
Self-intersecting nonconvex polygons are filled according to an even-odd rule that alternates 
between filling and not filling at each crossing. 

In[11]:= Graphics3D@Polygon@Table@8Cos@2 p k ê 5D, Sin@2 p k ê 5D, 0<, 8k, 0, 8, 2<DDD

Out[11]=

Cuboid@8x,y,z<D a unit cube with opposite corners having coordinates 
8x, y, z< and 8x + 1, y + 1, z + 1<

Cuboid@8xmin,ymin,
zmin<,8xmax,ymax,zmax<D

a cuboid (rectangular parallelepiped) with opposite corners 
having the specified coordinates

Cylinder@8x1,y1,z1<,8x2,y2,z2<D a cylinder of radius 1 with endpoints at 8x1, y1, z1< and 
8x2, y2, z2<

Cylinder@8x1,y1,z1<,8x2,y2,z2<,rD a cylinder of radius r

Sphere@8x,y,z<D a unit sphere centered at 8x, y, z<

Sphere@8x,y,z<,rD a sphere of radius r

Cuboid graphics elements. 

This draws a number of random unit cubes and spheres in three-dimensional space. 

In[12]:= Graphics3D@Table@8Cuboid@10 rcoordD, Sphere@10 rcoordD<, 810<DD

Out[12]=
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Even though Cylinder  and Sphere  produce high-quality renderings,  their  usage is  scalable.  A

single  image  can  contain  thousands  of  these  primitives.  When  rendering  so  many  primitives,

you can increase the efficiency of rendering by using special  options to change the number of

points used by default  to render Cylinder  and Sphere.  The "CylinderPoints"  Method  option

to Graphics3D  is used to reduce the rendering quality of each individual cylinder. Sphere qual-

ity can be similarly adjusted using "SpherePoints".

Because the cylinders are so small, the number of points used to render them can be reduced 
with almost no perceptible change.

In[13]:= Graphics3D@Table@Cylinder@8rcoord, rcoord<, .01D, 810000<D,
Method Ø 8"CylinderPoints" Ø 6<D

Out[13]=

Three-Dimensional Graphics Directives

In  three  dimensions,  just  as  in  two  dimensions,  you  can  give  various  graphics  directives  to

specify how the different elements in a graphics object should be rendered. 

All the graphics directives for two dimensions also work in three dimensions. There are however

some additional directives in three dimensions. 

Just  as  in  two  dimensions,  you  can  use  the  directives  PointSize,  Thickness  and  Dashing  to

tell  Mathematica  how to render Point  and Line  elements.  Note that  in  three dimensions,  the

lengths that appear in these directives are measured as fractions of the total width of the dis-

play area for your plot. 

This generates a list of 20 random points in three dimensions. 

In[1]:= pts = Table@Point@Table@RandomReal@D, 83<DD, 820<D;
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This displays the points, with each one being a circle whose diameter is 5% of the display area 
width. 

In[2]:= Graphics3D@8PointSize@0.05D, pts<D

Out[2]=

As  in  two  dimensions,  you  can  use  AbsolutePointSize,  AbsoluteThickness  and

AbsoluteDashing if you want to measure length in absolute units. 

This generates a line through 10 random points in three dimensions. 

In[3]:= line = Line@Table@RandomReal@D, 810<, 83<DD;

This shows the line dashed, with a thickness of 2 printer’s points. 

In[4]:= Graphics3D@8AbsoluteThickness@2D, AbsoluteDashing@85, 5<D, line<D

Out[4]=

For  Point  and  Line  objects,  the  color  specification  directives  also  work  the  same  in  three

dimensions as in two dimensions. For Polygon objects, however, they can work differently. 

In two dimensions, polygons are always assumed to have an intrinsic color, specified directly by

graphics directives such as RGBColor  and Opacity. In three dimensions, however, Mathematica

generates colors for polygons using a more physical approach based on simulated illumination.

Polygons  continue  to  have  an  intrinsic  color  defined  by  color  directives,  but  the  final  color

observed  when  rendering  the  graphic  may  be  different  based  upon  the  values  of  the  lights

shining on the polygon. Polygons are intrinsically white by default.
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Lighting->Automatic use default light placements and values

Lighting->None disable all lights

Lighting->"Neutral" light using only white light sources

Some schemes for coloring polygons in three dimensions. 

This draws an icosahedron with default lighting. The intrinsic color value of the polygons is 
white.

In[5]:= Graphics3D@8PolyhedronData@"Icosahedron", "Faces"D<D

Out[5]=

This draws the icosahedron using the same lighting parameters, but defines the intrinsic color 
value of the polygons to be gray. 

In[6]:= Graphics3D@8Gray, PolyhedronData@"Icosahedron", "Faces"D<D

Out[6]=

The intrinsic color value of the polygons becomes more obvious when using the "Neutral" 
lighting scheme. 

In[7]:= Graphics3D@8Gray, PolyhedronData@"Icosahedron", "Faces"D<, Lighting Ø "Neutral"D

Out[7]=
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This applies the gray color only to the line, which is not affected by the lights.

In[8]:= Graphics3D@8PolyhedronData@"Icosahedron", "Faces"D,
Gray, Thickness@0.1D, Line@880, 0, -2<, 80, 0, 2<<D<D

Out[8]=

As with two-dimensional directives, the color directive can be scoped to the line by using a 
sublist.

In[9]:= Graphics3D@88Gray, Thickness@0.1D, Line@880, 0, -2<, 80, 0, 2<<D<,
PolyhedronData@"Icosahedron", "Faces"D<D

Out[9]=

EdgeForm@D draw no lines at the edges of polygons

EdgeForm@gD use the graphics directives g to determine how to draw 
lines at the edges of polygons

Giving graphics directives for all the edges of polygons. 

When you  render  a  three-dimensional  graphics  object  in  Mathematica,  there  are  two  kinds  of

lines that can appear. The first kind are lines from explicit Line  primitives that you included in

the graphics object. The second kind are lines that were generated as the edges of polygons. 
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You can tell Mathematica how to render all lines of the second kind by giving a list of graphics

directives inside EdgeForm. 

This renders a dodecahedron with its edges shown as thick gray lines. 

In[10]:= Graphics3D@8EdgeForm@8GrayLevel@0.5D, Thickness@0.02D<D,
PolyhedronData@"Dodecahedron", "Faces"D<D

Out[10]=

FaceForm@gfront,gbackD use gfront graphics directives for the front face of each 
polygon, and gback for the back

Rendering the fronts and backs of polygons differently. 

