
Introduction to MATLAB
for Engineers, Third Edition

William J. Palm III

Chapter 9
Numerical Methods for Calculus

and Differential Equations

PowerPoint to accompany

Copyright © 2010. The McGraw-Hill Companies, Inc.

The integral of f(x) interpreted as the area A under the curve
of f (x) from x = a to x = b.

9-29-2

Illustration of (a) rectangular and (b) trapezoidal numerical
integration. Figure 9.1–1, page 370.

9-39-3

Command

quad(fun,a,b)

quadl(fun,a,b)

Description

Uses an adaptive Simpson’s rule to compute
the integral of the function whose handle is
fun, with a as the lower integration limit and
b as the upper limit. The function fun must
accept a vector argument.

Uses Lobatto quadrature to compute the
integral of the function fun. The rest of the
syntax is identical to quad.

Numerical integration functions. Table 9.1–1, page 371.

9-49-4
(continued)

Table 9.1-1 (continued)

trapz(x,y) Uses trapezoidal integration to
compute the integral of y with
respect to x, where the array y
contains the function values at the
points contained in the array x.

9-5

 Although the quad and quadl functions are
more accurate than trapz, they are restricted
to computing the integrals of functions and
cannot be used when the integrand is specified
by a set of points. For such cases, use the
trapz function.

9-69-6

Using the trapz function. Compute the integral

sin x dx∫
π

0

9-79-7

First use 10 panels with equal widths of π/10. The
script file is

x = linspace(0,pi,10);
y = sin(x);
trapz(x,y)

 The answer is 1.9797, which gives a relative
error of 100(2 - 1.9797)/2) = 1%. For more about
the trapz function, see pages 371-373.

 MATLAB function quad implements an adaptive
version of Simpson’s rule, while the quadl function
is based on an adaptive Lobatto integration
algorithm.

To compute the integral of sin(x) from 0 to π, type

>>A = quad(@sin,0,pi)

The answer given by MATLAB is 2.0000, which is
correct. We use quadl the same way; namely,

>> A = quadl(@sin,0,pi).

9-89-8

To integrate cos(x2) from 0 to √(2π), create the
function:

function c2 = cossq(x)
% cosine squared function.
c2 = cos(x.^2);

Note that we must use array exponentiation.

The quad function is called as follows:

>>quad(@cossq,0,sqrt(2*pi))

The result is 0.6119.

9-99-9
More? See pages 374-375.

Polynomial IntegrationPolynomial Integration

 q = polyint(p,C)returns a polynomial q representing the
integral of polynomial p with a user-specified scalar constant of
integration C. See page 375.

Double IntegralsDouble Integrals

A = dblquad(fun, a, b, c, d) computes the integral of
f(x,y) from x = a to b, and y = c to d. Here is an example using an
anonymous function to represent f(x,y) = xy2.

>>fun = @(x,y)x.*y^2;
>>A = dblquad(fun,1,3,0,1)

The answer is A = 1.3333. For more, see pages 376 to 377.

9-10

Triple IntegralsTriple Integrals

A = triplequad(fun, a, b, c, d, e, f) computes the triple
integral of f(x,y, z) from x = a to b, y = c to d, and z = e to f. Here is an
example using an anonymous function to represent f(x,y,z) = (xy -y2)/z.

>>fun = @(x,y,z)(x*y –y^2)/z;
>>A = triplequad(fun,1,3,0,2,1,2)

The answer is A = 1.8484. Note that the function must accept a
vector x, but scalar y and z. See page 377.

9-11

Numerical differentiation: Illustration of three methods for
estimating the derivative dy/dx. Figure 9.2–1, page 378.

9-129-12

MATLAB provides the diff function to use for
computing derivative estimates.

Its syntax is d = diff(x), where x is a vector
of values, and the result is a vector d containing
the differences between adjacent elements in x.

That is, if x has n elements, d will have n − 1
elements, where

d = [x(2) − x(1), x(3) − x(2), . . . , x(n) − x(n −1)].

For example, if x = [5, 7, 12, -20], then
diff(x) returns the vector [2, 5, -32]. For
more, see pages 377-379 and Table 9.2-1.

9-139-13

Command

b = polyder(p)

b =
polyder(p1,p2)

[num, den] =
polyder(p2,p1)

Description

Returns a vector b containing the coefficients
of the derivative of the polynomial represented
by the vector p.

