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The  integral of f(x) interpreted as the area A under the curve 
of f (x) from x =  a to x =  b.  
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Illustration of (a) rectangular and (b) trapezoidal numerical 
integration.  Figure 9.1–1, page 370.
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Command

quad(fun,a,b)

quadl(fun,a,b)

Description

Uses an adaptive Simpson’s rule to compute 
the integral of the function whose handle is 
fun, with a as the lower integration limit and 
b as the upper limit.  The function fun must 
accept a vector argument. 

Uses Lobatto quadrature to compute the 
integral of the function fun. The rest of the 
syntax is identical to quad.

Numerical integration functions. Table 9.1–1, page 371.
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Table 9.1-1 (continued)

trapz(x,y) Uses trapezoidal integration to 
compute the integral of y with 
respect to x, where the array y 
contains the function values at the 
points contained in the array x.
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    Although the quad and quadl functions are 
more accurate than trapz, they are restricted 
to computing the integrals of functions and 
cannot be used when the integrand is specified 
by a set of points.  For such cases, use the 
trapz function.
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Using the trapz function.  Compute the integral

sin x dx∫
π

0
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First use 10 panels with equal widths of π/10. The 
script file is

x = linspace(0,pi,10);
y = sin(x);
trapz(x,y)

    The answer is 1.9797, which gives a relative 
error of 100(2 - 1.9797)/2) = 1%. For more about 
the trapz function, see pages 371-373.
 



    MATLAB function quad implements an adaptive 
version of Simpson’s rule, while the quadl function 
is based on an adaptive Lobatto integration 
algorithm.

To compute the integral of sin(x) from 0 to π, type

>>A = quad(@sin,0,pi)

The answer given by MATLAB is 2.0000, which is 
correct. We use quadl the same way; namely,

>> A = quadl(@sin,0,pi).
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To integrate cos(x2 ) from 0 to √(2π), create the 
function: 

function c2 = cossq(x)
% cosine squared function.
c2 = cos(x.^2);

Note that we must use array exponentiation.

The quad function is called as follows:

>>quad(@cossq,0,sqrt(2*pi))

The result is 0.6119.

9-99-9
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Polynomial IntegrationPolynomial Integration

 q = polyint(p,C)returns a polynomial q representing the 
integral of polynomial p with a user-specified scalar constant of 
integration C.  See page 375.

Double IntegralsDouble Integrals

A = dblquad(fun, a, b, c, d) computes the integral of 
f(x,y) from x = a to b, and y = c to d.   Here is an example using an 
anonymous function to represent f(x,y)  = xy2.

>>fun = @(x,y)x.*y^2;
>>A = dblquad(fun,1,3,0,1)

The answer is A = 1.3333.  For more, see pages 376 to 377.
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Triple IntegralsTriple Integrals

A = triplequad(fun, a, b, c, d, e, f) computes the triple 
integral of f(x,y, z) from x = a to b, y = c to d, and z = e to f.   Here is an 
example using an anonymous function to represent f(x,y,z)  = (xy -y2)/z.

>>fun = @(x,y,z)(x*y –y^2)/z;
>>A = triplequad(fun,1,3,0,2,1,2)

The answer is A = 1.8484.  Note that the function must accept a 
vector x, but scalar y and z.  See page 377.
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Numerical differentiation:  Illustration of three methods for 
estimating the derivative dy/dx.  Figure 9.2–1, page 378.
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MATLAB provides the diff function to use for 
computing derivative estimates.

Its syntax is d = diff(x), where x is a vector 
of values, and the result is a vector d containing 
the differences between adjacent elements in x.

That is, if x has n elements, d will have n − 1 
elements, where

d =  [x(2) − x(1), x(3) − x(2), . . . , x(n) − x(n −1)].

For example, if x = [5, 7, 12, -20], then 
diff(x) returns the vector [2, 5, -32].  For 
more, see pages 377-379 and Table 9.2-1.
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Command

b = polyder(p)

b = 
polyder(p1,p2)

[num, den] = 
polyder(p2,p1)

Description

Returns a vector b containing the coefficients 
of the derivative of the polynomial represented 
by the vector p.

Returns a vector b containing the coefficients 
of the polynomial that is the derivative of the 
product of the polynomials represented by p1 
and p2.

Returns the vectors num and den containing 
the coefficients of the numerator and 
denominator polynomials of the derivative of 
the quotient p2/p1, where p1 and p2 are 
polynomials.

 Polynomial differentiation functions from Table 9.2–1, page 
382.  For examples, see page 380.
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Computing gradientsComputing gradients

Typing

[df_dx, df_dy] = gradient(f,dx,dy)

computes the gradient of the function f(x,y), where df_dx and 
df_dy represent the partial derivatives, and dx, dy represent 
the spacing.

For an example, see Figure 9.2-2 and the program on pages 
381-382.
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Solving First-Order Differential Equations, Solving First-Order Differential Equations, 
Section 9.3.Section 9.3.

