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Atomic Physics, P. Ewart 1 Introduction

1 Introduction

The structure of atoms and their behaviour is responsible for the appearance of the visible world.
The small scale of atoms and the properties of nuclei and electrons required a new kind of mechanics
to describe their behaviour. Quantum Mechanics was developed in order to explain such phenomena
as the spectra of light emitted or absorbed by atoms. So far you have studied the physics of hydrogen
and helium as illustrations of how to apply Quantum Theory. There was a time, a few seconds after
the Big Bang, when the Universe consisted only of hydrogen and helium nucleii. It took another
300,000 years for atoms, as such, to form. Things, however, have moved on and the universe is
now a much more interesting place with heavier and more complicated atoms. Our aim is now to
understand Atomic Physics, not just to illustrate the mathematics of Quantum Mechanics. This
is both interesting and important, for Atomic Physics is the foundation for a wide range of basic
science and practical technology. The structure and properties of atoms are the basis of Chemistry,
and hence of Biology. Atomic Physics underlies the study of Astrophysics and Solid State Physics. It
has led to important applications in medicine, communications, lasers etc, as well as still providing a
testing ground for Quantum Theory and its derivatives, Quantum Electrodynamics. We have learned
most about atoms from the light absorbed or emitted when they change their internal state. So that
is a good place to begin.

2 Radiation and Atoms

We will make extensive use of “models” in this course to help us get a feel for the physics. A favourite
model for theorists is the “two-level atom” i.e. one with only two eigenstates ψ1, ψ2 with energy
eigenvalues E1, E2 respectively (E2 > E1). The wave functions have, in general, a time dependence.

ψ1 = φ1(x)eiE1t/~ (1)
ψ2 = φ2(x)eiE2t/~ (2)

When the atom is perturbed it may be described by a wave function that is a linear combination
of ψ1 and ψ2: ψ = aψ1 + bψ2 giving the probability amplitude. We observe, however, a probability
density: the modulus squared; |ψ|2. This will have a term

abψ1ψ
∗
2e

i(E1−E2)t/~ (3)

This is a time oscillating electron density with a frequency ω12:

ei(E1−E2)t/~ = e−iω12t (4)

So
E2 − E1 = ~ω12 (5)

This is illustrated schematically in figure 1.
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Atomic Physics, P. Ewart 2 Radiation and Atoms
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Figure 1: Evolution of the wavefunction of a system with time.

So the perturbation produces a charge cloud that oscillates in space – an oscillating dipole. This
radiates dipole radiation. Whether or not we get a charge displacement or dipole will depend on the
symmetry properties of the two states ψ1, and ψ2. The rules that tell us if a dipole with be set up
are called “selection rules”, a topic to which we will return later in the course.

2.1 Width and Shape of Spectral Lines

The radiation emitted (or absorbed) by our oscillating atomic dipole is not exactly monochromatic,
i.e. there will be a range of frequency values for ω12. The spectral line observed is broadened by
one, or more, processes. A process that affects all the atoms in the same way is called “Homoge-
neous Broadening”. A process that affects different individual atoms differently is “Inhomogeneous
Broadening”.

Examples of homogeneous broadening are lifetime (or natural) broadening or collision (or pres-
sure) broadening. Examples of inhomogeneous broadening are Doppler broadening and crystal field
broadening.

2.1.1 Lifetime Broadening

This effect may be viewed as a consequence of the uncertainty principle

∆E∆t ∼ ~ (6)

Since E = ~ω, ∆E = ~∆ω and if the time uncertainty ∆t is the natural lifetime of the excited atomic
state, τ , we get a spread in frequency of the emitted radiation ∆ω

∆ω τ ∼ 1 or ∆ω ∼ 1
τ

(7)

2



Atomic Physics, P. Ewart 2 Radiation and Atoms

The lifetime, τ , is a statistical parameter related to the time taken for the population of the excited
state to decay to 1/e of its initial value. This exponential decay is reflected in the experimental
decay of the amplitude E(t) of the light wave emitted. The frequency (or power) spectrum of an
exponentially decaying amplitude is a Lorentzian shape for the intensity as a function of frequency

I(ω) ∼ 1
(ω − ω0)2 + (1/τ)2

(8)

The full width at half-maximum, FWHM, is then

∆ω ∼ 2
(

1
τ

)
(9)

A typical lifetime τ ∼ 10−8 sec.

N( )t I( )w

Time, t frequency, w

Intensity spectrumNumber of excited atoms

Exponential decay Lorentzian lineshape

Figure 2: Decay of excited state population N(t) leads to similar exponential decay of radiation
amplitude, giving a Lorentzian spectrum.

2.1.2 Collision or Pressure Broadening

A collision with another atom while the atom is radiating (oscillating) disrupts the phase of the
wave. The wave is therefore composed of various lengths of uninterrupted waves. The number
of uninterrupted waves decays exponentially with a 1/e time τc, which is the mean time between
collisions. At atmospheric pressure this is typically ∼ 10−10 sec. The exponential decay of the
coherent oscillations again leads to a Lorentzian lineshape.

N( )t I( )w

Time, t frequency, w

Intensity spectrumNumber of uncollided  atoms

Exponential decay Lorentzian lineshape

Figure 3: Decay in number of undisturbed atoms radiating leads to decay in amplitude of wave
undisturbed by a phase changing collision. The associated frequency spectrum is again
Lorentzian.
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Atomic Physics, P. Ewart 2 Radiation and Atoms

2.1.3 Doppler Broadening

Atoms in a gas have a spread of speeds given by the Maxwell-Boltzmann distribution. The Doppler
shift of the light emitted is therefore different for the atoms moving at different speeds. There is then
a spread of Doppler shifted frequencies leading to a broadening of the spectral line. Since different
atoms are affected differently this Doppler Broadening is “Inhomogeneous broadening”. The Doppler
shift is given by:

ω = ω0

(
1± v

c

)
(10)

The spread, or width of the line, is therefore

∆ωD ∼ ω0
v

c
(11)

Since ω0 ∼ 1015 rad s−1 and v ∼ 102 ms−1 we find

∆ωD ∼ 2π109 rad s−1 (12)
∆ν ∼ 109 Hz (13)

N(v) I( )w

atomic speed, v frequency, w

Doppler broadeningDistribution of atomic speed

Maxwell-Boltzmann
distribution

Gaussian lineshape

Figure 4: Maxwell-Boltzmann distribution of speeds and the associated Doppler broadening giving a
Gaussian lineshape.

2.2 Atomic Orders of Magnitude

We have already started getting a feel for typical values of parameters associated with spectral lines,
so now is a good time to do the same for some other aspects of atoms. It is important to have some
idea of the orders of magnitude associated with atoms and their structure. We will be looking at
atoms more complex than Hydrogen and Helium for which we can’t solve the Schrodinger Equation
exactly. We have to do the best we can with approximate solutions using Perturbation Theory. So
we need to know when perturbation theory will give a reasonable answer. We will be particularly
interested in the energy level structure of atoms so let’s start there.

First a word about units. Atoms are small ∼ 10−10 m and their internal energies are small; ∼ 10−19

Joule. So a Joule is an inconvenient unit. We will use electron Volts, eV, which is 2 ∼ 10−19 J. We
have seen that atoms emit or absorb light in the UV or visible range – say ∼ 500 nm. This must then
be of the order of the energy changes or binding energy of the outer, most loosely bound electron.

Now a wavelength λ ∼ 500 nm corresponds to a frequency, ν ∼ 6× 1014 Hz. So from E = hν we
find E ∼ 40× 10−341014 ∼ 4× 10−19 J ∼ 2eV.

4



Atomic Physics, P. Ewart 2 Radiation and Atoms

We could also check this using the size of an atom (∼ 10−10 m) using the Uncertainty Principle.

∆p ∆x ∼ ~ (14)

∆p ∼ p ∼ ~
∆x

(15)

E =
p2

2m
∼

(
~

∆x

)2

/(2m) ∼ a few eV (16)

We can compare ∼ 2 eV with thermal energy or ∼ kT i.e. the mean Kinetic energy available from
heat, 1

40 eV. This is not enough to excite atoms by collisions so atoms will mostly be in their ground
state.

2.2.1 Other important Atomic quantities

Atomic size: Bohr radius

a0 =
4πε0~2

me2
= 0.53× 10−10 m (17)

Ionisation Energy of Hydrogen

EH =
me4

(4πε0)
2 2~2

= 13.6 eV (18)

Rydberg constant

R =
EH

hc
= 1.097× 107 m−1 (19)

R is useful is relating wavelengths λ to energies of transitions since wavenumber ν̄ = 1
λ in units of

m−1.

Fine structure constant

α =
e2

4πε0~c
∼ 1

137
(20)

This is a dimensionless constant that gives a measure of the relative strength of the electromagnetic
force. It is actually also the ratio of the speed ve of the electron in the ground state of H to c, the
speed of light. α = ve/c and so it is a measure of when relativistic effects become important.

Bohr magneton

µB =
e~
2m

∼ 9.27× 10−24 JT−1 (21)

This is the basic unit of magnetic moment corresponding to an electron in a circular orbit with
angular momentum ~, or one quantum of angular momentum.

As well as having orbital angular momentum the electron also has intrinsic spin and spin magnetic
moment µS = 2µB. A proton also has spin but because its mass is ∼ 2000 larger than an electron
its magnetic moment is ∼ 2000 times smaller. Nuclear moments are in general ∼ 2000 times smaller
than electron moments.

5



Atomic Physics, P. Ewart 2 Radiation and Atoms

2.3 The Central Field Approximation

We can solve the problem of two bodies interacting with each other via some force e.g. a star and
one planet with gravitational attraction, or a proton and one electron – the hydrogen atom. If we
add an extra planet then things get difficult. If we add any more we have a many body problem
which is impossible to solve exactly. Similarly, for a many electron atom we are in serious difficulty
– we will need to make some approximation to simplify the problem. We know how to do Hydrogen;
we solve the Schrödinger equation:

− ~2

2m
∇2ψ − Ze2

4πε0r
ψ = Eψ (22)

We can find zero order solutions – wave functions ψ that we can use to calculate smaller perturbations
e.g. spin-orbit interaction.

The Hamiltonian for a many electron atom however, is much more complicated.

Ĥ =
N∑

i=1

(
− ~2

2m
∇2

i −
Ze2

4πε0ri

)
+

∑
i>j

e2

4πε0rij
(23)

We ignore, for now, other interactions like spin-orbit. We have enough on our plate! The second
term on the r.h.s. is the mutual electrostatic repulsion of the N electrons, and this prevents us from
separating the equation into a set of N individual equations. It is also too large to treat as a small
perturbation.

We recall that the hydrogen problem was solved using the symmetry of the central Coulomb field –
the 1/r potential. This allowed us to separate the radial and angular solutions. In the many electron
case, for most of the time, a major part of the repulsion between one electron and the others acts
towards the centre. So we replace the 1/r, hydrogen-like, potential with an effective potential due to
the nucleus and the centrally acting part of the 1/rij repulsion term. We call this the Central Field
U(r). Note it will not be a 1/r potential. We now write the Hamiltonian

Ĥ = Ĥ0 + Ĥ1 (24)

where Ĥ0 =
∑

i

{
− ~2

2m
∇2

i + U(ri)
}

(25)

and Ĥ1 =
∑
i>j

e2

4πε0rij
−

∑
i

{
Ze2

4πε0ri
+ U(ri)

}
(26)

Ĥ1 is the residual electrostatic interaction. Our approximation is now to assume Ĥ1 << Ĥ0 and
then we can use perturbation theory.

The procedure is to start with just Ĥ0. Since this is a central potential the equations are separable.
Solutions for the individual electrons will have the form:

ψ(n, l,ml,ms) = R′
n,l(r)Y

m
l (θ, φ)χ(ms) (27)

So far, in this approximation the angular functions Y m
l (θ, φ) and spin functions χ(ms) will be the

same as for hydrogen. The radial functions will be different but they will have some features of the
hydrogenic radial functions. The wave function for the whole atom will consist of antisymmetric
products of the individual electron wave functions. The point is that we can use these zero order
wavefunctions as a basis set to evaluate the perturbation due to the residual electrostatic interactions
Ĥ1. We can then find new wavefunctions for the perturbed system to evaluate other, presumed
smaller, perturbations such as spin-orbit interaction. When it comes to the test we will have to
decide in any particular atom, which is the larger of the two perturbations – but more of that later.

6



Atomic Physics, P. Ewart 2 Radiation and Atoms

2.4 The form of the Central Field

Calculating the form of U(ri) is a difficult problem. We can, however, get a feel for the answer in
two limiting situations. Firstly, imagine one electron is taken far away from the nucleus, and the
other electrons. What form of potential will it see? Clearly, there are then Z protons surrounded
apparently by Z − 1 electrons in a roughly spherically symmetric cloud. Our electron then sees, at
large r, a Hydrogen-like 1/r potential. Secondly, what happens when our electron goes “inside” the
cloud of other electrons? Here, at small r, it sees Z protons and feels a Z/r potential.

r

U(r)

1/r

~Z/r

“Actual”

Potential

Figure 5: “Actual” potential experienced by an electron behaves like 1/r at large r and Z/r for small
r. The intermediate r case is somewhere between the two.

The potential then looks like it has the form

U(r) = Zeff(r)
e2

4πε0r
(28)

Where Zeff(r) varies from Z at small r to 1 at large r.

~Z

Zeff

1

Radial position, r

Figure 6: The variation of the effective Z that the electron feels as a function of r.

Note, for most of the important space U(r) is not a 1/r potential.

7



Atomic Physics, P. Ewart 2 Radiation and Atoms

2.5 Finding the Central Field

The method of finding a good approximation to the Central Field is based on a “Self consistent field”.
This was first done by Hartree and his method was further developed by Fock so that we now call it
the Hartree-Fock method. Hartree’s basic idea was to find the best form of the potential by a series
of iterations based on some initial guess. It works as follows.

(1) Guess a “reasonable” form for U(r)
(2) Put this guess for U(r) into the Schrodinger equation and solve to find approximate wavefunc-

tions
(3) Use these wave functions to calculate the charge distribution of the electrons
(4) Find the potential set up by this charge distribution and see if it matches the original guess

for U(r).
(5) Iterate this procedure until a self-consistent solution is found.

This procedure is ideally suited to numerical solution by a computer. The solutions for the
wavefunctions will therefore be numerical i.e. they can’t be expressed by nice analytical formu-
lae. Hartree’s orginal method used simple product wavefunctions which were not correctly anti-
symmetric. Each of the electrons in this model move in a potential set up by the other electrons
and, as a result, the potentials are not the same for all the electrons and so the individual electron
states are not automatically orthogonal. The Hartree-Fock method uses an anti-symmetric basis
set of wavefunctions. These are constructed using determinants where columns represent quantum
states of individual electrons. This means that interchanging any column automatically changes the
sign and makes the states correctly antisymmetric. The product states for each electron contain
both space and spin functions. The potential is assumed to be the same for all the electrons. The
potential is varied so as to produce the minimum energy for the system. This is the Variational
Principle and has the same effect as finding a self-consistent field. The Hartree-Fock method is now
the most commonly used way of finding wave functions and energy levels for many electron atoms.
The wavefunctions produced are again numerical rather than analytic.

8



Atomic Physics, P. Ewart 3 The Central Field Approximation

3 The Central Field Approximation

To recap, we have lumped together the Coulomb attraction of the Z protons in the nucleus with the
centrally acting part of the mutual electrostatic repulsion of the electrons into U(r). This Central
Field goes like 1/r at large r and as Z/r at small r.

At in-between values of r things are more complicated – but more interesting! The important
point is that we can, in many cases, treat the residual electrostatic interaction as a perturbation, so
the Hamiltonian for the Schrödinger equation will be

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + ... (29)

Ĥ1 will be the perturbation due to residual electrostatic interactions, Ĥ2 that due to spin-orbit
interactions. We will mostly deal with the cases where Ĥ1 > Ĥ2 but this won’t be true for all
elements. We can also add smaller perturbations, Ĥ3 etc due to, for example, interactions with
external fields, or effects of the nucleus (other than its Coulomb attraction). The Central Field
Approximation allows us to find solutions of the Schrödinger equation in terms of wave functions of
the individual electrons:

ψ(n, l,ml,ms) (30)

The zero-order Hamiltonian Ĥ0 due to the Central Field will determine the gross structure of the
energy levels specified by n, l. The perturbation Ĥ1, residual electrostatic, will split the energy levels
into different terms. The spin orbit interaction, Ĥ2 further splits the terms, leading to fine structure
of the energy levels. Nuclear effects lead to hyperfine structures of the levels.

Within the approximation we have made, so far, the quantum numbers ml,ms do not affect the
energy.The energy levels are therefore degenerate with respect to ml,ms. The values of ml,ms or
any similar magnetic quantum number, specify the state of the atom.

There are 2l + 1 values of ml i.e. 2l + 1 states and the energy level is said to be (2l + 1)-fold
degenerate. The only difference between states of different ml (or ms) is that the axis of their
angular momentum points in a different direction in space. We arbitrarily chose some z-axis so that
the projection on this axis of the orbital angular momentum l would have integer number of units
(quanta) of ~. (ms does the same for the projection of the spin angular momentum s on the z-axis).

(Atomic physicists are often a bit casual in their use of language and sometimes use the words en-
ergy level, and state (e.g. Excited state or ground state) interchangeably. This practice is regrettable
but usually no harm is done and it is unlikely to change anytime soon.)

