12. Orbital and Spin Magnetism. Fine Structure

12.1 Introduction and Overview

We have not yet discussed the magnetic properties of atoms. It turns out that the study
of these properties yields a deeper insight into the shell structure of atoms.

The impetus to study the magnetic properties was given by a few fundamental ex-
periments, which we shall discuss in this chapter. The most important are
— Measurements of the macroscopic magnetisation and of the gyromagnetic proper-
ties of solids, known as the Einstein-de Haas effect.

Measurements of directional quantisation and of the magnetic moments of atoms in
atomic beams, made by Stern and Gerlach.
— Observation of the so-called fine structure in the optical spectra of atoms.

We shall begin with the third point. Many of the lines in the spectra of alkali atoms
are double, and are called doublets. They occur because all the energy terms E, ; of
atoms with single valence electrons, except for the s terms (energy levels with no orbital
angular momentum), are split into two terms. This splitting cannot be understood in
terms of the theory discussed so far. It is fundamentally different from the lifting of
orbital degeneracy discussed in the last chapter. If the orbital degeneracy has already
been lifted, there must be a new effect involved, one which has not yet been taken into
account. Let us take as an example the D line in the spectrum of the sodium atom, i.e.
the transition 3 P < 3 S (Fig. 11.7 and 12.1). With sufficient spectral resolution, one can
see two lines: Dy = 589.59 nm = 16956 cm 'and D, = 588.96 nm £ 16973 cm ™ ! In the
following we shall often use this pair of lines as an example for explanation and experi-
mental demonstration of spectroscopic results. Like the Balmer series of the H atom,
the sodium D lines are especially suitable for demonstration of basic concepts in atomic
spectroscopy — so much so, that they have become the “guinea pigs” of the field.

Arrangement Screen Fig. 12.1. Arrangement for spectral separation of the two com-
Na lamp of prisms ponents D; and D, of the sodium D line. With this arrangement,

through prisms
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H Gasflame

with NaCl

Screen band on the continuous spectrum

the splitting can easily be demonstrated in the lecture hall by
replacing the screen with a television camera. To separate the
lines distinctly, one needs two commerically available straight-

Fig. 12.2. Arrangement for observation of the sodium D lines by absorp-
tion (as the so-called Fraunhofer line). The continuous spectrum of an arc
lamp or xenon high-pressure lamp is spread out by a prism. A gas flame
made yellow by addition of NaCl, or better still, sodium vapour from a
heated piece of sodium metal, absorbs the light of the D line from the
continuous spectrum. On the screen, therefore, the line is seen as a black
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To explain the doublet structure, one needs three additions to our previous picture:

— A magnetic moment y; is associated with the orbital angular momentum /.

— The electron also has a spin s. It too is associated with a magnetic moment, u,.

— The two magnetic moments p; and g, interact. They can be parallel or antiparallel to
each other. The two configurations have slightly different binding energies, which
leads to the fine structure of the spectrum.

Two demonstrations of the yellow sodium lines are shown in Figs. 12.1 and 12.2;
other experiments follow in Chap. 13.

12.2 Magnetic Moment of the Orbital Motion

An electron moving in an orbit is equivalent to a circular electric current. We know
from electrodynamics that a circular electric current generates a magnetic dipole field.
We expect that the orbiting electron will do the same, and it does in fact have a
magnetic dipole moment. This we shall now calculate.

The magnetic dipole moment of a conducting loop is defined as

u=I-4 [Am?], (12.1)
where [ is the current, and A is a vector which is perpendicular to the plane of the con-
ducting loop and which has a magnitude equal to the area enclosed by the loop. Thus
the vector u is also perpendicular to the plane of the loop.

If we bring this magnetic dipole into a homogeneous magnetic field B, a torque 7 is
applied to the dipole:

T=uxhB. (12.2)

The magnetic potential energy of the dipole is (Fig. 12.3)
Viag= —p-B= [ tda= —uBcosa, (12.3)

where « is the angle between u and B.

Fig. 12.3. Calculation of the potential energy of a con-
ducting loop in a magnetic field. The magnetic moment
is the product of the current 7 and the area vector 4. The
potential energy depends on the angle o between the
normal to the plane of the loop and the direction of the
magnetic field
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The magnetic moment can be defined either in terms of the torque in the field (12.2)
or the potential energy (12.3).

In atomic and nuclear physics, the magnetic moment is often defined as the torque
in a uniform field of strength A (not of strength B). Accordingly,

t=u'"xXH, u =ulA, (12.4)

if we indicate magnetic moments which are defined w.r.t. H by u'. Because of the
relation B = uyH, the induction constant gy =47 - 10"’ Vs/Am occurs in (12.4).
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T Fig. 12.4. Calculation of the orbital moment. The circulating electron has
e an angular momentum / and a magnetic dipole moment g,;. For a negative
1 P° 7m t charge, the vectors / and g point in opposite directions

We now wish to transfer the definition of the magnetic dipole moment to the atom
and calculate the magnetic moment of an electron with the charge ¢ = —e whichisina
circular orbit moving with the velocity v (Fig. 12.4). If the time for a single revolution is
T=2n/w, a current

=4__°% (12.5)
T 2n

is flowing. Here we have used e (without a sign) for the elementary unit of charge. Here

and in the following, we use a negative sign for the electron.
The magnetic moment g of this circular current is then, according to (12.1),

u=IA=-1lewr®. (12.6)

If we introduce ' the orbital angular momentum |I| = mvr = mewr?, we can rewrite
(12.6) as a relation between the magnetic moment and the orbital angular momentum

e

u= - . (12.7)

2m0

If the charge g is positive, the vectors u and / point in the same direction; if it is
negative, as with the electron, they point in opposite directions. Therefore (12.7) holds.
We have introduced the symbol m, to make it clear that the rest mass is what is meant.

! The orbital angular momentum is given by /, and its magnitude by ||. This is to prevent confusion with the
quantum number / of the orbital angular momentum. See also (8.28)
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The proportionality between angular momentum and magnetic moment is also
known as the magnetomechanical parallelism. The fact that it is valid in atoms is by no
means self-evident, and follows from experimental observations which will be dis-
cussed below.

As the unit of magnetic moment in atoms, we use the strength of the moment which
corresponds to an electron with the orbital angular momentum |/| = 4/2 7. This is the
orbital angular momentum in the first Bohr orbit of the hydrogen atom in the old Bohr
model. An electron with |/|= h/27 or h produces a magnetic moment given by the
Bohr Magneton:

€ h=9.274078 - 10~ Am>. (12.8)

U=
my

It is an unfortunate — but, because of its wide usage, unavoidable — inelegance
that the same symbol y is used both for the magnetic moments x4 and uy and for the in-
duction or permeability constant of vacuum, uq.

The magnetic moments of electrons are frequently given in units of uz. For the
magnitude of the magnetic moment of an orbit with the angular momentum quantum
number /, the following expression is valid:

h)/I(1+1). (12.9)

e
= pgl/l(I+1) =
2m0

This expression is also valid for vectors, in the form

l
M= *QI#H"’;- (12.10)

Equation (12.10) thus defines the g factor, which we shall often meet in the following.
It is dimensionless and here has the numerical value g;= 1. It is a measure of the ratio
of the magnetic moment (in Bohr magnetons) to the angular momentum (in units of 4).
It was introduced by Landé, in the presence of spin-orbit coupling (Sects. 12.7, 8), in
order to characterise the ratio of the magnetic moment (in ug) and the total angular
momentum (in units of #).

With “angular momentum”, we often denote — briefly but inaccurately — the
quantum number /, i.e. the maximum component in the z direction, /_/h. The maxi-
mum component of g in the z direction is then given by (u;)nax = g;/up. We will treat
the g factors for other cases of the angular momentum later. They are always defined
as the ratio of the magnetic moment to the corresponding angular momentum, in units
of up and A, respectively.

12.3 Precession and Orientation in a Magnetic Field

An applied field with the magnetic flux density By acts on the orbital magnetic mo-
ment g, by trying to align the vectors g, and By parallel to one another, since the
potential energy is a minimum in this orientation (12.3). The electrons, which are mov-
ing in their orbits, behave mechanically like gyroscopes and carry out the usual preces-
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sion about the direction of the field. The precession frequency w, of a gyroscope
under the action of a torque 7 is

|z|
p = : ) (12.11)
|I]sin &

where [ is the angular momentum of the gyroscope, and « the angle between the
directions of I and B, (Fig. 12.5).

Itlsin

Fig. 12.5. Vector diagram for the calculation of the precession frequency @, of
a gyroscope with angular momentum / and magnetic moment u. The angle
between the field B, and the direction of / (and u) is denoted by e; the vectors
Al and 7 are perpendicular to / and B

These considerations may be directly transferred to the case of the atomic
gyroscope. The precession frequency of the electron orbit, the Larmor frequency, is
found from (12.10) and (12.11) to be

|T‘ — ﬂ[BSlna — I B=]JB. (12.12)

[l[sineg  |I|sine h

The new quantity y which we have introduced here is called the gyromagnetic ratio. 1t
gives the precession frequency in a field with a magnetic flux density of 1 Vs/m?=1
tesla. The sign and direction of the vectors is indicated in Fig. 12.6. As can be seen from
(12.12), the Larmor frequency w; is independent of the angle .

We have already seen that the orientation of the vector / in space is not random. The
solution of the Schrédinger equation (Sect. 10.2) implies that when one axis is
established, a component of the angular momentum is quantised. This axis can be

L l
o>
P~
\e
/ Fig. 12.6. Directional quantisation: Only the projections of the vectors [
Bo L Y (B2 and g, on a chosen axis z can be observed. Here the z direction is the
direction of B
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determined by a magnetic field, for example. Therefore only discrete values of «, the
angle between B and [ or u,, are allowed.

According to Sect. 10.2, the following holds for the components of the angular
momentum in the z direction:

I=mh, with m=0+1...%l. (12.13)

Here m; is used instead of m in Sect. 10.2. In this way we emphasise that m(=m,) is
associated with the orbital angular momentum. m, is the magnetic quantum number. It
can have 2/+1 different values. Here / is again the angular momentum quantum
number, |I| = |/I(/+ 1) h. The largest possible component of / in the z direction thus has
the value /- A.

The magnetic moment u; associated with the orbital angular momentum is corre-
spondingly quantised. For its component in the z direction the quantisation rule is

¢l = —mpusg. (12.14)
ng

Upz=

The maximum value in the z direction is /- ug. As a simplification (but not
accurately), it is said that the state has the magnetic moment /- ug.

