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Preface

This set of notes was written for the Tampere University of Technology’s
course 73131 Partial Differential Equations. It isacompletely rewritten ver-
sion of the second author’s course notes Osittai sdifferentiaaliyhtalot (TUT
Course Notes No. 140,1990). The course presents the basic theory and
solution techniques for the partial differential equation problems most com-
monly encountered in science and engineering. The student is assumed to
know about linear algebraand to know something about ordinary differential
equations. The textbook by Zachmanoglou and Thoe [9] is recommended
as supplementary reading to these notes. Further information on the course
isavailable at its home page

http://matww. ee. tut. fi / ~pi che/ pde/i ndex. ht

The symbolic computation program Maple (version 5.4) isused through-
out these notes to solve examples and, in some cases, to carry out some steps
in proofs. The source code for all the examplesis available in the directory

ftp://ftp.cc.tut.fi/pub/ math/pichel/ pde/

Instructions on how to configure your Web browser to open these files with
Maple are given at

http://ww. mapl esoft. conm t echni cal / f aq/ mapl e/ a29. ht m

for instructions on how to do this.
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Chapter 1

Transformations and Canonical
Forms

1.1 General Formulas for Change-of-Variables
Transfor mations

In this section we consider two common transformations of PDES;
e achange of independent variables, and

e achange of the dependent variable by aformulathat does not involve
derivatives.

We derive matrix-vector formulas for carrying out the transformations for
first-order and second-order PDES. We note that these transformations do
not change the order of the PDE. The formulas we derive here will be used
in later sections where we classify PDEs and find transformations that take
them into their “canonical” forms.

There are special techniques for transforming coordinate independent
PDE operatorslikegrad, div, and curl from one orthogonal coordinate system
to another. Thisis covered in vector analysis courses (e.g. [5]), and is not
discussed here.

1.1.1 Changeof Independent Variable

The vector of independent variables X := [Xq, ..., Xn]T specifies apoint in
R". New independent variablesy := [y, ..., yn]" are introduced by the
equation set

X1 = fi(yi, ..., ¥n)
Xo = falyi, ..., ¥n)
Xh = fn(yl, ey yn)

1



2 Chapter 1, Transformations and Canonical Forms

which iswritten in vector form as

x=f(y)
The components of the jacobian matrix f of the transformation are given by
af;
fy) = —
( y)lj 8Yj

Then, by the implicit function theorem, if the jacobian matrix fy is nonsin-
gular at apoint and f has continuous partia derivativesin a neighbourhood
of the point, then the change of variables transformation has a continuously
differentiableinversein aneighbourhood of the point. We denote theinverse
g:=f"1

Applying the change of variablestransformation to ascalar function u(x)
means that we are introducing a new function v := u o f. The values of v
are the same as the values of u, in the sense that

v(y) = u(f(y))

We avoid the common practice of writing u(y) to mean the composite func-
tionuof.
The chain rule gives the formula for the transformed first partial deriva-

tivesin aPDE as
v noou afy

Oy k=t 9% Ay,
or, in matrix form,
vy = f)T, Uy
Solving for uy gives:
ux =, vy (1.2)

Thisistheformulafor replacing the first derivative termsin a PDE by terms
that use the new independent variables.
Applying the chain rule to the inverse formula

u(x) = v(g(x))

gives

Ux = Gy vy (12
Comparing thisformulato (1.1) suggests the identity

Ox = (fy)f1 (13

whichisindeed valid (Exercise1). Thusitisnot necessary to have anexplicit
formulafor ginorder to find its jacobian matrix; it can instead befound from
fy by matrix inversion. Thisisconvenient, since finding g can be awvkward,
requiring the solution of the system of possibly nonlinear equationsf(y) = x
fory.

From (1.2) we seethat, since thejacobian matrix gx isnonsingular (hence
nonzero), a change of independent variables does not eliminate the first
derivativetermsin afirst-order PDE. Thus, the order of the PDE is preserved.
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Example 1
Consider the change of variables

X1=VY1, X2 =VY1/Y2
We define thisin Maple as follows.

> y:=vector(2):
> fr=vector ([y[1],y[1]/y[2]]);

Y1
f::[y’_z]
Yy

(Maple displays vectors as row vectors but computes with them like column
vectors.)
The jacobian matrix fy is

> with(linalg):
> df : =j acobi an(f,vy);

1 0
df = i A
Yo o Y2

with the matrix inverse g, = (fy)~* given by

1 0
dgi=| y2 _¥2°
Y1 Y1

Thefirst partial derivativesuy arethen given intermsof the partial derivatives
Uy by

> dv:=grad(v(y[1].y[2]).y);

> dg: =i nverse(df);

P 0
dv:=|— PR
v [aylv(yl’ Yy2), ayZV(YL YZ)]

> du: =eval m(t ranspose(dg) &* dv);

(dpronm) 52 (o)
>+Y2 3y2 Y1, Y2 _yz 3y2 Y1, Y2

’

Y1 Y1

du:= ( 9 V( )
=~ \on Y1, Y2

For instance, applying this change of variables to the first-order PDE

d  Xo—X3 9
— — Ju(Xq, X)) =0
(8x1+ X1 8x2> (X, %2)
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gives afirst-order PDE with constant coefficients:

> x:=f:
> PDE: =expand( du[l] + (x[2]-x[2]"2)/x[1]*du[2]=0 );

0 0
PDE := -~ v(y, % V(yLyo) =0
aylv(yl y2) + 8y2V(y1 y2)

Going on to the formulas for second derivatives, we have

v 9 (n 8u8fk>

aYi dY; 3—y| k:la_xka—yj
_ ”(8 8u>8fk nogu o afy
k=1 \OYi 0Xc/ 0Yj (=1 0Xk OY; 3Y;j
. Z(” d ou 8f|>8fk noau 9°fy
B\ X ax Y ) Y L IX Y dY;
_ X”: n. 9%u of, ofy noau 9°fy

k=111 9XX 3_)43_)/1 = 0% Y aYj

In matrix form thisis
T n,.au
k=1 0 Xk

where vyy denotes the hessian of v, whosei, jth element is
3%
i dYj

The hessians uyy and ( fi)yy are defined similary.
Applying the chain rule to (1.1) gives the formula

n dv
Uxx = g;(- VyyOx + Z a—(gk)xx (15)

k=1 Yk

Substituting (1.2) into (1.4) and solving for uyy gives
n
Uxx = g; (Uyy - Z(g;(- vy )k ( fk)yy) Ox (1.6)
k=1
From thiswe can seethat a change of independent variables does not change
the order of a second-order PDE, since gy is not identically zero.

Introducing the notations Hy for ( fi)yy and g for the kth column of the
identity matrix, equation (1.6) can be rewritten as

Uxx = g; (Uyy - Z(e;(rg;(— Uy)Hk) Ox (1.7)
k=1
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Example 1 (continued)

Carrying on with the example change of variables described earlier, we com-
pute the hessians H; and H, asfollows.

> for k from1l to 2 do HKk]:=hessian(f[k],y) od;

00
H1::|:0 O]

1

0 -3z

Ho — Y2
2= 1 o N
y22 Y28

Thesecond partial derivativesuyy arethen givenintermsof thepartial deriva-

> ddv: =hessi an(v(y[1],y[2]),Y);

2 2

0
iy % v(y1, ¥2) 8y5§y2 v(y1, Y2)
3y10y2 V(Y1 Y2) oy V(y1, Y2)
> ddu: =eval m(transpose(dg) & (ddv
> -sun(' du[k]*H k] ', "' k' =1..2))&dg):
ddu :=

32 2
—V(Y1, V(Y1,

52 y2<8y18y2 (Y1 YZ)) y2 <8y22 (1 yz))
V(YL Y2) | +2 +

82 9 82
2 2 3[ 9
_Y2 <8y18y2V(y1’ yz)) B \ <8—yzv(y1, y2)> ) Y2 <8y22V(y1’ y2)>
Y1 y12 y,2

2

92 9 3
2 2 3
Y2 <8y18y2V(y1’ Y2)) ) Y2 (a—yZV(YL yz)) Y2 <8y22v(y1, y2))

Y1 V12 y12 '

92 9

H—=vin, )) 3(_ )

Y2 <8y22 Y1, ¥ +2Y2 ayZV(yl, ¥2)
y12 y1?
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For instance, applying this change of variables to the second-order PDE

3 3
+ =2 <(1 +X5)— + 2X2—>} u(X1, x2) =0
X3

82 X2 82 X2
X2 Xp0X10%  XZ 9%

gives a second-order PDE with constant coefficients:

> PDE: =expand( ddu[1,1] + 2*x[2]/x[1]*ddu[1, 2]
> + x[ 2] 72/ x[ 1] 22* ((1+x[ 2] ~2) *ddu] 2, 2]
> + 2*x[2]*du[2])=0 );
32 32
PDE := (W v(Y1, YZ)> + (@ V(Y1, YZ)) =0

ThereisaMaple function, DEt ool s[ PDEchangecoor ds] , that does
al these calculations automatically. To use it, we first enter the change of
variables transformation, which we call Ex1, into Maple.

> readl i b(addcoords):
> addcoords(Ex1, [y[1],y[2]],[y[1],y[1]/y[2]]);

Warning: not an orthogonal coordinate system - no scale factors
calculated.

Next, enter the PDE and apply the change of variables.

> x:=vector(2):

> u:="u":

> du: =grad(u(x[1],x[2]), x):

> ddu: =hessi an(u(x[1],x[2]), x):

> PDE: =ddu[ 1, 1] + 2*x[2]/x[1]*ddu[1,2] + x[2]~"2/x[1]"2*
> ((1+x[2]72)*ddu[ 2, 2] +2*x[ 2] *du[ 2] ) =0 ;

2

X
82 2 <8X1 0Xo
PDE = ——= U(X1, X2) | + 2

8X12

U(Xq, Xz))

X1

92 9
Xp? ((1+ X22) <8X_22 U(Xq, X2)> + 2Xo <8_X2 U(Xq, Xz)))

+ =0

X12

> expand( DEt ool s[ PDEchangecoor ds] ( PDE, [ x[ 1], x[ 2] ], Ex1,
> (y[1l.y[211));

32 32
— +|— =0
(8y22 u(y1, Y2)> <8y12 ucys, Y2))

Thisis equivalent to the result we obtained earlier, except that Maple uses
the symbol u to represent the transformed variable.
L
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1.1.2 Changeof Dependent Variable

Another kind of transformation is the introduction of a new dependent vari-
able w by an equation of the form

u=G(w,X) (1.8)

By the implicit function theorem, the transformation isinvertible in aneigh-
bourhood of a point provided that the partial derivative 0G/dw is nonzero
at the point and continuous in its neighbourhood.

Applying the chain rule gives the first derivatives

du 3G 3G ow
an - 8Xj ow 3Xj
= GXJ' + waXj

The first derivative formula may be written in matrix-vector form as
Uy = Gx + waX (19)

Differentiating once more gives

%u 9 du
3Xi3Xj N aX%; 8Xj
d
= 8—)(I (ij + waxj)
_ Gy,  9Gy a_w G, n BGwB_w wy Gwawxj
0% ow 90X 0% dw 09X ! X

= GXin + waj Wy, + Gin Wy; + wawxi Wy; + waxi Xj
This formula may be written in matrix-vector notation as
Uxx = Gxx + Goxw;l(- + wngx + Goowxw;l(- + Gowxx (1.10)

From formulas (1.9) and (1.10) it can be seen that, since G,, # 0, achange
of dependent variables preserves the order of afirst-order or second-order
PDE.

Example 2
We consider the change of dependent variablesu = G(w, X, Y, z, t) with

> G =wrexp(b*anr2*t);

G = we®Y

The required partial derivatives of the transformation are
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> Gn =di ff (G wW:
Gw := P2’V

> with(linalg):
> X:=vector(4,[x,y,z,t]):
> dG =grad(G X);

dG = [0’ 0. 0, wha? e(baZt)]

> ddG =hessi an( G X);

000 0
000 0
diG:=| o o o 0
0 0 0 wh?a%e®@D

> dOGw =grad(Gw, X);
dGw := [o, 0. 0, ba? e<ba2t>]

> Gmwv =di ff(Gw, W) ;

Gww:=0

The formula for the vector of partial derivatives uy in terms of the partial
derivatives wy is computed as:

> dw =grad(w(x,y, z,t), X);
dw = [iw(x z,1) iW(x Zt) iW(x Zt) 3W(x z t)}
w .= BX 7y’ ] 7ay 7y7 ] aaz 7y7 $] aat 7y7 ]
> du: =eval M dG+Gw* dw) ;

0 2 0
d = e(baZt) <_ s Yo 9t > ) e(ba t) <_ s Yo & t ) )
u [ 8Xw(xyz ) ayw(xyz )

5 9
gbat (8_2 w(X, Y, Z, t)) ,wba?e®®V 4 by (ﬁ W(x, Y, Z, t>)]

Similarly the formula for the matrix of partial derivatives uyy in terms of
the partial derivatives wyy is computed (but, because of its length, is not

displayed):

> ddw. =hessi an(Wm x,y, z,t), X):
> ddu: =eval m( ddG
>
>

+ dw&*transpose(dGn) + dOM&*transpose(dw)
+Owv* (dw&*t ranspose(dw)) + Gaddw):

For instance, applying this change of variables to the second-order PDE

azuJr 82u+82u 1 au+bu—0
ax2  9y2  9z2 a2 ot N

and dividing through by e®** removes the b term:
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> u: =G
> PDE: =ddu[ 1, 1] +ddu[ 2, 2] +ddu[ 3, 3] - du[ 4] / a*2+b* u=0:
> expand( PDE/ exp(b*anr2*t));

32 32 92
(ﬁ W(Xv y’ Z’ t)) + (a—yz W(Xa yv Zv t)) + (ﬁ W(X7 y’ Z’ t))

d
—W(X, Y, z, t
a X,y )—0
a2 o

The same change of variables can also be performed automatically by
Maple, without going through the matrix algebra:

\%

u:="u':
PDE: =Di ff (u, x, x)+Di ff (u,y,y)+Di ff(u, z, z)
> +b*u-Di ff(u,t)/ar2=0;

a
82 82 82 au
newPDE: =subs(u=exp(b*a”2*t)*wx,y, z,t), PDE) :
expand(val ue(newPDE) / exp(b*an2*t));

32 92 32
(W W(X’ y’ zZ, t)) + <a—y2 W(Xa y7 Z’ t)) + (@ W(X’ yv Zv t))

d
—W(X, Y, z, t
o X,y )—O
a2 -

\%

VvV Vv
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1.2 Transformation of Second-Order Linear, Al-
most Linear and Quasilinear PDEs

In this section we show how second-order PDES that are linear remain that

way under a change of independent variables. Corresponding results are

derived for PDEs that are amost linear and for PDESs that are quasilinear.

We also show how amost linearity and quasilinearity are preserved by a
change of dependent variables.

1.2.1 Linear PDE

A linear second-order PDE has the form

203 (X o +nb-xau+cxu—dx
;;au()m ;l()a—xi (U = d(x)

J

where the coefficient functions &, b, ¢ and theforcing functiond are given
functions of x.
The linear second-order PDE can be written compactly as

tr (Auyx) +bTuyx +cu =d (1.12)

where A isthe matrix of second derivative coefficientsa;; and b isthe vector
of first derivative coefficientsb;. Thenotationtr( - ) referstothe matrix trace,
that is, the sum of the elements onthemain diagonal. Some useful properties
of trace are listed as follows.

linearity: tr(A 4+ B) = tr(A) + tr(B) and tr(kA) = ktr(A)
transpose: tr(AT) = tr(A)

product: tr(AB) = tr(BA)

eigenvalues. tr(A) = Y eig(A)

Theterm tr(Auyy) is caled the principal part of the linear second-order
PDE. The principal part’s coefficient matrix A can be assumed to be sym-
metric without any loss of generality. This is because the principa part is
unchanged if if a general coefficient matrix A is replaced by its symmetric
part %(A + AT), asthefollowing algebra shows:

1 1
tr(Auxx) = tr <|:§(A + AT) + E(A — AT):| uxx)
R T LA AT
= tr(z(A+A )uxx>+tr(2(A A )uxx)

1 T
= ftr E(A+A )UXX
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Here we've used the fact that the trace of the product of the skew symmetric
matrix %(A — AT) with the symmetric matrix Uy is zero (Problem 5).

Now we apply the formulas derived in the previous section for a change
of independent variables. Applying formula(1.7) to the principal part gives

n
tr(Auxx) = tr <AgI [vyy — > (efor Uy)Hki| gx)
k=1
n
= f{r (nggI Uyy) - Z(ell-g)-[ Uy)tr (gXAg;(er)
k=1

= tr(Puyy) — > (& Gy vy)tr (PH)
k:l

where we've introduced P(y) := gxA(f(y))gy. For the first derivative term
we use formula (1.2) to get

bTUX = ngI Vy

Putting these results together, the linear second-order PDE (1.11) is trans-
formed to

tr (Puyy) +q'oy +rv=s (1.12)

where
qcy) == 0« (b — thr(PHk)@) . r(y) :=c(y), sy :=ddfy))
=1

Sincethetransformed PDE (1.12) isof thesameform astheoriginal one(1.11),
we see that a change of independent variables preserves the linearity of a
linear second-order PDE.

Example 1 (continued)
We return to the change of variables

X1 =VY1, X2 =VYi/Yo
applied to the linear PDE

82 X 82 X2 2
— 4 2= 14 x3)2—
{axf + X1 9X10Xo 1+ 2)xf

X3
=2 U(Xs, X2) = 0
1

X5 XE Xy

The coefficients of the PDE are entered as
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> Xx:=vector(2):
> A=matrix(2,2,[[1,x[2]/x][1]],
> [x[2]/x[ 1], x[ 2] ~2/ x[ 1] "2 ((1+x[2]"2))]]);
> b:=vector(2,[0,2*x[ 2] "3/ x[1]"2]);
> c:=0: d:=0: Xz

1 =

. Xl
A= X2 X% (14 %22)
X_1 X12

3
b= [o, 2X—22]
X1

Check that these indeed give the PDE:
> du: =grad(u(x[1],x[2]),Xx);

0 d
du = _UX, X ) — U(X ) X
[axl (X1, X2) 3% (X1 2)]

> ddu: =hessi an(u(x[ 1], x[2]), X);

2 2
—— U(Xq, X U(Xy, X
2 (X1, X2) 3% 9X (X1, X2)
ddu= 82 2

a
u(xy, X —— U(X1, X
P (X1, X2) %2 (X1, X2)

> PDE: =t race( eval n( A&* ddu) ) +dot pr od( b, du) +c*u=d;

2

92 X2 <3X2 0X1
PDE := — U(Xq, X2) | + 2
OX{ X1

U(XL XZ))

82
X292 (1 + %22) | — u(xq, x
2°(1+ %) axz2(1’ 2)

d
x53 (87 U(Xq, Xz))
2 2 =0

+
X12

+
X:|_2

For the transformed PDE the principal part’s coefficient matrix is

> x: =f:
> P: =map( nor nal , eval m dg&* A&*transpose(dg)));

- [5 9]

and the first derivative's coefficients are

> eye:=array(identity,1..2,1..2):
> for k from1l to 2 do e[k]:=vector(2,i->eye[k,i]) od:




Section 1.2, Transformation of 2nd-Order PDEs 13

> q: =eval m((dg&*b) - sum(' eval m( (dg&*e[Kk])*
> trace(eval M P& H k])))',"'k'=1..2));
q:=10, 0]

The transformed PDE is given by

> newPDE: =t race( eval n( P& ddv))
> +eval nm(t ranspose(q) & dv) +c*v=d;

92 32
new <8y12 V(Y1 Y2)) + (8y22 V(Y1 Y2)> 0

which is the same result as was obtained earlier.
|

1.2.2 Almost-Linear PDE and Quasilinear PDE

The previous results can be applied directly to two more general classes of
PDEs. An almost linear second-order PDE has the form

tr (A(X)Uxx) = d(X, U, Uy) (1.13)
It istransformed by a change of independent variables to the PDE

tr (P(Y)vyy) = d(f(y), v, Gvy) + (e gx vy)tr (P(y)Hy)
k=1

Thus a change of independent variables preserves the almost linearity of an
amost linear second-order PDE.
A guasilinear second-order PDE has the form

tr (A(X, U, Uyx)uxx) = d(X, U, Ux) (1.14)
It istransformed by a change of independent variables to the PDE

tr (Puyy) = d(f(y), v, Gxvy) + > _ (6 gx vy)tr (PHy)
k=1

where now

P = gxA(f(y), v, Gy vy)0x
Thus a change of independent variables preserves the quasilinearity of a
quasilinear second-order PDE.

A change of dependent variable as given by formula (1.8) doesn't pre-
serve linearity (Exercise 6). Almost linearity and quasilinearity are pre-
served, however, since substituting formulas (1.8-1.10) into the PDES (1.13)
and (1.14) and dividing through by G, gives

1
tr (Awa) = G_d(X7 Ga GX + GOwX)
0

1
— & (AGc + Goxy + wxGe, + Goowxawy)
0
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1.3 Classification of Second-Order Almost Lin-
ear PDEs

We have just seen how applying a change of independent variables to a
second-order almost linear PDE gives a new PDE of the same form, with
the PDE’s principal part’s coefficient matrix A related to the new PDE’s
principal part’scoefficient matrix P through thejacobian matrix of thechange
of variables gx by the formula

P = gxAgy

This is an example of a congruence transformation. Two n-by-n sguare
matrices A and B are said to be congruent if there exists a nonsingular
matrix Ssuch that B = SAS'. Congruence is an equival ence relation:

reflexivity: A iscongruent to itself;
symmetry: if A iscongruent to B then B is congruent to A;

transitivity: if A is congruent to B and B is congruent to C then A is
congruent to C.

Congruence therefore partitions the set of coefficient matrices of PDE prin-
cipa parts into equivalence classes that are invariant under a change of in-
dependent variables. The following theorem, whose proof is givenin linear
algebratexts, givesacriterion for recognising when two coefficient matrices
are congruent.

Theorem 1.1 (Sylvester’slaw of inertia) Real symmetric matrices A and
B are congruent via a real congruence transformation if and only if they
have the same number of positive, negative, and zero eigenvalues.

Before applying this theorem, let’srecall some related facts about eigenval -
ues.

e The eigenvalues of real symmetric matricesare al real.

e The number of nonzero eigenvalues of a square matrix is equal to the
rank.

e A squarematrix isnonsingular if andonly if it hasno zero eigenval ues.

e A symmetric matrix is positive (or, respectively, negative) definite if
and only if al its eigenvalues are positive (resp. negative).

