices, they must operate on vectors with four com-
ponents, i.e. ¥ must be of the form

¥
_| P
v=| ol - (14.152)

¥y

In the preceding sections dealing with the electronic spin, we became acquainted with
wavefunctions having 2 components; in the Dirac theory, they have four! This is a
result of the fact that the Dirac equation allows both positive and negative-energy solu-
tions for free particles.

As the reader may verify in one of the problems to this chapter, the Dirac equation
yields the same energy spectrum as the Klein-Gordon equation; it is given in (14.140,
141), and in Fig. 14.3. One can easily convince oneself that the solutions of the Dirac
equation for force-free particles are plane waves having the form

Yr,t) = exp (ik -r—iwi), (14.153)

where the constants ¥,... ¥, are computed in Problem 14.6.

In the Dirac equation in the form (14.151), the time derivative plays a special role
relative to the spatial-coordinate derivatives. However, in relativity theory, time and
space coordinates have a symmetric position as components of space-time four-vectors;
thus, in the literature, a symmetrised form of the Dirac equation is often used. It is
obtained by multiplying (14.151) on both sides from the left by yo = B, and introducing
new matrices

m

L1 1

{1 1

Fig. 14.3. Energy spectrum of
the Klein-Gordon equation
and the Dirac equation
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y/ = Ba;, with j=1,2,3. (14.154)

It may be shown that the resulting equation is “Lorenz covariant™:

: 9 9 9 9
in(y° + ! + 92 +9° Y= myc¥, 14.155
(y ox"  ox, | owm | om ! -

withx”zct,x1=x,x2=y,x3:z. _
The explicit forms for the matrices y” and y/ are

o |1 0 ; 0 o
- , - , 14.156
y lio J Y [_Jj 0 ( )

where the ¢” are again the Pauli matrices.

Finally, we discuss the inclusion of the action of electric and magnetic fields on the
electron in the Dirac equation. For this purpose, we use the procedure of the Schrédin-
ger theory once again:

_ 1) The potential energy V'(r) = — eV, which results from the electrostatic potential
V, is added in analogy to (9.32). This can also be expressed by adopting the following
expression:

in® Lin® yep. (14.157)
ot ot

2) The magnetic field is taken into account by replacing the momentum operator
(as in Sect. 14.1) by

2ty iea (14.158)
1 1

where A is the vector potential.

The resulting Dirac equation has been solved for several cases, in particular for the
hydrogen atom. The results are in very good agreement with experiment, apart from
the corrections due to quantum electrodynamics (Lamb shift).

In spite of the success of the Dirac theory, the question of the meaning of the
negative energy values for free particles remained open. They would permit an electron
with a positive energy to emit light and drop down to deeper-lying, i.e. negative energy
levels, and thus all particles with positive energies would finally fall into this energy
chasm.

Dirac had the ingenious idea of assuming that all the states of negative energies were
already occupied with electrons, following the Pauli principle, according to which each
state can contain at most two electrons with antiparallel spins. The infinitely large
negative charge of this so-called “Dirac sea” can be thought to be compensated by the
positive charges of the protons, which likewise obey the Dirac equation and must fill a
corresponding positively charged Dirac sea. The vacuum would, in this interpretation,
consist of the two filled Dirac seas.

If we now add sufficient energy that an electron from the Dirac sea can cross over
the energy gap of 2mc?, an electron with positive energy would appear, leaving behind
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a hole in the Dirac sea. Since this hole is a missing negative charge, but the Dirac sea(s)
were previously electrically neutral, the hole acts like a positive charge (+ ¢). Further-
more, it has the same properties as a particle, so that it appears as such. The creation of
electron-hole pairs can indeed be observed; the positively charged particles are
experimentally known as positrons.

In modern quantum field theory, the creation of positrons can be described directly
by means of a formal trick, without having to invoke the infinite filled Dirac sea. On
the other hand, precisely this idea of a Dirac sea provides an intuitive picture for the
appearance of positively charged electrons, i.e. the positrons.

Problems

14.1 The Landau levels

If an otherwise free electron is moving in a magnetic field, it is forced into a circular
path in the plane perpendicular to the magnetic field. It thus has a periodic motion and
would be subject to quantisation, even in the Sommerfeld formulation. This quantisa-
tion leads to discrete levels, the Landau levels. These also result from an exact quantum
mechanical calculation.

Problem: Solve the time-independent Schrodinger equation of a particle with charge
(—e) which is moving in the x-y plane perpendicular to a constant magnetic field B. Do
not take the electron spin into account.

Hint: Use the vector potential 4 in the form 4 = (0, B,,0) and the trial solution

w(x,3,2) =ep(x).

In addition, make use of the fact that ¢(x) satisfies the Schrodinger equation for a dis-
placed harmonic oscillator.

14.2  Show that for the spin operators $, and §, (14.33a, b), the following relations
hold:

2 2
5.5,45,8=0, (%ﬁx)ﬂ, (%§y>=1_

Hint: Use the explicit matrix form.

14.3 Demonstrate that the relativistic expression for the energy, (14.132), may be
written in the form
2

E= my C2 + 1— p—
My
provided that
2
p @—mgcz.
ng 2

Hint: Expand the square root in a series.
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14.4 Show that the (charge) conservation law in the form

g+divj:0
dt

may be derived from the Klein-Gordon equation.

Hint: Multiply the Klein-Gordon equation (written with [12) by ¥*and subtract from
the result its complex conjugate. Use:

1 *
. lhz 50*8‘1775”8'{’ ,
2myc or ot

j= .h (@* grad Y- Wgrad ¥*).
21m0

14.5 Show that each component of (14.153) satisfies the Klein-Gordon equation.

Hint: Write the Dirac equation (14.151) in the form

inl¥ -y (1)
Y

then take i%(8/8¢) on both sides; use (1) again and rearrange #* using the Dirac
matrices.

14.6 Solve the Dirac equation for a force-free particle moving in the z direction.
Hint: Substitute the trial solution

?
o)

s
1

Y, t) = exp(ikz—iwt)

into (14.151) and solve the resulting algebraic equation.

Which energies correspond to the various solutions?



15. Atoms in an Electric Field

15.1 Observations of the Stark Effect

In 1913, Stark observed a splitting of the lines of the Balmer series of hydrogen (8.2) in
an electric field. He was studying the light emission of H atoms in the field of a
condenser (Figs. 15.1, 2). Since then, frequency shifts in optigal spectra in the presence

of eletric fields have been generally called the Stark effect.

The effect is experimentally more difficult to observe than the Zeeman effect,
because it is necessary to generate strong electric fields without sparking over. It has
been far less important to experimental atomic physics than the Zeeman effect.

One observes:

— With hydrogen and similar atoms, such as He™, Li™ 7, etc., a splitting of the
terms with / + 0 and the spectral lines associated with them. The splitting is propor-
tional to the field strength F. This so-called /inear Stark effect is present when the
[ degeneracy — the degeneracy of states with the same principal quantum number
n and different orbital angular momentum quantum numbers / — is lifted by the
external electric field, when it is not already lifted by internal atomic fields;

— Displacement and splitting of terms in all atoms proportional to F 2. This is the

quadratic Stark effect.