Since u precesses around the direction of B, it is intuitively clear that in an observa-
tion of the energy of interaction between the magnetic moment and the magnetic field,
the x and y components of u are averaged out over time. However, the z component
can be observed.

The experimental demonstration of the existence of a directional quantisation was
provided by the Stern and Gerlach experiment (see Sect. 12.6).

12.4 Spin and Magnetic Moment of the Electron

The s states with orbital angular momentum / = 0 have no orbital magnetic moment.
Therefore, a one-electron atom should be diamagnetic in the ground state, when it has
one valence electron in an outer shell and all the others in closed shells. However, these
atoms are actually paramagnetic.

The reason is the existence of electron spin and the associated magnetic moment.
Electron spin was introduced by Uhlenbeck and Goudsmit in 1925 to explain spectro-
scopic observations.

The splitting of many spectral lines in a magnetic field, which will be discussed later
(the anomalous Zeeman effect) can only be explained if the electron has a spin angular
momentum s,

Is|=/s(s+1)h (12.15)

and the associated magnetic moment

s, (12.16)

Hs= —4g
s szmo
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where e is again the unit charge of the electron, without the negative sign. s=1/2is a
new quantum number, the spin quantum number. The similarity of (12.16) and (12.10)
is apparent. The two expressions differ only in that (12.16) contains the new factor g,
the so-called g factor of the electron. Although the expected value for this propor-
tionality constant on the basis of classical theory would be 1, the value has been empir-
ically determined to be g, = 2.0023. Figure 12.7 represents the spin and magnetic
moment of the electron schematically.

z
Spin |s|=ys(s+1) h
Charge -e
-
Mass Mo
Magnetic He=—0 AN
s
moment | om
Fig. 12.7. Spin and magnetic moment Fig. 12.8. The electron spin has two possible orientations in
of the electron a magnetic field in the z direction. These are characterised

by the quantum number m, = +1/2

Dirac showed in 1928 that the spin of the electron is a necessary consequence of a
relativistic quantum theory (the Schrédinger theory is non-relativistic). The g factor
g. = 2 could also be thus derived. The slight difference between the predicted value of 2
and the empirical value can only be understood if the interaction of the electron with its
own radiation field is taken into account through quantum electrodynamics.

As first shown by the experiment of Stern and Gerlach (Sect. 12.6), the spin can
only have two orientations in an external magnetic field B (or in the presence of a
defined z axis): “parallel” and “antiparallel” to the field (Fig. 12.8). Its components in
this defined z direction are

s;,=mgh with  mg=+1; (12.17)

m, is the magnetic quantum number of the spin.
It follows from the orientation of the angular momentum that the magnetic

moment is also oriented. The z component is
Hs ;= — gsMslgp (12.18)
or numerically,

Hy o= +1.00116 yg . (12.19)
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Intuitively speaking, the spin and the magnetic moment precess around the field
axis, leaving the z component constant (compare Sect. 12.3).

The gyromagnetic ratio, which was defined above (12.12) as the ratio between the
magnetic moment and the angular momentum,

el o, lul

, (12.20)
|1 Is |

‘}I:

is thus not the same for orbital (12.10) and spin (12.16) magnetism. For pure orbital
magnetism,

y=1 _€
! 2 mg,

and for pure spin magnetism,

yo=1.00116 -5
my

The previously mentioned g factor is also used instead of the gyromagnetic ratio y.
g is obtained by multiplying y by % and is defined for pure orbital magnetism as

1 e
yh=— —h=g,up (12.21)
2 my

and for pure spin magnetism by

yoh =1.00116 -5 h = g iy = 2.0023 g, . (12.22)
my

In the following, the reader will see that the easiest and most definitive way to
calculate the magnetic properties of atoms is often to make use of measurements of the
ratio y or g.

12.5 Determination of the Gyromagnetic Ratio
by the Einstein-de Haas Method

The gyromagnetic ratios of macroscopic samples can be measured as shown in
Fig. 12.9. An iron needle is magnetised by a coil. If one changes the magnetisation of
the sample — and this means changing the direction of the atomic magnetic moments
in the sample — one will also change the direction of the atomic angular momenta, and
this must be observable as a change in the angular momentum of the whole sample,
according to the law of conservation of angular momentum. If the magnetisation is
changed by 180° by reversing the poles of the coil, the angular momentum vector must
also be rotated through 180°. Quantitatively, the change Auy in the magnetisation of
the needle, measured with a detection coil and a ballistic galvanometer, can be repre-
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~

Fig. 12.9. Einstein-de Haas experiment. When the current in the coil is
reversed, the magnetisable bar hanging in it turns. The torsion of the

fibre on which the bar is suspended is measured with a mirror and light
beam
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sented as the sum of the changes for the individual electrons,

UULD

E}:A#z=”‘2#z»

if n electrons have reversed their directions.

Likewise, the macroscopic change in the angular momentum of the needle, ALy,

measured by means of the torsion fibre, is the sum of the changes of the atomic angular
momenta:

SAlL=n-21,.
1

For macroscopic samples, the measured ratio

Aun _ Mz €
ALN !z my

Thus according to the definition of (12.20),

y=—— or g=2.
my

From this experiment it can be seen that there is an angular momentum associated
with the magnetism of atoms, and that it can be calculated as derived above.

In general, gyromagnetic ratio measurements, first described in 1915 by Einstein
and de Haas, can indicate how much of the magnetism in a given sample is due to spin
and how much to orbital angular momentum. However, a quantitative understanding
of this type of measurement requires a deeper knowledge of solid state physics. There,
it is found that in a solid, the orbital magnetic moment is often “quenched”, i.e. it ap-
pears to be vanishingly small.

12.6 Detection of Directional Quantisation by Stern and Gerlach

In 1921, the deflection of atomic beams in inhomogeneous magnetic fields made
possible

— the experimental demonstration of directional quantisation and
— the direct measurement of the magnetic moments of atoms.



190

12. Orbital and Spin Magnetism. Fine Structure

Fig. 12.10. Stern-Gerlach experiment. The atomic
beam passes through an inhomogeneous magnetic
field. One observes the splitting of the beam into two
components

Expected
classical
result

In the experiment (Fig. 12.10), one first generates a beam of atoms. In the first
experiments of Stern and Gerlach, this was a beam of silver atoms which was generated
in an atomic beam furnace and collimated by a series of slits. Later, hydrogen atoms
from a gas discharge were also used. The collimated beam passes through a highly in-
homogeneous magnetic field, with the direction of the beam perpendicular to the direc-
tion of the field and of the gradient. The directions of the field and gradient are the
same. Without the field, the vectors of the magnetic moments and angular momenta of
the atoms are randomly oriented in space. In a homogeneous field, these vectors
precess around the field direction z.

An inhomogeneous field exerts an additional force on the magnetic moments. The
direction and magnitude of this force depends on the relative orientation between the
magnetic field and the magnetic dipole. A magnetic dipole which is oriented parallel to
the magnetic field moves in the direction of increasing field strength, while an anti-
parallel dipole moves towards lower field strength. A dipole which is perpendicular to
the field does not move.

The deflecting force can be derived from the potential energy in the magnetic field

Vmag =—u-B:
Fz:}uzd—B:,ufiE cosa, (12.23)
dz dz

where « is the angle between the magnetic moment and the direction of the field
gradient.

o
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£ Ao\
S ’I ] Fig. 12.11. Stern-Gerlach experiment. Observed
El 4 \\ intensity distribution of an atomic beam with
3 / \ and without an applied magnetic field, 28, ,
P A state [from H. Kopfermann: Kernmomente, 2nd
__=0" 1mm ._;\\0__ ed. (Akademische Verlagsgesellschaft, Frank-
oo ] furt 1956)]
30 40 50 60 70

Position of detector wire
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In classical mechanics, any orientation ¢ of the atomic magnet with respect to the
field is allowed. Atoms with magnetic moments perpendicular to the field gradient are
not deflected. Those in which the vectors are parallel are deflected the most, and all
possible intermediate values can occur. In the classical picture one thus expects a con-
tinuum of possible deflections. With H and Ag atoms, however, two rather sharp peaks
separated by 2 were observed on the detector (Fig. 12.11).

This experiment and similar measurements on other atoms permit the following
conclusions:

— There is a directional quantisation. There are only discrete possibilities for the
orientation relative to a field By, in this case two, parallel and antiparallel.

— From a quantitative evaluation of the observed deflection & in the above example,
one obtains the value u, = +ug. In general this method provides observed values
for atomic magnetic moments if the magnitude of the field gradient is known.

— For all atoms which have an s electron in the outermost position, one obtains the
same value for the deflecting force, from which it follows that the angular momenta
and magnetic moments of all inner electrons cancel each other and one measures
only the effect of the outermost s electron.

— The s electron has an orbital angular momentum [ = 0 and one observes only spin
magnetism.

— Like gyroscopes, atoms maintain the magnitude and direction of their angular mo-
menta in the course of their motion in space.

This experiment provides the basis for the knowledge of the angular momenta and

magnetic moments of atoms which was summarised in Sects. 12.2 and 12.3.

12.7 Fine Structure and Spin-Orbit Coupling: Overview

In the introductory section to this chapter we mentioned that all energy terms — with
the exception of the s states of one-electron atoms — are split into two substates. This
produces a doublet or multiplet structure of the spectral lines, which is denoted by the
generic name fine structure.

The fine structure cannot be explained with the Coulomb interaction between the
nucleus and the electrons. Instead, it results from a magnetic interaction between the
orbital magnetic moment and the intrinsic moment of the electron, the spin-orbit
coupling. Depending on whether the two moments are parallel or antiparallel, the
energy term is shifted somewhat.

The magnetic coupling energy between the orbital moment and the spin moment
will be calculated in Sect. 12.8. The coupling of the magnetic moments leads to an
addition of the two angular momenta to yield a total angular momentum.

The following conclusions are then valid (Fig. 12.12):

— [land s add to give a total angular momentum j;

— Jj has the magnitude |/j(j+ 1)k with j = |[/+5], i.e. j = |/+ 1| for the case treated
here of a single-electron system with s = 1. The quantum number j is a new quan-
tity: the quantum number of the total angular momentum. We shall show with a
quantum mechanical calculation in Sect. 14.3 that j has the magnitude given above.