The following classification terminology is used for almost linear second-
order PDEs.
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Parabalic: A hasone or more zero eigenvalues, that is, A issingular. The
prototype parabolic equation is the heat equation

;Ut = Uxx + Uyy + Uz

with principal part’s coefficient matrix

[eoNelNol
OO Pr o
O OO
[oNeNelNe)

Elliptic: A has eigenvalues al positive or all negative. That is, A is pos-
itive definite or negative definite. The prototype elliptic equation is
Laplace’s equation

Uyx + Uy + Uz =0

with principal part’s coefficient matrix A = 1.

Hyperbolic: A hasone negative eigenvalue and therest are positive, or vice
versa. The prototype second-order hyperbolic equation is the wave
equation

1
?utt = Uxx + Uyy + Uz

with principal part’s coefficient matrix

[100 o]
010 O
A=lo0o01 o0

LOOO—C—ZJ

Ultrahyperbolic: A hasno zero eigenvalues, more than one negative eigen-
value, and more than one positive eigenvalue. Ultrahyperbolic PDEs
do not arise in applications.

Thisclassification exhaustsall possibilities. Asaconsequenceof Sylvester’s
law of intertia, the type (parabolic, eliptic, hyperbolic, or ultrahyperbolic)
of a second-order amost linear PDE at a point is invariant to a change of
independent variables.

The proof of the following theorem presents an algorithm to classify a
second-order quasilinear PDE without computing eigenvalues, using only
elementary matrix transformations.

Theorem 1.2 For any symmetric matrix A there existsa nonsingular matrix
S such that SAST is diagonal with nonzero elements equal to 1 or —1.

Proor. We compute S using asymmetric version of gaussian elimination.
The algorithm is asfollows.
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1. Start with the given symmetric matrix A. Set k := 1.

2. Assuming that the rows and columns with index less than k have
aready been diagonalised, consider A to be partitioned as

A 0 O
A=| 0 ax A]
0 A A;
with diagonal A; and symmetric As.
3. If ai = 0 then do the following.

(@) If the whole submatrix

_ | A A
Shb

iszero, go to step 6. Otherwise, go on to step (b).

(b) If A4 has a zero diagonal but has some nonzero off-diagonal
term a;; # O, then add the i th row to the j th row and add the i th
column to the jth column. This operation can be represented as

A <~ JAJ]

where Jy is a matrix that has ones on its diagonal and a one
in the jith place, and is otherwise zero. Now A, has a nonzero
diagonal terma;; # 0. If ] = k, thisstepiscomplete, otherwise,
exchange the kth and jth rows and exchange the kth and jth
columns. This operation can be represented as

A <~ QWAQ,
where Qy is a permutation matrix.

4. Now a # 0 and we can use this as a pivot element. Define the
elementary row transformation operator

I 0 0
0 1 0

0 —aglA, |

E, =

and apply it to A in asymmetric fashion:
A < EAE]
This zeros the off-diagonal termsin the kth row and column.

5. Increment k by 1. If k < n, go back to step 2, otherwise go on to step
6.
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6. Atthispoint A isadiagonal matrix, and all that remainsisto normalise
its nonzero elements. Define elements of the diagonal scaling matrix
D asfollows
g = | YV if ak 0
1 if ax=0

Then the operation
A < DAD'

yields adiagonal A whose nonzero elementsare equal to 1 or —1, and
the algorithm is finished.

This algorithm zeros the off-diagonal terms of A one row and column at
a time, and ends up with a diagonal A. Each elementary operation of the
algorithm is represented by a nonsingular matrix, and the combined effect
of al the operations gives adiagonal matrix that can be represented as

EnQndn - - - E2Q23,E1Q1J1(A)J] Q[E{ I QE; - J Q! E]

Here the Ey, Jx and Qx matrices that weren't defined in the algorithm are
just identity matrices. The congruence transformation that diagonalisesA is
then given by

S=E\Qndn---E2Q2JE1Q1J1 =

Example 3
Consider the following constant symmetric matrix.

> A=matrix([[1,1,0,1],[1,1,2,0],[0,2,0,1],[1,0,1,0]]);

1101
11120
A= 0201
1010
Augment it with the identity matrix.
> with(linalg):
> Eye:=array(identity,1..4,1..4):
> AS: =zaugnent (A, Eye);
11011000
. 111200100
ASi= 02010010
10100001

Use the 1,1 element asfirst pivot and zero the elements below it.
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> AS: =pivot (AS, 1,1,2..4);

1 10 1 1000
|0 02 -1-1100
AS=1o 20 1 0010
0-11-1-1001

Apply the corresponding column operations to A:

> AS: =transpose(pi vot (transpose(AS),1,1,2..4));

1 00 0 1000
|0 02 -1 -1100
AS=109 20 1 0010
0 -11 -1 -1001

The 2,2 element is not avalid pivot. Exchange rows 2 and 4 and similarly
for the columns,

> AS: =swapr owm( AS, 2, 4) :
> AS: =swapcol (AS, 2, 4);

1 00 0 1000

|0 -11-1-1001
A=10 10 2 0010
0 -12 0-1100

Now the 2,2 element isavalid pivot. Zero the elements of A below it and to
theright.

> AS: =pi vot (AS, 2,2,3..4);

1 00 0 100 O

0o -11-1-100 1
AA=lo 01 1-101 1
0 01 1 010 -1

> AS: =transpose(pi vot (transpose(AS), 2,2,3..4));

1 0 0O 1 00 0
|0 -100-100 1
AS=109 011-101 1
0 011 010 -1
Now eliminate in row and column 3.
> AS: =pivot (AS, 3, 3,4..4);
1 0 0O 10 0 0
.10 -100 -10 0 1
AS:= 0 011 -1 0 1 1
0 00O 11 -1 -2
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> AS: =transpose(pi vot (transpose(AS), 3,3,4..4));

1 000 10 0 O

_ 0 -100-10 0 1
AS:= 0O 010-10 1 1
0 000 11 -1 -2

The algorithm has converted A to diagonal form. S is the record of the
effect of all therow operations. Let’sextract it and verify that it doesindeed
diagonalise A.

> S:=submatrix(AS, 1..4,5..8);
10 0 O
.| -1 0 0 1
Si= -1 0 1 1
11 -1 -2
> eval m( S& A&*transpose(S));
1 00O
0 -1 00
0O 010
LO 00 OJ

The algorithmin Theorem 1.2 constructs the congruence transformation that

reduces the PDE’s principal part’s coefficient matrix A to adiagona matrix

whose nonzero elements are 1 or -1. An amost linear second-order PDE

with such a principal part coefficient matrix is said to be in canonical form.

L aplace’s equation and the heat equation arein canonical form, and ascaling

of thetime variableis sufficient to put the wave equation into canonical form.
Asadirect corollary of Theorem 1.2 we have

Theorem 1.3 An almost linear PDE whose principal part’s coefficient ma-
trix A is constant can be transformed into canonical form by the constant
linear change of independent variables y=Sx.

When A isnot constant, the transformation into canonical form given by
Theorem 2 can only be applied pointwise, treating A(x) asaconstant. Thisis
useful for classification: thetype of the PDE can beidentified at every point.
The next section discusses techniques for transforming a PDE to canonical
form not just at a point, but in a neighbourhood.
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1.4 TransformationtoCanonical Form of Second-
Order Almost Linear PDEsin Two Variables

Consider the principal part of a second-order almost linear PDE in two
independent variables
A — a1 A
dip ax

Its eigenvalues are

1

> (311 +axn+ \/(811 + @)% — 4D> (1.15)
where D = det(A) = apjaxp — afz is called the discriminant. From (1.15)
it can be seen that the PDE can be classified on the basis of the sign of the
discriminant. The PDE is

parabolic if D = 0 (A issingular),
eliptic if D > 0 (A isdéefinite), and
hyperbolic if D < 0.

(It can’'t be ultrahyperbolic because there are only two eigenvalues.)
After a change of independent variables, the PDE principal part has
coefficient matrix P. The discriminant of the transformed PDE is

det(P) = det(gkAgy) = (detgy)® D

This equation confirms that the type of a PDE is preserved by a change of
independent variables.

Let’slook at the coefficients of P. In the remainder of this section we de-
note the original independent variablesx =: [x, y] and the new independent
variablesy =: [£, n].

A =matrix([[a[1,1],a[1,2]],.[a[1,2],a[2, 2]]]):
gx:=matrix([[Diff(g[1],x),Diff(g[1],y)],

[Diff(gl2].x),Diff(gl2].y)]]):
P:=mul tiply(gx, A transpose(gx)):
p[ 11] : =expand(P[ 1, 1] );

=~ (0) mar2 (o) (o) mes (5 0)
P11 = 8Xgl 1,1 axgl aygl 1,2 aygl 2 2
p[ 12]: =expand(P[ 1, 2]);
= (%) (59 ar e (552) (5,9 @
P12 = ax92 axgl 1,1 8ng 8ygl 1,2
#(y2) (o) met (559) (59) 2
8yg2 axgl 1,2 3ygz aygl D 2

V V V V V

\Y
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> p[22] : =expand(P[2, 2]);

= (%) w2 (550) () mer (f0) @
P22 = 8x92 1,1 axgz 8ygz 1,2 8y92 D 2
We want to find the change of variables functions g, (x, y) and g»(X, y) that

give us P in canonical form. We consider the three PDE types (hyperbolic,
parabolic, eliptic) separately.

1.4.1 Hyperbolic PDE

A hyperbolic PDE is said to be in normal formwhen it is of the form

Ven = e(g’ n,v, Vg, Un) (116)

The normal form’s principal part has coefficient matrix
> A =matrix([[0,1/2],[1/2,0]]);
-[81]
2

Thiscanbeputinto canonical form (also called the* second normal form”) via
the 45° rotation given by the constant-coefficient congruence transformation

QNI

> S:=matrix([[1,1],[-1,1]]);

N

> evalmM(S & A & transpose(S) );

B

Our strategy is to find the transformation that takes a hyperbolic PDE into
its normal form, and then to apply this congruence transformation.

If both a;1(x, y) = 0 and ax(X, y) = O, the PDE is aready in normal
form. Assume therefore that a;; # O; the case ay, # 0 follows analogously.
To bring the PDE to normal form, transformation functions g;(X, y) and
02(X, y) haveto be chosen in such away that p11(X, y) = 0and px(X, y) =
0. We write these conditions in the form

0 0 0 0
Pu = au(xy) (% ~my(x, y)aiyl) (% ~ ma(x, y)aiyl) —0

d d d d
% — my(X, y)%) (& — ma(X, y)%f) =0

P2 = an(X, y)( %
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where

_:—812+V—D m - —ap —+/—D

1 - 2 .=

a1 a1

From these conditions we see that it is sufficient to solve the two uncoupled
linear first-order PDES

901 g
902 0% '
% — ma(X, y) by 0

To do this, we seek solutions of the form g;(x, y) = C; and gx2(X, y) = Cy,
respectively, for the ordinary differential equations (ODES)

dy
& — —ml(X7Y)
dy
& - _mZ(va)

where C; and C, are constants of integration. When C; is a constant, the
equation g; (X, y) = C; describes a curve in the plane, and aong this curve
we have

d d ag | dgidy 9o 0
0 = —C = — = — —_— M = — - s
VAt G(X, y(X)) o T By dx  ax my(X, y) 3y
thusthe function g; isindeed asolution for the first part of (1.17). Similarly
we can verify that g, isasolution for the second part of (1.17).
The jacobian of the transformation is

99, g1
ox  ay 90 9

09 = | 4, og, =3iy181y2<m1—mz>
ox  ay

so that the transformation is nonsingular provided that

002

901
#0 and W;&o

ay

Thisisalsotheconditionfor theODE solutionsg; (X, y) = Ciandgx(X, y) =
C, to be solvable for y.

The level set curves of g; and g, are called the characteristics of the
PDE. The set of characteristicsisthe grid for the coordinate system in which
the amost linear PDE isin normal form (1.16). In chapter 5 we'll discuss
PDE solution methods that are based on characteristic curves.
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Example 4

Consider the PDE y?uyxx — X?Uy, = 0. Its principal part coefficient matrix
and discriminant are

> A=matrix([[y”2,0],[0,-x"2]]1);
_ |y 0
A'_[ 0 —xz}

DD = —y?x?

> DD: =det (A);

The PDE is therefore hyperbolic everywhere except on the x and y axes.
The characteristic equation derivatives are

> nfl]:=radsinmp((-A 1, 2] +sqrt(-DD))/A 1, 1]);
m1:=§

> nm2]:=radsinmp((-Al1,2]-sqrt(-DD))/ A 1,1]);

X
my i= ——
y

Solving the first characteristic equation gives

> dsol ve(diff(y(x),x)=-n{1],y(x));

y(x)? = —x?>+ _C1

> sol ve(", _Cl);
y0? + %

> g[ 1] : =subs(y(x)=y,");

01 1= Yy? +x°

Solving the second characteristic equation gives

> dsol ve(diff(y(x),x)=-n2],y(x));

y(x)2 =x?+ _C1

> solve(", _Cl);
y(x)? — X2

> g[ 2] :=subs(y(x)=y,");

G2 i=y? — x*

We verify that this change of variables gives the normal form, using for-
mula (1.5).
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\

gx: =j acobi an(vector([g[1],9[2]]1).[x,VY]);
| 2x 2y

gxﬁ_[ —-2Xx Zy}
> dv:=grad(v(xi,eta),[xi,eta]):
> ddv: =hessi an(v(xi,eta),[xi,eta]):
> ddu: =eval n{transpose( gx) & ddv&* gx
>
>

+sum(' dv[ k] *hessian(g[k],[x,y])',"k'=1..2)):
PDE: =expand(trace(eval nm{ A&* ddu)) ) =0;

92 3
PDE = —16y2X2 (Fan V(év 77)) - 2y2 (% V(é’ 77))

? (e w) 2 (v w) + 2 (Fve ) =
+2y (anV(é, n) )+ 2x 8gv(é, n |+ 2x 8nv(é, n|=0

Now we want to replace the x and y values by the new coordinates & and
n. Since the new coordinates are defined with squares, the inverse formula
would involve awkward radicals. However, since only squares appear in the
PDE, we can work directly with them.

> solve({xi=g[1],eta=g[ 2]}, {x"2,y"2});
o 11, 11
{x°= > Zé,y—zn 25}
> NF: =col | ect (expand(subs(", PDE)), diff);
— (0 0
NF = =2 (Szvien ) n+2 (-vien )
82
+ (—4£2+ 47°) e

Dividing this through by 4(n? — £2) gives the normal form.

V(E, 77) =0

> col |l ect (NF/ (4*etan2-4*xi"2),diff);

ad
_ 9& an 1 0 _

Finally, we apply the change of coordinatesto transform the normal form
into canonical form.

> readl i b(addcoords):

> addcoords(rot, [ | ambda+mnu, - | anbda+nu], [ | anbda, mu] ) ;
>

>

wi t h( DEt ool s):
expand( PDEchangecoords(NF, [ xi, eta],rot, [l anbda, nu]));
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2

i) d 9
21 (8_A V(A, M)) —2X <m V(A, M)) -4 (3—M2 V&, W) mA

82

Dividing through by 41 gives the canonical form of the hyperbolic PDE.

> expand("/ (4*| anbda*mu)) ;

o 0
— — V(&, w) 2 2
191 V(A, 1) 1ap 9 9

1.4.2 Parabolic PDE

In aparabolic PDE, one of the principal part’s diagonal elementsay; or ax
has to be nonzero, otherwise, since D = aj;a, — a2, = 0, the principal part
would be zero. In the following we assume a;; # 0; the case ay; # 0 is
analogous. Our strategy is to find a coordinate transformation that makes
p2> = O; the off-diagonal terms py, and p,; will then automatically be zero,
because the PDE type is preserved.

For a parabolic PDE, the two characteristic slopes m; and m;, of the
hyperbolic PDE reduce to asingle slope

_ G
a1l

m:=

Seeking a solution of the form g,(x, y) = C, for the ODE

dy
gives a change of variables function g,(X, y) that annilihates p,,. To com-
plete the transformation to canonical form it suffices to choose any smooth

function g;(x, y) that gives anonsingular jacobian matrix gy.

Example 5
Consider the PDE XUy + 2XYyUyy + Y2Uyy = O. Itsprincipal part coefficient
matrix and discriminant are

> A=matrix([[x"2, x*y], [ x*y,y*2]]1);

2
Ao | X x%/
Xy 'y
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‘> DD: =det (A) ; ‘
DD :=0

Thusit is parabolic everywhere. The characteristic slopeis

>m=A12]/A 1 1];

Now solve the characteristic ordinary differential equation

> dsolve(diff(y(x),x)==my(x));
> g[ 2] :=subs(y(x)=y,solve(", Cl));

y(x) =x_C1

_Y
92-—X

To complete the change of variables, set

> g[ 1] : =x; ‘
O1:=X

Finaly, verify that this change of variables gives the normal form (exactly
asin Example 4):

> X =[x,vy]:
> gx: =j acobi an(vector ([g[1],9[2]]),X);
1 0
gXx = y 1
X2 x

Y:=[xi,eta]:
dv: =grad(v(xi,eta),VY):
ddv: =hessi an(v(xi,eta),Y):
ddu: =eval n{transpose( gx) & ddv&* gx
+sun(’ dv[ k] *hessian(g[k],X)', k' =1..2)):
PDE: =expand(trace(eval m{ A&* ddu)) ) =0;

V V.V V V V

2

PDE := x? (% V(E, n)> =0

Dividing through by x2 gives the canonical form of the parabolic PDE.
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1.4.3 Elliptic PDE

For an dliptic PDE, the discriminant D is positive, and the characteristic
slopes m; and m, will be the complex conjugate pair

—app * I«/B

my o =
ai1

The elliptic PDE thus has no real characteristic curves. We therefore seek
a complex-valued function g;(x, y) such that g;(x, y) = C; isasolution to
the characteristic ODE

& = _ml(X9 Y)

The second component of the change of variables is the complex conjugate
02 = 0;, because taking the complex conjugate of

0
L
X ay
gives B B
0_ % _ 9% _ 0% 0%
aX ay aX ay
Now the change of variables
S = gl(X’ y)’ n= gZ(X’ y)

takesthedlliptic PDE into the normal form (1.16). Sinceé and n arecomplex
conjugates, weintroduce the new real variables A and  through theformulas

A=&+n pu=iE—-mn)

This corresponds to the constant-coefficient congruence transformation

> A=matrix([[0,1/2],[1/2,0]]):
> S=matrix([[1,1],[1,-1]11):
> eval m( S& A&*transpose(S));

1]

which is the canonical form for elliptic PDEs.
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Exercises

1. Proveidentity (1.3). (Hint: Apply the change of independent variable
formulasto the function v = y;).

2. When x represents position in cartesian coordinates, the new indepen-
dent variables y are said to form an orthogonal curvilinear coordi-
nate system if the matrix gxg, is diagonal. Show that an equivalent
condition is that the matrix f; fy be diagonal. Show that the elliptic
cylindrical coordinates defined by the transformation

X1 =Y1Ya, Xo = (y; — )AL - y5)"?
where c is aconstant, is an orthogonal curvilinear coordinate system.

3. Show that applying the change of dependent variables

U= wecx/2—cza2t/4

to the PDE
82+82+82 13 ca ux,y,zt)=0
ax2  9y2  9z2  a?at  ox Y5 H =
eliminates the c term.

4. Euler's PDE hastheform

,9%U d%u ,9%U au au
ap1Xq 8—Xf +a10X1X2 +axX; 8—X§ + b1X18—X1 + b2X28—>(2 +cu=0

9X10Xo

where the a, b, ¢ coefficients are constants. Show that it becomes a
linear PDE with constant coefficients under the change of variables

y1 =logxi, Yy, =Ilogx,

Solve this exercise using the formulas given in the text, then again
using the Maple command DEt ool s[ PDEchangecoor ds] .

5. Show that A = —AT and B = BT impliestr(AB) = 0.

6. Give an example to show that a change of dependent variable can
transform alinear PDE into one that isn’t linear.

7. Find the congruence transformation that takes the matrix
12 3 2
23 5 8
35 8 10
LZ 8 10 —8J

into canonica form. What is the type of the PDE with this principal
part coefficient matrix?
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8.

10.

11.

Consider the second-order amost linear PDE in n independent vari-
ables of the special form

n
> Ak (Xi) Uy = d(X, U, Uy)
k=1

Show that it can be transformed to canonical form by a change of
independent variables in aregion where the signs (+, —, or 0) of all
the continuous coefficient functions ay, remain the same.

Determine the regions of the plane where the PDE
XUyx 4+ 2XUyy + (X — DUy =0

ishyperbolic, and determineitsnormal form and canonical form there.
Sketch the characteristic curves.

Determine the regions of the plane where Euler’s PDE (Exercise 4) is
hyperbolic, where it is parabolic, and where it isélliptic.

Transform the elliptic PDE
yZUXX + quyy - O

to canonical form.
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Chapter 2
Elliptic PDEs

2.1 Boundary Value Problem

2.1.1 General Concepts

In this chapter we consider the following boundary value problem (BVP),
which is used to describe a variety of steady-state or equilibrium problems
in physics:

cu=dinQ, Bu=honaQ (2.1)

where £ isthe linear second-order PDE operator
£u:=tr (Auyxy) +bTux + cu

and the boundary condition operator B is a homogeneous first order linear
differential operator. The PDE domain €2 is an open connected bounded
subset of R" with piecewise smooth boundary 9€2. The coefficients of the
PDE and of the boundary conditions are assumed continuous functions of x.
The coefficient matrix A is supposed positive definite everywherein €2, that
is, the PDE is dliptic. A solution of the BVP is afunction u continuousin
Q := QUK having continuous second derivativein 2, and satisfying (2.1).

The homogeneous BVP associated with (2.1) isobtained by settingd = 0
and h = 0. From the linearity of £ and B we can immediately deduce the
following facts.

e The zero function is a solution (called the trivial solution) to the ho-
mogeneous problem;

e Any linear combination of solutions of the homogeneous problem is
a solution of the homogeneous problem;

e If uisany solution of the homogeneous problem and v is a particular
solution of the inhomogeneous problem then v + «au is a solution of
the inhomogeneous problem for any constant «;

31
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e If uand v are solutions of the nonhomogeneous problem thenu — v
isasolution of the homogeneous problem. Thus, if the homogeneous
problem has no nontrivial solutions then any solution of the inhomo-
geneous problem is unique.

2.1.2 Green'sldentitiesand Self Adjoint BVPs

If b; = ¥ 9a;/3x;, thenthetermstr (Auyy) + bT uy in (2.1) may bewritten
in divergence form V - (Auy), asthe following expansion shows:

0
V-(Auy) = —Au
x Z o U

= Zi (Zan;—;j)

X\
9%u da;\ du
- TR R ()

3Xian 7 i X%
= tr (AUXX) + bTUX

The special case of the operator £ given by
LU=V -(Auy) +cu
is called the formally self adjoint second order elliptic PDE operator.

