Chapter 4

T Puzzle

A classic puzzle demonstrates complex arithmetic.

@ Shop New Zealand

Figure 4.1. The wooden T puzzle. Photo courtesy of Shop New Zeland,
http://www. shopnewzealand. co.nz.

I first saw the wooden T puzzle shown in figure 4.1 at Puzzling World in
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Wanaka, New Zealand. They told me that it was their most popular puzzle. I have
since learned that it was a well-known toy in the 1800s and an advertising tool
in the early 1900s. The underlying mathematics involves geometry, trigonometry,
and arithmetic with complex numbers. The t_puzzle program in the exm toolbox
demonstrates some useful programming techniques.

Figure 4.2. The four pieces.

Figure 4.2 shows the electronic version of the four pieces. They all have the
same width, but different heights. One of them has an unshapely chunk cut out of
it, resulting in an irregular pentagon.

Figure 4.3. The T.

It turns out to be possible to arrange the four pieces to form the capital “T”
shape shown in figure 4.3, as well as the arrow and the rhombus shapes shown in
figure 4.4. What happened to those all of those 45° angles and what happened to
that chunk?

If you do a Google search on “T-puzzle” you can quickly see how to solve the
puzzle and form the T, but please try t_puzzle for a while before you go surfing
for the solution. If you click near the center of one of the four pieces, you can move



Figure 4.4. The arrow and the rhombus.

it horizontally and vertically. If you click near one of the vertices, you can rotate
a piece about its center. If you click with the right mouse button, or, on a one-
button mouse, hold down the control key while you click, you can flip a piece over
horizontally, changing its right/left-handed orientation. If you click in the subplot
on the lower left of the window, you can cycle through images of the three shapes.

The key to effecitive computation involving the T-puzzle pieces is the use of
complex arithmetic. A complex number is formed from a pair of real numbers and
the imaginary unit 4 = /—1. For example,

z2=3+4

The real part is 3 and the imaginary part is 4. This is the Cartesian represention
of a complex number.
Addition of complex numbers simply involves addition of the real parts and
of the imaginary parts.
(34+4i)+ (5—1)
= (3+5)+ (4i—1)
= 8+31
Multiplication of complex numbers is more interesting because it makes use
of the fact that 2 = —1.
(3+4i)-(5—1)
= (3-5+ (44)-(—4)) + (3 (—%) + (4i) - 5)
= (154+4)+ (-3 +20)i
= 19+17¢

A fundamental fact involving complex numbers is Fuler’s formula.
¢'® = cos ¢ + isin ¢

If you are not familiar with e or Euler’s formula, see our chapter on the “Exponential
Function” and the Wikipedia entry on “Euler’s Identity”. Or, you can just accept
the formula as convenient notation.
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Setting ¢ = 7 leads to

e = cosm+isinm
= -1

Moving the —1 to the left hand side produces a beautiful equation involving five
basic mathematical quantities, e, 7, m, 1, and O.

€T +1=0
The polar form of a complex number is
z=x+iy =re?

where

r = |z| = Va2 + y?

T = 7Cos¢
y = rsing

Our T puzzle program uses the fact that multiplication by e* rotates a com-
plex number through an angle 6. To see this, let

w = e
z = re'?
then
w-z=e? . ret? = peil0te)

In MATLAB the letter i is can be used in any of three different roles. It can
be an iteration counter,

for i = 1:10

or a subscript,
A(i,k)

or the imaginary unit.
z =3+ 4i

The polar form of a complex number z is obtained with the MATLAB functions
abs(z) and angle(z). The quantity e'® is written exp (i*phi). For example

z =3+ 41

r = abs(z)

phi = angle(z)
w = rxexp(i*phi)

produces



z =
3.0000 + 4.00001i
r =
5
phi =
0.9273
W o=

3.0000 + 4.00001

-1 0 1 2

Figure 4.5. The complex coordinates of the vertices are 0 4+ 0i, 1 + 03,
1+ 24, and 0+ 3i.

The largest of the four pieces of the T puzzle can be represented in MATLAB
by the statement

z = [0 1 1+2i 3i 0]

The vector z has five complex entires. The first two elements are 0 and 1; their
imaginary parts are zero. The third element is 1 + 2i; its real part is 1 and its
imaginary part is 2. After that comes 3i; its real part is zero and its imaginary part
is 3. The last element of z is a repeat of the first so that the line drawn by the
statement

line(real(z),imag(z))

returns to the origin. The result is figure 4.5.

With this representation, the translations and rotations required by the graph-
ics in t_puzzle can be programmed easily and efficiently. Translation is very easy.
The statement

z =2z - (3-1)/2

repositions the piece in figure 4.5 at one of the corners. Do you see which corner?
Rotations are also easily done. The statements
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-1 0 1 2

Figure 4.6. Rotating through multiples of nine degrees.

mu = mean(z(l:end-1))
theta = pi/20

omega = exp(ixtheta)

z = omega*(z - mu) + mu

rotate the piece about its center through 9° in the counterclockwise direction. Fig-
ure 4.6 shows the result of repeating these statements several times. Let’s look at
each step more carefully. The statement

mu = mean(z(1l:end-1))

drops the last element of z because it is a repeat of the first and then computes the
complex average of the coordinates of the vertices. This gives the coordinates of
what we can call the center of the polygon. The angle

0 =m/20
is 9° in radians. The statements

omega = exp(ixtheta)
z = omega*(z - mu) + mu

translate the piece so that its center is at the origin, do a complex scalar times
vector multiplication to produce the rotation, and then translate the result back to
its original center.

Exercises

4.1 Complex numbers. Express each of these numbers in polar form.
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—4
3—4i
8+ 15¢

Express each of these numbers in Cartesian form.

e—i‘n’
ezﬂ'/3
el

63

4.2 Stop sign. Try this for n = 8 and for other small integer values of n. Describe
and explain the results.

n =238

z = exp(2*pi*i*x(0:n)’/n)
plot(z,’-0?)

axis square

s = sum(z)

4.3 Strip. How many different ways are there to form the shape in figure 4.7 with
the T-puzzle pieces?

Figure 4.7. A strip.

4.4 Area. If the width of each of the T-puzzle pieces is one unit, what are their
areas?

4.5 Symmetry. Which one of our three shapes — T, arrow and rhombus — does not
have an axis of symmetry?

4.6 Jumpy rotation. Click near a vertex of one of the T-puzzle pieces and rotate
the piece slowly. You should see that the rotation is not smooth, but proceeds in
discrete jumps. Why? How large are the jumps? How does t_puzzle accomplish
this?

4.7 Snappy traslation. Drag one of the T-puzzle pieces until it is close to, but not
exactly touching, another. When you release the mouse button you sometimes see
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the piece snap into place. Under what circumstances does this happen? How does
t_puzzle accomplish it?

4.8 Rotation. Reproduce figure 4.6.
4.9 Revelation. Find t_puzzle’s hidden feature.

4.10 Different puzzles. Do a Google search on “T-puzzle”. Include the quotes and
hyphen in the search string so that you get an exact match. Some of the Web pages
have pieces with different sizes than the ones we have described here.

(a) How many different versions of the T-puzzle are there on the Web?

(b) Can you make all three of our shapes — the T, arrow, and rhombus — with the
pieces shown on these Web sites.

(¢) Modify our t_puzzle to use the set of pieces from one of the Web sites.