— For a p electron with /=1, s = L, we find the following possibilities:
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i=3/2, |i|l=V15/2h, and
i=172, |i|=V372 k;

— when /=0, j = s and there is no doublet splitting;
— forj, just as for /, there is a directional quantisation. The z components must obey
the condition

Jo=mph, my=j,j—1,...—j (2j+ 1 possibilities) .

z
)z 4z mj
3
2
1
2
1
2
-3
2
Fig. 12.12. Coupling of the vectors of spin s and orbital Fig. 12.13. Directional quantisation: for the
angular momentum / to give the total (resultant) angular z component of the angular momentum j,
momentum j in the vector model. The vectors s and I only certain discrete values are allowed.
precess about the resultant j. In a magnetic field applied They are denoted by the magnetic quantum
in the z direction, j precesses about z. The opening angle number m;. For the case illustrated, j = 3/2,
of the cone of precession is determined by the magnetic the magnitude of the vector is |j|=
quantum number m;. The figure shows the case s = 1/2, |/(3/2)(5/2) h. Four orientations are al-
1=2,j=5/2 lowed: m; =3/2,1/2, —1/2, —=3/2

For example, a state with j = 3/2 is fourfold degenerate (Fig. 12.13).
— A magnetic moment g; is associated with j; this will be calculated in Sect. 13.3.5.
— For optical transitions, a selection rule A4j = 0 or +1 is valid; however, a transition
from j = 0 to j = 0 is always forbidden. This selection rule may be considered to be
an empirical result, derived from the observed spectra. The reasons for it will
become clear later (Chap. 16).

12.8 Calculation of Spin-Orbit Splitting in the Bohr Model

In this section, we shall calculate the energy difference between the parallel and the
antiparallel orientations of the orbital angular momentum and the spin. For this
purpose, the simple Bohr model will be used as starting point; the quantum mechanical
treatment will be discussed in Sect. 14.3.

The motion of the electron around the nucleus generates a magnetic field B, at the
site of the electron. This field interacts with the magnetic moment of the electron. To
determine the magnitude of this magnetic field, we borrow from relativity theory and
assume that the electron is stationary and that the nucleus moves instead (Fig. 12.14).
We replace the position vector for the orbiting electron, r, by the vector —r.
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| ‘ Fig. 12.14. For the calculation of spin-orbit
(Ms), ‘ X
(p S)z coupling, the system with the nucleus at rest
v (lefr) is transformed to the system with the
— - electron at rest (right). The vector r is replac-
+ Jr/r' (/‘ _ ed by the reversed vector —r
+“"'-.-.__
\J
L

The magnetic field of the moving charge + Ze is found from the Biot-Savart law
to be

B, =+ Ze”;’ [0 X (—7r)] (12.24)
dnr
or
B = — Z""‘;’ [oxr]. (12.25)
dnr

Angular momentum is defined as / = r X myv or —I = myv X r. Then

B, = L;“"z, (12.26)
dnrmg,

where my is the rest mass of the electron.

The magnetic field which is generated by the relative motion of the nucleus and the
electron is thus proportional and parallel to the orbital angular momentum of the
electron. We still require the back transformation to the centre-of-mass system of the
atom, in which the nucleus is essentially at rest and the electron orbits around it. A
factor 1/2 occurs in this back transformation, the so-called Thomas factor, which can
only be justified by a complete relativistic calculation. The particle in its orbit is
accelerated, and from the viewpoint of the proton, the rest system of the electron
rotates one additional time about its axis during each revolution around the orbit. The
back transformation is therefore complicated and will not be calculated in detail here.

The magnetic moment of the electron, and with it, its coupled spin vector, precess
about the magnetic field B, produced by the orbital motion (cf. Fig. 12.15).

Fig. 12.15. Precession of the spin about the magnetic field B, associated
with the orbital angular momentum, with the components s, and g, .
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The interaction energy between the spin and the orbital field is thus
Vis= —us-By.
Substituting — see (12.16), g.= 2 — we find

e

V},S:z (S'Bi)s

Zmo

and with (12.26)

Zezﬂo

rp—— (s-1). (12.27)
Here we have included the (underived) Thomas correction: this gives the factor 8 in
the denominator (instead of 4).

In order to get a feeling for the order of magnitude, we set Z=1andr=1 A and
obtain ¥, = 10" *eV. The field produced by the orbital motion at the position of the
electron is found to be about 1 tesla = 10* gauss. The fields associated with the orbital
angular momentum are thus — for small values of Z — of the same order of magnitude
as may be readily produced in the laboratory.

Equation (12.27) may also be written in the form

a

Vt.s:F

I-5= % |1]|s|cos(l,s) (12.28)

where @ = Ze? uyh*/(8 xmir?). The scalar product [ - s may be expressed in terms of the
vectors [ and s by using the law of cosines according to Fig. 12.16, where we recall that
I? must be replaced by its quantum value /(/+ 1) 4%, etc. We thus obtain for the spin-
orbit coupling energy

i 11 2 7 2
IG,S—W(IHSI bl s
a

2n?

(Ul )

UG+ =1(+1)=s(s+1)]. (12.29)

=Y+ h

Fig. 12.16. Vector addition of the angular momentum vectors to the
total angular momentum j, explanation of (12.29)

The spin-orbit coupling energy is thus expressed in terms of the quantum numbers j, /
and s, as well as a constant @, known as the spin-orbit coupling constant. The latter is
directly measurable by determination of the doublet structure in the optical spectra.
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Comparison with (12.27) shows that the orbital radius r is included in this coupling
constant ¢. We must remember, however, that there are no fixed orbits in the quantum
theoretical description of the atom. Therefore it is necessary to replace r~3 by the corre-
sponding quantum theoretical average 1/r3 = [(|w|*/r*)dV, where y is the wavefunc-
tion of the electron and dV the volume.

If we use the radius r, of the nth Bohr radius as a rough approximation for r,

'n _igiﬂzh—;f (12.30)
we obtain
74
a ~76—.

If instead we use the above-defined average value r‘3, we obtain for atoms similar to H

Z4
a~— 2= : (12.31)
n I+ H(I+1)

which will not be derived here.

Let us again summarise what we know about the fine structure of one-electron
states:

— Interaction of the electron with the orbital angular momentum or the orbital
moment splits each level into two. The result is doublet levels; for example in the
upper state of the sodium D lines, the 3 P state is split into the 3 P, ,, and the 3 P,
states (Fig. 12.17).

Py
HRE /2
Fig. 12.17. Fine structure splitting of the P state in the one elec-
-a . .
tron system into the two states Py, and P, ,,. The magnitude of
P1 the splitting is given by (12.29). Since only one electron is in-
/2 volved, one can also use lower case “p”

— For s terms there is no splitting, because there is no magnetic field with which the
spin can align itself.

— Levels with higher values of the quantum number j have higher energies (12.29).

— The fine structure splitting ¥} ; is proportional to the fourth power of the nuclear
charge.
The fine structure is therefore difficult to observe in the H atom. For the H,, Hp,
and H, lines of the Balmer series (6562.79, 4861.33 and 4340.46 A), the splitting is
0.14, 0.08 and 0.07 A, respectively. This corresponds to a wavenumber of 0.33
cm ! for the H, line, which is in the microwave range — if one wished to observe it
directly. A direct observation of the splitting of optical spectral lines into two very
close components is not possible by conventional spectroscopy because of Doppler
broadening of the lines. In the lithium atom, the splitting of the first resonance line
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is likewise only 0.337 cm~'. By contrast, the observed values for a line pair of the
I'st primary series, i.e. for the first resonance lines, of cesium (Z = 55, n = 6) are
4 =8943 A and 8521 A. The splitting is thus AL =422 A or Av = 554c¢m . It is
so large, in fact, that the two lines are difficult to recognise as components of a pair.
The sodium atom (Z = 11, n = 3) lies between these extremes: the yellow D lines
D, and D, are separated by 44 = 6 A, which corresponds to 17.2cm .

— The splitting is greatest for the smallest principal quantum number n (12.31).

We can now expand upon the symbolism needed to identify the energy terms of
atoms. The terms for orbital angular momentum are generally indicated by upper case
letters S, P, D, F, etc. The principal quantum number # is written as an integer in front
of the letter, and the total angular momentum quantum number j as a subscript. The
multiplicity 25+ 1 is indicated by a superscript to the left of the orbital angular momen-
tum letter. For single-electron systems, the terms are doublet terms, because the spin of
the single electron can have two orientations with respect to the orbital angular momen-
tum.

The S terms are not split. Nevertheless, one writes the multiplicity 2 even for S terms
in one-electron systems.

One thus has the following symbols:

2°S,,,  for a state in which the valence electron has the quantum numbers n = 2,
1=0,j=1/2,

2°P,,, | for states in which the valence electron has the quantum numbers n = 2,
22P,,, [ 1=1,j=1/2 or 3/2, respectively.

In general, the symbolism is n25*'L ;- The upper case letters S (spin quantum number),
L (orbital angular momentum quantum number) and J (total angular momentum
quantum number) apply to several-electron atoms, while the corresponding lower case
letters apply to single electrons.

12.9 Level Scheme of the Alkali Atoms

For an atom with one electron in the incomplete outer shell, the results of Sect. 12.7 can
be summarised in the term scheme of Fig. 12.18. This figure should make it clear that
both the lifting of orbital degeneracy (i.e. the energy difference between terms with the

Fig. 12.18. Term scheme for alkali atoms, i.e. one-electron states,
including the spin-orbit splitting. The levels are not shown to scale.
A few allowed transitions are indicated. The terms are displaced
with respect to those of the H atom (n = 2, 3, 4, left side, dashed
lines), the s terms most. The fine structure splitting decreases with
increasing values of » and /
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same n but different / quantum numbers) and spin-orbit splitting become smaller as the
quantum numbers n and / increase.

The optical transitions in the term scheme obey the rules A/ = +1, Aj= +1 or 0.
Optical transitions are thus allowed only if the angular momentum changes. The total
angular momentum j, however, can remain the same. This would happen if the orbital
angular momentum and the spin changed in opposite directions.

The first principal series of the alkali atom arises from transitions between the
lowest 2S,,, term (i.e. n = 2,3,4, 5,6 for Li, Na, K, Rb, Cs) and the P terms P, ,, and
%P, ,,. Since the S terms are single-valued, one sees pairs of lines. The same holds for the
sharp secondary series, which consists of transitions between the two lowest P terms
n’Psy;(n=2,3,4,5,6 for Li, Na, K, Rb, Cs) and all higher 2S1 »» terms. The lines of the
diffuse secondary series, however, are triple (Fig. 12.19), because both the P and the D
terms are double.

