
Self-intersecting nonconvex polygons are filled according to an even-odd rule that alternates
between filling and not filling at each crossing.

In[11]:= Graphics3D@Polygon@Table@8Cos@2 p k ê 5D, Sin@2 p k ê 5D, 0<, 8k, 0, 8, 2<DDD

Out[11]=

Cuboid@8x,y,z<D a unit cube with opposite corners having coordinates
8x, y, z< and 8x + 1, y + 1, z + 1<

Cuboid@8xmin,ymin,
zmin<,8xmax,ymax,zmax<D

a cuboid (rectangular parallelepiped) with opposite corners
having the specified coordinates

Cylinder@8x1,y1,z1<,8x2,y2,z2<D a cylinder of radius 1 with endpoints at 8x1, y1, z1< and
8x2, y2, z2<

Cylinder@8x1,y1,z1<,8x2,y2,z2<,rD a cylinder of radius r

Sphere@8x,y,z<D a unit sphere centered at 8x, y, z<

Sphere@8x,y,z<,rD a sphere of radius r

Cuboid graphics elements.

This draws a number of random unit cubes and spheres in three-dimensional space.

In[12]:= Graphics3D@Table@8Cuboid@10 rcoordD, Sphere@10 rcoordD<, 810<DD

Out[12]=

Visualization and Graphics 75

Even though Cylinder and Sphere produce high-quality renderings, their usage is scalable. A

single image can contain thousands of these primitives. When rendering so many primitives,

you can increase the efficiency of rendering by using special options to change the number of

points used by default to render Cylinder and Sphere. The "CylinderPoints" Method option

to Graphics3D is used to reduce the rendering quality of each individual cylinder. Sphere qual-

ity can be similarly adjusted using "SpherePoints".

Because the cylinders are so small, the number of points used to render them can be reduced
with almost no perceptible change.

In[13]:= Graphics3D@Table@Cylinder@8rcoord, rcoord<, .01D, 810000<D,
Method Ø 8"CylinderPoints" Ø 6<D

Out[13]=

Three-Dimensional Graphics Directives

In three dimensions, just as in two dimensions, you can give various graphics directives to

specify how the different elements in a graphics object should be rendered.

All the graphics directives for two dimensions also work in three dimensions. There are however

some additional directives in three dimensions.

Just as in two dimensions, you can use the directives PointSize, Thickness and Dashing to

tell Mathematica how to render Point and Line elements. Note that in three dimensions, the

lengths that appear in these directives are measured as fractions of the total width of the dis-

play area for your plot.

This generates a list of 20 random points in three dimensions.

In[1]:= pts = Table@Point@Table@RandomReal@D, 83<DD, 820<D;

76 Visualization and Graphics

This displays the points, with each one being a circle whose diameter is 5% of the display area
width.

In[2]:= Graphics3D@8PointSize@0.05D, pts<D

Out[2]=

As in two dimensions, you can use AbsolutePointSize, AbsoluteThickness and

AbsoluteDashing if you want to measure length in absolute units.

This generates a line through 10 random points in three dimensions.

In[3]:= line = Line@Table@RandomReal@D, 810<, 83<DD;

This shows the line dashed, with a thickness of 2 printer’s points.

In[4]:= Graphics3D@8AbsoluteThickness@2D, AbsoluteDashing@85, 5<D, line<D

Out[4]=

For Point and Line objects, the color specification directives also work the same in three

dimensions as in two dimensions. For Polygon objects, however, they can work differently.

In two dimensions, polygons are always assumed to have an intrinsic color, specified directly by

graphics directives such as RGBColor and Opacity. In three dimensions, however, Mathematica

generates colors for polygons using a more physical approach based on simulated illumination.

Polygons continue to have an intrinsic color defined by color directives, but the final color

observed when rendering the graphic may be different based upon the values of the lights

shining on the polygon. Polygons are intrinsically white by default.

Visualization and Graphics 77

Lighting->Automatic use default light placements and values

Lighting->None disable all lights

Lighting->"Neutral" light using only white light sources

Some schemes for coloring polygons in three dimensions.

This draws an icosahedron with default lighting. The intrinsic color value of the polygons is
white.

In[5]:= Graphics3D@8PolyhedronData@"Icosahedron", "Faces"D<D

Out[5]=

This draws the icosahedron using the same lighting parameters, but defines the intrinsic color
value of the polygons to be gray.

In[6]:= Graphics3D@8Gray, PolyhedronData@"Icosahedron", "Faces"D<D

Out[6]=

The intrinsic color value of the polygons becomes more obvious when using the "Neutral"
lighting scheme.

In[7]:= Graphics3D@8Gray, PolyhedronData@"Icosahedron", "Faces"D<, Lighting Ø "Neutral"D

Out[7]=

78 Visualization and Graphics

This applies the gray color only to the line, which is not affected by the lights.

In[8]:= Graphics3D@8PolyhedronData@"Icosahedron", "Faces"D,
Gray, Thickness@0.1D, Line@880, 0, -2<, 80, 0, 2<<D<D

Out[8]=

As with two-dimensional directives, the color directive can be scoped to the line by using a
sublist.

In[9]:= Graphics3D@88Gray, Thickness@0.1D, Line@880, 0, -2<, 80, 0, 2<<D<,
PolyhedronData@"Icosahedron", "Faces"D<D

Out[9]=

EdgeForm@D draw no lines at the edges of polygons

EdgeForm@gD use the graphics directives g to determine how to draw
lines at the edges of polygons

Giving graphics directives for all the edges of polygons.

When you render a three-dimensional graphics object in Mathematica, there are two kinds of

lines that can appear. The first kind are lines from explicit Line primitives that you included in

the graphics object. The second kind are lines that were generated as the edges of polygons.

Visualization and Graphics 79

You can tell Mathematica how to render all lines of the second kind by giving a list of graphics

directives inside EdgeForm.

This renders a dodecahedron with its edges shown as thick gray lines.

In[10]:= Graphics3D@8EdgeForm@8GrayLevel@0.5D, Thickness@0.02D<D,
PolyhedronData@"Dodecahedron", "Faces"D<D

Out[10]=

FaceForm@gfront,gbackD use gfront graphics directives for the front face of each
polygon, and gback for the back

Rendering the fronts and backs of polygons differently.