The MATLAB ode solver, ode45.  To solve the equation dy/dt = 
f(t,y) the syntax is

[t,y] = ode45(@ydot,tspan,y0)

where @ydot is the handle of the function file whose inputs must 
be t and y, and whose output must be a column vector representing 
dy/dt; that is, f(t,y).  The number of rows in this column vector must 
equal the order of the equation.  The array tspan contains the 
starting and ending values of the independent variable t, and 
optionally any intermediate values.  The array y0 contains the initial 
values of y.  If the equation is first order, then y0 is a scalar.
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Application of an ode solver to find the response of an RC 
circuit .  Figure 9.3-1, page 386.
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The circuit model for zero input voltage v is 

 dy/dt + 10y = 0

First solve this for dy/dt:

dy/dt =  −10y

Next define the following function file. Note that the 
order of the input arguments must be t and y.

function ydot = RC_circuit(t,y)
ydot = -10*y;
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The function is called as follows, and the solution plotted 
along with the analytical solution y_true.  The intial 
condition is y(0)=2.

[t, y] = ode45(@RC_circuit, [0, 0.5], 2);
y_true = 2*exp(-10*t);
plot(t,y,’o’,t,y_true),xlabel(’Time(s)’),...
    ylabel(’Capacitor Voltage’)

Note that we need not generate the array t to evaluate 
y_true, because t is generated by the ode45 function.

The plot is shown on the next slide and in Figure 9.3-2 on 
page 387..
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Free response of an RC circuit.  Figure 9.3-2

9-209-20 More? See pages 498-500.



Application example: Draining of a spherical tank.  Example 
9.3-2 and Figure 9.3-3
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The equation for the height is 

2

0.0344

10

dh h

dt h h
= −

−
First create the following function file.

function hdot = height(t,h)
Hdot = -(0.0344*sqrt(h))/(10*h-h^2);

This file is called as follows.  The initial height is 9 ft.

[t,h] = ode45(@height, [0, 2475], 9);
plot(t,h),xlabel(‘Time(sec)’,ylabel(‘Height’(ft)’)

The plot is shown on the next slide.
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Plot of water height in a spherical tank.  Figure 9.3-4, page 
390.
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Extension to Higher-Order Equations 
Section 9.4, page 391

To use the ODE solvers to solve an equation higher 
than order 2, you must first write the equation as a set of 
first-order equations.
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This form is sometimes called the Cauchy form or 
the state-variable form.

9-259-25

For example, consider the equation

5 7 4 ( )y y y f t+ + =&& &
Define x1 = y and x2 = dy/dt.  Then the above equation can 
be expressed as two equations:

1 2

2 1 2

1 4 7
( )
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=

= − −

&

&

(9.4-1)



Suppose that f (t) =  sin t.  Then the required file is

function xdot = example_1(t,x)
xdot(1) = x(2);
xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));
xdot = [xdot(1); xdot(2)];

Note that:

xdot(1) represents dx1/dt

xdot(2) represents dx2/dt

x(1) represents x1, and x(2) represents x2.
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    Suppose we want to solve (9.4-1) for 0 ≤  t ≤  6 with the 
initial conditions x1(0) =  3, x2(0) =  9 and f(t) = sin t.  Then 
the initial condition for the vector x is [3, 9]. To use 
ode45, you type

[t, x] = ode45(@example_1, [0, 6], [3, 9]);
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Each row in the vector x corresponds to a time 
returned in the column vector t.  If you type 
plot(t,x), you will obtain a plot of both x1 and 
x2 versus t.

Note that x is a matrix with two columns; the first 
column contains the values of x1 at the various 
times generated by the solver. The second 
column contains the values of x2.

Thus to plot only x1, type plot(t,x(:,1)).
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A pendulum example.  Example 9.4-1, Figure 9.4-1, page 392
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The equation (9.4-3) is nonlinear and isThe equation (9.4-3) is nonlinear and is

sin 0
g

L
θ θ+ =&&

It must be rewritten as follows to use ode45.

1 2

2 1sin

x x

g
x x

L

=

=−

&

&
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Create the following function file.  Note how we can express Create the following function file.  Note how we can express xdot xdot as as 
a vector in one line, instead of two.a vector in one line, instead of two.

function xdot = pendulum(t,x)
g = 9.81; L = 1;
xdot = [x(2); -(g/L)*sin(x(1))];

The file is called as follows for the case where θ(0)=0.5 rad and the 
initial angular velocity is zero.

[t, x] = ode45(@pendulum, [0, 5], [0.5, 0];
plot(t,x(:,1))

The plot is shown by the curve labeled Case 1 on the next slide.   
See page 392 for how to plot the second case.
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The pendulum angle as a function of time for two starting 
positions.  Figure 9.4-2, page 393.

9-329-32 More? See pages 391-394.
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The program on pages 393-394 shows how to use a nested 
function to avoid specifying the values of g and L within the 
function file pendulum.  



A mass and spring with viscous surface friction.  Its equation 
of motion is 

9-349-34
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Section 9.5. Special Methods for Linear Section 9.5. Special Methods for Linear 
Differential EquationsDifferential Equations

1 2

2 1 2

1
( )

x x

k c
x f t x x
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=
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&

The equation of motion can be put into the following state 
variable form.