2
05/2
D
3
p —— Allowed Fig. 12.19. Allowed and forbidden transitions
¥ transitions between P and D states of the alkali atom, here for a
2P ———- Forbidden triplet of the diffuse secondary series. This is a
112 transitions section from Fig. 12.18

12.10 Fine Structure in the Hydrogen Atom

Since the wavefunctions of the H atom are known explicitly (Chap. 10), its fine struc-
ture can be exactly calculated. The starting point is the expression derived above (12.27)
for the spin-orbit splitting energy:

2
1
Vis= gl —(s-1). (12.32
8amy r

We use the solution of the non-relativistic Schrédinger equation for the H atom,
which provides the energy states E, ; (Sect. 10.4). For the H atom, both the relativity
correction (cf. Sect. 8.10) and the fine structure interaction are small compared to the
energies £, ;, but the two are of comparable magnitude. One can therefore calculate
the two corrections separately and write

Eﬂ,l',j =E, +tEqt+E;;.
The two correction terms, the one for the relativistic mass change E,,, and the other for

the spin-orbit coupling E| , together give the fine structure correction Egs. These terms
will not be calculated in detail here. The complete calculation was carried out by Dirac.
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As a result, one obtains

E a? 1 3
Epg= ——2 -= -z, 12.33
. n </+1/2 4n> el

2
a=—2F2 (or Ho¢ ez) ,
4neghc dnh

which is the Sommerfeld fine structure constant which was introduced in Sect. 8.10.

By including the spin-orbit coupling, one thus obtains the same result as earlier
(Sect. 8.10) in the calculation of the relativistic correction, the only change being that /
has been replaced by j. The energy shift with respeet to the previously calculated energy
terms E, ;is of the order of o i.e. (1/137)%, and is thus difficult to measure.

The most important result of (12.33) is the fact that the fine structure energy of the
H atom depends only on j, not on /. This means that terms with differing / quantum
numbers (for the same 7) and the same quantum number j have the same energies: they
are energetically degenerate (Fig. 12.20),

S P D
0108 cm - 0036 cm™!

Fig. 12.20. Fine structure splitting of the
states with n = 1,2 and 3 (far left, dashed
lines, the levels without fine structure),
according to Dirac (not to scale). The fine
structure shifts are indicated by open arrows.
States with the same / are degenerate without
n=l ——5—— fine structure interactions. States with the
AEF5=—1‘8-10"‘9V same j have the same energy if fine structure
1s y is taken into account

The fine structure of the hydrogen lines is thus quantitatively accounted for. The
fine structure energies of heavier atoms are larger and are thus easier to observe. Their
calculations, however, are far more difficult, because the exact calculation of the wave-
functions of atoms with more than one electron is far more complex.

12.11 The Lamb Shift

In the years 1947 — 1952, Lamb and Retherford showed that even the relativistic Dirac
theory did not completely describe the H atom. They used the methods of high-fre-
quency and microwave spectroscopy to observe very small energy shifts and splitting in
the spectrum of atomic hydrogen. In other words, they used the absorption by H atoms
of electromagnetic radiation from high-frequency transmitters or klystron tubes. They
could, in this way, observe energy differences between terms with the same j, namely
differences of 0.03 cm ™" — this corresponds to a difference of 900 MHz — between the
terms 2°S, , and 2°P, /-
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e Bohr Dirac QED Fig. 12.21. The Lamb shift: fine structure of
TE e the n=2 level in the H atom according to
o | ‘\ 3=t t=1 2p Bohr, Dirac and quantum electrodynamics
> \ 2 W 2 taking into account the Lamb shift. The j de-
E 3 \ generacy is lifted
e | \ 0.365¢cm !
= \ 2S
& \ =0 W
= [ 1\ _L=0,1 —’+
= 7 T e
= 05t 2 =1 K

' 0035cm’ 2

They achieved a precision of 0.2 MHz. Figure 12.21 shows the corresponding
energy diagram.

Like the fine structure, this small energy shift was not observable by means of
optical spectroscopy as a splitting of the H, line of hydrogen, because the Doppler
broadening of the spectral lines due to the motion of the atoms exceeded the magnitude
of the splitting.

The Lamb-Retherford result can be generalised: levels with the same quantum
numbers # and j, but different /, are not exactly the same. Rather, all S, terms are
higher than the corresponding P;,, terms by an amount equal to about 10% of the
energy difference (Ps;,;— Py2), and the P;,, terms are higher than the D;,, terms by
about 2% of (Ds/;— Dy5).

Magnetic field B |

I I
*.| Hatoms MH H atoms

| !
SRRy |

W foil

Resonator
Electron tunable
beam 1..10 GHz

Fig. 12.22. Arrangement for measurement of the Lamb shift. A beam of H atoms is excited to the metastable
28, state by bombardment with electrons. The beam passes through a resonator. If electromagnetic transi-
tions are induced there, the number of excited atoms reaching the tungsten foil receiver is lower, and the
measured electron current correspondingly drops. The magnetic field B serves to create an additional
energetic separation between the S, ,, and the P, states. This prevents mixing of those states and thereby
avoids an immediate decay via the 2P, ,, state

The Lamb and Retherford experiment is shown in Fig. 12.22. A beam of hydrogen
atoms is generated from H, molecules by thermal dissociation at 2500°C. A small
number of these atoms is excited to the metastable state 22S,,, by bombardment by
electrons. Optical transitions between this state and the ground state 125, , are forbid-
den. The atoms then pass through a tunable resonator for high-frequency or micro-
wave radiation, to a tungsten foil. There the metastable atoms can give up their excita-
tion energy, thereby releasing electrons from the surface of the metal. The electron
current is measured and serves as an indicator of the rate at which atoms in the 23S, ,
state arrive at the detector. Those atoms which are excited to the 2%P; , state by absorb-
ing microwaves in the range of 10000 MHz in the resonator (compare term scheme in
Fig. 12.21) can emit light at the wavelength of the H, line (or more exactly, of one



200
Fine str;cture n=3 .
| 00381 35/,
f 3p"3/2,3d3
{ J?L . 351/2 : /2
00105 Py
ot082 9105 /2
shift
ca. 16000 T , vy
' 2py,
03652 ' o n=
| 2s 2
I 00353 2Py,
L.amb
shift

]

Fig. 12.23. Structure of the H, line of hydrogen and term scheme

including the fine structure. The expected optical spectrum is .

shown below (ignoring the line widths). Darker lines indicate higher
intensity. The wavenumbers are in cm~1
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d o

~

Lamb shift

Av[GHz]

Fig: 12.24. Above: Structure of H, line of the hydrogen atom at
room temperature. The linewidth and thus the spectral resolu-
tion is determined by the Doppler width. Below.: The method of
Doppler-free spectroscopy (saturated absorption using a dye laser,
Sect. 22.3) allows resolution of the individual components of the
H, line (after Hénsch et al.). The two additional very weak lines
shown in Fig. 12.23 are omitted in Fig. 12.24

component of this line) and return to the ground state. When absorption of this type
occurs, the electron current in the tungsten foil decreases. Lamb and Retherford found
in 1947 that the same effect, a decrease in the electron‘current, occurred on absorption
or induced emission of radlatlon ata frequency of about 1000 MHz. This was due to
the transition from the 225, ;, to the 22 P, , state. From the latter state, radiative tran--
sitions to the ground state are also allowed. It was thus shown that even states with
the same total angular momentum j are energetically different. .

. The term scheme of an atom can be refined for optical transitions as well. Figure
12.23 shows the complete term schemie for the H, line of the hydrogen atom. This line

Fig. 12.25, Lamb shift and fine struc-
ture of the helium atom: fine structure
at 1640 A. Seven components are ob-
. served. The lines 1,2 and 3,4 would be
unsplit without the Lamb shift. [From

W
o~

12
1640.335

G. Herzberg: Trans. Roy. Soc. Can 5,

1640537 R (1967) Fig. 5]
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consists of 7 components of different intensities in an energy range of about 0.4 em L

The upper part of Fig. 12.24 shows the structure of the H,, line, as it can be observed in
the presence of Doppler broadening. The lower part shows a curve obtained by the
modern method of Doppler-free spectroscopy (Sect. 22.3). With this method, the
Lamb shift can also be seen in optical spectra. The fine structure splitting and the Lamb
shift are larger in the heavier helium atom, so that direct optical observation of the
splitting is easier than with the H atom. Even without removing the Doppler broaden-
ing, the fine structure can be resolved, as Fig. 12.25 shows.

The Lamb shift was of utmost importance for the development of quantum electro-
dynamics. Previously, this theory treated only the emission and absorption of light
quanta in atomic transitions. To explain the Lamb shift, it was necessary to go one step
further. It had to be assumed that the electrons in an atom were continually emitting
and reabsorbing light quanta, in which process energy conservation can apparently be
violated.

This “violation of energy conservation” must not, to be sure, be taken too literally.
According to the uncertainty relation between energy and time (7.29), the energy is only
sharply defined when a measurement is performed over a sufficiently long period of
time. It is thus completely consistent with energy conservation that an electron can emit
a quantum even without having the necessary energy, as long as the quantum is reab-
sorbed quickly enough. Much more decisive for the theoreticians was, however, the
recognition that the energy shifts in the atomic levels (on a negative energy scale) pro-
duced by these “virtual” processes were infinitely large. A free electron can also con-
tinually emit and absorb virtual quanta; its energy decreases infinitely in the process.
Energy shifts caused by virtual processes are termed self energy. Experimentally, a free
electron, like a bound electron, has a well-defined, finife energy. The basic idea for
solving the “infinity problem™ of the energy shift was the recognition that only the dif-
ference between the energies of bound and free electrons is physically interesting. Or, in
other words: to calculate the energy shift of bound electrons, one must subtract the
self-energy of a free electron from that of a bound electron in a particular atomic state
(cum grano salis). This process is termed “renormalisation”. Since the masses also
become infinite due to virtual processes, they must also be “renormalised”. Naturally,
at first glance it seems very adventurous to subtract two infinite quantities from one
another in order to obtain a well-defined finite result. In the framework of quantum
electrodynamics, however, it was found possible to set up well-defined rules for the
renormalisation procedure, and the Lamb shift can be calculated today with great
precision. The important result is that the validity of quantum electrodynamics can
therefore be tested — and has been verified — in an excellent manner.