An important aspect of polygons in three dimensions is that they have both front and back

faces. Mathematica uses the following convention to define the “front face” of a polygon: if you

look at a polygon from the front, then the corners of the polygon will appear counterclockwise,

when taken in the order that you specified them.

This makes the front (outside) face of each polygon mostly transparent, and the back (inside)
face fully opaque.

In[11]:= Graphics3D@8FaceForm@8Opacity@0.3D<, WhiteD, PolyhedronData@"Cube", "Faces"D<D

Out[11]=

80 Visualization and Graphics

Coordinate Systems for Three-Dimensional Graphics

Whenever Mathematica draws a three-dimensional object, it always effectively puts a cuboidal

box around the object. With the default option setting Boxed -> True, Mathematica in fact

draws the edges of this box explicitly. But in general, Mathematica automatically “clips” any

parts of your object that extend outside of the cuboidal box.

The option PlotRange specifies the range of x, y and z coordinates that Mathematica should

include in the box. As in two dimensions the default setting is PlotRange -> Automatic, which

makes Mathematica use an internal algorithm to try and include the “interesting parts” of a

plot, but drop outlying parts. With PlotRange -> All, Mathematica will include all parts.

This loads a package defining polyhedron operations.

In[1]:= << PolyhedronOperations`

This creates a stellated icosahedron.

In[2]:= stel = Stellate@PolyhedronData@"Icosahedron", "Faces"DD;

This shows the stellated icosahedron, drawn in a box.

In[3]:= Graphics3D@stel, Axes Ø TrueD

Out[3]=

-1
0

1

-1

0
1

-1

0

1

With this setting for PlotRange, many parts of the stellated icosahedron lie outside the box,
and are clipped.

In[4]:= Show@%, PlotRange -> 8-1, 1<D

Out[4]=

-1
0

1
-1

0

1
-1.0
-0.5
0.0

0.5

1.0

Visualization and Graphics 81

Much as in two dimensions, you can use either “original” or “scaled” coordinates to specify the

positions of elements in three-dimensional objects. Scaled coordinates, specified as

Scaled@8sx, sy, sz<D are taken to run from 0 to 1 in each dimension. The coordinates are set up

to define a right-handed coordinate system on the box.

8x,y,z< original coordinates

Scaled@8sx,sy,sz<D scaled coordinates, running from 0 to 1 in each dimension

Coordinate systems for three-dimensional objects.

This puts a cuboid in one corner of the box.

In[5]:= Graphics3D@8stel, Cuboid@Scaled@80, 0, 0<D, Scaled@80.2, 0.2, 0.2<DD<D

Out[5]=

Once you have specified where various graphical elements go inside a three-dimensional box,

you must then tell Mathematica how to draw the box. The first step is to specify what shape the

box should be. This is analogous to specifying the aspect ratio of a two-dimensional plot. In

three dimensions, you can use the option BoxRatios to specify the ratio of side lengths for the

box. For Graphics3D objects, the default is BoxRatios -> Automatic, specifying that the shape

of the box should be determined from the ranges of actual coordinates for its contents.

BoxRatios->9xr,yr,zr= specify the ratio of side lengths for the box

BoxRatios->Automatic determine the ratio of side lengths from the range of actual
coordinates (default for Graphics3D)

Specifying the shape of the bounding box for three-dimensional objects.

82 Visualization and Graphics

This displays the stellated icosahedron in a tall box.

In[6]:= Graphics3D@stel, BoxRatios -> 81, 1, 5<D

Out[6]=

To produce an image of a three-dimensional object, you have to tell Mathematica from what

view point you want to look at the object. You can do this using the option ViewPoint.

Some common settings for this option were given in "Three-Dimensional Surface Plots". In

general, however, you can tell Mathematica to use any view point.

View points are specified in the form ViewPoint -> 8sx, sy, sz<. The values si are given in a

special coordinate system, in which the center of the box is 80, 0, 0<. The special coordinates

are scaled so that the longest side of the box corresponds to one unit. The lengths of the other

sides of the box in this coordinate system are determined by the setting for the BoxRatios

option. For a cubical box, therefore, each of the special coordinates runs from -1 ê2 to 1 ê2 across

the box. Note that the view point must always lie outside the box.

This generates a picture using the default view point 81.3, -2.4, 2<.

In[7]:= surf = Plot3D@H2 + Sin@xDL Cos@2 yD,
8x, -2, 2<, 8y, -3, 3<, AxesLabel -> 8"x", "y", "z"<D

Out[7]=

Visualization and Graphics 83

This is what you get with a view point close to one of the corners of the box.

In[8]:= Show@surf, ViewPoint -> 81.2, 1.2, 1.2<D

Out[8]=

As you move away from the box, the perspective effect gets smaller.

In[9]:= Show@surf, ViewPoint -> 85, 5, 5<D

Out[9]=

option name default value
ViewPoint 81.3,-2.4,2< the point in a special scaled coordinate

system from which to view the object
ViewCenter Automatic the point in the scaled coordinate system

which appears at the center of the final
image

ViewVertical 80,0,1< the direction in the scaled coordinate
system which appears as vertical in the
final image

ViewAngle Automatic the opening half-angle for a simulated
camera used to view the graphic

ViewVector Automatic the position and direction of the simulated
camera in the graphic's regular coordinate
system

Specifying the position and orientation of three-dimensional objects.

84 Visualization and Graphics

In making a picture of a three-dimensional object you have to specify more than just where you

want to look at the object from. You also have to specify how you want to "frame" the object in

your final image. You can do this using the additional options ViewCenter, ViewVertical and

ViewAngle.

ViewCenter allows you to tell Mathematica what point in the object should appear at the center

of your final image. The point is specified by giving its scaled coordinates, running from 0 to 1

in each direction across the box. With the setting ViewCenter -> 81 ê 2, 1 ê 2, 1 ê 2<, the center

of the box will therefore appear at the center of your final image. With many choices of view

point, however, the box will not appear symmetrical, so this setting for ViewCenter will not

center the whole box in the final image area. You can do this by setting

ViewCenter -> Automatic.