3.1 The Physics of the Wave Functions

You will know (or you should know!) how to find the form of the wave functions ψ(n, l,ml,ms) in
the case of atomic hydrogen. In this course we want to understand the physics – the maths is done in
the text books. (You may like to remind yourself of the maths after looking at the physics presented
here!) Before we look at many electron atoms, we remind ourselves of the results for hydrogen.

3.1.1 Energy

The energy eigenvalues, giving the quantized energy levels are given by:

En =
〈
ψn,l,ml

∣∣∣Ĥ∣∣∣ψn,l,ml

〉
(31)

= − Z2me4

(4πε0)
2 2~2n2

(32)

Note that the energy depends only on n, the Principal quantum number. The energy does not depend
on l – this is true ONLY FOR HYDROGEN! The energy levels are degenerate in l. We represent
the energy level structure by a (Grotrian) diagram.

9
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1

2

3

4

n

Energy

-13.6 eV

0

l = 0                 1                     2
s                  p                     d

Figure 7: Energy level structure of hydrogen, illustrating how the bound state energy depends on n
but not l.

For historical reasons, the states with l = 0, 1, 2 are labelled s, p, d. For l = 3 and above the labels
are alphabetical f, g, h etc.

3.1.2 Angular Momentum

The wavefunction has radial and angular dependence. Since these vary independently we can write:

ψn,l,ml
(r, θ, φ) = Rn,l(r)Y

ml
l (θ, φ) (33)

Rn,l(r) and Y ml
l are radial and angular functions normalized as follows:∫

R2
n,l(r)r

2dr = 1
∫ ∣∣Y ml

l (θ, φ)
∣∣2 dΩ = 1 (34)

The angular functions are eigenfunctions of the two operators l̂2 and l̂z:

l̂2Y ml
l (θ, φ) = l(l + 1)~2Y ml

l (θ, φ) (35)

l̂zY
ml
l (θ, φ) = ml~Y ml

l (θ, φ) (36)

Where l(l + 1) and ml are the eigenvalues of l̂2 and l̂z respectively, such that

l = 0, 1, 2...(n− 1)− l ≤ ml ≤ l (37)

The spin states of the electron can be included in the wave function by multiplying by a spin
function χs which is an eigenfunction both of ŝ2 and ŝz with eigenvalues s(s+1) and ms respectively.
(s = 1/2 and ms = ±1/2)

Roughly speaking, the angular functions specify the shape of the electron distribution and the
radial functions specify the size of the orbits.

l = 0, s-states, are non-zero at the origin (r = 0) and are spherically symmetric. Classically
they correspond to a highly elliptical orbit – the electron motion is almost entirely radial. Quantum
mechanically we can visualise a spherical cloud expanding and contracting – breathing, as the electron
moves in space.

10
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l ≥ 1. As l increases, the orbit becomes less and less elliptical until for the highest l = (n− 1) the
orbit is circular. An important case (i.e. worth remembering) is l = 1 (ml = ±1, 0)

Y 1
1 = −

{
3
8π

}1/2

sin θeiφ (38)

Y −1
1 = +

{
3
8π

}1/2

sin θe−iφ (39)

Y 0
1 =

{
3
4π

}1/2

cos θ (40)

|Y1

0
( )|q,f

2

(a)

|Y1

+

( )|q,f
2

(b)

Figure 8: The angular functions, spherical harmonics, giving the angular distribution of the electron
probability density.

If there was an electron in each of these three states the actual shapes change only slightly to
give a spherically symmetric cloud. Actually we could fit two electrons in each l state provided they
had opposite spins. The six electrons then fill the sub-shell (l = 1) In general, filled sub-shells are
spherically symmetric and set up, to a good approximation, a central field.

As noted above the radial functions determine the size i.e. where the electron probability is
maximum.

11



Atomic Physics, P. Ewart 3 The Central Field Approximation

3.1.3 Radial wavefunctions

2           4           6 2           4           6           8          10

2           4           6           8          10                                                           20

Zr a/ o Zr a/ o

Zr a/ o

Ground state, n = 1, = 0l 1st excited state, n = 2, = 0l

2nd excited state, n = 3, = 0l

n = 3, = 2l

N = 2, = 1l

n = 3, = 1l

2 1.0

1 0.5

0.4

Figure 9: Radial functions giving the radial distribution of the probability amplitude.

NB: Main features to remember!

• l = 0, s-states do not vanish at r = 0.

• l 6= 0, states vanish at r = 0 and have their maximum probability amplitude further out with
increasing l.

• The size, position of peak probability, scales with ∼ n2.

• The l = 0 function crosses the axis (n− 1) times ie. has (n− 1) nodes.

• l = 1 has (n− 2) nodes and so on.

• Maximum l = n− 1 has no nodes (except at r = 0)

3.1.4 Parity

The parity operator is related to the symmetry of the wave function. The parity operator takes
r → −r. It is like mirror reflection through the origin.

θ → π − θ and φ→ π + φ (41)

If this operation leaves the sign of ψ unchanged the parity is even. If ψ changes sign the parity is
odd. Some states are not eigenstates of the parity operator i.e. they do not have a definite parity.
The parity of two states is an important factor in determining whether or not a transition between
them is allowed by emitting or absorbing a photon. For a dipole transition the parity must change.

12
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In central fields the parity is given by (−1)l . So l = 0, 2 even states, s, d etc. are even parity and
l = 1, 3, odd states are odd parity. Hence dipole transitions are allowed for s↔p or p↔d, but not
allowed for s↔s or s↔d.

3.2 Multi-electron atoms

3.2.1 Electron Configurations

Before considering details about multi-electron atoms we make two observations on the Central Field
Approximation based on the exact solutions for hydrogen.

Firstly, for a central field the angular wave functions will be essentially the same as for hydrogen.
Secondly, the radial functions will have similar properties to hydrogen functions; specifically they
will have the same number of nodes.

The energy level-structure for a multi-electron atom is governed by two important principles:
a) Pauli’s Exclusion Principle and
b) Principle of Least Energy

Pauli forbids all the electrons going into the lowest or ground energy field. The Least Energy
principle requires that the lowest energy levels will be filled first. The n = 1, l = 0 level can take a
maximum of two electrons. The least energy principle then means the next electron must go into the
next lowest energy level i.e. n = 2. Given that l can take values up to n = 1 and each l-value can
have two values of spin, s, there are 2n2 vacancies for electrons for each value of n. Our hydrogen
solutions show that higher n values lead to electrons having a most probable position at larger values
of r. These considerations lead to the concept of shells, each labelled by their value of n.

Now look at the distribution of the radial probability for the hydrogenic wave functions Rn,l(r). The
low angular momentum states, especially s-states have the electrons spending some time inside the
orbits of lower shell electrons. At these close distances they are no longer screened from the nucleus’
Z protons and so they will be more tightly bound than their equivalent state in hydrogen. The energy
level will depend on the degree to which the electron penetrates the core of inner electrons, and this
depends on l. Therefore the energy levels are no longer degenerate in l. To this approximation ml

and ms do not affect the energy. We can therefore specify the energy of the whole system by the
energy of the electrons determined by quantum numbers n and l. Specifying n, l for each electron
gives the electron configurations: nlx where x indicates the number of electrons with a given nl.

3.2.2 The Periodic Table

As atomic science developed the elements were grouped together according to perceived similarities
in their physical or chemical properties. Several different “periodic tables” were proposed. The one
we all learned in our chemistry classes has been adopted since it has a basis in the fundamental
structure of the atoms of each element. The physical and chemical properties, e.g. gas, solid, liquid,
reactivity etc are seen to be consequences of atomic structure. In particular they arise largely from
the behaviour of the outer shell – or most loosely bound – electrons.

Using the Pauli Principle and the Least energy Principle we can construct the configurations of
the elements in their ground states:-
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H: 1s
He: 1s2 2s
Li: 1s2 2s2

Be: 1s2 2s22p
C: 1s2 2s22p2

. . .
Ne: 1s2 2s22p6

Na: 1s2 2s22p6 3s

Everything proceeds according to this pattern up to Argon: 1s22s22p63s23p6

At this point things get a little more complicated. We expect the next electron to go into the 3d
sub-shell. As we have seen, however, a 3d electron is very like a 3d electron in hydrogen: it spends
most of its time in a circular orbit outside the inner shell electrons. An electron in a 4s state however
goes relatively close to the nucleus, inside the core, and so ends up more tightly bound - i.e. lower
energy, than the 3d electron. So the next element, Potassium, has the configuration

K: 1s22s22p6 3s23p6 4s
Ca: 4s2

The 3d shell now begins to fill

Sc: 1s22s22p6 3s23p63d 4s2

The 3d and 4s energies are now very similar and at Chromium a 3d electron takes precedence over
a 4s electron

Va: 3s23p6 3d34s2

Cr: 3d54s
Mn: 3d54s2

As the 3d shell fills up, the successive elements, the transition elements, have interesting properties
as a result of the partially filled outer shell – but this isn’t on the syllabus!

There are, however, two features of the periodic table that are worth noting as consequences of
the Central Field Approximation.

Rare gases These elements are chemically inert and have high ionization potentials (the energy
needed to pull off a single electron). This is not because, as is sometimes (often) stated, that they
have “closed shells”. They don’t all have closed shells i.e. all states for each n are full. They all do
have filled s and p sub-shells

He: 1s2 Kr: 4s24p6

Ne: 1s22p6 Xe: 5s25p6

A: 1s22p63s23p6 Rn: 6s26p6

As we noted earlier this leads to a spherically symmetric charge distribution. Since electrons are
indistinguishable all the electrons take on a common wave function. The point is that this results in
a higher binding energy for each one of the electrons. So it is harder for them to lose an electron in
a chemical bond – they are chemically inert and have high ionization energies.
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Alkalis These are the next elements to the rare gases and have one electron outside the full (sp)
sub-shells. This outer, or valence, electron therefore moves in a hydrogen like central potential. The
electron is generally well-screened by (Z − 1) inner electrons from the nucleus and is easily lost to
a chemical bond (ionic or co-valent). They are chemically reactive and have low ionization energies
which don’t change much from one alkali to another.

3.3 Gross Energy Level Structure of the Alkalis: Quantum Defect

As noted already, the single outer electron in an alkali moves in a potential that is “central” to an
excellent approximation. We are ignoring, at this stage, any other perturbations such as spin-orbit
interaction. As an example we consider sodium. The ground stage (lowest energy level) has the
configuration:

(closed shells) 3s.

We know the 3s penetrates the core (inner shells) and is therefore more tightly bound – lower
energy – than a 3s electron would be in Hydrogen. When the electron is excited, say to 3p, it
penetrates the core much less and in a 3d state its orbit is virtually circular and very close the n = 3
level of Hydrogen.

The higher excited states n > 3 will follow a similar pattern. The thing to notice – and this turns
out to be experimentally useful – is that the degree of core penetration depends on l and very little
on n. As a result the deviation from the hydrogenic energy level is almost constant for a given l as
n increases.

The hydrogen energy levels can be expressed as

En = − R

n2
(42)

For alkalis, and to some degree for other atoms too, the excited state energies may be expressed as

En = − R

(n∗)2
(43)

Where n∗ is an effective quantum number. n∗ differs from the equivalent n-value in hydrogen by δ(l)
i.e. n∗ = n− δ(l).
δ(l) is the quantum defect and depends largely on l only. It is found empirically, and it can be

shown theoretically, to be independent of n. Thus all s-states will have the same quantum defect
δ(s); all p-states will have the same δ(p), etc and δ(s) > δ(p) > δ(d).

For Na:
δ(s) ≈ 1.34
δ(p) ≈ 0.88
δ(d) ≈ 0

For heavier alkalis, the δ(l) generally increases as the core is less and less hydrogen-like. The
ionization potential however is almost constant as noted previously. Although the increase in Z leads
to stronger binding than in hydrogen the ground state electron starts in a higher n, and this almost
exactly off-sets the increased attraction of the heavier nucleus.

Everyone knows that the discrete wavelengths of light emitted, or absorbed, by an atom are discrete
because they arise from transitions between the discrete energy levels. But how do we know which
energy levels? This is where the quantum effect is very useful.

We also need to remember that a transition involves a change in l of ± 1 (∆l = ±1). A transition
from a lower state will therefore take the atom to an energy level with angular momentum differing
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by ±1 from the initial level. For simplicity, so that the general idea becomes clear, we consider
transitions from the ground state. If the ground state (level) has l = 0 then there will then be only a
single set of transitions to levels with angular momentum one unit larger i.e. l = 1. The spectrum of
absorption lines will consist of a series of lines of increasing wavenumber (energy) corresponding to
transitions to excited states with increasing principal quantum number n. Since these excited levels
all have the same value of l they should have the same value of quantum defect. So if we can identify
lines with the same quantum defect they will belong to the same series i.e. have the same angular
momentum quantum number l. The procedure is then as follows.

(1) Measure the wavelength of each absorption line in the series, λn.
(2) Calculate the corresponding wavenumber νn = λ−1

n

(3) Estimate the value of the series limit ν∞. This corresponds to the ionization potential or Term
value for the ground state, Tno .

(4) Find the Term value, Tn, or binding energy of an excited level from the difference between ν∞
and νn:

Tni = Tno − νn

(5) The Term value is given by the hydrogenic formula:

Tni =
R∞

(n∗i )
2

where n∗i is the effective quantum number given by:

n∗i = n− δ(l)

and δ(l) is the quantum defect.
(6) Finally we plot δ(l) against Tni . This should be a straight line indicating a constant value of

δ(l). Deviation from a straight line indicates that we have not estimated ν∞ (i.e. Tno) correctly.
(7) The procedure is then to try a different value of Tno until we obtain a straight line. This process

is ideally suited to computation by a program that minimizes the deviation from a straight line for
various values of Tno .

Once we have found the most accurate value of Tno from the spectrum we can put the energy
levels on an absolute energy scale. We have then determined the energy level structure of the atom
for this set of angular momentum states. The procedure can be carried out using data from emission
spectra. In this case a range of different series will be be provided from the spectrum. It remains to
find the quantum defects for each series of lines and assign values of l to each series of levels. From
the discussion above the quantum defects will decrease for increasing l.

Figure 10: Plot of quantum defect δ(l) against Term value, showing effect of choosing Tno either too
large or too small. The correct value of Tno yields a horizontal plot.
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4 Corrections to the Central Field: Spin-Orbit interaction

The Central Field Approximation gives us a zero-order Hamiltonian Ĥ0 that allows us to solve the
Schrödinger equation and thus find a set of zero-order wavefunctions ψi. The hope is that we can
treat the residual electrostatic interaction (i.e. the non-central bit of the electron-electron repulsion)
as a small perturbation, Ĥ1 . The change to the energy would be found using the functions ψi.

The residual electrostatic interaction however isn’t the only perturbation around. Magnetic inter-
actions arise when there are moving charges. Specifically we need to consider the magnetic interaction
between the magnetic moment due to the electron spin and the magnetic field arising from the elec-
tron orbit. This field is due to the motion of the electron in the electric field of the nucleus and the
other electrons. This spin-orbit interaction has an energy described by the perturbation Ĥ2. The
question is: which is the greater perturbation, Ĥ1 or Ĥ2?

We may be tempted to assume Ĥ1 > Ĥ2 since electrostatic forces are usually much stronger than
magnetic ones. However by setting up a Central Field we have already dealt with the major part
of the electrostatic interaction. The remaining bit may not be larger than the magnetic spin-orbit
interaction. In many atoms the residual electrostatic interaction, Ĥ1, does indeed dominate the spin-
orbit. There is, however, a set of atoms where the residual electrostatic repulsion is effectively zero;
the alkali atoms. In the alkalis we have only one electron orbiting outside a spherically symmetric
core. The central field is, in this case, an excellent approximation. The spin-orbit interaction, Ĥ2

will be the largest perturbation – provided there are no external fields present. So we will take the
alkalis e.g. Sodium, as a suitable case for treatment of spin-orbit effects in atoms. You have already
met the spin-orbit effect in atomic hydrogen, so you will be familiar with the quantum mechanics for
calculating the splitting of the energy levels. There are, however, some important differences in the
case of more complex atoms. In any case, we are interested in understanding the physics, not just
doing the maths of simple systems. In what follows we shall first outline the physics of the electron’s
spin magnetic moment µ interacting with the magnetic field, B, due to its motion in the central field
(nucleus plus inner shell electrons). The interaction energy is found to be µ · B so the perturbation
to the energy, ∆E, will be the expectation value of the corresponding operator

〈
µ̂ ·B

〉
.

We then use perturbation theory to find ∆E. We will not, however, be able simply to use our
zero order wavefunctions ψ0(n, l,ml,ms) derived from our Central Field Approximation, since they
are degenerate in ml,ms. We then have to use degenerate perturbation theory, DPT, to solve the
problem. We won’t have to actually do any complicated maths because it turns out that we can use
a helpful model – the Vector Model, that guides us to the solution, and gives some insight into the
physics of what DPT is doing.

4.1 The Physics of Spin-Orbit Interaction

What happens to a magnetic dipole in a magnetic field? A negatively charged object having a
moment of inertia I, rotating with angular velocity ω, has angular momentum, Iω = λ~. The energy
is then E = 1

2 Iω2

We suppose the angular momentum vector λ~ is at an angle θ to the z-axis. The rotating charge
has a magnetic moment

µ = −γλ~ (44)

The sign is negative as we have a negative charge. γ is known as the gyromagnetic ratio. (Classically
γ = 1 for an orbiting charge, and γ = 2 for a spinning charge).