Returns a vector b containing the coefficients
of the polynomial that is the derivative of the
product of the polynomials represented by p1
and p2.

Returns the vectors num and den containing
the coefficients of the numerator and
denominator polynomials of the derivative of
the quotient p2/p1, where p1 and p2 are
polynomials.

 Polynomial differentiation functions from Table 9.2–1, page
382. For examples, see page 380.

9-149-14

Computing gradientsComputing gradients

Typing

[df_dx, df_dy] = gradient(f,dx,dy)

computes the gradient of the function f(x,y), where df_dx and
df_dy represent the partial derivatives, and dx, dy represent
the spacing.

For an example, see Figure 9.2-2 and the program on pages
381-382.

9-15

Solving First-Order Differential Equations, Solving First-Order Differential Equations,
Section 9.3.Section 9.3.

The MATLAB ode solver, ode45. To solve the equation dy/dt =
f(t,y) the syntax is

[t,y] = ode45(@ydot,tspan,y0)

where @ydot is the handle of the function file whose inputs must
be t and y, and whose output must be a column vector representing
dy/dt; that is, f(t,y). The number of rows in this column vector must
equal the order of the equation. The array tspan contains the
starting and ending values of the independent variable t, and
optionally any intermediate values. The array y0 contains the initial
values of y. If the equation is first order, then y0 is a scalar.

9-16

Application of an ode solver to find the response of an RC
circuit . Figure 9.3-1, page 386.

9-179-17

The circuit model for zero input voltage v is

 dy/dt + 10y = 0

First solve this for dy/dt:

dy/dt = −10y

Next define the following function file. Note that the
order of the input arguments must be t and y.

function ydot = RC_circuit(t,y)
ydot = -10*y;

9-189-18

The function is called as follows, and the solution plotted
along with the analytical solution y_true. The intial
condition is y(0)=2.

[t, y] = ode45(@RC_circuit, [0, 0.5], 2);
y_true = 2*exp(-10*t);
plot(t,y,’o’,t,y_true),xlabel(’Time(s)’),...
 ylabel(’Capacitor Voltage’)

Note that we need not generate the array t to evaluate
y_true, because t is generated by the ode45 function.

The plot is shown on the next slide and in Figure 9.3-2 on
page 387..

9-199-19

Free response of an RC circuit. Figure 9.3-2

9-209-20 More? See pages 498-500.

Application example: Draining of a spherical tank. Example
9.3-2 and Figure 9.3-3

9-219-21

The equation for the height is

2

0.0344

10

dh h

dt h h
= −

−
First create the following function file.

function hdot = height(t,h)
Hdot = -(0.0344*sqrt(h))/(10*h-h^2);

This file is called as follows. The initial height is 9 ft.

[t,h] = ode45(@height, [0, 2475], 9);
plot(t,h),xlabel(‘Time(sec)’,ylabel(‘Height’(ft)’)

The plot is shown on the next slide.

9-22

Plot of water height in a spherical tank. Figure 9.3-4, page
390.

9-239-23

Extension to Higher-Order Equations
Section 9.4, page 391

To use the ODE solvers to solve an equation higher
than order 2, you must first write the equation as a set of
first-order equations.

9-249-24

This form is sometimes called the Cauchy form or
the state-variable form.

9-259-25

For example, consider the equation

5 7 4 ()y y y f t+ + =&& &
Define x1 = y and x2 = dy/dt. Then the above equation can
be expressed as two equations:

1 2

2 1 2

1 4 7
()

5 5 5

x x

x f t x x

=

= − −

&

&

(9.4-1)

Suppose that f (t) = sin t. Then the required file is

function xdot = example_1(t,x)
xdot(1) = x(2);
xdot(2) = (1/5)*(sin(t)-4*x(1)-7*x(2));
xdot = [xdot(1); xdot(2)];

Note that:

xdot(1) represents dx1/dt

xdot(2) represents dx2/dt

x(1) represents x1, and x(2) represents x2.

9-269-26

 Suppose we want to solve (9.4-1) for 0 ≤ t ≤ 6 with the
initial conditions x1(0) = 3, x2(0) = 9 and f(t) = sin t. Then
the initial condition for the vector x is [3, 9]. To use
ode45, you type

[t, x] = ode45(@example_1, [0, 6], [3, 9]);

9-279-27

Each row in the vector x corresponds to a time
returned in the column vector t. If you type
plot(t,x), you will obtain a plot of both x1 and
x2 versus t.