ViewVertical specifies which way up the object should appear in your final image. The setting

for ViewVertical gives the direction in scaled coordinates which ends up vertical in the final

image. With the default setting ViewVertical -> 80, 0, 1<, the z direction in your original

coordinate system always ends up vertical in the final image.

Mathematica uses the properties of a simulated camera to visualize the final image. The posi-

tion, orientation, and facing of the camera are determined by the ViewCenter, ViewVertical,

and ViewPoint options. The ViewAngle option specifies the width of the opening of the camera

lens. The ViewAngle specifies, in radians, the maximum angle from the line stretching from the

ViewPoint to the ViewCenter which can be viewed by the camera. The effective viewing angle

is double the value of ViewAngle. This means that ViewAngle can effectively be used to zoom in

on a part of the image. The default value of ViewAngle resolves to 35°, which is the typical

viewing angle for the human eye.

This setting for ViewVertical makes the x axis of the box appear vertical in your image.

In[10]:= Show@surf, ViewVertical -> 81, 0, 0<D

Out[10]=

Visualization and Graphics 85

This uses ViewAngle to effectively zoom in on the center of the image.

In[11]:= Show@surf, ViewAngle Ø 10 DegreeD

Out[11]=

When you set the options ViewPoint, ViewCenter and ViewVertical, you can think about it as

specifying how you would look at a physical object. ViewPoint specifies where your head is

relative to the object. ViewCenter specifies where you are looking (the center of your gaze).

And ViewVertical specifies which way up your head is.

In terms of coordinate systems, settings for ViewPoint, ViewCenter and ViewVertical specify

how coordinates in the three-dimensional box should be transformed into coordinates for your

image in the final display area.

ViewVector->Automatic uses the values of the ViewPoint and ViewCenter
options to determine the position and facing of the simu-
lated camera

ViewVector->8x,y,z< position of the camera in the coordinates used for objects;
the facing of the camera is determined by the
ViewCenter option

ViewVector->88x,y,z<,8tx,ty,tz<< position of the camera and of the point the camera is
focused on in the coordinates used for objects

Possible values of the ViewVector option.

The position and facing of the camera can be fully determined by the ViewPoint and

ViewCenter options, but the ViewVector option offers a useful generalization. Instead of specify-

ing the position and facing of the camera using scaled coordinates, ViewVector provides the

ability to position the camera using the same coordinate system used to position objects within

the graphic.

86 Visualization and Graphics

This specifies that the camera should be placed on the negative x axis and facing toward the
center of the graphic.

In[12]:= Show@surf, ViewVector Ø 8-5, 0, 0<D

Out[12]=

The camera is in the same position but pointing in a different direction. In combination with
ViewAngle, this zooms in on a particular section of the graphic.

In[13]:= Show@surf, ViewVector Ø 88-5, 0, 0<, 82, -3, 2<<, ViewAngle Ø 20 DegreeD

Out[13]=

Once you have obtained a two-dimensional image of a three-dimensional object, there are still

some issues about how this image should be rendered. The issues however are identical to

those that occur for two-dimensional graphics. Thus, for example, you can modify the final

shape of your image by changing the AspectRatio option. And you specify what region of your

whole display area your image should take up by setting the PlotRegion option.

drag rotate the graphic about its center

Ctrl+drag zoom into or out of the graphic

Shift+drag pan across the graphic in the plane of the screen

Mouse gestures used for interacting with three-dimensional graphics.

When interactively modifying graphics, Mathematica makes changes to the view options. If you

have specified the position of the camera using ViewPoint, then rotating the graphic causes

Mathematica to change the value of the ViewPoint option. If the position of the camera is

specified using ViewVector, interactive rotation will instead change the value of that option. In

both cases, interactive rotation can also affect the value of the ViewVertical option. Interac-

Visualization and Graphics 87

tive zooming of the graphic corresponds directly to changing the ViewAngle option. Interac-

tively panning the graphic changes values of the ViewCenter option.

This modifies the aspect ratio of the final image.

In[14]:= Show@surf, Axes -> False, AspectRatio -> 0.3D

Out[14]=

Mathematica usually scales the images of three-dimensional objects to be as large as possible,

given the display area you specify. Although in most cases this scaling is what you want, it does

have the consequence that the size at which a particular three-dimensional object is drawn may

vary with the orientation of the object. You can set the option SphericalRegion -> True to

avoid such variation. With this option setting, Mathematica effectively puts a sphere around the

three-dimensional bounding box, and scales the final image so that the whole of this sphere fits

inside the display area you specify. The sphere has its center at the center of the bounding box,

and is drawn so that the bounding box just fits inside it.

This draws a rather elongated version of the plot.

In[15]:= Framed@Show@surf, BoxRatios -> 81, 5, 1<DD

Out[15]=

88 Visualization and Graphics

With SphericalRegion -> True, the final image is scaled so that a sphere placed around the
bounding box would fit in the display area.

In[16]:= Framed@Show@surf, BoxRatios -> 81, 5, 1<, SphericalRegion -> TrueDD

Out[16]=

By setting SphericalRegion -> True, you can make the scaling of an object consistent for all

orientations of the object. This is useful if you create animated sequences which show a particu-

lar object in several different orientations.

SphericalRegion->False scale three-dimensional images to be as large as possible

SphericalRegion->True scale images so that a sphere drawn around the three-
dimensional bounding box would fit in the final display area

Changing the magnification of three-dimensional images.

Lighting and Surface Properties

With the default option setting Lighting -> Automatic, Mathematica uses a simulated lighting

model to determine how to color polygons in three-dimensional graphics.

Mathematica allows you to specify various components to the illumination of an object. One

component is the "ambient lighting", which produces uniform shading all over the object. Other

components are directional, and produce different shading on different parts of the object.

"Point lighting" simulates light emanating in all directions from one point in space. "Spot light-

ing" is similar to point lighting, but emanates a cone of light in a particular direction.

"Directional lighting" simulates a uniform field of light pointing in the given direction. Mathemat-

ica adds together the light from all of these sources in determining the total illumination of a

particular polygon.

Visualization and Graphics 89

8"Ambient",color< uniform ambient lighting

8"Directional",color,8pos1,pos2<< directional lighting parallel to the vector from pos1 to pos2
8"Point",color,pos<< spherical point light source at position pos

8"Spot",color,8pos,tar<,a< spotlight at position pos aimed at the target position tar
with a half-angle opening of a

Lighting->8light1,light2,…< a number of lights

Methods for specifying light sources.