If a constant magnetic field B is applied along the z-axis the moving charge experiences a force
– a torque acts on the body producing an extra rotational motion around the z-axis. The axis of
rotation of λ~ precesses around the direction of B with angular velocity ω′. The angular motion of
our rotating change is changed by this additional precession from ω to ω + ω′ cos(θ). If the angular
momentum λ~ was in the opposite direction then the new angular velocity would be ω − ω′ cos(θ).
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Figure 11: Illustration of the precession (Larmor precession) caused by the torque on the magnetic
moment µ by a magnetic field B.

The new energy is, then

E′ =
1
2
I(ω ± ω′ cos θ)2 (45)

=
1
2
Iω2 +

1
2
I(ω′ cos θ)2 ± Iωω′ cos θ (46)

We now assume the precessional motion ω′ to be slow compared to the original angular velocity ω.
ω′ << ω so (ω′ cos θ)2 << ω2 and we neglect the second term on the r.h.s. The energy change
∆E = E′ − E is then

∆E = Iωω′ cos θ (47)
= λ~ω′ cos θ (48)

Now the precessional rate ω′ is given by Larmor’s Theorem

ω′ = −γB (49)

So
∆E = −γλ~B cos θ (50)

Hence
∆E = −µ ·B (51)

So −µ ·B is just the energy of the precessional motion of µ in the B-field.
(Note that λ cos θ~ is the projection of the angular momentum on the z-axis (B-direction)
Quantum mechanically this must be quantized in integer units of ~ i.e. λ cos θ = m, the magnetic

quantum number. So the angular momentum vector λ~ can take up only certain discrete direc-
tions relative to the B-field. This is the space or orientation quantization behind the Stern-Gerlach
experiment.)
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4.2 Finding the Spin-Orbit Correction to the Energy

Now that we know the perturbation Hamiltonian Ĥ2 = −µ̂ · B we will use perturbation theory to
find the expectation value of the change in energy; ∆E = −

〈
µ̂ ·B

〉
The calculation proceeds in the

following steps;

• Find the B-field due to the electron motion

• Set up the operator for −µ̂ ·B
This will have a dependence on radial position, r, and the spin and orbital angular momenta s
and l

• Different relative orientations of s and l will have different energies of interaction and correspond
to different total angular momentum j = l + s

• Different values of j will thus have different energy resulting in a splitting as j = l ± 1/2

4.2.1 The B-Field due to Orbital Motion

The relativistic effect of an electron moving with velocity v in an electric field E is to set up a B
field given by:

B = −v × E

c2
(52)

We re-express this using the momentum p = mv

B = − 1
mc2

p× E (53)

In our central field E is purely radial: Writing E = |E| r
|r| then we have

B = − 1
mc2

p× r
|E|
|r|

(54)

Now r × p = l, angular momentum, so p× r = −l

B =
1
mc2

|E|
|r|

l̂ (55)

(We shall put operator signs only on angular momentum operators.)
We can express |E| in terms of the electrical potential φ(r)

|E| = ∂φ(r)
∂r

(56)

and the Central Field potential energy would be

eφ(r) = U(r) (57)

Then
|E| = −1

e

∂U(r)
∂r

(58)

So finally we have

B =
1

emc2
1
|r|
∂U(r)
∂r

l̂ (59)

NB: U(r) = Potential energy of the electron in the Central Field.
In the rest frame of the electron, this is the field it experiences as it apparently “sees” the nucleus

orbiting it at radius r.
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4.2.2 The Energy Operator

The intrinsic magnetic moment of the electron, due to its spin is

µ
s

= −gs
µB

~
ŝ (60)

gs is the gyro-magnetic ratio for a spinning charge. Relativistic quantum theory (Dirac) gives gs = 2,
but QED corrections give a value slightly larger than 2. The energy operator for the spin-orbit
interaction is

− µ
s
·B = gs

µB

~
1

emc2
1
r

∂U(r)
∂r

ŝ · l̂ (61)

For many-electron atoms we don’t know exactly what U(r) is. The important thing to note, however,
is that

− µ
s
·B ∝ 1

r

∂U(r)
∂r

ŝ · l̂ (62)

This is a positive quantity with a set of values determined by the relative orientation of ŝ and l̂. For
a hydrogen-like atom we can put U(r) = Ze2

4πε0r and so:

− µ
s
·B =

µ0

4π
2Zgsµ

2
B

1
r3
ŝ · l̂
~3

(63)

This result still isn’t quite right. We have not taken account properly of the relativistic transformation
between the rest frames of the electron and the nucleus. We actually observe the electron orbiting
in the rest frame of the nucleus. This is the Thomas Precession (its derivation is not in the syllabus)
and has the effect of dividing the result by a factor 2.

Hence

− µ
s
·B =

µ0

4π
Zgsµ

2
B

1
r3
ŝ · l̂
~3

(64)

Our task now is to find the expectation values of the operators 1/r3 and ŝ · l̂.

4.2.3 The Radial Integral

The expectation value of 1/r3 is given by the integral: 〈ψi| 1/r3 |ψi〉. The position of the electron
doesn’t have a definite value. The wave functions ψi are not eigenfunctions of the operator 1/r3.

The position r is not a constant of the motion. So we have to evaluate the integral〈
1
r3

〉
=

∫ ∞

0
R2

n,l(r)
1
r3
r2dr (65)

Using hydrogen radial functions we find:〈
1
r3

〉
=

Z3

n3a3
0l(l + 1/2)(l + 1)

(66)

Notice that this gets smaller rapidly with increasing l. So it is wrong to conclude from the < ŝ · l̂ >
bit of the operator that the spin-orbit effect increases with l.

The physics here is that lower l electrons move closer to the inner regions of the central field. Here
they experience stronger electric fields. Add to this that they get faster as they approach the near
point to the nucleus in their elliptical orbit, then the magnetic interaction increases for lower l. For
l = 0, however, the ŝ · l̂ term is zero and there is no spin-orbit effect at all! So s-terms are not split.
Our result shows that the spin-orbit splitting is larger for high Z, low n and low l (but zero for l = 0!)
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4.2.4 The Angular Integral: Degenerate Perturbation Theory

We now need to evaluate < ŝ · l̂ >. Can we use our zero-order wave functions ψi(n, l,ml,ms) to do
this? The answer is, sadly, no. The problem is that these eigenstates are degenerate in ml, and ms.
Why is that a problem? Recall first the result of non-degenerate perturbation theory. The first order
energy shift induced by a perturbation Ĥ ′ is the expectation value:

∆E = 〈ψi| Ĥ ′ |ψi〉 (67)

If, however, there are degenerate eigenstates, then we can use this result only if

〈ψi| Ĥ ′ |ψj〉 = 0 for all j 6= i (68)

i.e. the perturbation matrix is diagonal. To see why this is necessary we need to recall that Pertur-
bation Theory works so long as the state of the atom is not changed too much by the perturbation.
In this case we can use the unperturbed wavefunctions ψ to find the expectation value of the change
in energy and the small change in the wavefunction. Now recall the change in the wavefunction ∆ψ
is given by:

∆ψi =
∑
j 6=i

〈ψj | Ĥ ′ |ψi〉
Ei − Ej

ψj (69)

All the terms in the sum must be small or else the wavefunctions will be changed too much and
Perturbation Theory will not be valid.

Now if we have degenerate states e.g. for some state ψj , Ei = Ej then we have a serious problem!
We have a zero on the bottom line. We could rescue the situation if we could ensure that the
numerator also went to zero i.e

〈ψj | Ĥ ′ |ψi〉 = 0 (70)

What we need is a new basis set of eigenfunctions φi such that 〈φi| Ĥ ′ |φj〉 = 0 for all i 6= j.
We can make a new basis set using our original zero order solutions of the Schrödinger equation

by forming linear combinations of these functions. However, we need to be careful.
Suppose we have two energy eigenstates ψi and ψj . A linear combination of these is in general not

also an eigenstate). Consider
φ = aψi + bψj (71)

Where a, b are arbitary constants. Then

Ĥ0φ = aEiψi + bEjψj (72)

So
Ĥ0φ 6= constant× φ (73)

φ will, however, be an eigenstate of Ĥ0, if, and only if, Ei = Ej i.e. the states ψi and ψj are
degenerate. This is good news for it means we can form a new basis set of eigenfunctions φ by taking
linear combinations of our degenerate set ψi(n, l,ml,ms). Is this a lucky coincidence – or is it a
result of some choice we made in finding the zero order solutions? Well, it isn’t luck! We made the
arbitrary choice of the z-axis as our axis of reference. If we had chosen another axis we would have
found different functions, These different functions would have been linear combinations of the set
referred to the z-axis. The lesson from all this is that we need to choose a set of eigenfunctions as
our basis set so that the perturbation will be diagonal. This is why we choose the z-axis and apply
our perturbing fields along this axis.

One final point; the perturbation matrix needs to be diagonal only within the degenerate set. There
may be other off-diagonal elements but they have an energy denominator (Ei−Ej) and provided this
is large enough compared to < ψj |Ĥ ′|ψi > these elements won’t contribute much to the perturbation.
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We can summarise this by looking at an example of two degenerate states ψ1 and ψ2.
We can write the perturbation energy as

∆E1 = 〈ψ1| Ĥ ′ |ψ1〉 (74)
only if 〈ψ1| Ĥ ′ |ψ2〉 = 0 (75)

However, if 〈ψ1| Ĥ ′ |ψ2〉 6= 0 (76)

then we make new zero order functions φ1 and φ2 using

φ1 = aψ1 + bψ2 (77)
φ2 = b∗ψ1 − a∗ψ2 (78)

And find the values of a, b that make

〈φ1| Ĥ ′ |φ2〉 = 0 (79)

Then we can write:
∆E1 = 〈φ1| Ĥ ′ |φ1〉 , ∆E2 = 〈φ2| Ĥ ′ |φ2〉 (80)

4.2.5 Degenerate Perturbation theory and the Vector Model

Finding the right coefficients in our linear combination of zero-order eigenfunctions results in a
diagonal matrix. There are mathematical methods for diagonalizing a matrix that can be used.

This procedure, a unitary transformation, is formally equivalent to rotating the axes of our frame
of reference to a new set of axes where there are no cross-terms i.e. the matrix is diagonal in the
new basis. If we want to avoid off-diagonal elements, when we have degenerate states, we need to
choose the right basis or reference frame. We can then find the expectation values of an operator are
given by its eigenvalues. Degeneracy usually is associated with the angular momentum and we know
the eigenvalues of angular momentum operators. So we can use the symmetry of the situation to
guide us to the proper basis set. These new basis eigenfunctons will be labelled by quantum numbers
associated with an operator corresponding to a constant of the motion.

This leads us to a helpful model; the Vector Model, enabling us to visualise the physics in DPT.
Consider the classical behaviour of a rotating charge in a magnetic field along the z-axis. The

angular momentum vector λ is at angle θ to the z-axis and the Larmor precession causes the vector
λ to trace out a cone at constant angle to the z-axis. λ and its projection on z is a constant of the
motion.

The projection on the x or y axis, however is not constant. It therefore makes sense to refer our
motion to the z-axis. The wavefunction can be labelled quantum mechanically by a quantum number
m i.e. the projection of λ on the z-axis is m~. This illustrates the key basis of the Vector Model:
Quantum Mechanics represents a classical constant of the motion by an operator which commutes
with the Hamiltonian. So eigenstates of the Hamiltonian will also be eigenstates of this operator.
Then the expectation values, representing the time average of the classical vector, are given by
the eigenvalues of the operator. The quantum numbers defining the eigenfunctions are then good
quantum numbers. In the example case just described, the vector λ could represent the total angular
momentum j. Quantum mechanically we can know both ĵ

2
and ĵ

z
, with eigenvalues j(j+1) and mj

respectively, and j and mj are good quantum numbers.
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4.2.6 Evaluation of
〈
ŝ · l̂

〉
using DPT and the Vector Model

We now return to finding the expectation value of the operator
〈
ŝ · l̂

〉
. We start with the zero order

solutions to the Schrödinger equation, ψ(n, l,ml). Including the spin, quantum numbers s,ms, our
basis states are:

|n, l,ml, s,ms〉 (81)

We find that

〈n, l,ml, s,ms| ŝ · l̂ |n, l,ml, s,ms〉 6= 0 for all ml 6= m′
l,ms 6= m′

s (82)

This means that these states are not suitable for evaluating the perturbation.
As explained above, we need to find linear combinations of the degenerate functions which will

give a diagonal matrix. We choose linear combinations that produce eigenstates of the total angular
momentum operators ĵ

2
and ĵ

z
where ĵ = l̂ + ŝ. These will also be eigenstates and l̂

2
and ŝ2

ĵ
2

=
(
l̂ + ŝ

)2
; ĵ

z
= l̂z + ŝz (83)

Then
ŝ · l̂ =

1
2

(
ĵ
2 − l̂

2 − ŝ2
)

(84)

And the eigenstates are |n, l, s, j,mj〉.
We then find that the off-diagonal elements

〈n, l, s, j,mj | ŝ · l̂ |n, l, s, j,mj〉 = 0 unless j = j′ and mj = m′
j (85)

The diagonal elements (eigenvalues) are then

〈n, l, s, j,mj | ŝ · l̂ |n, l, s, j,mj〉 =
1
2
{j(j + 1)− l(l + 1)− s(s+ 1)} ~2 (86)

This is the result we need; the new basis set using quantum numbers j,mj provides a perturbation
matrix that is diagonal. We have dealt with the problem of the degenerate states. Remember that
the problem arose from our choice of the z-axis. In the presence of spin-orbit interaction ml,ms were
not good quantum numbers. In other words the projections of l̂ and ŝ on our arbitrary z-axis were
not constants of the motion. We can visualise this using our vector model.

We represent the angular momentum by vectors of magnitude given by |l̂|, |ŝ|, |ĵ|.
When there is no spin-orbit interaction l̂ and ŝ take up fixed orientations in space. Their projections

on the z-axis are ml~ and ms~ which are constant. When spin-orbit interaction takes place l̂ and
ŝ precess around their mutual resultant ĵ. Their projections on the z-axis, are no longer constant,
ml,ms are undefined and no longer good quantum numbers.

Now since there is no external torque the total angular momentum ĵ is a constant of the motion.
The projection of ĵ on the z-axis, ĵ

z
is also a constant, and quantized in multiples of ~ as mj~. the

operators corresponding to these vectors (angular momenta) are:

ĵ = l̂ + ŝ (87)

j takes values from |l − s| to |l + s|.

Also ĵ
2

=
(
l̂ + ŝ

)2
(88)

with eigenvalues j(j + 1)~ and
ĵ
z

= l̂z + ŝz (89)

23



Atomic Physics, P. Ewart 4 Corrections to the Central Field: Spin-Orbit interaction

Figure 12: (a) Orbital l and spin s angular momenta add (couple) to give a resultant j. With no
magnetic interaction the vectors remain fixed in space. (b) Spin-orbit coupling results in
precessional motion of l and s around their resultant j. (c) and (d) Projections of l and s
on z-axis, lz and sz respectively, are no longer constants of the motion and hence ml and
ms are not good quantum numbers in the presence of spin-orbit coupling

with eigenvalue mj~.
For a single electron s = ±1/2 so we have two values of j = l ± 1/2.
The key is to choose the basis to suit the perturbation. For example, if there was no spin-orbit

interaction and we apply an external B-field, then |n, l, s,ml,ms〉 is a suitable basis. The vectors l̂
and ŝ will precess independently around the B-field direction (z-axis). The projections ml~ and ms~
respectively are constants of the motion so ml,ms are good quantum numbers.

If we have both spin-orbit interaction and an external field and the interactions are of comparable
strength, then the vector model doesn’t help. In this case l̂ and ŝ will precess around Bext at about
the same angular speed as they precess around their mutual resultant ĵ. The motion becomes very
complicated and neither ml,ms nor j and mj are good quantum numbers.

The vector model works so long as one perturbation is much stronger than the other.
If the external field is weak, l̂ and ŝ couple together to form ĵ i.e they precess rapidly around ĵ.

The interaction with Bext causes ĵ to precess relatively slowly around Bext with a constant projection
on the field axis given by mj .

If the external field is very strong then l̂ and ŝ precess independently around Bext with projections
ml and ms. Because of their rapid precession around Bext, l̂ and ŝ do not combine to form a constant
ĵ. The spin-orbit interaction energy, in this case, can be found using the states |n, l, s,ml,ms〉 because
the stronger interaction with Bext has removed (raised) the degeneracy.
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4.3 Spin Orbit Interaction: Summary

The perturbation,

Ĥ2 ∝
1
r

∂U(r)
∂r

ŝ · l̂ (90)

The change to the energy of the states is then:

∆ESO = 〈ψ| Ĥ2 |ψ〉 (91)

The radial integral, gives a factor ∼ βnl

The angular momentum integral =
〈
ĵ
2 − l̂

2 − ŝ2
〉

We choose a basis set of eigenfunctions to diagonalize this perturbation: |n, l, s, j,mj〉

Hence
∆ESO = βnl

1
2
{j(j + 1)− l(l + 1)− s(s+ 1)} (92)

Where for hydrogen

βn,l =
µ0Z

4gsµ
2
b

4π
1

n3a3
0l(l + 1/2)(l + 1)

(93)

For a single-electron atom, e.g. alkalis, j has two values. j = l ± 1/2. Thus the energy levels are
split, each value of j has a different ∆ESO.