Theorem 2.1 (Green’s First Identity) Theformally self adjoint operator £
satisfies

[ veuav = [ @AG) -ndS+ [ (—uf A+ cuv) av
Q Q2 Q

where dV denotes the volume element of 2 and ndS denotes the outwardly
directed surface element of 0<2.

Proor. Applyingtheformulafor the divergence of the product of the scalar
field v with the vector field Auy gives

V. AUy = (V) (Aly) + 0V - (Aly)
= vy AUy + v(LU — Cu)

Then apply Gauss sdivergencetheorem, or, inonedimension, theintegration
by partsformula. m

The following two formulas are corollaries of (2.1).
Theorem 2.2 (Energy Formula) The formally self adjoint operator £ sat-
isfies

/ ucu dv :/ (UAUY) - ndS+/(—uIAux+cu2) dv
Q Q2 Q
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Theorem 2.3 (Green’s Second I dentity) The formally self adjoint opera-
tor £ satisfies

/ veu —ucvdV = / (vAuy — UADY) - ndS
Q Q2

The BVP (2.1) is said to be self-adjoint when £ is formally self adjoint
and the boundary condition operator B is such that the right hand side of
Green's second identity vanishes when Bu = Bv = 0.

Theorem 2.4 The following problems are self adjoint.
Dirichlet problem: cu=dinQ,u=honaQ;
Neumann problem: cu=din, (Aux) -n =honaJQ;

Robin problem: cu = d in @, f(X)u + gX)(Auy) - n = h on 92, with
| f(X)| + |g(X)| > 00na3L.

PRrOOF. The Robin problem is the most general of the three, since setting
f =1 and g = 0 givesthe Dirichlet problem, and setting f = 0andg=1
gives the Neumann problem. It thus sufficesto show that the Robin problem
isself adjoint. Let Bu = Bv = 0. At points of the boundary where f £ 0,
u = —2(Auy) - n, and similarly for v, so that

(WA — UAB) 1 = = ([(Au) - NIAL) = (Al - Nl(A) - N =0
At pointswhereg # 0, (Auy) -n = —éu, and similarly for v, so that
g
vAUy — UADK = —?(vu —uv) =0

Thus, theintegrand on theright hand side of Green’s second identity vanishes
at al points of the boundary. m
Another class of self-adjoint BVPsisgivenin Exercise7.
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2.2 Well-Posedness

A problem issaid to be well posed if it has a solution, the solution is unique,
and the solution depends continuously on data such forcing function, bound-
ary values, coefficients, and domain shape. In this section we give some
uniqueness and continuity results using two approaches, the maximum prin-
ciple and the energy formula.

2.2.1 Maximum Principle

Theorem 2.5 (Hopf’sMaximum Principle) Letc <0inQ. If cu > 0in
Q2 then u does not have a positive local maximumin . If cu < 0in €2 then
u does not have a negative local minimumin €.

Proor. A proof can be found for example in [4, p.232]. Here we give
the shorter proof that is possible if we make the stronger assumption ¢ < O.
(A proof for the case where £ is the laplacian operator will be given in
section 2.4.) Let cu > 0in 2, and assume u has a positive local maximum
at some point Xo € Q. Then at that point u > 0, ux = 0, and uxy IS
a negative semidefinite matrix, with non-positive eigenvalues. Since A is
positive definite at Xo, it is congruent to the identity matrix. Let S be a
constant nonsingular matrix such that | = SA(xy)S". Then at x, we have

tr(Auyy) = tr (S_ls_TUxx) =1r (S_T uXXS_1> = Ze'g (S_Tuxxs_l) =0

with the final inequality following from Sylvester’s law of inertia (Theo-
rem 1.1). Finally, sincec < Oandu > Owehave £u < O at Xo € 2, which
contradicts the initial premise. The proof of the second part of the theorem
follows by applying thefirst part to —u. m

The first application of the maximum principle is the following result,
which says that the solution of the Dirichlet problem depends continuously
on the boundary data.

Theorem 2.6 If u isa solution of cu = d with ¢ < 0in © and boundary
condition u = h; on 32 and v solves the same PDE but with v = h, on the
boundary, then maxg |u — v| < max,q |hy — hy|.

Proor. Because of the linearity of the PDE, the difference w := u — v
satisfies cw = 0 in © with boundary condition w = h; — h, on 02, Let
wmax be the maximum achieved by w on the compact set Q. If wma >
max |h; — h;| then w has a positive maximum point at some point X, € 2
But by Theorem 2.5 thisimpliesthat Lw < 0 somewhere in 2. From this
contradiction we conclude wmax < max |h; — hy|. The inequality wmin >
—max |h; — h,| follows analogously. m

Setting h = h; = h, in Theorem 2.6, we obtain the uniqueness theorem:
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Theorem 2.7 The solution of cu = d with ¢ < 0 in  and boundary
condition u = h on 02 isunique.

Example 1
The solution of aDirichlet problem may fail to be uniquewhenc > 0. Con-
sider the homogeneous partial differential equation and boundary conditions

> PDE: =di ff(u(x,y),x,x)+di ff(u(x,y),y,y)+2*u(x,y)=0;
> BC.=[ u(0,y)=0, u(Pi,y)=0, u(x,0)=0, u(x,Pi)=0 ]:

92 92
PDE := (ﬁ u(x, y)) + (8—y2 u(x, y)) +2u(x,y)=0

The function sinx siny isanontrivial solution:

> U =(x,y)->sin(x)*sin(y):
> is(eval (subs(u=U, PDE)));

true

> map(is, eval (subs(u=U, BC)));

[ true, true, true, true]

The following monotonicity result says that a nonnegative (respectively
nonpositive) forcing function gives a nonpositive (resp. nonnegative) solu-
tion.

Theorem 2.8 Ifc <0and cu > Ly in Qwithu = v on 92, thenu < v.

The proof is similar to that of Theorem (2.6).

Example 2
Theorem (2.8) is useful in giving upper or lower bounds on the solution.
Consider the partial differential equation

l-*IXX + uyy —Uu= O
on (0, 1) x (0O, 1) with boundary conditions
u@O,y) =0, u(l,y) =0, ux,0 =x(1—-x), uix,1) =0

Thetria solution v = x(1 — x)(1 — y) satisfies the boundary conditions
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> vi=(X,y)->x*(1-x)*(1-y):
> is(v(0,y)=0) and is(v(1l,y)=0) and is(v(x,0)=x*(1-x))
> and is(v(x,1)=0);

true

and it satisfies the same PDE but with a different forcing function.

> d:=di ff(v,x,x)+diff(v,y,y)-v;
di=-24+2y—x(1—-x)1-Y)

> factor(d);
—X+DX=2)(-1+Yy)

Unfortunately Maple is not able to see that this forcing function is never
larger than the original (zero) forcing function.

‘> i s(d<=0);
FAIL

By looking at the separate factors, however, we can deduce that it is so.

assune( 0<=x, x<=1, 0<=y, y<=1);
> i s(-(x+1)*(x-2)>=0);
true

> is((y-1)<=0);
true

We can therefore concludeusing Theorem 2.8that u(x, y) < x(1—x)(1—y)
on thedomain (0, 1) x (0, 1).

A monotonicity property also holds for boundary data:
Theorem 2.9 Ifc <0and £u = £v in Qwithu < v onad, thenu < v.

Thistoo is useful in bounding solutions (Exercise 3).

2.2.2 Unigueness Theorems based on Energy Formula

The energy formula (Theorem 2.2) for formally self adjoint PDEs gives the
following uniqueness result.

Theorem 2.10 If c < 0, fg > 0, and f is not the zero function, then the
solution of the Robin problemis unique.

ProOF. It sufficesto show that the only solution u of the associated homo-
geneous Robin problem isthe trivial one. Since £u = 0 the energy formula
reducesto

T _ ) 2
/QuXAuXdV _/BQ(UAUX) ndS+/ch av
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Let {I"y, '} be apartition of the boundary 02 with f 2 0onT';andg # 0
onTy OnI'y wehaveu = —%(Aux) - n, so that the first integrand on the
right hand side satisfies

(UAUY) - n = —% [(Auy) -n]* <0

On I'; we have (Auy) - n = —éu, so there also the first integrand is non-
negative:

f
(UAUy) - N = —auz <0
Since ¢ < 0, the second integrand is nonpositive, and we are left with the
inequality
f uyAuxdV < 0
Q
SinceA ispositivedefinite, ux = 0, sou must beaconstant function. Then, at

apoint of the boundary where f # 0, the homogeneous boundary condition
reducesto fu = 0, so this constant must be zero. m

Example 3

The Robin BVP may fail to be unique if fg < 0. The function sinh(x) +
cosh(x) isanontrivial solution of the homogeneous PDE u” — u = 0 with
homogeneous boundary conditionu’ —u = Oat x = O and X = 1, asthe
following Maple results confirm.

> u: =x->si nh(x) +cosh(x):

> is((D(D(u))-u)(x)=0);

true

> is((u-D(u))(0)=0) and is((u-D(u))(1)=0);

true

Asasgpecial case of Theorem 2.10 we have
Theorem 2.11 If ¢ < 0then the solution of the Dirichlet problemisunique.
The Neumann problem has the following uniqueness results.

Theorem 2.12 If ¢ = 0 then any solutions of the Neumann problem differ
by a constant function.

Theorem 2.13 If ¢ < 0 and isnot the zero function, then any solution of the
Neumann problem is unique.

The proofs are similar to that of Theorem 2.10.
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2.3 Green’'sFunctions

A singularity function F (x, X") corresponding to aformally self adjoint op-
erator £ is defined as a solution of the PDE

LFXX)=8x—X) x,X € Q, Xx#X

Here £ operates with respect to x, with x’ treated as a constant parameter.
The Dirac delta s (x — x') is characterised by the property

/Qu(x)(S(x —xX)dV = u(x)

for any smooth test function u.
An alternative characterisation of the singularity functionisthat .F = 0
everywhere except at x = X/, and that

lim FdS = 0

€e—>0J3B,

lim (AF)-ndS = 1
e—>0J3B,
where B, isaball of radiuse centered at x'. For, if uisasmoothtest function,
thefirst limit implies
‘/ F(Auy) - ndS‘ < max |(Auy) - n| x V FdS‘ -0
9B, Be 9B

so that
F(Auy) -ndS— 0

9B
Similarly, the second limit implies

/ u(AFy) -ndS~ u(x/)/ (AFy) - ndS — u(x)
B, B¢

If we denote Q. := Q — B, then Green’s second identity (Theorem 2.3)
gives

/Fcudv ~ / Fcudv
Q Qe
- /Q(F.cu—uﬁF])dV
_ / [F (Auy) — UAF] - ndV
082
= [ _[F(Au — uAFo] -nds
Q2
—/aB[F(AuX)—u(AFX)]-ndS

~ /BQ[F(AUX) — UAFQ] - ndS+ u(x)
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Thisisequivalent to the result obtained by a purely formal application of the
Dirac delta property to Green’s second identity:

/ FeudV —u(x) =f(F.cU—UEF)dV =/ [F(Auy) —u(AFy]-ndS
Q Q Q2

and this equivalence is what justifies the aternative characterisation.

A singularity function F isnot unique, sinceif H(x, x’) solves£H = 0,
then F + H isalso avalid singularity function. In particular, if H solvesthe
BVP

LH =0inQ, BH = —BF ondQ

then the singularity function G := F 4+ H satisfies the boundary value
problem
LGX, X)=686(x—X)inQ, BG=00n9 (2.2

This particular singularity function is called the Green's function for the
BVP (2.1).
Green’'sfunctions for self adjoint problems have the following property.

Theorem 2.14 (Reciprocity Principle) The Green’s function for a self ad-
joint BVP is symmetric, that is, G(x, X') = G(X/, X).

Proor. Lety andy’ befixed, and consider u(x) := G(x,y’) and v(X) :=
G(X,y). Since Bu = 0 and Bv = 0 and the problem is self adjoint, the
boundary termsin Green’s second identity vanish, and we have

0 = /(vﬂu —ucv)dv
Q

= [[000sx—y) - ubx - yp av

= v(y) —u(y)
G,y — G(y,Y)

which is the required symmetry relation. m

Example 4
Consider the Dirichlet boundary value problem

u’(x) =d(x)on(0,1), u(0)=hg, ud) =hy

First we find a singularity function.

> dsol ve(di ff(u(x),x,x)=Dirac(x-y), u(x));
u(x) = —Heaviside(x — y)y + Heaviside(x — y)x + _C1 + _C2x

> F: =unappl y(subs(_C1=0, _C2=0,rhs(")), (x,Y));

F:= (X, y) > —Heaviside(x — y) y + Heaviside(x — y) x
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Next, find the regular part.

> interface(showassumed=0); assume(0<Y,Y<1);
> dsolve({diff(u(x),x,x)=0,u(0)=-F(0,Y),u(1)=-F(1,Y)}
> u(x));

ux) = —1x

> H:=unapply(subs(Y=y,rhs(")),(x,y));

Hi=(x, y) > (14 y)x

Assemble the Green'’s function and verify that it is symmetric, considering
the casex > y andx < y separately.

> G:=unapply(F(x,y)+H(x.y).(x.y));
G = (X, y) > —Heavisidéx — y) y + Heavisidéx — y) X + (=14 y) X
> assume(X>Y); is(G(X,Y)=G(Y,X));
true

> assume(Y>X); is(G(X,Y)=G(Y,X));

true

Plot the Green’s function and see that it is continuous and satisfies the ho-
mogeneous boundary conditions.

> plot3d(G(x,y),x=0..1,y=0..1,style=patchcontour,
>  axes=frame,shading=zgreyscale,orientation=[15,225]);
-0.25¢

-0.2¢
-0.15¢
-0.1¢
-0.05¢

The next theorem shows how Green’s function provides a solution to the
boundary value problem in the form of an integral of the forcing function
and boundary functioh.
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Theorem 2.15 The solution of the Robin problem with Green’s function G
IS

N / h(X) /
ux) = /Qe(x,x)d(x)dv+/F1W(A(x)ex(x,x))-nds
— | G, x’)@ ds
Iz g(x)

where {I"y, I',} is a partition of the boundary 92 with f # 0 on I'; and
g # 0onTI',. Asspecial cases of this, the solution of the Dirichlet problem
IS
u) = [ G x)d00 AV + [ h(x) (AGx(x, X)) -ndS
Q 2

and the solution of the Neumann problemis
u(x) = / G(x, x)dx) dV — f G(x, X)h(x) dS
Q 1Y

PRroor. Substituting the BVP (2.1) solution u(x) and the Green’s function
into Green’s second identity (Theorem 2.3) gives

ux) = /QG(X, xX)d(x) dV—/BQ[G(x, X)Aux —UAGx(x, X)]-ndS (2.3)

OnT'; wehaveu = [h — g(Auy) - n]/f, and the boundary integrand in (2.3)
is

[GAux — UAGy]-n = %[fG(Aux) -n—{h —g(Auy) - n}(AGy) - n]

= %[{fG + 9(AGyx) - n}(Auy) - n — h(AGy) - n]

h
= _?(AGX) -n

where we've used thefact that BG = f G+ g(AGy) -n = 0. OnT", we have
(Auy) - n = (h — fu)/g, and the boundary integrand in (2.3) is

[GAux — UAGx]-n = é [(h— fu)G — gu(AGyx) - n]

= é [hG —u{fG + g(AGy) - n}]
hG

9

Substituting these results into (2.3) gives the required formula. m

Example 4 (continued)
Substitute the Green's function into the solution formula for the Dirichlet
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problem and verify that it satisfies the differential equation and the boundary
conditions.

\

assune( 0<X, X<1, 0<Y, Y<1);
u:=int (G X Y)*d(X), X=0..1)+h[1]*D[1] (Q(1,Y)
-h[0]*D[ 1] (G (0,Y);

VvV Vv

u.=
1
/ (—Heaviside(X — Y)Y + Heaviside(X — Y) X + (Y — 1) X) d(X) dX
0
+hyY — ho (Y — 1)

\Y

is(diff(u,Y,Y)=d(Y));

true
i s(subs(Y=0,u)=h[0]);

true
i s(subs(Y=1, u)=h[1]);

true

If ¢ = 0 the Green’s function for the Neumann problem (and for the
Robin problem with f = 0) isnot uniquely defined. The Neumann function
N(x, X', X") is then used instead. It is defined formally as the solution of
the problem £N(x, X', X") = §(x — X') — §(x — X”) with BN = 0, that is,
the forcing function consists of two equa and opposite impulse functions
applied at the two locations X’ and x”. The Neumann problem solution is
then

ux) —ux”) = /Q N, X', X"Hd(x)dV — /m N(x, X', X")h(x) dS

The solution is given in terms of the difference between the values at two
locations. Thisis because the solution of the Neumann problem withc = 0
isonly defined to within an additive constant (Theorem 2.12).

The Green’ sfunction providesacomplete solution to an elliptic boundary
value problem, in much the same way that an inverse matrix provides a
general solution for systems of linear equations. In later sections we present
the Green’sfunctionsfor afew of the most common PDE problems. Green's
functions for over 500 problems are tabulated in [2].
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2.4 Laplace'sEquation

24.1 Laplacian Operator
The formally self adjoint second order €elliptic operator obtained by setting

A = | iscalled the scalar laplacian operator, or smply the laplacian, and
is denoted
LU= AU = tr(Ux) = > ou
N o SO i 8Xi8Xj

The laplacian operator is often encountered in applications. It is isotropic,
I.e. doesnot depend onthe orientation of the coordinate system (Exercise 10).

The techniques of Chapter 1 could be used to find expressions for the
laplacian in different coordinate systems. However, for orthogonal curvi-
linear coordinate systems (as defined in Exercise 1.2), there are special
techniques for transforming the laplacian, described in Vector Analysis text-
books such as [5]. Maple uses this technique to compute the laplacian in
two and three dimensions. For example, in polar coordinates we have

with(linalg):
| apl aci an(v(r, phi),[r, phi], coords=pol ar);
(i
— V(, ¢)
d 92 d¢p? )
(§ v(r, ¢>) +r <Wv(r, ¢)> + —
r

Maple knows about 15 different orthogonal coordinate systems in two di-
mensions and 31 systems in three dimensions; enter hel p coords for
details.

A function u € C?(R2) that satisfies Laplace's equation

Au=0inQ

is said to be harmonic in 2. The nonhomogeneous PDE associated with
L aplace’s equation is Poisson’s equation

Au=d

2.4.2 Poisson’sIntegral Formula
We start with the following key fact.

Theorem 2.16 A symmetric singularity function for the laplacianis
1
F(x,x) = —log|x — X/|
2
in 2 dimensions and

1
FOCX) = ==X =X
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in 3 dimensions.

ProoF. For convenience we shift X’ to the origin (see Exercise 10). The
threedimensional singularity function candidate can then bewrittenin spher-
ical coordinatesas F = —(4xr)~. Now showthat F hasthethree properties
of the alternative characterisation given on page 38. First, verify that it is
harmonic:

>F = -1/ (4*Pi *r):
> wth(linalg):
> |laplacian(F, [r,phi,theta], coords=spherical);

0

Next, show that lim, .o /,5, F dS = 0O, using thefact that the surface el ement
for the sphereisdS = €?siné d¢ d:

>limt(int(int(Fr*2*sin(theta),theta=0..Pi),
> phi =0..2*Pi ), r=0);

0

Finally, show that [, FndS = 1 (where F, := Fx - n), using the fact that
F,=0dF/or:

>int(int(diff(Fr)*r*"2*sin(theta),theta=0..Pi)
> , phi =0. . 2*Pi ) ;

1

For the two dimensional case the calculations are similar, except that dS =
edo:

>F :=1log(r)/(2*Pi):
> | apl acian(F, [r,phi], coords=polar);

0
> 1inmit(int(F*r,phi=0..2*Pi), r=0);
0

> int(diff(F r)*r, phi=0..2*Pi);

1

and this completes the proof. m

Recall that the Green's function for the Poisson’s equation’s Dirichlet
problemisgivenby G = F + H where H isasolution of

AHX,X)=0 (xe ), HXX)=—-F(X,X) (xe€ o) (2.9)

Solutions of this specia Dirichlet problem for various geometries can be
found in the literature. For example, when @ C R? isadisc with radius R
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and center at the origin, the solution of (2.4) is

HXx, X) = ! lo RiX
X0 =571 ||X|2x" — R2X]|

For a derivation see for example [9, p.204]. Here we just verify that it is
indeed a solution. Substituting |x| = R shows that it satisfies the boundary
condition. The harmonicity is verified as follows.

> with(linalg):

> n: =x->sqrt (dot prod(x, x)):

> x:=vector(2): y:=vector(2):

> H =l og(R*n(x)/ n(eval m(dot prod(x, x)*y-R'2*x)))/ 2/ Pi:
> i s(laplacian(H, x)=0);

true

The corresponding solution for aspherein R® is

1 RIX|

HX X) = ————=—
%, %) 47 ||X|>X" — R2X]|

The calculations to verify harmonicity are similar:

> x:=vector(3): y:=vector(3):
> H =R*n(x)/ n(eval m(dot prod(x, x)*y-R*2*x))/4/Pi :
> i s(laplacian(H, x)=0);

true

Introducing polar coordinates withr := |X|, p := |X|, and y = /(X, X)),
and using the cosine law (ja — b|?> = a? 4+ b®> — 2abcosy), the Green's
function for the Poisson equation Dirichlet problem on the disc in R? can be
written

1 R\/r2+p2—2r,ocos;/
2w

G =—Ilog
\/p2r2+ R* — 2R?rp cosy

On the spherein R3itis

G= 1 2 + X
4 \/rZ—{—pZ—Zr,oCOS)/ \/p2r2—|— R4 — 2R?rp cosy

From Theorem 2.15, the solution of the Dirichlet problem for Laplace’s
equation is given by

ux) = /m h(x)G,(x, X) dS (2.5)

For the ball, Gh(x, X) = dG/ar. Intwo dimensionsthisis
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> G =(log(Rsqrt((r”2+rho”2-2*r*rho*cos(ganmm))/
> (rhon2*r"2+RM4-2* R 2*r *rho*cos(gamm) ) ) )/ 2/ Pi :
> radsi mp(subs(r=R diff(Gr)));

1 —R2+,02
2 R(—R2—p2+2Rpcos(y))

Using thisresult and the polar coordinate formulas cosy = cos(¢’ — ¢) and
dS = Rdg, (2.5) can be written

1 2 RZ_pZ
up, ¢’) = —
(0. ¢) 271/0 R2 4 p2 — 2Rp cosy

h(¢)d¢

Thisis called Poisson’sintegral formula.
In three dimensions 9G/ar is

> G =(-1/sqrt(r”2+rho”2-2*r*rho*cos(ganmm))
> +R/sqrt (rhot2*r"2+RN4- 2* R 2*r *r ho*cos(gamma) ) )/ 4/ Pi :
> radsi np(subs(r=R diff(Gr)));

1 | (—R2+ p?)
4 R(—=R2—p24+2Rpcos(y))®2m

Substituting this result and the formuladS = R?siné d¢ dd into (2.5) gives
Poisson’sintegral formulafor the ball in three dimensions as
R T p2r R2 — ,02
up,0',¢) =— f /
(0.0 9) 4 Jo Jo (R24 p2 — 2Rpcosy)3/?

h(®, ¢) sin@ d¢ do

where cosy = cos6’ cosf + sind’ sinf cos(¢p’ — ¢).

