
31. Diffraction: a few important illustrations

Babinet’s Principle

Diffraction gratings

X-ray diffraction: 
Bragg scattering
and crystal structures

A lens transforms a Fresnel diffraction problem into a 
Fraunhofer diffraction problem

Diffraction and image resolution: the Rayleigh criterion



Diffraction regimes

Near field:  z  D or less

Fresnel diffraction: z >> D (paraxial)

Fraunhofer diffraction: z >> D2/ and z >> D 
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In the Fraunhofer regime, the diffraction 
pattern is a Fourier transform.

1

2

3

Note: this is the 
typical ordering of the 

regimes; if the 
aperture is smaller 

than the wavelength, 
then regimes 2 and 3

could be swapped.



Babinet’s Principle
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jkE x y x x y y Aperture x y dx dy
z

Fraunhofer diffraction is a Fourier transform:

A complementary aperture (one which is the inverse of the 
original one) must give a related diffraction pattern:

     0 0 0 1 0 1 1 1 1 1, exp 1 ( , )     
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Jacques Babinet
1794-1872

   0 0 0 0, , C AE x y E x yThus: at all points except x0 = y0 = 0



Babinet’s Principle in action

an array 
of holes

an array of 
anti-holes



The Diffraction Grating
A diffraction grating is a slab
with a periodic modulation
of any sort on one of its surfaces.

The modulation can be in
transmission, reflection, or
the phase delay of a beam.

The grating is then said to be
a transmission grating,
reflection grating, or
phase grating, respectively.

What happens when a 
plane wave illuminates 
an object of this sort?

A sinusoidal 
modulation

A square 
modulation



Diffraction Grating Mathematics

1 1 1( , ) cos(2 / )Aperture x y A B x a 

 0 1 0 1 1( ) cos(2 / ) exp ( )    
  jkE x A B x a x x dx

z


This is just the Fourier transform of a constant (A) plus a cosine Bcos(2x1/a):

x0 = z / a x0 = z / ax0 = 0

first order negative first orderzeroth order

a
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As an example, consider a sinusoidal modulation of the transmission:

where a is the "grating spacing."

 0 1 0 1 1( ) exp ( )jkE x Aperture x x x dx
z

   
 

The Fraunhofer diffracted field is:

(this is a one-dimensional 
aperture function, so we 
ignore the y1 integral)



Diffraction orders

0 /x z a

z

x0

0 0x 

0 /x z a 

1 0 / /x z a  

Because x0 depends on  for the +1 and 1 orders, different wavelengths 
are separated. 

The longer the wavelength, the larger its diffraction angle.
(except for zeroth order)

/z a

No wavelength 
dependence in 
zero order.

input plane wave



Diffraction Grating Mathematics:
Higher Orders
What if the periodic modulation of the transmission is not sinusoidal?

1 1 0 1 1 2 1 3 1( , ) cos(2 / ) cos(4 / ) cos(6 / ) ...    Aperture x y A A x a A x a A x a  

Since it's periodic, we can use a Fourier Series for it:

Keeping up to third order, the resulting Fourier Transform is:
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A square modulation is commonly used.  It has many orders.
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The Grating Equation
An order of a diffraction grating 
occurs if:

where m is an integer.

0[ / ] or
sin( )

 
  m

a x z m
a m

 sin( ) sin( )m ia m   

Remember that the diffracted angle can be negative, too.  But it cannot 
be larger than ±90°.

This equation assumed normal 
incidence and a small 
diffraction angle, however.  
One can derive a more general 
result, the "grating equation," 
using a tilted input beam:



Blazed Diffraction Grating
By tilting the facets of the grating so the desired diffraction order
coincides with the specular reflection from the facets, the grating
efficiency can be increased.

“Specular” means 
angle of incidence 
equals angle of 
reflection.

Input beam

Even though both diffracted beams satisfy the grating equation, one 
is vastly more intense than the other.

Efficient diffraction

surface normal

Inefficient diffraction



Diffraction from a periodic array: 
Bragg’s Law

We can also derive the grating condition by looking at the path length 
difference between waves scattered from adjacent sites in a periodic array.

This leads us to Bragg’s Law, for scattering of x-rays from crystalline 
materials.  This is really equivalent to the grating diffraction problem.

A periodic array of 
atoms in a lattice is 
illuminated by a plane 
wave.  Each atom 
produces a scattered 
spherical wave.

At a certain specific angle, 
the scattered waves 
interfere constructively, just 
as in the case of waves 
scattered from a grating.



X-ray Crystallography
The tendency of 
diffraction to expand the 
smallest structure into the 
largest pattern is the key 
to the technique of x-ray 
crystallography, in which 
x-rays diffract off the 
nuclei of crystals, and the 
diffraction pattern reveals 
the crystal molecular 
structure.

This is the standard 
method for determining 
the crystal structure of 
any solid. X-ray diffraction pattern from 

polycrystalline (left) and 
single-crystal (right) Cr2O3

crystal structure of Cr2O3



Application: Finding the structures of 
biomolecules Knowing where all the atoms are in a large 

molecule is difficult.  But it is crucial for 
understanding how molecules interact and 
function.