We now look at this effect in alkali atoms as an example.

4.4 Spin-Orbit Splitting: Alkali Atoms

We consider the case of sodium, an atom with one electron outside a Central Field. The ground
state has n = 3, l = 0. There is therefore no spin-orbit splitting of this level, since the electron has
no orbital motion. For the first excited state, n = 3, l = 1. If there was no spin-orbit interaction we
could use eigenfunctions

|n, l, s,ml,ms〉 = |3, 1, 1/2,ml,ms〉 (94)

where ml = +1, 0,−1 and ms = +1/2,−1/2 i.e. we have 6 degenerate states. When we include the
spin-orbit interaction we use the basis |n, l, s, j,mj〉, where j = 1/2 or 3/2 so the energy level is split
into two.

For j = 1/2, mj = +1/2,−1/2, i.e. two degenerate states and
for j = 3/2, mj = 3/2, 1/2,−1/2,−3/2 i.e. four degenerate states.

Each level is shifted by

∆ESO(3p) = β3p(−1), j = 1/2 (95)
∆ESO(3p) = β3p(+1/2), j = 3/2 (96)

Note that the “centre of gravity” of the level remains the same. The product of the degeneracy
(2j+1) i.e. number of states times the shift is the same for each of the shifted levels. This result is a
consequence of the fact that magnetic interactions have no overall effect on the energy of the atom,
since the magnetic forces do no work. For n = 3, l = 2, a 3d state we have

∆ESO(3d) = β3d(1), j = 5/2 (97)
∆ESO(3d) = β3d(−3/2), j = 3/2 (98)
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no s.o.
effect

j=3/2 (4 states)

j=1/2 (2 states)

b/2

b

Figure 13: Diagram showing energy splitting of 3p level in an alkali.

no s.o.
effect

j=5/2 (6 states)

j=3/2 (4 states)

3 /2b

b

Figure 14: Diagram showing energy splitting of 3d level in an alkali.

Note that β3p > β3d since the 3p electron penetrates the inner core of electrons far more than the
3d electron.

The actual size of the splitting is set by the value of the radial integral β(n, l). For hydrogen we
noted this was

βn,l =
µ0Z

4gsµ
2
B

4π
1

n3a3
0l(l + 1/2)(l + 1)

(99)

This applies to hydrogen-like atoms i.e. ions with all electrons except one stripped off. For a neutral
atom, however, the electrostatic force of the central field will be less and so the dependence on Z
is reduced from the Z4 in a hydrogenic ion. We can get an approximate idea of the Z-dependence
by considering the Zeff in our Central Field to be a “step function” i.e. to change abruptly from its
effective value Zo (“o” for outer) outside the core to Zin (“in” for inner) inside the core. This is a
very crude approximation, and we can make it even more crude by supposing Zo = 1 (total screening
by (Z − 1) electrons) and Zin = Z (no screening at all).

The total energy of the spin-orbit interaction will be made up of two parts, each with the form:

∆ESO ∝ Z

〈
1
r3

〉
(100)

The outer part, Z = 1, is very small compared to the contribution from the inner part, Z >> 1, so
we neglect the contribution from the Zo bit. The inner part is hydrogenic so:〈

Z

r3

〉
inner

=
Z4

n3a3
0l(l + 1/2)(l + 1)

(101)

The contribution will be weighted by the fraction of the time the electron spends inside the core.
This fraction is indicated by the quantum defect or by the effective quantum number n∗. Using the
Bohr theory we can show that the fraction inside the core is(

n3

Z2
in

)
/

(
n∗3

Z2
o

)
(102)

So the contribution from the inner part becomes:〈
Zin

r3

〉
inner

× n3Z2
o

n∗3Z2
in

(103)
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Hence

βn,l ∼
µ0

4π
gsµ

2
B

Z2
inZ

2
o

n∗3a3
0l(l + 1/2)(l + 1)

(104)

So approximately, the size of the spin-orbit splitting scales with Z2
in ≈ Z2.

We now need to consider atoms other than alkalis, where residual electrostatic interaction, can’t
be ignored. Before we do that we define a way of indicating the total angular momentum of atoms
as a whole, and not just individual electrons with l, s, j,ml,ms,mj , etc.

4.5 Spectroscopic Notation

So far we have seen how the physical interactions affecting the energy of an atom can be ordered
according to their strength. We use perturbation theory, or the Vector Model, by starting with the
largest interaction – the Coulomb force of the Central Field. This led to the idea of the electron
configuration; n1l1n2l2n3l3 etc. with each individual electron’s angular momentum labelled by a
lower case letter; s, p, d, f, etc. For “single-electron” atoms, like alkalis, we defined a total angular
momentum ĵ = l̂ + ŝ. The spin-orbit interaction led to energy levels labelled by their value of j,
i.e. (l + 1/2) or (l − 1/2). What do we do when there is more than one electron to worry about?
We anticipate the result of the next section where we consider the residual electrostatic interaction
between electrons.

If we were to ignore any spin-orbit interaction then the energy levels are completely determined
by electrostatic forces only. In this case the space and spin systems within the atom must separately
conserve angular momentum. This suggests that we can define a total orbital angular momentum
by the vector sum of the individual orbital momenta. We will label such total angular momenta by
capital letters; thus the total orbital angular momentum is:

L =
∑

i

li (105)

For simplicity we will consider two-electron atoms i.e. atoms with two valence electrons outside
closed inner shells. So L = l1 + l2. In the same way we define the total spin of the atom to be

S =
∑

i

si = s1 + s2 (106)

These can be visualized using our vector model:

l
2

L

l
1

S
s

2

s
1

Figure 15: Diagram showing the coupling of all li to L and all si to S.

Quantum mechanically these angular momenta are represented by operators L̂
2

and L̂z

L2 =
(
l̂1 + l̂2

)2
(107)
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With eigenvalues L(L+ 1)~2 where |l1 − l2| ≤ L ≤ l1 + l2, and

Lz = l̂z1 + l̂z2 (108)

With eigenvalues ML~ where −L ≤ML ≤ L.
Similarly we have total spin operators.

S2 = (ŝ1 + ŝ2)
2 (109)

With eigenvalues S(S + 1)~2 where |s1 − s2| ≤ S ≤ s1 + s2, and

Sz = ŝz1 + ŝz2 (110)

With eigenvalues MS~ where −S ≤MS ≤ S.
ML and MS are the quantized projections of L and S respectively on the z-axis (the axis of

quantization). The total angular momentum is found by adding (or coupling) the total orbital and
spin momenta: to give J :

Ĵ
2

=
(
L̂+ Ŝ

)2
(111)

With eigenvalues J(J + 1)~2 and
|L− S| ≤ J ≤ L+ S (112)

Also:
Ĵz = L̂z + Ŝz (113)

With eigenvalues MJ~ where −J ≤MJ ≤ J i.e. MJ is the projection of Ĵ on the quantization axis.
By convention L = 0, 1, 2, 3 is labelled S, P, D, F etc as with the s, p, d, f for single electrons. The

values of L and S specify a Term. The spin-orbit interaction between L̂ and Ŝ will split each term
into levels labelled by J . For a given L̂ there will be (2S + 1) values of J and so (2S + 1) is known
as the multiplicity

Spin-orbit interaction will split each term into levels according to its value of J . Thus the multi-
plicity tells us the number of separate energy levels (i.e. number of J values) except, however when
L = 0, when there is no spin-orbit splitting and there is only a single level.

Each level is degenerate in J ; there are (2J+1) values ofMJ ; the projection of Ĵ on an external axis.
Each value of MJ between −J and +J constitutes a state, and the degeneracy is raised by applying
an external magnetic field in which the different orientations of Ĵ relative to the field direction will
have different energy.

In general then we have the following notation for an energy level:

n1l1n2l2...
2S+1LJ (114)

This reflects the hierarchy of interactions:

Central Field configuration, n1l1n2l2 . . .
Residual Electrostatic → Terms, L = S, P,D . . .

Spin-Orbit → Level, J = |L− S| → L+ S
External Field → State, MJ = −J → +J

The ground level of sodium can therefore be written as 1s22s22p63s 2S1/2.
It is common practice to drop the configuration of the inner shells and give only that for the outer,

valence, electrons. Thus the first two excited levels are 3p 2P1/2,3/2 and 3d 2D3/2,5/2. these are
sometimes referred to as excited “states”, but this is an example of the loose terminology used by
Atomic Physicists!

We can now draw a full Energy Level diagram for sodium with all the levels labelled by appropriate
quantum numbers.
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Hydrogen

n

4

3

Figure 16: Na energy level diagram showing fine structure (spin-orbit splitting) greatly exaggerated.
Note that the difference between energy levels the same n but of increasing l become
smaller as they approach the hydrogenic energy level for the corresponding n. Note also
that the difference between energy levels of the same n but different l becomes smaller
with increasing n.
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5 Two-electron Atoms: Residual Electrostatic Effects and LS-Coupling

So far we have made the Central Field Approximation which allows us to estimate the gross structure
of the energy levels. This introduced quantum numbers n and l allowing us to define the electron
configuration. We noted two perturbations that need to be considered in going beyond the Central
Field Approximation. These were, Ĥ1 , the residual electrostatic interaction and Ĥ2, the spin-orbit
interaction. Perturbation theory requires that we apply the larger perturbation first. In the specific
case of a one-electron atom in a Central Field we could ignore Ĥ1 . The perturbation due to spin-
orbit effects then led us to wave functions labelled by the quantum numbers j, mj . In the case of
an atom with two electrons in a Central Field we have to consider first Ĥ1, and this will lead us to
different quantum numbers. We have anticipated this result by introducing these quantum numbers
L, S and J . In the following sections we will look more closely at the physics of how electrostatic
interactions lead to LS-coupling. It needs to be stressed at the outset that LS-coupling is the most
appropriate description when electrostatic effects are the dominant perturbation. We can then apply
the smaller spin-orbit perturbation Ĥ2 to these LSJ-labelled states.

All this is conveniently visualized using the Vector Model, where the strongest interactions lead
to the fastest precessional motions. The residual electrostatic perturbation Ĥ1 causes the individual
orbital angular momenta l1 and l2 to couple to form L = l1 + l2. Similarly the spin angular momenta
s1 and s2 couple to give a total spin S = s1 + s2. So l1 and l2 precess rapidly around L and s1 and
s2 precess rapidly around S. L and S are then well-defined constants of the motion.

The weaker, spin-orbit interaction Ĥ2 then leads to a slower precession of L and S around their
resultant J . As in the single electron case, the precession rate – and hence the energy shift – depends
on the relative orientation of L and S. The result is a fine-structure splitting of the terms defined by
L and S according to the value of J .

We have been assuming that Ĥ1 >> Ĥ2 but this may not always be the case. We have seen already
that Ĥ2 increases with Z2. So our assumption that electrostatic dominates over magnetic, spin-orbit,
coupling will become less valid for heavy elements. When this happens L and S cease to be good
quantum numbers. The total angular momentum J will continue to be a good quantum number,
but it will be a result of adding the angular momenta of the individual electrons in a different way.
In the limit that Ĥ2 >> Ĥ1, individual electron momenta li and si couple to give j

i
= li + si. The

total J is then the vector sum of j
1

and j
2
. This jj-coupling is, however, not on the syllabus.

In the following we will take Magnesium as our example of a two-electron atom. We will look first
at the gross energy level structure arising from the Central Field Approximation. Secondly, we will
consider the residual electrostatic effect (perturbation Ĥ1) which splits the energy levels into terms
labelled by L and S. We will think about why these terms have different energies. Thirdly, we apply
the smaller Ĥ2, spin-orbit, perturbation and examine the resulting fine-structure splitting.

5.1 Magnesium: Gross Structure

We choose Mg as our typical two-electron atom rather than Helium because, in the Helium case,
the spin-spin interaction is of comparable magnitude to the other perturbations. In heavier elements
this is less so. We can, however, use the basic results found for Helium to help us understand
the behaviour of our two valence electrons in Magnesium. Magnesium is basically sodium with an
extra proton in the nucleus and an extra electron outside. The configuration of the ground energy
level is 1s22s22p63s2. If we restrict ourselves to exciting only one of the 3s electrons, the excited
configurations will be ( )3snl. The electron remaining in the 3s orbit acts as a ”spectator” electron
and so the excited electron moves in a Central Field not much different from that of sodium. The
basic energy level structure will be roughly the same as sodium, but the energy levels will be more
negative owing to the increased Coulomb attraction of the nucleus.

What will be the effect of the perturbations Ĥ1 and Ĥ2?
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5.2 The Electrostatic Perturbation

We will eliminate Ĥ2 for the moment by considering the configuration 3s4s; allowing us to concentrate
on the effects arising from there being two electrons with electrostatic repulsion between them. It
may seem, at first sight, that we could deal with this configuration entirely within the Central Field
Approximation. After all, the spectator, 3s, electron is a spherically symmetric charge and so also
is the 4s electron. Could their mutual interaction not be contained within the Central Field? The
answer is “no” because the fields the two electrons see is not the same.

So we will have a “left-over” perturbation Ĥ1 and it doesn’t have to be non-central.
In the Central Field Approximation we can find wave functions for each electron in our 3s4s

configuration; ψ(3s) and ψ(4s). What will be the wavefunction for the system as a whole? We could
form a product wavefunction ψ1(3s)ψ2(4s). Such a wavefunction implies we can identify individual
electrons by the subscripts 1 and 2. The particles, are for the moment, distinguishable. Now, can we
use this wave function to find our perturbation energy due to Ĥ1, denoted by ∆E1?

In other words, is ∆E1 = 〈ψ1(3s)ψ2(4s)| Ĥ1 |ψ1(3s)ψ2(4s)〉 ?

It is fairly obvious that if we swapped the labels 1 and 2 we would get the same energy. So the states:
|ψ1(3s)ψ2(4s)〉 and |ψ2(3s)ψ1(4s)〉 are degenerate. We therefore have to use Degenerate Perturbation
Theory. This means we have to find correct linear combinations of our zero-order wavefunctions. The
correct linear combination wave function will diagonalize the perturbation matrix. So we can use the
form of the perturbation to guide us to the correct combination

Ĥ1 = −
∑

i

Ze2

4πε0ri
+

∑
i>j

e2

4πε0rij
−

∑
i

U(ri) (115)

Since our zero order wavefunctions are eigenfunctions of U(ri), the third term will not give us any
trouble. The first term is also a single-electron operator so this will not cause a problem either. We
are left with the 1/rij operator and need to find a wavefunction that will give a diagonal matrix.

We can form two orthogonal functions as follows:-

φ1 = aψ1(3s)ψ2(4s) + bψ1(4s)ψ2(3s) (116)
φ2 = b∗ψ1(3s)ψ2(4s)− a∗ψ1(4s)ψ2(3s) (117)

It remains to find a and b to make the diagonal matrix elements vanish i.e.

〈φ1|V |φ2〉 = 0 (118)

Where V is the two-electron electrostatic repulsion. This perturbation does not distinguish electron
1 from electron 2, so |a| = |b| and for normalization |a|, |b| = 1/

√
2. We now have

φ1 =
1√
2

(ψ1(3s)ψ2(4s) + ψ1(4s)ψ2(3s)) (119)

φ2 =
1√
2

(ψ1(3s)ψ2(4s)− ψ1(4s)ψ2(3s)) (120)

We note now that interchanging the labels does not change φ1, and simply changes the sign of φ2.
These functions have a definite exchange symmetry. We shall return to this later.

The off-diagonal matrix element is now:

1
2
〈ψ1(3s)ψ2(4s) + ψ1(4s)ψ2(3s)|V |ψ1(3s)ψ2(4s)− ψ1(4s)ψ2(3s)〉 (121)

1↑ 2↑ 3↑ 4↑

31



Atomic Physics, P. Ewart 5 Two-electron Atoms: Residual Electrostatic Effects and LS-Coupling

Multiplying out the terms in the integral we find:

1× 3 = 〈ψ1(3s)ψ2(4s)|V |ψ1(3s)ψ2(4s)〉 = J (122)
2× 4 = −〈ψ1(4s)ψ2(3s)|V |ψ1(4s)ψ2(3s)〉 = −J (123)
2× 3 = 〈ψ1(4s)ψ2(3s)|V |ψ1(3s)ψ2(4s)〉 = K (124)
1× 4 = −〈ψ1(3s)ψ2(4s)|V |ψ1(4s)ψ2(3s)〉 = −K (125)

So the total element is zero as required!
The diagonal elements now give us our energy eigenvalues for the change in energy:-

〈φ1|V |φ1〉 = ∆E1 = J + K (126)
〈φ2|V |φ2〉 = ∆E2 = J−K (127)

J is known as the direct integral and K is the exchange integral. (The wavefunctions in K differ by
exchange of the electron label).

Energy level with no
electrostatic interaction

J

+K

-K

Singlet

Triplet

Figure 17: The effect of residual electrostatic interaction is to shift the mean energy by the direct
integral J and to split the singlet and triplet terms by the exchange integral 2K

So the energy of any particular configuration will be split by an amount 2K. This corresponds
to the two energies associated with the normal modes of coupled oscillators. For example, two
pendula, or two masses on springs, when coupled together will settle into correlated or anti-correlated
motions with different energies. Note that for our 2-electrons the effect arises purely because of the
mutual electrostatic interaction. Note also that this has nothing to do with the distinguishability or
indistinguishability of the electrons!

Our result shows that the term of the configuration described by φ1, the symmetric state, has a
higher (less negative) energy than the anti-symmetric state φ2. To understand why we need to think
a bit more about symmetry and the physics of the interactions between the electrons.