2.4.3 Mean Value Property and Maximum Principle

Substituting p = Ointo Poisson’sintegral formulain two or threedimensions
gives

Theorem 2.17 (Mean Value Property) Ifuisharmonicin 2 thenitsvalue
at a point X' is equal to its average over the surface of any ball B C @
centred at X/, that is,

N o 1 /
u(x)_wfaBu(x—x)dS

The mean value property of harmonic functions is used to prove the
following alternative to Theorem 2.5.

Theorem 2.18 (Maximum Principle for thelaplacian) Ifuisharmonicin
Q and continuous in_Q and if u attains its maximum or its minimum in
then u isconstant in 2.
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Figure 2.1: Diagram for Proof of Maximum Principle.

PrOOF. Suppose u attains its maximum M := maxg U at apoint X € 2.
We wish to show that at any other point X, € 2 we must have u(x,) = M.
Let the curve I' C 2 connect Xo and Xn,,, and choose the finite set of points
X1, X2, . .. Xm_1 ON I" to be centers of balls contained €2, and arranged so that
the point x;, lies on the surface 0 B; of the ball B; centred at the previous
point X;. The values on 3By are all less than or equal to M. But, by the
mean value property (Theorem 2.17) u(Xo) must be equal to the average of
the values on the ball’s surface, and so the surface values must all be equal to
M. In particular, u(x;) = M. With similar argumentswe obtain u(xj) = M
fori =2,3,...m(Figure2.1). The proof for the minimum issimilar. m

From Theorem 2.18 we can obtain the results of section 2.2.1 on con-
tinuous dependence on boundary data and monotonicity of solutions of the
Dirichlet problem.

2.4.4 Existenceof Solution

Thischapter hasgiven several uniquenessresults but hasnot yet said anything
about the existence of the solution. We close the chapter with afew words
about this.

The Dirichlet problem canin fact fail to have asolution if there are sharp
enough “spikes’ that penetrate into the domain 2. In the absence of such
spikes, however, a solution will exist; see [9, p.198] for details. Domains
encountered in applications are unlikely to cause trouble in this regard.

An dternative is to replace the PDE by an integral formulation of the
boundary value problem that doesn’t require so much smoothness in the
solution. Such variational or weak formulations are the starting point for the
theory of numerical methods such as the Finite Element Method.
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2.5 Eigenvaluesand Eigenfunctions

2.5.1 Eigenvaluesof Self-Adjoint BVP

In this section it is convenient to use some of the notation of linear vector
space theory. Recall that a scalar product of two complex functionson €2 is

(u, v) ::/Qu(x)z')(x) dv

where v means the complex conjugate. This scalar product has the standard
scalar product properties, namely, it is

conjugate symmetric: (u, v) = (v, u)
linear in first argument: (au + Bw, v) = a(u, v) + B{w, v)
positive definite: (u, u) > 0 whenever u isnot the zero function.

The norm associated with the scalar product is denoted |ju|| := +/(u, u).
The eigenvalue problem associated with the BVP (2.1) is

Lo+ rp=0inQ, Bp=00n0dQ (2.6)

If thishomogeneous problem admitsanontrivial solution ¢ for someconstant
A, then ¢ is called an eigenfunction and 1 is the associated eigenvalue.

Theorem 2.19 The eigenvalues of a self adjoint BVP are real.

Proor. If A is an eigenvalue and ¢ an associated eigenfunction, then
the complex conjugate A is an eigenvalue with eigenfunction ¢, since the
coefficients of (2.6) are real valued. Thus from Green’'s second identity for
self adjoint BVPswe have

0 = [ (@Lo—opchav
Q - -

(=, §) — (=2, @)
I A

and since ||¢||> > 0, we have > = A, so the eigenvalues are real. m

Theorem 2.20 The eigenfunctions of a self-adjoint BVP are real and or-
thogonal on 2.

PrOOF. Any real eigenvalue A of problem (2.6) has a real eigenfunction,
because if ¢ is an eigenfunction with nontrivial imaginary part (¢ — ¢)/2,
then this imaginary part can be taken as an eigenfunction. For any two
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eigenvalues 1, and A, with associated rea eigenfunctions ¢, and ¢,, we
have

0 = /Q ($aLepr — p1Lps) AV
<¢2’ £¢l> - <¢1’ ‘C¢2>
= (¢2, —A101) — (@1, —A2¢2)
= (1 — 22 (b1 b2

and if theeigenvalues aredistinct then (¢4, ¢») = 0, whichisthe orthogonal-
ity relation. If an eigenvalue has severa linearly independent eigenfunctions
then Gram-Schmidt orthogonalisation (described in linear algebratexts) can
be applied to yield amutually orthogonal set. m

If A isan eigenvalue of aself adjoint BVP with real eigenfunction ¢, the
energy formulagivesthefollowing formulaknown asthe Rayleigh quotient:

- e

Using the Rayleigh quotient, the following results can be obtained.

A

Theorem 2.21 Ifc < 0, fg > 0, and f isnot the zero function, the eigen-
values of the Robin problem are all positive. In particular, the eigenvalues
of the Dirichlet problemwith ¢ < 0 are positive.

Theorem 2.22 If ¢ = 0 then 0 is the smallest eigenvalue of the Neumann
problem; a corresponding eigenfunction is the constant function ¢ = 1.

Theorem 2.23 If cis not the zero function and ¢ < 0, then the eigenvalues
of the Neumann problem are positive.

Example 5

The eigenvalue problem corresponding to the one-dimensional BV P of Ex-
ample4is¢” +i¢ = 0. Letting u? := A, wesolvethis differential equation
to get

> dsol ve(di ff(phi(x),x,x)+mu”2*phi (x) =0, phi (x)):
> phi: =unappl y(rhs("), x);

¢ =X — _Clcos(ux) + _C2sin(u X)

The homogeneous boundary conditions give a homogeneous linear system
of equations in the parameters _C1 and _C2. The condition for this system
to have a nontrivial solution is that the coefficient matrix be singular, that
IS, that it have zero determinant. This condition is called the characteristic
equation.
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\

BC: =[ phi (0) =0, phi (1)=0];

BC:=[_C1=0, .Clcos(u) + _C2sin() = Q]

\Y

wi th(linalg):
Ccoef:=genmatri x(BC, [ _Cl, C2]);

. 1 0
Cooef .= [ cos(i) Sin(i) }

\Y

> Char Egn: =det ( Ccoef ) =0;

CharEgn :=sin(u) =0

The roots of the characteristic equation are u = j with integer j. Tofind
the corresponding eigenfunctions, we use the null space of the boundary
condition’s linear system’s coefficient matrix.

> assune(j,integer): interface(showassuned=0);
> map(xi ->si nplify(subs(mnmu=j *Pi, xi)), Ccoef);

1 0
-1l o

NN := {[0, 1]}

> NN: =nul | space(");

> subs(_CL=NN[ 1] [ 1], _C2=NN[ 1] [ 2], mu=j *Pi , phi (x));

sin(j  X)

This is a nontrivial solution for nonzero values of j. The eigenvalues and
eigenfunctions are therefore

> | anbda: =j - >j "2*Pi 22;
Ai=]— j27t2

> phi:=(j,x)->sin(j*Pi*x);

¢ = (j, X) > sin(j 7 X)

Verify the orthogonality of the eigenfunctions.

> assune(J,integer, K, integer);
> int(phi(J,x)*phi(K x),x=0..1);

0
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Verify Rayleigh’s quotient formula.

> is(lanmbda(j)=int((diff(phi(j,x),x))"2,x=0..1)/
> int(phi(j,x)"2,x=0..1));

true

2.5.2 Spectral Representation of Green’s Function

In more advanced texts (e.g. [4, chap.11]) it is shown that the set of eigen-
values for the eigenvalue problem (2.6) is countably infinite and unbounded
above, that is, the eigenvalues form areal sequence {A;} withlim;_, . A; =
oo. Itisalso shown that the set of corresponding eigenfunctions {¢;} is a
complete basis for square-integrable functions on 2. This means that any
such function u can be expanded into the eigenfunction series (or spectral)
representation
w0 =3 W0 6
iz ol

A spectral representation of the Green’s function for the boundary value

problem (2.1) would then have the form

G(x,x) =) ¥j(x)$j(X) 2.7
J
where G X Y
X, X)) (X
60) 1= 222000 28)
J

An alternative formula for the v is found by substituting (2.7) into (2.2),
which gives

Sx—x) = Zl/fj(x/)ﬁﬁj(x)
i
= _ZWj(X/))\jd)j(X)
i

Taking the scalar product of both sideswith ¢; gives

[8x=x)600av = =3 ;002 [ 600600V
$i(X) = =3 YA lg;ll°
J
= =¥l |?

Then in place of (2.8) we have

oi

Vi= e
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and substituting this into the Green’s function series representation (2.7)
gives

¢ (XD (X)
GxX,x)=—-) —r— = (2.9)
Xj: Aillill?
It is evident from this spectral representation that the Green’s function is
symmetric (recall Theorem 2.14). Also, the representation is not valid for
Neumann problems with = 0, which have a zero eigenvalue (and don’t
have a Green'’s function, as discussed on page 42).

Example 5 (continued)
The Green’s function for this example is assembled from the eigenvalues and
eigenfunctions as follows.

/>Gterm:=unapply(—phi(j,x)*phi(j,y)/lambda(j)
> /int(phi(j,x)"*2,x=0..1),(j,x,y)):
> G:=Sum(Gterm(j,x,y),j=1..infinity);

—— sin(j o X) sin(j w y)
Gi=) (—2 )

—~ 272

N
To plot it, use a finite number of terms of the series. The resulting plot
resembles the one from Example 4 (page 40).

> Gapprox:=subs(infinity=6,G):
> plot3d(Gapprox,x=0..1,y=0..1,style=patchcontour,
> axes=frame,shading=zgreyscale,orientation=[15,225]);

-0.27
-0.15¢
-0.17
-0.05¢

\
The solution of the BVP is given by the Green'’s function solution formula
(Theorem 2.15) as
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>u: =Sum(sinmplify(int(&Gern(j, x,y)*d(x), x=0..1)

> +h[0]*D{2](Germ(j,0,y)-h[1]*Of2](Germ(j,1,y)),
> j=1l..infinity);

1 .
sin(j Ty) (f sin(j T x)d(x)dx +hg j7 —hy(=1)! j n)
0
u:.= -2 -
o 272

25.3 Separation of Variables

When the operator in the eigenvalue problem (2.6) is the laplacian £ = A
in one of the standard orthogonal coordinate systems, and the domain €2 is
suitably shaped, then the method of separation of variables can often be
used. The following example demonstrates this technique.

Example 6

Consider the Poisson equation on aunit disk. The corresponding eigenvalue
problem is

> with(linalg):
> EVP: =l apl aci an(phi (r,theta),[r,theta], coords=pol ar)
> +mu”2*phi (r, t het a) =0;
82
9 92 W(I)(r’ 0)
(5 00.0)+r (m o, 9)) P
EVP:= : +u?g(r, 6) =0

Assume that the sol ution can be written asthe product of two univariate func-
tions, and rearrange to isolate the functions one each side of the equation.

> phi:=(r,theta)->R(r)*Theta(theta):
> expand( EVP) ;

r r?

82
(% R(r)) OO) /2 R(r) (W ®(9)>
+<W R(r)) O0)+ +u?R(I) ©@®) =0

> readlib(isolate):
> jsol at e(expand(| hs(EVP) *r"2/ R(r)/ Theta(theta))=0,r);

r (iR(r))Jrr a—ZR(r) +r u?R(r) 9°
ar ar2 " B 592 9@

R(r) 00)
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Since the LHS (a function of r only) is equal to the RHS (a function of 6
only), both sides are equal to a constant, call it o2. This gives two ODES:

> Sep: =":

> ODE[1]: =l hs(Sep)*R(r)=si gma"2*R(r);

> ODE[ 2] : =rhs(Sep) *Thet a(t het a) =si gma"2*Thet a(t het a) ;
2

ODE; i=r <<5ir R(r)) +r (8— R(r)) +r p? R(r)) = o?R(r)

ar?

32
ODE; := — (W @(9)) =020()

The second ODE is a univariate eigenvalue problem similar to Example 5.
Solving it gives

> dsol ve( ODE[ 2], Theta(theta)):
> Thet a: =unappl y(rhs("), theta);

® =0 — _Clcos(c ) + _C2sin(c 0)

Since the PDE is on adisc the boundary conditions are periodic. These give
the characteristic equation:

\Y

BC. =[ Thet a(0) =Thet a(2*Pi ),
D( Theta) (0)=D( Theta) (2*Pi )] :
Ccoef:=genmatri x(BC, [ _Cl, C2]);

VvV Vv

.| 1—cos(20 ) —sin(2o )
Ccoef'_|: snon)o a—cos(20n)ai|

> Char Egn: =si npl i fy(det ( Ccoef)) =0;

CharEgn := 20 — 2cos(2o t)o =0

The characteristic equation has solution o = j withinteger j, asthefollow-
ing calculation confirms:

> assune(j,integer): i nt erface(showassunmed=0);
> is(sinmplify(subs(signma=j, CharEqn)));

true

The eigenfunctions are found from the null space of the coefficient matrix.

> map(xi->sinplify(subs(sigma=j,xi)), Ccoef);

55]




Section 2.5, Eigenvalues and Eigenfunctions 55

> NN: =nul | space(");

NN := {[1, Q], [0, 1]}

Each positive eigenval ue thus hastwo eigenfunctions, call them Ty(j, #) and
TZ(J ) 9)

> T[ 1] : =unappl y(subs(_C1=NN[ 1][ 1], _C2=NN[ 1] 2],
> sigma=j, Theta(theta)), (j,theta));

Ty :=(j, 6) — cos(j 0)

> T[ 2] : =unappl y(subs(_C1=NN 2] [1], _C2=NN[2][ 2],
> sigma=j, Theta(theta)), (j,theta));

T2:= (], 6) > sin(j 0)

Gram-Schmidt orthogonalisation is not needed here since the eigenfunctions
are already orthogonal, as the following calculations verify:

\%

assume(j,integer, k,integer);
is(int(T[1](j,theta)*T[2](k,theta),theta=0..2*Pi)=0);

\%

true

\

assune(j,integer,k,integer,k <>j);
is(int(T[1](j,theta)*T[ 1] (k,theta),theta=0..2*Pi)=0);

\%

true

\%

is(int(T[2](j,theta)*T[2](k, theta),theta=0..2*Pi)=0):

true

Substituting o = j into the first ODE and solving gives

> dsol ve(subs(si gma=j, 0DE[1]), R(r));

R(r) = _C1BesselJ(j, ur) + _C2BessalY (), ur)

The Bessel function Y; isunbounded at r = 0, so _C2 = 0. The boundary
condition R(1) = 0O gives the characteristic equation J;j(x) = 0. The root
u = 0 givesatrivia solution, so only positive roots are chosen. Denoting
the kth positiveroot as i.( j, k), the eigenfunctions for the disk problem are

> phi[1]:=unappl y(Bessel J(j, mu(j,k)*r)*T[1] (j,theta),
> (j,k,r,theta));

¢1:= (], k, r, 8) - BesselJ(j, u(j, K)yr)cos(j6)
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> phi[2]:=unappl y(Bessel J(j,mu(j,k)*r)*T[2](]j,theta),
> (j,k,r,theta));

¢2:=(J. k. 1, 6) - Besseld(j, u(j, k)r)sin(j 6)

To evaluate these functions, we need to find the zeros of the Bessel function
J;j. The following Maple procedure uses the fact that the roots of Bessel
functionsinterlace according to zj_1 x < Zj k < Zj_1k4+1 (Where z; s denotes
the kth positive zero of J;) to define the interval where f sol ve searches
for the root. Initial estimates for the roots of Jy are provided by formulas
from[1, Egqn 9.5.2].

> mu: =proc(j, k)

> local b, guess;

> option renenber;
> if type(j,nonnegint) and type(k, posint) then
> if j>0 then

> fsolve(Bessel J(j,_2), _Z mu(j-1,Kk)..nmu(j-1, k+1))
> el se

> b: =(8*k-2)*Pi:
> guess: =b/ 8+( 1+(-4*31/ 3+32*3779/ 15/ b~2)/ b"2)/ b:

> fsol ve(Bessel J(0, _2Z), Z, guess-1/100. . guess+1/100)
> fi:

> else 'mu' (j,K):

> fi:

> end:

Let’splot acouple of eigenfunctions.
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V V.V V V V

readlib(addcoords)(z_cyl,[z,r,theta],[r*cos(theta),
r*sin(theta),z]):
J:=0: K:=3: Mode:=1:
plot3d(phi[Mode](J,K,r,theta),r=0..1,theta=0..2*Pi,
style=patchcontour,shading=zgreyscale,
coords=z_cyl,axes=frame,orientation=[-50,37]);

/>
>

>
>

J:=3: K:=2: Mode:=1:

plot3d(phi[Mode](J,K,r,theta),r=0..1,theta=0..2*Pi,
style=patchcontour,shading=zgreyscale,
coords=z_cyl,axes=frame,orientation=[-50,37]);
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Exercises

1

10.

Verify that for any value of «, the function u(x, y) = a€* siny solves
the Dirichlet problem for uyy 4 uyy = 0 in the domain (—oo, oo) x
(0, ) with boundary conditionsu(x, 0) = u(x, w) = 0. Why isthis
not a counterexample to the unigueness theorem?

Verify that the function € sin(msr x) sSin(msry)/ sinm with integer m
is a solution to the Dirichlet problem for uy, — uy, = 0 in the do-
main (0, 1) x (0, 1/) with boundary conditionsu(x, 0) = u(0, y) =
ul,y) = 0,u(x,1/m) = esin(mrx). Show that this solution does
not depend continuously on the boundary data (hint: consider the
points (5=, ) for m > 2); why is this not a counterexample to The-
orem 2.6?

Prove Theorems2.8and 2.9. Use Theorem 2.9to show that the solution
u(x, y) of Example 2 is non-negative.

Show that the solution of uyx + Uyy = Xy(X — m)(y — ) on Q =
(0, ) x (0, ) V\_/ith u = 0 on 92 satisfies the inequality u(x, y) <
%zsinxsiny on Q.

Show that the ordinary differential equation
a(x)u”(x) + b(x)u’(x) + c(x)u(x) = d(x)

with a > 0 can be made formally self adjoint by multiplying through
with a suitable smooth strictly positive function.

Show that the boundary data for the Neumann problem withc = 0
has to satisfy the condition f;, hdS= [, ddV.

Show that theBVP Au = d on (0, r) x (0O, 7r) with periodic boundary
conditions

UX,0) =uX, m) uy(X,0) =uy(X,7r) (0O0<x<m)
u@,y) =u@m, y) uy(0,y) =uy(r,y) O=y=n)
isself adjoint.
Prove Theorems 2.12 and 2.13.

Repeat Example 4 with the boundary value problem
u'(xX) =d(x) (0O<x <1, u =hy u@ =hy

A rotation of the coordinate system corresponds to a change of vari-
ables of the form x = Cy, where C is a constant orthogonal matrix.
Show that the laplacian operator is unchanged by a coordinate system
rotation. A trandation of the origin corresponds to a change of vari-
ables of the form x = y + a where a is a constant vector. Show that
the laplacian operator is unchanged by atranslation of the origin.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Compute the laplacian in paraboloidal coordinates

. 1
X1 = Y1Y2C0SY3, X2 = Y1Y2SINYy3, X3 = E(yf — ¥

using thetechniquesof chapter 1, and verify your answer usingMaple’'s
| apl aci an command.

Verify that the integrands in Poisson’s integral formulas for the disc
and the sphere are harmonic.

Verify that the regular part of the Green’s function for the Poisson’s
equation Dirichlet problem on the half space 2 = {(Xq, X2, X3), X3 >
0} isgiven by

1 1
H(X)=—
4 \/(Xl — X% + (X2 — Xp)% + (X3 + X3)?

and derive Poisson’s integral formulafor this problem.

Show that if u isharmonic in 2 then itsvalue at a point X’ is equal to
its average over the volume of any ball Bgr C 2 centred at X/, that is,

/ 1 /
uix) = —/ ux —xHdv
|Br| /Br
Show that if u € C?(2) hasthemean value property thenitisharmonic
in Q.
Show that the function u := (X, y) — Xy(x? — y? + 2) is harmonic
in R%. Usethisfact to find max;g 1jx[0.1) U
Solve the boundary value problem
u’(x) =sin(x), u@ =u@) =0

using the Green's function from Example 4 and using the Green's
function from Example 5.

Repeat Example 5 with the boundary value problem
uU'X) =d(x) 0<x<1), u@ =hg u@d)=h
and compare with the answer from Exercise 9.

Let u be the solution of Poisson’s equation on a disk with homoge-
neous Dirichlet boundary conditionsand forcing functiond = 1. Find
the value of u at the centre of the disk in two ways: first, using the
formulafor Green’s function in section 2.4.2, and secondly, using the
eigenfunctions in Example 6.

Find the Green’s function for the Laplace equation Dirichlet problem
on the square (0, @) x (0, B).
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Chapter 3
Parabolic PDEs

3.1 [Initial-Boundary Value Problem

3.1.1 General Concepts

In thischapter we consider thelinear nonisotropic diffusion-convection equa-
tion problem given by

Lu—u = dx,t) inQ x (0, 00)
BUu = h(x,t) ondQ x [0, o0) (3.1
ux,0) = k(x) (xeQ)

Thenotationisasin chapter 2, except that now u and the PDE coefficientsare
functions of both position x and time t. The diffusion-convection problem
involves both boundary conditions and initial values. We are interested in
the evolution of the solution as time moves forward fromt = 0 into the
future (Figure 3.1).

At

% Lu—u=d %
= =
e Na
a u(x,0)=k(x) b X

Figure 3.1: Domain for the diffusion-convection problem in one spatial
dimension.

The PDE of the diffusion-convection problem is a linear second order
equation. The PDE’s principal part’s coefficient matrix issingular, since the
rows and columns corresponding to the variable t are zero. The diffusion-
convection problem’s PDE is therefore parabolic.