Note that x is a matrix with two columns; the first
column contains the values of x1 at the various
times generated by the solver. The second
column contains the values of x2.

Thus to plot only x1, type plot(t,x(:,1)).

9-289-28

A pendulum example. Example 9.4-1, Figure 9.4-1, page 392

9-299-29

The equation (9.4-3) is nonlinear and isThe equation (9.4-3) is nonlinear and is

sin 0
g

L
θ θ+ =&&

It must be rewritten as follows to use ode45.

1 2

2 1sin

x x

g
x x

L

=

=−

&

&

9-30

Create the following function file. Note how we can express Create the following function file. Note how we can express xdot xdot as as
a vector in one line, instead of two.a vector in one line, instead of two.

function xdot = pendulum(t,x)
g = 9.81; L = 1;
xdot = [x(2); -(g/L)*sin(x(1))];

The file is called as follows for the case where θ(0)=0.5 rad and the
initial angular velocity is zero.

[t, x] = ode45(@pendulum, [0, 5], [0.5, 0];
plot(t,x(:,1))

The plot is shown by the curve labeled Case 1 on the next slide.
See page 392 for how to plot the second case.

9-31

The pendulum angle as a function of time for two starting
positions. Figure 9.4-2, page 393.

9-329-32 More? See pages 391-394.

9-33

The program on pages 393-394 shows how to use a nested
function to avoid specifying the values of g and L within the
function file pendulum.

A mass and spring with viscous surface friction. Its equation
of motion is

9-349-34

()my cy ky f t+ + =&& &

Section 9.5. Special Methods for Linear Section 9.5. Special Methods for Linear
Differential EquationsDifferential Equations

1 2

2 1 2

1
()

x x

k c
x f t x x

m m m

=

= − −

&

&

The equation of motion can be put into the following state
variable form.

These can be put into matrix form as shown on the next slide.

9-35

1 1

2 2

0 1 0
()1

x x
u tk c

x x
m m m

         = +      − −      

&

&

9-36

Create the following function file.

function xdot = msd(t,x)
f = 10; m = 1; c = 2; k = 5;
A = [0, 1;-k/m, -c/m];
B = [0; 1/m];
xdot = A*x + b*f;

The equations can be solved and the solution plotted follows.

[t, x] = ode45(@msd, [0, 5], [0, 0];
plot(t, x(:,1), t, x(:,2))

The plot is shown on the next slide.

9-37

Displacement and velocity of the mass as a function of time.
Figure 9.5-1 on page 397.

9-389-38 More? See pages 395-396.

ODE Solvers in the Control System Toolbox, page 398.ODE Solvers in the Control System Toolbox, page 398.

Transfer function form: It is created by typing tf(right, left)
where the vector right contains the coefficients on the right side of
the equation and the vector left contains the coefficients on the
left side. Consider the equation (9.5-10).

5 7 5 5 ()y y y f f t+ + = +&&& &

You create the transfer function model form named sys1 by typing
sys = tf([5, 1],[5, 7, 5]); You can plot the free
response for the initial conditions 5 and -2 by typing

initial(sys, [5, -2])

You can plot the unit step response for zero initial conditions by
typing step(sys1). See pages 399 – 402 and Tables 9.5-1 and
9.5-2 for more information about the tf, initial, and step
functions.

9-39

Command

sys = ss(A, B, C, D)

[A, B, C, D] =
ssdata(sys)

sys = tf(right,left)

[right, left] =
tfdata(sys)

Description

Creates an LTI object in state-space form, where
the matrices A, B, C, and D correspond to those in
the model dx/dt = Ax + Bu, y = Cx + Du.

Extracts the matrices A, B, C, and D corresponding
to those in the model dx/dt = Ax + Bu, y = Cx
+ Du.

Creates an LTI object in transfer-function form,
where the vector right is the vector of coefficients
of the right-hand side of the equation, arranged in
descending derivative order, and left is the vector
of coefficients of the left-hand side of the equation,
also arranged in descending derivative order.

Extracts the coefficients on the right- and left-hand
sides of the reduced-form model.

LTI object functions. Table 9.5–1 on page 400.

9-40

Command

impulse(sys)

initial(sys,x0)

lsim(sys,u,t)

step(sys)

Description

Computes and plots the unit-impulse response of
the LTI object sys.