5.3 Symmetry

Degenerate Perturbation Theory forced us to choose spatial wavefunctions that have a define sym-
metry; either symmetric or antisymmetric. Why? It was because interchanging the labels on the
operator could make no physical difference to the result, 1

r12
= 1

r21
. This must always be the case

when we are dealing with identical particles. They must always be in a sate of definite symmetry;
either symmetric, (+), or antisymmetric, (-). All electrons in our universe are antisymmetric, so
we need to combine our spatial wavefunctions with an appropriate spin wavefunction to ensure our
overall antisymmetric state.
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Each electron spin may be up ↑ or down ↓. We can therefore construct for two electrons combina-
tions that are either symmetric or antisymmetric:

↑1↑2, ↓1↓2,
1√
2
{↑1↓2 + ↓1↑2} : Symmetric (128)

1√
2
{↑1↓2 − ↓1↑2} : Antisymmetric (129)

The three symmetric spin states form a triplet and combine with the antisymmetric space states,
φ2. This triplet term energy was found to be shifted down i.e. more strongly bound. Physically,
this is because the antisymmetric space function describes a state where the electrons avoid the same
region of space. The mutual repulsion from the e2/r12 potential is therefore reduced and the electrons
are held more strongly. The antisymmetric state, on the other hand, is a singlet state. Since the
electrons have opposite spins, equivalent to different spin quantum numbers, they can occupy the
same space without violating the Pauli Principle. Increased overlap in space increases the effect of
the 1/r12 repulsion, throwing the electrons further out in the Central Field. This results in a lower
binding energy. The singlet terms thus lie above the triplet term for a given configuration.

5.4 Orbital effects on electrostatic interaction in LS-coupling

We have spent a long time considering the effect of the spin on the energy levels of the LS-coupled
states. There is, however, another aspect of the electrostatic interaction that we have overlooked;
the way the energy depends on L. The Central Field Approximation takes account of the spherically
averaged charge distribution. The value of L for a given configuration depends on the relative
orientation of the individual angular momenta l1 and l2. If either of these is zero e.g. 3s then the
spatial overlap with the other electron in, say, a 3p orbit will be the same no matter where the axis of
the 3p orbit points. Consider, however, what happens if both electrons are in p-orbits say 3p4p. Now
L = l1 + l2 = 2, 1 or 0 i.e. D, P or S Terms. The Vector Model shows that the axes of the individual
orbital angular momenta are fixed in one of the three spatial orientations to give quantized values
of L. The electron wavefunctions, and probability densities, are like doughnut shapes. The different
relative orientations of their axes will lead to different spatial overlaps of the electrons. Consequently,
the amount of mutual repulsion will be different in each case. This helps explain why the electrostatic
interaction leads to terms of different energy and are labelled by L and S.

l
1

ol
2

Figure 18: Electron orbitals l1, l2 have an overlap depending on their relative orientation and so
different vector sums have different electrostatic energy.
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5.5 Spin-Orbit Effects in 2-electron Atoms

So far we have applied only the electrostatic perturbation Ĥ1 to the configurations set by the Central
Field. This electrostatic interaction led to singlet and triplet terms labelled by L and S. The 3s4s
configuration in Mg will have to terms; 1S and 3S, with 1S lying above 3S in the energy level diagram.
Since there is no orbital motion there is no spin-orbit interaction. The total angular momentum
J = L+ S = 0 or 1. The complete designations are therefore
3s4s1S0 and 3s4s3S1

Although the multiplicity, 2S + 1, is 3 in the triplet state, there is only one energy level since J has
only the value 1, in this case.

Let’s now consider the configuration 3s3p. Again S = 0 or 1 and we have singlet and triplet terms.
L = 1, so the terms are 1P and 3P. J , however, in the triplet term has values 2, 1, 0. These three
values arise from each of three relative orientations of L and S. This is clear in our Vector Model:

L = 1

S = 1

S = 1

S = 1

L = 1 L = 1

J = 2                   J = 1                J = 0

Figure 19: Vector addition of L and S to give total angular momentum J .

The magnetic interactions between the total spin moment and the magnetic field established by
the total orbital moment, L, are different in each case leading to different energies for the levels of
each J value. The triplet, 3P, term is therefore split and acquires fine-structure.

The physical arguments we used for spin-orbit interaction in Na carry over to the Mg case by using
the total angular momentum operators L̂, Ŝ and Ĵ instead of l̂, ŝ and ĵ. The perturbation to the
|n,L, S, J〉 states is:

∆ESO =
〈
Ĥ2

〉
∝

〈(
1
r

∂U(r)
∂r

)
Ŝ · L̂

〉
(130)

The radial integral is denoted βn,l. The angular momentum operator is:

Ŝ · L̂ =
1
2

(
Ĵ

2 − L̂
2 − Ŝ

2
)

(131)

and, since we have the correct representation in eigenfunctions of the operators on the R.H.S. we
find the expectation value is given by the corresponding eigenvalues:〈

Ĵ
2 − L̂

2 − Ŝ
2
〉

=
1
2
{J(J + 1)− L(L+ 1)− S(S + 1)} (132)

so
∆EJ =

βn,L

2
{J(J + 1)− L(L+ 1)− S(S + 1)} (133)

The separation of the fine-structure levels is found by evaluating ∆EJ for J ′ and J ′ − 1.

∆EJ ′ −∆EJ ′−1 = βn,lJ
′ (134)

This represents an Interval Rule that is valid so long as two conditions are fulfilled:
(1) LS-coupling is a good description for the terms i.e. when the electrostatic perturbation

Ĥ1 >> Ĥ2, the magnetic, spin-orbit interaction.
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(2) the perturbation energy is expressible as
〈
Ŝ · L̂

〉
. This is not the case in Helium where spin-spin

interactions are comparable to spin-orbit effects.
The energy levels of the 3s3p terms are therefore

2K

3s3p P
1

1

3s3p P
3

2

3s3p P
3

1

3s3p P
3

0

ib

2b

Figure 20: Separation of singlet and triplet terms due to electrostatic interaction and splitting of
triplet term by magnetic spin-orbit interaction.

As we go to atoms with higher Z, the magnetic, spin-orbit, interaction increases (∼ Z2) and begins
to be comparable to the electrostatic effect. LS-coupling starts to break down and will be shown by
two features of the energy levels: (a) The separation of the triplet levels becomes comparable to the
separation of singlet and triplet terms of the same configuration. (b) The interval rule is no longer
obeyed.

A third indicator of the breakdown of LS-coupling is the occurrence of optical transitions between
single and triplet states.

In the LS-coupling scheme the spin states are well-defined and the dipole operator, er̂, does not
act on the spin part of the wave function. Thus a dipole transition will link only states with the
same value of S. i.e. we have the selection rule ∆S = 0. This rule is well obeyed in Mg and the
lighter 2-electron atoms. So we get transitions only between singlet and singlet states, or between
triplet and triplet. It is then common to separate out the singlet ad triplet energy levels into separate
diagrams.

1 1 1 3 3 3
S P D S P Do 21

3s S
2 1

0

3s3p P
1

1

3s3p P
3

2,1,0

3s3d D
1

2
4s

5s

ns
3p

2

3pnl

intercombination line
(weak)

resonance line
(strong)

Term diagram of Magnesium

Singlet terms Triplet terms

Figure 21: Mg term diagram. The separation of singlet and triplet terms shows schematically that
singlet-triplet transitions are forbidden.
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The 3s3p 3P2,1,0 levels are metastable i.e. they have a long lifetime against radiative decay. The
6s6p 3P2,1,0 levels in Mercury are also metastable but a transition 6s6p 3P1 → 6s2 1S0 does occur.
Such a transition is known spectroscopically as an intercombination line. The probability is not
large, compared to other allowed transitions, but this transition is a strong source of radiation from
excited mercury. This is because any atoms ending up in the 6s6p 3P1 level have no other way to
decay radiatively. This line is the source of light in Hg fluorescent lamps.
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6 Nuclear Effects on Atomic Structure

We have secretly made three assumptions about the nucleus so far. We have assumed that the
nucleus is stationary, has infinite mass and occupies only a point in space. In fact, the nuclei of all
atoms consist of spinning charged objects and so they have a resultant magnetic moment. Secondly,
their mass is not infinite, so the nucleus will move with the orbiting electrons around their common
centre of gravity. Thirdly the nucleus has a finite size with some shape over which the proton charge
is distributed. Each of these effects will make a small change in the energy levels. The magnetic
interaction will lead to an effect similar to spin-orbit coupling and give a splitting of the energy levels
know as hyperfine structure, hfs. The kinetic energy of the moving nucleus will affect the overall
energy of the atomic states. Finally, the size and shape of the charges on the nucleus will affect
the Coulomb force on the electrons and hence affect the energy. The term “hyperfine structure” is
reserved (at least in Oxford) for magnetic effects of the nuclear spin. The mass and electron field
effects will be termed isotope effects, since they depend to some extent on the number of neutrons
in a given atom.

6.1 Hyperfine Structure

Both the protons and the neutrons have magnetic moments due to their spin. The total nuclear spin
is labelled I~. Spinning fermions tend to pair up with another similar particle with a spin in the
opposite direction. For this reason nucleii with even numbers of protons and neutrons, the so-called
even-even nuclei have I = 0. Odd-odd or odd-even nuclei can have integer or half-integer spin:
I = 1/2, 1, 3/2 etc. These nuclei will have a magnetic dipole moment µ

I
. Nucleii with integer spins

can also have an electric quadruple moment as well. We will be concerned only with the magnetic
dipole moment. Nuclear magnetic moments are small compared with electronic moments. Recall the
classical relationship between magnetic moment and angular moment λ~:

µ = −γλ~ (135)

In Quantum Mechanics the spin and orbital moments are:-

µ
s

= −gsµBs (136)
µ

l
= −glµBl (137)

where gs = 2 and gl = 1 (Note we have used s, l in units of ~) Now µB = e~
2me

, where me = mass of
the electron. So nuclear moments are going to be much smaller as the nuclear mass mN >> me. So
to keep the g-factor of the order of unity we define the nuclear moment by

µ
I

= gIµII (138)

where gI is the nuclear g-factor (∼1) and µN is the nuclear magneton, related to µB by the ratio of
electron to proton mass:

µN = µB × me

mp
(139)

The positive sign on our definition of µ
I

is purely a convention; we cannot tell in general whether
the magnetic moment will be parallel or antiparallel to I, it can be either.

The magnetic moments of the electrons and the nucleus will precess around their mutual resultant.
The important thing to note is that the smallness of µ

I
will mean the interaction with the magnetic

field of the electrons will be weak. The precession rate will therefore be slow and angular momenta I
and J will remain well-defined. The interaction can therefore also be treated by perturbation theory
and the Vector Model. The perturbation can be expressed:

Ĥ3 = −µ̂
I
· B̂el (140)
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It remains to find the expectation value of this operator, and we will use our vector model to find
the answer in terms of the time averaged vector quantities.

6.2 The Magnetic Field of Electrons

The nuclear interaction, being weak, will not follow the motions of individual electron orbits or spins.
Their precessions around J are too fast for the nuclei to follow. The nuclear moment will therefore
effectively see only the time averaged component resolved along J .

Bel = (scalar quantity)× J (141)

The electrons in closed shells make no net contribution to the field Bel. Therefore only the electrons
outside the closed shells contribute. Electrons having l 6= 0 will have a magnetic field at the nucleus
due to both orbital and spin motions. Both of these however depend on r3 and so will be small
enough to ignore for most cases. For l = 0, s-electrons, however, the situation is different. As we
noted before, these electrons have ψ(r) 6= 0 at r = 0. The spin-spin interaction with the nucleus can
therefore be strong. This is known as the Fermi contact interaction. This short range interaction
dominates the contribution to the energy. In general it is very difficult to calculate but for the case
of hydrogen in its ground state an analytical result can be found.

In general the orbital and spin momenta of the electrons provide a field of order ∼ µ0

4πµB

〈
1
r3

〉
.

Taking a Bohr radius to give the order of magnitude of r we find:

Bel ∼
µ0

4π
µB

a3
0

∼ 6T (142)

Putting this with a nuclear momenta of the order of µN ∼ µB/2000 we find an energy perturbation
∆E ∼ 50 MHz. So a transition involving a level with hfs will be split by this order of magnitude in
frequency. Since the effect scales with Z it will get up to 100 times larger in heavy atoms i.e. ∼ a
few GHz. The structure of the splitting will depend on the angular momentum coupling, and to this
we now turn.

6.3 Coupling of I and J

Since the nuclear spin magnetic moment is proportional to I and the electron magnetic field is
proportional to J we can write

Ĥ3 = AJI · J and ∆E = AJ

〈
Î · Ĵ

〉
(143)

The quantity AJ determines the size of the interaction energy. Note that it depends on other factors
as well as J . For example we could have J = 1/2 from either a single s-electron or a single p-electron.
The former will give a much larger value of AJ . The factor I · J is dimensionless and will have
different values depending on the angle between I and J . We can use our Vector Model to find the
result of a DPT calculation as follows:
I and J couple i.e. add vectorally to give a resultant F :

F = I + J (144)

From the vector triangle we find

F 2 = I2 + J2 + 2I · J (145)

I · J =
1
2

{
F 2 − I2 − J2

}
(146)
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F

I

J

F

I

J

I

JF

Figure 22: Addition of nuclear spin I and total electronic angular momentum J to give F .

The magnitudes of the squared angular momenta are given by their eigenvalues:

∆E =
AJ

2
{F (F + 1)− I(I + 1)− J(J + 1)} (147)

As with spin-orbit coupling this leads to an interval rule:

∆EF ′ = ∆E(F ′)−∆E(F ′ − 1) ∼ AJF
′ (148)

(This provides one way of finding F and so if we know J we can find I, the nuclear spin.)
The interval rule can be messed up if there are additional contributions to the nuclear spin moment

such as an electric quadruple moment.
The number of levels into which the hfs interaction splits a level depends on the number of values

of F . This, in turn, depends on the coupling of I and J . Our vector model gives us a “triangle rule”
whereby the vector addition must yield a quantized value of the total angular momentum F .

So if J > I then there are 2I + 1 values of F , and if I > J there are 2J + 1 values.
The values of F will be integers in the range: |I − J | ≤ F ≤ I + J . The ordering of the levels i.e.

whether E(F ) > E(F − 1) or vice-versa depends on the sign of AJ . There is, in general, no way to
calculate this easily. It depends on nuclear structure, which determines the sign of gI , and on the
direction of Bel relative to J . (for single unpaired s-electron Bel is always antiparallel to J).

6.4 Finding the Nuclear Spin, I

The nuclear spin I can be found by examining, with high resolution, the structure of a spectral line
due to a transition for a level with no, or unresolved, hfs to a hfs-split level. The selection rules of
such transitions turn out to be:

∆F = 0,±1 but not 0 → 0 (149)

There are then three methods that can be used, provided there is sufficient spectral resolution.

Interval rule The level separation, found from the frequency intervals between components of the
hfs, is proportional to the F -value of the higher level. This allows us to find F and then, if we know
J for the level, we can find I.

Number of spectral lines The number of spectral components will give the number of levels of hfs.
The number of levels is (2I+1) for I < J and (2J +1) for I > J . (This one works provided we know
J > I)
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Relative Intensities The relative intensity of the spectral components will be proportional to the
statistical weight of the hfs levels (2F + 1). So if J is known we can find I.

Usually, in practice, we may need to use evidence from more than one of these methods to be
sure. Conventional optical methods are often at or beyond their limit in resolving hfs. There is
the additional problem of Doppler broadening which is often larger – or at least comparable to the
splitting. Laser techniques, radio frequency methods or a combination of both are used nowadays.

6.5 Isotope Effects

Mass Effects The energy levels determined basically by the Central Field are given by:

En ∼
Z2e4mr

2~2n2
(150)

Where mr is the reduced mass of the electron – nucleus system. For an infinitely massive nucleus
mr → me, the electron mass. For real atoms, however, we need to deal with the motion of the nucleus
around the common centre-of-mass. The resulting nuclear kinetic energy is p2

n
2mn

where pn,mn are
the momentum and mass respectively of the nucleus. For a two-body system we can treat this by
substituting the reduced mass, mr, for me in the Schrödinger equation. The change in energy is then
found simply by making the same substitution in the energy eigenvalues.

The result (and you should be able to work this out) is to shift the energy level up by
E(mr −me)/me.

In the case of a two-electron system we will need to know explicitly the electron wavefunctions.
The energy change ∆Emass is given by:

∆Emass =
p2

n

2mn
=

(p
1
+ p

2
)2

2mn
(151)

=
p2
1 + p2

2 + 2p
1
· p

2

2mn
(152)

Putting the p2
1, p

2
2 terms in Schrödinger’s equation gives a reduced-mass-type shift. The p

1
· p

2
term,

however, needs to be calculated explicitly, usually using Perturbation Theory. The effect of this term
is know as the ”specific mass shift”. The shifts are detected by changes in the frequency of transitions
so the effects need to be calculated separately for each level involved. What will be observed is a small
difference in the spectral line positions for different isotopes. The change in mass has a decreasing
relative effect as the nuclear masses get heavier. Mass effects are therefore more important in light
nucleii.

