
Chapter 15

Predators and Prey

Models of population growth.

The simplest model for the growth, or decay, of a population says that the
growth rate, or the decay rate, is proportional to the size of the population itself.
Increasing or decreasing the size of a the population results a proportional increase
or decrease in the number of births and deaths. Mathematically, this is described
by the differential equation

ẏ = ky

The proportionality constant k relates the size of the population, y(t), to its rate
of growth, ẏ(t). If k is positive, the population increases; if k is negative, the
population decreases.

As we know, the solution to this equation is a function y(t) that is proportional
to the exponential function

y(t) = ηekt

where η = y(0).
This simple model is appropriate in the initial stages of growth when there are

no restrictions or constraints on the population. A small sample of bacteria in a large
Petri dish, for example. But in more realistic situations there are limits to growth,
such as finite space or food supply. A more realistic model says that the population
competes with itself. As the population increases, its growth rate decreases linearly.
The differential equation is sometimes called the logistic equation.

ẏ = k(1− y

µ
)y
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Figure 15.1. Exponential growth and logistic growth.

The new parameter µ is the carrying capacity. As y(t) approaches µ the growth
rate approaches zero and the growth ultimately stops. It turns out that the solution
is

y(t) =
µηekt

ηekt + µ− η

You can easily verify for yourself that as t approaches zero, y(t) approaches η and
that as t approaches infinity, y(t) approaches µ. If you know calculus, then with
quite a bit more effort, you can verify that y(t) actually satisfies the logistic equation.

Figure 15.1 shows the two solutions when both η and k are equal to one. The
exponential function

y(t) = et

gives the rapidly growing green curve. With carrying capacity µ = 20, the logistic
function

y(t) =
20et

et + 19

gives the more slowly growing blue curve. Both curves have the same initial value
and initial slope. The exponential function grows exponentially, while the logistic
function approaches, but never exceeds, its carrying capacity.

Figure 15.1 was generated with the following code.

k = 1
eta = 1
mu = 20
t = 0:1/32:8;
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y = mu*eta*exp(k*t)./(eta*exp(k*t) + mu - eta);
plot(t,[y; exp(t)])
axis([0 8 0 22])

If you don’t have the formula for the solution to the logistic equation handy,
you can compute a numerical solution with ode45, one of the Matlab ordinary
differential equation solvers. Try running the following code. It will automatically
produce a plot something like the blue curve in figure 15.1.

k = 1
eta = 1
mu = 20
ydot = @(t,y) k*(1-y/mu)*y
ode45(ydot,[0 8],eta)

The @ sign and @(t,y) specify that you are defining a function of t and y. The t
is necessary even though it doesn’t explicitly appear in this particular differential
equation.

The logistic equation and its solution occur in many different fields. The
logistic function is also known as the sigmoid function and its graph is known as
the S-curve.

Populations do not live in isolatation. Everybody has a few enemies here
and there. The Lotka-Volterra predator-prey model is the simplest description of
competion between two species. Think of rabbits and foxes, or zebras and lions, or
little fish and big fish.

The idea is that, if left to themselves with an infinite food supply, the rabbits
or zebras would live happily and experience exponential population growth. On the
other hand, if the foxes or lions were left with no prey to eat, they would die faster
than they could reproduce, and would experience exponential population decline.

The predator-prey model is a pair of differential equations involving a pair of
competing populations, y1(t) and y2(t). The growth rate for y1 is a linear function
of y2 and vice versa.

ẏ1 = (1− y2

µ2
)y1

ẏ2 = −(1− y1

µ1
)y2

We are using notation y1(t) and y2(t) instead of, say, r(t) for rabbits and f(t) for
foxes, because our Matlab program uses a two-component vector y.

The extra minus sign in the second equation distinguishes the predators from
the prey. Note that if y1 ever becomes zero, then

ẏ2 = −y2

and the predators are in trouble. But if y2 ever becomes zero, then

ẏ1 = y1

and the prey population grows exponentially.
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We have a formula for the solution of the single species logistic model. However
it is not possible to express the solution to this predator-prey model in terms of
exponential, trigonmetric, or any other elementary functions. It is necessary, but
easy, to compute numerical solutions.
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Figure 15.2. A typical solution of the predator-prey equations.