A summary of the theoretical treatment is given in Sect. 15.5.2. In preparation for
this treatment, in Sect. 15.5.1 we introduce the quantisation of the electromagnetic
field, which follows immediately from the quantisation of the harmonic oscillator. As
is shown in one of the problems for Sect. 15.5.1, the theory of the Lamb shift has a sur-
prisingly simple physical explanation: the quantum-mechanical zero-point fluctuations
of the electromagnetic field act statistically on the electrons and thus cause a shift of
their potential energy.
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Problems

12.1 Calculate the precessional frequency of electrons and of protons [[ = 1/2, mag-
netic moment = (2.79/1836)- ug] in the magnetic field of the earth (=2-10"° tesla).

12.2 In the Stern-Gerlach experiment, a beam of silver atoms in the ground state
(52S1 /2) 1s directed perpendicularly to a strong inhomogeneous magnetic field. The field
gradient is dB/dz = 10° tesla/m. In the direction of the atomic beam, the magnetic
field extends a distance of /; = 4 cm, and the catcher screen is a distance l;=10cm
from the magnet. Calculate the components of the magnetic moment in the direction of
the magnetic field, if the splitting of the beam at the screen is observed to be d = 2 mm,
and the velocity of the atoms is v = 500 m/s. The average mass of silver atoms is
M =1.79 - 10~ * kg. Why doesn’t the nuclear spin affect the experiment?

12.3 How large is the magnetic field generated by the electron in the ground state of a
hydrogen atom, at the position of the proton if it would circulate according to Bohrs
model on the shell n =17

12.4 How large is the magnetic moment of the orbital motion in a muonium atom, in
which the electron of a ground-state hydrogen atom has been replaced by a muon?
How large is the moment in positronium (an electron and a positron, i.e. particles with
the mass of the electron and opposite charges, moving around the common centre of
mass)?

12.5 Calculate the spin-orbit splitting of the states of the hydrogen atom with n = 2
and n = 3 using the relations

1 Zezﬂo
VI,S= *ﬁ(s'l) 5
n8mmyr
and
3
ri= 4

@+ Y+

What are the values for a Rydberg state with n = 30 for the largest (/=1) and the
smallest (/ = 29) splitting?
ag is the radius of the innermost Bohr orbit.

12.6 In the cesium atom, spin-orbit splitting between the states 6P, and 6 P;,, leads
to a wavelength difference of A4 = 422 A for the first line pair of the primary series,
with 4 = 8521 A for the line with the shorter wavelength. Calculate from this the fine
structure constant @ and the field at the nucleus B;. Use (12.27).

12.7 Sketch the energy levels of the hydrogen atom, including the fine structure, up to
n = 3. Show the possible transitions. How many different lines are there?

12.8  The fine structure in hydrogen-like ions (ions with only one electron) is described
by (12.33).
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a) Show that the correction term does not disappear for any possible combination of
the quantum numbers n and j, but that it always reduces the value of the uncor-
rected energy.

b) Into how many energy levels are the terms of singly charged helium with the
principal quantum numbers n = 3 and n = 4 split by the fine structure interaction?

¢) Sketch the positions of these levels relative to the non-shifted terms and give the
amount of the shift.

d) Determine which transitions are allowed, using the selection rules A/= +1, Aj =0
or +1.

12.9 Give the relative splitting of the various levels of an L §J multiplet due to spin-
orbit interaction for the *F and *D multiplets. Sketch the energy levels of these multi-
plets and indicate with arrows the allowed *F— D transitions. Repeat the above process
for the *“D—*P and *P—*$ transitions.

12.10 The interaction energy E between two magnetic moments g and g, is (r = the
radius vector of g and u,):

E- +ﬂ{m;3ﬂ2 3 wvr)guz-r)}

4n r

a) Under which conditions is E'= 0 for a given |r|?

b) For parallel moments, which arrangement yields an extreme value for E?

¢) For case b) with |r|=2 A, calculate the energy for the electron-electron and proton-
proton interactions. In each case, how large is the magnetic field at g, due to g
(Uproton = 1.4 - 107%A mz)?



13. Atoms in a Magnetic Field:
Experiments and Their Semiclassical Description

13.1 Directional Quantisation in a Magnetic Field

In the previous chapters, we have already seen that a directional quantisation exists.
The angular momentum vectors in an atom can only orient themselves in certain
discrete directions relative to a particular axis (the quantisation axis). The directional
quantisation is described by the magnetic quantum number m. In an applied magnetic
field By, the interaction energy between the field and the magnetic moment of the
electrons in an atom, which we have already calculated, leads to a splitting of the
energy terms, which is described by the different possible values of the magnetic
quantum number. We shall concern ourselves in this chapter with the measurement of
this energy splitting.

A first application of the splitting of atomic states in a magnetic field to the deter-
mination of the magnetic moments of the atoms was already discussed in the treatment
of the Stern-Gerlach experiment. In the following, we shall consider some other types
of experiments.

13.2 Electron Spin Resonance

The method of electron spin resonance (abbreviated ESR, sometimes EPR for electron
paramagnetic resonance) involves the production of transitions between energy states
of the electrons which are characterised by different values of the magnetic quantum
number m. In general, the degeneracy is lifted by the application of an external
magnetic field; the transition frequencies, which are usually in the range of microwave
frequencies, depend on the strength of the applied field. With this technique, one can
observe transitions between states of different magnetic quantum number directly. In
Zeeman spectroscopy, to be described later, the transitions observed are in the optical
region, and their response to magnetic fields is studied; in this case, the transitions
cause changes in not only the magnetic quantum number, but also in the other
quantum numbers.

Fig. 13.1. The spin of an electron, and thus its magnetic moment, have two
possible orientations in an applied magnetic field. They correspond to two
values of the potential energy
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The principle of ESR may be easily understood by considering the magnetic
moment produced by the spin of a free electron in a magnetic field B, (Fig. 13.1).
An electron has the magnetic moment

us=1/'s(s+1) uggs (13.1)

with the possible components along the quantisation axis z of the field B,

(1) = £ 3 gsup.- (13.2)
The potential energy of these two orientations differs by the amount
AE = g, upBy . (13.3)

If a sinusoidally varying magnetic field B, = B, sin w? is now applied in a direction
perpendicular to By, transitions between the two states are induced if the frequency
v = w/2 x fulfils the condition

AE = hv = g upB, (13.4)
or, in numbers,
v=2.8026-10'". ByHz (tesla) ' . (13.5)

The transitions with Am = + 1 are allowed magnetic dipole transitions. A quantum
mechanical treatment of ESR will follow in Chap. 14. The frequency which must be
used depends, according to (13.5), on the choice of the applied magnetic field B,,. For
reasons of sensitivity, usually the highest possible frequencies are used, corresponding
to the highest possible magnetic fields. The fields and frequencies used in practice are,
of course, limited by questions of technical feasibility; usually, fields in the range 0.1 to
1T are chosen (T = tesla). This leads to frequencies in the GHz region (centimetre
waves).

What we have here described for a free electron is also valid for a free paramagnetic
atom. In this case, the total resultant magnetic moment produced by the spin and or-
bital angular momenta of the atom, u;, must be used in (13.3 -5).

Fig. 13.2. Demonstration experiment for electron spin resonance: a
gyroscope whose axle is a bar magnet is precessing in a magnetic
field By (as well as in the gravitational field of the earth). The in-
clination of the axis of the gyroscope relative to B, may be changed
by means of an oscillating field B, if the frequency of B, is equal to
the precession frequency of the gyroscope. For a lecture demonstra-
tion, it is expedient to construct the gyroscope in such a way that it
is driven from the support pedestal S, for example using com-
pressed air and following the principle of a water turbine
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The fundamental idea of ESR may be illustrated by a mechanical model (Fig. 13.2):
a gyroscope containing a bar magnet in its axis is precessing in a magnetic field. The
precession frequency is (neglecting gravitational force)

-|B
wL=M! (13.6)
IL |

where u is the magnetic moment of the bar magnet and L is the angular momentum
of the gyroscope.

The precession frequency or better, angular velocity w; of a magnetic gyroscope in
a magnetic field is independent of the angle a between # and By, since the torque pro-
duced by the field and the rate of change of the angular momentum vector both depend
in the same way on the sine of the angle a (12.12). When gravitational force is neglected,
the frequency w; is determined only by the magnetic moment u and the angular
momentum L of the gyroscope, as well as by the torque produced by the field Bj.

When we now let an additional oscillating field B; with the frequency w act perpen-
dicular to B, we observe a continuous increase or decrease in the angle of inclination
o, depending on whether the field is in phase or out of phase with the motion of the
gyroscope, provided that the frequency w is equal to w; .

This model may be immediately transferred to the atom. We replace the magnetic
moment of the bar magnet by the moment of the atom and obtain for the circular fre-
quency of the electron spin resonance the following condition:

.|B
wp = “‘THOE 9: 13.7)

This is the Larmor frequency, which was already introduced in Sect. 12.3.

In the classical gyroscope model, the tip of the gyroscope axle moves on a spiral
orbit from one stable position to another. This picture may be applied with consider-
able accuracy to the motion of the spin or the orbital angular momentum in an atom.
There is an additional possibility for picturing the resonant transitions, which makes
use of the fact that the spin or the angular momentum of an atom has only certain
discrete allowed stationary orientations in a constant magnetic field B,. In this picture,
the spin makes transitions between these discrete energy levels under the influence of
the oscillating field B. In particular, this means in the case of spin 1/2 that the spin
flips from the one possible orientation to the other when the resonance condition (13.7)
is fulfilled.

Electron spin resonance was observed for the first time in 1944 by the Russian phy-
sicist Zavoisky. The analogous spin resonance of paramagnetic atomic nuclei is seen
under otherwise identical conditions at a frequency which is 3 orders of magnitude
smaller, due to the fact that nuclear moments are about a factor of 1000 smaller than
atomic magnetic moments; the corresponding frequencies are in the radio frequency
region. This nuclear magnetic resonance (NMR) was observed in the solid state for the
first time in 1946 by Bloch and Purcell, nearly 10 years after it had first been used by
Rabi to measure the gyromagnetic ratio of nuclei in gas atoms (cf. Sect. 20.6).

A schematic of an ESR apparatus is shown in Fig. 13.3. Today, ESR spectrometers
count as standard spectroscopic accessories in many physical and chemical labora-
tories. For technical reasons, usually a fixed frequency is used in the spectrometers;
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Waveguide Fig. 13.3. Electron spin resonance. Above: Schematic
@ representation of the experimental setup. The sample

is located in a resonant cavity between the pole pieces

Klystron of an electromagnet. The microwaves are generated by
a klystron and detected by a diode. To increase the
Magnet coils Resonator sensitivity of detection, the field B, is modulated. Be-

low, left: Energy states of a free electron as functions
of the applied magnetic field. Below, right: Signal U
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the magnetic field is varied to fulfil the resonance condition and obtain ESR transitions

in absorption and sometimes in emission. The sample is usually placed in a microwave

resonator; a frequently used wavelength is 3 cm (the so-called X-band). The microwave
radiation is generated by a klystron and detected by a high frequency diode or a bolo-
meter.