Field Effects The effect of the finite size of the proton in the energy levels in hydrogen can be
calculated using perturbation theory. The energy shift is

∆E =
∫ ∞

0
ψ∗(r)∆V ψ(r)4πr2dr (153)

∆V is the change in the potential energy resulting from the difference between a point charge and
some spherical distribution, either over the surface or volume of a sphere. This difference is only
significant over a very small range of r compared to a Bohr radius a0. So the wavefunctions are
essentially constant over the range of interest and so can come outside the integral.

∆E ≈ |ψ(0)|2
∫ ∞

0
∆v(r)4πrrdr (154)
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Only the s-states are significantly affected so using

|ψ(0)|2 =
1
π

{
Z

na0

}3

(155)

The result can be derived. For the charge on the surface of the nucleus of radius r0 we find:

∆Ens =
Z4e2r20

6πε0a3
0n

3
(156)

For the ground state of hydrogen the fractional shift is

∆E1s

E1s
= −4

3

{
r0
a0

}2

≈ −5× 10−10 (157)

This is a small effect but important since uncertainty in knowing the size of a proton affects precise
experiments to study QED effects.
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7 Selection Rules

Now that we have a better picture of atomic energy levels and have begun to see how transitions
between them are so important for our study of them, it is time to revisit the subject of selection
rules. These are the rules that tell us whether or not an atom can change from one particular state
to another. We will consider only electric dipole transitions; the rules for magnetic dipole, electric
quadruple etc are different and are not on the syllabus (thankfully). One way to approach transitions
is to use time-dependent Perturbation Theory and its result in Fermi’s Golden Rule. That also isn’t
on our syllabus but we want to use some of the underlying physics.

In the first lecture we looked at the wavefunctions for two states ψ1 and ψ2 involved in a transition.
Physically we had to generate an oscillating dipole – an accelerated charge – in order to create electro-
magnetic radiation. The solutions of the time-dependent Schrödinger equation, TDSE, have the form

ψi = φ(r, θ, φ)eiEit/~ (158)

So the perturbation matrix elements are:

〈φi| − er |φj〉 ei(Ei−Ej)t/~ (159)

The diagonal elements φi = φj represent stationary states and have no oscillation term, so atoms in
stationary states do not absorb or emit light. As we saw in Lecture 1 the off-diagonal elements do
give an oscillation of frequency ω12 = |E1 − E2|/~.

If the spatial part of the matrix element is zero, however, we will not get any radiation i.e. the
transition is forbidden. The spatial integral will be determined by the quantum, numbers in the two
states φ1(n1, l1, etc) and φ2(n1, l1, etc). It is the changes in these quantum numbers that give us our
selection rules. We need

〈n1, l1, n2, l2...L, S, J,MJ |
∑

i

−eri
∣∣n′1, l′1, n′2, l′2...L′, S′, J ′,M ′

J

〉
6= 0 (160)

7.1 Parity

The off-diagonal matrix elements represent the atom in a super-position of two eigenstates ψ1 and
ψ2. Any linear combination of solutions of the TDSE will also be an eigenstate [NB: this is not true
for the time-independent Schrödinger equation]. Now the spatial wavefuctions all have a definite
parity, either even, (+) or odd, (-). The dipole operator −er has odd parity i.e. changing r to −r
changes the sign.

If we consider, for the moment, a single electron making the jump from one state to another then
the contribution to the integral from one particular location (x, y, z) is:

− e · φ∗nl(x, y, z)
[̂
ix+ ĵy + k̂z

]
(161)

If the parity of the two states is the same, then the product will be the same at the “opposite” point
(−x,−y,−z), The operator, however, will have the opposite sign and so when we integrate over all
space the result is zero. Therefore, to get a non-zero dipole matrix element, the parity must change.
The parity, as we noted before, is given by (−1)l, where l is the electron’s orbital angular momentum
quantum number. So we have our first selection rule:

∆l = ±1 (162)

This makes physical sense because a photon has angular momentum of one unit of ~. So conservation
of angular momentum demands ∆l = ±1, for one electron to jump.
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7.2 Configuration

Could more than one electron jump? Consider an atom with two electrons at r1 and r2 with initial
and final configurations 1s2p (n1l1n2l2) and 3p3d (n3l3n4l4). the matrix element is then

〈ψ1(1s)ψ2(2p)| r1 + r2 |ψ1(3p)ψ2(3d)〉 (163)
= 〈ψ1(1s)| r1 |ψ1(3p)〉 × 〈ψ2(2p)|ψ2(3d)〉+ 〈ψ2(2p)| r2 |ψ2(3d)〉 × 〈ψ1(1s)|ψ1(3p)〉 (164)
= 0 (165)

owing to the orthogonality of the eigenfunctions i.e. 〈ψi(nl)|ψi(n′l′)〉 = 0
So this means the configuration can change by only a single electron jump.
The angular momentum does not depend at all on n, so n can change by anything.
Our basic rules are therefore:

∆n = anything (166)
∆l = ±1 (167)

And the photon carries one unit of angular momentum.

7.3 Angular Momentum Rules

The basic rules apply to the total angular momentum J . So provided the changes in J in a transition
allow for one unit of ~ to be taken by the photon we can make a vector triangle rule to give

∆J = 0,±1 but not 0 → 0 (168)

J1 J1

J J2 1=
J J2 1=

h

h

Figure 23: Selection rules reflect conservation of angular momentum including ~ for the emit-
ted/absorbed photon.

Similar arguments apply to changes in L i.e.

∆L = 0,±1 but not 0 → 0 (169)

The rule for S, we have already noted
∆S = 0 (170)

because the dipole operator −er does not operate on the spin part of the wavefunction. Physically
this is the sensible notion that the electron spin plays no part in the spatial oscillation.

Finally we noted that changes in MJ are governed by the rule

∆MJ = 0,±1 (171)

There is a peculiar rule, with no obvious physical interpretation, that MJ cannot change from 0 → 0
if ∆J = 0. These rules will be apparent only in the presence of an external field that raises the
degeneracy in MJ . We consider the effects of external magnetic fields in the next section.
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8 Atoms in Magnetic Fields

Atoms have permanent magnetic dipole moments and so will experience a force in an external mag-
netic field. The effect of magnetic fields on atoms can be observed in astrophysics, eg. in the regions
of sunspots, and have some very important applications in basic science and technology. Magnetic
fields are used to trap atoms for cooling to within a few nanoKelvin of absolute zero; they play an
important role in the operation of atomic clocks and their action on the nuclear spin is the basis
of magnetic resonance imaging for medical diagnostics. The basic physics is by now familiar; the
magnetic moment of the atom, (µ

atom
), will precess around the axis of an applied field, Bext.

The precessional energy is given by:

Ĥmag = −µ
atom

·Bext (172)

The first question we have to ask is how big is this perturbation energy compared to that of the
internal interactions in the atom. We have a hierarchy of interactions in decreasing strength: Cen-
tral Field, residual electrostatic, spin-orbit, hyperfine. These are represented by the Hamiltonians
Ĥ0, Ĥ1, Ĥ2, and Ĥ3 respectively. The hyperfine interaction is weak compared to that with even the
most modest laboratory magnets. So we neglect hfs for the present, but we shall return to it later.
At the other end we are unlikely to compete with the Central Field energies of the order of 10eV.
(Check this for yourself by estimating

〈
Ĥmag

〉
using µB for the atom’s magnetic moment and a

typical value of B available in a laboratory).
For the same reason

〈
Ĥmag

〉
is usually less than residual electrostatic energies (∼ 1eV) so we then

have to decide whether our external magnetic perturbation is bigger or smaller than the internal
magnetic, spin-orbit, energy. We can recognise two limiting cases determined by the strength of
the external field and the size of the spin-orbit splitting. We define a weak field as one for which
µ

atom
·Bext is less than the fine-structure splitting energy. Conversely, a strong field is one where the

external perturbation exceeds the spin-orbit energy.
Just to get the basic physics straight, and to get a feel for what happens, we consider first the

simple case where there is no spin-orbit interaction. We select an atom whose magnetic moment is
due only to orbital motion and find the effect of Bext on the energy levels. Next we introduce the
spin to the problem and the complication of spin-orbit interaction. Then we consider what happens
in a strong field and find, pleasingly, that things get simpler again. Finally we look at “weak” and
“strong” field effects on hyperfine structure.

8.1 Weak field, no spin

An atom with no spin could be a two-electron atom in a singlet state e.g. Magnesium 3s3p1P1.
When the field and its perturbation are weak the atomic states will be the usual |n, l, s, L, S, J,MJ〉
states. In this case, however J = L and we need only the quantum numbers L and ML . The physics
is pictured well by the vector model for an angular momentum L and associated magnetic moment
µ

L
= −glµBL

Recall that gLµB represents the gyromagnetic ratio for an atom sized circulating charge.
In a magnetic field Bext along the z-axis µ

L
(and L) executes Larmor precession around the field

direction with energy:

∆EZ = −µ
L
·Bext (173)

= gLµBL ·Bext (174)

Now L · Bext is the projection of L onto Bext and in our vector model this is quantized by integer
values ML . Hence

∆EZ = gLµBBextML (175)
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Figure 24: Effect of external magnetic field Bext on an atom with no spin i.e. magnetic dipole due
only to orbital motion.

There are (2L+ 1) values of ML: −1 ≤ML ≤ L corresponding to the quantized directions of L in
the field Bext. Thus each energy level for a given L is split into (2L+ 1) sub-levels separated by

∆E′
Z = µBBext (176)

i.e. independent of L; so all levels are equally split.
The splitting will be observed in transitions between levels. The selection rules on J and MJ will

apply to L and ML in this case (J = L) so

∆ML = 0,±1 (177)

If we look at our example level 3s3p1P1 by a transition to say 3s3d1D2 we see 3 states in the 1P1

level and 5 states in the 1D2 level.
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Figure 25: Normal Zeeman effect gives the normal Lorentz triplet due to selection rules ∆ML = 0,±1
and splitting of all levels into equally spaced sub-levels ML.
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9 transitions are allowed but they form 3 single lines of frequency ω0, ω0 ±∆ωZ where

∆ωZ = ∆E′
Z/~ = µBBext/~ (178)

This is the so-called normal Lorentz triplet. The splitting of the line at ω0 into 3 components is the
Normal Zeeman Effect. (This is why we used Z as the subscript on ∆EZ)

It was explained classically, and fully, by Lorentz, long before Quantum Mechanics.

8.2 Weak Field with Spin and Orbit

Since, again, the field is weak there is only a small perturbation so we can use the zero-order wave-
functions defined by the spin-orbit interaction, |n,L, S, J,MJ〉

The application of an external field will, again, cause the orbital magnetic moment and angular
momentum µ

L
and L, to precess. The spin moment and angular momentum will also precess around

Bext. The perturbation energy operator is then:

Ĥ4 = gLµBL ·Bext + gSµBS ·Bext (179)

The problem we now have is that L and S are actually precessing at a faster rate around their
resultant J . The effect of this is that the operators L · Bext and S · Bext no longer correspond to
observables that are constants of the motion.

B
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{ L

B
ext
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JJ

B
ext

Figure 26: Precession of s and l around mutual resultant J results in projections of L and S on
the field axis (z-axis) not being constants of the motion. So ML and MS are not good
quantum numbers.

We will use our Vector Model to follow the physics and to help us find the solution. From the
diagram we see that the precession of S and L around the resultant J causes the projections of S
and L on the field axis (z-axis) to vary up and down. The diagram suggests that since J remains at
a constant angle to the z-axis perhaps we could use the total magnetic moment µ

J
(= µ

L
+ µ

S
) to

calculate the interaction energy i.e. 〈
−µ

J
·Bext

〉
(180)

There is a snag, however, to this cunning plan. The problem is that µ
J

is not parallel or antiparallel
to J . The reason is that the g-factors for orbit and spin are different; gL = 1 and gS = 2. Thus

µ
L

= µBL and µ
S

= 2µBS (181)

The vector triangle of L, S, and J is not the same as the triangle of µ
L
,µ

S
and µ

J
.
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All is not lost, however, because the very fact that the spin-orbit precession is so fast means that
we can find an effective magnetic moment for the total angular moment that does have a constant
projection on the field axis, Bext. We resolve the vector µ

J
into a component along the J direction

and a component perpendicular to J . As J precesses around Bext the projection of the perpendicular
component of µ

J
on z will average to zero. The component along the J axis is a constant, which we

call the effective magnetic moment, µ
eff

i.e.

µ
eff

= gJµBJ (182)
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Figure 27: The magnetic moment due to the total angular momentum J doesn’t lie on the J-axis
since the vector sum of spin and orbital magnetic moments µ

J
is not parallel to J owning

to the g-factor for spin being 2 × g-factor for orbital momentum. The precession of s, l
around J results in a variation of the projection of µ

J
on the z-axis. An effective magnetic

moment µ
eff

does, however, have a constant projection on the z-axis.

gJ is called the Landé g-factor.
We can now proceed to find the perturbation energy:

∆EAZ = gJµB

〈
Ĵ · B̂ext

〉
(183)

J ·Bext is just the projection of J on the z-axis, given by Jz.

∆EAZ = gJµBBext

〈
Ĵz

〉
(184)

and using our |n,L, S, J,MJ〉 wavefunctions we write the expectation value of Ĵz as its eigenvalue
MJ . Hence

∆EAZ = gJµBBextMJ (185)

Landé calculated the form of gJ quantum mechanically, but we can use our Vector Model to get the
same result.

Our vector model replaces expectation values by time averages of quantities that are constants of
the motion. So we look at our vectors L, S and J to find the effective constant projections on the
z-axis. We see from the vector diagram that L has a constant projection on the J axis L·J

|J | . This is

a vector in the J direction so the scalar |L·J |
|J | is multiplied by the unit vector J

|J | , to give |L·J |J
|J |2 = LJ .
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Similarly, the projection of S on J is given by

|S · J |J
|J |2

= SJ (186)

The vectors LJ and SJ have constant time-averaged projections on the axis of Bext. So the total,
time-averaged energy of interaction with the field is:

∆EAZ = gLµBLJ ·Bext + gSµBSJ ·Bext (187)

= gLµB
|L · J |
|J |2

J ·Bext + gSµB
|S · J |
|J |2

J ·Bext (188)

The cosine rule gives the values of L · J and S · J in terms of J2, L2 and S2. So with gL = 1 and
gS = 2

∆EAZ = µB

[
3J2 − L2 + S2

]
2|J |2

JzBext (189)

Now, as per our Vector Model method, we replace the vector (operators) by their magnitudes (eigen-
values);

∆EAZ =
[3J(J + 1)− L(L+ 1) + S(S + 1)]

2J(J + 1)
µBBextMJ (190)

Comparing this with our previous expression we find:

gJ =
[3J(J + 1)− L(L+ 1) + S(S + 1)]

2J(J + 1)
(191)

This is an important result (i.e. remember it – and how to derive it; it is a derivation beloved of
Finals examiners.) Its real importance comes from seeing that gJ is the factor that determines the
splitting of the energy levels.

∆EAZ = gJµBMJBext (192)

gJ depends on L, S and J and so by measuring the splitting of energy levels we can determine the
quantum numbers L, S and J for the level.

We will measure the splitting from the separation of spectral components of a transition in the
magnetic field. The energy level splitting will be different in different levels so the pattern observed
will not be the simple Lorentz triplet. Consequently, this is known as the Anomalous Zeeman effect.
Hence the subscript is AZ on the energy shift ∆EAZ for spin-orbit coupled atoms in a B-field.

8.2.1 Anomalous Zeeman Pattern

As an example of the Anomalous Zeeman effect we consider an atom with spin-orbit coupling and
sodium is our favourite example. A transition between the 3p2P1/2,3/2 levels to the ground level
3s2S1/2 illustrates the main features. We look only at the pattern of lines in 2P1/2 →2S1/2 and leave
the 2P3/2 →2S1/2 as an exercise.

First we need to know gJ for each level. Putting in the values of L, S, J for 2S1/2 level we
find gJ(3s2S1/2) = 2. We could have guessed that! Since there is no orbital motion the magnetic
moment is due entirely to spin and the g-factor for spin, gS = 2. Putting in the numbers for 2P1/2

we find gJ(2P1/2) = 2/3. We can now draw the energy levels split into two sub-levels labelled by
MJ = +1/2,−1/2.
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Figure 28: Anomalous Zeeman effect in the 3s3p2P1/2 level of Na. Transitions are governed by
selection rules ∆MJ = 0,±1.

The transitions are governed by the selection rules: ∆MJ = 0,±1, leading to a pattern of four
lines disposed about the zero-field transition frequency, ω0.

8.2.2 Polarization of the radiation

The magnetic field introduces an axis of symmetry into an otherwise perfectly spherically symmetric
system. This has an effect on the polarization of the radiation emitted or absorbed; the oscillating or
rotating dipole will have a particular “handedness” in relation to the field, or z-axis. The transition
matrix element 〈ψ1(r, θ, φ)| er |ψ2(r, θ, φ)〉 represents the change in “position” of the electron and this
can be resolved into a motion along the z-axis: 〈ψ1| ez |ψ2〉 and a circular motion in the x, y plane
〈ψ1| e(x± iy) |ψ2〉. The φ-dependence of these integrals can be written as:

〈ez〉 ∼
∫ 2π

0
ei(m1−m2)φdφ (193)

〈e(x± iy)〉 ∼
∫ 2π

0
ei(m1−m2∓φ)dφ (194)

The z-component is zero unless |m1 −m2| = 0 i.e. ∆m = 0. Similarly the (x, y) component is zero
unless m1 −m2 ± 1 = 0 i.e. ∆m = ±1

The ∆MJ = 0 transition is thus identified with a linear motion parallel to the B field. Viewed at
right angles to the field axis this will appear as linearly polarized light, π-polarization.