The default lighting used by Mathematica involves three point light sources, and no ambient

component. The light sources are colored respectively red, green and blue, and are placed at

45È angles on the right-hand side of the object.

Here is a sphere, shaded using simulated lighting using the default set of lights.

In[1]:= spheres = Graphics3D@8Sphere@8-1, -1, 0<D, Sphere@8-1, 1, 0<D, Sphere@81, 1, 0<D,
Sphere@81, -1, 0<D<, Axes Ø True, AxesLabel Ø 8"x", "y", "z"<D

Out[1]=

This shows the result of adding ambient light, and removing all point light sources. Note the
Lighting option takes a list of light sources.

In[2]:= Show@spheres, Lighting Ø 88"Ambient", Blue<<D

Out[2]=

90 Visualization and Graphics

This adds a single point light source positioned at the red point. The lights are combined as
appropriate.

In[3]:= Show@8spheres, Graphics3D@8Red, PointSize@LargeD, Point@80, 0, 2<D<D<,
Lighting -> 88"Ambient", Blue<, 8"Point", Red, 80, 0, 2<<<D

Out[3]=

Objects do not block light sources or cast shadows, so all objects in a scene will be lit evenly by
light sources.

In[4]:= Show@8spheres, Graphics3D@8Red, PointSize@LargeD, Point@83, 0, 0<D<D<,
Lighting -> 88"Ambient", Blue<, 8"Point", Red, 83, 0, 0<<<D

Out[4]=

Visualization and Graphics 91

This adds a directional green light shining from the negative y direction, effectively an infinite
distance away.

In[5]:= Show@%, Lighting -> 88"Ambient", Blue<,
8"Point", Red, 83, 0, 0<<, 8"Directional", Green, 880, 0, 0<, 80, 1, 0<<<<D

Out[5]=

This shows a spotlight positioned above the plot, combined with ambient lighting.

In[6]:= Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<, Lighting Ø
88"Ambient", RGBColor@0, 0, .6D<, 8"Spot", Red, 880, 0, 5<, 80, 0, 0<<, 15 Degree<<D

Out[6]=

The Lighting option controls the lighting of all objects in a scene when used as an option to
Graphics3D or Show. Lighting can also be used inline as a directive which specifies lighting for particu-
lar objects. The Lighting directive replaces the inherited lighting specifications.

92 Visualization and Graphics

The Lighting directive replaces the default value of Lighting for the two spheres after the
directive.

In[7]:= Graphics3D@8Sphere@80, 0, 0<D,
Lighting Ø 88"Point", Green, 80, 0, 5<<<, Sphere@81, 1, 1<D, Sphere@82, 2, 2<D<D

Out[7]=

This example uses list braces to restrict the effect of the Lighting directive to the middle
sphere.

In[8]:= Graphics3D@8Sphere@80, 0, 0<D,
8Lighting Ø 88"Point", Green, 80, 0, 5<<<, Sphere@81, 1, 1<D<, Sphere@82, 2, 2<D<D

Out[8]=

The perceived color of a polygon depends not only on the light which falls on the polygon, but

also on how the polygon reflects that light. You can use the graphics directives RGBColor,

Specularity, and Glow to specify the way that polygons reflect or emit light.

If you do not explicitly use these coloring directives, Mathematica effectively assumes that all

polygons have matte white surfaces. Thus the polygons reflect light of any color incident on

them, and do so equally in all directions. This is an appropriate model for materials such as

uncoated white paper.

Using RGBColor, Specularity, and Glow , however, you can specify more complicated models.

These directives separately specify three kinds of light emission: diffuse reflection, specular

reflection, and glow.

Visualization and Graphics 93

In diffuse reflection, light incident on a surface is scattered equally in all directions. When this

kind of reflection occurs, a surface has a "dull" or "matte" appearance. Diffuse reflectors obey

Lambert's law of light reflection, which states that the intensity of reflected light is cosHaL times

the intensity of the incident light, where a is the angle between the incident light direction and

the surface normal vector. Note that when a > 90È, there is no reflected light.

In specular reflection, a surface reflects light in a mirror-like way. As a result, the surface has a

“shiny” or “gloss” appearance. With a perfect mirror, light incident at a particular angle is

reflected at exactly the same angle. Most materials, however, scatter light to some extent, and

so lead to reflected light that is distributed over a range of angles. Mathematica allows you to

specify how broad the distribution is by giving a specular exponent, defined according to the

Phong lighting model. With specular exponent n, the intensity of light at an angle q away from

the mirror reflection direction is assumed to vary like cos HqLn. As nØ¶, therefore, the surface

behaves like a perfect mirror. As n decreases, however, the surface becomes less “shiny”, and

for n = 0, the surface is a completely diffuse reflector. Typical values of n for actual materials

range from about 1 to several hundred.

Glow is light radiated from a surface at a certain color and intensity of light that is independent

of incident light.

Most actual materials show a mixture of diffuse and specular reflection, and some objects glow

in addition to reflecting light. For each kind of light emission, an object can have an intrinsic

color. For diffuse reflection, when the incident light is white, the color of the reflected light is

the material's intrinsic color. When the incident light is not white, each color component in the

reflected light is a product of the corresponding component in the incident light and in the

intrinsic color of the material. Similarly, an object may have an intrinsic specular reflection

color, which may be different from its diffuse reflection color, and the specularly reflected light

is a component-wise product of the incident light and the intrinsic specular color. For glow, the

color emitted is determined by intrinsic properties alone, with no dependence on incident light.

In Mathematica, you can specify light properties by giving any combination of diffuse reflection,

specular reflection, and glow directives. To get no reflection of a particular kind, you may give

the corresponding intrinsic color as Black, or GrayLevel@0D. For materials that are effectively

“white”, you can specify intrinsic colors of the form GrayLevel@aD, where a is the reflectance or

albedo of the surface.

94 Visualization and Graphics

GrayLevel@aD matte surface with albedo a

RGBColor@r,g,bD matte surface with intrinsic color

Specularity@spec,nD surface with specularity spec and specular exponent n; spec
can be a number between 0 and 1 or an RGBColor
specification

Glow@colD glowing surface with color col

Specifying surface properties of lighted objects.