ESR is utilised for

— precision determinations of the gyromagnetic ratio and the g factor of the electron;

— measurement of the g factor of atoms in the ground state and in excited states for
the purpose of analysing the term diagram;

— the study of various kinds of paramagnetic states and centres in solid state physics
and in chemistry: molecular radicals, conduction electrons, paramagnetic ions in
ionic and metallic crystals, colour centres.

The full importance of ESR will only become clear after we have treated the topic of
hyperfine structure, i.e. when we discuss the interaction of the electronic spin with the
spins of the neighbouring nuclei. Using this interaction, termed hyperfine splitting
(Chap. 20), one can determine the spatial distribution of the electrons in molecules, in
liquids, and in solids. More information about ESR and its significance for the physics
of atoms, molecules, and solids is given in H. Haken and H. C. Wolf: Molecular Ph )S-
ics and Elements of Quantum Chemistry, Chap. 19.

13.3 The Zeeman Effect

13.3.1 Experiments

The splitting of the energy terms of atoms in a magnetic field can also be observed as a
splitting of the frequencies of transitions in the optical spectra (or as a shift). A splitting
of this type of spectral lines in a magnetic field was observed for the first time in 1896
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Fig. 13.4. Demonstration experiment for the Zeeman effect. A flame coloured
with sodium or NaCl appears dark when projected using light from a Na
vapour lamp. Upon switching on a magnetic field, it brightens, since the reso-
nance between the light from the lamp and the light of the sodium flame is de-
stroyed by the Zeeman effect. The wavelength of the light from the flame is
shifted slightly by the magnetic field; this suffices to remove the resonance

Magnetic
field

Screen

Na vapour

Iam\p Na flame

by Zeeman. The effect is small; for its observation, spectral apparatus of very high re-
solution is required. These are either diffraction grating spectrometers with long focal
lengths and a large number of lines per cm in the grating, or else interference spectro-
meters, mainly Fabry-Perot interferometers. We shall discuss this topic in more detail
in Chap. 22.

There is, however, a simple lecture demonstration (Fig. 13.4) which shows the shift
of the spectral lines in a magnetic field in a drastic manner: a flame, coloured yellow
with sodium, is opaque to the yellow light of a sodium vapour lamp, because the latter
represents resonance light, i.e. light whose wavelength matches the absorption and
emission wavelength in the flame. If, however, a magnetic field is applied to the flame,
the resonance between the light source (Na lamp) and the absorber (Na flame) is de-
stroyed. On the observation screen, the previously “dark” flame brightens, because it
has now become transparent to the light from the Na vapour lamp.

With a Fabry-Perot interferometer or with a grating spectrometer of sufficient
resolution, the splitting in magnetic fields may be quantitatively measured. The split-
ting behaviour observed in moderate magnetic fields is illustrated in Figs. 13.5 and
13.6. The splitting of the cadmium line in Fig. 13.5 is called the “ordinary” Zeeman
effect; using transverse observation (i.e. observation perpendicular to the direction of
the applied magnetic field, Fig. 13.7), one sees the unshifted line as well as two
symmetrically split components, each linearly polarised. With longitudinal observation

Fig. 13.6. Anomalous Zeeman effect, here
Without D D using the sodium D lines. The D, line splits
magnetic field 1 2 into four components, the D, line into six in
a magnetic field. The wavelengths of the D,
Without and D, lines are 5896 and 5889 A; the quan-
magnetic field tum energy increases to the right in the dia-
With gram
I magnetic field
- - transverse
l observation with
magnetic field
ELB; EIIBy, E1Bg
- longitudinal
qp ) observation 4 Fig. 13.5. Ordinary Zeeman effect, e.g. for the atomic Cd line at 1 = 6438 A. With
transverse observation the original line and two symmetrically shifted components are

seen. Under longitudinal observation, only the split components are seen. The polar-
E L By , circular isation (E vector) is indicated
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(parallel to the field lines), only the two shifted components are seen; they are circularly
polarised in this case.

The splitting behaviour of the D lines of the sodium atom shown in Fig. 13.6 is
typical of the anomalous Zeeman effect. The number of components into which the
spectral lines are split is greater than in the normal Zeeman effect. Both the ordinary
and the anomalous Zeeman effects merge to the so-called Paschen-Back effect in suf-
ficiently large magnetic fields B,. We shall now discuss these three effects of the
influence of magnetic fields on the spectral lines and the energy terms of atoms.

S -

Longitudinal
observation

Transverse
observailon Fig. 13.7. Transverse and longitudinal observation of spectral lines
in a magnetic field. The three component electrons used in the clas-
SI sical description of the Zeeman effect are indicated (orbits with

arrows in the pole gap of the magnet). The emission of a light
source in the magnetic field is observed either transversely or longi-
tudinally (through a hole drilled in the magnet pole piece). S is the
entrance slit of a spectrometer

13.3.2 Explanation of the Zeeman Effect from the Standpoint
of Classical Electron Theory

The Zeeman effect may be understood to a large extent using classical electron theory,
as was shown by Lorentz shortly after its discovery. We shall restrict ourselves to the
ordinary Zeeman effect — the splitting of states with pure orbital angular momentum.
If the resultant angular momentum is composed of both spin and orbital contributions,
one speaks of the anomalous Zeeman effect. The normal Zeeman effect describes states
in which no spin magnetism occurs. In these states, at least two electrons contribute
in such a way that their spins are coupled to zero. Therefore, the normal Zeeman effect
is found only for states involving several (at least two) electrons, which are treated in
Chap. 17.

We discuss the emission of light by an electron whose motion about the nucleus is
interpreted as an oscillation, for example by considering the projection of the motion
on a certain direction. We ask the question, “What force does a magnetic field exert on
a radiating electron?” The radiating electron is treated as a linear oscillator with a
random orientation with respect to the magnetic lines of force (Fig. 13.8).

In the model, we replace the electron by three component oscillators according to
the rules of vector addition: component oscillator 1 oscillates linearly, parallel to the
direction of B,. Oscillators 2 and 3 oscillate circularly in opposite senses and in a plane

J ( ) ( ) man effect. An oscillating electron is re-

e
_Gj_ solved into three component oscillators.
® ® - Further details in the text

Wk

73

£

0

Fig. 13.8. Classical explanation of the Zee-
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perpendicular to the direction of B,. This resolution into components is allowed, since

any linear oscillation may be represented by the addition of two counterrotating

circular ones. Without the field By, the frequency of all the component oscillators is

equal to that of the original electron, namely .

We now inquire as to the forces which the magnetic field exerts on our three com-
ponent electron-oscillators:

— Component 1, parallel to By, experiences no force. Its frequency remains un-
changed; it emits light which is linearly polarised with its E vector parallel to the
vector By.

— The circularly oscillating components 2 and 3 are accelerated or slowed down by the
effect of magnetic induction on turning on the field By, depending on their direc-
tions of motion. Their circular frequencies are increased or decreased by an amount

dw = %(E/mo)B():(ﬂB/h)Bo. (138)

This is almost the same expression as that which we have already come to know as
the Larmor frequency. It differs from the Larmor frequency only by a factor 2,
because we are here dealing with an orbital moment (g = 1) instead of a spin moment
(g=12) as in the case of the Larmor frequency, which applies to electron spin
resonance.

Classically, one can calculate the frequency shift d w for the component oscillators
as follows: without the applied magnetic field, the circular frequency of the component
electrons is «g. The Coulomb force and the centrifugal force are in balance, i.e.

2 Zez

mwgr:—3r.
47'(80!’

In a homogeneous magnetic field B, applied in the z direction, the Lorentz force acts in
addition; in Cartesian coordinates, the following equations of motion are then valid:

mi+mwix—eyBy=0, (13.9a)
mj+maeiy+exBy=0, (13.9b)
mi+mwiz =0. (13.9¢)

From (13.9¢), we immediately find the solution for component oscillator 1, z =
zpexp(iwyt), i.e. the frequency of the electron which is oscillating in the z direction
remains unchanged.

To solve (13.9a) and (13.9b), we substitute  =x+iy and v =x—iy. It is easy
to show that the equations have the following solutions (with the condition
eBy/2m < wy):

u=ugexplilwog—eBy/2m)t] and v =vyexpli(wy+eBy/2m)t].

These are the equations of motion for a left-hand and a right-hand circular motion with
the frequencies wy+ dw, with dw = eBy/2m. The component electron oscillators 2
and 3 thus emit or absorb circularly polarised light with the frequency wq+ d w.

The splitting observed in the ordinary Zeeman effect is therefore correctly predicted
in a classical model.



Fig. 13.9. Precession of J and
u; about the direction of the
applied field By: ordinary Zee-
man effect, i.e., J= L
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The frequency change has the magnitude:

usiBo/2n=-1 5. B,. (13.10)
4n un

For a magnetic field strength By = 1T, this yields the value
ov=1.4-10"s""20465cm'. (13.11)

Independently of the frequency v, we obtain the same frequency shift dv for each
spectral line with a given magnetic field By. Theory and experiment agree completely
here. For the polarisation of the Zeeman components, we find the following predic-
tions: component electron oscillator 1 has the radiation characteristics of a Hertzian
dipole oscillator, oscillating in a direction parallel to By. In particular, the E vector of
the emitted radiation oscillates parallel to B, and the intensity of the radiation is zero
in the direction of By. This corresponds exactly to the experimental results for the un-
shifted Zeeman component; it is also called the 7 component (n for parallel). If the
radiation from the component electron oscillators 2 and 3 is observed in the direction
of By, it is found to be circularly polarised; observed in the direction perpendicular to
By, it is linearly polarised. This is also in agreement with the results of experiment. This
radiation is called ¢ and o~ light, were @ stands for perpendicular (German “senk-
recht”) and the + and — signs for an increase or a decrease of the frequency. The g *
light is right-circular polarised, the ¢ light is left-circular polarised. The direction is
defined relative to the lines of force of the By field, not relative to the propagation
direction of the light.