The quadratic Stark effect can be understood qualitatively in an intuitive model.
The lifting of the / degeneracy by the other electrons in an atom always leads to states
which have no electric dipole moment averaged over time. This can be demonstrated

v
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.
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Fig. 15.1. Canal ray tube for investigation of the emission of atoms in an elec-
tric field: the Stark effect. The potential between the cathode C and the elec-
trode H can be as high as 8000 V. The resulting splitting of spectral lines is ob-
served through the window W. In order to observe neutral H atoms, the
positive ions of the canal rays must be neutralised. This is not shown in the
figure

Fig. 15.2. Splitting of the hydrogen atom lines in an
electric field. The strength of the field varies along the
light source, the image of which is shown after passage
through a spectrograph slit. The field is 10° V/cm in the
region of smaller splitting near the bottom of the figure
and rises to a value of 1.14 - 10° V/em in the region of
the greatest splitting. From K. H. Hellwege, Einfiihrung
in die Physik der Atome, Heidelberger Taschenbiicher,
Vol. 2, 4th ed. (Springer, Berlin, Heidelberg, New York
1974) Fig. 45
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exactly by quantum mechanics. The applied electric field induces an electric dipole mo-
ment p = o F in the atom, where @ is the atomic polarisability. The latter is naturally
a function of the quantum numbers of the atomic state and is different for each elec-
tron configuration.

The electric field acts on this induced dipole moment. The interaction energy is
given by

Va=4p -F=LaF?. (15.1)

We have thus explained qualitatively the proportionality between the term shifts
and the square of the electric field strength.

The linear Stark effect, which is observed in the hydrogen atom, cannot be so easily
understood on an intuitive basis. This is an effect which can be understood only in
terms of quantum mechanics. The degeneracy of the /-states in the absence of a field
F is lifted by the electric field, because the Coulomb potential of the nucleus is per-
turbed by the field F. This effect will be treated in greater detail in Sect. 15.2.

The linear Stark effect, which is observed in the hydrogen atom, cannot be so easily
understood on an intuitive basis. This is an effect which can be understood only in
terms of quantum mechanics. The originally present degeneracy of the /-states is lifted
by the electric field. This effect will be treated in greater detail in Sect. 15.2.

The fundamental difference between the Stark effect and the splitting of spectral
lines in a magnetic field is the fact that in an electric field, states with the same absolute
value of the magnetic quantum number mj, i.e. m yand —my, behave in an identical
manner. This can be easily understood: the effect of an electric field on a “clockwise”
and on a “counterclockwise” rotating electron, when the spatial distribution of the
electrons is otherwise the same, is, averaged over time, the same. The number of split
components is therefore smaller in the Stark effect than in the Zeeman effect: the
number of different terms is not 2+ 1, but rather j+1 for integral j and j+1/2 for
half-integral j.

An example is the Stark effect of the Na D lines, shown in Fig. 15.3. The magnitude
of the Stark shift is about 0.05 A for the Na D lines in fields of about 107 V/m (10°
V/em). It increases with the principal quantum number n, since orbits with a larger

m;
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2 i Fig. 15.3. Energy level diagram showing the Stark

effect on the sodium doublet 32P3,2’1,2 ~3°5,,, and
vy —— the splitting pattern of the D lines
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principal quantum number also have a larger polarisability. Therefore the Stark effect
is extremely important for the investigation of Rydberg atoms (cf. Sect. 8.12).

The Stark effect which is caused by the strong electric fields resulting from the
chemical bonding between atoms, is extremely important to the understanding of
molecular spectra. It is also important for the clarification of the influence of the
crystal electric field in solids on the atomic term diagrams of component atoms, as well
as in gases at high densities. In the latter, the Stark effect is the most important source
of spectral line broadening.

15.2 Quantum Theory of the Linear and Quadratic Stark Effects

15.2.1 The Hamiltonian

We shall treat the quantum theoretical explanation of the Stark effect in some detail
here, since we shall, in the process, be able to introduce the general and important
methods of perturbation theory.

We wish to investigate how the wavefunctions and the energy levels of an electron
are changed, when, in addition to the attractive nuclear potential V(r), a constant elec-
tric field is acting on it. We write the Hamiltonian of the complete problem in the form

H = Hg+ #T, (15.2)
where
hz
Hy= — Vi V(r) (15.3)
my

is the original Hamiltonian without the applied field. In (15.2), as in the following, the
upper index “P” indicates “perturbation”.
If the electric field has the field strength F, the electron is acted on by the force

—eF. (15.4)

(In order to avoid confusion between the energy E and the electric field strength, we
denote the latter here by F.) The corresponding potential energy, which results from
“force times distance”, is then

VP =eF.r, (15.5)

provided F is homogeneous.

Since the formalism which we are about to develop may be applied to perturbations
which are more general than (15.5), we have written #" instead of V' in (15.2). It is
found in many cases that the applied electric field produces only a small change in the
electron wavefunctions and energies, i.e. it acts as a so-called small perturbation. In
order to express the smallness of this perturbation explicitly, we write # in the form

#P =", (15.6)

where A is a small parameter. In the following, we also assume that the time-inde-
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pendent Schrédinger equation without the external perturbation potential has already
been solved:

Hoo,=EL9,. (15.7)

The indices 0 on #; and ES indicate that these quantities refer to the unperturbed
problem. We shall at first assume that the energies E are all different from one
another.

15.2.2 The Quadratic Stark Effect. Perturbation Theory Without Degeneracy+!

To be able to solve the Schrodinger equation which also contains the perturbation
potential, namely

Hwy=Ey, (15.8)

we represent the solution for which we are searching, , as the superposition of the un-
perturbed solutions ¢,. We expect, indeed, that the electric field will shift and perhaps
also change the shapes of the wavefunctions. These modified wavefunctions may be
constructed from the unperturbed ones by adding them to wavefunctions belonging to
other energy levels (Fig. 15.4). On the basis of such considerations, which also may be
justified mathematically in a strict sense, we arrive at the following trial solution for the
wavefunctions we are seeking:

oo
wr)= Yc,p,0). (15.9)
v=1
?;
E
w=118, +4)
E2 -
¢ /
Fig. 15.4. Example of how the super-
position of two wavefunctions ¢; and
e L ¢, (left) can lead to a new wavefunc-
1 tion with a shifted centre of gravity
(centre of charge) (right)

Here it is important to note that the wavefunctions ¢, depend upon the position
coordinate r, but that the coefficients ¢, do not. To fix the latter, we insert (15.9) into
(15.8) and obtain immediately

Ho L ey r)+# T e,0,r)=EY c,p,(r). (15.10)

"In this book, we treat time independent perturbation theory. Time dependent perturbation theory, which
is also very important, is described in detail in Vol. 2, H. Haken and H.C. Wolf: Molecular Physics and
Elements of Quantum Chemistry.
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In the first term on the left side, we shall use the fact that the wavefunctions ¢, obey
(15.7) and we may thus replace #,¢, by E2¢,. In order to free ourselves from the r
dependence in (15.10), we multiply from the left by @} and integrate over all space. As
we shall show in the appendix, the wavefunctions are orthonormal, i.e. the following
relations hold:

§orp,dV=>25,,. (15.11)
Furthermore, we introduce the abbreviations
Hy= o #7,dV. (15.12)

Since the parameters H fv carry the two subscripts 4 and v, one often thinks of the H Ev
arranged in a square array. Such an array is called a “matrix” in mathematics, and the
H 5\, are thus also called “matrix elements”, or more exactly, “matrix elements of the
perturbation operator # . With the help of (15.1 1) and (15.12), we obtain the follow-
ing equation from (15.10)