There are four parameters, the two constants µ1 and µ2, and the two initial
conditions,

η1 = y1(0)
η2 = y2(0)

If we happen to start with η1 = µ1 and η2 = µ2, then both ẏ1 and ẏ2 are zero and
the populations remain constant at their initial values. In other words, the point
(µ1, µ2) is an equilibrium point. The origin, (0, 0) is another equilibrium point, but
not a very interesting one.

The following code uses ode45 to automatically plot the typical solution shown
in figure 15.2.

mu = [300 200]’
eta = [400 100]’
sig = [1 -1]’
ppode = @(t,y) sig.*flipud(1-y./mu).*y
pit = 6.5357
ode45(ppode,[0 3*pit],eta)
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There are two tricky parts of this code. Matlab vector operations are used to define
ppode, the predator-prey differential equations, in one line. And, the calculation
that generates figure 15.3 provides the value assigned to pit. This value specifies
a value of t when the populations return to their initial values given by eta. The
code integrates over three of these time intervals, and so at the end we get back to
where we started.

The circles superimposed on the plots in figure 15.2 show the points where
ode45 computes the solution. The plots look something like trig functions, but
they’re not. Notice that the curves near the minima are broader, and require more
steps to compute, then the curves near the maxima. The plot of sin t would look
the same at the top as the bottom.
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Figure 15.3. The predprey experiment.

Our Matlab program exm/predprey shows a red dot at the equilibrium point,
(µ1, µ2), and a blue-green dot at the initial point, (η1, η2). When you drag either
dot with the mouse, the solution is recomputing by ode45 and plotted. Figure 15.3
shows that two plots are produced — a phase plane plot of y2(t) versus y1(t) and
a time series plot of y1(t) and y2(t) versus t. Figures 15.2 and 15.3 have the same
parameters, and consequently show the same solution, but with different scaling of
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the axes.
The remarkable property of the Lotka-Volterra model is that the solutions are

always periodic. The populations always return to their initial values and repeat the
cycle. This property is not obvious and not easy to prove. It is rare for nonlinear
models to have periodic solutions. The predprey program uses a feature of the
Matlab ODE solvers called “event handling” to compute the length of a period.

If the initial values (η1, η2) are close to the equilibrium point (µ1, µ2), then
the length of the period is close to a familar value. An exercise asks you to discover
that value experimentally.

Exercises

15.1 Plot. Make a more few plots like figures 15.1 and 15.2, but with different values
of the parameters k, η, and µ.

15.2 Decay. Compare exponential and logistic decay. Make a plot like figure 15.1
with negative k.

15.3 Differentiate. Verify that our formula for y(t) actually satisfies the logistic
differential equations.

15.4 Easy as pie. In predprey, if the red and blue-green dots are close to each
other, then the length of the period is close to a familar value. What is that value?
Does that value depend upon the actual location of the dots, or just their relative
closeness?

15.5 Period. In predprey, if the red and blue-green dots are far apart, does the
length of the period get longer or shorter? Is it possible to make the period shorter
than the value it has near equilibrium?

15.6 Phase. If the initial value is near the equilibrium point, the graphs of the
predator and prey populations are nearly sinusoidal, with a phase shift. In other
words, after the prey population reaches a maximum or minimum, the predator
population reaches a maximum or minamum some fraction of the period later.
What is that fraction?

15.7 Pitstop. The predprey subfunction pitstop is involved in the “event han-
dling” that ode45 uses to compute the period. pitstop, in turn, uses atan2 to
compute angles theta0 and theta1. What is the difference between the two Mat-
lab functions atan2, which takes two arguments, and atan, which takes only one?
What happens if atan2(v,u) is replaced by atan(v/u) in predprey?
Draw a sketch showing the angles theta0 and theta1.
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15.8 tfinal. The call to ode45 in predprey specifies a time interval of [0 100]. What
is the significance of the value 100? What happens if you change it?

15.9 Limit growth. Modify predprey to include a growth limiting term for the prey,
similar to one in the logistic equation. Avoid another parameter by making the
carrying capacity twice the initial value. The equations become

ẏ1 = (1− y1

2 η1
)(1− y2

µ2
)y1

ẏ2 = −(1− y1

µ1
)y2

What happens to the shape of the solution curves? Are the solutions still periodic?
What happens to the length of the period?