An  important  aspect  of  polygons  in  three  dimensions  is  that  they  have  both  front  and  back

faces. Mathematica uses the following convention to define the “front face” of a polygon: if you

look at a polygon from the front, then the corners of the polygon will appear counterclockwise,

when taken in the order that you specified them. 

This makes the front (outside) face of each polygon mostly transparent, and the back (inside) 
face fully opaque. 

In[11]:= Graphics3D@8FaceForm@8Opacity@0.3D<, WhiteD, PolyhedronData@"Cube", "Faces"D<D

Out[11]=

80     Visualization and Graphics



Coordinate Systems for Three-Dimensional Graphics

Whenever Mathematica  draws a three-dimensional  object,  it  always effectively puts a cuboidal

box  around  the  object.  With  the  default  option  setting  Boxed -> True,  Mathematica  in  fact

draws  the  edges  of  this  box  explicitly.  But  in  general,  Mathematica  automatically  “clips”  any

parts of your object that extend outside of the cuboidal box. 

The  option  PlotRange  specifies  the  range  of  x,  y  and  z  coordinates  that  Mathematica  should

include in the box. As in two dimensions the default setting is PlotRange -> Automatic, which

makes  Mathematica  use  an  internal  algorithm  to  try  and  include  the  “interesting  parts”  of  a

plot, but drop outlying parts. With PlotRange -> All, Mathematica will include all parts. 

This loads a package defining polyhedron operations. 

In[1]:= << PolyhedronOperations`

This creates a stellated icosahedron.

In[2]:= stel = Stellate@PolyhedronData@"Icosahedron", "Faces"DD;

This shows the stellated icosahedron, drawn in a box. 

In[3]:= Graphics3D@stel, Axes Ø TrueD

Out[3]=
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With this setting for PlotRange, many parts of the stellated icosahedron lie outside the box, 
and are clipped. 

In[4]:= Show@%, PlotRange -> 8-1, 1<D

Out[4]=
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Much as in two dimensions, you can use either “original” or “scaled” coordinates to specify the

positions  of  elements  in  three-dimensional  objects.  Scaled  coordinates,  specified  as

Scaled@8sx, sy, sz<D are taken to run from 0 to 1 in each dimension. The coordinates are set up

to define a right-handed coordinate system on the box. 

8x,y,z< original coordinates

Scaled@8sx,sy,sz<D scaled coordinates, running from 0 to 1 in each dimension

Coordinate systems for three-dimensional objects. 

This puts a cuboid in one corner of the box. 

In[5]:= Graphics3D@8stel, Cuboid@Scaled@80, 0, 0<D, Scaled@80.2, 0.2, 0.2<DD<D

Out[5]=

Once you have specified  where various  graphical  elements  go inside  a  three-dimensional  box,

you must then tell Mathematica how to draw the box. The first step is to specify what shape the

box  should  be.  This  is  analogous  to  specifying  the  aspect  ratio  of  a  two-dimensional  plot.  In

three dimensions, you can use the option BoxRatios to specify the ratio of side lengths for the

box. For Graphics3D  objects, the default is BoxRatios -> Automatic, specifying that the shape

of the box should be determined from the ranges of actual coordinates for its contents. 

BoxRatios->9xr,yr,zr= specify the ratio of side lengths for the box

BoxRatios->Automatic determine the ratio of side lengths from the range of actual 
coordinates (default for Graphics3D)

Specifying the shape of the bounding box for three-dimensional objects. 
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This displays the stellated icosahedron in a tall box. 

In[6]:= Graphics3D@stel, BoxRatios -> 81, 1, 5<D

Out[6]=

To  produce  an  image  of  a  three-dimensional  object,  you  have  to  tell  Mathematica  from  what

view point you want to look at the object. You can do this using the option ViewPoint. 

Some  common  settings  for  this  option  were  given  in  "Three-Dimensional  Surface  Plots".  In

general, however, you can tell Mathematica to use any view point. 

View  points  are  specified  in  the  form  ViewPoint -> 8sx, sy, sz<.  The  values  si  are  given  in  a

special coordinate system, in which the center of the box is 80, 0, 0<. The special coordinates

are scaled so that the longest side of the box corresponds to one unit. The lengths of the other

sides  of  the  box  in  this  coordinate  system  are  determined  by  the  setting  for  the  BoxRatios

option. For a cubical box, therefore, each of the special coordinates runs from -1 ê2 to 1 ê2 across

the box. Note that the view point must always lie outside the box. 

This generates a picture using the default view point 81.3, -2.4, 2<. 

In[7]:= surf = Plot3D@H2 + Sin@xDL Cos@2 yD,
8x, -2, 2<, 8y, -3, 3<, AxesLabel -> 8"x", "y", "z"<D

Out[7]=
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This is what you get with a view point close to one of the corners of the box. 

In[8]:= Show@surf, ViewPoint -> 81.2, 1.2, 1.2<D

Out[8]=

As you move away from the box, the perspective effect gets smaller. 

In[9]:= Show@surf, ViewPoint -> 85, 5, 5<D

Out[9]=

option name default value
ViewPoint 81.3,-2.4,2< the point in a special scaled coordinate 

system from which to view the object
ViewCenter Automatic the point in the scaled coordinate system 

which appears at the center of the final 
image

ViewVertical 80,0,1< the direction in the scaled coordinate 
system which appears as vertical in the 
final image

ViewAngle Automatic the opening half-angle for a simulated 
camera used to view the graphic

ViewVector Automatic the position and direction of the simulated 
camera in the graphic's regular coordinate 
system

Specifying the position and orientation of three-dimensional objects. 
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In making a picture of a three-dimensional object you have to specify more than just where you

want to look at the object from. You also have to specify how you want to "frame" the object in

your final  image. You can do this using the additional  options ViewCenter,  ViewVertical  and

ViewAngle. 

ViewCenter allows you to tell Mathematica what point in the object should appear at the center

of your final image. The point is specified by giving its scaled coordinates, running from 0 to 1

in each direction across the box. With the setting ViewCenter -> 81 ê 2, 1 ê 2, 1 ê 2<, the center

of  the box will  therefore appear  at  the center  of  your  final  image.  With  many choices  of  view

point,  however,  the  box  will  not  appear  symmetrical,  so  this  setting  for  ViewCenter  will  not

center  the  whole  box  in  the  final  image  area.  You  can  do  this  by  setting

ViewCenter -> Automatic. 

ViewVertical specifies which way up the object should appear in your final image. The setting

for  ViewVertical  gives  the  direction  in  scaled  coordinates  which  ends  up  vertical  in  the  final

image.  With  the  default  setting  ViewVertical -> 80, 0, 1<,  the  z  direction  in  your  original

coordinate system always ends up vertical in the final image. 