Computes and plots the free response of the LTI
object sys given in state-model form, for the initial
conditions specified in the vector x0.

Computes and plots the response of the LTI object
sys to the input specified by the vector u, at the
times specified by the vector t.

Computes and plots the unit-step response of the
LTI object sys.

Basic syntax of the LTI ODE solvers. Table 9.5–2 on page 401.

9-419-41

The state variable form can be created with the ss function.
Consider the model

1 1

2 2

0 1 0
()1

x x
u tk c

x x
m m m

         = +      − −      

&

&

Create the state space model sys for m = 2, c = 5 and k = 3, and
plot the unit step response of the first variable by typing

m = 2; c = 5; k = 3;
A = [0, 1;-k/m, -c/m];B = [0; 1/m];
C = [1,0]; D = 0;
sys = ss(A,B,C,D);step(sys)

See pages 399 – 402 and Table 9.5-1 for more information about
the ss function.

9-42

The impulse function computes and plots the impulse response. The
lsim function computes and plots the solution for a user-defined input
function. Both can be used with either the transfer function or the state
variable forms. See Table 9.5-2 on page 401. Here is an example for
the following equation with f(t) = 10 sin 3t and y(0)=2 for t =0 to t = 10.

5 7 4 ()y y y f t+ + =&& &

sys = tf(1,[5,7,4]);
t = linspace(0,10,500);
f = 10*sin(3*t);
lsim(sys,f,t,2)

9-43 See pages 402 – 407 for more information.

The command initial(sys,x0)computes and plots the
free response of the LTI object sys given in state-model
form, for the initial conditions specified in the vector x0. For
example,

m = 2; c = 5; k = 3;
A = [0, 1;-k/m, -c/m];B = [0; 1/m];
C = [1,0]; D = 0;
sys = ss(A,B,C,D);
initial(sys, [5, -2])

The response is shown on the next slide.

9-44

Free response of the model given by (9.5-5) through (9.5-8)
for x1(0) = 5 and x2(0) = −2. Figure 9.5-2 on page 401.

9-459-45

Predefined Input Functions (pages 407-408)Predefined Input Functions (pages 407-408)

9-46

The gensig function makes it easy to construct
 periodic input functions. The syntax is

[u,t] = gensig(type, period)

where type can be ‘sin’, ‘square’, or ‘pulse’ and
 period is the desired period of the input. The
 vector t contains the times and the vector u contains
 the input values at those times. The next slide gives
 an example using a square wave,

Square-wave response of the model x + 2x + 4x = 4f.
Figure 9.5-6 on page 408.

¨

9-479-47

.

	Slide 1
	9-2
	9-3
	9-4
	Slide 5
	9-6
	9-7
	9-8
	9-9
	Polynomial Integration
	Triple Integrals
	9-12
	9-13
	9-14
	Computing gradients
	Solving First-Order Differential Equations, Section 9.3.
	9-17
	9-18
	9-19
	9-20
	9-21
	Slide 22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	The equation (9.4-3) is nonlinear and is
	Create the following function file. Note how we can express xdot as a vector in one line, instead of two.
	9-32
	Slide 33
	9-34
	Section 9.5. Special Methods for Linear Differential Equations
	Slide 36
	Create the following function file. function xdot = msd(t,x) f = 10; m = 1; c = 2; k = 5; A = [0, 1;-k/m, -c/m]; B = [0; 1/m]; xdot = A*x + b*f; The equations can be solved and the solution plotted follows. [t, x] = ode45(@msd, [0, 5], [0, 0]; plot(t, x(:,1), t, x(:,2)) The plot is shown on the next slide.
	9-38
	ODE Solvers in the Control System Toolbox, page 398. Transfer function form: It is created by typing tf(right, left) where the vector right contains the coefficients on the right side of the equation and the vector left contains the coefficients on the left side. Consider the equation (9.5-10).
	9-40
	9-41
	Slide 42
	The impulse function computes and plots the impulse response. The lsim function computes and plots the solution for a user-defined input function. Both can be used with either the transfer function or the state variable forms. See Table 9.5-2 on page 401. Here is an example for the following equation with f(t) = 10 sin 3t and y(0)=2 for t =0 to t = 10.
	Slide 44
	9-45
	Predefined Input Functions (pages 407-408)
	9-47