Viewed along the z-axis, however, no oscillation will be apparent so the π-component is missing in
this direction.

Now consider the (x ± iy) component arising from ∆m = ±1 transitions. This appears as a
circular motion in the x, y plane around the z-axis. Thus ∆m = ±1 transitions give circularly
polarized σ+, σ− (right/left) light viewed along z, and plane polarized in the x, y plane.

It is possible using appropriate optical devices to determine the “handedness” of the σ−-polarized
emissions along the z-axis. The σ+ and σ− transitions are either at higher or lower frequency
respectively than ω0 depending on the sign of the oscillating charge. If you can remember the
conventional rules of electromagnetism you can work out the sign of the electron. Lorentz (who could
remember these rules) was able to use this effect to show that electrons were negatively charged.
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Figure 29: Polarization of Zeeman components viewed along field axis (z-axis) and along a perpen-
dicular axis (x- or y-axis).

8.3 Strong fields, spin and orbit

The word “strong” in this context means that the interaction of the orbit and spin with the external
field is stronger than the interaction of the orbit with the spin. The magnetic moments µ

L
and µ

S
will then precess much more rapidly around Bext than they do around each other. Since L and S are
now essentially moving independently around B, the vector J becomes undefined – it is no longer a
constant of the motion. Our spin-orbit coupled wavefunctions |n,L, S, J,MJ〉 are no longer a good
basis for describing the atomic state; J , MJ are not good quantum numbers. Instead we can use
LML and SMS to set up a basis set of functions |n,L, S,ML,MS〉. The spin-orbit interaction is
now relatively small and we ignore it to this approximation. The energy shifts are now given by the
expectation of the operator Ĥ4:

Ĥ4 = gLµBL̂ · B̂ext + gSµBŜ · B̂ext (195)

Now we don’t have the complication of coupled spin and orbital motion. Using our |n,L, S,ML,MS〉
basis functions we find 〈

Ĥ4

〉
= ∆EPB = (ML + 2MS)µBBext (196)

The energy levels are thus split into (2L+ 1) levels labelled by ML , each of which will be split into
levels labelled by MS .
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Consider our 3p2P1/2 level of Na.
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Figure 30: The splitting of a level in a strong field ignoring the effect of spin-orbit interaction.

We can now include the spin-orbit effect as a small perturbation on these states |n,L, S,ML,MS〉.
Again, we can use our Vector Model to find the expectation value of the spin-orbit operator Ŝ · L̂.
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Figure 31: Strong field effect on orbital and spin angular momenta: l and s precess more rapidly
around the external field relative to their mutual precession. The projections of l and s
on the x-y plane average to zero. As a result only the projections on the z-axis remain to
define the energy in the field.

Since L and S are precessing rapidly around the z-axis their components in the x, y-plane will
average to zero. We are left only with the z-component so:

ξ
〈
Ŝ · L̂

〉
= ξMSML (197)

The six states (ML = 1, 0,−1,MS = +1/2,−1/2) have spin orbit shifts of (ξ/2, 0,−ξ/2,−ξ/2, 0, ξ/2)
as shown on the extreme right of the strong field energy level diagram.

The energy level shifts ∆EPB, ignoring the relatively small spin-orbit effect, lead to a set of evenly
spaced energy levels. Transitions between these strong field levels are illustrated by the 3p2P1/2 →
3s2S1/2 transition in Na. The selection rules operating are ∆ML = 0,±1 and ∆S = 0.

The ∆ML rule derives from the conservation of angular momentum (including the photon). The
∆S = 0 rule is due, again, to the fact that the dipole operator cannot change the spin. The spin
plays no part, so we expect to see a pattern of lines similar to transitions in an atom with no spin i.e.
the Normal Zeeman triplet. The allowed transitions do indeed fit this simple pattern. The splitting
in the strong field is known as the Paschen-Back effect, hence our ∆EPB.
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Figure 32: Diagram showing splitting of Na 3p-levels from zero field, through weak to strong field
showing change from Anomalous Zeeman to Paschen-Back effect.

8.4 Intermediate fields

When the external field is neither strong nor weak the situation is very complicated. The Vector
Model won’t work and the result can be calculated quantum mechanically in only the simplest of
cases eg. ground state of atomic hydrogen. The energy levels can be found experimentally. The
transition from weak to strong fields for the 2P1/2,3/2 term is shown in the diagram. Two general
rules are obeyed. The state of MJ in a weak field goes over continuously to a state ML +MS = MJ

in the strong field. This is because the projection of the total angular momentum on the z-axis is a
constant of the motion. The second rule is that states of the same MJ never cross. You don’t need
to know why – in fact you don’t need to know anything about “intermediate” fields for this course,
but I thought some people might be interested.

8.5 Magnetic field effects on hyperfine structure

We start this section by reminding ourselves of what was said at the beginning of our discussion of
magnetic field effects. We consider the interactions in descending order of their perturbation energies.
It is the relative magnitude of the interaction energy that determines whether an external field is
weak or strong relative to the spin-orbit interaction. In the same way an external field will be weak
or strong in the context of the hyperfine interaction with the electron and nuclear magnetic moments
relative to the interaction between the electron and nuclear moments. So we compare interaction
(i.e. perturbation) energies and not absolute field strengths. Internal fields at the nucleus can be of
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the order of 100T, so it would be difficult to generate a comparable field using an external magnet.
The nuclear spin moment, however, is very small relative to the electron moments in the ratio of
∼ me/mp. So the nuclear interaction with the external field is much weaker than that with the
electrons. It is possible therefore to generate interaction energies involving the nuclear spin that may
be stronger or weaker than the internal energies. The relevant interaction energies are:

AJI · J + gJµBJ ·Bext − gIµNI ·Bext (198)

The first term is the nuclear/electron interaction giving hfs. The second term is the interaction
between the magnetic moment µ

J
due to total electronic angular momentum J and the external

field. The third term is the direct interaction of the external field with the nuclear spin I. Since the
nuclear moment µI << µJ we can neglect this third term. We are left then only with the hyperfine
energy AJI · J and the electron interaction energy with the external field. We can now define weak
and strong fields in this context:

Weak field AI · J >> gJµBJ ·Bext (199)
Strong field AI · J << gJµBJ ·Bext (200)

8.5.1 Weak field

In this case the wave functions defined by the hfs interaction remain a good description of the system,
|(n,L, S, J, I)F,MF 〉 . So we evaluate the perturbation energy for the external field interaction in
this basis,

〈(n,L, S, J, I)F,MF | − µ
F
·B |(n,L, S, J, I)F,MF 〉 (201)

∆EF = −µ
F
·Bext (202)

Using our Vector Model, as before, we identify F , the total angular momentum, and F z its projection
on the field axis as constants of the motion. F precesses slowly around B compared to fast precessions
of J and I around F .

Bext

J

I
F

FZ

Figure 33: Slow precession of F around Bext whilst I, J precess rapidly around F .

Recall that for L and S interacting with an external field, we took the projections on J first and
then projected these components onto the field. We could do exactly the same here with J and I.
We have, however, decided to ignore the interaction of I with Bext. So we take only the projection
of J onto F to define an effective magnetic moment µ

F
:

µ
F

= −gFµBF (203)

= gJµB
J · F
|F |2

F (204)
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[Recall that gJµBJ is the effective magnetic moment along the J axis.] Using our vector triangle
from F = I + J we find

J · F =
1
2

{
F 2 + J2 − I2

}
(205)

Hence
gF = gJ

F (F + 1) + J(J + 1)− I(I + 1)
2F (F + 1)

(206)

The total energy is then, including the hfs term:

∆E =
AF

2
{F (F + 1) + J(J + 1)− I(I + 1)}+ gFµBF ·Bext (207)

The second term is given by the projection of F on Bext i.e. MF . So each hyperfine level is split by
an amount

∆EF = +gFµBBextMF (208)

i.e. in the external field each F-level splits into 2F + 1 levels labelled by MF = −F ≤MF ≤ F
As an example we take 39K in its ground state 4s2S1/2 . For a 2S1/2 state gJ = 2, and for 39K,

I = 3/2, so F = 2 or 1. Putting in the numbers we find the gF -values for each hfs level: F = 2;
gF = 1/2 and F = 1; gF = −1/2. (For J = 1/2 levels the values of gF for each F -value will always
be equal and opposite in sign.)

The negative sign on gF for F = 1 arises because the J-projection on F for this level is in the
opposite direction to that for F = 2. This is easily seen from the vector diagram for F , I and J . As
a result the ordering of the MF states is inverted for F = 1.
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Figure 34: Splitting of hyperfine levels F = 1, F = 2 in a weak field.

8.5.2 Strong field

In a strong field the electronic angular momentum J couples more strongly to Bext than the nuclear
spin I. As a result the total angular momentum F is undefined; F , MF are no longer good quantum
numbers. The states are defined now firstly by the angular momentum J interacting with Bext, and
its projection on the field, MJ . As before, this leads to an energy shift:

∆EJ = gJµBMJBext (209)

What about the nuclear spin I? We are ignoring its direct interaction with Bext. Its interaction with
J , however, needs to be included. The nuclear spin I, and its moment µ

I
, wants to precess around J

and µ
eff

, its magnetic moment along the J axis. Now J , however, is precessing rapidly around Bext.
The result is that I can follow only the constant component of J along the z-axis. The interaction
of I with the components of J in the x, y plane average to zero.

The average energy then is ∝ 〈I · Jz〉
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Figure 35: Effect of strong field on hfs: the total electronic angular momentum J precesses rapidly
around Bext (z-axis). As a result the nuclear spin I can follow only the time averaged
projection of J on the z-axis.

The component I along z is just MI and the Jz component is given by MJ . The next effect of the
AJI · J term is to give an energy, AJMIMJ so the strong field energy level shifts are:

∆EBG = AJMIMJ + gJµBMJBext (210)

Although we call this the strong field result, the internal field from the electron’s angular momentum
J , is still much stronger than the external field. I and J are decoupled because J precesses much
more rapidly than I around Bext. The AJMIMJ term arises from the nuclear spin precession around
the time averaged value of J which happens to lie along the Bext axis. We stress that we are ignoring
the (very slow) precession of I around Bext from a weak direct interaction of the µ

I
with the external

field. The level splitting is known as the Back-Goudsmit effect, hence ∆EBG .
The strong field states are labelled by MJ , with each MJ split into (2I + 1) states according to its

value of MI .
The unperturbed hfs levels eg. F = 1, 2 in 39K are split by ∼ a few hundred MHz. To give a

comparable energy an external field needs only to be ∼ 10−2T. So a strong field in this case is only
Bext ≥ 0.1T . The separation of the MJ levels is linearly proportional to Bext in the strong field
regime. The separation of the MJ sub-states remains constant as Bext increases.

The transition between weak and strong field limits can be plotted through intermediate field
strengths using similar arguments to that for MJ to ML,MS labelled states.

• The total M remains a good quantum number: MF → (MI +MJ)

• States of the same M do not cross.

In addition we note that states with a unique value of M e.g. MF = 2 in the 4s2S1/2 (F=2) level
of 39K have energies linearly dependent on Bext. The “no-crossing” rule for other M -states leads
to a “repulsion” of states of same M . The energies eg. M = 1, 0,−1 in F = 2 bend away from
the M = 1, 0,−1 states in F = 1. This non-linear behaviour is characteristic of states becoming
“mixed”, i.e. neither MF nor MI ,MJ are good quantum numbers in the intermediate field regime.
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9 X-Rays: transitions involving inner shell electrons

We have been concerned, so far, with the energy levels of the valence electrons i.e. those electrons
outside the filled shells (or sub-shells). Transitions between these levels involve photons in the energy
range of ∼ 10eV down to 10−6eV. These energies correspond to wavelengths of ∼ 10−7m to 1m. (Ultra
Violet, visible, infra-red, microwaves and radio waves). When photon energies are much larger than
10eV i.e. in the keV range then the interaction can disturb the tightly bound, inner-shell electrons.
Conversely, transitions of an inner-shell electron from one shell to another will involve emission or
absorption of the high energy, short-wavelength photons; X-rays. Usually, however, all the energy
levels of the inner shells are occupied, so, in order to allow transitions to occur at all, we first have
to create a vacancy in one of the inner shells. The energy required to do this can come from either
the absorption of a sufficiently energetic photon, or from the kinetic energy of impact with a high
energy electron.

9.1 X-ray Spectra

X-rays are generated when high energy electrons strike a solid target e.g. the metal anode in a
“cathode-ray” tube. The spectrum of the X-rays generated in this way consists firstly of a continuous
range of wavelengths down to a limiting value corresponding to the maximum energy of the incident
electrons. These X-rays are the result of the deceleration of the charged particles and are known as
“bremsstrahlung” or “braking radiation”.
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Figure 36: X-ray spectra consist of bremsstrahling and characteristic lines from inner-shell transitions.

When the energy of the electrons is increased above a certain value, for a given target material,
sharp peaks i.e. discrete lines, appear superimposed on the continuous “bremsstrahlung”. The
spectrum of these discrete lines are characteristic of the target element. These characteristic X-rays
have the following properties:

• The wavelengths fit a simple series formula.

• All the lines of a particular series appear together once the incident electrons exceed a particular
threshold energy.

• The threshold energy for a particular series just exceeds the energy of the shortest wavelength
in the series.

• Above a certain energy, no new series appear.

These observations are explained by the following process:
The incident energy (from electron impact) is transferred to an inner-shell electron. If this energy

is sufficient the inner-shell electron is raised to a vacant energy level. Now the vacancy energy levels
are those lying between the atoms ground state energy and the ionization limit. This is a range of
only 10eV or so. If the incident energy is of the order of 103eV, or greater, then the most likely
result is to ionize the atom i.e. the inner-shell electron escapes with a kinetic energy equal to the
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incident impact energy less the binding energy of the inner shell. An electron from a higher inner
shell may “fall” into the vacancy. As a result of this transition an X-ray photon is emitted with an
energy corresponding to the difference in binding energy of the two shells. For example, creation of
a vacancy in the n = 3 shell allows electrons from n = 4, or higher shells to “fall” into the n = 3
vacancy. (Higher energy impacts may eject electrons from deeper shells n = 2 and n = 1) These
transitions are the source of the discrete, characteristic, X-ray lines.

X-ray spectroscopy developed its own nomenclature and it is still (unfortunately) used, so we have
to live with a further set of labels. In the context of X-rays the n = 1, 2, 3 shells are knows as K, L,
M etc. respectively.

9.2 X-ray series

The X-rays emitted in transitions between inner-shell energy levels will have energies corresponding
to the difference in binding energy of the electrons in the two shells concerned. The binding energy
of an electron in a given shell of quantum number, n, may be expressed using a hydrogenic model:

En =
R(Z − σn)2

n2
(211)

Where R is Rydberg’s constant. σn is a screening factor that accounts for the effect of the other
electrons.

For the K-shell (n = 1) there are 2 electrons. As the ejected electron moves outwards the remaining
electron provides a spherically symmetric shell around the nucleus of Z protons and reduces the
effective nuclear charge to (Z − 1). The other electrons in higher shells also make a contribution
to the screening. The total screening factor, σk is then approximately 2. It is difficult to calculate
screening factors, although good estimates can be made using atomic structure calculations. Usually
we reply on experimental (empirical) values for σ. (The screening factors also depend on the angular
momentum of the states involved.)

Transitions from higher shells to a vacancy in the K-shell give rise to a series of lines. The
wavenumber (ν = 1/λ) of these lines will be given by the differences in the binding energies:

K-series:

νK = R

{
(Z − σK)2

12
− (Z − σi)2

n2
i

}
(212)

Where ni = 2, 3, 4 etc.
In general:

νX = R

{
(Z − σi)2

n2
i

− (Z − σj)2

n2
j

}
(213)

With ni, nj integers and ni < nj .

K-series

L-series

M-series
n=4

n=3

n=2

n=1K

L

M

N

abg

abg

abg

Figure 37: Origin of X-ray series from vacancies created in inner shells.

The longest wavelength series member is labelled α, with successive lines denoted β, γ etc.
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9.3 Fine structure of X-ray spectra

A single vacancy in an otherwise full shell has the properties of a single electron in an otherwise empty
shell. The X-ray energy levels therefore resemble those of hydrogen or alkali atoms. The energy levels
are split into terms and the terms are split by spin-orbit interactions giving “fine structure”. The
energy splitting due to fine structure can be written

∆Efs =
5.8Z4

n3l(l + 1)
(214)

The levels are labelled by quantum numbers (n, l, s, j). The “Z4” factor results in very large “fine
structure” splitting for heavy elements (large Z) eg. 107cm−1 in Uranium!

This structure was relatively easy to measure and for a long time such measurements gave the
most accurate values of α, the fine structure constant. The X-ray lines have a multiplet structure
governed by selection rules:

∆l = ±1,∆j = 0,±1 (215)

e.g. the Kα line becomes a doublet Kα1 , Kα2 .

9.4 X-ray absorption

Absorption spectra in the visible or UV-range of the spectrum consist of a series of discrete lines
whose wavelengths coverage to a series limit; the ionization limit. The strength of the lines decreases
also towards the ionization limit. For shorter wavelengths than this limit the absorption is spectrally
continuous and continues to decrease in strength as the absorbed wavelengths get shorter.