Mathematica  uses the properties of  a simulated camera to visualize the final  image. The posi-

tion, orientation, and facing of the camera are determined by the ViewCenter, ViewVertical,

and ViewPoint options. The ViewAngle option specifies the width of the opening of the camera

lens. The ViewAngle specifies, in radians, the maximum angle from the line stretching from the

ViewPoint to the ViewCenter  which can be viewed by the camera. The effective viewing angle

is double the value of ViewAngle. This means that ViewAngle can effectively be used to zoom in

on  a  part  of  the  image.  The  default  value  of  ViewAngle  resolves  to  35°,  which  is  the  typical

viewing angle for the human eye.

This setting for ViewVertical makes the x axis of the box appear vertical in your image. 

In[10]:= Show@surf, ViewVertical -> 81, 0, 0<D

Out[10]=
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This uses ViewAngle to effectively zoom in on the center of the image.

In[11]:= Show@surf, ViewAngle Ø 10 DegreeD

Out[11]=

When you set the options ViewPoint, ViewCenter and ViewVertical, you can think about it as

specifying  how  you  would  look  at  a  physical  object.  ViewPoint  specifies  where  your  head  is

relative  to  the  object.  ViewCenter  specifies  where  you  are  looking  (the  center  of  your  gaze).

And ViewVertical specifies which way up your head is. 

In terms of coordinate systems, settings for ViewPoint, ViewCenter  and ViewVertical specify

how coordinates in the three-dimensional box should be transformed into coordinates for your

image in the final display area. 

ViewVector->Automatic uses the values of the ViewPoint and ViewCenter 
options to determine the position and facing of the simu-
lated camera

ViewVector->8x,y,z< position of the camera in the coordinates used for objects; 
the facing of the camera is determined by the 
ViewCenter option

ViewVector->88x,y,z<,8tx,ty,tz<< position of the camera and of the point the camera is 
focused on in the coordinates used for objects

Possible values of the ViewVector option. 

The  position  and  facing  of  the  camera  can  be  fully  determined  by  the  ViewPoint  and

ViewCenter options, but the ViewVector option offers a useful generalization. Instead of specify-

ing  the  position  and  facing  of  the  camera  using  scaled  coordinates,  ViewVector  provides  the

ability to position the camera using the same coordinate system used to position objects within

the graphic.
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This specifies that the camera should be placed on the negative x axis and facing toward the 
center of the graphic. 

In[12]:= Show@surf, ViewVector Ø 8-5, 0, 0<D

Out[12]=

The camera is in the same position but pointing in a different direction. In combination with 
ViewAngle, this zooms in on a particular section of the graphic.

In[13]:= Show@surf, ViewVector Ø 88-5, 0, 0<, 82, -3, 2<<, ViewAngle Ø 20 DegreeD

Out[13]=

Once you have obtained a two-dimensional image of a three-dimensional object, there are still

some  issues  about  how  this  image  should  be  rendered.  The  issues  however  are  identical  to

those  that  occur  for  two-dimensional  graphics.  Thus,  for  example,  you  can  modify  the  final

shape of your image by changing the AspectRatio  option. And you specify what region of your

whole display area your image should take up by setting the PlotRegion option. 

drag rotate the graphic about its center

Ctrl+drag zoom into or out of the graphic

Shift+drag pan across the graphic in the plane of the screen

Mouse gestures used for interacting with three-dimensional graphics.

When interactively modifying graphics, Mathematica makes changes to the view options. If you

have  specified  the  position  of  the  camera  using  ViewPoint,  then  rotating  the  graphic  causes

Mathematica  to  change  the  value  of  the  ViewPoint  option.  If  the  position  of  the  camera  is

specified using ViewVector, interactive rotation will instead change the value of that option. In

both cases, interactive rotation can also affect the value of the ViewVertical  option. Interac-
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tive  zooming  of  the  graphic  corresponds  directly  to  changing  the  ViewAngle  option.  Interac-

tively panning the graphic changes values of the ViewCenter option.

This modifies the aspect ratio of the final image. 

In[14]:= Show@surf, Axes -> False, AspectRatio -> 0.3D

Out[14]=

Mathematica usually scales the images of three-dimensional objects to be as large as possible,

given the display area you specify. Although in most cases this scaling is what you want, it does

have the consequence that the size at which a particular three-dimensional object is drawn may

vary  with  the  orientation  of  the  object.  You  can  set  the  option  SphericalRegion -> True  to

avoid such variation. With this option setting, Mathematica effectively puts a sphere around the

three-dimensional bounding box, and scales the final image so that the whole of this sphere fits

inside the display area you specify. The sphere has its center at the center of the bounding box,

and is drawn so that the bounding box just fits inside it. 

This draws a rather elongated version of the plot. 

In[15]:= Framed@Show@surf, BoxRatios -> 81, 5, 1<DD

Out[15]=
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With SphericalRegion -> True, the final image is scaled so that a sphere placed around the 
bounding box would fit in the display area. 

In[16]:= Framed@Show@surf, BoxRatios -> 81, 5, 1<, SphericalRegion -> TrueDD

Out[16]=

By setting SphericalRegion -> True,  you can make the scaling of  an object  consistent  for  all

orientations of the object. This is useful if you create animated sequences which show a particu-

lar object in several different orientations. 

SphericalRegion->False scale three-dimensional images to be as large as possible

SphericalRegion->True scale images so that a sphere drawn around the three-
dimensional bounding box would fit in the final display area

Changing the magnification of three-dimensional images. 

Lighting and Surface Properties

With the default option setting Lighting -> Automatic, Mathematica uses a simulated lighting

model to determine how to color polygons in three-dimensional graphics. 

Mathematica  allows  you  to  specify  various  components  to  the  illumination  of  an  object.  One

component is the "ambient lighting", which produces uniform shading all over the object. Other

components  are  directional,  and  produce  different  shading  on  different  parts  of  the  object.

"Point lighting" simulates light emanating in all directions from one point in space. "Spot light-

ing"  is  similar  to  point  lighting,  but  emanates  a  cone  of  light  in  a  particular  direction.

"Directional lighting" simulates a uniform field of light pointing in the given direction. Mathemat-

ica  adds  together  the  light  from all  of  these sources  in  determining the total  illumination  of  a

particular polygon. 
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8"Ambient",color< uniform ambient lighting

8"Directional",color,8pos1,pos2<< directional lighting parallel to the vector from pos1 to pos2
8"Point",color,pos<< spherical point light source at position pos

8"Spot",color,8pos,tar<,a< spotlight at position pos aimed at the target position tar 
with a half-angle opening of a

Lighting->8light1,light2,…< a number of lights

Methods for specifying light sources. 