The differing polarisations of the Zeeman components are used in optical pumping.
In this technique, the exciting light can be polarised so as to populate individual
Zeeman levels selectively, and thus to produce a spin orientation. More about this in
Sectgrsy

13.3.3 Description of the Ordinary Zeeman Effect by the Vector Model

In the preceding section, we gave a purely classical treatment of the ordinary Zeeman
effect; we now take the first step towards a quantum mechanical description. For this
pupose, we employ the vector model which has been already introduced in Sect. 12.2
(cf. Fig. 13.9 and 13.11. Note that this figure illustrates the somewhat more complex
case in which both orbital and spin magnetism play a réle). A complete quantum
mechanical treatment will be given in Chap. 14. The angular momentum vector j and
the magnetic moment u;, which is coupled to j, precess together around the field axis
By. The additional energy of the atom due to the magnetic field is then (Chap. 12 and
Fig. 13.9 and 13.11)

ij= _(}Ij)z'BO: +mngﬂBBU with mj:_], j—], “ s —j . (13.12)

Here the factor g; in (12.10) was replaced by g;, because the total angular momen-
tum is being considered.

The (27 +1)-fold directional degeneracy is thus lifted, and the term is split into
2/ +1 components. These are energetically equidistant. The distance between two com-
ponents with Am; =1 is

AE =g;jupBy.
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Fig. 13.10. Ordinary Zeeman effect. Splitting of the 4 =

— 2 6438 A line of the neutral Cd atom, transition 'P, — 1D,
1 into three components. The transitions with Am;=0
0 are called 7 transitions; those with Am,= +1 are o

1

D2 -1 transitions. The quantum number J is written as a
capital letter because the atom has several electrons (see

Chap. 17). Here, § =0, and J = L: we are dealing with

a case of purely orbital magnetism

r=6438R

+

af---{o

If we ignore the spin and consider only orbital magnetism (i.e. the ordinary Zeeman
effect), g; has a numerical value of 1 and we obtain

sv=_L ¢ . (13.13)
41 my

The magnitude of the splitting is thus the same as in classical theory. For optical
transitions, one must also make use of the selection rule

Amj:(),il.

One thus obtains from quantum theory, too, the result that the number of lines is
always three: the ordinary Zeeman triplet.

As an example, Fig. 13.10 shows the splitting diagram for a cadmium line. We must
point out that the orbital angular momentum for the states of the Cd atom comprises
the orbital angular momenta of two electrons, and is therefore indicated by a capital
letter L. The spins of the two electrons are antiparallel and thus compensate each other,
giving a total spin S = 0. Transitions between the components of different terms (e.g.
'P, or 'D, in Fig.13.10) with the same Am ; are energetically the same. The splitting is
equal in each case because only orbital magnetism is involved. [See the discussion of the
Landé g factor in Sect. 13.3.5, especially (13.18).] The undisplaced line corresponds to
transitions with Am = 0, while the displaced lines are the transitions with Am = +1.
They are circularly polarised.

Polarisation and ordinary Zeeman splitting are a good example of the correspon-
dence principle (Sect. 8.11). Based on the conservation of angular momentum for the
system of electrons and light quanta, the polarisation behaviour of the Zeeman effect
implies that light quanta have the angular momentum 1 - A.
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Z, BQ Z, BO

Y. !
Fig. 13.11. Left: The relation between the angular momentum J, the magnetic moment u; and their orienta-
tion with respect to the magnetic field B, for strong spin-orbit coupling, cf. also Fig. 13.13. The angular
momentum vectors.§ and L combine to form J. Likewise, the associated magnetic moments u; and Hg com-
bine to ;. Because spin and orbital magnetism have different gyromagnetic ratios, the directions of the
vectors J and g, do not coincide. What can be observed is the projection of #yon J, as the time average
of many precession cycles. That is, one observes the component (u;) ;, which is therefore represented as iy
or fig, see the right-hand diagram. In the one-electron system, lower case letters can be used instead of S,
L and J, as is done in the text. Right: The projection of u; on the vector J is (u;);, see Fig. 13.14. The pro-
jection of (i), on By is calculated using the Landé factor. Because the angular momenta § and L are
strongly coupled, the vector u; precesses rapidly around the negative extension of the vector J. Only the
time average (u;); in the J direction can be observed. This precesses slowly, because of weak coupling,
around the axis of By. The magnetic energy is the product of the field strength B, and the component of
(u;); in the direction of By, i.e. (u,); , or (i;)," B,. Lower case letters can be used instead of §, L, J in the
one electron system.

Figure 13.11 illustrates the anomalous Zeeman effect (Sect.13.3.4). The ordinary Zeeman effect
(Sect. 13.3.3) is more simple. From S = 0 follows #y=py, and the directions of the vectors — u,and J =L
coincide; see Fig, 13.9

13.3.4 The Anomalous Zeeman Effect

One speaks of the anomalous Zeeman effect when the angular momentum and mag-
netic moment of the two terms between which an optical transition occurs cannot be
described by just one of the two quantum numbers s or [(or S or L), but are determined
by both. Refer also to Fig. 13.11. This is the general case, in which atomic magnetism
is due to the superposition of spin and orbital magnetism. The term “anomalous” Zee-
man effect is historical, and is actually contradictory, because this is the normal case.

In cases of the anomalous Zeeman effect, the two terms involved in the optical tran-
sition have different g factors, because the relative contributions of spin and orbital
magnetism to the two states are different. The g factors are determined by the total
angular momentum j and are therefore called g; factors. The splitting of the terms in
the ground and excited states is therefore different, in contrast to the situation in the
normal Zeeman effect. This produces a larger number of spectral lines. The calculation
of the g, factors follows in Sect. 13.3.5.

We will use the Na D lines (Fig. 13.12) as an example for a discussion of the
anomalous Zeeman effect.

For the three terms involved in the transitions which produce the Na D line, namely
the 28, , the 2P, ,» and the ’P;, the magnetic moments in the direction of the field are

W) .= —m;gug , (13.14)
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and the magnetic energy is
Vin,= — ),z Bo - (13.15)

The number of splitting components in the field is given by m; and is again 2/ +1.
The distance between the components with different values of m; — the so-called
Zeeman components — is no longer the same for all terms, but depends on the quan-
tum numbers /, 5, and j:

AE, = 9;uBo. (13.16)

Experimentally, it is found that g;= 2 for the ground state ’S, 2, 2/3 for the state
2Py, and 4/3 for the state 2P;,,. We shall explain these g, factors in the next section. For
optical transitions, the selection rule is again Am;= 0, 1. It yields the 10 lines shown
in Fig. 13.12. The spectrum which is, in fact, observed is shown schematically in
Fig. 13.13.

Dy line D, line . ‘ < Fig. 13.12. Anomalous Zeeman effect. Splitting of the D, and D,
) MiS; lines of the neutral Na atom, transitions 28,,-°P,, and
m. m; — 3 46 %S, s — 2P, 5, into 4 and 6 components, respectively, in a magnetic
i M;9j /2 +513 12~ P
2F’n‘:z +p +1h 2P3,2 1 +2p3 _ﬁeld. Her;c, §=0 and we are dealing with purcl}; orbital magnet-
—_— Sy If —_ ism. The “P55, state is higher in energy than the “Py, state; this is
} ¢ T Y2 - not shown in the figure. Compare also Fig. 12.18
\ ! 32 =63 D
* EEREE 1 D2
¢ F | |
| T T 1 17.18 cm
1 | | - — - — - — = EEE—
| | |
|
2
[HEEN | L1
Ay - _L_ 1 o T = - ===
fa - fo - -1.88 -1.88 2.35 0.47 1.41

-0.93 -0.93

GT TOo GGTMTNGG magnetic field of 3 T (Zeeman effect)

The significance of the Zeeman effect is primarily its contribution to empirical term
analysis. Term splitting depends unequivocally on the quantum numbers /, s and j or,
in many-electron atoms, L, S and J (Chap. 17). The quantum numbers can therefore be
determined empirically from measurements of the Zeeman effect.

13.3.5 Magnetic Moments with Spin-Orbit Coupling

In anomalous Zeeman splitting, other values of g; than 1 (orbital magnetism) or 2 (spin
magnetism) are found. We can understand these quantitatively through the vector
model.

The g; factor links the magnitude of the magnetic moment of an atom to its total
angular momentum. The magnetic moment is the vector sum of the orbital and spin
magnetic moments,

M=ty

- 141 047 235
m I Fig. 13.13. Energy splitting (in cm~ ") of the D, and D, lines in a
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The directions of the vectors g, and I are antiparallel, as are those of the vectors M
and s. In contrast, the directions of j and — #;do not in general coincide. This is a result
of the difference in the g factors for spin and orbital magnetism. This is demonstrated
in Figs. 13.14 and 13.11.

The magnetic moment g; resulting from vector addition of My and pg precesses
around the total angular momentum vector j, the direction of which is fixed in space.
Due to the strong coupling of the angular momenta, the precession is rapid. Therefore
only the time average of its projection onj can be observed, since the other components
cancel each other in time. This projection (u)); precesses in turn around the B axis of
the applied magnetic field B,. In the calculation of the magnetic contribution to the
energy V,,,, the projection of g; on the j axis (#;); must therefore be inserted in (13.15).
Its magnitude can be calculated from the vector model: from Figs. 13.11 and 13.14,
the j component of u;is

()| = |ay|cos(l,j) + | |cos(s, )
= up[)/1(1+1) cos(l, ) +2)/s(s+1) cos(s, )] .

Fig. 13.14. Calculation of the J components of My and interpreta-
tion of the differing g factors of orbital and spin magnetism.
Again, lower case letters s, / and j apply to single-electron systems,
upper case S, L and J to many-electron systems

The expressions for cos(l,j) and cos(s,j) are derived from Figs.13.14 and 13.11
using the law of cosines. The length of the vectors is again L:’Jl(l'+ 1hor |/s(s+1)h,
respectively. We shall present a deeper quantum theoretical justification for this in
Sect. 14.3.

We then have for the magnitude of (1)),

3G+ 1) +s(s+1)—1(I+1)

|(a);| = — tp=g;ViG+ D ug, (13.17)
2/jG+1)
and for the moment
)= —gjunj/h
with
gj:]+j(i+1)+s(s+1)—!(l+1) ’ (13.18)

2j(j+1)
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and for the component in the z direction,

(#))j,= —m;g;ug. (13.19)

The Landé factor g; defined in this way has a numerical value of 1 for pure orbital
magnetism (s = 0) and 2 (more exactly, 2.0023) for pure spin magnetism (/ = 0). For
mixed magnetism, one observes values which differ from these two cases. By making
the appropriate substitutions, one can easily see that the g factors given in the preceding
section for the terms of the sodium atom are obtained from (13.18). In many-electron
atoms, the quantum numbers s, / and j are replaced by S, L and J, as already mentioned
(but see Sect. 17.3.3). This has been done in Figs. 13.11 and 13.14.