(Ep—E)c,+ YHEc,=0, (15.13)

which one must imagine as written out for all indices 4. Thus far, our procedure is com-
pletely generally valid and makes no use of the small magnitude of the perturbation.
We now assume, however, that the perturbation is small, in that we imagine, according
to (15.6), that the parameter A increases from zero. If the perturbation is exactly equal
to zero, the solution sought, (15.9), must naturally be the same as one of the starting
solutions ¢,. The coefficients which result for A = 0 are indicated by the superscript 0.
The initial state is denoted by a subscript x. We thus obtain the relation

0 1 for v=«
c, = 15.14
! <0 for v#+x ( )
or in shorter form,
=6, (15.15)

If we now let A increase, the coefficients ¢, will also change, of course. We shall
expect that as a first approximation, the coefficients ¢, increase proportionally to A. As
the next approximation, we must then take into account changes proportional to 12,
and so on. The same will naturally also hold for the new energy values E. We thus
arrive at

c,= Oyt ActV+2%cP+ ... (15.16)
and
E=E2+2eW4 224 . (15.17)
K

We subsitute these expressions in (15.13) and thereby obtain

(Eg—ER—2eM—22eP— )0yt AP+ .. )+ L AH (Ot AV +..)=0.
v

(15.18)

Expressions (15.16) and (15.17) define orders of magnitude, as one can easily
convince oneself by setting, e.g. 4 = 0.1. In this case, 1% = 0.01, which is only 10% of
A. Speaking a bit loosely, what we are doing is to solve (15.18) for the different decimal
places. In strict mathematical terms, this means that we must multiply out all the terms
of (15.18) and arrange them according to powers of 1. We then have to require that the
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coefficients of the individual powers of A cancel out independently. For the zeroth
power, we obtain

(ER—EDd,c=0, (15.19)
which is identically fulfilled. For the 1st power of A,
&0, +(E)-ENcP+HL =0, (15.20)

For further discussion of this equation, we differentiate between the cases where
u=kand y = k. For u= k, (15.20) reduces to

8(1)=H,1C,KE§¢;?JV1¢KC{V- (15.21)

For the perturbed energy, this means according to (15.17) that the 1st order perturba-
tion approximation,

E=E)+HY ., (15.22)

applies. If we choose u + k, the coefficients of the 1st order perturbation approxima-
tion can be calculated from (15.20):

UFK. (15.23)

So far, the coefficient ¢\ has not been determined. As can be shown from the normal-
isation coefficient, it must be set equal to zero:

M=, (15.24)

If we substitute the coefficients we have calculated into (15.9), the perturbed wavefunc-
tion is, in the 1st order perturbation approximation,

P
v = 0,0)+ 3 A 0,0). (15.25)
k Lyp— £y

Now we can take into account the terms in second order, i.e. with A%. A short cal-
culation yields

HY 12
(@<= g el 0"’“|0. (15.26)
verx B —E,
With this, the energy in the second order perturbation approximation can be expressed
as

P 2
E=E0+HE o+ y el

el (15.27)
vex EY—E°

We shall now examine the meaning of the formulae (15.25) and (15.27) in the case
when an external electric field F is applied. It can be shown (see Sect. 16.1.3 on selec-
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tion rules), for example that for the hydrogen atom H ,f!,c: 0. The matrix elements
which are not equal to zero are, according to (15.5) and (15.12), proportional to the
field strength F. Thus the energy E is shifted from the unperturbed energy EE by an
amount, according to (15.27), which is proportional to F2 One therefore speaks of the
quadratic Stark effect.

15.2.3 The Linear Stark Effect. Perturbation Theory in the Presence of Degeneracy *

In addition to this quadratic Stark effect, observations have shown a linear Stark
effect. We approach it as follows. In a purely formal way, we can see from (15.23 —27)
that the method we used above will not work if the denominator, i.e. E2— EY cancels
and at same time the matrix element in the numerator is not equal to zero. This can
actually happen, however, if we are considering degenerate states, such as we have seen
in the hydrogen atom. There we have an entire set of different wavefunctions with the
same principal quantum number n, but different / and m, which belong to a given
energy. To treat this case in the presence of a perturbation, one must fall back on the
so-called perturbation theory in the presence of degeneracy.

Let us briefly review what was done in the first step of perturbation theory in the
absence of degeneracy. We set up the requirement (15.14). In the case of degeneracy, as
we know, it is not only the mutually degenerate wavefunctions which can be solutions
to the Schrédinger equation for the energy E?, but also any linear combination of these
wavefunctions. Thus if we think of the perturbation being turned off, the perturbed
solution can be transformed into a linear combination of unperturbed solutions whose
coefficients are not known. The basic idea of perturbation theory in the presence of
degeneracy is to find these coefficients, in the zero order approximation, by a
systematic procedure. To this end we write

w(ir)= Y c9¢,(r)+corrections, (15.28)
vonly over
degenerate
states

where the summation includes only the mutually degenerate states. We ignore the cor-
rection terms. Equation (15.28) is formally the same as our earlier (15.9), but now we
are not summing over all states. However, the coefficients ¢(”’ can be formally deter-
mined if we return to the equation system of the form of (15.13), and allow the set of
coefficients ¢! to replace the coefficients c, there. If we have N mutually degenerate
states, we now have N equations with N unknown coefficients before us. In order that
the homogeneous system of equations be soluble, the determinant of the coefficients
must vanish. This provides the condition

(ES-E+HT)) HY, Hin
Hj, (E}-E+Hy,) ... H3 N -0 (15.29)
HY, (Ex—E+HJ,N)

The determinant here is also called a secular determinant. If calculated, it yields an N'th
degree polynomial in the energy E. When this is set equal to zero, it becomes an
algebraic equation for £ which has N roots, some of which may be equal to each other.
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As a concrete example, let us treat the first excited state of the hydrogen atom with
the principal quantum number n = 2. The wavefunctions of hydrogen are, as we know,
indicated by the quantum numbers n, / and m. To relate these to the present system of
indices, we write

Don,tm s n=2, (1530)

1 for /=0, m=0
2 for I=1, m=0
V= (15.31)
3 for /=1, m=1
4 for [=1, m=-1.
The trial solution (15.28) thus becomes
w(r) = cf?9,1r) + ¢ 9r(r) + SV 03 (r) + ¢ pa(r) (15.32)

where, to repeat once more, the ¢’s are wavefunctions of the hydrogen atom in the
n = 2 state, which are all degenerate. The matrix elements (15.12) are then, in concrete
terms,

HE = (% w(r)eFz, p (r)dV, (15.33)
u v

where it is assumed that the field is applied in the z direction. Using selection rules, it
can be shown, as in Sect. 16.1, that all the matrix elements disappear except for

H{,=Hj,. (15.34)
This can be written in the form
HY,=H}, =eFd (15.35)

because the wavefunctions referred to are real. In the present case, where N = 4 and all
matrix elements except for (15.35) disappear, (15.13) reduces to

(ES—E)ci+eFde,=0, (15.36)
eFdc,+(E5—E)c,=0, (15.37)
(E3-E)c;=0, (15.38)
(ES—E)c,=0. (15.39)

It is obvious that this system of equations breaks down into two groups of two:
(15.36) and (15.37) in one group, and (15.38) and (15.39) in the other. The determinant
for (15.36, 37) is
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0
—E
E erd \=0. (15.40)

eFd ES-E

This goes to zero when E assumes the values
E, =E%+eFd. (15.41)

It can be shown that the positive sign is associated with ¢; = ¢,, and the negative sign
with ¢; = —c,. The energy E is increased or decreased with respect to the unperturbed
energy, by an amount proportional to the field strength F. Equation (15.38) or (15.39)
requires that the perturbed energy be the same as the unperturbed energy. In particular,
it turns out that the wavefunctions ¢;(r) and ¢4(r) are in each case the “right linear
combination”. This can also be seen from the fact that for ¢;(r) and ¢,(r), the per-
turbation theory without degeneracy actually does not fail, because for the critical
terms (zero energy difference in the denominator), the matrix elements of the
numerator also go to zero.