The  default  lighting  used  by  Mathematica  involves  three  point  light  sources,  and  no  ambient

component.  The  light  sources  are  colored  respectively  red,  green and blue,  and are  placed  at

45È angles on the right-hand side of the object. 

Here is a sphere, shaded using simulated lighting using the default set of lights. 

In[1]:= spheres = Graphics3D@8Sphere@8-1, -1, 0<D, Sphere@8-1, 1, 0<D, Sphere@81, 1, 0<D,
Sphere@81, -1, 0<D<, Axes Ø True, AxesLabel Ø 8"x", "y", "z"<D

Out[1]=

This shows the result of adding ambient light, and removing all point light sources. Note the 
Lighting option takes a list of light sources. 

In[2]:= Show@spheres, Lighting Ø 88"Ambient", Blue<<D

Out[2]=
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This adds a single point light source positioned at the red point. The lights are combined as 
appropriate. 

In[3]:= Show@8spheres, Graphics3D@8Red, PointSize@LargeD, Point@80, 0, 2<D<D<,
Lighting -> 88"Ambient", Blue<, 8"Point", Red, 80, 0, 2<<<D

Out[3]=

Objects do not block light sources or cast shadows, so all objects in a scene will be lit evenly by 
light sources.

In[4]:= Show@8spheres, Graphics3D@8Red, PointSize@LargeD, Point@83, 0, 0<D<D<,
Lighting -> 88"Ambient", Blue<, 8"Point", Red, 83, 0, 0<<<D

Out[4]=
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This adds a directional green light shining from the negative y direction, effectively an infinite 
distance away.

In[5]:= Show@%, Lighting -> 88"Ambient", Blue<,
8"Point", Red, 83, 0, 0<<, 8"Directional", Green, 880, 0, 0<, 80, 1, 0<<<<D

Out[5]=

This shows a spotlight positioned above the plot, combined with ambient lighting.

In[6]:= Plot3D@Sin@x + Sin@yDD, 8x, -3, 3<, 8y, -3, 3<, Lighting Ø
88"Ambient", RGBColor@0, 0, .6D<, 8"Spot", Red, 880, 0, 5<, 80, 0, 0<<, 15 Degree<<D

Out[6]=

The Lighting option controls the lighting of all objects in a scene when used as an option to 
Graphics3D or Show. Lighting can also be used inline as a directive which specifies lighting for particu-
lar objects. The Lighting directive replaces the inherited lighting specifications.
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The Lighting directive replaces the default value of Lighting for the two spheres after the 
directive.

In[7]:= Graphics3D@8Sphere@80, 0, 0<D,
Lighting Ø 88"Point", Green, 80, 0, 5<<<, Sphere@81, 1, 1<D, Sphere@82, 2, 2<D<D

Out[7]=

This example uses list braces to restrict the effect of the Lighting directive to the middle 
sphere.

In[8]:= Graphics3D@8Sphere@80, 0, 0<D,
8Lighting Ø 88"Point", Green, 80, 0, 5<<<, Sphere@81, 1, 1<D<, Sphere@82, 2, 2<D<D

Out[8]=

The perceived color of a polygon depends not only on the light which falls on the polygon, but

also  on  how  the  polygon  reflects  that  light.  You  can  use  the  graphics  directives  RGBColor,

Specularity, and Glow to specify the way that polygons reflect or emit light. 

If  you do not  explicitly  use these coloring directives,  Mathematica  effectively  assumes that  all

polygons  have  matte  white  surfaces.  Thus  the  polygons  reflect  light  of  any  color  incident  on

them,  and  do  so  equally  in  all  directions.  This  is  an  appropriate  model  for  materials  such  as

uncoated white paper. 

Using RGBColor, Specularity, and Glow  , however, you can specify more complicated models.

These  directives  separately  specify  three  kinds  of  light  emission:  diffuse  reflection,  specular

reflection, and glow. 
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In diffuse reflection, light incident on a surface is scattered equally in all  directions. When this

kind of reflection occurs, a surface has a "dull"  or "matte" appearance. Diffuse reflectors obey

Lambert's law of light reflection, which states that the intensity of reflected light is cosHaL times

the intensity of the incident light, where a is the angle between the incident light direction and

the surface normal vector. Note that when a > 90È, there is no reflected light. 

In specular reflection, a surface reflects light in a mirror-like way. As a result, the surface has a

“shiny”  or  “gloss”  appearance.  With  a  perfect  mirror,  light  incident  at  a  particular  angle  is

reflected at exactly the same angle. Most materials, however, scatter light to some extent, and

so lead to reflected light that is distributed over a range of angles. Mathematica allows you to

specify  how  broad  the  distribution  is  by  giving  a  specular  exponent,  defined  according  to  the

Phong lighting model. With specular exponent n, the intensity of light at an angle q  away from

the  mirror  reflection  direction  is  assumed  to  vary  like  cos HqLn.  As  nØ¶,  therefore,  the  surface

behaves like a perfect mirror. As n decreases, however, the surface becomes less “shiny”, and

for  n = 0,  the  surface  is  a  completely  diffuse  reflector.  Typical  values  of  n  for  actual  materials

range from about 1 to several hundred. 

Glow is light radiated from a surface at a certain color and intensity of light that is independent

of incident light.

Most actual materials show a mixture of diffuse and specular reflection, and some objects glow

in  addition  to  reflecting  light.  For  each  kind  of  light  emission,  an  object  can  have  an  intrinsic

color.  For  diffuse  reflection,  when the incident  light  is  white,  the  color  of  the  reflected light  is

the material's intrinsic color. When the incident light is not white, each color component in the

reflected  light  is  a  product  of  the  corresponding  component  in  the  incident  light  and  in  the

intrinsic  color  of  the  material.  Similarly,  an  object  may  have  an  intrinsic  specular  reflection

color, which may be different from its diffuse reflection color, and the specularly reflected light

is a component-wise product of the incident light and the intrinsic specular color. For glow, the

color emitted is determined by intrinsic properties alone, with no dependence on incident light.

In Mathematica, you can specify light properties by giving any combination of diffuse reflection,

specular reflection, and glow directives. To get no reflection of a particular kind, you may give

the corresponding intrinsic color as Black,  or GrayLevel@0D.  For materials that are effectively

“white”, you can specify intrinsic colors of the form GrayLevel@aD, where a is the reflectance or

albedo of the surface. 
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GrayLevel@aD matte surface with albedo a

RGBColor@r,g,bD matte surface with intrinsic color

Specularity@spec,nD surface with specularity spec and specular exponent n; spec 
can be a number between 0 and 1 or an RGBColor 
specification

Glow@colD glowing surface with color col 

Specifying surface properties of lighted objects. 