13.4 The Paschen-Back Effect

The preceding considerations on the splitting of spectral lines in a magnetic field hold
for “weak” magnetic fields. “Weak” means that the splitting of energy levels in the
magnetic field is small compared to fine structure splitting; or, in other words, the
coupling between the orbital and spin moments, the so-called spin-orbit coupling, is
stronger than the coupling of either the spin or the orbital moment alone to the external
magnetic field. Since spin-orbit coupling increases rapidly with increasing nuclear
charge Z (Sect. 12.8), the conditions for a “strong” field are met at a much lower field
with light atoms than with heavy atoms. For example, the spin-orbit splitting of the
sodium D lines is 17.2 cm !, while the splitting for the corresponding lines of the
lithium atom is 0.3 cm ~'. The Zeeman splitting in an external field Byof30kG (3T) is
the same in both cases, about 1 ¢cm ™', cf. Fig. 13.13. Thus this field is a “strong”
magnetic field for lithium, but a “weak” field for sodium.

When the magnetic field By is strong enough so that the above condition is no
longer fulfilled, the splitting picture is simplified. The magnetic field dissolves the fine
structure coupling. / and s are, to a first approximation, uncoupled, and precess inde-
pendently around B,. The quantum number for the total angular momentum, j, thus
loses its meaning. This limiting case is called the Paschen-Back effect.

The components of the orbital and spin moments (g;), and (u,), in the field direc-
tion are now individually quantised. The corresponding magnetic energy is

Ving.m, = (m+2mg) ug By (13.20)
and the splitting of the spectral lines is
AE =(Am+2Amg) ug By . (13.21)

For optical transitions, there are again selection rules, and as before, Am;=0 or
+1 for 7 or ¢ transitions. Since electric dipole radiation cannot, to a first approxima-
tion, effect a spin flip, it also holds that Am,= 0. With these rules, (13.21) yields a
triplet of spectral lines like those of the ordinary Zeeman effect.

Figure 13.15 shows the splitting scheme of the Na D lines. A vector model is shown
in Fig. 13.16, which makes it clear that a total angular momentum vector j cannot even
be defined here. Like the Zeeman effect, the Paschen-Back effect is chiefly used in
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m_ Mg Fig. 13.15a —¢. Paschen-Back effect (c¢) and Zeeman effect (b)
with the D; and D, lines of the neutral sodium atom (a). In the

- 1 e s
+1 412 limiting case of strong magnetic fields, one observes one un-
shifted and two symmetrically split lines, as in the ordinary
- 0 +\2 Zeeman effect
—— -1+
1 -
\
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G T O
I Fig. 13.16. Paschen-Back effect. In the limiting case of a strong
magnetic field By, the spin § and orbital L angular momenta
c align independently with the field B;,. A total angular momen-

tum J is not defined

empirical term analysis. In many-electron atoms, where the single-electron quantum
numbers /, /, and s are replaced by the many-electron quantum numbers J, L and S, this
method is especially important (Chap. 17).

The area between the limiting cases of weak fields (Zeeman effect) and strong fields
(Paschen-Back effect) is difficult to analyse, both theoretically and experimentally.

13.5 Double Resonance and Optical Pumping

One can make use of the difference in polarisation of the various Zeeman components
in order to populate selectively individual Zeeman levels, even when the spectral resolu-
tion is insufficient or the linewidth is too great to obtain the excited state otherwise.
This is the simplest case of optical pumping.

The first experiment of this type is represented in Fig. 13.17 (Brossel, Bitter and
Kastler 1949 — 1952). Mercury atoms in an external magnetic field B, are excited by ir-
radiation with linearly polarised light in a # transition to the m; = 0 level of the 3P,
excited state. The emission from these atoms is also linearly polarised 7 light. Now one
can induce transitions Am = +1 with a high-frequency coil perpendicular to B, as
shown in Fig. 13.17, and thus populate the Zeeman substates m = 1 and m = — 1. The
light emitted from these levels, however, is circularly polarised o light. The emission
of circularly polarised light in a direction perpendicular to that of the 7 emission can
thus be used for the detection and measurement of Am = +1 transitions between
Zeeman substates.
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Here, the same transitions as in electron spin resonance are observed, but they are
detected optically. By means of this double resonance technique (double excitation with
light and with high-frequency radiation), an extremely high detection sensitivity can be
reached, because the high-frequency quanta with small quantum energies are detected
via the much more energetic light quanta. In this way, the detection of spin resonance
in a short-lived excited state becomes possible. Double resonance methods of this type
have attained considerable importance in spectroscopy in the past 30 years.

The principle of optical pumping may be explained conveniently using the example
of the sodium D lines, e.g. the transition from the 2S,,, ground state to the P, 5 ex-
cited state. In an applied magnetic field, both terms are split into the Zeeman terms
m; = +1/2 (Figs. 13.12 and 13.18). If the “pumping” light is now circularly polarised,
for example as ¢ light, only transitions from m ;= —1/2 in the ground state to the
m; = +1/2 excited state can take place, populating only the latter state. Emission from
this state can occur either as ¢ light, leading to the %S, 52 m; = —1/2 initial state, or as
n light, leading to the ground state term with m; = +1/2. Overall, this pumping cycle
increases the population of the terms with m; = +1/2 in the ground state at the cost of
those with m; = —1/2. An equalisation of the populations can occur through relaxa-
tion processes, for example by means of collisions of the Na atoms with one another or

BU = 0 Bo + 0 m J
— !
o =3 R —1t :42
Vv 2
’p, 0 '
v i E ct " I
! : '
A=2537nm T I G*!IT!GT
| l R +In
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without with Excitation, Emission ESR or
transitions v in 3P1 state absorption relaxation
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of g-light

Bp-field coils
B, - field coils
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with Tt-light
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of w-light

Fig. 13.17. Double resonance, after the method of Brossel, Bitter
and Kastler. In the upper part of the figure, the three Zeeman levels
of the excited state 3P1 are shown. The lower part shows the experi-
mental arrangement. The mercury atoms are contained in a cuvette
between two pairs of coils, which produce the constant field B, and
the high-frequency field B;. The transition occurs between the
ground state of the Hg atom 652(180) and the excited state
656pCPy)

B, ~High-frequency field coils

é Bg - (static)
m K field coils
[Na] ®

g a
Na light, U U Photo-
O multiplier

'~ polarised

Fig. 13.18. Optical pumping of the transition 2S,,, — P, ,, of
the sodium atom. In the field By, the terms split up into Zeeman
terms with m; = +1/2. Only atoms in the ground state m; =
—1/2 absorb the ¢ light with which the sample is irradiated. 7
transitions occurring in emission from the excited state lead to
an increase in the population of atoms in the ground state with
m;= +1/2. With the high-frequency field, transitions from
m; = +1/2to m;= —1/2 areinduced, increasing the number of

'j
atoms which are able to absorb the pumping light
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with the walls of the container. If these processes are not sufficiently rapid, one can
induce transitions in the ground state by irradiation with microwaves. These electron
spin resonance transitions change the populations of the Zeeman terms. The detection
of this ESR can be accomphshed optically, namely through the change in the intensity
of the absorption from Sm, m;=—1/2 to Pm, m;= +1/2, provided that the
population of the ground state terms was altered by optlcal pumping. Figure 13.18
shows the experimental arrangement schematically. This is thus also a double reso-
nance method.

Double resonance methods, in which magnetic resonance transitions are detected
by means of the absorption or emission of light in the visible or ultraviolet spectral
ranges, have also acquired considerable importance in molecular and solid-state phys-
ics. They are termed ODMR, for optically-detected magnetic resonance. This subject
is treated in more detail in Molecular Physics and Quantum Chemistry by H. Haken
and H.C. Wolf, Sect. 19.7.

Problems

13.1 What frequency is required to induce electron spin transitions from the parallel
to the antiparallel configuration, or vice versa, if the magnetic field is 10" tesla?

13.2 Why is the 4D1/2 term not split in a magnetic field? Explain this in terms of the
vector model.

13.3 Calculate the angle between the total and the orbital angular momenta in a *Ds,,
state.

13.4 The spectral lines corresponding to the 3p < 35 transition in sodium have the
wavelengths 4, = 5895.9 A and 4, = 5889,6 A.

a) Calculate the magnetic field strength at which the lowest Zeeman level of the *P;,,
term would coincide with the highest level of the P1 ,2 term, if the conditions for the
anomalous Zeeman effect were still fulfilled.

b) How large are the frequency differences between the outer two components of the
Dy line and of the D, line in a magnetic field of 1 tesla?

13.5 Discuss the splitting of the lines in the 3d < 2p transition in the presence of a
magnetic field when the Zeeman splitting is small compared to the spin-orbit interaction.

13.6 Sketch the Zeeman splitting in the lines of the hydrogen atom Balmer series.

Calculate the magnetic moments of the states P,,5, Py, D3, and Ds,,.

Also sketch the splitting in the Paschen-Back effect. At what magnetic field does the
transition from the Zeeman to the Paschen-Back effect occur?

13.7 a) Consider hydrogen atoms in a magnetic field B, = 4.5 tesla. At this field
strength, is the splitting of the H,, line (n = 3 - n = 2) due to the anomalous Zeeman
effect or the Paschen-Back effect" Support your answer. (The spin-orbit coupling
between the 3°P,,, and 3 P; /> terms of the hydrogen atom is 0.108 cm ~'.)
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b) Sketch the splitting of the energy levels in the given magnetic field and show the
transitions which contribute to the H, line. Into how many components is the H, line
split?

¢) Determine the specific charge e/m of the electron, given that the frequency
splitting between two neighbouring components is 6.29 - 10'° Hz. The fine structure
can be ignored here.

d) Is the wavelength splitting in the first line of the Lyman series (n =2 —n = 1)
smaller, larger or the same as that of the H,, line?

13.8 a) Sketch the energy levels of a free electron in a magnetic field as a function
of the field strength.

b) Consider two electrons whose spins are coupled (the precise coupling mechanism
is not important for the problem; e.g. they could interact as two magnetic dipoles).
How many possible orientations are there? Distinguish between singlet and triplet
states.

¢) What is the minimum number of electrons which you must couple together in
order to produce a sextet state?

Hint: An x-tet state is named for its multiplicity.