The discrete absorption spectrum, the series of discrete lines, is the result of transitions of a
valence electron to higher, vacanct, energy levels. Beyond the series limit, absorption results in
photoionization; the bound electron is excited to an unbound, free state known as the continuum.
The probability of the photoionization decreases with increasing energy of the incident photon because
it becomes increasingly difficult for the photon/atom system to conserve both energy and momentum
in the interaction. The valence electrons are relatively weakly bound to the massive nucleus and so
cannot easily transfer momentum to the nucleus.

When the incident photons have X-ray energies they may raise an inner shell electron to an empty
shell (valence shell) or eject it from the atom (photoionization). On the scale of X-ray energies the
valence shell energies are negligible so photoionization is the most likely result. Once the threshold
energy for photoionizing an inner-shell electron is exceeded there is a sudden increase in the absorption
probability. The sharp increase in absorption coefficient associated with such a threshold is called
an absorption edge.
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Figure 38: Absorption spectra are characterised by sharp edges with fine-structure. The absorption
coefficient falls off for X-ray energies above each edge.
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These absorption edges are labelled according to the quantum number of the shell; K edge (n = 1)
L edge (n = 2) M, N etc. Each edge exhibits the fine structure of the shells. Thus the M edge (n = 3)
has 5 subsidiary edges associated with spin-orbit splitting of the angular momentum states, 2S1/2,
2P1/2,3/2, 2D3/2,5/2. The L-edge has 3 steps and the K-edge is single.

When an absorption edge is examined with high spectral resolution it may be found to consist of a
few broad peaks that merge into the continuum. These features cover a range of typically 10eV and
correspond to transitions from the inner shell to one of the vacancy valence electron shells. These
absorption features are broadened by “lifetime broadening” since the Einstein A-coefficient scales
with ν3, the cube of the transition frequency. (Recall that A=1/τ , where τ is the lifetime of the
upper state against radiative decay.) As a result of this broadening only a few of these transitions
can be resolved.

Above an absorption edge, the absorption coefficients drops off until the photon energy exceeds
the next inner shell binding energy and a new edge is observed. At the K-edge, for example, the
photon energy is capable of ejecting an L or M shell electron. It is more likely, however to eject the
K-shell electron which is more strongly bound to the nucleus than any of the higher shell electrons.
As a result the excess momentum is more effectively transferred to the nucleus. So those electrons
held most strongly to the nucleus are most effective in absorbing X-ray photons. This effect partly
explains the rapid change in absorption at the edge and the fall-off in absorption for energies above
each edge.

9.5 Auger Effect

The creation of a vacancy in, say, the K-shell is followed by one of two processes.

• Emission of characteristic X-rays as already described.

• The ejection of a second electron and emission of longer wavelength X-rays. This is the Auger
effect.
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Figure 39: Ejection of a second electron following ejection from an inner shell, resulting from excess
energy given to an electron when one electron in the same shell falls to a lower vacancy.

59



Atomic Physics, P. Ewart 9 X-Rays: transitions involving inner shell electrons

The Auger effect arises because the vacancy in the lower shell (in this case the K-shell creates
potential energy that is shared by all the L-shell (and higher shell) electrons. When one L-electron
falls in the K-shell vacancy it can give up its energy either as an X-ray (Kα line) or as kinetic energy
to another L-shell electron. The donated energy is EK − EL and may exceed the L-shell binding
energy. If (EK − EL) > EL then this L-shell electron has enough kinetic energy to escape. The
resulting ejected electron has kinetic energy (EK − EL)− EL = EK − 2EL.

This Auger effect is analogous to autoionization from doubly excited states in two electron atoms.
There are now two vacancies in the L-shell that can be filled by electrons “falling” from higher

shells. This leads to emission of longer wavelength X-rays than the K-series or further Auger processes
may occur.
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10 High Resolution Laser Spectroscopy

10.1 Absorption Spectroscopy

Conventional absorption spectroscopy uses a spectrograph or a monochromator to record the spec-
trum of “white” light that has passed through an absorbing gas (“White” light is a broad, continuous
spectrum from a black body.) A spectrograph records the whole spectrum at once on a photographic
film or CCD camera. In a monochromator the film or CCD camera is replaced by a slit (exit slit)
similar to the entrance slit of the spectrograph. The spectrum is recorded by scanning the instru-
ment e.g. by rotating the grating, so that the frequency of the light exiting the slit is swept across
a range of frequencies. Absorption lines then show up as dips in the recorded intensity as a function
of frequency (or wavelength). The resolution is determined by the narrow range of frequencies that
are passed by the exit slit, the bandwidth.

The resolving power of spectrographs is limited to about 104 − 105. Fabry-Perot interferometers
can achieve resolving powers of ∼ 106 − 107. Taking 105 as a typical value for resolving power and
1014Hz as an order of magnitude for optical frequencies we find conventional absorption spectroscopy
can resolve frequency differences of 109 or ∼1GHz.

1GHz is also the order of magnitude of Doppler broadening of atomic spectral lines. So if we want
to improve the resolution of spectral measurements we need to do two things; increase the resolving
power and eliminate the Doppler broadening. Laser spectroscopy allows us to do both. (Note that
pressure broadening is also typically ∼1GHz at atmospheric pressure but this can be reduced by
reducing the pressure in the absorbing gas to a few mbar.)

10.2 Laser Spectroscopy

10.3 Spectral resolution

Instead of using a wide continuous spectrum and scanning a monochromatic filter across it, an
alternative method is to use a monochromatic light source and to scan its frequency across the
spectrum. Certain kinds of laser provide just such a frequency tunable, monochromatic light source.
[How these lasers work is not part of the Atomic Physics syllabus. Briefly, however, they work as
follows. A laser is essentially a large Fabry-Perot interferometer, consisting of a cavity between two
highly reflecting mirrors. Light bouncing between the mirrors forms standing waves of wavelength λ.
The cavity length is an integer number of half-wavelengths L = mλ/2. The wavelengths λm = 2L/m
are called cavity modes with frequencies νm = m( c

2L). The cavity modes form a comb of frequencies
separated by the Free Spectral Range, c/(2L), that are essentially the Fabry-Perot transmission
peaks. The sharpness of each peak is set partly by the Finesse of the cavity i.e. by the reflectivity of
the mirrors. The spectral width of the modes of a laser however will be much sharper than those of the
simple Fabry-Perot. This is because there is an amplifier inside the cavity that works by stimulated
emission. More intense parts of the mode spectrum are amplified at the expense of weaker parts
and so the peaks grow much faster than the wings of the modes. When additional filters are placed
inside the cavity a single mode may come to dominate the laser action. All of the power goes into
this single mode and we have an essentially monochromatic source. By adjusting the filters inside
the cavity and also the cavity length, the frequency of the mode can be tuned continuously over a
small range.] The spectral width of a laboratory single-mode laser is typically ∼1MHz i.e. 103 less
than the Doppler width, giving a potential resolving power of 1014/106 ∼ 108. It now remains to
reduce or eliminate the Doppler width.
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10.4 “Doppler Free” spectroscopy

Doppler broadening comes about because atoms in a gas have a Maxwell-Boltzmann distribution
of speeds. The radiation emitted (or absorbed) by atoms moving with speed v is shifted from its
stationary value ν0 to ν:

ν = ν0

(
1± v

c

)
(216)

The number of atoms radiating this frequency is given by the number having speed between v and
v + dv

dN = N0e
−Mv2

2kT dv (217)

Where N0 is a constant, M is the atomic mass, k is Boltzmann’s constant and T is the absolute
temperature. The intensity radiated (or absorbed) as a function of frequency is therefore

I(ν) = I(ν0) exp

[
−Mv2

2kT

(
ν − ν0

ν0

)2
]

(218)

This is a Gaussian curve with half-width (FWHM):

∆νD =
2ν
c

[
2kT
M

loge 2
]1/2

(219)

(Note this is roughly ∆νD ∼ ν(v/c), where v is the approximate speed of the atoms ∼ speed of
sound.) This expression for the “Doppler width” suggests some ways to reduce its value.

Firstly we could cool the atoms i.e. reduce T . Practically we can do this only by cooling the atoms
using liquid nitrogen (77◦K) in a discharge tube. Since ∆νD ∝

√
T this gains us only a factor of ∼ 2.

Secondly we could use low frequency transitions since ∆νD ∝ ν. Radiofrequency transitions can
be detected between hfs levels and this reduces the Doppler width to negligible proportions. Often,
however, we want to study optical transitions (UV, visible) so we now turn to methods using lasers
to reduce or eliminate the Doppler width.

10.4.1 Crossed beam spectroscopy

The simplest way to reduce the Doppler effect of moving atoms is to observe them at right angles to
their velocity. (This eliminates the first-order Doppler shift, but not the , much smaller, relativistic
shift.) Atoms are heated in an oven, allowed to escape through a slit and are collimated by a second
slit. A tunable laser beam crosses the resulting atom beam at 90◦ and so “sees” atoms with essentially
zero velocity. The laser light is absorbed only when it is exactly resonant with the atoms’ transition
frequency. The absorption is detected using the light emitted by the atoms as they decay from the
excited state. This is more sensitive that measuring the very small change in the transmitted light
intensity. Atomic beams have very low density (∼ 1013cm−3) and are usually only a few millimetres
wide, so the percentage absorption is negligible. Furthermore a single atom can absorb and radiate
many times as it passes through the laser beam and photons can be detected with good efficiency.

10.4.2 Saturation Spectroscopy

When all the atoms in a gas are in the ground state the gas absorbs strongly light at a transition
frequency. If some atoms are excited to the upper state the absorption will be reduced.

Atoms decay from an excited state at a rate A21. (A21 is the Einstein coefficient for spontaneous
emission of a photon in decay from state 2 to state 1.) Stimulated absorption occurs at a rate that
depends on the flux of photons or the energy density of the resonant radiation ρ(ν). The absorption
rate is then B12ρ(ν) where B12 is the Einstein coefficient for stimulated absorption. When the
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Figure 40: Atomic beam spectroscopy. The light from a tunable laser crosses the atomic beam at
right angles and so eliminates the first order Doppler effect. When the frequency of the
light is resonant with an atomic transition the resulting absorption is detected by the
fluorescence emitted by the atoms.

absorption and decay rates are equal the atoms are said to be “saturated”. The absorption coefficient
α therefore depends on the intensity of the light, I:

α =
α0

1 + I/Isat
(220)

α0 is the unsaturated absorption coefficient and Isat is the intensity at which the stimulated absorption
rate equals the spontaneous decay rate; B12ρ(ν) = A21.

Saturation spectroscopy uses an essentially monochromatic laser beam split into a weak “probe”
and a strong “pump” beam. The pump and probe beams are arranged to propagate in opposite
directions (usually at a small angle) through the absorbing atoms in a cell or oven. The intensity of
the probe beam is monitored as the laser frequency is tuned across the absorption line at frequency
ν0.

When the pump beam is blocked the spectrum of the probe beam will yield a Doppler broadened,
Gaussian, profile. At each frequency ν the detuning from resonance is ∆ν, and the probe is absorbed
by the sub-set of atoms that are moving to give a Doppler shift equal to the detuning: ∆ν = ±ν(v/c)

If ∆ν is positive i.e. (ν − ν0) > 0 then only atoms moving towards the incoming light are shifted
into resonance and absorb the light. (Similarly if ν is tuned to a lower frequency than ν0 only atoms
moving away from the light come into resonance.)

When the strong pump beam is allowed into the cell and the laser has detuning ∆ν = +ν(v/c) the
probe is resonant with atoms moving towards it. The pump however is resonant with atoms moving
away from it and so interacts with a different sub-set (velocity class) of atoms from those absorbing
the probe.

Only when ∆ν = 0 i.e. ν = ν0 do pump and probe beams interact with the same atoms; those
with essentially zero velocity along the laser beams. Now the pump intensity Ipump ∼ Isat so the
absorption is reduced by saturation. The transmitted intensity of the probe is then increased at
exact resonance and a narrow “spike” is observed on the probe spectrum. This is the “Doppler-free”
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Figure 41: Saturated absorption spectroscopy. A beam from a tunable laser is split into a strong
(pump) beam and a weak (probe) beam which intersect at a small angle in the absorbing
gas. When the frequency of the light is resonant with an atomic transition the absorption
of the weak probe beam is reduced owing to saturation by the pump. The chopper
modulates the pump beam so that the saturation effect is detected above the noise on the
detector of the probe beam.

spectrum. Usually the pump beam is “chopped” on-and-off and the difference signal is recorded to
remove the Doppler broadened “background” to the probe signal.

10.4.3 Two-photon-spectroscopy

It is possible for an atom to absorb two photons simultaneously provided their combined energies
correspond to the energy gap between the ground and some excited state E12 (Note that this requires
two photons to arrive within the volume of an atom within the lifetime of the excited state. The
photon-flux, or intensity, required can be provided only by lasers.) The energy required is: E12 = 2hν

The laser beam can be arranged to give two beams in opposite directions through the atoms. An
atom moving with velocity +v relative to one beam is Doppler shifted by +(v/c)ν but by −(v/c)ν
relative to the other beam. So if the atom absorbs one photon from each beam the energy absorbed
is

E = hν(1 + v/c) + hν(1− v/c) = 2hν (221)

i.e. independent of the velocity, and the Doppler effect is eliminated.
The two-photon absorption is detected usually by detecting photons emitted as the excited atom

decays to a lower excited level. The selection rules for a two-photon transition correspond to two,
sequential, single photon transitions via a “virtual” state. Thus we apply the usual dipole selection
rules twice to find the allowed transitions. So two-photon transitions link states of the same (not
opposite) parity. ∆L = 0 or ± 2. The atom will usually decay to the ground state by two, single-
photon, transitions, either or both of which may be used to detect the original two-photon absorption.

Two photons may, of course, be absorbed from just one of the beams and such absorption will
be Doppler broadened, The area under this Gaussian curve will be roughly equal to that under the
narrow, Doppler-free, peak so its level is very low relative to the Doppler-free peak. The broad, low,
Doppler broadened background may be eliminated by ensuring absorption of one photon from each,
oppositely-going, beam. This can be done using the selection rules for ∆MJ = 0,±2 and circularly
polarized beams. Absorption from a single beam of two photons with the same circular polarization
leads to ∆MJ = 2 (to conserve angular momentum.) Thus a ∆MJ = 0 transition needs one photon
from each beam corresponding to (σ+ + σ−). This restricts the pairs of levels that can be used to
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those where J = 0 or 1/2 in both level e.g. 3s2S1/2 →4s2S1/2 has no ∆MJ = ±2 transitions and only
∆MJ = 0 is allowed.
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Figure 42: Two-photon spectroscopy. A tunable laser is tuned to the frequency corresponding to half
the energy required for a transition. The transition is detected following absorption of two
photons by the subsequently emitted fluorescence. The optical isolator (diode) prevents
light feeding back into the laser that would cause instability in the laser frequency.

Two experimental details are worth noting. First, it is usually necessary to use an “optical isola-
tor” to prevent laser light being sent back with the laser itself. If a retro-reflecting mirror is used
to generate two oppositely going beams then the feedback will upset the laser operation causing
instability in the laser frequency.

(An optical isolator is a device that passes light in only one direction. They usually use a polarizer
and a Faraday rotator – a place of special glass, inside a strong magnet, which rotates the plane of
polarization.)

Secondly, the lasers usually need to be focussed to a small spot to generate the required intensity.

10.5 Calibration of Doppler-free Spectra

High resolution, Doppler-free, laser spectroscopy is usually concerned with measuring small frequency
differences. The change in the laser frequency, or wavelength, therefore needs to be monitored during
the scan. This is usually done using a stabilized Fabry-Perot interferometer. Part of the laser beam
is split off and passed though this device. Transmission peaks occur when the frequency matches the
condition ν = mc/(2d), where m is an integer and d is the separation of the F.P. plates. These peaks
provide frequency markers every free-spectral range c/(2d) and are recorded simultaneously with the
Doppler-free spectrum obtained using any of the above methods.

Calibrated wavelength measuring devices based on Michelson interferometers, Fizeau interferom-
eters or Fabry-Perots can also provide absolute wavelength values if needed. Alternative means of
absolute wavelength measurement use simultaneously recorded absorption spectra of Iodine or Tel-
lurium, whose wavelengths are know to high accuracy and give many lines across a wide spectrum.

10.6 Comparison of “Doppler-free” Methods

We have described three methods of “Doppler-free” laser spectroscopy. There are several other
methods in addition to these three. How do we select an appropriate method? We need to consider
advantages and disadvantages of each method, so we need to consider factors such as the following.
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(1) Physical properties of atoms If an element has a low vapour pressure it may be easier to
form an atomic beam, than to generate a vapour of sufficient density for saturated or two-photon
absorption.

(2) Availability of laser source Tunable lasers are available in most of the visible and near infra-red.
Various methods can be used to generate UV or mid-infra-red light but the power available may not
be sufficient for two-photon or saturation methods.

(3) Experimental complications Saturation spectroscopy creates complex spectra owing to the
possibility of “cross-over” resonances. These are extra signals generated when the laser is tuned
exactly half-way between two adjacent absorption lines. The atoms with the correct velocity to be
in resonance with the pump on one transition are also in resonance with the probe on the other
transition.

(4) Advantages of two-photon methods Two-photon allows transitions to states not normally
accessible to normal absorption from the ground state. This is because such transitions are forbidden
by single photon selection rules. Thus, also, very highly excited states can be reached near the
ionization limit. Allowed transitions of similar energies would need UV lasers which are more difficult
to make.
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