This shows a sphere with the default matte white surface, illuminated by several colored light 
sources. 

In[9]:= Graphics3D@Sphere@DD

Out[9]=

This makes the sphere have low diffuse reflectance, but high specular reflectance. As a result, 
the sphere has a “specular highlight” near the light sources, and is quite dark elsewhere. 

In[10]:= Graphics3D@8GrayLevel@0.2D, Specularity@0.8, 5D, Sphere@D<D

Out[10]=

When you set  up  light  sources  and  surface  colors,  it  is  important  to  make sure  that  the  total

intensity of light reflected from a particular polygon is never larger than 1. You will get strange

effects if the intensity is larger than 1. 
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Labeling Three-Dimensional Graphics

Mathematica  provides  various  options  for  labeling  three-dimensional  graphics.  Some  of  these

options  are  directly  analogous  to  those  for  two-dimensional  graphics,  discussed  in  "Labeling

Two-Dimensional Graphics". Others are different. 

Boxed->True draw a cuboidal bounding box around the graphics (default)

Axes->True draw x, y and z axes on the edges of the box

Axes->9False,False,True= draw the z axis only

FaceGrids->All draw grid lines on the faces of the box

PlotLabel->text give an overall label for the plot

Some options for labeling three-dimensional graphics. 

The default for Graphics3D is to include a box, but no other forms of labeling. 

In[1]:= Graphics3D@PolyhedronData@"Dodecahedron", "Faces"DD

Out[1]=

Setting Axes -> True adds x, y and z axes. 

In[2]:= Show@%, Axes -> TrueD

Out[2]=

-1
0

1

-1

0

1

-1.0

-0.5

0.0

0.5

1.0
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This adds grid lines to each face of the box. 

In[3]:= Show@%, FaceGrids -> AllD

Out[3]=

-1

0

1

-1

0

1

-1

0

1

BoxStyle->style specify the style for the box

AxesStyle->style specify the style for axes

AxesStyle->8xstyle,ystyle,zstyle< specify separate styles for each axis

Style options. 

This makes the box dashed, and draws axes which are thicker than normal. 

In[4]:= Graphics3D@PolyhedronData@"Dodecahedron", "Faces"D,
BoxStyle -> Dashing@80.02, 0.02<D, Axes -> True, AxesStyle -> Thickness@0.01DD

Out[4]=

-1

0

1

-1

0

1

-1.0

-0.5

0.0

0.5

1.0

By  setting  the  option  Axes -> True,  you  tell  Mathematica  to  draw  axes  on  the  edges  of  the

three-dimensional  box.  However,  for  each  axis,  there  are  in  principle  four  possible  edges  on

which it can be drawn. The option AxesEdge  allows you to specify on which edge to draw each

of the axes. 
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AxesEdge->Automatic use an internal algorithm to choose where to draw all axes

AxesEdge->9xspec,yspec,zspec= give separate specifications for each of the x, y and z axes

None do not draw this axis

Automatic decide automatically where to draw this axis

9diri,dir j= specify on which of the four possible edges to draw this axis

Specifying where to draw three-dimensional axes. 

This draws the x on the edge with larger y and z coordinates, draws no y axis, and chooses 
automatically where to draw the z axis. 

In[5]:= Show@%, Axes -> True, AxesEdge -> 881, 1<, None, Automatic<D

Out[5]=

-1
0

1

-1.0

-0.5

0.0

0.5

1.0

When you draw the x axis on a three-dimensional box, there are four possible edges on which

the axis can be drawn. These edges are distinguished by having larger or smaller y and z coordi-

nates. When you use the specification 8diry,dirz< for where to draw the x axis, you can set the

diri to be +1 or -1 to represent larger or smaller values for the y and z coordinates. 

AxesLabel->None give no axis labels

AxesLabel->zlabel put a label on the z axis

AxesLabel->9xlabel,ylabel,zlabel= put labels on all three axes

Axis labels in three-dimensional graphics. 
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You can use AxesLabel to label edges of the box, without necessarily drawing scales on them. 

In[6]:= Show@PolyhedronData@"Dodecahedron", "Image"D,
Axes -> True, AxesLabel -> 8"x", "y", "z"<, Ticks -> NoneD

Out[6]=

x

y

z

Ticks->None draw no tick marks

Ticks->Automatic place tick marks automatically

Ticks->9xticks,yticks,zticks= tick mark specifications for each axis

Settings for the Ticks option. 

You can give the same kind of  tick  mark specifications in  three dimensions as were described

for two-dimensional graphics in "Labeling Two-Dimensional Graphics". 

FaceGrids->None draw no grid lines on faces

FaceGrids->All draw grid lines on all faces

FaceGrids->9 face1, face2,…= draw grid lines on the faces specified by the facei

FaceGrids->99 face1,
9xgrid1,ygrid1==,…=

use xgridi, ygridi to determine where and how to draw grid 

lines on each face

Drawing grid lines in three dimensions. 

Mathematica  allows  you  to  draw  grid  lines  on  the  faces  of  the  box  that  surrounds  a  three-

dimensional object. If you set FaceGrids -> All, grid lines are drawn in gray on every face. By

setting  FaceGrids -> 8 face1, face2, …<  you  can  tell  Mathematica  to  draw  grid  lines  only  on

specific  faces.  Each  face  is  specified  by  a  list  8dirx,diry,dirz<,  where  two  of  the  diri  must  be  0,

and the third one is +1 or -1. For each face, you can also explicitly tell Mathematica where and

how to draw the grid lines, using the same kind of specifications as you give for the GridLines

option in two-dimensional graphics. 
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This draws grid lines only on the top and bottom faces of the box. 

In[7]:= Show@PolyhedronData@"Dodecahedron", "Image"D, FaceGrids -> 880, 0, 1<, 80, 0, -1<<D

Out[7]=

Efficient Representation of Many Primitives

Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …
Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements. 

Some primitives have multi-element forms that can be processed and rendered more quickly by

the  Mathematica  front  end  than  the  equivalent  individual  primitives.  For  large  numbers  of

primitives,  using  the  multi-element  forms  can  also  significantly  reduce  the  sizes  of  notebook

files.  Notebooks  that  use  multi-element  forms  can  be  less  than  half  the  size  of  those  that  do

not, and render up to ten times faster.

Here is a multipoint random distribution.

In[1]:= Graphics@Point@Table@RandomReal@NormalDistribution@0, 1D, 2D, 810000<DDD

Out[1]=
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GraphicsComplex@
8pt1,pt2,…<,dataD

a graphics complex in which coordinates given as integers i 
in graphics primitives in data are taken to be pti

Primitive for sharing coordinate data among primitives.

