Appendix

A. The Dirac Delta Function and the Normalisation
of the Wavefunction of a Free Particle in Unbounded Space

The English physicist Dirac introduced a function which is extremely useful for many
purposes of theoretical physics and mathematics. Precisely speaking, it is a generalised
function which is only defined under an integral. We shall first give its definition, and
then discuss its uses. The delta function (J function) is defined by the following
properties (x is a real variable, — oo =x =< o0):

1) 6x)=0 for x=#0, (A1)
b
2) [d(x)dx=1 for a<0<b. (A.2)

The ¢ function thus vanishes for all values of x + 0, and its integral over every interval
which contains x = 0 has the value 1. The latter property means, speaking intuitively,
that the d function must become infinitely large at x = 0. The unusual properties of the
o function become more understandable when we consider it as the limiting case of
functions which are more familiar. Such an example is given by the function
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which is shown in Fig. A.1.
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Fig. A.1. The function (1/)/mu) exp(—x>/u?) plotted against
the variable x. If we let the parameter u become smaller, the
value of the function at x = 0 gets larger and larger and the
decrease to both sides gets steeper, until the function has
finally pulled itself together into a & function
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If we allow u to go to zero, the function becomes narrower and higher until it is
finally just a “vertical line”. We thus have

for x+0:lim 1 _e x4 _¢ (A.4)
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On the other hand, one can find in any integral table the following fact:
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independently of the value of w. If the limit  — 0 is calculated it becomes clear that
because of (A.4), we can write the integral (A.5) with any finite limits @ and b with
a <0 < b without changing its value. This is just the relation (A.2).

In many practical applications in quantum mechanics, the & function occurs as the
following limit:

ey =1, (A.5)
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u u u u plotted against x. If we allow u to
™~ l/\ Pl x 80 to the limit infinity, the value
\/ \/ of the function at x = 0 becomes
larger and larger. At the same
time, the position of the zero-
crossing moves towards x =

The property (A.2) is found to be fulfilled when we take into account that

+ oo ;
1 sinx) .oy (A.7)
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The property (A.1) is not so obvious. To demonstrate it, one has to consider that for
u— oo, x+0, sin(ux)/x oscillates extremely rapidly back and forth, so that when we
average the function over even a small region, the value of the function averages out to
zero (Fig. A.2).

The J function has, in particular, the following properties:
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for a continuous function f(x),
b
[ ) d(x—xg)dx = f(xg), a<xo<b isvalid. (A.8)
a

For a function f(x) which is n times continuously differentiable,
b
If ()M (x—xp)dx =(=1)"f"(xq), a<xo<bh (A.9)
a

holds. Here ™ and 6 mean the nth derivatives w.r.t. x. The proof of (A.8) follows
immediately from (A.1, 2). The proof of (A.9) is obtained by n-fold partial integration.
Furthermore,

S(cx) = Ll 3(x), creal (A.10)

lc

is valid. The relation (A.1) is seen to be fulfilled on both sides. If we insert (A.10) in
(A.2), we find

b
[d(cx)dx,
a

which, after changing variables using cx = x’, becomes

dxdx', a' =b" for =0,
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which is thus, according to (A.2), equal to 1/ |c]|.

We now turn to the question of the normalisation of wavefunctions in unbounded

space, where we can limit ourselves to the one-dimensional case without missing any
essentials. We start with wavefunctions which are normalised in the interval L,

wi(x) = (1/)/Lye'™, (A.11)

for which we have the normalisation integral

L/2
5,2 lw(x) [Pdx=1. (A.12)

If we furthermore assume that w(x) is periodic, w(x+ L) = w(x), the k’s must have
the form
2mn

k T n=0,+1,+2,... . (A.13)

It is easy to convince oneself that
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L/2
I/zw;?‘(X) Wi (x)dx = &y g (A.14)

—-L
1 for k=k'
= or (A.15)
0 for k=+k’.

To prove this relation, the integral must be computed, taking account of (A.13).
The integral yields

12 sk 1 :
— e T Ydxy =~ (explilk'—k)L/2] —exp[—i(k'—k)L/2]).
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(A.16)
If we now abbreviate k' — k with ¢ and L/2 with u, we may write (A.16) in the form
sin(&u)/Eu . (A.17)

This is, however, apart from the factor 2 /L, just the function which appears in (A.6)
on the right under the limit, if we identify & with x. If we thus divide (A.16) by 2 /L
and form lim, we obtain on the left side of (A.16)
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1 tim T exp(—ikx+ik'x)dx, (A.18)
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which we may also write somewhat differently:

+ oo 1 ik * 1 .
| |——e"| | ——=¢""|ax. (A.19)
| |27 /27

The right-hand side of (A.16), using (A.17) and (A.6), goes to d(k'—k). We thus
finally obtain

+ oo
T WEC) e 0y = Sk k), (A20)
where
Vi) = 1,; e (A21)
/2w

Equation (A.20) with (A.21) generalises the relation (A.14) [with (A.11)] to the case of
wavefunctions without finite boundary conditions and thus to the corresponding case
of continuous & values. As may be seen in all practical applications, the & function in
(A.20) always occurs under further integrals over & or k' (or both), so that we have
found a self-consistent formalism.

Let the wavefunctions in (A.21) depend not upon k, but upon p = Ak; then we must
observe (A.10). In order to normalise the new wavefunctions

Wp(x) — Neipx/ﬁ



B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions and Its Eigenvalues 451

correctly, we must set N equal to (1/ [/E) 1/ V’ZTT) =1/ [/};). The normalised wavefunc-
tion is now given by

oy = L eon,
Vi

B. Some Properties of the Hamiltonian Operator, Its Eigenfunctions
and Its Eigenvalues

We write the time-independent Schrodinger equation in the form

H Yy =EqWn (B.1)

with the Hamiltonian
e
#=— 4+ V(r), V(r)real.
ng

The y,(r) are square-integrable eigenfunctions with the eigenvalues E,. Here, v, = 0is
excluded. The eigenvalues E, may be discrete or they may be continuous.

In the following, we denote by w, and w, the wavefunctions on which the operator
# can act. We can now easily read off the following properties:

a)  is a linear operator, i.e. the relation

H(Cypu+ ) =y yy+ e, 0y,
holds, where ¢, and ¢, are some complex numbers. In particular, it follows from this
that every lmear combination of eigenfunctions of # with the same eigenvalue E is
itself an eigenfunction of # with the eigenvalue E.
b) . is Hermitian, i.e. the equation

Swr) [ Ay O] dV = A p())* y(r)dV (B.2)
is valid. It follows from (B.2) that for the operator of the potential energy,
V*(r) = V(r). For the kinetic energy operator, (B.2) can be proved by double partial

integration, taking into account the fact that the wavefunctions vanish at infinity.

¢) The eigenvalues E, are real. This is a consequence of (B.2), if one inserts for y, and
w, the same eigenfunction y, and utilises (B.1).

d) Eigenfunctions with different eigenvalues are orthogonal.

We take the following scalar products (different eigenvalues belong to the functions y,,
and w,):