61
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The elliptic BV P considered in chapter 2 can often be interpreted as the
limiting case of a diffusion-convection problem that has settled down into
a steady state, where u; = 0. It is therefore not so surprising that many
of the techniques for studying the diffusion-convection problem build on
the results for the éliptic BVP. In the remainder of this section we use the
maximum principle and the energy formula to derive results on uniqueness
and continuous dependence on data.

3.1.2 Maximum Principle

Hereisa Maximum Principle for the diffusion-convection problem.

Theorem 3.1 Let Lu — uy < 0 (respectively > 0) withc < 0inQ x (0, 00),
and let T > 0. If u has a negative minimum (resp. positive maximum) in
Q x [0, T] then this value is achieved at the initial time or on the boundary
(and possibly elsewhere as well).

Proor. Thefollowingvaluesarewell defined, being minimaof continuous
functions on compact sets:

Mm:= min U, M := mnu, my:= min
x[0,T] < {0} a0x[0,T]
We assume that the negative minimum m < 0 is not achieved at the initial
time nor on the boundary, so that m < min{my, m,} =: ms, and show that
this leads to a contradiction. Introduce the auxiliary function v defined by
the formula

v(X, ) =uX, ) +at —T) (xeQ, te[0,T]

where « is a positive constant that is small enough that m < m; — T and
m-+aT < O; forinstancethevaluea = % min{mz —m, —m} will do. Since
v<uonQx [0, T], wehavem' := ming, o1 v < M. Wealso havethe
inequalities

v=Uu—aT>m —aT >mz—aT onQ x {0}

and
v>U—aT >my—aT >mzg—aT ond2 x [0, T]

so that ms — «T isalower bound on values of v at the initial time and on
the boundary. At apoint xo € 2 andtimety € (0, T] where u achievesits
minimum, we have

v=m+altg—T) <m<mz—aT

and so v cannot achieve its minimum at the initial time nor on the boundary.
Atapoint x; € Q andtimet; € (0, T] where v does achieve its minimum,
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vxx IS positive semidefinite (so that tr(Avkx) > 0), vx = 0, and we have

U > Lu

tr(Auyy) + b uy + cu

tr(Avgx) +bTvx + c(v — a(ty — T))
tr(Avgx) +c(m — a(ty — T))

c(m +aT)

cim+«aT)

0

vV IV 1V

which in turn impliesv; = u; + o > 0, so that v is strictly increasing at the
point X; and timet; whereit is supposed to achieve itsminimum value. This
contradiction proves the first part of the theorem. The proof of the second
part of the theorem (i.e. the “respectively” part) follows by applying the first
partto —u.m

Theabove Maximum Principle can be used to show that the solution of the
diffusion-convection problem with Dirichlet boundary conditions depends
continuously on the boundary and initial data.

Theorem 3.2 Lete > 0,andletc < 0in 2 x (0, 00). If uisa solution
of Lu—u; =dinQ x (0, co) with boundary condition u = h; on 02 and
initial condition u = k; att = 0, and v solves the same PDE with v = h,
ondQ andv = ky, att = 0, with max; |hy — hy| < e for all t > 0 and
ki —ko| <eforall x e Q,then|u—v| <einQ x (0, 00).

Proor. Because of the linearity of the PDE, the difference w := u — v
satisfies Lw — wy = 0in Q x (0, co) with boundary condition w = h; —
h, on 92 and initial condition w = k; — ko att = 0. Assume that at
some point Xg € 2 and sometime T > 0 we have w(Xg, T) > €. Since
MaXg, o1 W > w(Xo, T) > € > 0, this positive maximum is not achieved
on the boundary (where |w| = |hy — hy| < €) nor at theinitial time (where
lw| = |ky — ko] < €). This contradicts Theorem 3.1, so we discharge
the assumption and conclude that w < € everywhere in Q x (0, o0). The
inequality w > —e follows analogously. m

Setting h = h; = hy, and k = k; = k; in Theorem 3.2, gives the
unigueness theorem:

Theorem 3.3 The solution of the diffusion-convection problem (3.1) with
¢ < 0 and Dirichlet boundary conditionsis unique.

The monotonicity properties corresponding to Theorems 2.8-2.9 are
summarised in

Theorem34 If cu—u < cv—viandc < 0inQ x (0, 00), withu > v
on the boundary 92 and at theinitial timet = O, thenu > v in Q x (0, co).
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The proof is similar to that of Theorem 3.2.

Example 1
This example uses the monotonicity property to derive a bound on the solu-
tion. Consider the one dimensional diffusion-convection problem

alX,tHuyy — Uy =sintx O<x<1, 0<t)
with boundary and initial conditions
u@,t) =ul,t) =0 (t>=0); ux,0=00=<x=<1

We show that if 0< a < 1then the solution can be bounded by the inequality
u < v, where

> vi=(x,t)->(exp(-Pi"2*t)-1)*sin(Pi*x)/(Pi"2);

(e‘”2t — 1) sin( X)

vi=(Xt) — 5

g

> plot3d(v(x,t),x=0..1,t=0..1/2,axes=frame,style=
> patch,shading=zgreyscale,orientation=[15,215]);

The functiorw is the solution of the diffusion-convection problem watk= 1,
as the following calculations verify:

(> is(diff(v(x,8) %, x)-diff(v(x, 1) O=sin(Pi*X)):
true

> map(is, [ v(0,t)=0, v(1,t)=0, v(x,0)=0]);

[true, true, trué
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If u satisfies the original problem then w := u — v satisfies
aX, Dwyxx — wy = (1 — a(X, t)) vxx

with the same boundary and initial conditions. But vy, > 0, as can be
verified:

> assune( 0<=x, x<=1, t >=0) ;

> is(diff(v(x,t),x,x)>=0);

true

The bound on the solution then follows from Theorem 3.4.
|

3.1.3 Uniqueness Resultsusing the Energy Formula

We now restrict our attention to initial-boundary value problems (3.1) that
are self-adjoint. This means that the elliptic operator is the formally self
adjoint operator

L£:=V - (Auy) + cu

and theboundary condition operator annihilatestheright hand sideof Green's
Second Identity (Theorem 2.3), that is,

BU=0Bv=0 = /v,cu—ucvdV:O t>0)
Q

Physically, this correspondsto aheat equation or adiffusion problem without
convection.

TheDirichlet, Neumann, and Robin boundary conditionsare now defined
with the coefficients f, g, h considered to be functions of time t as well
as position x. These are self adjoint initial-boundary problems, since the
proof of Theorem 2.4 goes through without changes. We have the following
uniqueness result.

Theorem 3.5 If ¢ < Othenthesolution of the diffusion problemwith Dirich-
let, Neumann, or Robin boundary conditions (with fg > 0) isunique.

PrOOF. It sufficesto consider the Robin boundary condition; the Dirichlet
and Neumann conditions are special cases. We show that the only solution
u of the associated homogeneous problem (inwhichd = 0,h = 0,k = 0)
isthe trivial one. The Energy Formula (Theorem 2.2) for u gives

0= / u(cu —uy) dv = / (UAUy) - N dS+/ (—uy Auy + cu? — uuy) dV
Q a2 Q
(3.2
Partitioning the boundary into digoint sets02 = I'y UT, with f #0onT;
and g # 0 on I',, and introducing the energy integral

_1 2
E(t) '_2/Qu dv
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equation (3.2) can be written

Et) = /Quut dv

_ [ =9 e -t T 2

_ /r 2lAuo - n dS+/r2 S dS+/Q( uT Auy + cu?) dV
Now E(0) = 0, E(t) > 0 (t > 0) and E(t) < O (t > 0) together imply that
E() =0 (t > 0). Thisforcesu to bethetrivial solution. m

Notice how the diffusion problem with Neumann boundary conditions
does not need to be treated separately like the Neumann boundary value
problem, whose solution was only unique up to an additive constant.
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3.2 Solution Techniques

3.21 System Concepts

The diffusion problem can be treated as a dynamical system with state u,
inputsd and h, and initial statek. The systemis

causal: inputs {d(x,t), h(x,t)} in the “future’ t > t’ do not affect the
solution u(x, t’) (Exercise 4);

infinite-dimensional: the state space is C(2) N C3();

linear: if inputs {d;, h;} and initial state k; give solution u;, while in-
puts {d, h,} and initial state k, give solution u,, then inputs {«d; +
Bd,, ah1+Bh,} andinitial stateak; + Sk, will givesolution ou; + Sus.

If the PDE operator £ and boundary operator 3 areindependent of timet,
thenthe systemistimeinvariant, and the shape of the solution isindependent
of ashift of the origin of thetime axis. To make this statement more explicit,
let H represent the Heaviside unit step function, and let D, represent theideal
delay operator

D UX, ) =uX,t —t)Ht —7) (t >0

for any fixed T > 0O (see Figure 3.2). Timeinvariance then meansthat if u is
the solution of the diffusion problem (3.1) then v := D, u isthe solution of
the same problem with time origin trandated to t:

Lv—v = D d IinQ x (1,00)
Bv = D.h 0no x [1,00)
v(X, 7)) = k(X) (XeQ)

v

Figure 3.2: The delay operator D, .
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3.2.2 Duhameél’sPrinciple

Duhamel’s Principle is a name given to a variety of formulas that represent
the solution of alinear time invariant system as a superposition of solutions
of simple test problems.

One such result is the following, in which the response of the system to
aconstant “step” input is used to calcul ate the response to any time varying
input.

Theorem 3.6 The solution of thediffusion problem(3.1) with timeinvariant
operators £, B is given by

a t
u(x, t) = ﬁ/o v, t — 7, 7) dr

where, for every fixed © > 0, v(x, t, 7) is the solution of the problem with
constant inputs

(- &)vext,1) = Hbdx, 1) (xeQ,t>0)
Bu(x,t,7) = HM®hX 1) (X3, t>0)
v(X,0,7) = k(X) X e Q)

ProOF. First, verify that the proposed formulafor the solution satisfies the
initial condition.

> diff(int(v(x, t-tau tau),tau=0. .t),t);
/OtDz(v)(x,t — 7, 1)dt + v(x, 0,1)
> subs(v(x,0,t)=k(x),");
fot Da(v)(%, t — 7, )d + k(X)

> u: =unapply(",x,t):
> is(u(x,0)=k(x));

true

Next, verify that the formula satisfies the boundary condition.
0 t
Bu(x,t) = 5/0 Buv(X,t — 7, 7)dr
0 t
- ﬁfo H(t — 1)h(r) dr

- /(;(S(t—r)h(r)dr
— h)

Finally, verify that the formula satisfies the PDE.

a t
LUKt = ﬁ/Ocu(x,t—r, ) dr
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0 t
= ﬁfo[H(t—r)d(x,t)Jrvt(X,t—f, T)]de

= /ot St —)d(x, T)dr + %[u(x, t) — k(x)]
= dx,t) +u(x,t)

This concludes the proof. m

The proof of Theorem 3.6 did not use any special properties of the dif-
fusion equation other than its properties as a causal linear time invariant
system. Therefore, formulas analogous to Theorem 3.6 hold for any such
system. For instance, in Chapter 4 we'll give Duhamel Principles for the
wave eguation.

The step response v needed in the Duhamel Principle could be found by
any method, or could even be measured data from a physical experiment.
No matter how it is obtained, once the step response is known, the response
for arbitrary input can be derived. This is demonstrated in the following
example.

Example 2

Consider the one dimensional heat equation v, — vy = 0 with boundary
conditions v(0, t) = 0, v(1, t) = hy(r) and zero initial conditions. The
following step response is derived later in Example 4 (see also Exercise 7):

\%

vterm =unappl y((2/ Pi/n)*(-1)*n*exp(-n"2*Pi "2*t)
> *sin(n*Pi *x), (n, x,t));

(=DM " 7’0 gin(n 7 x)
Tn

vterm:=(n, X, t) — 2

\%

v: =unappl y((x+Sum(vterm(n, x,t),n=1..infi nity))
*h[1] (tau), (x,t,tau));

00 _1\n (—n272t) o
vi= (Xt 1) —> <x+ (Z (2( Ve Sn(nnx)») ha(z)

=1 Tn

\

Verify that it satisfies the PDE and the boundary conditions.

> is(diff(v(x,t,tau),x,x)-diff(v(x,t,tau),t)=0);
true

> assune(n,integer); interface(showassunmed=0);
> is(value(v(1l,t,tau)=h[1](tau)));

true
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> is(val ue(v(0,t,tau))=0);
true

When we try to verify that it satisfies theinitial condition, we get

> k:=v(x,0,tau);

. (=D"sin(nx X)

n
k:= |x+ 202 - hi(7)

This cancels to zero when we use the formula

x=3 2 /Olssin(nn.f;)dSSin(nn X)
n=1

for the Fourier sine series of X:

> Fouri erSeries: =x=Sum( 2*i nt (xi *si n(n*Pi *xi ),

g xi =0.. 1) *si n(n*Pi *x), n=1. .infi nity);
o0 _1n .
FourierSeries::x:Z (_2( ) Sln(hnx))
nm

n=1

> is(simplify(k,{FourierSeries})=0);

true

Now let’s try to solve the problem with the specific time varying input
hi(t) = sin(t). Applying Duhamel’s Principle gives

> h[ 1] : =sin:
> diff(int(v(x,t-tau,tau),tau=0..t),t);

(i (—(—1)” nx2en*7* =7 gn(n x))) sin(r)
/ PR d
T
0 T
X (—=1)"e’sin(n x)
.

+ [x+20=L sin(t)
T

Unfortunately it seems that Maple does not interchange the integration and
summation operators. Weget better resultsby rewriting the Duhamel formula

with the integrals on the inside of the summations.

> u: =unappl y(di ff(int(x*h[1] (tau), tau=0..t)+Sun(
> int(h[1] (tau)*vterm(n,x,t-tau),tau=0..t),
> n=1..infinity),t),(x,t));
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. . x ([ (sint) + n?x2cogt)) (—1)" sin(n 7 X)
u=xt — sm(t)x—i-nzz‘i(z T Dan

-2

n €770 (~1)"sin(n 7 X)
ntr441

Verify thatu satisfies the PDE

> combine(diff(u(x,t),x,x)-diff(u(x,t),1);

2 o

(noo (sin(nz X +t) +sin(nz X — 1)) (=1 )) — cog(t) X
=1

> is(simplify(",{FourierSeries})=0);

true

the boundary conditions

> is(value(u(1,t)=h[1](t))) and is(value(u(0,t))=0);

true

and the initial condition

‘ > is(value(u(x,0))=0);
true

Finally, plot the solution, using a finite number of terms of the sum.

> U3:=subs(infinity=3,u(x,t)):
> plot3d(U3,x=0..1,t=0..10,axes=frame,style=
> patch,shading=zgreyscale);

1t B SIS
s “‘\\\\““\\\\‘\
0.5} ;%;i§§§§$§\\\\\\\\ .
ot ‘\""\i“iiiiti‘
77N NSNS
05 /;;;‘\‘8{%\\\\\\\
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Another version of Duhamel’s Principle is the following, in which the
solution is represented as the superposition of a set of “free response” prob-
lems.

Theorem 3.7 The solution of the diffusion problem

(- 2)ux = dxt) (xeQ,t>0)
Bu(x,t) = 0 xed,t >0
ux,00 = 0 X € Q)

with time invariant operators £, B is given by
t
uex, t) =f vt — 7, 7)dr
0

where, for every fixed T > 0, v(X, t, 7) isthe solution of the problem

(-2)vxt,r) = 0 XeQ,t>0)
Bv(X,t,t) = 0 Xeod2,t >0
v(X,0,7) = —dXX, 1) (Xe)

The proof issimilar to that of Theorem 3.6. (Exercise 5).

3.2.3 Green’'sFunctionsvia L aplace Transforms

The Laplace transform is convenient for studying initial value problems for
linear time invariant dynamical systems. The Laplace transform of u(x, t),
denoted G(x, s), has the following properties.

Linearity: U+ v =0+ 9, ol = al;
Derivative: If v = u; thenv = st — u(x, 0);

Product: 0v = u* v, where u x v denotes the convolution, defined by
(U* V)X, ) =[5 ux, t' — tv(x, t) dt.

Taking the Laplace transform of theinitial-boundary value problem (3.1)
with time invariant operators gives

(£ —9)0(x,s) = d(x,5) — k(X)inQ, BlX,S)=hxs)yondQ (3.3

where the Laplace variable s is treated as a symbolic parameter. Notice
that theinitial condition is now incorporated into the PDE, and (3.3) hasthe
form of aboundary value problem. We therefore apply the technigues of the
previous chapter.

Wefirst find the L aplacetransform of thesingularity function, F (x, X', s),
as ageneral solution of the PDE

(L —S)F(X,X,s) = 8(X —X)
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Then we find aregular solution H(x, X, s) to the BVP

(L—s)H =0inQ, BH = —BF on g
Finally, the Laplace transform of the Green's function is defined as G =
F+H.

Applying Theorem 2.15, wefind the solution of the self-adjoint diffusion
problem with Robin boundary condition in the form

ax,s) = /Qé(x,x’,s)(a(x,s)—k(x))dV

+-/F1 h(;((’xs;)) (A(x)éx(x, X, s)) .nds

h(x,s)
- r2G(x X', s) 900

dS

Taking the inverse Laplace transform of both sides gives

Theorem 3.8 The solution of the time invariant self-adjoint diffusion prob-
lem with Robin boundary conditionsis

Uty = /t/ G(x. X, t' — Hyd(x, t) dV dt—/QG(x, X' tYK(X) dV

/t// hex ) (AX)Gx(x, X, t" —t)) - ndSadt
ry f()

_f A G(x, X’ t’—t)h(x Y

dSdt
X)

As special cases of this, the solution of the Dirichlet problemis

t/
Uty = /0 /QG(x,x’,t’—t)d(x,t)dth—/QG(x,x/,t’)k(x)dV
t/
+/ / h(x, t) (AGx(X, X, t' — 1)) - ndSdt
0 02

and the solution of the Neumann problemis

t/
U t) = /0 /QG(X,X’,t’—t)d(x,t)dth—/QG(x,x’,t’)k(x)dV
t/
—f / G(x. X.t' — Hh(x, t) dSdt
0 Q2

Notice that the Green’s function will be symmetric, in the sense that
G, X,t) = G(X, X, 1), since the Laplace transformed problem is a self
adjoint boundary value problem. Notice also that Neumann problems do not
require special treatment (such as Neumann functions).
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Example 3
Consider the one dimensional heat equation

Uyxy — U = d(X, 1)
on (0, 1) x (0, oo), with Dirichlet boundary conditions
u(o, t) = ho(t), u(l, t) = hy(t)

and initial condition
ucx, t) = kx)

First we find a singularity function.

> dsol ve(di ff(u(x),x, x)-s*u(x)=Dirac(x-y), u(x));

1 Heaviside(x — y) (—1 + e~2v3X=¥)) gvs(x=y))
-3 b
+.C1eVsX 4 C2e=V5X

uix) =

> Fhat : =unappl y(subs(_C1=0, _C2=0,rhs(")), (X,V¥));

isi -y (- (—2/5(x=Y))) g(v/5 (X=Y)
Fhat = (x, y) — —+ HeMSdex —y) (=1+¢ )e
° NE

Next, find the regular part of the Green’s function.

> assunme(0<Y, Y<1); interface(showassuned=0);
> dsol ve({diff(u(x), x,x)-s*u(x)=0,u(0)=-Fhat(0,Y),
> u(1)=-Fhat (1, )}, u(x));
1 (=1 + (eVSY=v9))2) g2V5-/3Y) g(v/5%)
ux) = =
=3 J/5((eW9)2 - 1)
1 (_1 + (e(ﬁY—ﬁ))Z) e(zﬁ_\/gY) e(—\/gx)
2 J5((EV9)2 -1

> Hhat : =unappl y(si nplify(subs(Y=y,rhs("))), (x,¥y));

1 (—1+ e2VE0-D)) (_eWS@-y+x) 4 g(—vE(=2+y+0))

Hhat := (X, y) — 5 V3 (e2V9 — 1)

Assemble the two parts of the Green's function and verify symmetry, con-
sidering thecases X < y and X > y separately.

> Ghat: =unappl y(Fhat (x, y) +Hhat (x,y), (X,y)):
> assune(X<Y); sinplify(CGhat (X Y)-CGhat(Y, X));

0
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> assune(Y<X);sinplify(Ghat (X Y)-Ghat(Y, X));

0

Theinverse Laplace transform of G can then be found with the aid of tables
(Exercise 7).

Theconvolutionformulasappearingin Theorem 3.8 resemblethe Duhamel
Principleformulas, but arenot quitethesame. TheGreen’sfunctionG(x, X, t)
has a physical interpretation as the response at a point X' and timet dueto a
unit impulsive input applied at apoint x at thetimet = 0.

3.2.4 Method of Eigenfunction Expansion

In the previous section we changed the initial-boundary value problem into
a pure boundary value problem, using the Laplace transform to change the
time derivativeinto aparameter. Herewe take the opposite approach, chang-
ing the initial-boundary value problem into a set of pure initial-value ODE
problems. Thisis done using the eigenvalues and eigenfunctions of the as-
sociated boundary value problem. For convenience, we assumethat £ and 3
are time-invariant operators.

Theorem 3.9 The Green’s function for the time invariant self-adjoint diffu-
sion problem (3.1) is given by
G(X, X/, t) = — Z Me_kjt
iz ol

where {(1j, ¢;) : ] = 1...00} isthe set of eigenvalues and eigenfunctions
from
Lp+rp=0, Bp=0

PRrOOF. Substituting the eigenfunction expansion
ux,t) = Z U)o (x) (3.4)
j=1

into the diffusion PDE with no inputs gives

0 = Y [U;®eg;(0 - Ujt)g 0]

i

= — Y [HUj0) +U;0] ¢ 0

J

Taking the scalar product of thiswith ¢; gives
0 = =2 [MUi®+U;®] (4.6
j

= —[U,O +2U;0] 1917
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This simplifies to the decoupled system of ODEs
Ujt) + 4U;jt) =0 (j =1...00)
whose solutions are
U;t) =U;0e™" (j=1...00) (3.5)

Substituting t = 0 into (3.4) gives the initial values of the diffusion
problem as

k(x) = u(x,0) = Y _U;(0)¢;(X)
j=1

Again, we take the scalar product of this with ¢; and using orthogonality.
This gives usthe ODE initial values

(k, ¢;)
N 12

Substituting this and (3.5) into (3.4) givesthe solution of the diffusion PDE
with no inputsin the form

U;(0) = (j=1...00)

ux,t) = iu (0)e e (X)

- ko)
; |¢,||2 410

80080 | vo ay
/Q{Z 19112 }(X)

=1

Comparing this with the Green’s function formula (Theorem 3.8) for the
solution of the same problem, namely,

u(x, t) = —/Qe(x, X', Hk(x) dV

gives the Green’s function formula that was asserted. m

Example 4
From Example 2.5 we know that the eigenvalues and eigenfunctions for the
Dirichlet problem uy,x, = d on [0, 1] are

> | anbda: =j - >j "2*Pi 72;
A= > j°a?