When many primitives share the same coordinate data, as in meshes and graphs, further effi-

ciency can be gained by using GraphicsComplex  to factor out the coordinate data. The output

of Mathematica's surface- and graph-plotting functions typically use this representation.

Here is a structure of points and lines that share coordinates.

In[2]:= Graphics@GraphicsComplex@880, 0<, 80, 1<, 81, 1<, 81, 0<, 8.5, .5<<,
8Line@881, 2, 3<, 85, 4<<D, Red, PointSize@.05D, Point@81, 2, 3, 4, 5<D<DD

Out[2]=

In  addition  to  being  efficient,  GraphicsComplex  is  useful  interactively.  Primitives  that  share

coordinates stay connected when one of them is dragged.

Because the output of GraphPlot is a GraphicsComplex, the graph stays connected when 
any part of it is dragged.

In[3]:= GraphPlotATableAi Ø ModAi2 - 199, 10E, 8i, 1, 22<EE

Out[3]=
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Any  primitive  may  be  used  within  a  GraphicsComplex,  and  GraphicsComplex  can  be  used  in

both  2D  and  3D  graphics.  Within  GraphicsComplex,  coordinate  positions  in  primitives  are

replaced by indices into the coordinate data in the GraphicsComplex.

This GraphicsComplex combines several types of primitives.

In[4]:= Graphics3DBGraphicsComplexBTable@8i, i, i<, 8i, 1, 5<D, :

Sphere@4, 1.5D,

TextBStyleB‡ f@xD „x, 36F, 4F,

Point@Range@5DD
>FF

Out[4]=

GraphicsComplex  is  especially  useful  for  representing  meshes  of  polygons.  By  using

GraphicsComplex,  numerical  errors  that  could  cause  gaps  between  adjacent  polygons  are

avoided.

The output of Plot3D is a GraphicsComplex.

In[5]:= Plot3D@Sin@xD y^2, 8x, 0, 22<, 8y, 0, 4<D

Out[5]=
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Formats for Text in Graphics

BaseStyle->value an option for the text style in a graphic

FormatType->value an option for the text format type in a graphic

Specifying formats for text in graphics. 

Here is a plot with default settings for all formats. 

In[1]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2D

Out[1]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

Here is the same plot, but now using a 12-point bold font. 

In[2]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2,
BaseStyle -> 8FontWeight -> "Bold", FontSize Ø 12<D

Out[2]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

This uses StandardForm rather than TraditionalForm . 

In[3]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2, FormatType -> StandardFormD

Out[3]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Sin@xD2
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This tells Mathematica what default text style to use for all subsequent plots. 

In[4]:= SetOptions@Plot, BaseStyle -> 8FontFamily -> "Times", FontSize Ø 14<D;

Now all the text is in 14-point Times font. 

In[5]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Sin@xD^2D

Out[5]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
sin2HxL

"style" a named style in your current stylesheet

FontSize->n the size of font to use in printer’s points

FontSlant->"Italic" use an italic font

FontWeight->"Bold" use a bold font

FontFamily->"name" specify the name of the font family to use (e.g. "Times", 
"Courier", "Helvetica")

Typical elements used in the setting for BaseStyle. 

If you use the standard notebook front end for Mathematica, then you can set BaseStyle to be

the name of a style defined in your current notebook's stylesheet. You can also explicitly specify

how text  should  be  formatted  by  using  options  such  as  FontSize  and  FontFamily.  Note  that

FontSize  gives the absolute size of the font to use, measured in units of printer’s points, with

one point being 1
72

 inches. If you resize a plot whose font size is specified as a number, the text

in it will not by default change size: to get text of a different size you must explicitly specify a

new value for the FontSize option. If you resize a plot whose font size is specified as a scaled

quantity,  the  font  will  scale  as  the  plot  is  resized.  With  FontSize -> Scaled@sD,  the  effective

font size will be s scaled units in the plot.

104     Visualization and Graphics



Now all the text resizes as the plot is resized. 

In[6]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, BaseStyle Ø 8FontSize Ø Scaled@.05D<D

Out[6]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Style@expr,"style"D output expr in the specified style

Style@expr,optionsD output expr using the specified font and style options

StandardForm@exprD output expr in StandardForm

Changing the formats of individual pieces of output. 

This outputs the plot label using the section heading style in your current notebook. 

In[7]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<, PlotLabel -> Style@Sin@xD^2, "Section"DD

Out[7]=

1 2 3 4 5 6
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1.0
sin2HxL

This uses the section heading style, but modified to be in italics. 

In[8]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<,
PlotLabel -> Style@Sin@xD^2, "Section", FontSlant -> "Italic"DD

Out[8]=

1 2 3 4 5 6
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0.8

1.0
sin2HxL
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This produces StandardForm output, with a 12-point font. 

In[9]:= Plot@Sin@xD^2, 8x, 0, 2 Pi<,
PlotLabel -> Style@StandardForm@Sin@xD^2D, FontSize -> 12DD

Out[9]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Sin@xD2

You should  realize  that  the  ability  to  refer  to  styles  such  as  "Section"  depends  on  using  the

standard Mathematica notebook front end. Even if you are just using a text-based interface to

Mathematica, however, you can still specify formatting of text in graphics using options such as

FontSize.  The  complete  collection  of  options  that  you  can  use  is  given  in  "Text  and  Font

Options". 

Graphics Primitives for Text

With  the  Text  graphics  primitive,  you  can  insert  text  at  any  position  in  two-  or  three-dimen-

sional Mathematica graphics. Unless you explicitly specify a style or font using Style, the text

will be given in the graphic's base style. 

Text@expr,8x,y<D text centered at the point 8x, y<

Text@expr,8x,y<,8-1,0<D text with its left-hand end at 8x, y<

Text@expr,8x,y<,81,0<D right-hand end at 8x, y<

Text@expr,8x,y<,80,-1<D centered above 8x, y<

Text@expr,8x,y<,80,1<D centered below 8x, y<

Text@expr,8x,y<,8dx,dy<D text positioned so that 8x, y< is at relative coordinates 
8dx, dy< within the box that bounds the text

Text@expr,8x,y<,8dx,dy<,80,1<D text oriented vertically to read from bottom to top

Text@expr,8x,y<,8dx,dy<,80,-1<D text that reads from top to bottom

Text@expr,8x,y<,8dx,dy<,8-1,0<D text that is upside-down

Two-dimensional text. 
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This generates five pieces of text, and displays them in a plot. 

In[1]:= Show@Graphics@Table@Text@Expand@H1 + xL^nD, 8n, n<D, 8n, 5<DD, PlotRange -> AllD

Out[1]=

x+ 1

x2 + 2 x+ 1

x3 + 3 x2 + 3 x+ 1

x4 + 4 x3 + 6 x2 + 4 x+ 1

x5 + 5 x4 + 10 x3 + 10 x2 + 5 x+ 1

Here is some vertically oriented text with its left-hand side at the point 82, 2<. 

In[2]:= Show@Graphics@Text@StyleForm@"Some text", FontSize -> 14, FontWeight -> "Bold"D,
82, 2<, 8-1, 0<, 80, 1<DD, Frame -> TrueD

Out[2]=

So
m
e
te
xt

1.0 1.5 2.0 2.5 3.0
1.0

1.5

2.0

2.5

3.0

When you specify an offset for text, the relative coordinates that are used are taken to run from

-1  to 1 in each direction across the box that bounds the text. The point 80, 0<  in this coordi-

nate system is defined to be center of the text. Note that the offsets you specify need not lie in

the range -1 to 1. 

Note that you can specify the color of a piece of text by preceding the Text  graphics primitive

with an appropriate RGBColor or other graphics directive. 

Text@expr,8x,y,z<D text centered at the point 8x, y, z<

Text@expr,8x,y,z<,8sdx,sdy<D text with a two-dimensional offset

Three-dimensional text. 
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This puts text at the specified position in three dimensions. 

In[3]:= Graphics3D@
8PolyhedronData@"Dodecahedron", "Faces"D, Text@"a point", 82, 2, 2<, 81, 1<D<D

Out[3]=

a point

Note that when you use text in three-dimensional graphics, Mathematica assumes that the text

is never hidden by any polygons or other objects. 

option name default value
Background None background color
BaseStyle 8< style or font specification
FormatType StandardForm format type

Options for Text. 

By default the text is just put straight on top of whatever graphics have already been drawn. 

In[4]:= Graphics@
88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Text@"Some text", 80.5, 0.5<D<D

Out[4]= Some text

Now there is a rectangle with the background color of the whole plot enclosing the text. 

In[5]:= Graphics@88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<,
Text@"Some text", 80.5, 0.5<, Background -> AutomaticD<D

Out[5]= Some text

The Representation of Sound

"Sound" describes how you can take functions and lists of data and produce sounds from them.

Here we discuss how sounds are represented in Mathematica. 

Mathematica  treats  sounds  much  like  graphics.  In  fact,  Mathematica  allows  you  to  combine

graphics with sound to create pictures with “sound tracks”. 
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In  analogy  with  graphics,  sounds  in  Mathematica  are  represented  by  symbolic  sound  objects.

The  sound  objects  have  head  Sound,  and  contain  a  list  of  sound  primitives,  which  represent

sounds to be played in sequence. 

Sound@8s1,s2,…<D a sound object containing a list of sound primitives

The structure of a sound object. 

The functions Play and ListPlay discussed in "Sound" return Sound objects. 

Play returns a Sound object. On appropriate computer systems, it also produces sound. 

In[1]:= Play@H2 + Cos@20 tDL * Sin@3000 t + 2 Sin@50 tD D, 8t, 0, 2<D

Out[1]=

The Sound object contains a SampledSoundFunction primitive which uses a compiled func-
tion to generate amplitude samples for the sound. 

In[2]:= Short@InputForm@%DD

Out[2]//Short=
Sound@SampledSoundFunction@CompiledFunction@8_Integer<,

8<<2>><, <<3>>, EvaluateD, 16384, 8192DD

SampledSoundList@8a1,a2,…<,rD a sound with a sequence of amplitude levels, sampled at 
rate r

SampledSoundFunction@ f,n,rD a sound whose amplitude levels sampled at rate r are 
found by applying the function f  to n successive integers

SoundNote@n,t,"style"D a note-like sound with note n, time specification t, with the 
specified style

Mathematica sound primitives. 

At  the  lowest  level,  all  sounds  in  Mathematica  are  represented  as  a  sequence  of  amplitude

samples, or as a sequence of MIDI events. In SampledSoundList, these amplitude samples are

given  explicitly  in  a  list.  In  SampledSoundFunction,  however,  they  are  generated  when  the

sound is output, by applying the specified function to a sequence of integer arguments. In both

cases,  all  amplitude  values  obtained  must  be  between  -1  and 1.  In  SoundNote,  a  note-like

sound  is  represented  as  a  sequence  of  MIDI  events  that  represent  the  frequency,  duration,

amplitude and styling of the note.
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ListPlay  generates  SampledSoundList  primitives,  while  Play  generates

SampledSoundFunction  primitives. With the default option setting Compiled -> True, Play  will

produce a SampledSoundFunction object containing a CompiledFunction. 

Once  you  have  generated  a  Sound  object  containing  various  sound  primitives,  you  must  then

output  it  as  a  sound.  Much  as  with  graphics,  the  basic  scheme  is  to  take  the  Mathematica

representation  of  the  sound,  and  convert  it  to  a  lower-level  form  that  can  be  handled  by  an

external program, such as a Mathematica front end. 

The low-level representation of sampled sound used by Mathematica consists of a sequence of

hexadecimal  numbers  specifying  amplitude  levels.  Within  Mathematica,  amplitude  levels  are

given  as  approximate  real  numbers  between  -1  and 1.  In  producing  the  low-level  form,  the

amplitude levels are “quantized”. You can use the option SampleDepth  to specify how many bits

should  be  used  for  each  sample.  The  default  is  SampleDepth -> 8,  which  yields  256  possible

amplitude  levels,  sufficient  for  most  purposes.  The  low-level  representation  of  note-based

sound  is  as  a  time-quantized  byte  stream  of  MIDI  events,  which  specify  various  parameters

about the note objects. The quantization of time is determined automatically at playback.

You  can  use  the  option  SampleDepth  in  Play  and  ListPlay.  In  sound  primitives,  you  can

specify the sample depth by replacing the sample rate argument by the list 8rate, depth<. 

Exporting Graphics and Sounds

Mathematica allows you to export graphics and sounds in a wide variety of formats. If you use

the  notebook  front  end  for  Mathematica,  then  you  can  typically  just  copy  and  paste  graphics

and sounds directly into other programs using the standard mechanism available on your com-

puter system.

