
Wolfram Mathematica Tutorial Collection

Visualization and Graphics

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an
infringement of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram
does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Graphics and Sound
Basic Plotting . 1

Options for Graphics . 2

Redrawing and Combining Plots . 9

Manipulating Options . 14

Three-Dimensional Surface Plots . 16

Plotting Lists of Data . 22

Parametric Plots . 25

Some Special Plots . 29

Sound . 31

The Structure of Graphics and Sound
The Structure of Graphics . 33

Two-Dimensional Graphics Elements . 39

Graphics Directives and Options . 45

Coordinate Systems for Two-Dimensional Graphics . 51

Labeling Two-Dimensional Graphics . 60

Insetting Objects in Graphics . 64

Density and Contour Plots . 67

Three-Dimensional Graphics Primitives . 71

Three-Dimensional Graphics Directives . 76

Coordinate Systems for Three-Dimensional Graphics . 81

Lighting and Surface Properties . 89

Labeling Three-Dimensional Graphics . 96

Efficient Representation of Many Primitives . 100
Formats for Text in Graphics . 103
Graphics Primitives for Text . 106
The Representation of Sound . 108
Exporting Graphics and Sounds . 110
Importing Graphics and Sounds . 113

Editing Mathematica Graphics
Introduction . 115
Drawing Tools . 118
Selecting Graphics Objects . 128
Reshaping Graphics Objects . 138
Resizing, Cropping, and Adding Margins to Graphics . 160
Graphics as Input . 163
Interacting with 3D Graphics . 164

Graphics and Sound

Basic Plotting

Plot@ f,8x,xmin,xmax<D plot f as a function of x from xmin to xmax

Plot@ f,8x,x0,x1,…,xk<D plot f over a series of segments, potentially breaking the
curve at each of the xi

Plot@8 f1, f2,…<,8x,xmin,xmax<D

plot several functions together

Basic plotting functions.

This plots a graph of sinHxL as a function of x from 0 to 2 p.

In[1]:= Plot@Sin@xD, 8x, 0, 2 Pi<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

You can plot functions that have singularities. Mathematica will try to choose appropriate scales.

In[2]:= Plot@Tan@xD, 8x, -3, 3<D

Out[2]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

The singularities can be omitted from the plot by specifying them in the plot's range.

In[3]:= Plot@Tan@xD, 8x, -3, -Pi ê 2, Pi ê 2, 3<D

Out[3]=
-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

You can give a list of functions to plot. A different color will automatically be used for each
function.

In[4]:= Plot@8Sin@xD, Sin@2 xD, Sin@3 xD<, 8x, 0, 2 Pi<D

Out[4]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This finds the numerical solution to a differential equation, as discussed in "Numerical Differen-
tial Equations".

In[5]:= NDSolve@8y'@xD == Sin@y@xDD, y@0D == 1<, y, 8x, 0, 4<D

Out[5]= 88y Ø InterpolatingFunction@880., 4.<<, <>D<<

Here is a plot of the solution.

In[6]:= Plot@y@xD ê. %, 8x, 0, 4<D

Out[6]=

1 2 3 4

1.5

2.0

2.5

3.0

Options for Graphics

When Mathematica plots a graph for you, it has to make many choices. It has to work out what

the scales should be, where the function should be sampled, how the axes should be drawn,

and so on. Most of the time, Mathematica will probably make pretty good choices. However, if

you want to get the very best possible pictures for your particular purposes, you may have to

help Mathematica in making some of its choices.

There is a general mechanism for specifying “options” in Mathematica functions. Each option

has a definite name. As the last arguments to a function like Plot, you can include a sequence

of rules of the form name -> value, to specify the values for various options. Any option for which

you do not give an explicit rule is taken to have its “default” value.

2 Visualization and Graphics

Plot@ f,8x,xmin,xmax<,option->valueD

make a plot, specifying a particular value for an option

Choosing an option for a plot.

A function like Plot has many options that you can set. Usually you will need to use at most a

few of them at a time. If you want to optimize a particular plot, you will probably do best to

experiment, trying a sequence of different settings for various options.

Each time you produce a plot, you can specify options for it. "Redrawing and Combining Plots"

will also discuss how you can change some of the options, even after you have produced the

plot.

option name default value
AspectRatio 1ëGoldenRatio the height-to-width ratio for the plot;

Automatic sets it from the absolute x and
y coordinates

Axes True whether to include axes
AxesLabel None labels to be put on the axes; ylabel specifies

a label for the y axis, 8xlabel, ylabel< for
both axes

AxesOrigin Automatic the point at which axes cross
BaseStyle 8< the default style to use for the plot

FormatType TraditionalFoÖ
rm

the default format type to use for text in
the plot

Frame False whether to draw a frame around the plot
FrameLabel None labels to be put around the frame; give a

list in clockwise order starting with the
lower x axis

FrameTicks Automatic what tick marks to draw if there is a frame;
None gives no tick marks

GridLines None what grid lines to include; Automatic
includes a grid line for every major tick
mark

PlotLabel None an expression to be printed as a label for
the plot

PlotRange Automatic the range of coordinates to include in the
plot; All includes all points

Ticks Automatic what tick marks to draw if there are axes;
None gives no tick marks

Some of the options for Plot. These can also be used in Show.