We thus obtain overall the scheme shown in Fig. 15.5 for the energy splitting. The
same figure shows the wavefunctions in the presence of the field.

The linear Stark effect discussed here is a special case, in that it is only observed in
the hydrogen atom. The reason for this is easy to understand: the matrix element
(15.33) differs from zero only when /=/". In contrast to hydrogen, the / degeneracy is
lifted in other atoms, i.e.

0 0
En,.’,m * En,l’,m’

as was shown in Chap. 11.

Fig. 15.5. The linear Stark effect. Lower left: As
the field strength Fincreases, the energy level Eg is

split into three levels. Upper left: Representation

the p function “dumbbells” in the x, ¥ and z direc-
tions. Upper right: Superposition of s function

the centre of charge of the electron. Middie right:

~N

L — > Field strength tion

of four mutually degenerate wavefunctions in a
' \ . single figure. Dotted line, s functions; solid lines,
i and p dumbbell in the z direction causes a shift in

The dumbbells in the x and y directions are not af-
// "‘\ fected. Lower right: Superposition of s function

E° < and p dumbbell (with amplitude in the opposite
direction compared to the previous case) leads to a

shift of the centre of charge in the negative z direc-
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15.3 The Interaction of a Two-Level Atom
with a Coherent Radiation Field

In the previous chapters on the interaction of a spin with a changing magnetic field, we
came upon the interesting phenomenon of spin flipping, which has found numerous
applications in physics and chemistry. In this section, we shall show that a two-level
atom interacts with a coherent radiation field in a manner which is exactly analogous to
spin flipping. Although the spin is a system with exactly two levels, this assumption is
only an approximation for an atom. We simply assume that a radiation field induces
transitions between two neighbouring levels, and that all the other levels of the atom
are energetically so far from the two under consideration that we can neglect the effects
of the other states on the two at hand. This is understandable in light of the perturba-
tion theory in the absence of degeneracy which was treated above, because combina-
tions of the wavefunctions associated with distant levels with the wavefunctions
belonging to the two close levels will have large energy differences in the denominator,
and will thus make only small contributions (15.25).

In the quantum mechanical treatment, we begin with a Schrédinger equation for an
electron which is moving in the potential field V of the nucleus and in the additional
potential of the radiation field V. This equation has the form

2
(— zh V4 V4 Va) w(r,t)=ih%l. (15.42)
my

To find the explicit form of ¥, let us think of the radiation field in the form of a plane
wave:

F = Fycos(kx—wt). (15.43)
In order to avoid confusion between the energy and the electric field strength, we again
indicate the latter with F. We assume, furthermore, that the atom is localised at r = 0.
Since the wavelength of the light A = 2 z/k is in general much larger than the extent of
the electron wavefunctions of an atom, we can, to a very good approximation, set x = 0
in (15.43). We then have a practically homogeneous radiation field over the atom,

F=Fycos(wt). (15.44)
We also assume that the radiation field is polarised in the z direction:

Fy=(0,0,Fp) . (15.45)

The force exerted on an electron by an electric field F is given by —e - F. The result-
ing potential energy (negative of the force times the z vector) is

Vo=eFyzcoswt. (15.46)

In the following, we shall use this ¥, in (15.42). We assume that we have already solved
the Schrodinger equation in the absence of an external field:



15.3 The Interaction of a Two-Level Atom with a Coherent Radiation Field 261

my

2
(ﬁ zh v"-+V)¢j=EJ¢j, i=12, (15.47)

i.e. we assume that the wavefunctions and energies are known, at least for the indices
j=1,2,

Since we expect transitions only between the two levels 1 and 2, we cast the wave-
function of (15.42) in the form of a superposition of the unperturbed wavefunctions of
(15.47),

w(r,0) = ci(6) @1(r) + (1) ga(r) - (15.48)
In order to determine the still unknown coefficients ¢; and ¢,, we substitute (15.48) into
(15.42), multiply from the left by ¢} or ¢#, exactly as in Sect. 15.2, and integrate over
the total space. By introducing the abbreviation

Hp = {g#(r)eFyz ¢;(r)dV coswt, (15.49)

we obtain the equations

.
CIZE[(E]'FHIP])CI"'H%CZ] (15.50)
and
o1
C2=7[H2P1C1+(E2+H2Pz)f2], (15.51)
1

in analogy with Sect. 15.2.

In many cases, we can assume that /{; and H%, vanish (compare Chap. 16 on sym-
metries and selection rules). For the solution of (15.50, 51), we attempt the trial
function

¢;=d;(r)e"VPE!, (15.52)

With this equation, (15.50) and (15.51) reduce to

dy= %(Hﬁdzei(‘gl“ﬁz)”") (15.53)
1
and
dy= %(H;me—i“fr@”*). (15.54)
1

Meanwhile we have assumed, according to (15.43), that the radiation field is mono-
chromatic. We now introduce the further assumption that the field is in resonance with
the electronic transition. This means that the following relation is valid:

Ey,-Ei=hw. (15.55)
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If we now extract the factor
coswt = L(e'“ +e 1) (15.56)

from (15.49), and multiply by the exponential function in (15.53), we obtain the overall
factor

L(1+e 2eny, (15.57)

As we shall see in the following, d; and d, vary quite slowly in time compared to the
frequency w, so long as the field strength is not too great. This makes it possible for us
to average (15.53) and (15.54) over a time which is long compared to 1/w, but still
short compared to the time constant which determines the change in d, see (15.61).

The result of this averaging is that the rapidly changing term exp( — 2iwt) makes a
contribution which is much less than 1 and can therefore be neglected compared to 1.
This is called the “rotating wave approximation” in the literature. The expression
comes from spin resonance. (In Sect. 14.4 the term exp(—iw?) did not appear, because
we had applied a rotating magnetic field in the first place.) In (15.54) there is a term
with exp(+2iw?) which corresponds to (15.57), and in this case too, it is negligibly
small. If we abbreviate the integral in (15.49) by substituting the dipole moment matrix
element (0,); = [p*(r)ezp;(r)dV, (15.53) and (15.54) reduce to

1

dy = —3Fo(0)nd; (15.58)
and

: 1

d, =§%F0(9z)21d1- (15.59)

These equations are strikingly similar to the spin equations (14.94) and (14.95)
which we met in Sect. 14.4. It can be shown that (6,),, = (#,)3 can be chosen to be real.
By introducing another abbreviation,

1
Q=—F,8 s 15.60
T 0(62)12 ( )

where Q is to be understood as a frequency, we obtain as a solution to (15.58, 59)
dy=cosQt, (15.61)
dy= —1sinQf. (15.62)

We have based this on the assumption that at time ¢ = 0, the electron is known for

certain to be in the lower level. Thus the Schroédinger equation (15.42) for a two-level

system interacting with an external monochromatic radiation field is solved. The coef-
ficients ¢; and ¢, in (15.48) now obviously have the form

c,=e WNE o5 Q1 (15.63)

cy= —ie WAEGnOr (15.64)
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As we know, the square of the absolute value of c; gives the probability of finding
the system in state j. |cj\2 can thus be unterstood as the occupation number N; of the
state /. As indicated by the corresponding formulae