This shows a sphere with the default matte white surface, illuminated by several colored light
sources.

In[9]:= Graphics3D@Sphere@DD

Out[9]=

This makes the sphere have low diffuse reflectance, but high specular reflectance. As a result,
the sphere has a “specular highlight” near the light sources, and is quite dark elsewhere.

In[10]:= Graphics3D@8GrayLevel@0.2D, Specularity@0.8, 5D, Sphere@D<D

Out[10]=

When you set up light sources and surface colors, it is important to make sure that the total

intensity of light reflected from a particular polygon is never larger than 1. You will get strange

effects if the intensity is larger than 1.

Visualization and Graphics 95

Labeling Three-Dimensional Graphics

Mathematica provides various options for labeling three-dimensional graphics. Some of these

options are directly analogous to those for two-dimensional graphics, discussed in "Labeling

Two-Dimensional Graphics". Others are different.

Boxed->True draw a cuboidal bounding box around the graphics (default)

Axes->True draw x, y and z axes on the edges of the box

Axes->9False,False,True= draw the z axis only

FaceGrids->All draw grid lines on the faces of the box

PlotLabel->text give an overall label for the plot

Some options for labeling three-dimensional graphics.

The default for Graphics3D is to include a box, but no other forms of labeling.

In[1]:= Graphics3D@PolyhedronData@"Dodecahedron", "Faces"DD

Out[1]=

Setting Axes -> True adds x, y and z axes.

In[2]:= Show@%, Axes -> TrueD

Out[2]=

-1
0

1

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

96 Visualization and Graphics

This adds grid lines to each face of the box.

In[3]:= Show@%, FaceGrids -> AllD

Out[3]=

-1

0

1

-1

0

1

-1

0

1

BoxStyle->style specify the style for the box

AxesStyle->style specify the style for axes

AxesStyle->8xstyle,ystyle,zstyle< specify separate styles for each axis

Style options.

This makes the box dashed, and draws axes which are thicker than normal.

In[4]:= Graphics3D@PolyhedronData@"Dodecahedron", "Faces"D,
BoxStyle -> Dashing@80.02, 0.02<D, Axes -> True, AxesStyle -> Thickness@0.01DD

Out[4]=

-1

0

1

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

By setting the option Axes -> True, you tell Mathematica to draw axes on the edges of the

three-dimensional box. However, for each axis, there are in principle four possible edges on

which it can be drawn. The option AxesEdge allows you to specify on which edge to draw each

of the axes.

Visualization and Graphics 97

AxesEdge->Automatic use an internal algorithm to choose where to draw all axes

AxesEdge->9xspec,yspec,zspec= give separate specifications for each of the x, y and z axes

None do not draw this axis

Automatic decide automatically where to draw this axis

9diri,dir j= specify on which of the four possible edges to draw this axis

Specifying where to draw three-dimensional axes.

This draws the x on the edge with larger y and z coordinates, draws no y axis, and chooses
automatically where to draw the z axis.

In[5]:= Show@%, Axes -> True, AxesEdge -> 881, 1<, None, Automatic<D

Out[5]=

-1
0

1

-1.0

-0.5

0.0

0.5

1.0

When you draw the x axis on a three-dimensional box, there are four possible edges on which

the axis can be drawn. These edges are distinguished by having larger or smaller y and z coordi-

nates. When you use the specification 8diry,dirz< for where to draw the x axis, you can set the

diri to be +1 or -1 to represent larger or smaller values for the y and z coordinates.

AxesLabel->None give no axis labels

AxesLabel->zlabel put a label on the z axis

AxesLabel->9xlabel,ylabel,zlabel= put labels on all three axes

Axis labels in three-dimensional graphics.

98 Visualization and Graphics

You can use AxesLabel to label edges of the box, without necessarily drawing scales on them.

In[6]:= Show@PolyhedronData@"Dodecahedron", "Image"D,
Axes -> True, AxesLabel -> 8"x", "y", "z"<, Ticks -> NoneD

Out[6]=

x

y

z

Ticks->None draw no tick marks

Ticks->Automatic place tick marks automatically

Ticks->9xticks,yticks,zticks= tick mark specifications for each axis

Settings for the Ticks option.

You can give the same kind of tick mark specifications in three dimensions as were described

for two-dimensional graphics in "Labeling Two-Dimensional Graphics".

FaceGrids->None draw no grid lines on faces

FaceGrids->All draw grid lines on all faces

FaceGrids->9 face1, face2,…= draw grid lines on the faces specified by the facei

FaceGrids->99 face1,
9xgrid1,ygrid1==,…=

use xgridi, ygridi to determine where and how to draw grid

lines on each face

Drawing grid lines in three dimensions.

Mathematica allows you to draw grid lines on the faces of the box that surrounds a three-

dimensional object. If you set FaceGrids -> All, grid lines are drawn in gray on every face. By

setting FaceGrids -> 8 face1, face2, …< you can tell Mathematica to draw grid lines only on

specific faces. Each face is specified by a list 8dirx,diry,dirz<, where two of the diri must be 0,

and the third one is +1 or -1. For each face, you can also explicitly tell Mathematica where and

how to draw the grid lines, using the same kind of specifications as you give for the GridLines

option in two-dimensional graphics.

Visualization and Graphics 99

This draws grid lines only on the top and bottom faces of the box.

In[7]:= Show@PolyhedronData@"Dodecahedron", "Image"D, FaceGrids -> 880, 0, 1<, 80, 0, -1<<D

Out[7]=

Efficient Representation of Many Primitives

Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …
Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements.

Some primitives have multi-element forms that can be processed and rendered more quickly by

the Mathematica front end than the equivalent individual primitives. For large numbers of

primitives, using the multi-element forms can also significantly reduce the sizes of notebook

files. Notebooks that use multi-element forms can be less than half the size of those that do

not, and render up to ten times faster.

Here is a multipoint random distribution.

In[1]:= Graphics@Point@Table@RandomReal@NormalDistribution@0, 1D, 2D, 810000<DDD

Out[1]=

100 Visualization and Graphics

GraphicsComplex@
8pt1,pt2,…<,dataD

a graphics complex in which coordinates given as integers i
in graphics primitives in data are taken to be pti

Primitive for sharing coordinate data among primitives.