If you can persuade the molecules to form a 
crystal, that is, to arrange themselves 
regularly in space, then you can use x-ray 
diffraction to find the location of every atom.Fourier

transform

This idea is most important in biology.

the three-dimensional 
structure of penicillin

red = oxygen
blue = nitrogen
yellow = sulphur
green = carbon
white = hydrogenDorothy Crowfoot Hodgkin

1910 - 1994



The most important x-ray diffraction 
pattern in history

Data obtained by 
Rosalind Franklin, 1952.

Rosalind Franklin
1920 - 1958

Nobel prize obtained by 
Crick and Watson, 1962

Francis Crick
1916 - 2004

James Watson
1928 -



Diffraction treatment of a spherical lens
An ideal lens has unity 
transmission, but it introduces a 
phase delay in proportion to its 
thickness at a given point (x1,y1):

where (x1,y1) is the thickness at 
the point (x1,y1).  

1 1 1 1( , ) exp[ ( 1) ( , )]  lens x y j n k x y

 2 2 2
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where we have neglected constant 
(independent of x1, y1) phase delays.
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Compute (x1,y1):



In the focal plane, the diffraction problem is Fraunhofer
A lens is an aperture function with unity magnitude, but with a phase delay 

proportional to its thickness at a given point (x1,y1):

   2 2
1 1 1 1

1

1
( , ) exp
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n k
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1 1( 1)( / 2 ) ( / 2 )      or      1/ ( 1)(1/ )n k R k z z n R   

the quadratic terms x1
2 and y1

2 will cancel provided that:

But this is the Lensmaker’s Formula! The distance z which satisfies this 
condition is the focal length of the lens!

2 2
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Aperture

x x y y x yE x y jk lens x y dx dy
z z

If we substitute this result into the Fresnel (not Fraunhofer) integral:



A lens brings the far field in to its focal plane

If we look in a plane one focal length beyond a lens, we are in the 
Fraunhofer regime, even if it isn’t far away! So we see the Fourier 
Transform of any object that is in front of the lens.  

A lens in this configuration is said to be a “Fourier-Transforming lens.”

Object: an opaque 
screen with a 
square hole

Focal plane: 
sinc(x) * sinc(y)



A focused Gaussian beam produces a 
Gaussian spot at the focus.  But a focused 
plane wave produces an Airy pattern.

input: I(x1,y1) ~ Gaussian
in the Fourier plane: still 
Gaussian, but narrower: 
spot depends on winput

    0 0 1 1, ,Gaussian x y FT Gaussian x y

input: I(x1,y1) ~ constant

in the Fourier plane: an 
Airy pattern [J1()/2

    0 0 1 1, , ,  for   lensAiry x y FT const x y r R

The size of the Airy pattern is determined by the size of the lens.

(plane wave)



Application: resolution limit of a telescope

Consider a telescope looking at a distant star…

Fourier transform plane

In this case, the telescope pupil (the size of the lens) is the limiting 
aperture.   A plane wave illuminating this circular aperture produces 
an Airy pattern in the image plane.  The size of this image is 
determined by the size of the lens, D, and the focal length, f, 
according to:

 1.22 1.22 /# spot
f f

D
 

The angular spread  is given by spot/f, and therefore:

1.22  D 

an Airy pattern!
D



Application: resolution limit of a telescope

Now consider a telescope looking at two distant stars…

Fourier transform 
plane

Rayleigh criterion: it is possible to resolve the two stars when the 
peak of the Airy pattern of one coincides with the first minimum of 
the Airy pattern of the other one.

Thus, the telescope is able to resolve two stars if they 
are separated in the sky by at least an angle of: 

min 1.22  D 
Resolution can be improved by (a) decreasing , or (b) increasing D.



The Rayleigh criterion

Once again, Rayleigh is The Man…

John William Strutt, 
3rd Baron Rayleigh

1842 - 1919

“This rule is convenient on account of its simplicity and it is 
sufficiently accurate in view of the necessary uncertainty as to
what exactly is meant by resolution.”
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The Rayleigh criterion

These two Airy patterns are just barely 
resolved, according to Rayleigh’s criterion.

The Rayleigh criterion is a 
somewhat arbitrary definition of 
resolution.  There are other 
criteria that are also often used.

‘valley to peak ratio’ = 73% when 
the Rayleigh criterion is satisfied.

e.g., see the “Sparrow Criterion”



Application: resolution limit of a telescope

Hubble space telescope

In fact, Hubble usually achieves a resolution of about 0.1 arc-sec, 
which is about two times the diffraction limit.  This is limited by 
spherical abberation of the focusing mirror.

2.4 metersD

So, for green light, 

500 nanometers

the resolving power of Hubble is:

7
min 2.5 10  radians

0.05 arc-seconds

  




The size of the reflecting mirror in Hubble is:


