
Wolfram Mathematica Tutorial Collection

Visualization and Graphics



For use with Wolfram Mathematica® 7.0 and later. 

For the latest updates and corrections to this manual: 
visit reference.wolfram.com 

For information on additional copies of this documentation: 
visit the Customer Service website at www.wolfram.com/services/customerservice 
or email Customer Service at info@wolfram.com 

Comments on this manual are welcomed at: 
comments@wolfram.com 

Printed in the United States of America. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc. 

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright 
holder. 

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described 
in this document, including without limitation such aspects of the system as its code, structure, sequence, 
organization, “look and feel,” programming language, and compilation of command names. Use of the Software 
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an 
infringement of the copyright. 

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express, 
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation, 
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which 
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your 
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram 
does not recommend the use of the software described in this document for applications in which errors 
or omissions could threaten life, injury or significant loss. 

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM, 
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of 
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple 
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not 
associated with Mathematica Policy Research, Inc. 



Contents

Graphics and Sound
Basic Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Options for Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Redrawing and Combining Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Manipulating Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Three-Dimensional Surface Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Plotting Lists of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Parametric Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Some Special Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The Structure of Graphics and Sound
The Structure of Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Two-Dimensional Graphics Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Graphics Directives and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Coordinate Systems for Two-Dimensional Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Labeling Two-Dimensional Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Insetting Objects in Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Density and Contour Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Three-Dimensional Graphics Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Three-Dimensional Graphics Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Coordinate Systems for Three-Dimensional Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Lighting and Surface Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Labeling Three-Dimensional Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Efficient Representation of Many Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Formats for Text in Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Graphics Primitives for Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
The Representation of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Exporting Graphics and Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Importing Graphics and Sounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Editing Mathematica Graphics
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Drawing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Selecting Graphics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Reshaping Graphics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Resizing, Cropping, and Adding Margins to Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Graphics as Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Interacting with 3D Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



Graphics and Sound

Basic Plotting

Plot@ f,8x,xmin,xmax<D plot f  as a function of x from xmin to xmax

Plot@ f,8x,x0,x1,…,xk<D plot f  over a series of segments, potentially breaking the 
curve at each of the xi

Plot@8 f1, f2,…<,8x,xmin,xmax<D

plot several functions together

Basic plotting functions. 

This plots a graph of sinHxL as a function of x from 0 to 2 p.

In[1]:= Plot@Sin@xD, 8x, 0, 2 Pi<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

You can plot functions that have singularities. Mathematica will try to choose appropriate scales. 

In[2]:= Plot@Tan@xD, 8x, -3, 3<D

Out[2]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

The singularities can be omitted from the plot by specifying them in the plot's range. 

In[3]:= Plot@Tan@xD, 8x, -3, -Pi ê 2, Pi ê 2, 3<D

Out[3]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6



You can give a list of functions to plot. A different color will automatically be used for each 
function.

In[4]:= Plot@8Sin@xD, Sin@2 xD, Sin@3 xD<, 8x, 0, 2 Pi<D

Out[4]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This finds the numerical solution to a differential equation, as discussed in "Numerical Differen-
tial Equations". 

In[5]:= NDSolve@8y'@xD == Sin@y@xDD, y@0D == 1<, y, 8x, 0, 4<D

Out[5]= 88y Ø InterpolatingFunction@880., 4.<<, <>D<<

Here is a plot of the solution.

In[6]:= Plot@y@xD ê. %, 8x, 0, 4<D

Out[6]=

1 2 3 4

1.5

2.0

2.5

3.0

Options for Graphics

When Mathematica plots a graph for you, it has to make many choices. It has to work out what

the  scales  should  be,  where  the  function  should  be  sampled,  how  the  axes  should  be  drawn,

and so on. Most of the time, Mathematica will probably make pretty good choices. However, if

you want to get the very best possible pictures for your particular purposes, you may have to

help Mathematica in making some of its choices. 

There  is  a  general  mechanism  for  specifying  “options”  in  Mathematica  functions.  Each  option

has a definite name. As the last arguments to a function like Plot, you can include a sequence

of rules of the form name -> value, to specify the values for various options. Any option for which

you do not give an explicit rule is taken to have its “default” value.
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Plot@ f,8x,xmin,xmax<,option->valueD

make a plot, specifying a particular value for an option

Choosing an option for a plot. 

A function like Plot  has many options that you can set. Usually you will need to use at most a

few of  them at  a  time.  If  you want  to  optimize  a  particular  plot,  you will  probably  do best  to

experiment, trying a sequence of different settings for various options. 

Each time you produce a plot, you can specify options for it. "Redrawing and Combining Plots"

will  also  discuss  how you can change some of  the  options,  even after  you have produced the

plot. 

option name default value
AspectRatio 1ëGoldenRatio the height-to-width ratio for the plot; 

Automatic sets it from the absolute x and 
y coordinates

Axes True whether to include axes
AxesLabel None labels to be put on the axes; ylabel specifies 

a label for the y axis, 8xlabel, ylabel< for 
both axes

AxesOrigin Automatic the point at which axes cross
BaseStyle 8< the default style to use for the plot

FormatType TraditionalFoÖ
rm

the default format type to use for text in 
the plot

Frame False whether to draw a frame around the plot
FrameLabel None labels to be put around the frame; give a 

list in clockwise order starting with the 
lower x axis

FrameTicks Automatic what tick marks to draw if there is a frame; 
None gives no tick marks

GridLines None what grid lines to include; Automatic 
includes a grid line for every major tick 
mark

PlotLabel None an expression to be printed as a label for 
the plot

PlotRange Automatic the range of coordinates to include in the 
plot; All includes all points

Ticks Automatic what tick marks to draw if there are axes; 
None gives no tick marks

Some of the options for Plot. These can also be used in Show. 
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Here is a plot with all options having their default values. 

In[1]:= Plot@Sin@x^2D, 8x, 0, 3<D

Out[1]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

This draws axes on a frame around the plot. 

In[2]:= Plot@Sin@x^2D, 8x, 0, 3<, Frame -> TrueD

Out[2]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

This specifies labels for the x and y axes. The expressions you give as labels are printed just as 
they would be if they appeared as TraditionalForm Mathematica output. You can give any 
piece of text by putting it inside a pair of double quotes. 

In[3]:= Plot@Sin@x^2D, 8x, 0, 3<, AxesLabel -> 8"x value", Sin@x^2D<D

Out[3]=
0.5 1.0 1.5 2.0 2.5 3.0

x value

-1.0

-0.5

0.5

1.0

sinIx2M

You can give several options at the same time, in any order. 

In[4]:= Plot@Sin@x^2D, 8x, 0, 3<, Frame -> True, GridLines -> AutomaticD

Out[4]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

4     Visualization and Graphics



Setting the AspectRatio  option changes the whole shape of your plot. AspectRatio  gives 
the ratio of width to height. Its default value is the inverse of the Golden Ratio~supposedly the 
most pleasing shape for a rectangle. 

In[5]:= Plot@Sin@x^2D, 8x, 0, 3<, AspectRatio -> 1D

Out[5]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Automatic use internal algorithms

None do not include this

All include everything

True do this

False do not do this

Some common settings for various options. 

When  Mathematica  makes  a  plot,  it  tries  to  set  the  x  and  y  scales  to  include  only  the

“interesting” parts  of  the plot.  If  your function increases very rapidly,  or  has singularities,  the

parts where it gets too large will be cut off. By specifying the option PlotRange, you can control

exactly what ranges of x and y coordinates are included in your plot. 

Automatic show at least a large fraction of the points, including the 
“interesting” region (the default setting)

All show all points

8ymin,ymax< show a specific range of y values

8xrange,yrange< show the specified ranges of x and y values

Settings for the option PlotRange. 
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The setting for the option PlotRange gives explicit y limits for the graph. With the y limits 
specified here, the bottom of the curve is cut off. 

In[6]:= Plot@Sin@x^2D, 8x, 0, 3<, PlotRange -> 80, 1.2<D

Out[6]=

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Mathematica always tries to plot functions as smooth curves. As a result, in places where your

function wiggles a lot, Mathematica will use more points. In general, Mathematica tries to adapt

its sampling of your function to the form of the function. There is, however, a limit, which you

can set, to how finely Mathematica will ever sample a function.

The function sin J
1
x
N wiggles infinitely often when x > 0. Mathematica tries to sample more points 

in the region where the function wiggles a lot, but it can never sample the infinite number that 
you would need to reproduce the function exactly. As a result, there are slight glitches in the 
plot. 

In[7]:= Plot@Sin@1 ê xD, 8x, -1, 1<D

Out[7]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

It  is  important  to  realize  that  since  Mathematica  can  only  sample  your  function  at  a  limited

number of points, it can always miss features of the function. Mathematica adaptively samples

the functions, increasing the number of samples near interesting features, but it is still possible

to miss something. By increasing PlotPoints, you can make Mathematica sample your function

at a larger number of points. Of course, the larger you set PlotPoints  to be, the longer it will

take Mathematica to plot any function, even a smooth one. 

option name default value
PlotStyle Automatic a list of lists of graphics primitives to use 

for each curve (see "Graphics Directives 
and Options")

ClippingStyle None what to draw when curves are clipped
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Filling None filling to insert under each curve
FillingStyle Automatic style to use for filling
PlotPoints 50 the initial number of points at which to 

sample the function
MaxRecursion Automatic the maximum number of recursive subdivi  -

sions allowed

More options for Plot. These cannot be used in Show. 

This uses PlotStyle to specify a dashed curve.

In[8]:= Plot@Sin@x^2D, 8x, 0, 3<, PlotStyle Ø DashedD

Out[8]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

When plotting multiple functions, PlotStyle settings in a list are used sequentially for each 
function.

In[9]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotStyle Ø 8Red, Blue<D

Out[9]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

When a PlotStyle contains a sublist, the settings are combined.

In[10]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotStyle Ø 8Red, 8Blue, Thick<<D

Out[10]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0
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By default nothing is indicated when the PlotRange is set, so that it cuts off curves.

In[11]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotRange Ø 0.9D

Out[11]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

Setting ClippingStyle to Automatic draws a dashed line where a curve is cut off. 

In[12]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotRange Ø 0.9, ClippingStyle Ø AutomaticD

Out[12]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

Setting ClippingStyle to a list defines the style for the parts cut off at the bottom and top. 

In[13]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<,
PlotRange Ø 0.9, ClippingStyle Ø 8Green, Red<D

Out[13]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

This specifies filling between the curve and the x axis.

In[14]:= Plot@Sin@x^2D, 8x, 0, 3<, Filling Ø AxisD

Out[14]=
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The filling can be specified to extend to an arbitrary height, such as the bottom of the graphic. 
Filling colors are automatically blended where they overlap.

In[15]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø BottomD

Out[15]=

This specifies a specific filling to be used only for the first curve.

In[16]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø 81 Ø .5<D

Out[16]=

This shows a filling from the first curve to the second using a nondefault filling style.

In[17]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø 81 Ø 82<<, FillingStyle Ø LightBrownD

Out[17]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Redrawing and Combining Plots

Mathematica  saves information about every plot you produce, so that you can later redraw it.

When you redraw plots, you can change some of the options you use.

Show@plot,option->valueD redraw a plot with options changed

Show@plot1,plot2,…D combine several plots

GraphicsGrid@88plot1,plot2,…<,…<D

draw an array of plots

InputForm@plotD show the underlying textual description of the plot

Functions for manipulating plots. 
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Here is a simple plot.

In[1]:= Plot@ChebyshevT@7, xD, 8x, -1, 1<D

Out[1]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

When you redraw the plot, you can change some of the options. This changes the choice of y 
scale. 

In[2]:= Show@%, PlotRange -> 8-1, 2<D

Out[2]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

This takes the plot from the previous line, and changes another option in it. 

In[3]:= Show@%, PlotLabel -> "A Chebyshev Polynomial"D

Out[3]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0
A Chebyshev Polynomial

By  using  Show  with  a  sequence  of  different  options,  you  can  look  at  the  same  plot  in  many

different ways. You may want to do this, for example, if you are trying to find the best possible

setting of options. 

You can also use Show to combine plots. All of the options for the resulting graphic will be based

upon the options of the first graphic in the Show expression.
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This sets gj0 to be a plot of J0HxL from x = 0 to 10. 

In[4]:= gj0 = Plot@BesselJ@0, xD, 8x, 0, 10<D

Out[4]=

2 4 6 8 10

-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

Here is a plot of Y1HxL from x = 1 to 10. 

In[5]:= gy1 = Plot@BesselY@1, xD, 8x, 1, 10<D

Out[5]=
4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Plot specifies an explicit PlotRange for each graphic.

In[6]:= Options@gj0, PlotRangeD

Out[6]= 8PlotRange Ø 880, 10<, 8-0.402759, 1.<<<

This uses PlotRange to override the explicit value set for gj0.

In[7]:= gjy = Show@gj0, gy1, PlotRange Ø AutomaticD

Out[7]=
2 4 6 8 10

-0.5

0.5

1.0

All Mathematica graphics are expressions and can be manipulated in the same way as any other

expression. Doing these kinds of manipulations does not require the use of Show.
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This replaces all instances of the symbol Line with the symbol Point in the graphics expres-
sion represented by gj0.

In[8]:= gj0 ê. Line Ø Point

Out[8]=

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Using  Show@plot1, plot2, …D  you  can  combine  several  plots  into  one.  GraphicsGrid  allows  you

to draw several plots in an array. 

GraphicsGrid@88plot11,plot12,…<,…<D

draw a rectangular array of plots

GraphicsRow@8plot1,plot2,…<D

draw several plots side by side

GraphicsColumn@8plot1,plot2,…<D

draw a column of plots

GraphicsGridAplots,Spacings->8h,v<E

put the specified horizontal and vertical spacing between 
the plots

Drawing arrays of plots. 

This shows the previous plots in an array. 

In[9]:= GraphicsGrid@88gj0, gjy<, 8gy1, gjy<<D

Out[9]=

2 4 6 8 10
-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
-0.5

0.5

1.0

4 6 8 10

-0.8
-0.6
-0.4
-0.2

0.2
0.4

2 4 6 8 10
-0.5

0.5

1.0
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If you redisplay an array of plots using Show, any options you specify will be used for the whole 
array, rather than for individual plots. 

In[10]:= Show@%, Frame -> True, FrameTicks -> NoneD

Out[10]=

2 4 6 8 10
-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
-0.5

0.5

1.0

4 6 8 10

-0.8
-0.6
-0.4
-0.2

0.2
0.4

2 4 6 8 10
-0.5

0.5

1.0

GraphicsGrid  by default  puts  a  narrow border  around each of  the plots  in  the array it  gives.

You can change the size of this border by setting the option Spacings -> 8h, v<.  The parame-

ters h and v give the horizontal and vertical spacings to be used. The Spacings  option uses the

width  and height  of  characters  in  the default  font  to  scale  the h  and v  parameters  by default,

but it is generally more useful in graphics to use Scaled coordinates. Scaled scales widths and

heights so that a value of 1 represents the width and height of one element of the grid.

This increases the horizontal spacing, but decreases the vertical spacing between the plots in 
the array. 

In[11]:= GraphicsGrid@88gj0, gjy<, 8gy1, gjy<<, Spacings -> 8Scaled@.3D, Scaled@0D<D

Out[11]=
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When you make a plot, Mathematica saves the list of points it used, together with some other

information.  Using  what  is  saved,  you  can  redraw  plots  in  many  different  ways  with  Show.

However,  you should realize that no matter what options you specify,  Show  still  has the same

basic  set  of  points  to  work  with.  So,  for  example,  if  you  set  the  options  so  that  Mathematica

displays  a  small  portion  of  your  original  plot  magnified,  you  will  probably  be  able  to  see  the

individual sample points that Plot used. Options like PlotPoints can only be set in the original

Plot  command  itself.  (Mathematica  always  plots  the  actual  points  it  has;  it  avoids  using

smoothed or splined curves, which can give misleading results in mathematical graphics.) 

Here is a simple plot. 
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Here is a simple plot. 

In[12]:= Plot@Cos@xD, 8x, -Pi, Pi<D

Out[12]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

This shows a small region of the plot in a magnified form. At this resolution, you can see the 
individual line segments that were produced by the original Plot command. 

In[13]:= Show@%, PlotRange -> 880, .005<, 8.99999, 1<<D

Out[13]=

0.999990

0.999992

0.999994

0.999996

0.999998

1.000000

Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options

you can set. Mathematica provides some general mechanisms for handling such options. 

If you do not give a specific setting for an option to a function like Plot, then Mathematica will

automatically  use  a  default  value  for  the  option.  The  function  Options@ function, optionD  allows

you  to  find  out  the  default  value  for  a  particular  option.  You  can  reset  the  default  using

SetOptions@ function, option -> valueD. Note that if you do this, the default value you have given

will stay until you explicitly change it. 

Options@ functionD give a list of the current default settings for all options

Options@ function,optionD give the default setting for a particular option

SetOptions@ function,option->value,…D

reset defaults

Manipulating default settings for options. 
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Here is the default setting for the PlotRange option of Plot. 

In[1]:= Options@Plot, PlotRangeD

Out[1]= 8PlotRange Ø 8Full, Automatic<<

This resets the default for the PlotRange option. The semicolon stops Mathematica from 
printing out the rather long list of options for Plot. 

In[2]:= SetOptions@Plot, PlotRange -> AllD;

Until you explicitly reset it, the default for the PlotRange option will now be All. 

In[3]:= Options@Plot, PlotRangeD

Out[3]= 8PlotRange Ø All<

The graphics objects that you get from Plot or Show store information on the options they use.

You can get this information by applying the Options function to these graphics objects. 

Options@plotD show all the options used for a particular plot

Options@plot,optionD show the setting for a specific option

AbsoluteOptions@plot,optionD show the absolute form used for a specific option, even if 
the setting for the option is Automatic or All

Getting information on options used in plots. 

Here is a plot, with default settings for all options. 

In[4]:= g = Plot@SinIntegral@xD, 8x, 0, 20<D

Out[4]=

5 10 15 20

0.5

1.0

1.5

The setting used for the PlotRange option was All. 

In[5]:= Options@g, PlotRangeD

Out[5]= 8PlotRange Ø 8All, All<<

AbsoluteOptions gives the absolute automatically chosen values used for PlotRange. 

In[6]:= AbsoluteOptions@g, PlotRangeD

Out[6]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===
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While it is often convenient to use a variable to represent a graphic as in the above examples,

the graphic itself can be evaluated directly. The typical ways to do this in the notebook interface

are  to  copy  and  paste  the  graphic  or  to  simply  begin  typing  in  the  graphical  output  cell,  at

which point the output cell will be converted into a new input cell.

When a plot created with no explicit ImageSize is placed into an input cell, it will automatically

shrink to more easily accommodate input.

The following input cell was created by copying and pasting the graphical output created in the 
previous example.

In[7]:= AbsoluteOptionsB

5 10 15 20

0.5

1.0

1.5

, PlotRangeF

Out[7]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

Three-Dimensional Surface Plots

Plot3D@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a three-dimensional plot of f  as a function of the 
variables x and y

Basic 3D plotting function. 

This makes a three-dimensional plot of the function sinHxyL. 
In[1]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<D

Out[1]=
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Three-dimensional  graphics  can  be  rotated  in  place  by  dragging  the  mouse  inside  of  the

graphic. Dragging inside of the graphic causes the graphic to tumble in a direction that follows

the mouse,  and dragging around the borders  of  the graphic  causes  the graphic  to  spin  in  the

plane of the screen. Dragging the graphic while holding down the Shift key causes the graphic

to pan. Use the Ctrl key (Cmd key on Macintosh) to zoom.

There are many options for three-dimensional plots in Mathematica. Some are discussed here;

others are described in "The Structure of Graphics and Sound". 

The first set of options for three-dimensional plots is largely analogous to those provided in the

two-dimensional case. 

option name default value
Axes True whether to include axes
AxesLabel None labels to be put on the axes: zlabel specifies 

a label for the z axis, 
8xlabel, ylabel, zlabel< for all axes

BaseStyle 8< the default style to use for the plot
Boxed True whether to draw a three-dimensional box 

around the surface
FaceGrids None how to draw grids on faces of the bounding 

box; All draws a grid on every face
LabelStyle 8< style specification for labels
Lighting Automatic simulated light sources to use
Mesh Automatic whether an xy mesh should be drawn on 

the surface
PlotRange 9Full,Full,

Automatic=
the range of z or other values to include

SphericalRegion False whether to make the circumscribing sphere 
fit in the final display area

ViewAngle All angle of the field of view
ViewCenter 81,1,1<ê2 point to display at the center
ViewPoint 81.3,-2.4,2< the point in space from which to look at the 

surface
ViewVector Automatic position and direction of a simulated camera
ViewVertical 80,0,1< direction to make vertical
BoundaryStyle Automatic how to draw boundary lines for surfaces
ClippingStyle Automatic how to draw clipped parts of surfaces
ColorFunction Automatic how to determine the color of the surfaces
Filling None filling under each surface
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FillingStyle Opacity@.5D style to use for filling
PlotPoints 25 the number of points in each direction at 

which to sample the function; 9nx, ny= 
specifies different numbers in the x and y 
directions

PlotStyle Automatic graphics directives for the style of each 
surface

Some options for Plot3D. The first set can also be used in Show. 

This redraws the previous plot with options changed. With this setting for PlotRange, only the 
part of the surface in the range -0.5 § z § 0.5 is shown.

In[2]:= Show@%, PlotRange -> 8-0.5, 0.5<D

Out[2]=

The ClippingStyle option of Plot3D can be used to fill in the clipped regions.

In[3]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<,
PlotRange -> 8-0.5, 0.5<, ClippingStyle Ø 8Opacity@.9, GrayD<D

Out[3]=

When you make the original plot, you can choose to sample more points. Mathematica adap-
tively samples the plot, adding points for large variations, but occasionally you may still need to 
specify a greater number of points.

In[4]:= Plot3D@10 Sin@x + Sin@yDD, 8x, -10, 10<, 8y, -10, 10<, PlotPoints -> 50D

Out[4]=
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Here is the same plot, with labels for the axes, and grids added to each face. 

In[5]:= Show@%, AxesLabel -> 8"Time", "Depth", "Value"<, FaceGrids -> AllD

Out[5]=

Probably  the  single  most  important  issue  in  plotting  a  three-dimensional  surface  is  specifying

where you want to look at the surface from. The ViewPoint option for Plot3D and Show  allows

you to specify the point 8x, y, z< in space from which you view a surface. The details of how the

coordinates  for  this  point  are  defined  are  discussed  in  "Coordinate  Systems  for  Three-Dimen-

sional  Graphics".  When  rotating  a  graphic  using  the  mouse,  you  are  adjusting  the  ViewPoint

value.

Here is a surface, viewed from the default view point 81.3, -2.4, 2<. This view point is 
chosen to be “generic”, so that visually confusing coincidental alignments between different 
parts of your object are unlikely. 

In[6]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<D

Out[6]=

This redraws the picture, with the view point directly in front. Notice the perspective effect that 
makes the back of the box look much smaller than the front. 

In[7]:= Show@%, ViewPoint -> 80, -2, 0<D

Out[7]=
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The ViewPoint option also accepts various symbolic values which represent common view 
points.

In[8]:= Show@%, ViewPoint Ø AboveD

Out[8]=

81.3,-2.4,2< default view point

Front in front, along the negative y direction

Back in back, along the positive y direction

Above above, along the positive z direction

Below below, along the negative z direction

Left left, along the negative x direction

Right right, along the positive x direction

Typical choices for the ViewPoint option. 

The  human  visual  system is  not  particularly  good  at  understanding  complicated  mathematical

surfaces.  As  a  result,  you  need  to  generate  pictures  that  contain  as  many  clues  as  possible

about the form of the surface.

View points slightly above the surface usually work best. It is generally a good idea to keep the

view  point  close  enough  to  the  surface  that  there  is  some  perspective  effect.  Having  a  box

explicitly drawn around the surface is helpful in recognizing the orientation of the surface. 
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Here is a plot with the default settings for surface rendering options. 

In[9]:= Plot3D@Exp@-Hx^2 + y^2LD, 8x, -2, 2<, 8y, -2, 2<D

Out[9]=

This shows the surface without the mesh drawn. It is usually much harder to see the form of 
the surface if the mesh is not there. 

In[10]:= Plot3D@Exp@-Hx^2 + y^2LD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø NoneD

Out[10]=

To  add  an  extra  element  of  realism  to  three-dimensional  graphics,  Mathematica  by  default

colors three-dimensional surfaces using a simulated lighting model. In the default case, Mathe-

matica  assumes  that  there  are  four  point  light  sources  plus  ambient  lighting  shining  on  the

object. "Lighting and Surface Properties" describes how you can set up other light sources, and

how you can specify the reflection properties of an object. 

Lighting can also be specified using a string which represents a collection of lighting properties.

For example, the option setting Lighting -> "Neutral"  uses a set of white lights, and so can

be faithfully reproduced on a black and white output device such as a printer.

In[11]:= Plot3D@8Sin@x yD<, 8x, 0, 3<, 8y, 0, 3<, Lighting Ø "Neutral"D

Out[11]=
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The ColorFunction option by default uses Lighting -> "Neutral" so that the surface 
colors are not distorted by colored lights.

In[12]:= Plot3D@8Sin@x yD<, 8x, 0, 3<, 8y, 0, 3<, ColorFunction Ø HueD

Out[12]=

Plotting Lists of Data

Mathematica  can be used to make plots  of  functions.  You give Mathematica  a  function,  and it

builds up a curve or surface by evaluating the function at many different points.

Here we describe how you can make plots from lists of data, instead of functions. ("Importing

and Exporting Data" discusses how to read data from external files and programs.) The Mathe-

matica commands for plotting lists of data are direct analogs of the ones for plotting functions. 

ListPlot@8y1,y2,…<D plot y1, y2, … at x values 1, 2, …

ListPlot@88x1,y1<,8x2,y2<,…<E plot points Hx1, y1L, … 

ListLinePlot@listD join the points with lines

ListPlot3D@88z11,z12,…<,8z21,z22,…<,…<D

make a three-dimensional plot of the array of heights zyx

ListPlot3D@88x1,y1,z1<,8x2,y2,z2<,…<D

make a three-dimensional plot with heights zi at positions 
8xi, yi<

ListContourPlot@arrayD make a contour plot

ListDensityPlot@arrayD make a density plot

Functions for plotting lists of data. 

Here is a list of values. 

In[1]:= t = Table@i^2, 8i, 10<D

Out[1]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
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This plots the values. 

In[2]:= ListPlot@tD

Out[2]=

2 4 6 8 10

20

40

60

80

100

This joins the points with lines. 

In[3]:= ListLinePlot@tD

Out[3]=

2 4 6 8 10

20

40

60

80

100

When plotting multiple datasets, Mathematica chooses a different color for each dataset 
automatically.

In[4]:= ListPlot@8t, 2 t<D

Out[4]=

2 4 6 8 10

50

100

150

200

This gives a list of x, y pairs. 

In[5]:= Table@8i^2, 4 i^2 + i^3<, 8i, 10<D

Out[5]= 881, 5<, 84, 24<, 89, 63<, 816, 128<, 825, 225<,
836, 360<, 849, 539<, 864, 768<, 881, 1053<, 8100, 1400<<

Visualization and Graphics     23



This plots the points. 

In[6]:= ListPlot@%D

Out[6]=

20 40 60 80 100

200

400

600

800

1000

1200

1400

This gives a rectangular array of values. The array is quite large, so we end the input with a 
semicolon to stop the result from being printed out. 

In[7]:= t3 = Table@Mod@x, yD, 8x, 30<, 8y, 20<D;

This makes a three-dimensional plot of the array of values. 

In[8]:= ListPlot3D@t3D

Out[8]=

This gives a density plot of the array of values. 

In[9]:= ListDensityPlot@t3D

Out[9]=

24     Visualization and Graphics



Parametric Plots

"Basic Plotting" described how to plot curves in Mathematica in which you give the y coordinate

of each point as a function of the x coordinate. You can also use Mathematica to make paramet-

ric plots. In a parametric plot, you give both the x and y coordinates of each point as a function

of a third parameter, say t.

ParametricPlotA9 fx, fy=,9t,tmin,tmax=E

make a parametric plot

ParametricPlotA99 fx, fy=,9gx,gy=,…=,9t,tmin,tmax=E

plot several parametric curves together

Functions for generating parametric plots. 

Here is the curve made by taking the x coordinate of each point to be Sin@tD and the y coordi-
nate to be Sin@2 tD. 

In[1]:= ParametricPlot@8Sin@tD, Sin@2 tD<, 8t, 0, 2 Pi<D

Out[1]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ParametricPlot3DA9 fx, fy, fz=,9t,tmin,tmax=E

make a parametric plot of a three-dimensional curve

ParametricPlot3DA9 fx, fy, fz=,9t,tmin,tmax=,9u,umin,umax=E

make a parametric plot of a three-dimensional surface

ParametricPlot3DA99 fx, fy, fz=,9gx,gy,gz=,…=,…E

plot several objects together

Three-dimensional parametric plots. 
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ParametricPlot3D@8 fx, fy, fz<, 8t, tmin, tmax<D  is  the  direct  analog  in  three  dimensions  of

ParametricPlotA9 fx, fy=, 8t, tmin, tmax<E  in  two  dimensions.  In  both  cases,  Mathematica  effec-

tively generates a sequence of points by varying the parameter t, then forms a curve by joining

these points. With ParametricPlot, the curve is in two dimensions; with ParametricPlot3D, it

is in three dimensions. 

This makes a parametric plot of a helical curve. Varying t produces circular motion in the x-y 
plane, and linear motion in the z direction. 

In[2]:= ParametricPlot3D@8Sin@tD, Cos@tD, t ê 3<, 8t, 0, 15<D

Out[2]=

1.0 0.5 0.0 0.5 1.0

1.0
0.5

0.0
0.5

1.0

0

2

4

ParametricPlot3D@8 fx, fy, fz<, 8t, tmin, tmax<, 8u, umin, umax<D  creates  a  surface,  rather  than  a

curve. The surface is formed from a collection of quadrilaterals. The corners of the quadrilater-

als  have  coordinates  corresponding  to  the  values  of  the  fi  when  t  and  u  take  on  values  in  a

regular grid. 

Here the x and y coordinates for the quadrilaterals are given simply by t and u. The result is a 
surface plot of the kind that can be produced by Plot3D. 

In[3]:= ParametricPlot3D@8u Sin@tD, u Cos@tD, u<, 8t, 0, 2 Pi<, 8u, -1, 1<D

Out[3]=
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This shows the same surface as before, but with the y coordinates distorted by a quadratic 
transformation. 

In[4]:= ParametricPlot3D@8u Sin@tD, u^2 Cos@tD, u<, 8t, 0, 2 Pi<, 8u, -1, 1<D

Out[4]=

This produces a helicoid surface by taking the helical curve shown above, and at each section of 
the curve drawing a quadrilateral. 

In[5]:= ParametricPlot3D@8u Sin@tD, u Cos@tD, t ê 3<, 8t, 0, 15<, 8u, -1, 1<D

Out[5]=

In  general,  it  is  possible  to  construct  many complicated surfaces  using ParametricPlot3D.  In

each case, you can think of the surfaces as being formed by “distorting” or “rolling up” the t-u

coordinate grid in a certain way. 
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This produces a cylinder. Varying the t parameter yields a circle in the x-y plane, while varying 
u moves the circles in the z direction. 

In[6]:= ParametricPlot3D@8Sin@tD, Cos@tD, u<, 8t, 0, 2 Pi<, 8u, 0, 2<D

Out[6]=

This produces a torus. Varying u yields a circle, while varying t rotates the circle around the z 
axis to form the torus. 

In[7]:= ParametricPlot3D@
8Cos@tD H3 + Cos@uDL, Sin@tD H3 + Cos@uDL, Sin@uD<, 8t, 0, 2 Pi<, 8u, 0, 2 Pi<D

Out[7]=

This produces a sphere. 

In[8]:= ParametricPlot3D@8Cos@tD Cos@uD, Sin@tD Cos@uD, Sin@uD<,
8t, 0, 2 Pi<, 8u, -Pi ê 2, Pi ê 2<D

Out[8]=

You  should  realize  that  when  you  draw  surfaces  with  ParametricPlot3D,  the  exact  choice  of

parametrization is  often crucial.  You should be careful,  for  example,  to avoid parametrizations
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in  which  all  or  part  of  your  surface  is  covered more than once.  Such multiple  coverings  often

lead  to  discontinuities  in  the  mesh  drawn  on  the  surface,  and  may  make  ParametricPlot3D

take much longer to render the surface. 

Some Special Plots

As  discussed  in  "The  Structure  of  Graphics  and  Sound",  Mathematica  includes  a  full  graphics

programming language. In this language, you can set up many different kinds of plots. A few of

the common ones are included in standard Mathematica packages. 

LogPlot@ f,8x,xmin,xmax<D generate a linear-log plot

LogLinearPlot@ f,8x,xmin,xmax<D generate a log-linear plot

LogLogPlot@ f,8x,xmin,xmax<D generate a log-log plot

ListLogPlot@listD generate a linear-log plot from a list of data

ListLogLinearPlot@listD generate a log-linear plot from a list of data

ListLogLogPlot@listD generate a log-log plot from a list of data

PolarPlot@r,8t,tmin,tmax<D generate a polar plot of the radius r as a function of angle t

SphericalPlot3D@r,8theta,min,max<,8phi,min,max<D

generate a three-dimensional spherical plot

BarChart@listD plot a list of data as a bar chart

ErrorListPlot@88x1,y1,dy1<,…<D generate a plot with error bars

PieChart@listD plot a list of data as a pie chart

Some special plotting functions. The second group of functions are defined in standard Mathematica 
packages. 

This generates a log-linear plot. 

In[1]:= LogPlot@Exp@-xD + 4 Exp@-2 xD, 8x, 0, 6<D

Out[1]=

1 2 3 4 5 6

0.01

0.1

1
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Here is a list of the first 10 primes. 

In[2]:= p = Table@Prime@nD, 8n, 10<D

Out[2]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29<

Here is a bar chart of the primes. 

In[3]:= Needs@"BarCharts`"D

In[4]:= BarChart@pD

Out[4]=

This gives a pie chart. 

In[5]:= Needs@"PieCharts`"D

In[6]:= PieChart@pD

Out[6]= 1
2

3

4

5
6

7

8

9

10

30     Visualization and Graphics



Sound

On most computer systems, Mathematica can produce not only graphics but also sound. Mathe-

matica treats graphics and sound in a closely analogous way.

For example, just as you can use Plot@ f, 8x, xmin, xmax<D to plot a function, so also you can use

Play@ f, 8t, 0, tmax<D to “play” a function. Play  takes the function to define the waveform for a

sound: the values of the function give the amplitude of the sound as a function of time. 

Play@ f,8t,0,tmax<D play a sound with amplitude f  as a function of time t in 
seconds

Playing a function. 

On a suitable computer system, this plays a pure tone with a frequency of 440 hertz for one 
second. 

In[1]:= Play@Sin@2 Pi 440 tD, 8t, 0, 1<D

Out[1]=

Sounds produced by Play can have any waveform. They do not, for example, have to consist of

a  collection  of  harmonic  pieces.  In  general,  the  amplitude  function  you  give  to  Play  specifies

the instantaneous signal associated with the sound. This signal is typically converted to a volt-

age, and ultimately to a displacement. Note that amplitude is sometimes defined to be the peak

signal  associated  with  a  sound;  in  Mathematica,  it  is  always  the  instantaneous  signal  as  a

function of time. 

This plays a more complex sound. 

In[2]:= Play@Sin@700 t + 25 t Sin@350 tDD, 8t, 0, 4<D

Out[2]=
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Play  is set up so that the time variable that appears in it is always measured in absolute sec-

onds.  When  a  sound  is  actually  played,  its  amplitude  is  sampled  a  certain  number  of  times

every second. You can specify the sample rate by setting the option SampleRate. 

PlayA f,9t,0,tmax=,SampleRate->rE

play a sound, sampling it r times a second

Specifying the sample rate for a sound. 

In general, the higher the sample rate, the better high-frequency components in the sound will

be rendered. A sample rate of r typically allows frequencies up to r ê2 hertz. The human auditory

system  can  typically  perceive  sounds  in  the  frequency  range  20  to  22000  hertz  (depending

somewhat  on  age  and  sex).  The  fundamental  frequencies  for  the  88  notes  on  a  piano  range

from 27.5 to 4096 hertz. 

The standard sample rate used for compact disc players is 44100. The effective sample rate in

a typical telephone system is around 8000. On most computer systems, the default sample rate

used by Mathematica is around 8000.

You can use Play@8 f1, f2, …D  to produce stereo sound. In general, Mathematica  supports any

number of sound channels. 

ListPlayA8a1,a2,…<,SampleRate->rE

play a sound with a sequence of amplitude levels

Playing sampled sounds. 

The function ListPlay  allows you simply to give a list  of  values which are taken to be sound

amplitudes sampled at a certain rate. 

When  sounds  are  actually  rendered  by  Mathematica,  only  a  certain  range  of  amplitudes  is

allowed.  The  option  PlayRange  in  Play  and  ListPlay  specifies  how  the  amplitudes  you  give

should be scaled to fit in the allowed range. The settings for this option are analogous to those

for the PlotRange graphics option discussed in "Options for Graphics".
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PlayRange->Automatic use an internal procedure to scale amplitudes

PlayRange->All scale so that all amplitudes fit in the allowed range

PlayRange->8amin,amax< make amplitudes between amin and amax fit in the allowed 
range, and clip others

Specifying the scaling of sound amplitudes. 

While it is often convenient to use the setting PlayRange -> Automatic, you should realize that

Play  may run significantly faster if you give an explicit PlayRange  specification, so it does not

have to derive one. 

EmitSound@sndD emit a sound when evaluated

Playing sounds programmatically. 

A Sound  object in output is typically formatted as a button which contains a visualization of the

sound  and  which  plays  the  sound  when  pressed.  Sounds  can  be  played  without  the  need  for

user intervention or producing output by using EmitSound. In fact, the internal implementation

of Sound buttons uses EmitSound when the button is pressed.

The internal structure of Sound objects is discussed in "The Representation of Sound".

The Structure of Graphics and Sound

The Structure of Graphics

"Graphics and Sound" discusses how to use functions like Plot  and ListPlot  to plot graphs of

functions and data. Here, we discuss how Mathematica represents such graphics, and how you

can program Mathematica to create more complicated images. 

The basic  idea is  that  Mathematica  represents  all  graphics  in  terms of  a  collection of  graphics

primitives. The primitives are objects like Point, Line and Polygon, that represent elements of

a graphical image, as well as directives such as RGBColor and Thickness. 
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This generates a plot of a list of points. 

In[1]:= ListPlot@Table@Prime@nD, 8n, 20<DD

Out[1]=
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InputForm shows how Mathematica represents the graphics. Each point is represented as a 
coordinate in a Point graphics primitive. All the various graphics options used in this case are 
also given. 

In[2]:= InputForm@%D

Out[2]//InputForm= Graphics[{{{}, {Hue[0.67, 0.6, 0.6], Point[{{1., 2.}, 
     {2., 3.}, {3., 5.}, {4., 7.}, {5., 11.}, {6., 13.}, 
     {7., 17.}, {8., 19.}, {9., 23.}, {10., 29.}, {11., 
     31.}, {12., 37.}, {13., 41.}, {14., 43.}, {15., 
     47.}, {16., 53.}, {17., 59.}, {18., 61.}, {19., 
     67.}, {20., 71.}}]}, {}}}, 
 {AspectRatio -> GoldenRatio^(-1), Axes -> True, 
  AxesOrigin -> {0, 0}, PlotRange -> 
   {{0., 20.}, {0., 71.}}, PlotRangeClipping -> True, 
  PlotRangePadding -> {Scaled[0.02], Scaled[0.02]}}]

Each complete piece of graphics in Mathematica is represented as a graphics object. There are

several  different  kinds  of  graphics  object,  corresponding  to  different  types  of  graphics.  Each

kind of graphics object has a definite head which identifies its type. 

Graphics@listD general two-dimensional graphics

Graphics3D@listD general three-dimensional graphics

Graphics objects in Mathematica. 

The functions  like  Plot  and ListPlot  discussed in  "The Structure  of  Graphics  and Sound"  all

work by building up Mathematica graphics objects, and then displaying them. 

You can create other kinds of graphical images in Mathematica by building up your own graph-

ics  objects.  Since graphics  objects  in  Mathematica  are just  symbolic  expressions,  you can use

all the standard Mathematica functions to manipulate them. 

Graphics  objects  are  automatically  formatted  by  the  Mathematica  front  end  as  graphics  upon

output. Graphics may also be printed as a side effect using the Print command.
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The Graphics object is computed by Mathematica, but its output is suppressed by the 
semicolon.

In[3]:= Graphics@Circle@DD;
2 + 2

Out[3]= 4

A side effect output can be generated using the Print command. It has no Out@D label 
because it is a side effect.

In[4]:= Print@Graphics@Circle@DDD;
2 + 2

Out[4]= 4

Show@g, optsD display a graphics object with new options specified by opts

Show@g1,g2,…D display several graphics objects combined using the 
options from g1

Show@g1,g2,…,optsD display several graphics objects with new options specified 
by opts

Displaying graphics objects. 

Show can be used to change the options of an existing graphic or to combine multiple graphics.

This uses Show to adjust the Background option of an existing graphic.

In[5]:= g1 = Plot@Sin@xD, 8x, 0, 2 Pi<D;
Show@g1, Background Ø PinkD

Out[8]=
1 2 3 4 5 6
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This uses Show to combine two graphics. The values used for PlotRange and other options are 
based upon those which were set for the first graphic.

In[6]:= Show@8g1, Graphics@Circle@DD<D

Out[9]=
-1 1 2 3 4 5 6
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-0.5

0.5

1.0

Here, new options are specified for the entire graphic.

In[7]:= Show@8g1, Graphics@Circle@DD<, PlotRange Ø All, AspectRatio Ø AutomaticD

Out[10]=
-1 1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Graphics directives Examples: RGBColor, Thickness

Graphics options Examples: PlotRange, Ticks, AspectRatio , 
ViewPoint

Local and global ways to modify graphics. 

Given  a  particular  list  of  graphics  primitives,  Mathematica  provides  two  basic  mechanisms  for

modifying the final form of graphics you get. First, you can insert into the list of graphics primi-

tives  certain  graphics  directives,  such  as  RGBColor,  which  modify  the  subsequent  graphical

elements  in  the  list.  In  this  way,  you  can  specify  how  a  particular  set  of  graphical  elements

should be rendered. 

This creates a two-dimensional graphics object that contains the Polygon graphics primitive.

In[8]:= poly = Polygon@Table@N@8Cos@n Pi ê 5D, Sin@n Pi ê 5D<D, 8n, 0, 5<DD;
Graphics@polyD

Out[8]=
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InputForm shows the complete graphics object. 

In[9]:= InputForm@%D

Out[9]//InputForm= Graphics[Polygon[{{1., 0.}, {0.8090169943749475, 
    0.5877852522924731}, {0.30901699437494745, 
    0.9510565162951535}, {-0.30901699437494745, 
    0.9510565162951535}, {-0.8090169943749475, 
    0.5877852522924731}, {-1., 0.}}]]

This takes the graphics primitive created above, and adds the graphics directives RGBColor 
and EdgeForm. 

In[10]:= Graphics@8RGBColor@0.3, 0.5, 1D, EdgeForm@Thickness@0.01DD, poly<D

Out[10]=

By  inserting  graphics  directives,  you  can  specify  how  particular  graphical  elements  should  be

rendered. Often, however, you want to make global modifications to the way a whole graphics

object is rendered. You can do this using graphics options. 

By adding the graphics option Frame you can modify the overall appearance of the graphics. 

In[11]:= Show@%, Frame -> TrueD

Out[11]=

-1.0 -0.5 0.0 0.5 1.0
0.0
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InputForm shows that the option was introduced into the resulting Graphics object.

In[12]:= InputForm@%D

Out[12]//InputForm= Graphics[{RGBColor[0.3, 0.5, 1], 
  EdgeForm[Thickness[0.01]], 
  Polygon[{{1., 0.}, {0.8090169943749475, 
     0.5877852522924731}, {0.30901699437494745, 
     0.9510565162951535}, {-0.30901699437494745, 
     0.9510565162951535}, {-0.8090169943749475, 
     0.5877852522924731}, {-1., 0.}}]}, {Frame -> True}]
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You  can  specify  graphics  options  in  Show.  As  a  result,  it  is  straightforward  to  take  a  single

graphics object, and show it with many different choices of graphics options. 

Notice  however  that  Show  always  returns  the  graphics  objects  it  has  displayed.  If  you  specify

graphics options in Show, then these options are automatically inserted into the graphics objects

that  Show  returns.  As a result,  if  you call  Show  again on the same objects,  the same graphics

options will be used, unless you explicitly specify other ones. Note that in all cases new options

you specify will overwrite ones already there. 

Options@gD give a list of all graphics options for a graphics object

Options@g,optD give the setting for a particular option

Finding the options for a graphics object. 

Some graphics options can be used as options to visualization functions which generate graph-

ics.  Options  which  can  take  the  right-hand  side  of  Automatic  are  sometimes  resolved  into

specific values by the visualization functions.

Here is a plot. 

In[13]:= zplot = Plot@Abs@Zeta@1 ê 2 + I xDD, 8x, 0, 10<, PlotRange Ø AutomaticD

Out[13]=

Mathematica uses an internal algorithm to compute an explicit value for PlotRange in the 
resulting graphic.

In[14]:= Options@zplot, PlotRangeD

Out[14]= 8PlotRange Ø 880., 10.<, 80.526253, 1.54919<<<

FullGraphics@gD translate objects specified by graphics options into lists of 
explicit graphics primitives

Finding the complete form of a piece of graphics. 

When you use a graphics option such as Axes, the Mathematica front end automatically draws

objects  such  as  axes  that  you  have  requested.  The  objects  are  represented  merely  by  the

38     Visualization and Graphics

2 4 6 8 10

0.8

1.0

1.2

1.4



option  values  rather  than  by  a  specific  list  of  graphics  primitives.  Sometimes,  however,  you

may find it  useful  to  represent  these objects  as  the equivalent  list  of  graphics  primitives.  The

function  FullGraphics  gives  the  complete  list  of  graphics  primitives  needed  to  generate  a

particular plot, without any options being used. 

This plots a list of values. 

In[15]:= ListPlot@Table@EulerPhi@nD, 8n, 10<DD

Out[15]=
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FullGraphics yields a graphics object that includes graphics primitives representing axes and 
so on. 

In[16]:= Short@InputForm@FullGraphics@%DD, 6D

Out[16]//Short=
Graphics@8888<, 8Hue@0.67, 0.6, 0.6D, Point@881., 1.<, 82., 1.<, 83., 2.<, 84., 2.<, 85.,

4.<, 86., 2.<, 87., 6.<, 88., 4.<, 89., 6.<, 810., 4.<<D<, 8<<<, 88GrayLevel@0.D,
AbsoluteThickness@0.25D, Line@882., 1.<, 82., 1.0505635621484342<<D<, <<56>><<D

Two-Dimensional Graphics Elements

Point@8x,y<D point at position x, y

Line@88x1,y1<,8x2,y2<,…<D line through the points 8x1, y1<, 8x2, y2<, …
Rectangle@8xmin,ymin<,8xmax,ymax<D filled rectangle

Polygon@88x1,y1<,8x2,y2<,…<D filled polygon with the specified list of corners

Circle@8x,y<,rD circle with radius r centered at x, y

Disk@8x,y<,rD filled disk with radius r centered at x, y

Raster@88a11,a12,…<,8a21,…<,…<E rectangular array of gray levels between 0 and 1

Text@expr,8x,y<D the text of expr, centered at x, y (see "Graphics Primitives 
for Text")

Basic two-dimensional graphics elements. 

Here is a line primitive. 

In[1]:= sawline = Line@Table@8n, H-1L^n<, 8n, 6<DD

Out[1]= Line@881, -1<, 82, 1<, 83, -1<, 84, 1<, 85, -1<, 86, 1<<D
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This shows the line as a two-dimensional graphics object. 

In[2]:= sawgraph = Graphics@sawlineD

Out[2]=

This redisplays the line, with axes added. 

In[3]:= Show@%, Axes -> TrueD

Out[3]=
2 3 4 5 6
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You can combine graphics objects that you have created explicitly from graphics primitives with

ones that are produced by functions like Plot. 

This produces an ordinary Mathematica plot. 

In[4]:= Plot@Sin@Pi xD, 8x, 0, 6<D

Out[4]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This combines the plot with the sawtooth picture made above. 

In[5]:= Show@%, sawgraphD

Out[5]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
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You  can  combine  different  graphical  elements  simply  by  giving  them  in  a  list.  In  two-dimen-

sional graphics, Mathematica will render the elements in exactly the order you give them. Later

elements are therefore effectively drawn on top of earlier ones. 

Here are two blue Rectangle graphics elements. 

In[6]:= 8Blue, Rectangle@81, -1<, 82, -0.6<D, Rectangle@84, .3<, 85, .8<D<

Out[6]= 8RGBColor@0, 0, 1D, Rectangle@81, -1<, 82, -0.6<D, Rectangle@84, 0.3<, 85, 0.8<D<

This draws the rectangles on top of the line that was defined above. 

In[7]:= Graphics@8sawline, %<D

Out[7]=

The Polygon graphics primitive takes a list of x, y coordinates, corresponding to the corners of a

polygon. Mathematica joins the last corner with the first one, and then fills the resulting area. 

Here are the coordinates of the corners of a regular pentagon. 

In[8]:= pentagon = Table@8Sin@2 Pi n ê 5D, Cos@2 Pi n ê 5D<, 8n, 5<D

Out[8]= ::
5

8
+
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,
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4
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,
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4
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+

5

8
,
1

4
-1 + 5 >, 80, 1<>

This displays the pentagon. With the default choice of aspect ratio, the pentagon looks some-
what squashed. 

In[9]:= Graphics@Polygon@pentagonDD

Out[9]=
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Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …

Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements. 

A large number of points can be represented by putting a list of coordinates inside of a single

Point  primitive. Similarly, a large number of lines or polygons can be represented as a list of

coordinate lists. This representation is efficient and can generally be rendered more quickly by

the Mathematica front end. Graphics directives such as RGBColor  apply uniformly to the entire

set of primitives.

This creates a multipolygon based upon the set of coordinates defined previously.

In[10]:= Graphics@Polygon@8pentagon, 1 + .5 pentagon, 1.5 + .2 pentagon<DD

Out[10]=

Here is a multipoint which is colored blue.

In[11]:= Graphics@8Blue, Point@Table@8x, Cos@xD<, 8x, -6, 6, .2<DD<, Axes Ø TrueD

Out[11]=
-6 -4 -2 2 4 6

-1.0
-0.5

0.5
1.0

Circle@8x,y<,rD a circle with radius r centered at the point 8x, y<

CircleA9x,y=,9rx,ry=E an ellipse with semi-axes rx and ry

Circle@8x,y<,r,8theta1,theta2<D a circular arc

CircleA
9x,y=,9rx,ry=,8theta1,theta2<E

an elliptical arc

DiskA9x,y=,rE , etc. filled disks

Circles and disks. 
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This shows two circles with radius 2.

In[12]:= Graphics@8Circle@80, 0<, 2D, Circle@81, 1<, 2D<D

Out[12]=

This shows a sequence of disks with progressively larger semi-axes in the x direction, and 
progressively smaller ones in the y direction. 

In[13]:= Graphics@Table@Disk@83 n, 0<, 8n ê 4, 2 - n ê 4<D, 8n, 4<DD

Out[13]=

Mathematica allows you to generate arcs of circles, and segments of ellipses. In both cases, the

objects  are  specified  by  starting  and  finishing  angles.  The  angles  are  measured  counterclock-

wise in radians with zero corresponding to the positive x direction. 

This draws a 140È wedge centered at the origin. 

In[14]:= Graphics@Disk@80, 0<, 1, 80, 140 Degree<DD

Out[14]= 

RasterA
98a11,a12,…<,9a21 , … }, … }]

array of gray levels between 0 and 1

Raster@888a11,o11<,…<,…<D array of gray levels with opacity between 0 and 1
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Raster@888r11,g11,b11<,…<,…<D array of rgb values between 0 and 1

Raster@888r11,g11,b11,o11<,…<,…<D array of rgb values with opacity between 0 and 1

Raster@array,88xmin,ymin<,
8xmax,ymax<<,8zmin,zmax<D

array of gray levels between zmin and zmax drawn in the 
rectangle defined by 8xmin, ymin< and 8xmax, ymax<

Raster-based graphics elements. 

Here is a 4×4 array of values between 0 and 1. 

In[15]:= modtab = Table@Mod@i, jD ê 3, 8i, 4<, 8j, 4<D êê N

Out[15]= 880., 0.333333, 0.333333, 0.333333<,
80., 0., 0.666667, 0.666667<, 80., 0.333333, 0., 1.<, 80., 0., 0.333333, 0.<<

This uses the array of values as gray levels in a raster. 

In[16]:= Graphics@Raster@modtabDD

Out[16]=

This shows two overlapping copies of the raster. 

In[17]:= Graphics@8Raster@modtab, 880, 0<, 82, 2<<D, Raster@modtab, 881.5, 1.5<, 83, 2<<D<D

Out[17]=

The ColorFunction option can be used to change the default way in which a Raster is 
colored.

In[18]:= Graphics@8Raster@modtab, ColorFunction Ø HueD<D

Out[18]=
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Graphics Directives and Options

When  you  set  up  a  graphics  object  in  Mathematica,  you  typically  give  a  list  of  graphical  ele-

ments. You can include in that list  graphics directives  which specify how subsequent elements

in the list should be rendered. 

In general, the graphical elements in a particular graphics object can be given in a collection of

nested  lists.  When  you  insert  graphics  directives  in  this  kind  of  structure,  the  rule  is  that  a

particular graphics directive affects all subsequent elements of the list it is in, together with all

elements of sublists that may occur. The graphics directive does not, however, have any effect

outside the list it is in. 

The first sublist contains the graphics directive GrayLevel. 

In[1]:= 88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Rectangle@81, 1<, 82, 2<D<

Out[1]= 88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Rectangle@81, 1<, 82, 2<D<

Only the rectangle in the first sublist is affected by the GrayLevel directive. 

In[2]:= Graphics@%D

Out[2]=

GrayLevel@iD gray level between 0 (black) and 1 (white)

RGBColor@r,g,bD color with specified red, green and blue components, each 
between 0 and 1

Hue@hD color with hue h between 0 and 1

Hue@h,s,bD color with specified hue, saturation and brightness, each 
between 0 and 1

Basic Mathematica color specifications. 
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Mathematica  accepts  the  names  of  many  colors  directly  as  color  specifications.  These  color

names, such as Red, Gray, LightGreen  and Purple, are implemented as variables which evalu-

ate  to  an  RGBColor  specification.  The  color  names  can  be  used  interchangeably  with  color

directives.

The first plot is colored with a color name, while the second one has a fine-tuned RGBColor 
specification.

In[3]:= Plot@8BesselI@1, xD, BesselI@2, xD<, 8x, 0, 5<,
PlotStyle -> 88Red<, 8RGBColor@0.3, 0.7, 0.1D<<D

Out[3]=
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The  function  Hue@hD  provides  a  convenient  way  to  specify  a  range  of  colors  using  just  one

parameter.  As  h  varies  from  0  to  1,  Hue@hD  runs  through  red,  yellow,  green,  cyan,  blue,

magenta, and back to red again. Hue@h, s, bD allows you to specify not only the “hue”, but also

the “saturation” and “brightness” of a color. Taking the saturation to be equal to one gives the

deepest colors; decreasing the saturation toward zero leads to progressively more “washed out”

colors. 

When you  give  a  graphics  directive  such  as  RGBColor,  it  affects  all  subsequent  graphical  ele-

ments  that  appear  in  a  particular  list.  Mathematica  also  supports  various  graphics  directives

which affect only specific types of graphical elements. 

The graphics directive PointSize@dD specifies that all Point  elements which appear in a graph-

ics  object  should  be  drawn  as  circles  with  diameter  d.  In  PointSize,  the  diameter  d  is

measured as a fraction of the width of your whole plot. 

Mathematica  also  provides  the  graphics  directive  AbsolutePointSize@dD,  which  allows  you  to

specify the “absolute” diameter of points, measured in fixed units. The units are 1
72

 of an inch,

approximately printer’s points. 

PointSize@dD give all points a diameter d as a fraction of the width of the 
whole plot

AbsolutePointSize@dD give all points a diameter d measured in absolute units

Graphics directives for points. 
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Here is a list of points. 

In[4]:= Table@Point@8n, Prime@nD<D, 8n, 6<D

Out[4]= 8Point@81, 2<D, Point@82, 3<D, Point@83, 5<D, Point@84, 7<D, Point@85, 11<D, Point@86, 13<D<

This makes each point have a diameter equal to one-tenth of the width of the plot. 

In[5]:= Graphics@8PointSize@0.1D, %<, PlotRange -> AllD

Out[5]=

Here each point has size 3 in absolute units. 

In[6]:= ListPlot@Table@Prime@nD, 8n, 20<D, PlotStyle -> AbsolutePointSize@3DD

Out[6]=
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Thickness@wD give all lines a thickness w as a fraction of the width of the 
whole plot

AbsoluteThickness@wD give all lines a thickness w measured in absolute units

Dashing@8w1,w2,…<D show all lines as a sequence of dashed segments, with 
lengths w1, w2, …

AbsoluteDashing@8w1,w2,…<D use absolute units to measure dashed segments

Graphics directives for lines. 

This generates a list of lines with different absolute thicknesses. 

In[7]:= Table@8AbsoluteThickness@nD, Line@880, 0<, 8n, 1<<D<, 8n, 4<D

Out[7]= 88AbsoluteThickness@1D, Line@880, 0<, 81, 1<<D<, 8AbsoluteThickness@2D, Line@880, 0<, 82, 1<<D<,
8AbsoluteThickness@3D, Line@880, 0<, 83, 1<<D<, 8AbsoluteThickness@4D, Line@880, 0<, 84, 1<<D<<
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Here is a picture of the lines. 

In[8]:= Graphics@%D

Out[8]=

The  Dashing  graphics  directive  allows  you  to  create  lines  with  various  kinds  of  dashing.  The

basic idea is to break lines into segments which are alternately drawn and omitted. By changing

the lengths of the segments, you can get different line styles. Dashing  allows you to specify a

sequence of segment lengths. This sequence is repeated as many times as necessary in draw-

ing the whole line. 

This gives a dashed line with a succession of equal-length segments. 

In[9]:= Graphics@8Dashing@80.05, 0.05<D, Line@88-1, -1<, 81, 1<<D<D

Out[9]=

This gives a dot-dashed line. 

In[10]:= Graphics@8Dashing@80.01, 0.05, 0.05, 0.05<D, Line@88-1, -1<, 81, 1<<D<D

Out[10]=

Dashing can be turned off by specifying an empty list. Here, Dashing is turned off for only 
the second line.

In[11]:= Graphics@8Dashing@80.05<D, Line@880, 0<, 81, 1<<D,
8Dashing@8<D, Line@880, 0<, 82, 1<<D<,
Line@880, 0<, 83, 1<<D<D

Out[11]=
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Graphics directives which require a numerical size specification can also accept values of Tiny,

Small, Medium, and Large. For each directive, these values have been fine-tuned to produce an

appearance which will seem appropriate to the human eye.

This specifies a large thickness with medium dashing.

In[12]:= Plot@Sin@xD, 8x, 0, 2 Pi<, PlotStyle Ø 88Dashing@8Medium<D, Thickness@LargeD<<D

Out[12]=
1 2 3 4 5 6
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This specifies that the entire multipoint should use large, green points.

In[13]:= Graphics@8PointSize@LargeD, Green, Point@880, 0<, 81, 0.5<, 82, 0<, 81, -.5<<D<D

Out[13]=

One way to use Mathematica graphics directives is to insert them directly into the lists of graph-

ics primitives used by graphics objects. Sometimes, however, you want the graphics directives

to  be  applied  more  globally,  and  for  example  to  determine  the  overall  “style”  with  which  a

particular  type  of  graphical  element  should  be  rendered.  There  are  typically  graphics  options

which can be set to specify such styles in terms of lists of graphics directives. 

PlotStyle->style specify a style to be used for all curves in Plot

PlotStyle->88style1<,8style2<,…< specify styles to be used (cyclically) for a sequence of 
curves in Plot

MeshStyle->style specify a style to be used for a mesh in density and surface 
graphics

BoxStyle->style specify a style to be used for the bounding box in three-
dimensional graphics

Some graphics options for specifying styles. 
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This generates a plot in which all curves are specified to use the same style. 

In[14]:= Plot@8BesselJ@1, xD, BesselJ@2, xD<,
8x, 0, 10<, PlotStyle -> 88Thickness@0.02D, Gray<<D

Out[14]=
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A different PlotStyle expression can be used to give specific styles to each curve. 

In[15]:= Plot@8BesselJ@1, xD, BesselJ@2, xD<, 8x, 0, 10<,
PlotStyle -> 88Thickness@0.02D, Gray<, 8Red<<D

Out[15]=
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The  various  “style  options”  allow  you  to  specify  how  particular  graphical  elements  in  a  plot

should  be  rendered.  Mathematica  also  provides  options  that  affect  the  rendering  of  the  whole

plot. 

Background->color specify the background color for a plot

BaseStyle->color specify the base style for a plot, affecting elements not 
affected by PlotStyle

Prolog->g give graphics to render before a plot is started

Epilog->g give graphics to render after a plot is finished

Graphics options that affect whole plots. 

This draws the plot in white on a gray background. 

In[16]:= Plot@Sin@Sin@xDD, 8x, 0, 10<, Background Ø Gray, PlotStyle Ø WhiteD

Out[16]=
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This makes the axes white as well. 

In[17]:= Show@%, BaseStyle Ø WhiteD

Out[17]=
2 4 6 8 10
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Coordinate Systems for Two-Dimensional Graphics

When you set up a graphics object in Mathematica, you give coordinates for the various graphi-

cal  elements  that  appear.  When  Mathematica  renders  the  graphics  object,  it  has  to  translate

the original coordinates you gave into "display coordinates" which specify where each element

should be placed in the final display area. 

PlotRange->99xmin,
xmax=,9ymin,ymax==

the range of original coordinates to include in the plot

Option which determines translation from original to display coordinates. 

When Mathematica renders a graphics object, one of the first things it has to do is to work out

what  range  of  original  x  and  y  coordinates  it  should  actually  display.  Any  graphical  elements

that are outside this range will be clipped, and not shown. 

The  option  PlotRange  specifies  the  range  of  original  coordinates  to  include.  As  discussed  in

"Options for Graphics", the default setting is PlotRange -> Automatic, which makes Mathemat-

ica  try  to  choose  a  range  which  includes  all  "interesting"  parts  of  a  plot,  while  dropping

"outliers".  By  setting  PlotRange -> All,  you  can  tell  Mathematica  to  include  everything.  You

can also give explicit ranges of coordinates to include. 

This sets up a polygonal object whose corners have coordinates between roughly ±1. 

In[1]:= obj = Polygon@Table@8Sin@n Pi ê 10D, Cos@n Pi ê 10D< + 0.05 H-1L^n, 8n, 20<DD;
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In this case, the polygonal object fills almost the whole display area. 

In[2]:= Graphics@objD

Out[2]=

Specifying an explicit PlotRange allows you to zoom in on a section of a graphic. 

In[3]:= Graphics@obj, PlotRange Ø 880, 1<, All<D

Out[3]=

AspectRatio->r make the ratio of height to width for the display area equal 
to r

AspectRatio->Automatic determine the shape of the display area from the original 
coordinate system

Specifying the shape of the display area. 

What  we  have  discussed  so  far  is  how  Mathematica  translates  the  original  coordinates  you

specify  into positions in  the final  display area.  What  remains to  discuss,  however,  is  what  the

final display area is like. 

On  most  computer  systems,  there  is  a  certain  fixed  region  of  screen  or  paper  into  which  the

Mathematica  display area must  fit.  How it  fits  into  this  region is  determined by its  “shape” or

aspect  ratio.  In  general,  the  option  AspectRatio  specifies  the  ratio  of  height  to  width  for  the

final display area. 
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It  is  important  to  note  that  the  setting  of  AspectRatio  does  not  affect  the  meaning  of  the

scaled or display coordinates. These coordinates always run from 0 to 1 across the display area.

What AspectRatio does is to change the shape of this display area. 

For two-dimensional graphics, AspectRatio  is set by default to Automatic. This determines the

aspect ratio from the original coordinate system used in the plot instead of setting it at a fixed

value.  One  unit  in  the  x  direction  in  the  original  coordinate  system  corresponds  to  the  same

distance in the final display as one unit in the y direction. In this way, objects that you define in

the original coordinate system are displayed with their "natural shape".

This generates a graphic object corresponding to a regular hexagon. With the default value of 
AspectRatio -> Automatic, the aspect ratio of the final display area is determined from the 
original coordinate system, and the hexagon is shown with its "natural shape". 

In[4]:= Graphics@Polygon@Table@8Sin@n Pi ê 3D, Cos@n Pi ê 3D<, 8n, 6<DDD

Out[4]=

This renders the hexagon in a display area whose height is three times its width. 

In[5]:= Show@%, AspectRatio -> 3D

Out[5]=
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Sometimes,  you  may  find  it  convenient  to  specify  the  display  coordinates  for  a  graphical  ele-

ment directly. You can do this by using scaled coordinates Scaled@8sx, sy<D rather than 8x, y<.

The scaled coordinates are defined to run from 0 to 1 in x and y, with the origin taken to be at

the lower-left corner of the plot range.

8x,y< original coordinates

Scaled@8sx,sy<D coordinates scaled to the plot range

ImageScaled@8sx,sy<D coordinates scaled to the display area

Coordinate systems for two-dimensional graphics. 

The display area is significantly larger than the plot range due to the frame label. 

In[6]:= g = Graphics@8Green, Disk@D<, PlotRange Ø 2,
Frame Ø True, FrameLabel Ø 8Style@"x", LargeD<D

Out[6]=
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Using Scaled coordinates, the rectangle falls at the origin, which is at the center of the speci-
fied plot range.

In[7]:= Show@g, Prolog Ø 8Rectangle@Scaled@80.25, 0.25<D, Scaled@80.75, 0.75<DD<D

Out[7]=
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Using ImageScaled  coordinates, the rectangle falls at exactly the center of the graphic, which 
does not coincide with the center of the plot range.

In[8]:= Show@g, Prolog Ø 8Rectangle@ImageScaled@80.25, 0.25<D, ImageScaled@80.75, 0.75<DD<D

Out[8]=
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When you  use  8x, y<,  Scaled@8sx, sy<D  or  ImageScaled@8sx, sy<D,  you  are  specifying  position

either  completely  in  original  coordinates,  or  completely  in  scaled  coordinates.  Sometimes,

however, you may need to use a combination of these coordinate systems. For example, if you

want to draw a line at a particular point whose length is a definite fraction of the width of the

plot,  you  will  have  to  use  original  coordinates  to  specify  the  basic  position  of  the  line,  and

scaled coordinates to specify its length. 

You  can  use  Scaled@8dsx, dsy<, 8x, y<D  to  specify  a  position  using  a  mixture  of  original  and

scaled  coordinates.  In  this  case,  8x, y<  gives  a  position  in  original  coordinates,  and  8dsx, dsy<

gives the offset from the position in scaled coordinates.

CircleA8x,y<,Scaled@sxDE a circle whose radius is scaled to the width of the plot range

DiskA8x,y<,Scaled@sxDE a disk whose radius is scaled to the width of the plot range

FontSize->Scaled@sxD specification for a font size scaled to the width of the plot 
range

Some places where Scaled can be used with a single argument.
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Both the radius of the circle and the size of the font are specified in Scaled values.

In[9]:= Graphics@
8Circle@80, 0<, Scaled@0.3DD, FontSize Ø Scaled@0.2D, Text@"some text", 80, 0<D<D

Out[9]= some text

Scaled@8sdx,sdy<,8x,y<D scaled offset from original coordinates

ImageScaled@8sdx,sdy<,8x,y<D image scaled offset from original coordinates

Offset@8adx,ady<,8x,y<D absolute offset from original coordinates

Offset@8adx,ady<,Scaled@8sx,sy<DD absolute offset from scaled coordinates

OffsetA8adx,ady<,
ImageScaled@8sx,sy<DE

absolute offset from image scaled coordinates

Positions specified as offsets. 

Each line drawn here has an absolute length of 6 printer’s points. 

In[10]:= Graphics@Table@Line@88x, x^2<, Offset@80, 6<, 8x, x^2<D<D, 8x, 10<D, Frame -> TrueD

80

100
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Out[10]=
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You can also use Offset inside Circle with just one argument to create a circle with a certain 
absolute radius. 

In[11]:= Graphics@Table@Circle@8x, x^2<, Offset@82, 2<DD, 8x, 10<D, Frame -> TrueD

Out[11]=

40

60

80

100

58     Visualization and Graphics



2 4 6 8 10

20

In most kinds of graphics, you typically want the relative positions of different objects to adjust

automatically when you change the coordinates or the overall size of your plot. But sometimes

you may instead want the offset from one object to another to be constrained to remain fixed.

This can be the case, for example, when you are making a collection of plots in which you want

certain features to remain consistent, even though the different plots have different forms.

Offset@8adx, ady<, positionD allows you to specify the position of an object by giving an absolute

offset from a position that is specified in original or scaled coordinates. The units for the offset

are printer’s points, equal to 1
72

 of an inch.

When you give text in a plot, the size of the font that is used is also specified in printer’s points.

Therefore,  a  10-point  font,  for  example,  has  letters  whose  basic  height  is  10  printer’s  points.

You  can  use  Offset  to  move  text  around  in  a  plot,  and  to  create  plotting  symbols  or  icons

which match the size of the text.

Using scaled coordinates, you can specify the sizes of graphical elements as fractions of the size

of the display area. You cannot, however, tell  Mathematica  the actual physical  size at which a

particular graphical element should be rendered. Of course, this size ultimately depends on the

details of your graphics output device, and cannot be determined for certain within Mathemat-
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Using scaled coordinates, you can specify the sizes of graphical elements as fractions of the size

ica. Nevertheless, graphics directives such as AbsoluteThickness discussed in "Graphics Direc-

tives and Options" do allow you to indicate “absolute sizes” to use for particular graphical ele-

ments. The sizes you request in this way will be respected by most, but not all, output devices.

(For example, if  you optically project an image, it is neither possible nor desirable to maintain

the same absolute size for a graphical element within it.) 

Labeling Two-Dimensional Graphics

Axes->True give a pair of axes

GridLines->Automatic draw grid lines on the plot

Frame->True put axes on a frame around the plot

PlotLabel->"text" give an overall label for the plot

Ways to label two-dimensional plots. 

Here is a plot, using the default Axes -> True. 

In[1]:= bp = Plot@BesselJ@2, xD, 8x, 0, 10<D

Out[1]=
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Setting Frame -> True generates a frame with axes, and removes tick marks from the ordi-
nary axes. 

In[2]:= Show@bp, Frame -> TrueD

Out[2]=
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This includes grid lines, which are shown in light gray. 

In[3]:= Show@%, GridLines -> AutomaticD

Out[3]=
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Axes->False draw no axes

Axes->True draw both x and y axes

Axes->9False,True= draw a y axis but no x axis

AxesOrigin->Automatic choose the crossing point for the axes automatically

AxesOrigin->9x,y= specify the crossing point

AxesStyle->style specify the style for axes

AxesStyle->8xstyle,ystyle< specify individual styles for axes

AxesLabel->None give no axis labels

AxesLabel->ylabel put a label on the y axis

AxesLabel->9xlabel,ylabel= put labels on both x and y axes

Options for axes. 

This makes the axes cross at the point 85, 0<, and puts a label on each axis. 

In[4]:= Show@bp, AxesOrigin -> 85, 0<, AxesLabel -> 8"x", "y"<D

Out[4]=
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Ticks->None draw no tick marks

Ticks->Automatic place tick marks automatically

Ticks->9xticks,yticks= tick mark specifications for each axis

Settings for the Ticks option. 

Visualization and Graphics     61



With  the  default  setting  Ticks -> Automatic,  Mathematica  creates  a  certain  number  of  major

and minor tick marks, and places them on axes at positions which yield the minimum number

of decimal digits in the tick labels. In some cases, however, you may want to specify the posi-

tions and properties of tick marks explicitly. You will need to do this, for example, if you want to

have tick marks at multiples of p, or if you want to put a nonlinear scale on an axis. 

None draw no tick marks

Automatic place tick marks automatically

8x1,x2,…< draw tick marks at the specified positions

88x1,label1<,8x2,label2<,…< draw tick marks with the specified labels

88x1,label1,len1<,…< draw tick marks with the specified scaled lengths

88x1,label1,8plen1,mlen1<<,…< draw tick marks with the specified lengths in the positive 
and negative directions

88x1,label1,len1,style1<,…< draw tick marks with the specified styles

func a function to be applied to xmin, xmax to get the tick mark 
option

Tick mark options for each axis. 

This gives tick marks at specified positions on the x axis, and chooses the tick marks automati-
cally on the y axis. 

In[5]:= Show@bp, Ticks -> 880, Pi, 2 Pi, 3 Pi<, Automatic<D

Out[5]=
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This adds tick marks with no labels at multiples of p ê2. 

In[6]:= Show@bp,
Ticks -> 880, 8Pi ê 2, ""<, Pi, 83 Pi ê 2, ""<, 2 Pi, 85 Pi ê 2, ""<, 3 Pi<, Automatic<D

Out[6]=
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Particularly when you want to create complicated tick mark specifications, it is often convenient

to define a "tick mark function" which creates the appropriate tick mark specification given the

minimum and maximum values on a particular axis. 

This defines a function which gives a list of tick mark positions with a spacing of 1. 

In[7]:= units@xmin_, xmax_D := Range@Floor@xminD, Floor@xmaxD, 1D

This uses the units function to specify tick marks for the x axis. 

In[8]:= Show@bp, Ticks -> 8units, Automatic<D

Out[8]=
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Frame->False draw no frame

Frame->True draw a frame around the plot

FrameStyle->style specify a style for the frame

FrameStyle->
88left,right<,8bottom,top<<

specify styles for each edge of the frame

FrameLabel->None give no frame labels

FrameLabel->
88left,right<,8bottom,top<<

put labels on edges of the frame

RotateLabel->False do not rotate text in labels

FrameTicks->None draw no tick marks on frame edges

FrameTicks->Automatic position tick marks automatically

FrameTicks->
88left,right<,8bottom,top<<

specify tick marks for frame edges

Options for frame axes. 

The Axes  option allows you to  draw a single  pair  of  axes in  a  plot.  Sometimes,  however,  you

may instead want to show the scales for  a plot  on a frame, typically  drawn around the whole

plot. The option Frame  allows you effectively to draw four axes, corresponding to the four edges

of the frame around a plot.
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This draws frame axes, and labels each of them. 

In[9]:= Show@bp, Frame -> True,
FrameLabel -> 88"left label", "right label"<, 8"bottom label", "top label"<<D

Out[9]=
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GridLines->None draw no grid lines

GridLines->Automatic position grid lines automatically

GridLines->9xgrid,ygrid= specify grid lines in analogy with tick marks

Options for grid lines. 

Grid lines in Mathematica work very much like tick marks. As with tick marks, you can specify

explicit positions for grid lines. There is no label or length to specify for grid lines. However, you

can specify a style. 

This generates x but not y grid lines. 

In[10]:= Show@bp, GridLines -> 8Automatic, None<D

Out[10]=
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Insetting Objects in Graphics

"Redrawing  and  Combining  Plots"  describes  how  you  can  make  regular  arrays  of  plots  using

GraphicsGrid.  Using  the  Inset  graphics  primitive,  however,  you  can  combine  and  superim-

pose plots in any way. 
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Inset@obj, posD specifies that the inset should be placed at position pos in 
the graphic

Inset@obj,pos, opos, sizeD render an object with a given size so that point opos in obj is 
positioned at point pos in the containing graphic

Inset@obj,pos, opos, size, dirsD specifies that the axes of the inset should be oriented in 
directions dirs

Creating an inset. 

Here is a plot. 

In[1]:= p1 = Plot@8Sin@xD, Sin@2 xD<, 8x, 0, 2 p<,
ImageSize Ø 200, Frame Ø True, Background Ø LightYellowD

Out[1]=
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This creates a plot within a parametric plot.

In[2]:= ParametricPlot@8Sin@xD, Sin@2 xD<, 8x, 0, 4 p<, Epilog Ø Inset@p1, 8.3, -.5<DD

Out[2]=
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Here is a three-dimensional plot. 

In[3]:= p3 = Plot3D@Sin@xD Exp@yD, 8x, -5, 5<, 8y, -2, 2<D

Out[3]=
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This creates a two-dimensional graphics object that contains two differently sized copies of the 
three-dimensional plot. 

In[4]:= Graphics@8Inset@p3, -81, 1<, Center, 82, 2<D,
Inset@p3, 8.5, .5<, Center, 83, 3<D<, PlotRange Ø 2D

Out[4]=

Here are rotated and skewed plots inset in a graphic.

In[5]:= Graphics@8
Inset@p1, 81, 0<, Center, 81, 1<, 81, 1<D,
Inset@p1, 82, 0<, Center, 81, 1<, 881, 0<, 81, 1<<D

<D

Out[5]=
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Mathematica  can  render  plots,  arbitrary  2D  or  3D  graphics,  cells,  and  text  within  an  Inset.

Notice that in general the display area for graphics objects will be sized so as to touch at least

one pair of edges of the Inset. 
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Density and Contour Plots

DensityPlot@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a density plot of f

ContourPlot@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a contour plot of f  as a function of x and y

Density and contour plots. 

This gives a density plot of sinHxL sinHyL. Lighter regions show higher values of the function. 

In[1]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<D

Out[1]=

option name default value
ColorFunction Automatic what colors to use for shading; Hue uses a 

sequence of hues
Mesh None whether to draw a mesh
PlotPoints Automatic number of initial sample points in each 

direction
MaxRecursion Automatic the maximum number of recursive subdivi -

sion steps to do

Some options for DensityPlot .
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You can include a mesh like this. 

In[2]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø 19D

Out[2]=

In a density plot, the color of each point represents the value at that point of the function being

plotted. By default, the color ranges from black to white through intermediate shades of blue as

the value of the function increases. In general, however, you can specify other “color maps” for

the relation between the value at a point and its color. The option ColorFunction  allows you to

specify a function which is applied to the function value to find the color at any point. The color

function may return any Mathematica  color  directive,  such as GrayLevel,  Hue  or  RGBColor.  A

common setting to use is ColorFunction -> Hue. 

This uses different hues to represent different values. 

In[3]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, ColorFunction Ø HueD

Out[3]=

A  significant  resource  for  customized  color  functions  is  the  ColorData  function.  ColorData

provides many customized sets of colors which can be used directly by ColorFunction.
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This shows a list of the gradients which can be accessed using ColorData. 

In[4]:= ColorData@"Gradients"D

Out[4]= 8DarkRainbow, Rainbow, Pastel, Aquamarine, BrassTones, BrownCyanTones, CherryTones, CoffeeTones,
FuchsiaTones, GrayTones, GrayYellowTones, GreenPinkTones, PigeonTones, RedBlueTones,
RustTones, SiennaTones, ValentineTones, AlpineColors, ArmyColors, AtlanticColors,
AuroraColors, AvocadoColors, BeachColors, CandyColors, CMYKColors, DeepSeaColors, FallColors,
FruitPunchColors, IslandColors, LakeColors, MintColors, NeonColors, PearlColors, PlumColors,
RoseColors, SolarColors, SouthwestColors, StarryNightColors, SunsetColors, ThermometerColors,
WatermelonColors, RedGreenSplit, DarkTerrain, GreenBrownTerrain, LightTerrain,
SandyTerrain, BlueGreenYellow, LightTemperatureMap, TemperatureMap, BrightBands, DarkBands<

This DensityPlot  is identical to the one above, but uses the "SolarColors" gradient.

In[5]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<,
8y, -2, 2<, ColorFunction Ø ColorData@"SolarColors"DD

Out[5]=

This gives a contour plot of the function.

In[6]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<D

Out[6]=
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A contour plot gives you essentially a “topographic map” of a function. The contours join points

on the surface that have the same height.  The default  is  to have contours corresponding to a

sequence  of  equally  spaced  z  values.  Contour  plots  produced  by  Mathematica  are  by  default

shaded, in such a way that regions with higher z values are lighter. 

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a 
sequence of hues

Contours Automatic the total number of contours, or the list of 
z values for contours

PlotRange 9Full,Full,Automatic= the range of values to be included; you can 
specify 8zmin, zmax<, All or Automatic, or 
a list 8xrange, yrange, zrange<

ContourShading Automatic how to shade the regions; None leaves the 
regions blank, or a list of colors can be 
provided

PlotPoints Automatic number of initial sample points in each 
direction

MaxRecursion Automatic the maximum number of recursive subdivi  -
sion steps to do

Some options for ContourPlot .

This shows the plot with no shading.

In[7]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, ContourShading Ø NoneD

Out[7]=
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This cycles the colors used for contour regions between light red and light purple.

In[8]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<,
8y, -2, 2<, ContourShading Ø 8LightRed, LightPurple<D

Out[8]=

Both DensityPlot  and ContourPlot  use an adaptive algorithm that subdivides parts of the plot

region  to  obtain  more  sample  points  for  a  smoother  representation  of  the  function  you  are

plotting.  Because  the  number  of  sample  points  is  always  finite,  however,  it  is  possible  that

features  of  your  function  will  sometimes  be  missed.  When  necessary,  you  can  increase  the

number  of  sample  points  by  increasing  the  values  of  the  PlotPoints  and  MaxRecursion

options.

One point to notice is that whereas a curve generated by Plot  may be inaccurate if your func-

tion varies too quickly in a particular region, the shape of contours generated by ContourPlot

can be inaccurate if  your function varies too slowly.  A rapidly varying function gives a regular

pattern  of  contours,  but  a  function  that  is  almost  flat  can  give  irregular  contours.  You  can

typically overcome this by increasing the value of PlotPoints or MaxRecursion. 

Three-Dimensional Graphics Primitives

One of the most powerful aspects of graphics in Mathematica is the availability of three-dimen-

sional as well as two-dimensional graphics primitives. By combining three-dimensional graphics

primitives, you can represent and render three-dimensional objects in Mathematica. 
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Point@8x,y,z<D point with coordinates x, y, z

Line@88x1,y1,z1<,8x2,y2,z2<,…<D line through the points 8x1, y1, z1<, 8x2, y2, z2<, …
Polygon@88x1,y1,z1<,8x2,y2,z2<,…<D

filled polygon with the specified list of corners

Cuboid@8xmin,ymin,zmin<,8xmax,ymax,zmax<D

cuboid

Text@expr,8x,y,z<D text at position 8x, y, z< (see "Graphics Primitives for 
Text")

Three-dimensional graphics elements. 

Every time you evaluate rcoord, it generates a random coordinate in three dimensions. 

In[1]:= rcoord := RandomReal@1., 83<D

This generates a list of 20 random points in three-dimensional space. 

In[2]:= pts = Table@Point@rcoordD, 820<D;

Here is a plot of the points. 

In[3]:= Graphics3D@ptsD

Out[3]=

This gives a plot showing a line through 10 random points in three dimensions. 

In[4]:= Graphics3D@Line@Table@rcoord, 810<DDD

Out[4]=
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If  you  give  a  list  of  graphics  elements  in  two  dimensions,  Mathematica  simply  draws  each

element  in  turn,  with  later  elements  obscuring  earlier  ones.  In  three  dimensions,  however,

Mathematica  collects  together  all  the  graphics  elements  you  specify,  then  displays  them  as

three-dimensional  objects,  with  the  ones  in  front  in  three-dimensional  space  obscuring  those

behind. 

Every time you evaluate rantri, it generates a random triangle in three-dimensional space. 

In[5]:= rantri := Polygon@Table@rcoord, 83<DD

This draws a single random triangle. 

In[6]:= Graphics3D@rantriD

Out[6]=

This draws a collection of 5 random triangles. The triangles in front obscure those behind. 

In[7]:= Graphics3D@Table@rantri, 85<DD

Out[7]=

By  creating  an  appropriate  list  of  polygons,  you  can  build  up  any  three-dimensional  object  in

Mathematica.  Thus,  for  example,  all  the  surfaces  produced  by  ParametricPlot3D  are  repre-

sented essentially as lists of polygons. 

Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …
Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements. 
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As with the two-dimensional primitives, some three-dimensional graphics primitives have multi-

coordinate  forms  which  are  a  more  efficient  representation.  When  dealing  with  a  very  large

number  of  primitives,  using  these  multi-coordinate  forms  where  possible  can  both  reduce  the

memory footprint of the resulting graphic and make it render much more quickly.
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rantricoords defines merely the coordinates of a random triangle.

In[8]:= rantricoords := Table@rcoord, 83<D

Using the multi-coordinate form of Polygon, this efficiently represents a very large number of 
triangles.

In[9]:= Graphics3D@Polygon@Table@rantricoords, 810000<DDD

Out[9]=

Mathematica allows polygons in three dimensions to have any number of vertices in any configu-

ration. Depending upon the locations of the vertices, the resulting polygons may be non-copla- 

nar or nonconvex. When rendering non-coplanar polygons, Mathematica will break the polygon

into triangles, which are planar by definition, before rendering it.

The non-coplanar polygon is broken up into triangles. The interior edge joining the triangles is 
not outlined like the outer edges of the Polygon primitive. 

In[10]:= Graphics3D@8Polygon@880, 0, 0<, 80, 0, 1<, 81, 1, 0<, 81, 0, 1<<D<D

Out[10]=