When many primitives share the same coordinate data, as in meshes and graphs, further effi-

ciency can be gained by using GraphicsComplex to factor out the coordinate data. The output

of Mathematica's surface- and graph-plotting functions typically use this representation.

Here is a structure of points and lines that share coordinates.

In[2]:= Graphics@GraphicsComplex@880, 0<, 80, 1<, 81, 1<, 81, 0<, 8.5, .5<<,
8Line@881, 2, 3<, 85, 4<<D, Red, PointSize@.05D, Point@81, 2, 3, 4, 5<D<DD

Out[2]=

In addition to being efficient, GraphicsComplex is useful interactively. Primitives that share

coordinates stay connected when one of them is dragged.

Because the output of GraphPlot is a GraphicsComplex, the graph stays connected when
any part of it is dragged.

In[3]:= GraphPlotATableAi Ø ModAi2 - 199, 10E, 8i, 1, 22<EE

Out[3]=

Visualization and Graphics 101

Any primitive may be used within a GraphicsComplex, and GraphicsComplex can be used in

both 2D and 3D graphics. Within GraphicsComplex, coordinate positions in primitives are

replaced by indices into the coordinate data in the GraphicsComplex.

This GraphicsComplex combines several types of primitives.

In[4]:= Graphics3DBGraphicsComplexBTable@8i, i, i<, 8i, 1, 5<D, :

Sphere@4, 1.5D,

TextBStyleB‡ f@xD „x, 36F, 4F,

Point@Range@5DD
>FF

Out[4]=

GraphicsComplex is especially useful for representing meshes of polygons. By using

GraphicsComplex, numerical errors that could cause gaps between adjacent polygons are

avoided.

The output of Plot3D is a GraphicsComplex.

In[5]:= Plot3D@Sin@xD y^2, 8x, 0, 22<, 8y, 0, 4<D

Out[5]=

102 Visualization and Graphics

Formats for Text in Graphics

BaseStyle->value an option for the text style in a graphic

FormatType->value an option for the text format type in a graphic

Specifying formats for text in graphics.

Here is a plot with default settings for all formats.

In[1]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2D

Out[1]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

Here is the same plot, but now using a 12-point bold font.

In[2]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2,
BaseStyle -> 8FontWeight -> "Bold", FontSize Ø 12<D

Out[2]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

This uses StandardForm rather than TraditionalForm .

In[3]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2, FormatType -> StandardFormD

Out[3]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Sin@xD2

Visualization and Graphics 103

This tells Mathematica what default text style to use for all subsequent plots.

In[4]:= SetOptions@Plot, BaseStyle -> 8FontFamily -> "Times", FontSize Ø 14<D;

Now all the text is in 14-point Times font.

In[5]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2D

Out[5]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

"style" a named style in your current stylesheet

FontSize->n the size of font to use in printer’s points

FontSlant->"Italic" use an italic font

FontWeight->"Bold" use a bold font

FontFamily->"name" specify the name of the font family to use (e.g. "Times",
"Courier", "Helvetica")

Typical elements used in the setting for BaseStyle.

If you use the standard notebook front end for Mathematica, then you can set BaseStyle to be

the name of a style defined in your current notebook's stylesheet. You can also explicitly specify

how text should be formatted by using options such as FontSize and FontFamily. Note that

FontSize gives the absolute size of the font to use, measured in units of printer’s points, with

one point being 1
72

 inches. If you resize a plot whose font size is specified as a number, the text

in it will not by default change size: to get text of a different size you must explicitly specify a

new value for the FontSize option. If you resize a plot whose font size is specified as a scaled

quantity, the font will scale as the plot is resized. With FontSize -> Scaled@sD, the effective

font size will be s scaled units in the plot.

104 Visualization and Graphics

Now all the text resizes as the plot is resized.

In[6]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, BaseStyle Ø 8FontSize Ø Scaled@.05D<D

Out[6]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Style@expr,"style"D output expr in the specified style

Style@expr,optionsD output expr using the specified font and style options

StandardForm@exprD output expr in StandardForm

Changing the formats of individual pieces of output.

This outputs the plot label using the section heading style in your current notebook.

In[7]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Style@Sin@xD^2, "Section"DD

Out[7]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

This uses the section heading style, but modified to be in italics.

In[8]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<,
PlotLabel -> Style@Sin@xD^2, "Section", FontSlant -> "Italic"DD

Out[8]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

Visualization and Graphics 105

This produces StandardForm output, with a 12-point font.

In[9]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<,
PlotLabel -> Style@StandardForm@Sin@xD^2D, FontSize -> 12DD

Out[9]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Sin@xD2

You should realize that the ability to refer to styles such as "Section" depends on using the

standard Mathematica notebook front end. Even if you are just using a text-based interface to

Mathematica, however, you can still specify formatting of text in graphics using options such as

FontSize. The complete collection of options that you can use is given in "Text and Font

Options".

Graphics Primitives for Text

With the Text graphics primitive, you can insert text at any position in two- or three-dimen-

sional Mathematica graphics. Unless you explicitly specify a style or font using Style, the text

will be given in the graphic's base style.

Text@expr,8x,y<D text centered at the point 8x, y<

Text@expr,8x,y<,8-1,0<D text with its left-hand end at 8x, y<

Text@expr,8x,y<,81,0<D right-hand end at 8x, y<

Text@expr,8x,y<,80,-1<D centered above 8x, y<

Text@expr,8x,y<,80,1<D centered below 8x, y<

Text@expr,8x,y<,8dx,dy<D text positioned so that 8x, y< is at relative coordinates
8dx, dy< within the box that bounds the text

Text@expr,8x,y<,8dx,dy<,80,1<D text oriented vertically to read from bottom to top

Text@expr,8x,y<,8dx,dy<,80,-1<D text that reads from top to bottom

Text@expr,8x,y<,8dx,dy<,8-1,0<D text that is upside-down

Two-dimensional text.

106 Visualization and Graphics

This generates five pieces of text, and displays them in a plot.