Export@"name.ext",graphicsD export graphics to a file in a format deduced from the file 
name

Export@" file",graphics," format"D

export graphics in the specified format

Export@"!command",graphics," format"D

export graphics to an external command

Export@" file",8g1,g2,…<,…D export a sequence of graphics for an animation

ExportString@graphics," format"D generate a string representation of exported graphics

Exporting Mathematica graphics and sounds. 
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"EPS" Encapsulated PostScript (.eps)

"PDF" Adobe Acrobat portable document format (.pdf)

"SVG" Scalable Vector Graphics (.svg)

"PICT" Macintosh PICT

"WMF" Windows metafile format (.wmf)

"TIFF" TIFF (.tif, .tiff)

"GIF" GIF and animated GIF (.gif)

"JPEG" JPEG (.jpg, .jpeg)

"PNG" PNG format (.png)

"BMP" Microsoft bitmap format (.bmp)

"PCX" PCX format (.pcx)

"XBM" X window system bitmap (.xbm)

"PBM" portable bitmap format (.pbm)

"PPM" portable pixmap format (.ppm)

"PGM" portable graymap format (.pgm)

"PNM" portable anymap format (.pnm)

"DICOM" DICOM medical imaging format (.dcm, .dic)

"AVI" Audio Video Interleave format (.avi)

Typical graphics formats supported by Mathematica. Formats in the first group are resolution 
independent. 

This generates a plot. 

In[1]:= Plot@Sin@xD + Sin@Sqrt@2D xD, 8x, 0, 10<D

Out[1]=

2 4 6 8 10

-1.5
-1.0
-0.5

0.5
1.0
1.5
2.0

This exports the plot to a file in Encapsulated PostScript format. 

In[2]:= Export@"sinplot.eps", %D

Out[2]= sinplot.eps
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When  you  export  a  graphic  outside  of  Mathematica,  you  usually  have  to  specify  the  absolute

size  at  which  the  graphic  should  be  rendered.  You  can  do  this  using  the  ImageSize  option  to

Export. 

ImageSize -> x  makes  the  width  of  the  graphic  be  x  printer’s  points;  ImageSize -> 72 xi  thus

makes  the  width  xi  inches.  The  default  is  to  produce  an  image  that  is  four  inches  wide.

ImageSize -> 8x, y< scales the graphic so that it fits in an x×y region. 

ImageSize Automatic absolute image size in printer’s points
"ImageTopOrientation" Top how the image is oriented in the file 
ImageResolution Automatic resolution in dpi for the image

Options for Export. 

Within  Mathematica,  graphics  are  manipulated in  a  way that  is  completely  independent  of  the

resolution of the computer screen or other output device on which the graphics will  eventually

be rendered. 

Many programs and devices accept graphics in resolution-independent formats such as Encapsu-

lated PostScript  (EPS).  But some require that the graphics be converted to rasters or bitmaps

with  a  specific  resolution.  The  ImageResolution  option  for  Export  allows  you  to  determine

what  resolution  in  dots  per  inch  (dpi)  should  be  used.  The  lower  you  set  this  resolution,  the

lower  the  quality  of  the  image  you  will  get,  but  also  the  less  memory  the  image  will  take  to

store.  For  screen  display,  typical  resolutions  are  72  dpi  and  above;  for  printers,  300  dpi  and

above. 

"DXF" AutoCAD drawing interchange format (.dxf)

"STL" STL stereolithography format (.stl)

Typical 3D geometry formats supported by Mathematica. 

"WAV" Microsoft wave format (.wav)

"AU" m law encoding (.au)

"SND" sound file format (.snd)

"AIFF" AIFF format (.aif, .aiff)

Typical sound formats supported by Mathematica. 
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Importing Graphics and Sounds

Mathematica allows you not only to export graphics and sounds, but also to import them. With

Import  you  can  read  graphics  and  sounds  in  a  wide  variety  of  formats,  and  bring  them  into

Mathematica as Mathematica expressions. 

Import@"name.ext"D import graphics from the file name.ext in a format deduced 
from the file name

Import@" file"," format"D import graphics in the specified format

ImportString@"string"," format"D import graphics from a string

Importing graphics and sounds. 

This imports an image stored in JPEG format. 

In[1]:= g = Import@"ExampleDataêocelot.jpg"D

Out[1]=

This shows an array of four copies of the image. 

In[2]:= GraphicsGrid@88g, g<, 8g, g<<D

Out[2]=

Import  yields  expressions  with  different  structures  depending  on  the  type  of  data  it  reads.

Typically  you  will  need  to  know  the  structure  if  you  want  to  manipulate  the  data  that  is

returned. 
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Graphics@primitives,optsD resolution-independent graphics

Graphics@Raster@dataD,optsD resolution-dependent bitmap images

8graphics1,graphics2,…< animated graphics

Sound@SampledSoundList@data,rDD sounds

Structures of expressions returned by Import. 

This shows the overall structure of the graphics object imported above. 

In[3]:= Shallow@InputForm@gDD

Out[3]//Shallow= Graphics@Raster@<< 4 >>D, Rule@<< 2 >>D, Rule@<< 2 >>DD

This extracts the array of pixel values used. 

In[4]:= d = g@@1, 1DD;

Here are the dimensions of the array. 

In[5]:= Dimensions@dD

Out[5]= 8200, 200<

This shows the distribution of pixel values. 

In[6]:= ListPlot@Sort@Flatten@dDDD

Out[6]=
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This shows a transformed version of the image. 

In[7]:= Graphics@Raster@d^2 ê Max@d^2DDD

Out[7]=
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Editing Mathematica Graphics

Introduction to Editing Mathematica Graphics

An Example of Editing Graphics

The following graph represents an impulse response of an ideal Low Pass Filter (LPF). This 
graph illustrates some of the ways of interacting with graphics. Details on each topic follow in 
the other parts of "Interactive Graphics". 

In[1]:= Plot@Sin@Pi Ht - 4LD ê HPi Ht - 4LL, 8t, 0, 10<, PlotRange Ø All, Ticks Ø NoneD

Out[1]=

Select the curve and change its color and thickness using the Graphics Inspector.
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Using the Text tool and the TraditionalForm Text tool, add a plot label and axis labels. 

You can edit the title to change its font, color, size, and face.

Draw vertical and horizontal lines to the maximum point with the Line tool.
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Select the lines and make them dashed using the Graphics Inspector.

Label the point with the TraditionalForm Text tool.

Add the formula for the curve.
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Drawing Tools

To Open the Graphics Palette:

Type Ctrl+T or choose Graphics  Drawing Tools.

For more information on each tool, click the words pointing into the palette.

Point (p) Freehand Line(f)

Get Coordinates(.)Select/Move/Resize (o)

(t) Text(m)TraditionalForm Text

Line (l) (s) Line Segments

(g) Polygon

(Ctrl+1)New Graphic/Inset (Ctrl+g) Graphics Inspector

(a)Arrow

(c)Disk/Circle (q) Rectangle
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