N, =|c; > = cos?Qt, (15.65)
N, = |c,|* = sin*Q1, (15.66)

the electron oscillates with the frequency € between states 1 and 2. It is instructive to
calculate the dipole matrix element according to

0, =fw*ezwdV =(0)12¢t c2+(0)n 3 cy . (15.67)
The final result of the whole process is
0.= —(0,)125in(2Q2¢) sinwt. (15.68)

This says that the dipole moment swings back and forth with the rapidly oscillating
component sinw?, and that its magnitude is also modulated by sin 2 Q¢. The dipole
moment is thus largest when the electron has exactly the occupation number
N;= N, =1, that is, its probability of occupying either level is the same. The result
(15.68) and the formulae (15.65) and (15.66) are very closely analogous to the results
obtained for spin resonance in Sect. 14.4. We shall examine this analogy more closely
in the next chapter. It makes it possible to extend a series of spin experiments to optical
transitions between electronic states in atoms. Such experiments require coherent light
with a high field strength. The latter, F), is necessary so that the transitions can occur in
a time fy~1/Q2~1/F, — [compare (15.60)!] — which is so short that the electron
motion is not appreciably perturbed by other effects, e.g. collisions between atoms in
gases or the spontaneous emission of light from excited states. Typical values for { lie
between 10 % and 10~ ''s.

15.4 Spin and Photon Echoes

In this section we shall treat two especially interesting phenomena, spin echo and pho-
ton echo. If we compare the results of Sect. 14.4 with those of the preceding section, we
see a very close analogy between the behaviour of a spin subjected to both a constant
magnetic field and a transverse oscillating magnetic field, and an electron in a two-level
atom which is subjected to an oscillating electric field. In both cases we assume that the
frequency of the applied field is in resonance with the transition frequency of the spin
or of the electron transition from the lower to the upper state. With reference to the
analogy which we shall wish to use, we shall first discuss the behaviour of a spin.
As we saw in Sect. 14.4, the application of a coherent, resonant field causes the spin
eventually to flip. How far it flips depends on the length of time the external field is
applied. If one lets the field work just long enough to flip the spin by /2, one speaks
of a /2 or a 90° pulse. If the field is left on twice as long, the spin will flip completely
over. In this case one speaks of a 7 or 180° pulse. The so-called spin echo is an impor-
tant application of these ideas. Here one first applies a n/2 pulse (Fig. 15.6). In a
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Fig. 15.6. The spin echo (photon echo) experiment.
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number of practical cases, the spins do not precess with the same velocity, due to
spatially varying static magnetic fields. They therefore spread out in the course of time
(see Fig. 15.7). Denoting the frequency width of the precession by A w*, we may define
a mean time, T3, within which the spins spread, by Aw* =27/T5. Aw* is called
“inhomogeneous width”. A single precessing spin can emit electromagnetic radiation.
Because the spins get out of phase with each other, so do their electromagnetic emis-
sions, which leads to a reduction in the total intensity. If one now applies another
pulse, this time a 180° pulse (Fig. 15.6), the spins are flipped. What happens here can
best be compared with runners on a track. At the beginning of the race, all the runners
are at the same place, the starting line. After the starting gun (the 90° pulse), they have,
however, moved different distances away from the starting line because of their differ-
ent velocities. The effect of the 180° pulse is the same as that of a second gun, which
signals the runners to turn around and return to the start at the same speed as before.
Obviously, they all reach the start at the same time. For the spins, this means that at a
certain time after the 180° pulse, they will again all be in phase, and thus their radiation
will be in phase. As a result, the original radiation intensity is reached again. This
picture must be somewhat modified, because there are also irreversible phase changes
of the spins, which are characterised by the so-called homogeneous linewidth, which we
shall discuss in Sect. 16.2. Due to this homogeneous linewidth, the original starting
intensity can no longer quite be attained (see Fig. 15.8). If one repeats the 180° pulse,
the result is that shown in Fig. 15.9. The decay time T7,, which we met earlier in
Sect. 14.5 in the Bloch equations, can be calculated from the decay of the peaks. The
homogeneous linewidth can then be determined from T5: Aw = 2n/T;. The analogy
between the spin and the two-level atom has now made it possible to apply the entire
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Fig. 15.8. Decay of the spin emission and echo emission of protons in water. From A. Abragam: The
Principles of Nuclear Magnetism (Oxford 1962)
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Fig. 15.9. A series of spin echos obtained from protons in ordinary water. In this method, a 90° pulse is
applied at time 7= 0, and is followed at times 7, 37, 57,..., (2n—1)7 by a 180° pulse. The echoes are
observed at the times 27, 471,..., 2n T (n an integer). It can be shown that the height of the peaks decays
according to the formula f(n) = exp(—2n1/T;). From A. Abragam: The Principles of Nuclear Magnetism
(Oxford, 1962)

process of spin echo to the radiation field in the case of the photon echo. We leave it to
the reader to develop this analogy on the basis of the above.

To this end, let us consider a system of two-level atoms. An example is the ruby, in
which chromium ions are included as impurities in a basic lattice of aluminium oxide.
To a certain approximation, these ions can be treated as two-level atoms. As we saw in
Sect. 15.4, the occupation number of the upper state increases due to the applied
resonant oscillating electric field (15.66). The electron of the impurity atom is thus to
be found more and more frequently in the upper state, while the occupation of the
lower state decreases correspondingly. Eventually a state is reached in which the
occupation numbers are equal. Because this is an exact analogy to the state in which the
spin has flipped through 90°, or in other words, the occupation numbers of the “spin
up” and “spin down” states are equal, one speaks in this case, too, of a 7/2 or 90°
pulse. If one applies the external electric field to the electron for twice as long, it goes
completely into the upper state, again in analogy to the spin, which is at this point
rotated through 180°. Therefore one speaks again, in the two-level atom case, of a 180°
or 7 pulse. As (15.66) and (15.60) show, the “flipping” occurs more rapidly when the
applied field strength F is larger.

We now imagine that the electron has been excited by a n/2 pulse. It can be shown
that the dipole moment of the electron then oscillates freely with the frequency of the
optical transition, w. This can be shown by a calculation of the expectation value of the
dipole which is analogous to (15.67) and (15.68), although there is no external applied
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field. According to Maxwell’s Theory, however, an oscillating dipole can emit electro-
magnetic waves, in this case, light waves. This means that the ensemble of impurity
atoms emits light after the n/2 pulse. However, since the atoms are subject to different
fields within the crystal, their transition frequencies are not all the same, and some of
the oscillating dipoles emit light which is out of phase. The emitted intensity is there-
fore reduced.

Now, just as in the spin case, we can apply a n pulse which brings the diverging
phases of the oscillating dipoles back together. This prediction is justified because of
the complete mathematical correspondence between the behaviour of spin and a two-
level atom. As the oscillating dipole moments come back into phase, they emit a light
pulse which can be seen as the “echo” of the previously applied n pulse. In the optical
range, the phases of the dipoles diverge very rapidly, so it is necessary in these experi-
ments to use short pulses of about 10~ '%s and less.

15.5 A Glance at Quantum Electrodynamics*

15.5.1 Field Quantization

In this section we want to sketch the nonrelativistic theory of the Lamb shift. To this
end we first show by means of an example how the light field can be quantized. We
start with Maxwell’s equations in vacuum which reads:

curlE = fﬂ, (15.69)
or
curlB = .‘,‘Q,uoE , (15.70)
at
divE =0, (15.71)
divB =0 (15.72)
where
1
Ho €&y = ? (15.73)

and where ¢ is the light velocity in vacuum. Let us consider a standing electric wave
with wave vector k and with its electric vector in the z-direction

E=(0,0E,), E,=p(t)Nsin(kx) (15.74)

and where p(7) is a still unknown function of time. To derive the corresponding mag-
netic induction we insert (15.74) into (15.69). One can convince oneself readily that
only the y-component of this equation is non-vanishing.