In[1]:= Show@Graphics@Table@Text@Expand@H1 + xL^nD, 8n, n<D, 8n, 5<DD, PlotRange -> AllD

Out[1]=

x+ 1

x2 + 2 x+ 1

x3 + 3 x2 + 3 x+ 1

x4 + 4 x3 + 6 x2 + 4 x+ 1

x5 + 5 x4 + 10 x3 + 10 x2 + 5 x+ 1

Here is some vertically oriented text with its left-hand side at the point 82, 2<.

In[2]:= Show@Graphics@Text@StyleForm@"Some text", FontSize -> 14, FontWeight -> "Bold"D,
82, 2<, 8-1, 0<, 80, 1<DD, Frame -> TrueD

Out[2]=

So
m
e
te
xt

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

When you specify an offset for text, the relative coordinates that are used are taken to run from

-1 to 1 in each direction across the box that bounds the text. The point 80, 0< in this coordi-

nate system is defined to be center of the text. Note that the offsets you specify need not lie in

the range -1 to 1.

Note that you can specify the color of a piece of text by preceding the Text graphics primitive

with an appropriate RGBColor or other graphics directive.

Text@expr,8x,y,z<D text centered at the point 8x, y, z<

Text@expr,8x,y,z<,8sdx,sdy<D text with a two-dimensional offset

Three-dimensional text.

Visualization and Graphics 107

This puts text at the specified position in three dimensions.

In[3]:= Graphics3D@
8PolyhedronData@"Dodecahedron", "Faces"D, Text@"a point", 82, 2, 2<, 81, 1<D<D

Out[3]=

a point

Note that when you use text in three-dimensional graphics, Mathematica assumes that the text

is never hidden by any polygons or other objects.

option name default value
Background None background color
BaseStyle 8< style or font specification
FormatType StandardForm format type

Options for Text.

By default the text is just put straight on top of whatever graphics have already been drawn.

In[4]:= Graphics@
88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Text@"Some text", 80.5, 0.5<D<D

Out[4]= Some text

Now there is a rectangle with the background color of the whole plot enclosing the text.

In[5]:= Graphics@88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<,
Text@"Some text", 80.5, 0.5<, Background -> AutomaticD<D

Out[5]= Some text

The Representation of Sound

"Sound" describes how you can take functions and lists of data and produce sounds from them.

Here we discuss how sounds are represented in Mathematica.

Mathematica treats sounds much like graphics. In fact, Mathematica allows you to combine

graphics with sound to create pictures with “sound tracks”.

108 Visualization and Graphics

In analogy with graphics, sounds in Mathematica are represented by symbolic sound objects.

The sound objects have head Sound, and contain a list of sound primitives, which represent

sounds to be played in sequence.

Sound@8s1,s2,…<D a sound object containing a list of sound primitives

The structure of a sound object.

The functions Play and ListPlay discussed in "Sound" return Sound objects.

Play returns a Sound object. On appropriate computer systems, it also produces sound.

In[1]:= Play@H2 + Cos@20 tDL * Sin@3000 t + 2 Sin@50 tD D, 8t, 0, 2<D

Out[1]=

The Sound object contains a SampledSoundFunction primitive which uses a compiled func-
tion to generate amplitude samples for the sound.

In[2]:= Short@InputForm@%DD

Out[2]//Short=
Sound@SampledSoundFunction@CompiledFunction@8_Integer<,

8<<2>><, <<3>>, EvaluateD, 16384, 8192DD

SampledSoundList@8a1,a2,…<,rD a sound with a sequence of amplitude levels, sampled at
rate r

SampledSoundFunction@ f,n,rD a sound whose amplitude levels sampled at rate r are
found by applying the function f to n successive integers

SoundNote@n,t,"style"D a note-like sound with note n, time specification t, with the
specified style

Mathematica sound primitives.

At the lowest level, all sounds in Mathematica are represented as a sequence of amplitude

samples, or as a sequence of MIDI events. In SampledSoundList, these amplitude samples are

given explicitly in a list. In SampledSoundFunction, however, they are generated when the

sound is output, by applying the specified function to a sequence of integer arguments. In both

cases, all amplitude values obtained must be between -1 and 1. In SoundNote, a note-like

sound is represented as a sequence of MIDI events that represent the frequency, duration,

amplitude and styling of the note.

Visualization and Graphics 109

ListPlay generates SampledSoundList primitives, while Play generates

SampledSoundFunction primitives. With the default option setting Compiled -> True, Play will

produce a SampledSoundFunction object containing a CompiledFunction.

Once you have generated a Sound object containing various sound primitives, you must then

output it as a sound. Much as with graphics, the basic scheme is to take the Mathematica

representation of the sound, and convert it to a lower-level form that can be handled by an

external program, such as a Mathematica front end.

The low-level representation of sampled sound used by Mathematica consists of a sequence of

hexadecimal numbers specifying amplitude levels. Within Mathematica, amplitude levels are

given as approximate real numbers between -1 and 1. In producing the low-level form, the

amplitude levels are “quantized”. You can use the option SampleDepth to specify how many bits

should be used for each sample. The default is SampleDepth -> 8, which yields 256 possible

amplitude levels, sufficient for most purposes. The low-level representation of note-based

sound is as a time-quantized byte stream of MIDI events, which specify various parameters

about the note objects. The quantization of time is determined automatically at playback.

You can use the option SampleDepth in Play and ListPlay. In sound primitives, you can

specify the sample depth by replacing the sample rate argument by the list 8rate, depth<.

Exporting Graphics and Sounds

Mathematica allows you to export graphics and sounds in a wide variety of formats. If you use

the notebook front end for Mathematica, then you can typically just copy and paste graphics

and sounds directly into other programs using the standard mechanism available on your com-

puter system.

Export@"name.ext",graphicsD export graphics to a file in a format deduced from the file
name

Export@" file",graphics," format"D

export graphics in the specified format

Export@"!command",graphics," format"D

export graphics to an external command

Export@" file",8g1,g2,…<,…D export a sequence of graphics for an animation

ExportString@graphics," format"D generate a string representation of exported graphics

Exporting Mathematica graphics and sounds.