> phi:=(j,x)->sin(j*Pi*x);

¢ = (j, X) = sin(j 7 X)
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The Green's function can therefore be written

assune(j, posint): i nt erface(showassunmed=0):
G erm =unappl y(-phi (j, x)*phi (j,y)*exp(-1anbda(j)*t)
lint(phi(j,x)"2,x=0..1),(j,x,y,t)):

>
>
>
> G=SumGern(j,x,y,t),j=1..infi nity);

G:= il (‘25"1(] T X)sin(jmy) e(—jznzt))
j=

In Example 3.2 we needed the sol ution of the heat equation when astep input
isapplied at the right boundary. From the Green’s function solution formula
we have

>vterm=int(D2](Germ(j,1,x,t-tau),tau=0..t);

vterm :=

DS x) €T D) sing 7 x)
i jm

> vv:=sum(Sun(op(n,vterm,j=1..infi nity),n=1..2);

o0 _ [P . ) (_'2].[20 _ P .
Wo— Z (_2( 1)J§|n(1nx)> n Z <2e | ( .1)Jsm(]7.[x)>
j=1 | i=1 Jj

The first sum can be simplified using the Fourier sine seriesfor x, yielding

> FourierSeries:=Sun(int(2*xi*sin(j*Pi*xi),xi=0..1)
> *sin(j*Pi*x),j=1..infinity)=x;

FourierSeries .= i (—2 (-1 §in(j il X)) =X
=t I

> v: =unappl y(subs(FourierSeries,""),(x,t));

S (=272t (_1\i (i
v = (X, t)—>x+(2 (29 (-1 Sln(jnx)))

j=1 jm

This isthe step response formulathat was the starting point in Example 3.2.
To plot it, approximate the infinite series with a finite number of terms.
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> vapprox:=subs(infinity=10,v(x,t)):
> plot3d(vapprox,x=0..1,t=0..1/5,axes=frame,style=
> patch,shading=greyscale,orientation=[-124,44]);

\_
The plot shows the oscillation calle@dibbs’s phenomenothat typically
arises when using a truncated eigenfunction expansion of a nonsmooth func-
tion. Soon after the initial time, this oscillation is no longer visible, because
the terme~i*7*t makes the amplitudes of the higher order modes decay much
faster than the basic mode.

|




Section 3.3, Classical Heat Equation 79

3.3 Classical Heat Equation

The classical heat equation is
KAU— U = d(X, 1) (3.6)

with u interpreted as temperature and the positive constant « known as the
diffusivity. This isthe special case of the diffusion equation with A = «|1
andc = 0.

In the Dirichlet boundary condition

uix,t) =h(x,t)
the input function h(x, t) is interpreted as an imposed temperature on the
boundary. In the Neumann boundary condition
KUy - N =: kUp(X, 1) = h(X, 1)

h(x, t) isinterpreted as a heat flux, with insulated boundaries modeled by
h=0.
The free field Green’s function is the Green’s function for the Dirichlet
problem on the unbounded domain 2 = R".
Theorem 3.10 Thefreefield Green’sfunction for the classical heat equation
inn dimensions (n = 1, 2, 3) isthe symmetric singularity function
g IX—X?/(4ct)

(A kct)V/2
PRroOF. Inone dimension we use the Laplace transform pair [8, p.250]

Fx,x,t) = —

|
eo?/(4)  gays

Jrt NG
to find F as
> Fhat: =-exp(-abs(x)*sqrt(s/kappa))/2/sqrt(s*kappa);
(—1X1 /%)
Fhat := _le
2 Sk

where, for cor!veni ence, we have moved the origin so that X’ = 0. We then
show that (k & — S)F = 8(x):

> assunme(x,real); i nt erface(showassunmed=0):
> sinplify(kappa*diff(Fhat, x, x)-s*Fhat);

1 Signum(t, x)\/§/< e-X /D)
K
2 JSk
> sinplify(radsi mp(subs(signum(1, x)=2*Dirac(x),")));

Dirac(x)
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In three dimensions we use the Laplace transform pair [8, p.250]

——
e ’/4)  gays
2+/mt3 o

to find F in spherical coordinates (with the origin at x') as

> Fhat: =-exp(-r*sqrt(s/ kappa))/ (4*Pi *kappa*r);

1e"VD
Hmt:——e
4 mkr

We now verify the three properties of the singularity function of the alterna-
tive characterisation given on page 38. First we check that (kA — S)F =0
amost everywhere:

> sinplify(kappa*linal g[laplacian](Fhat,[r, phi,theta],
> coords=spherical )-s*Fhat);

0

Secondly, we check that lim. o /5 F dS= 0O

> limt(int(int(Fhat*r”"2*sin(theta),theta=0..Pi),
> phi =0..2*Pi ), r=0);

0

Finally, we check that lim._.o [, (A Fo-ndS=1:

> limt(int(int(diff(kappa*Fhat,r)*r”2*sin(theta),
> theta=0..Pi), phi=0..2*Pi), r=0);

1

In two dimensions we use the Laplace transform pair [3, p.146]

2
t~le=@/@) = 2K o(a+/9)

tofind F in polar coordinates (with the origin at x') as

> Fhat: =- Bessel K(0, r*sqrt (s/ kappa))/ (2*Pi *kappa) ;

L BessdK (0, 1 /2

K

Fhat ;= ——
2 7K

The remaining calculations are similar to the three dimensional case.
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\Y

simplify(kappa*linal g[lapl aci an] (Fhat,[r, phi],
> coords=pol ar) -s*Fhat ) ;

0

\%

limt(int(Fhat*r, phi=0..2*Pi),r=0);

0

\%

limt(int(kappa*diff(Fhat,r)*r,phi=0..2*Pi),r=0);

1

Finaly, foranyt > Oandn = 1, 2, 3 it isevident that the given singularity
functions al tend to zero as |x — X/| tendsto infinity. m

Notice that the free field Green’s function is strictly positive for all dis-
tances and al positive times. Any input applied at a single point at atime
t = to will affect the solution everywhere at timest > t,, athough the
effect will be very small at large distance. Nevertheless, the effect of the
input travelswith infinite speed! This defect in the mathematical model can
be corrected by adding an acceleration term to Equation (3.6), yielding a
hyperbolic equation of the form

KAU— Uy — yUy = d(X, t)

with y > 0. Aswill be seen in the next chapter, in this PDE local perturba-
tions have finite propagation speed.
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Exercises

1. Prove Theorem 3.4.

2. Verify that the problem

Uyx +2U —tuy =0
ux,00=0 O<x<m)
u@O,t) =u(r,t) =0 (t >0

has solution u = ot sinx for all values of the constant «. Why isthis
not a counterexample to Theorem 3.3?

. Let Q:= (0, ) x (0, 7). Show that the solution of uyx + Uyy — U =

Xy(X — m)(y — ) on  x (0, co), with boundary conditionu = 0
on 02 and iniztial condition u(x, y,0) = 0, satisfies the inequality
ux,y,t) < (1 —e*sinxsiny onQ x [0, c0).

. Provethat the diffusion-convection problem 3.1 with Dirichlet bound-

ary conditionsand ¢ < Oiscausa. (Hint: examine the uniqueness
proofs.)

. Prove Theorem 3.7.

. Consider the PDE uyy (X, 1) — u(X,t) =0onx > 0Oandt > 0, with

zero initial condition and boundary conditions u(0,t) = h(t) and
u(oo, t) = 0. Verify that the solution when h(t) = H(t) is p(x, t) :=

erfc (ziﬁ) Use Duhamel’s Principle to show that the solution for any

bounded continuous h(t) is h * q where q(x, t) ;= 2xt=3/2e~*/(40)
This initial-boundary value problem can be interpreted as describing
thetemperatureinthe earth at depth x and timet, when thetemperature
at the surface is h. The functions p and q are the system step and
impul se response functions, respectively. Plot them and see how the
step or impulse at the surface generates a single wave that seems to
propagate into the earth, with the peak value occuring later for points
that are deeper. This impression is misleading, however, because
the model predicts that the input at the surface travels into the earth
infinitely fast. Thisisseen by noting that theimpul seresponsefunction
is positive at every depth for any positive time.

. Use the identity

Heaviside(x — y) + Heaviside(y — x) = 1

to show that the Laplace transform of the Green’s function in Exam-
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10.

ple 3 can be expressed in the symmetric form
sinh(1 — y),/ssinhx,/s

| Tesh O0<x<y<1l
G(X,Y,8) = B sinh(1 — x)4/ssinhy./s O<y<x<l
Jssnh /s =YErE

Use the Laplace transform pair [8, p.252]

COShX\/g 0 2_2
—— " —142) (-D"e """t cosnmx
J/ssinh /s + nX::l( ) §

to find the Green's function in the time domain.

Use the results of Exercise 2.18 to find the Green's function for the
heat equation

Uy —U=d (O<x<1
u(,t) = ho(t), u'(1,t) = hy(t)
u(x, 0) = k(x)

Plot the solution for some particular case of this problem.

What values of the constants _.C1 and _C2 in the general solution
foundinthefirst Maple computationsin Example 3 givethesingularity
function of Theorem 3.10?

Find the Green’s function for the one dimensional classical heat equa-
tion Dirichlet problem on (0, co) x (0, 00).
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Chapter 4
Hyperbolic PDEs

4.1 General Wave Equation

In this chapter we study the initial-boundary value problem

LU—eX,Hhus —uy = dxt) xXe,t>0)
Bu = hx,t) (xeod,t >0

ux,00 = k(x) xeQ)

u(X,0) = 1(X) (X € Q)

(4.1)

This problem models linear damped vibration in an nonisotropic medium.
Problems with @ = R" are called Cauchy problems and model wave prop-
agation phenomena. We shall refer to problem (4.1) as the wave equation
problem.
The wave PDE is alinear second order equation. The PDE’s principal

part’s coefficient matrix is

A O

0 -1

which has n positive eigenvalues and 1 negative eigenvalue. The wave PDE
is therefore hyperbolic.

We are normally interested in the evolution of the solution of (4.1) as
time moves forward fromt = 0. When e = 0 (no damping) the form of the
PDE ispreserved under atime-reversing coordinate transformationt’ := —t,
so the evolution of the solution backward in time can be studied in the same
way as forward evolution.

Thereisnomaximum principlefor hyperbolic PDEs. Theenergy method,
however, can still be used to derive well-posedness results.

4.1.1 Wseédl-Posedness Results

We start with the following uniqueness result.

Theorem 4.1 If the wave equation problem (4.1) is self adjoint with ¢ < 0,
e > 0, and £ and B are time invariant, then the solution with Dirichlet,
Neumann or Robin boundary conditions (with fg > 0) isunique.

85
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Proor. It suffices to consider the Robin boundary condition; the results
for Dirichlet and Neumann conditions follow as special cases. We show
that the only solution u of the associated homogeneous problem (in which
d=0h=0k=0,1 = 0)isthetrivial one. Let v := u, and apply
Green’'s First Identity (Theorem 2.1) to get

0 = / v(Lu —ev — v) dV
Q
= / (vAuy) - ndS+ / (—UIAUX + cuv — ev? — vy dV (4.2)
IQ Q

Partitioning the boundary into digoint setsoQ2 = T'; U, withg=00nT";
and g # 0 on I',, the boundary integral in (4.2) can be written

f
/ (vAuy) - ndS = ——uv dS
i) g

2

Introducing the energy integral
. f 2 T 2 2
E(t) = /rzﬁu dS+/Q(uXAuX—cu +u?)dv 4.3)
equation (4.2) can be written as
E(t) = — / ev?dV (4.4)
Q

Now E(0) = 0, E(t) > 0 (t > 0) and E(t) < O (t > 0) together imply
that E = 0. Theinequality E > [, u] Aux dV impliesthat ux = 0, henceu
is constant in space, while the inequality E > [, v2dV impliesthat v = 0,
hence u is constant intime. The zero initial condition then impliesu = 0. m

The energy integral E(t) defined by (4.3) can be interpreted as the total
energy of the system. The last term [, v?>dV, represents the kinetic energy,
and the remaining terms represent potential energy related to displacements
at the boundary and in the domain. If the system has no inputs (that is,
d =0, h = 0), then from (4.4) we see that the total energy isnonincreasing
intime, so that E(t) < E(0). If the system is undamped (e = 0), the total
energy is constant, and the system is said to be conservative.

Exercise 2.2 gave an example of a pure boundary value problem for a
wave PDE that is not well posed, since it does not depend continuously on
the boundary data. The discussion in the previous paragraph gives us the
following well-posedness result for the initial-boundary value problem.

Theorem 4.2 The wave equation problem satisfying the conditions of The-
orem 4.1 depends continuously on the initial conditions in the sense that
E@) < eimplies E(t) <e.
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Example 1

Thisis Hadamard's example showing how an elliptic initial-boundary value
problem may beill posed. The function u = n~2sin(nx) sinh(nt) satisfies
theelliptic PDE uyy + Uy = 0and satisfiesthe boundary conditionsu(0, t) =
u(m, t) = Oandtheinitial conditionsu(x, 0) = 0, u;(x, 0) = n~*sin(nx):

> u:=(x,t)->sin(n*x)*sinh(n*t)/n"2:
> is(linalg[laplacian](u(x,t),[x,t])=0);

true
> assunme(n,integer); is(u(0,t)=0) and is(u(Pi,t)=0);
true

> is(u(x,0)=0) and is(D[2](u)(x,0)=sin(n*x)/n);

true

The zero function is a solution of the corresponding homogeneous problem.
The following calculations show that, by choosing n sufficiently large, the
initial energy of u can be made as small as desired, but for any fixed positive
n the energy of the difference between u and the zero function is unbounded:

\%

E: =unappl y(sinplify(int((D[ 1] (u)(x,t))"2+
(D2] (u)(x,t))"2,x=0..1)),t);

1 —cos(n) sin(n) + 2cosh(nt)2n —n
2 n3

limt(E(O), n=infinity);

\

E=t—

\Y

0

\%

assune(n>0); limt(E(t),t=infinity);

o

4.1.2 Duhame’sPrinciple

Like the diffusion problem, the wave equation problem is a causal infinite-
dimensional linear dynamic system. The state is the function pair (u, u),
the initial stateis (k, 1), and the inputs are d and h. The statements and
proofsof the versions of Duhamel’ s Principle givenfor thediffusion problem
(Theorems 3.6 and 3.7) therefore go through almost unchanged for the wave
equation problem.
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Theorem 4.3 The solution of the wave equation problem (4.1) with time
invariant operators £, B and time invariant damping coefficient eis given by

t
ux,t) = %/0 v(X,t — 7, 7)dr

where, for every fixed t > 0, v(x, t, 7) isthe solution of the problem with
constant inputs

(e-em3; - )
L—eX)— — —|Jvix,t,7) = dX,7) XeQ,t>0)

at  ot2
Buv(x,t,7) = h(x,7) (x€dQ,t>0)
v(X,0,7) = kX) X € Q)
n(X,0,7) = (X X € Q)

Theorem 4.4 The solution of the wave equation problem

2
(ﬁ — e(x)% — 8_) ux,t) = dixt) xe,t>0)

ot2
Buix,t) = 0 Xeod2,t >0
ux,00 = 0 X e Q)
ux,0 = 0 X e Q)

with time invariant operators £, B is given by
t
ux,t) = / v(X,t —7,7)dr
0

where, for every fixed T > 0, v(X, t, 7) isthe solution of the problem

0 02
£—e(x)a—ﬁ v(x,t,t) = 0 xXe,t>0
Bv(x,t,7) = 0 xXed,t>0)
v(X,0,7) = O (X € Q)
uw(X,0,7) = —dX 1) Xe)

4.1.3 Green’'sFunctions

For convenience we continue to consider the wave equation problem with
time invariant damping coefficient e and operators £, B time invariant. As
we did for the diffusion problem, we take the L aplace transform of the wave
equation, obtaining

(c —e(X)s — 52) A(x,s) = d(x,s) —skx) —(X) — e(x¥)k(x) (Xe Q)
BU(X,s) = h(x,s) (X € 99)

The initial conditions are now symbolically included in the PDE, and the
problem has the form of aboundary value problem. We then find the singu-
larity function as the inverse Laplace transform of a solution of the PDE

(L —es— 52) F(x,X,s) = 8(X —X)
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and take the Green’s function to be the inverse Laplace transform of G =
F + H where H isthe solution to the boundary value problem

(E—e(X)S—SZ) H =0in, BH = —BF ondQ

Example 2
Consider the one dimensional wave equation

Uxx — Ui = d(xa t)

on (0,1) x (0, c0) with Dirichlet boundary conditions. This is a model
of a vibrating string with prescribed end displacements. First we find a
singularity function.

> U: =expand(rhs(dsol ve(di ff(u(x), x,Xx)-s"2*u(x)=

> Dirac(x-y),u(x))));
U - L Heaviside(x —y) e®¥ 1 Heaviside(x — y) e L+ Cresw 2
2 sesy) 2 se(sx) e(sx)

Thefollowing choice of the constants givesasymmetric singularity function.

> subs(_Cl=- (Heavi si de(x-y) +tHeavi si de(y-x))/exp(y*s)
> /'sl2, _C2=0, VU);

1 Heaviside(x — y) elsx) 1 Heaviside(x — y) esy)

2 se(sy) 2 se(sx)
1 (Heaviside(x — y) + Heaviside(y — x)) €%
2 esy) s

> Fhat : =unappl y(col | ect (", [ exp, Heavi si de]), (x,¥));

1 Heaviside(y — x) €% 1 Heaviside(x — y) eSY)

Fhat := (X, y) — > <oy > e

Check that it is a singularity function for the wave equation and that it is
symmetric.

> sinmplify(diff(Fhat(x,y), X, X)-s*2*Fhat (x,Y));
Dirac(x — y)

> i s(Fhat (x,y)=Fhat (y, x));

true

Next, find the regular part of the Green’'s function for Dirichlet boundary
conditions and check that it is symmetric.



90 Chapter 4, Hyperbolic PDEs

> assune(0<Y, Y<1);
> dsol ve({diff(u(x),x, x)-s"2*u(x) =0, u(0) =-Fhat (0, Y),
> u(1l)=-Fhat(1,Y)}, u(x));

B 1 ((e(sY))Z _ 1) e(SX) _} (_(eS)Z + (e(SY))Z) e(—SX)
T 2SSV (—14 ()2 2 seSY (—1+(e5?)

u(x)

> Hhat : =unappl y(si nplify(subs(Y=y,rhs("))), (x,¥y));

1 —eSOHY) 4 @8(X=Y) _ @(=S(x+y=2) | a@(-S(x=y)
Hhat ;= (X, y) - —=
. y) 2 s(—1+e®9)

> expand( Hhat (x, y) - Hhat (y, X)) ;

0

From tables we find the L aplace transform pairs

e ps

=Ht-p8) (B=0

and

e*.BS 00
MZQH(t—an—ﬁ) (¢ >0,8>0)

(see Figure 4.1) so we conclude that

1
G(X’ y’t) = _EH(t_ |X_y|)

100
-3 2l-HE=2n-@=x=y)

+H(E —2n— (2= x+y)) — H({t — 2n — (X +Y))
+H{t —2n— 2+ x —Yy))]

Note that for any fixed t, the infinite series appearing in the above formula
reducesto afinite sum, since taking n sufficiently large makesthe arguments
of the Heaviside functions negative.

3 |

2_ |

H —

O i | >

0pB [3|+a BLrZa B+3a t

Figure 4.1: Theinverse Laplace transform of s~*e#5(1 — e7*%)~1,
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Applying Theorem 2.15, we find the solution of the self-adjoint wave
problem with Robin boundary condition in the form

ax,s) = /Q G(x, X, s)(d(x, 8) — sk(x) — 1 (X) — e(x)k(x)) dV

+/ hx. 5)) (A(X)GX(X, X, S)) -ndS

f(xX)

—/ Gx, X, s) ds
Iz

h(x, s)
g(x)

Taking the inverse Laplace transform of both sides gives

Theorem 4.5 The solution of the time invariant self-adjoint wave equation
problem with Robin boundary conditionsis

U, t) = /Ot/QG(x,x/,t’—t)d(x,t)dth
9

A

_ /Q G(x, X, [ (X) + e()k(x)] dV

/Q G(x, X, tHk(x) dV

v ohx, 1) -
+/O /rl 00 (AX)Gx(x, X', t" — 1)) - ndSdt

_/ G(X, x’,t’—t)h(x’ )
0o Jra

g(x)
For a Dirichlet problem the last two terms reduce to

dSdt

/ / h(x, t) (AGx(X, X, t' — 1)) - ndSdt
0 Q2

whilefor a Neumann problemthelast two ter msof the Robin problemsolution
reduce to

t/
—f / G(x, X.t' — tyh(x, t) dSdt
0 19

Example 2 (continued)
The Green’ s function for this one dimensional wave equation Cauchy prob-
lem isjust the singularity function

1
G, X, t) =Fx, x,t) = _EH(t —|x =X
Applying the formula from Theorem 4.5 gives

/ / 1 t/ o0 / !
u ty = =3 [ KwH(t—t—|x—x|)d(x,t)dxdt
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+% /OO [§(t' — [x — X'DK(X) + H(t' — [x — X'l (x)] dx

X'+ ('t 1
/ / "dx. b dxdt + SIKOC ) + kO =]

—(t'=t)
X+t

+§ e [ (X) dx

This formulais known as d’ Alembert’s solution.
[

4.1.4 Method of Eigenfunction Expansion

Asfor the diffusion problem, the Green’s function for the wave equation can
be expressed as a series. For simplicity we only give the formula for the
undamped equation.

Theorem 4.6 The Green’s function for the time invariant self-adjoint wave
equation problem (4.1) is given by

G(X, X/,t) _ Z¢J( )¢J(X) \/7t

i lgs f

where {(1j, ¢;) : ] = 1...00} isthe set of eigenvalues and eigenfunctions
from

Lp+rp =0, Bp=0
The proof issimilar to that of Theorem 3.9 (Exercise 4).
Because of the term sin\/)T,- t appearing in the Green's function, the

values \/A—, /(2m) are called natural frequenciesin vibration problems. The
eigenfunctions are called mode shapes.