_OE, 0B,
ox ot

. (15.75)

Since the left-hand side of this equation is proportional to cos (kx) it suggests that we
put B, proportional to cos(kx). This leads us to the ansatz
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N

B, = q(t) — cos(kx) (15.76)
C

where we have included the factor 1/¢ for later convenience. This factor gives p and g
the same physical dimension. Inserting (15.76) into (15.75) yields

dq _ (15.77)

where we have used the abbreviation
w=ck. (15.78)

Since k is a wave number and ¢ a velocity, win (15.78) is a circular frequency. Inserting
E (15.74) and B (15.76) into (15.70) yields

ap _ —wq. (15.79)
dt
When we differentiate (15.77) with respect to time and eliminate p from it by means of
(15.79), we obtain
d*q

Tt w’qg=0. (15.80)

This equation is the well-known equation of a harmonic oscillator with circular fre-
quency . Equations (15.77) and (15.79) can be written in a very elegant form by intro-
ducing the Hamiltonian

#=Lw(p*+q?). (15.81)

With its aid we can write (15.77) and (15.79) in the form

dg _ X (15.82)
dt ap

4 _ _ 3N (15.83)
dt dq

Quite evidently we are dealing here with the Hamiltonian equations of a harmonic
oscillator. This then allows us to identify p with the momentum and g with the
coordinate of an harmonic oscillator. With this identification we have the key in our
hands to quantize the electromagnetic field. This is done by a purely formal analogy. In
Sect. 9.4 we saw how to quantize the motion of the harmonic oscillator. Here we want
to do exactly the same. To put this analogy between the harmonic oscillator and the
electromagnetic field on firm ground we show that # (15.81) is identical with the
energy of the electromagnetic field mode. According to electrodynamics, the field
energy in the volume 7= L? s given by
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ot 1
U=|— (£0E2+—Bz) d’x . (15.84)
2 Ho

By inserting (15.74) and (15.76) into the energy expression (15.84) we obtain
B L
U= %sto {Lz | [p*sin’(kx) + g cos(kx)] a’x} . (15.85)
0
Under the assumption of periodic boundary conditions, the integration over x can easi-
ly be performed so that we are left with
U=1 9N (p*+q?). (15.86)

We find exactly the same function of p and g as occurring in (15.81). However, this
identification now allows us to determine the still unknown normalization factor N,
Comparing (15.86) with (15.81) we obtain

N= ‘/SE I/iV (15.87)
0

Now let us return to the quantization problem. We wish to utilize the analogy
between the Hamiltonian (15.81) and that of the harmonic oscillator. It is convenient to
use its Hamiltonian in the form

Tho (T + &%) (15.88)
The equivalence of (15.81) with (15.88) is achieved by putting

p=Vhil, q=|hé (15.89)

so that the Hamiltonian (15.81) acquires exactly the same form (15.88). Here, however,
we known what the quantum version looks like. We have to replace /7 by the operator
0/10¢ exactly in analogy to Sect. 9.4. By exploiting that analogy further we introduce
creation and annihilation operators by

1 9 '

— - = =bh", 15.90
l/i< aé“) (120
1 d

N =b 15.91
/2 (a: +§> ( )

or, solving for p and ¢

p=i l,/ ;(b*—b), (15.92)
’/ b+
q= ?(b +Db). (15.93)
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The creation and annihilation operators &+ and b obey the commutation relation
bb*-b*b=1. (15.94)

By using (15.92) and (15.93), we can express the free fields E and B by means of these
operators in the form

E.=i(b"-b) I/ ;Nsin(kx) (15.95)

B,=(b"+b) 1/ ; N cos(kx). (15.96)
(&

The normalization factor is given by

w 2 1
N = — —, £ =—. 15.97
|/ o |/ 7 0 Mo - ( )

With the transformations (15.90) and (15.91), the Hamiltonian (15.88) can be ex-
pressed by the creation and annihilation operators exactly as in Sect. 9.4.

H=hob b+, (15.98)

We leave it as an exercise to the reader to convince himself that this Hamiltonian could
be also derived by inserting (15.95) and (15.96) into (15.84). For a number of problems
dealing with the interaction between electrons and the electromagnetic field we need the
vector potential A. 4 is connected with the magnetic induction by

B =curlA . (15.99)
In our book we choose the “Coulomb gauge”
divd =0. (15.100)

For B in the form (15.96) the relations (15.99) and (15.100) are fulfilled by

haou 2 1 .
A,=0, A,=0, Az=4(b*+b)|/——2—°|/7?sm(kx). (15.101)

Let us summarize the above results. When we quantize the electromagnetic field, the
electric field strength, the magnetic induction, and the vector potential become
operators that can be expressed by the familiar creation and annihilation operators o™,
b of a harmonic oscillator. The total energy of the field also becomes a Hamiltonian
operator of the form (15.98).

Since the normalization of waves in infinite space provides some formal difficulties
(which one may overcome, however), we shall use a well-known trick. We subject the
wavefunctions
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exp (ik; - r) (15.102)

to periodic boundary conditions. In order to apply the above formalism in particular to
the Lamb shift, two changes must be made:

1) Instead of using a single (standing) wave, the electromagnetic field must be written
as a superposition of all possible waves.
2) Instead of standing waves, the use of running waves has some advantages.

Since the derivation of the corresponding relations does not give us any physical
insight beyond what we gained above, we immediately write down these relations.

E(r)=1Ye; V h“"‘, [ib,exp(ik,-r)—ib] exp(—ik,-r)] (15.103)
A 2807/

B(r) =Y kxe, %ﬂ[iblexp(ikl-r)—ibf exp (—ik; - r)] . (15.104)
; ,/ ,

The individual expressions have the following meaning:
A index labeling the individual waves

e, vector of polarization of wave

w, circular frequency

k; wave vector of wave

k=k/|k|. (15.105)

The vector potential 4 reads

A=Ye; |/ —juuk [b,exp(ik;-r)+ b exp(—ik;-r)]. (15.106)
A Zw;LeoV

The operators b, b; again obey the commutation relations

byb}—bj b, = 63 (15.107)
byby—byb,=0 . (15.108)
bjbj—bjb}=0. (15.109)

The Hamiltonian operator reads
Htiea= L haw;(b] b+ 1) . (15.110)
P

As usual, the Schrédinger equation is obtained by applying the Hamiltonian operator
to a wavefunction, which we call &:

Hien @ =ED. (15.111)
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We shall determine the wavefunction and energies in the exercises. For what follows,
we need only the ground state defined by b; ®;= 0 for all A, and the states which are
occupied by a single light quantum (photon).

@, =b; & (15.112)
with quantum energy

E,=hw;(+E). (15.113)
It has the zero point energy

Eo= g;hwl. (15.114)

This expression is infinite, but it is also unobservable and therefore dropped.