110 Visualization and Graphics

"EPS" Encapsulated PostScript (.eps)

"PDF" Adobe Acrobat portable document format (.pdf)

"SVG" Scalable Vector Graphics (.svg)

"PICT" Macintosh PICT

"WMF" Windows metafile format (.wmf)

"TIFF" TIFF (.tif, .tiff)

"GIF" GIF and animated GIF (.gif)

"JPEG" JPEG (.jpg, .jpeg)

"PNG" PNG format (.png)

"BMP" Microsoft bitmap format (.bmp)

"PCX" PCX format (.pcx)

"XBM" X window system bitmap (.xbm)

"PBM" portable bitmap format (.pbm)

"PPM" portable pixmap format (.ppm)

"PGM" portable graymap format (.pgm)

"PNM" portable anymap format (.pnm)

"DICOM" DICOM medical imaging format (.dcm, .dic)

"AVI" Audio Video Interleave format (.avi)

Typical graphics formats supported by Mathematica. Formats in the first group are resolution
independent.

This generates a plot.

In[1]:= Plot@Sin@xD + Sin@Sqrt@2D xD, 8x, 0, 10<D

Out[1]=

2 4 6 8 10

-1.5
-1.0
-0.5

0.5
1.0
1.5
2.0

This exports the plot to a file in Encapsulated PostScript format.

In[2]:= Export@"sinplot.eps", %D

Out[2]= sinplot.eps

Visualization and Graphics 111

When you export a graphic outside of Mathematica, you usually have to specify the absolute

size at which the graphic should be rendered. You can do this using the ImageSize option to

Export.

ImageSize -> x makes the width of the graphic be x printer’s points; ImageSize -> 72 xi thus

makes the width xi inches. The default is to produce an image that is four inches wide.

ImageSize -> 8x, y< scales the graphic so that it fits in an x×y region.

ImageSize Automatic absolute image size in printer’s points
"ImageTopOrientation" Top how the image is oriented in the file
ImageResolution Automatic resolution in dpi for the image

Options for Export.

Within Mathematica, graphics are manipulated in a way that is completely independent of the

resolution of the computer screen or other output device on which the graphics will eventually

be rendered.

Many programs and devices accept graphics in resolution-independent formats such as Encapsu-

lated PostScript (EPS). But some require that the graphics be converted to rasters or bitmaps

with a specific resolution. The ImageResolution option for Export allows you to determine

what resolution in dots per inch (dpi) should be used. The lower you set this resolution, the

lower the quality of the image you will get, but also the less memory the image will take to

store. For screen display, typical resolutions are 72 dpi and above; for printers, 300 dpi and

above.

"DXF" AutoCAD drawing interchange format (.dxf)

"STL" STL stereolithography format (.stl)

Typical 3D geometry formats supported by Mathematica.

"WAV" Microsoft wave format (.wav)

"AU" m law encoding (.au)

"SND" sound file format (.snd)

"AIFF" AIFF format (.aif, .aiff)

Typical sound formats supported by Mathematica.

112 Visualization and Graphics

Importing Graphics and Sounds

Mathematica allows you not only to export graphics and sounds, but also to import them. With

Import you can read graphics and sounds in a wide variety of formats, and bring them into

Mathematica as Mathematica expressions.

Import@"name.ext"D import graphics from the file name.ext in a format deduced
from the file name

Import@" file"," format"D import graphics in the specified format

ImportString@"string"," format"D import graphics from a string

Importing graphics and sounds.

This imports an image stored in JPEG format.

In[1]:= g = Import@"ExampleDataêocelot.jpg"D

Out[1]=

This shows an array of four copies of the image.

In[2]:= GraphicsGrid@88g, g<, 8g, g<<D

Out[2]=

Import yields expressions with different structures depending on the type of data it reads.

Typically you will need to know the structure if you want to manipulate the data that is

returned.

Visualization and Graphics 113

Graphics@primitives,optsD resolution-independent graphics

Graphics@Raster@dataD,optsD resolution-dependent bitmap images

8graphics1,graphics2,…< animated graphics

Sound@SampledSoundList@data,rDD sounds

Structures of expressions returned by Import.

This shows the overall structure of the graphics object imported above.

In[3]:= Shallow@InputForm@gDD

Out[3]//Shallow= Graphics@Raster@<< 4 >>D, Rule@<< 2 >>D, Rule@<< 2 >>DD

This extracts the array of pixel values used.

In[4]:= d = g@@1, 1DD;

Here are the dimensions of the array.

In[5]:= Dimensions@dD

Out[5]= 8200, 200<

This shows the distribution of pixel values.

In[6]:= ListPlot@Sort@Flatten@dDDD

Out[6]=

50 100 150 200

140

160

180

200

220

This shows a transformed version of the image.

In[7]:= Graphics@Raster@d^2 ê Max@d^2DDD

Out[7]=

114 Visualization and Graphics

Editing Mathematica Graphics

Introduction to Editing Mathematica Graphics

An Example of Editing Graphics

The following graph represents an impulse response of an ideal Low Pass Filter (LPF). This
graph illustrates some of the ways of interacting with graphics. Details on each topic follow in
the other parts of "Interactive Graphics".

In[1]:= Plot@Sin@Pi Ht - 4LD ê HPi Ht - 4LL, 8t, 0, 10<, PlotRange Ø All, Ticks Ø NoneD

Out[1]=

Select the curve and change its color and thickness using the Graphics Inspector.

Visualization and Graphics 115

Using the Text tool and the TraditionalForm Text tool, add a plot label and axis labels.

You can edit the title to change its font, color, size, and face.

Draw vertical and horizontal lines to the maximum point with the Line tool.

116 Visualization and Graphics

Select the lines and make them dashed using the Graphics Inspector.

Label the point with the TraditionalForm Text tool.

Add the formula for the curve.

Visualization and Graphics 117

Drawing Tools

To Open the Graphics Palette:

Type Ctrl+T or choose Graphics  Drawing Tools.

For more information on each tool, click the words pointing into the palette.

Point (p) Freehand Line(f)

Get Coordinates(.)Select/Move/Resize (o)

(t) Text(m)TraditionalForm Text

Line (l) (s) Line Segments

(g) Polygon

(Ctrl+1)New Graphic/Inset (Ctrl+g) Graphics Inspector

(a)Arrow

(c)Disk/Circle (q) Rectangle

118 Visualization and Graphics