Example 3
Consider the 1D wave equation with Dirichlet boundary condition. From
example 2.5 we have the eigenval ues and eigenvectors

> | anbda: =j - > "2*Pi £2;
A= > j%n?
> mu: =unappl y(radsi np(sqrt(lanmbda(j))),j);

Wi=j — 7]

> phi:=unappl y(sin(mu(j)*x),j,x);

¢ == (], X) = sin(z | X)
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The Green’s function is therefore

> assume(j,integer): interface(showassumed=0):
> Gterm:=unapply(-phi(j,x)*phi(j,y)*sin(mu(j)*t)

> /mu(j)/int(phi(j,x)"2,x=0..1),(x,y,1)):
> G:=Sum(Gterm(x,y,t),j=1..infinity);

(—2 .
=1 ]

G (oo sin(zr j X) sin(r jy) sin(r j t)))

If the initial conditions are zero and the input is a unit impuige= §(t) at

x = 0 andt = O, then the solution is

> assume(t>0):
> u:=Sum(int(Dirac(tau)*D[1](Gterm)(0,y,t-tau),tau=0..t),
> j=1..infinity);

u:= i (2sin(z jy)sin(r jt))
j:l

AN

Finally we plot the 20-mode approximation at various times.

"> uApprox:=unapply(subs(infinity=N,u),(N.y.1));

N
uApprox:= (N, y, t) = Y (2sin(z j y) sin(r jt))

i=1

> N:=20:
> for t in [1/3,2/3,4/3] do
> plot(uApprox(N,x,t),x=0..1,-1.2*N..1.2*Ntitle=
> cat(‘t=",convert(t,string)),ytickmarks=[-N,0,N])
> od,
20+ t:1/3
0 0.2 04 X 06 0.8 1
-20+
20+ t:2/3
0 02 04 X 06 0.8~ 1
-20+
20,, t:4/3
0 0.2 04 X O.W 08 1
-201
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Here we can see how the pulse moves with unit speed to the right until it
comesto the boundary. Thereit isreflected and starts to come back with its
shape reversed. The Gibbs phenomenon is clearly visible.

l
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4.2 TheClassical Wave Equation
The classical wave equation is the PDE
AU — Uy = d (45)

It is used to describe undamped linear wave propagation and vibration phe-
nomena in isotropic media. The Green's function for wave propagation
problemsis given by

Theorem 4.7 The Green’sfunction for the classical wave equation Cauchy
problem isthe singularity function

1
Fx, X, t) = —oHT =X = X))

in one dimension,

F(x,x,t) = — H(t — |x = X|)

1
2/t — |X — X/|2

in two dimensions, and

/ 1 /
Fx,x,t) = —m5(t — X =X1)

in three dimensions

Proor. Theformula for the one dimensional wave equation was derived
in Example 2. In three dimensions we use the Laplace transform pair

——
St —a) =€

to find F in spherical coordinates (with the origin at x') as

1e"9
Fhat := ——

> Fhat: =-exp(-r*s)/ (4*Pi *r);
4 rm

We now verify the three properties of the singularity function of the alterna-
tive characterisation given on page 38. First we check that (A — s?)F =0
amost everywhere:

> sinplify(linalg[laplacian](Fhat,[r, phi,theta],
> coor ds=spheri cal ) -s*2*Fhat ) ;
0

Secondly, we check that lim._q f,5 F dS=0:
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>limt(int(int(Fhat*r”"2*sin(theta),theta=0..Pi),
> phi =0..2*Pi ), r=0);

0

Finally, we check that lim._.o f,5 (Fx) - ndS=1:

>limt(int(int(diff(Fhat,r)*r*2*sin(theta),
> theta=0..Pi), phi=0..2*Pi), r=0);

1

We now use the singularity function for the three dimensional problem
to derive the singularity function for the two dimensional problem. This
projection technique is known as the method of descent.

Substituting the singularity function into the solution formula (Theo-
rem 4.5) for athree dimensional wave equation withk = O and d = O gives
Kirchhoff’s formula

1
uO.t) = E/ﬂa(t—M)I(x)dV

1
= art |00
t oo .
= E/o/o I(t, 6, ¢) Sin6 dpdd

Here the integral istaken over the surface of a sphere of radiust centered at
the origin.

For a two dimensional problem, | is invariant with respect to the third
spatial dimension x3, and Kirchhoff’s formula can be transformed (taking
r =tsng)to

uo.n = 2n//2ﬂ\r/l(rf¢f

- on //<t I(X) d 10z

which is the formula corresponding to the singularity function for the two
dimensiona wave problem. m

Thefirst thing to notice about the wave equation’s singularity function is
that itiszero outsideaball (interval in 1D, diskin 2D) whoseradiusist. This
meansthat initial values at apoint xo will have no influence on the solution at
points outside the ball of radiust centered at that point. This expanding ball
definesaconein R" x [0, co) known as the range of influence of the initial
point Xo. In contrast to the diffusion equation, where disturbances have an
infinite speed of propagation, disturbances in a wave equation have afinite
speed of propagation.
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Looking at the same concept from a different point of view, we observe
that the solution at apoint x; andtime T > O will not beinfluenced by initial
values outside the ball of radius T centered at that point, nor by an input
d(x, t) with x outside the ball of radius T — t. This shrinking ball defines
a cone known as the domain of dependence of the solution point u(xy, T).
The cones for 2D wave problems are shown in Figure 4.2.

t (%, T)

<

(X0:0)

Figure 4.2: Domain of dependence of u(x;, T) and range of influence of Xo.

Example 4

Let'slook at the function —F (X, O, t), which is the solution of the classical
wave equation in an unbounded domain, with zero initial displacement, zero
initial velocity, and input d(x, t) = §(X)§(t).

Inthreedimensionsthesolutioninspherical coordinatesiss (t—r)/(4xr).
Thisisasingularity in the shape of the surface of an expanding sphere. The
radius of the sphere is growing at unit speed.

A distinguishing feature of this Green’s function is that the wave front
remains infinitesmally thin. An observer at a fixed point in space would,
after a delay, detect an impulse; after that, the solution returns to zero. The
moving wave front leaves no trace behind it. One consequence of this is
that adisturbance of finite time duration from a point source is observed as
asignal of exactly the same duration. This property of the wave equation in
three dimensions is known as Huygens's principle.

In two dimensions the solution in polar coordinatesis

> u:=(r,t)->Heaviside(t-abs(r))/sqrt(t"2-r"2)/2/Pi;

"= 1) 1 Heaviside(t — |r])
=1 = =
2 Jt2—r2g

Here the solution is nonzero on a disk whose radius grows with unit speed.
Thereisasingularity on the disk boundary. Let’s plot the solution asafunc-
tion of radius, at various times.
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with(plots):

waveplot:=t->plot(u(r,t),r=-10..10,thickness=4,
view=[0..10,0..0.6],discont=true):

wavetext:=t->textplot([9,0.4,cat(‘t=",convert(t,

string))],font=[TIMES,BOLD,18]):

for t in [2,4,6] do
display({waveplot(t),wavetext(t)})

od;

VVVVVVVYV,

0.6

0.4 =2

0.2

-10 -8 6 4 -2 0 2 4roe6 8 10

-10 8 6 4 -2 0 2 4r6 8 10

-10 8 6 4 -2 0 2 4r6 8 10

Here we see how, after the front has passed, the solution is not zero. Huy-
gens’s principle does not hold in two dimensions.

Using the method of descent, the two dimensional solution can be thought
of as a special three dimensional problem that is invariant with respect to z.
The input is then a line of impulses along the z-axis, and the wave front is
the surface of a cylinder. After an initial delay, an observer at a fixed point
would detect the singularity caused by the impulse that originated at the
nearest z-axis point. After that, the impulses from further up and down the z
axis are detected, with decreasing amplitude because of increasing distance.

In one dimension we have
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> u:=(x,t)->Heaviside(t-abs(x))/2;
1 .
u:=(x,t)— > Heavisidét — |x|)
> for t in [2,4,6] do

> display({waveplot(t),wavetext(t)})
> od,

0.67

0.4 =2

0.27

-10 -8 6 -4 -2 0 2 4ro6 8 10

0.67

0.47 =4

0.27

-10 -8 6 -4 -2 0 2 4ro6 8 10

0.67

0.4+ =6

0.27

-10 8 6 -4 -2 0 2 4ro6 8 10

We see how the solution is a jump discontinuity that propagates with unit
speed. The solution remains constant after the jump has passed. Again,
Huygens'’s principle does not hold.

The interpretation of the solution using the method of descent is that in
three dimensions the input is a plane of impulses. The observer detects a
jump when the impulse from the nearest point on the plane arrives. The
impulses from other points of the plane arrive later. The solution remains
constant, as attenuation effect due to greater distance is exactly balanced by
the larger number of impulses that arrive.
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Exercises

1. Provethat if v(x, t) isthe solution of the Cauchy problem

Lv —eX)vy — vy = eX)IX)H(t)
v(X,00 = 1(x)
n(x,00 = 0
withtimeinvariant £, B, and e, thenu := /g v(t —t’) dt’ isthe solution
of
LUu—eX)u—uy = 0
ux,0 = 0
ur(X,0 = 1)

2. Find and plot the solution of the one dimensional wave equation
Cauchy problem cuy, — Uy = O with initial conditions u(x, 0) =
a Sin(wX), Uy (X, 0) = 0. Interpret the solution as a standing wave and
find itsamplitude, frequency, and nodes. Repeat for the Cauchy prob-
lem c?u,, — Uy = O with initial conditions u(x, 0) = 0, u;(x, 0) =
a sin(wx) and for the Cauchy problem cuy, — Uy = —a Sin(wX) with
initial conditions u(x,0) = 0, u(x,0) = 0. Here c is a positive
constant (the speed of propagation); arescaling of the time variable
reduces the wave equation to the form studied in Example 2.

3. Usethetwo formulas for the Green’s function from examples 2 and 3
to find the value of u(3, 2) when the function u(x, t) isthe solution of
the vibrating string problem
Uy — Ut =2 0O<x<1t>0)
ux,0) =u;(x,00=0 0O<x<l
u@©O,t) =u@,t)y=t (t=>0

4. Prove Theorem 4.6.

5. For the wave equation problem uy, — Uiy = 00on (0, co) x (0, co) with
boundary condition u(0, t) = Oand initial conditionsu(x, 0) = k(x),
ut(x, 0) = I (x), derive a solution formula analogous to d’ Alembert’s
solution.

6. Find the solution of the classical wave equationinR" forn =1, 2, 3
with zero initial conditions and input d(x,t) = —3§(X) Sin(wt)H(t).
Plot its value as afunction of time at various fixed observation points.
Show that in two dimensions, the solution tendsto a standing wave of
the form

u(r )_i o Sin(wlr)
> ° _271/1 o2 -1

According to this result, a stationary observer eventualy does not
detect any oscillation!

1
d8 = 7 Jo(wr)
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7. Using the Laplace transform pair [3, p.250]

—7/5(5+0)
(5] /
\/ﬁ = H(t — t)e_“t/zlo(ot t2 — 'L'z) ('L' > O, o > O)

find and plot the Cauchy problem’s Green’s function for the one di-
mensional classical wave equation with aconstant damping coefficient
e. Does the addition of damping affect the range of influence?

8. Used’ Alembert’sformulato solve the onedimensional classical wave
equation Cauchy problem with no input (d = 0), zero initial velocity
(I = 0), andinitial shapek(x) = H(1— 2|x]|) cos(zrx). Plot snapshots
of the solution at various fixed times.

9. Let F be the Green’s function for a wave equation in an unbounded
domain. A boundary operator B for a finite domain Q2 that satis-
fies BF = 0 is called an absorbing boundary for this wave equa-
tion, since the solution inside the domain is identical to the solu-
tion for an unbounded domain. In transmission line theory this is
called amatched impedance. Thereisno reflection of wavesfromthis
boundary: impinging waves are completely absorbed. Show that the
absorbing boundary condition for a one dimensional classical wave
equation on 0 < x < 1isgiven by the Robin boundary conditions
Ut (0,t) —uy(0,t) = 0and u; (1, t) + uy(1,t) = 0.
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Chapter 5
First Order PDEs

5.1 SingleQuasilinear First Order PDE in Two
Variables

5.1.1 Characteristic Curves

A quasilinear first order PDE for afunction u(x, y) of two variables hasthe
form
a(x, y, Wux + b(x, y, wuy = c(x, y, u) (5.1)

If ¢ = 0 the PDE is homogeneous. If a and b do not depend on u then it is
almost linear. If additionally c islinear in u then the PDE islinear.

Letr := [X, Y, Z] denote position in R3. The vector field a(r) given by
a := [a(r), b(r), c(r)] is caled the direction field of the PDE. We assume
that aiscontinuoudly differentiablein some domain. Also, to ensurethat the
PDE does not degenerate to an algebraic equation, it is assumed that a(r)
and b(r) are not simultaneously zero anywhere in this domain.

Geometrically, asolution of the PDE (5.1) isasurface

Z=u(x,y) (5.2)

called an integral surface of the PDE. It is a level surface of the scalar
field F(r) := u(x,y) — z. A normal to the integral surface is given by
VF = [uy, uy, —1]. The PDE (5.1) rewritten in the form

a-[uy,uy, =1 =0 (5.3)

can then be interpreted as saying that the normal of an integral surface is
orthogonal to the direction field a. In other words, an integral surface is
tangential to the direction field.

Thefield lines of avector field are curves that are everywhere tangential
to the vector field. A curveTl : r = R(t) isafield line of the PDE direction
field aif it satisfies a vector ODE of the form

dR
5 = koa®) (5.4)

103
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where k(t) is a continuous function that is nowhere zero. Field lines of the
PDE direction field are called characteristic curves.

From ODE theory we know that when a is continuously differentiable
thenfor every point r o of the domain there isaunique curve satisfying vector
ODE (5.4) and containing r 5. Thefamily of solutionsfor (5.4) hasthreefree
constants, corresponding to the three component ODEs. However, one of
these constants can be related to the curve parametrisation without changing
the curves, as follows. Consider the new curve parametrisation s = o (t)
with ¢’ = k. Denoting Ro o := R and a0 R := a, the ODE (5.4) is
transformed into ~

95—‘@ (5.5)

ds aR) '
This ODE isautonomous, that is, the parameter s does not appear explicitly
inthe right hand side. Consequently, R(s) and R(s— C) give the same curve
for any constant C. This C corresponds to one of the three free constants of
thefamily of solutionsof theautonomous ODE (5.5). The curvesthemselves,
whose shape is independent of the parametrisation, are thus specified by the
two remaining constants.

Another way of seeing why the characteristic curves make up a two
parameter family is to write the ODE system (5.4) in the form

dx _dy dz
ax,y,z bx,y,z2 cXxY,2)

(5.6)

This is an abuse of notation, since some of the denominators may be zero.
However, thisformal defect can always be corrected: if a # 0, (5.6) can be

rewritten as

dy b(x,y,z) dz c(x,y,2)

dx ax,y,z)’ dx a(x,y,z)
and similarly if b # 0. However, (5.6) is a customary and convenient way
of writing the system. Since there are now two ODEs, the solution set is a
two parameter family of curves.

In the case of an almost linear first order PDE
a(X, y)ux + b(X, Y)Uy = C(X’ y’ U)

the characteristic ODEs (5.6) are

dx  dy dz
ax,y) bx,y) cx,Y,2)

The first of these equations can be solved for the projections of the charac-
teristic curves onto the xy plane, which are called base characteristic curves
of the PDE. The z component of the characteristic curves is then found by
solving the remaining ODE.
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Example 1
For the linear first order PDE

the direction field isX, vy, z]. These vectors are all pointing away from the
origin.

,/ 7\\
with(plots):

a:=(x,y,2)->[x,y,z]:
fieldplot3d(a(x,y,z),x=-1..1,y=-1..1,z=-1..1,
grid=[5,5,5],axes=normal,orientation=[49,63]);

V V. V V

G %
If we choosek(t) = 1/t then the three ODEs that define the characteristic
curves are
> k:=t->1/t: )
> r:=[x,y,z]:
> for i from 1 to 3 do
> ODE[i]:=diff(r[i](t),t)=k(t)*a(x(t),y(t),z(t))[i]
> od; ; ®
X
=y YO
ODE, = - y(t) = =
Z(1)

ol
ODE3 = & Z(t) - T

\_ )

The general ODE solution is

'/> gensol:=dsolve({ODES},{x(t),y(t),z(t)},explicit);

gensol:= {y(t) =t _C2 x(t) =t C1, z(t) =t _C3}
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Letting C; = 1 givesthefollowing family of characteristic curves.

> Characteristics:=subs(gensol, Cl1=1,[x(t),y(t),z(t)]);

Characteristics:= [t, t .C2, t _C3]

Thesecharacteristic curvesare parametrised by t; different curvescorrespond
to different values of the two constants C, and Cs.
l

If a surface of the form z = u(x, y) isaunion of characteristic curves,
then it is an integral surface, since it is tangent to the PDE direction field.
The converse also holds: any integral surface is the union of characteristic
curves. Thisfollows from the following

Theorem 5.1 Through every point of an integral surface there passes a
characteristic curve contained in the surface.

PrOOF. Let ¥ : z = u(X, y) be anintegral surface, let ro beapoint on %,
andlet " : r = r(t) be the characteristic curve passing through it, so that
r(tg) = ro. Defining U () := u(x(t), y(t)) — z(t), we have

du
dt

dx dy dz
= (XM, yO) g +uyxO. yO) G —

= [ux(X, y)a(x,y, 2) + uy(x, y)b(x, y, 2) — c(X, y, 2)]k(t)
[ux(X, y)a(x, y, u(x, y) — U) + uy(x, y)b(x, y, u(x, y) — U)
- C(X’ y’ U(X’ y) - U)]k(t)

The last line, with x = x(t) andy = y(t) given by I', isan ODE in U (t).
Sincer(tp) € X, wehaveU (tg) = 0, which servesasinitial condition for the
ODE. Substituting U = 0 into the right hand side of the ODE gives (5.3).
Thus the zero function is a particular solution of the ODE. Since the ODE
solution isunique, we haveU = 0, thusT" iscontained in . m

As aconsequence of theorem 5.1, two integral surfaces that have a point
ro incommon will intersect along the characteristic curvethat passesthrough
ro. The converseisalso true:

Theorem 5.2 The intersection curve of two integral surfaces is a charac-
teristic curve.

Proor. Consider two integral surfaces that intersect along acurveI'. By
this we mean that the two surfaces have distinct normals along the curve I'
of common points. At any point of I", the surfaces’ distinct tangent planes
both have to contain a. Since the intersection of the tangent planes is the
tangentto I', I istangential to a, and so I' is a characteristic curve. m
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Example 1 (continued)
Setting C3 = 1in the general solution for the characteristic curves gives the
family of solutions

X/z=C1 Yy/z=C,
Thiscan beinterpreted asthe set of intersection curvesof theintegral surfaces
ui(x,y) ;= x/Cy and ux(x, y) := y/C,. These integral surfaces are the
level surfaces of the scalar fields F1(r) := x/zand F,(r) :=y/z

5.1.2 Cauchy Problem

The Cauchy problem for the first-order quasilinear PDE (5.1) isto find the
integral surface that contains a given smooth curve

Fo:r=1(s) =[f(s),9(5), h(s)]
Thisis called the initial curve, and the equation
u(f(s), g(s)) = h(s)

is called the initial condition. In many applications y representstime t and
the initial condition is written u(s, tp) = h(s). In this case the Cauchy
problem iscalled aninitial value problem.

The basic idea for solving the Cauchy problem is as follows. For every
point f(s) on initial curve I'y, find the characteristic curveI" : r = R(t, S)
that passes through the point. Thisis done by solving a vector ODE similar
to (5.4), namely

R

T kt)a(R)
where k is an arbitrary continuous nonzero function. The ODE initial con-
ditionisR(ty, s) = f(s). The set of ODE solutions

R(t,s) =: [X(t,9), Y(t,9), Z(t, 9)]

defines a surface in space parametrised by s and t.
To find the integral surface in the form (5.2), we need to solve the base
characteristic curves equations

X = X(t,s), y=Y(,9) (5.7)
fort and s. Thisgives

t=T(Yy), s=SX,Y)
The integral surface isthen given by

ux, y) = Z(T(x,y), S(X, ¥))
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Example 1 (continued)
Continuing with the PDEx u, 4+ y uy = u, consider the Cauchy problem
with initial conditionu(s, 1) = h(s). The initial value ODE problem is

> sol:=dsolve({ODES,x(1)=s,y(1)=1,z(1)=h(s)},

> {x(1),y(t),z(t)},explicit);
L sol:= {x(t) =ts, y(t) =t, z(t) = th(s)}
Solving forz in terms ofx andy gives

> solve(subs(z(t)=z,x(t)=x,y(t)=y,sol),{z,s,1});

(t=y, z=yhC). s= -}
’ y” y

Verify thatu(x, y) = yh(x/y) satisfies the PDE and the initial condition:

"> U=(xy)> y*h(xly): )

> is(x*diff(U(x,y),x)+y*diff(U(x,y),y)=U(x,y));

true

> is(U(s,1)=h(s));

true

The Maple functionPDEplot plots the solution of the Cauchy Prob-
lem using numerical ODE integration algorithms such as the Runge-Kutta
method. For example the solution when the initial conditianss 1) = e
is plotted as follows.

> with(DEtools):
> h:=s->piecewise(s<0,exp(s),s>=0,exp(-s)):
> PDEplot([x,y,u(x,y)l,u(x,y),[s,1,h(s)],s=-2..2,
> x=-2..2,y=1/2..2,u=0..3,numchar=19,style=patch);
3,,
2.5¢
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Notice how the kink inh(s) = eI at s = 0is propagated along the charac-
teristic curve {[0, t, t]|t € R} that passes through f(0) = [0, 1, 1]. Because
of the kink, thisisonly a solution in the weak sense.

|

By the implicit function theorem, a solution for (5.7) existsin a neigh-
borhood of apoint (ty, S) on theinitial curve provided that the jacobian

X aX

at  ds

at  ds
IS nonzero at that point. When D(tp, ) # 0, the solutions T (x, y) and
S(x, y) exist and are continuously differentiable in a neighborhood of the

point [ f (o), 9(s0)]-
At apoint s = s on theinitial curve we have

Xilto, S0 Xslto. %) | _ g [ K(Walf(20))  f'(5)
Yilto. S0 Ys(to, o) ktob(f(%) g'(so)

Then, the condition D(ty, o) # O is equivalent to the condition that the
vector [a, b]" is not paralel to vector [ f’, g']". This can be interpreted
geometrically asrequiring that the projection of theinitia curve onto the xy
plane is not tangential to the base characteristic curve.

If D(to, So) = O, then the Cauchy problem has no solution or an infinity
of solutions. Thisisthe content of the following two theorems.

Theorem 5.3 If D(tg, ) = 0, then the Cauchy problem is not solvable
unlesstheinitial curveistangential to thecharacteristiccurveatrg := f(s).