15.5.2 Mass Renormalization and Lamb Shift

We shall now treat the interaction of a hydrogen atom with the quantized light-field.
The interaction is brought about by the vector potential 4 occurring in (14.12). Since 4
is small in the present case, we shall retain only terms linear in A4, and assume
divA4 = 0. But in contrast to that former case, the fields are not externally given, but
become now by themselves variables of the system. Therefore we must not only write 4
in the form (15.106), but we must also add to the Hamiltonian #,+ #, that of the
quantized field, i.e. #}.q. Thus the Schrédinger equation to be solved reads:

(Hat+ Htia+ #in)) V=E ¥ (15.115)
where
ﬁZ
Ha = — A+ V(r) (15.116)
2myg
Hea= L hw;bl b, (15.117)
A
, e . e h : + . "
Hig =—A-p=—1Ye || ———[biexp(ik; -r)+b; exp(ik;-r)]p
My my A 2w g0 Y
where
. h
p=—egrad. (15.118)

1

In order to solve the Schrédinger equation (15.115), we shall apply perturbation
theory, where

Ho= Hat Hied (15.119)

serves as unperturbed Hamiltonian and #, as perturbation. The eigenfunctions @, of
#, are products of an eigenfunction of #, i.e. ¥ and of an eigenfunction of #%eq,
i.e. @. We shall abbreviate the set of quantum numbers n, /, m of y by n. In the fol-
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lowing we shall be concerned with the vacuum state &, and one-photon states @; =
b;” @,. Identifying the index v of ¢, with (n,0), or (n, 1) we may write the unperturbed
wavefunction as
¢, = y,(r)®, where (15.120)
k=0, or A. (15.121)

The corresponding energy levels are

EV=Ey) (k=0) and EY =Esthw, (k=21). (15.122)

For the perturbation theory we need the matrix elements of ., which read in bra and

ket notation:
e h . 4 ; .
— Y e |/ ———— [byexp(ik, - r)+ by exp(—ik;-r)p|ww Py
my A 2wye v

H}Jv: <rz¢x

(15.123)
which may be rearranged as
1 e h . ~ 1
Hy=— %Y || ———— [n|exp(ik;-r)e,- p|n'){ | b;| D)
my % 2w, e
+{(nlexp(—ik,-r)e,-p|n'y{(D.| b | D] . (15.124)
As we know from the quantized harmonic oscillator,
(D | b | D) = (De| by | Dy =0 . (15.125)

Therefore the perturbation energy in first order vanishes. Starting from the vacuum as
unperturbed state, i.e. k' = 0, we further have

(Dl by Poy =0, (D] b [Py) = Iy (15.126)

In other words, a single photon A may be generated. We assume that the atom sits at the
origin and that the extension of the electronic wave function is small compared to the
wavelength of the light waves exp[ik; - r]. This allows us to ignore this factor in the ma-
trix elements. In this way H},‘, is reduced to (with k = 1)

e h
H ,=H, =— |———(n|e,B|n" . (15.127)
" a0 mg 20)1 &p 4

The expression for the perturbed energy in second order therefore reads

1 2
8(2)= Z |Hn’,»1;n,0| (15128)

0 0 .
H'J-En_En‘_th
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In quantum electrodynamics, the processes which lead to ¢ ® are usually visualized as
follows:

An electron is in its initial state n, and there is no photon. Then a photon of kind A
is emitted, [creation operation b; in (15.124) and (15.128)!] and the electron goes into
the state n'. Finally the photon is reabsorbed [annihilation operator b; in (15.124) and
(15.128)!] and the electron returns to its state #. This process is described by the follow-
ing “Feynman diagram” (Fig. 15.10).

n n n

Fig. 15.10. Example of a Feynman diagram: virtual emission and reabsorption of a photon

In the following we have to distinguish the different field modes more carefully. To
this end we replace the general mode index A by the wave vector k and an index ; indi-
cating one of the two directions of polarization. Furthermore we use the relation be-
tween frequency and wave number

W, =wp=ck . (15.129)

While we initially start with waves normalized in a volume ¥ we will eventually go over
to an integration which is done by the rule
d’k

L— E j (15.130)

1
oy @2n)’

Using (15.127, 129) and (15.130) we may cast (15.128) into the form

2 Aty |2
1 .
e0=_ L et g Ly Knle BInDF (15.131)
(27n)" 2mpeg wy nj En—E, —hwg

For further evaluation we split the integral over k-space into one over the space
angle Q and one over the magnitude of k, i.e. k,

[d’k=[k*dk [dQ . (15.132)

We then first perform the integration over the space angle and sum up over the two di-
rections of polarizations. Since the evaluation is purely formal we immediately write
down the result

JdQ % [¢nle;-pin W=4n2|n|plnf . (15.133)
This leads us to the following result for the self-energy

1 2eth < [<n|pln'y)?
2) _
@ - : fwdw E—*

2 3 0 (15.134)
(27m)" 3mpege 0 -E,—hw
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A detailed discussion of the sum over n’ reveals that this sum certainly does not vanish
more strongly than 1/w. We thus immediately recognize that the integral over w in
(15.134) diverges which means that the energy shift is infinitely great. This seemingly
absurd result presented a great difficulty to theoretical physics. It was overcome by
ideas of Bethe, Schwinger and Weisskopf which we will now explain.

When we do similar calculations for free electrons we again find an infinite result,
which can be seen as follows. We repeat the whole calculation above but instead of ei-
genfunctions i, of the hydrogen atom we use the wave functions of free electrons

Wn(r) = yp=Nexp(ip - r/h) (15.135)

Note that in this formula p is a usual vector whereas p occurring for instance in (15.127)
and (15.131) is the momentum operator (%/1) grad. Instead of matrix elements, which
were between the eigenstates of the hydrogen atom, we now have to evaluate matrix
elements between plane waves. We immediately obtain

@'|plp>=N*[exp(—ip'-r/h)pexp (ip-r/h)d’r (15.136)
and
@'|Blp>=pdpy - (15.137)

Furthermore, we have to make the substitution
E)-ES—E,-E, (15.138)
but we immediately find

(Ey—Ep)S,, =0 (15.139)

on account of (15.137). By putting all the results together we obtain the self-energy of a
free electron in the form

2 o
@ _ ! ze 2Y do . (15.140)

£
(2 7:)2 3mgsoc3 P 0

We notice that the self-energy of a free electron of momentum p is proportional top>.
Equation (15.140) can be interpreted as giving rise to a shift in the mass of the electron,
which can be seen as follows: The energy of the free electron without interaction with
the electromagnetic field (“bare electron™) reads

E,=p*/(2my) . (15.141)
In it, M is the “bare” mass. The energy shift just calculated is

AE,— — 2¢? p*ldw (15.142)
r 27n)? 3miec’ 0 - )
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Thus the total energy reads

p?

Zmo

E,+AE,= (15.143)

While the mass of the “bare” electron neglecting electromagnetic interaction is /71, tak-
ing this interaction into account the electron mass is m,. Note that in this type of con-
sideration one uses 7 and not /1, in (15.142). This follows from the “renormalization”
procedure we will describe now.

Since we always make observations on free electrons with the electromagnetic inter-
action present, (15.143) must be just the expression we normally write down for the en-
ergy of a free electron where m is the observed mass. Thus we can make the identifica-
tion

1 1 1 4e* =
s 3 — Jdw=
my My 2m)" 3mpegc 0

1 -
— —2a (15.144)
moy

where 24 is merely an abbreviation of the last term of the middle part of (15.144). The
electromagnetic self-energy can be interpreted as a shift of the mass of an electron from
its “bare” value to its observed value m. This shift is called renormalization of the
mass.