These can be put into matrix form as shown on the next slide.
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Create the following function file.

function xdot = msd(t,x)
f = 10; m = 1; c = 2; k = 5;
A = [0, 1;-k/m, -c/m];
B = [0; 1/m];
xdot = A*x + b*f;

The equations can be solved and the solution plotted follows.

[t, x] = ode45(@msd, [0, 5], [0, 0];
plot(t, x(:,1), t, x(:,2))

The plot is shown on the next slide.
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Displacement and velocity of the mass as a function of time.
Figure 9.5-1 on page 397.

9-389-38 More? See pages 395-396.



ODE Solvers in the Control System Toolbox, page 398.ODE Solvers in the Control System Toolbox, page 398.

Transfer function form:  It is created by typing tf(right, left) 
where  the vector right contains the coefficients on the right side of 
the equation and the vector left contains the coefficients on the 
left side.  Consider the equation (9.5-10).

5 7 5 5 ( )y y y f f t+ + = +&&& &

You create the transfer function model form named sys1 by typing 
sys = tf([5, 1],[5, 7, 5]);  You can plot the free 
response for the initial conditions 5 and -2 by typing  

initial(sys, [5, -2])

You can plot the unit step response for zero initial conditions by 
typing step(sys1).  See pages 399 – 402 and Tables 9.5-1 and 
9.5-2 for more information about the tf, initial, and step 
functions.
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Command

sys = ss(A, B, C, D)

[A, B, C, D] = 
ssdata(sys)

sys = tf(right,left)

[right, left] = 
tfdata(sys)

Description

Creates an LTI object in state-space form, where 
the matrices A, B, C, and D correspond to those in 
the model dx/dt =  Ax +  Bu, y =  Cx +  Du.

Extracts the matrices A, B, C, and D corresponding 
to those in the model dx/dt =  Ax +  Bu, y =  Cx 
+  Du.

Creates an LTI object in transfer-function form, 
where the vector right is the vector of coefficients 
of the right-hand side of the equation, arranged in 
descending derivative order, and left is the vector 
of coefficients of the left-hand side of the equation, 
also arranged in descending derivative order.

Extracts the coefficients on the right- and left-hand 
sides of the reduced-form model.

LTI object functions.  Table 9.5–1 on page 400.
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Command

impulse(sys)

initial(sys,x0)

lsim(sys,u,t)

step(sys)

Description

Computes and plots the unit-impulse response of 
the LTI object sys.

Computes and plots the free response of the LTI 
object sys given in state-model form, for the initial 
conditions specified in the vector x0.

Computes and plots the response of the LTI object 
sys to the input specified by the vector u, at the 
times specified by the vector t.

Computes and plots the unit-step response of the 
LTI object sys.

Basic syntax of the LTI ODE solvers.  Table 9.5–2 on page 401.
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The state variable form can be created with the ss function.  
Consider the model 

1 1

2 2

0 1 0
( )1

x x
u tk c

x x
m m m
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&

&

Create the state space model sys for  m = 2, c = 5 and k = 3, and 
plot the unit step response of the first variable by typing

m = 2; c = 5; k = 3;
A = [0, 1;-k/m, -c/m];B = [0; 1/m];
C = [1,0]; D = 0; 
sys = ss(A,B,C,D);step(sys)

See pages 399 – 402 and Table 9.5-1 for more information about 
the ss function.
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The impulse function computes and plots the impulse response.  The 
lsim function computes and plots the solution for a user-defined input 
function.  Both can be used with either the transfer function or the state 
variable  forms.  See Table 9.5-2 on page 401.  Here is an example for 
the following equation with f(t) = 10 sin 3t and y(0)=2 for  t =0  to t = 10.

5 7 4 ( )y y y f t+ + =&& &

sys = tf(1,[5,7,4]);
t = linspace(0,10,500);
f = 10*sin(3*t);
lsim(sys,f,t,2)

9-43 See pages 402 – 407 for more information.



The command initial(sys,x0)computes and plots the 
free response of the LTI object sys given in state-model 
form, for the initial conditions specified in the vector x0.  For 
example, 

m = 2; c = 5; k = 3;
A = [0, 1;-k/m, -c/m];B = [0; 1/m];
C = [1,0]; D = 0; 
sys = ss(A,B,C,D);
initial(sys, [5, -2])

The response is shown on the next slide.
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Free response of the model given by (9.5-5) through (9.5-8) 
for x1(0) =  5 and x2(0) =  −2.  Figure 9.5-2 on page 401.
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Predefined Input Functions (pages 407-408)Predefined Input Functions (pages 407-408)

9-46

The gensig function makes it easy to construct
 periodic input functions. The syntax is

[u,t] = gensig(type, period)

where type can be ‘sin’, ‘square’, or ‘pulse’ and
 period is the desired period of the input. The
 vector t contains the times and the vector u contains
 the input values at those times.  The next slide gives
 an example using a square wave,



Square-wave response of the model x +  2x +  4x =  4f.  
Figure 9.5-6 on page 408.

¨

9-479-47
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