PROOF. If D(tg, ) =0, [ f'(%0), 9'(S0)] isparale to[a(rg), b(ro)], that is,
[f'(s0), 9'(S0)] = «[a(ro), b(ro)]

for somenonzero constant «. Let u(x, y) beasolution of the Cauchy problem
for the quasilinear PDE (5.1). Differentiating the initial condition

h(s) = u(f(s), g(s))
with respect to s gives
h'(s) = ux(f(s), 9(s)) F'(s) + uy(f(s), 9(s)g'(s)
At (S0, tg) this becomes

h(s) = ux(f(s),9(s))f'(s0) + uy(f (%), 9(S0)) g (S0)
Ux (f(s0), 9(s0)[ka(ro)] + uy(f(s), 9(so))[xb(ro)]
= kC(lp)
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Thus
[f'(s0), 9'(%0), N ()] = «[a(ro), b(ro), c(ro)]

so that theinitial curveistangentia to the characteristic curve. m

Theorem 5.4 If theinitial curveis a characteristic curve then the Cauchy
problem has an infinite number of solutions.

Proor. Choose any point ro on the initial curve I'y, and take any smooth
curveI'; that includesr and that is not tangential to the characteristic curve
[y a ro. Then the xy plane projection of I"; is not tangentia to the base
characteristic curve at r, so the Cauchy problem with initial curveI'; hasa
solution. Since this integral surface includes the characteristic curve Iy, it
also solves the original Cauchy problem. m

Example 1 (continued)
Consider a Cauchy problem with the x-axis asinitial base curve.

> h:=h'": f:=s: g:=0:
> Ganma[0]:=[f, g, h(s)];

I'o:=[s, 0, h(g)]

The condition for existence of a unique solution isthat the following deter-
minant is nonzero:

> J:=array([ [ a(f,g,h)[1], diff(f,s) ],
> [ a(f,g,h)[2], diff(g,s) 11);

w[et]

0

> linal g[det](J);

Since the determinant is zero, the Cauchy problem is only solvableif I'g is
tangential to the characteristic direction field, that is, the cross product of the
curve tangent with the direction field should be zero.

> Tangent: =map(r->di ff(r,s), Gamma[0]);
0
Te t:=|(1 0, —h
angent := [ 1.0. 2_his) |

> DirectionFiel d:=a(op(Gamma[0]));

DirectionField :=[s, 0, h(s) ]
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> |inal g[crossprod] (Tangent, DirectionFi el d);

0
[O, <a—sh(s)) s — h(s), O}

Thus, for example, the initial condition u(s, 0) = 0 is admissible, that is,
h = 0 and I'y is the x-axis. To solve this Cauchy problem, we choose the
following curve that passes through I'o:

> Ganmg[ 1] : =[ 1, si gma, C*si gny] ;

' :=[1, o, Co]

This curve is not characteristic, since the cross product of its tangent with
the characteristic direction vector is nonzero:

> Tangent: =map(r->di ff(r,s), Ganma[ 1]);
Tangent:=[0, 1, C]
> DirectionField:=a(op(Gamma[ 1]));
DirectionField:=[1, o, Co ]

> |inal g[crossprod] (Tangent, DirectionFi el d);

[0, C, —1]

Solving the initial value ODE problem for the Cauchy problem with initial
curveI'; gives

> sol : =dsol ve({ODES, x(1) =1, y(1)=sigm, z(1) =C*si gna},
> {x(t),y(t),z(t)}, explicit);

sol :={y(t) =to, z(t) =tCo, X(t) =t}

The integral surface isfound by solving for z as afunction of x and y:

> sol ve(subs(z(t)=z,x(t)=x,y(t)=y,sol),{z,sigm,t});

y
t: :C’ = —
{t=x,z=Cy, o0 ="}

There are infinitely many solutions of the form u(x, y) = Cy, one solution
for every value of C. Verify that they all satisfy the PDE and the initial
condition:

> U =(x,y)-> Cry:
> is(x*di ff(U(x,y),x)+y*di ff(U(x,y),y)=UX,y))
> and is(U(s, 1)=0);

true
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5.2 SingleQuadlinear First Order PDE in n In-
dependent Variables

5.2.1 Generalisation ton Independent Variables

The generalisation of results of the preceding section to more than two inde-
pendent variables is essentially just a matter of notation. A quasilinear first
order PDE for afunction u(x) of n variables has the form

ax, u) - Uy = c(x, u)

with a nowhere zero.
The Cauchy problem is the search for an integral surface

Z=U(x)
that contains the initial n — 1-dimensional manifold
[g:r =1(9)

where the parameter s ranges over some domain in R"1. The Cauchy
problem solutionisconstructed by first solving the characteristic ODE system

IR _ a(R)
o KO [ c(R) ]

with initial condition
R, §) = [ o }

The ODE solution is

R(t,s) = [ X(L,s) }

Z(t,s)
If the jacobian
D(to, s0) := det| k(to)a(f(s0), (o)) fs(%o) |
isnonzero, then the equationsx = X(t, s) can be solved (at least locally) for
t =T(X), s= S(X)
and the integral surface is given by

u(x) = Z(T(x), S(x))
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5.2.2 Conservation Laws

The conservationlawisanimportant example of aquasilinear PDE in several
variables. Let thescalar field u(x, t) represent the density of some substance
inadomain €2, and let the vector field g represent the flux density, givenin
units of substance per unit volume per unit time. If there are no sources or
sinks then any decrease in the amount of substance must be accounted for
by a flow out through the boundary of the domain. Since the total amount
is [o udV while the net rate of flow out of the domain is [, g - ndS, this
requirement can be written

d
—— dv = -ndS
dt Ja ) iTe) g
Assuming that the domain €2 does not vary in time, the time differentiation
can be carried into theintegral. Also, the divergence theorem can be applied
to theright hand side. This givesthe integral equation

au
/<—+V-q)dV:O (5.8)
Q \ dt
Since 2 can be any source-free volume we must have
au
—+V.q=0
ot + g

This isthe conservation law. When the flux g is a given function of density
u, the conservation law gives the first order quasilinear PDE

U +q'u)-ux=0 (5.9)

whereq’ := dg/du.
The ODEs for the characteristic equations withk = 1 are

dx . dt dz
EZQ(Z), E—l, E—O

The ODE initial conditionscorresponding to the PDE Cauchy problemiinitial
condition u(s, 0) = h(s) are

X(0) =s, t(0) =0, z(0) = h(s)
Solving the characteristic ODES gives
X=q@1t+s t=1, z=h(9

Combining these gives
z=hx—-1tq'(2)

Solving thisfor z gives the integral (hyper-)surface z = u(x, t).
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To verify that this solution is correct, first differentiate both sides of

u=hx-tq(u)) (5.10)
with respect to t:
au n doh 9 ,
= L b o)
n. dh .
= 2 gx, TH W —tafu]
= —hy- q —tuthy - "
which can be solved to give
—hx . q’
= 511
Ut 1+the-q" ( )
Differentiating (5.10) with respect to x; gives
au n oh d
— = - —t
9% ; dXj 0Xi [ 9 (u)]
N, 9h
— — & —ta’u
;axj [ TR u,]
n
= hi — tu; Zhqu{/
j=1
This can be written in vector form as
ux = hy —t(hx - q")ux
Solving gives
hx
= 512
Ux 1+the-q" ( )

Equations (5.11) and (5.12) show that the PDE (5.9) is satisfied provided
that the denominators do not vanish.

If the denominator in (5.11) and (5.12) does vanish, then a singularity
appearsin the solution. These singularitiessignal the onset of shocks, which
areregionswheretheintegral surface ceasesto be singlevalued asafunction

X
of [ f[( } although it continues to be asingle valued function of [ t } The
shock first appears at the time ’
min -1
S q"(h(s) - hs(s)
Thiskind of loss of solution uniquenessis called a gradient catastrophe.
To model the solution in the shock region, the integral form of the con-

servation law (5.8) is used instead of the PDE, leading to so-called weak
solutions. Thisis beyond the scope of this course.

tcriti cad =
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Example 2

In a classic continuum model for the flow of traffic in a one-lane highway,
the density (number of cars per unit distance) is denotgdt) and the flow
rate (number of cars per unit time) is denotgd). The conservation law is

"> PDE:=diff(u(xt),t)+diff(q(u(x,t)),x)=0;

(2 8 _
PDE .= (at u(x, t)) + D(Q)(u(x, 1)) <8x u(x, t)) =0

A simple model for the traffic is to assume that the speed decreases lin-
early with the density until, at some critical density,, the speed is zero.
The flow rate is the product of density and speed.

> speed:=v_max*(1-u/u_jam);

speed= v_.max(1l — )

u_jam

\Y

g:=unapply(speed*u,u);

u
=u v_max(l— — u
q - ( u_Jam)

\Y

v_max:=100: u_jam:=200:
plot(speed,u=0..200,labels=[u,’speed’]);
plot(g(u),u=0..200,labels=[u,‘q(u)]);

VvV Vv

100 5000

speed q(u)

0 u 200 0 u 200

Suppose that the initial car density is given by the following profile,
which describes a transition from low density to high density.

(> h:=s->20+40*(arctan(s/20)+Pi/2):
> plot(h,-100..100,view=[-100..100,0..150],
> labels=['s",'h(s)]);

120
h(s

-100 0 S 100

\ /
AN /

UsingPDEplot to solve the initial value problem, we see that the solution
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becomes multiple valued.
/

> with(DEtools):

> PDEplot(PDE,u(x,t),[s,0,h(s)],s=-200..200,t=0..1.5,
> x=-200..200,u=0..300,style=patch,

> orientation=[150,65]);

3007
2501
2001
u(x30¢
100+
501

208

We can see more clearly where the shock develops when we look at the base
characteristic curves.

/> PDEplot(PDE,u(x,t),[s,0,h(s)],s=-200..200,t=0..1.5,

> x=-200..200,u=0..300,style=patch,
> orientation=[150,65],basechar=only);

3007
2501
2001
u(x30¢
100+
501

208 —

—_———

d 0
- 06 ‘Y
100 1712 1 08

-200

The shock begins at

> t_critical:=minimize(-1/(D(h)(s)*(D@ @2)(q)(h(s))));

t_critical := !
_ =3




Section 5.3, Systems of First Order PDEs 117
5.3 Systemsof First Order PDEs

5.3.1 Notation and Classification

A system of quasilinear partial differential equations in the m dependent
functions u of n independent variables x has the form

Xn:Ai(x, u)% = C(X, U) (5.13)
i=—1 i

where the m x m matrix A; and m-vector ¢ have continuously differentiable
elements in some domain  C R™™". The left hand side is called the
principal part of the system. If the coefficients A; do not depend on u then
the system is called almost linear. If in addition cis linear in u then the
systemiscalled linear.

Just as in ODE theory, a single quasilinear PDE of high order can be
reduced to a system of first order PDEs by introducing new variables. The
following exampleillustrates this.

Example 3
The damped one-dimensional wave equation

wxx—ewt—wttzo

can be converted into a system of two first-order PDEs by introducing the
variables u; = wy, U, = wy, SO that the wave equation is

3 3
—u;——Uu, =0
at - 9x Z

8U 8U— eu
at 2 ax t 2

This can be written as a system of the form (5.13) with | as the coefficient
of uy,

> A =matrix(2,2,[[0,-1],[-1,0]]);

e[ 2]

as the coefficient of uy, and

> c:=vector(2,[0,-e*u[2]]);

c:=[0, —euy]
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An n — 1-dimensional manifold I" is said to be a base characteristic if
the partial derivatives of u are not determined uniquely from the data on the
manifold and the PDE (5.13). This occurs whenever the manifold’s normal
vector B issuch that ' ; BiA; issingular, so that the homogeneous matrix
equation

(i ﬂiAi) p=0 (5.14)
i=1

admits anontrivial solution p. For thenif {uy } isasolution of (5.13), sois
{uyx, + afip}, for any constant «.

This definition of a characteristic manifold is consistent with the defini-
tion of earlier sections. There, abase characteristic manifold was defined as
one whose tangent dx/dt is parallel to the vector field a, that is,

dx
i k(t)a(t)

Since the manifold’s normal is orthogonal to the tangents, we have
n
B-dx =B (kadt) = (Zﬂi&') kdt =0
i=1

and thisis the form of (5.14) when the system consists of asingle PDE.
When timeisinvolved it isnatural to write the system of quasilinear first
order PDEs in the form

ux,t)y & au(x, t)

BOXt, W)= + D A, t,u)
i=1

=c(X, t, u) (5.15)

instead of the form (5.13). Henceforth we shall only be dealing with this
type of PDE system.

The base characteristicsfor (5.15) are determined by an equation similar
to (5.14), which can be written in the form

ABp = <i;,3iAi) p (5.16)

This is a generalised eigenvalue problem for an eigenvalue A and corre-
sponding eigenvector p. The tangent to the base characteristic manifold
then satisfies

B -dx = Adt (5.17)
Thesystem (5.15) issaidto behyperbolicat apoint (x, t, u) if Bisnonsin-
gular and if, for any nonzero assignment of the real parameters 4, . . ., Bn,

the generalised eigenvalue problem (5.16) has m real eigenvalues and m
real linearly independent eigenvectors. A hyperbolic PDE system is thus
characterised by having afull set of m real distinct base characteristics. In
particular, if there are m distinct eigenvalues then thereisafull set of m real
linearly independent eigenvectors.
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The single quasilinear first-order PDES studied in the previous sections
are hyperbolic. To show this, assume a; # 0 and rename a; =: b, X; =: t;
the eigenvalue isthen

_ Bt -+ P

A
b

and the eigenvector is 1.
The stipulation that B be nonsingular ensures that Cauchy problemswith
initial conditions of the form

u(x, tp) = h(x)
are solvable. The initial manifold hereisT'y : t = t;. The normals to this

manifold are of the form
vl 1
Bl | O

Substituting thisinto (5.16) gives
Bp=0

which has no nontrivial solution. Thus this initial manifold is not a base
characteristic.

For a hyperbolic system there exists a real diagonal matrix A and a
nonsingular matrix P such that the diagonalising decomposition

(éﬁiAi> P = BPA

is possible. The diagonal elements of A are simply the eigenvalues of the
generalised eigenvalue problem (5.16) and P is a matrix whose columns are
the corresponding eigenvectors.

Example 3 (continued)
The eigenvalues of A for the one-dimensional wave equation are

> with(linalg):
> eigenval s(A);
-1, 1

Since the eigenvalues are real and distinct, the system is hyperbolic.
A diagonalising decomposition is given by

> eA: =ei genvects(A);
eA:=[-1 1 {[1, 1}], [L 1, {[-1, 1}

> P:.=transpose(matrix(2,2,[seq(op(eAi][3]),
> i=1..2)1));

S
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Verify that this change of variables diagonalises the coefficient matrix.

> Lanbda: =li nsol ve(P, mul tiply(A P));

s=[31]

5.3.2 Canonical Form of Hyperbolic Systemsin Two Inde-
pendent Variables
We now focus on first order hyperbolic PDE systems in two independent

variables, that is, one spatial variable x and timet. Without lossof generality
we can take B = |, so that the system has the form

U (X, t) + AX, t, Wuy (X, t) = c(x, t, u) (5.18)

For simplicity, we shall only consider hyperbolic systems in which A has
m distinct rea eigenvalues in some domain Q@ € R™?2, Then A has the
diagonalising decomposition

AP = PA

where P(x, t, u) isareal orthogonal matrix of eigenvectorsand A(x, t, u) is
adiagonal matrix of eigenvalues.
Introducing the new variables

v:=Plu
into (5.18) gives
Pvi + Piv + A(Pvy + Pyxv) =cC

Premultiplying both sidesby P~* and introducing d := P~(c— P,v— AP,V)
gives

Vi + Avy = d(X, t, V) (5.19)
Thisisthe canonical form of the PDE system (5.18), in which the dependent
variables in the principal part are decoupled.

Example 3 (continued)
Introduce new variables to bring the first order PDE system for the one-
dimensional wave equation into canonical form.

> u:=vector(2):
> v=linsol ve(P, u);

EPRETE T
v= |2 —Up, —= =
R R R
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> v:=vector(2):
> u: =eval m( P& v);

u = [v1 — v2, v1 + v2]

\

d: =l'i nsol ve(P, c);

d'—[—}e( + )—}e( + )}
= > v1 T V2), > V1 T V2

> for i from1l to 2 do
> PDE[i]:=Diff(v[i],t)+Lanbdali,i]*Diff(v[i],x)=d[i]

> od,
a d
PDE]_ = (& 'U]_) — (& U]_)

Gl 0 1
PDE, = (a Uz) + (& U2> = 5 e(v1+ vp)

( )
e(vy1+v
2 1 2

Base characteristic curves for (5.18) can be described by equations of
theform x = f;(t), since curves parallel to the x-axis are not characteristic.
The m base characteristic curves are supposed to satisfy (5.17), which for
two independent variables reduces to

df;

dt
If the system isalmost linear, then the base characteristic directions A do not
depend on the solution u. For general quasilinear PDE systems, however,
the base characteristics are solution dependent.

The base characteristics can be used to transform a hyperbolic PDE
system into a system of ordinary differential equations, as follows. Let
V(1) := vj(f;j(t), t) bethevalueof the jth canonical solution variablealong
abase characteristic. Then differentiating along the base characteristic gives

:)\,j (j =1...,m)

de _ 8Ujdfj 31)]
dt  9x dt ot
. 8vj .+8UJ‘
T oax oot

= dj(f;0),t,v(fjt), 1)

These ODEs are used in the method of characteristics. When the original
PDEs is homogeneous and has constant coefficients, the base characteristic
directions are constant, and the canonical variables are constant along their
characteristics. The method of characteristics can then be used to find an
exact solution. Thisisillustrated in the following example.



122 Chapter 5, First Order PDEs

T T |

%o XoHo X

Figure 5.1: Base characteristics of one-dimensional wave equation.

Example 3 (continued)
For the one dimensional wave equation the two characteristic directions are
A = %1, so the base characteristics passing through (X, to) are the straight
lines
> dsol ve({di ff(f[1](t),t)=Lanbda[ 1, 1], f[1] (t0)=x0},
> fL1]1(t));

fi(t) = -t +t0+x0

> dsol ve({di ff(f[2](t),t)=Lanbda[ 2, 2], f[2] (tO0)=x0},
> fr2](t));

fo(t) =t —t0+ X0

If thereisno damping (e = 0), thecanonical equationwith Vy := vy (fy(t), t)
gives

dv;

@ =P

so that V; is constant along the base characteristic x = fy(t) (Figure 5.1).
Similarly, V, := v,(f,(t), t) is constant along the base characteristic X =
fa(1).

If theinitial values are given in theform

ux, 0) =k(x), u(x,0 =I1(x)
then we have
v1(Xo, to) = w1(Xo+to, 0)
= %[Ul(xo + 1, 0) + U2(Xo + o, 0)]

1
= é[kX(Xo +to) + (X0 + tO)]

and similarly

1
V2(Xo, to) = E[—kx(xo —to) +1(Xo — to)]
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The solution at (X, tp) isthen

wx(Xo, to) = U1(Xo, to)
v1(Xo, tg) — v2(Xo, to)

= S0+ 10) + ke — 0] + 51106 + 1) — 106~ o)
and similarly
wy (Xo, to) = %[kx(xo + to) — kx(Xo — to)] + %[I (Xo + to) +1(Xo — to)]
This agrees with the d’ Alembert’s formulafor the solution of an undamped

one dimensiona wave equation presented in chapter 4.
|

For general quasilinear PDE systems, the method of characteristicsis a
numerical method for integrating along the base characteristics. However,
because of difficulty of dealing base characteristics that are manifolds, the
method is not widely used for problems with more than two independent
variables. The treatment of shocks is also complicated in the method of
characteristics, especialy in higher dimensional problems.
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Exercises

1. Find the characteristic curvesfor the following PDEs.
(8 Xuy + y2uy = U
(b) xuy =1+ xu
() uuy+(y—wuy=1+4u
(d) uy =xyu

2. Multiplying both sides of the quasilinear PDE (5.1) by a nonzero
function d(x, y, u) doesn’t change the PDE. Show that it also doesn’t
change the characteristic curves, only their parametrisation changes.

3. Transform the PDE in Example 1 to polar coordinates and find an
expressionfor thefamily of characteristic curves. Thefamily of curves
should be the same asin Example 1.

4. Explain why the base characteristic curves of amost linear first order
PDEs don't intersect.

5. Show that the characteristic curves of
(X* — YUy + 2xyuy = 0
can be defined as the intersections of the two families of surfaces
x> +y*=2Cy, z=C,

where C; and C, are arbitrary constants. Describe these surfaces and
curves geometricaly.

6. Solve thefollowing Cauchy problems. Plot solutionswith PDEpI ot .
(@ uy+auy, =0, ux,0) = h(x) (« isaconstant.)
(b) yuy + Xxuy = U?, u(x,0) = e
(¢) ux —uuy =0, u(x,0) = x?
(d) uuy + uuy =1, U(SINSCOSS, COS’S) = SINS

7. An equation for water depth (measured relative to the rest state) in a
narrow shallow canal is given by the conservation law

3
(1+éu)ux+ut=0

Solve the Cauchy problem with initial condition
_ | e(4+cosx) —m <X=m
ux, 0) = { 0 otherwise

where 0 < € « 1isaconstant. At what time does the solution cease
to exist? Use PDEpl ot to plot the base characteristic curves of a
typical solution.
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8. If v(x, t) represents avelocity field then the acceleration field is given
by the convective derivative (see[5]) of v:

I:)v = (2 +Vv-V]v
Dt = \at
The velocity field of a set of particles moving in one dimension with
zero acceleration is therefore described by the PDE
vt +vvy =0

Use PDEpI ot to plot the base characteristic curves for variousinitial
velocity profiles such ash(x) = ax + 8, h(x) = €%, h(x) = sinx,
and find the value of t when a shock develops. The interpretation is
that when fast particles overtake slower ones, there isacollision.

9. Write the damped one dimensional wave equation
aUxx+bux+C—eUt — Ut =d

where all coefficients are functionsof x andt and a > 0, asa system
of first order PDEs of the form (5.18), and verify that the system is
hyperbolic.

10. Write the equations for one dimensional inviscid isentropic gas flow

ou ou 1ap

— 4+ u—+ — =0
6)tjL 8x+p8x

ap ap au

— 4+ u— — =0
8t+ 8x+p8x

ap ap , ou
—4+u—+cp— = 0
at TUax TCPux

as asystem of first order PDEs of the form (5.18), and verify that the
system is hyperbolic.

11. Write the Maxwell equations
Bt+CVXE:O, Et—CVXB:O

for time-dependent vector fields B and E as a system of first order
PDEs of the form (5.18), and verify that the system is hyperbolic.

12. The PDEs for one dimensional inviscid isentropic flow are given by

I 2
U + Uuy + (Z)p =0

pt+ pux+Upx = 0

where u(x, t) and p(x, t) are the velocity and density of agasin a
pipe, and c(p) > Oisagiven function. Find the canonical form for
this PDE system.
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