The argument used in renormalization theory is now as follows. The reason that the
result (15.134) is infinite lies in the fact that it included an infinite energy change that is
already counted when we use the observed mass in the Hamiltonian rather than the
bare mass. In other words, we should in fact start with the Hamiltonian for the hydro-
gen atom in the presence of the radiation field given by

~2 2

w="r___° L, . (15.145)
2 iy dmegr

Then using (15.144) we can rewrite # as

H= - i H+ap?) . (15.146)
2 my dmegr

52 2
14

Thus if we use the observed free particle mass in the expression for the kinetic energy
(which we always do) we should not count that part of #,, that produces the mass
shift, i.e. we should regard

Aoy + Ap* (15.147)

as the effective interaction of an electron of a renormalized mass m with the radiation
field.

Returning then to the calculation of the Lamb shift, we see that to first order in
e%/hc we must add the expectation value of the second term in (15.147) to (15.134) in
order to avoid counting the electromagnetic interaction twice, once in m, and once in
#ip . Thus more correctly the shift of the level n is given by
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1 2 zﬁ o0 1} ~ 2 "2
eP=— 27 _[wdo|¥ ‘f}” “;'”” L SnIBTImY | s qag)
(2m)° 3mpege” 0 n E,—Ep—how heo

The second term under the integral in (15.148) can be brought into a form similar to the
first term under the integral by means of the relation

(n]ﬁerw:2(n|ﬁ|n’)(n’|p"|n) (15.149)

In order not to interrupt the main discussion we will postpone the proof of this relation
to the exercises. Using (15.149) and (15.148) we find after a slight rearrangement of
terms

E-EY
E-FE% —hw

@ _ 1 282

8 —
2n)? 3migye

(15.150)

3§|<n'|ﬁ|n>rzgdw

We note that the integral over w is still divergent, however, only logarithmically. This
divergence is not present in a more sophisticated relativistic calculation. Such a calcula-
tion yields a result quite similar to (15.150), but with an integrand falling off more rap-
idly at high frequencies s = myc? We can mimic the result of such a calculation by
cutting off the integral at w = myc >/ h. The integral can be immediately performed and
yields

1 2¢? myc?
(2) _ A 2,0 0 0
e = (n'|plnyP(EN —EY In|—2— 15.151)
2n)* 3myeyhe’ ,;‘ 1BIn> P En : EY —E° (

where we have neglected | E ‘" E 9,,| compared to mgyc®. The further evaluation of
(15.151) requires some formal tricks which are purely mathematical. Namely,

2
myc

In|————
(Eh —EY

is replaced by an average

2
In ‘mOC I
SRR i FETE
(|Enw —EN)

Clearly, we may now rewrite (15.151) in the form

1 2@2 |m C2|
(2)2 0 (nl p‘ n) Z(an—EO) . (15.152)
(271’)2 3m%£0hc3 (lEg’—ES\) ;‘ | | I n n

To simplify (15.152) further we use the relation

L Kn'|plny PEN —ER) = = (a1, 15, Hall | n) (15.153)
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which will be proved in the exercises. The double commutator on the right-hand side
can be easily evaluated. We assume #, in the form

2
Hy= — i A+ V() . (15.154)
my

We readily obtain (cf. Sect. 9.3)

P h aV(r
[Drs Hal = — *) (15.155)

1 0x

and in a similar fashion
(B, 1B, #all = — R*AV(r) . (15.156)

Using for V the Coulomb potential of the electron in the hydrogen atom,
V=—e%/4 meg|r|), we can readily evaluate the right-hand side of (15.156). Using a
formula well known from electrostatics (potential of a point charge!) we find

AL= —47nd(r) (15.157)

7]

where é(r) is Dirac’s delta function in three dimensions. Using this result and the defi-
nition of bra and kets (see Problem 9.19), we readily obtain

2 2
(15'153)=ﬁ7 nla_——¢

dmey|r| 2 g

242
f>— R ) PO dr (15.158)

and making use of the properties of the d-function

e’h?

(15.158) = 5 RO (15.159)

&g

We are now in a position to write down the final formula for the renormalized self-
energy shift by inserting the result (15.156) with (15.153) and (15.159) into (15.152). We
then obtain

2 2
Lo | 2e | my c?| eh

IACI. (15.160)
@n)? 3mieghe®  (|ES—EY)y 2¢

To obtain final numerical results we have to calculate numerically the average as well as
| w, (0) |. For the hydrogen atom |, (0) *is well known and is nonzero only for s-states.
The average value was calculated by Bethe for the 2§ level. Inserting all the numerical
values we eventually find ¢®/# = 1040 megacycles. According to these considerations
a shift between an S and a P level must be expected. Such a shift was first discovered
between the 2 S;,, and 2 Py, level of hydrogen by Lamb and Retherford.
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At first sight, it may seem strange that it is possible to obtain reasonable results by a
subtraction procedure in which two infinitely large quantities are involved. However, it
has turned out that such a subtraction procedure can be formulated in the frame of a
beautiful theory, called renormalization, and such procedures are now a legitimate part
of theoretical physics giving excellent agreement between theory and experiment. Un-
fortunately it is beyond the scope of our introductory book to cover the details of these
renormalization techniques.

Problems

15.1 A harmonic oscillator with mass m, charge e and eigenfrequency w is subjected
to a constant electric field. Calculate the wavefunctions to the first and second approxi-
mations by perturbation theory, and compare the result with the exact solution and en-
ergy values (see Problem 9.13).

As an example, one might choose the perturbation of the n =1 and n = 2 levels.

Hint: Use the b, b formalism in perturbation theory and the results of the correspond-
ing problems from Chap. 9.

15.2 The rotational motion of a two-atom molecule or of a rotating atomic nucleus
can be approximately described by the Schrédinger equation

hz dZ
- W Tﬂqu(g) =E¢(0),
0

where M is a mass and ry is an “effective” distance. Let the wavefunction ¢(68) be
periodic in the angular coordinate #: ¢(6+2n) = ¢(#). What are the wavefunctions
and energy values of this system? Then assume the system is perturbed by the addition-
al potential ¢ cos(26). Calculate E and ¢ in this case using perturbation theory with
degeneracy.

15.3 Prove that (15.112) fulfills (15.111) and verify (15.113).

Hint: Insert (15.112) into (15.111), use the commutation relations (15.107), (15.109)
and b; @,= 0 for all 1’s.

15.4 Prove that the general wavefunction

b= (bbb P, )

anf...nN!

fulfills (15.111) and determine E.

Hint: Insert (%) into (15.111), use the relations

by (b)) = (b)Y by =nbl 716y,

(15.109) and b, @, = 0 for all A’s.



Problems 279
15.5 Prove(n|p*|ny= ¥ (n|p|n"y(n'|p|ny.
o

Hint: Write the bra-ket as integrals [w#*pw, dxdydz and use the completeness
relation

Loy () wih(r')=o(r—r') (*%)

where & is Dirac’s function.

15.6 Prove Y [<n'|p|n) [(ED —Ep) = —1<n|(p, (B, Hell 0.
~
Hint: Start from the expression
T (n|p|n'> (n'|p|n)EY
and use the fact that the y,’s are eigenfunctions of #,. Use the completeness relation
(2.

15.7 Show that the Lamb shift can be understood qualitatively by the assumption that
the zero-point fluctuations of the field (= set of harmonic oscillators!) cause a shift of
the potential energy of the electron.

Hint: Write the electron coordinate as
r=r+s

where r corresponds to the unperturbed motion, and s to the field fluctuations.
Expand

(o) V") wa(r))

in the first two powers of 5, where (s ) = 0 and convince yourself, that an expression
analogous to (15.158) results.