Visualization and Graphics 3

Here is a plot with all options having their default values.

In[1]:= Plot@Sin@x^2D, 8x, 0, 3<D

Out[1]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

This draws axes on a frame around the plot.

In[2]:= Plot@Sin@x^2D, 8x, 0, 3<, Frame -> TrueD

Out[2]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

This specifies labels for the x and y axes. The expressions you give as labels are printed just as
they would be if they appeared as TraditionalForm Mathematica output. You can give any
piece of text by putting it inside a pair of double quotes.

In[3]:= Plot@Sin@x^2D, 8x, 0, 3<, AxesLabel -> 8"x value", Sin@x^2D<D

Out[3]=
0.5 1.0 1.5 2.0 2.5 3.0

x value

-1.0

-0.5

0.5

1.0

sinIx2M

You can give several options at the same time, in any order.

In[4]:= Plot@Sin@x^2D, 8x, 0, 3<, Frame -> True, GridLines -> AutomaticD

Out[4]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

4 Visualization and Graphics

Setting the AspectRatio option changes the whole shape of your plot. AspectRatio gives
the ratio of width to height. Its default value is the inverse of the Golden Ratio~supposedly the
most pleasing shape for a rectangle.

In[5]:= Plot@Sin@x^2D, 8x, 0, 3<, AspectRatio -> 1D

Out[5]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Automatic use internal algorithms

None do not include this

All include everything

True do this

False do not do this

Some common settings for various options.

When Mathematica makes a plot, it tries to set the x and y scales to include only the

“interesting” parts of the plot. If your function increases very rapidly, or has singularities, the

parts where it gets too large will be cut off. By specifying the option PlotRange, you can control

exactly what ranges of x and y coordinates are included in your plot.

Automatic show at least a large fraction of the points, including the
“interesting” region (the default setting)

All show all points

8ymin,ymax< show a specific range of y values

8xrange,yrange< show the specified ranges of x and y values

Settings for the option PlotRange.

Visualization and Graphics 5

The setting for the option PlotRange gives explicit y limits for the graph. With the y limits
specified here, the bottom of the curve is cut off.

In[6]:= Plot@Sin@x^2D, 8x, 0, 3<, PlotRange -> 80, 1.2<D

Out[6]=

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Mathematica always tries to plot functions as smooth curves. As a result, in places where your

function wiggles a lot, Mathematica will use more points. In general, Mathematica tries to adapt

its sampling of your function to the form of the function. There is, however, a limit, which you

can set, to how finely Mathematica will ever sample a function.

The function sin J
1
x
N wiggles infinitely often when x > 0. Mathematica tries to sample more points

in the region where the function wiggles a lot, but it can never sample the infinite number that
you would need to reproduce the function exactly. As a result, there are slight glitches in the
plot.

In[7]:= Plot@Sin@1 ê xD, 8x, -1, 1<D

Out[7]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

It is important to realize that since Mathematica can only sample your function at a limited

number of points, it can always miss features of the function. Mathematica adaptively samples

the functions, increasing the number of samples near interesting features, but it is still possible

to miss something. By increasing PlotPoints, you can make Mathematica sample your function

at a larger number of points. Of course, the larger you set PlotPoints to be, the longer it will

take Mathematica to plot any function, even a smooth one.

option name default value
PlotStyle Automatic a list of lists of graphics primitives to use

for each curve (see "Graphics Directives
and Options")

ClippingStyle None what to draw when curves are clipped

6 Visualization and Graphics

Filling None filling to insert under each curve
FillingStyle Automatic style to use for filling
PlotPoints 50 the initial number of points at which to

sample the function
MaxRecursion Automatic the maximum number of recursive subdivi -

sions allowed

More options for Plot. These cannot be used in Show.

This uses PlotStyle to specify a dashed curve.

In[8]:= Plot@Sin@x^2D, 8x, 0, 3<, PlotStyle Ø DashedD

Out[8]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

When plotting multiple functions, PlotStyle settings in a list are used sequentially for each
function.

In[9]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotStyle Ø 8Red, Blue<D

Out[9]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

When a PlotStyle contains a sublist, the settings are combined.

In[10]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotStyle Ø 8Red, 8Blue, Thick<<D

Out[10]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Visualization and Graphics 7

By default nothing is indicated when the PlotRange is set, so that it cuts off curves.

In[11]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotRange Ø 0.9D

Out[11]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

Setting ClippingStyle to Automatic draws a dashed line where a curve is cut off.

In[12]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<, PlotRange Ø 0.9, ClippingStyle Ø AutomaticD

Out[12]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

Setting ClippingStyle to a list defines the style for the parts cut off at the bottom and top.

In[13]:= Plot@8Sin@x^2D, Cos@x^2D<, 8x, 0, 3<,
PlotRange Ø 0.9, ClippingStyle Ø 8Green, Red<D

Out[13]=
0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5

This specifies filling between the curve and the x axis.

In[14]:= Plot@Sin@x^2D, 8x, 0, 3<, Filling Ø AxisD

Out[14]=

8 Visualization and Graphics

The filling can be specified to extend to an arbitrary height, such as the bottom of the graphic.
Filling colors are automatically blended where they overlap.

In[15]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø BottomD

Out[15]=

This specifies a specific filling to be used only for the first curve.

In[16]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø 81 Ø .5<D

Out[16]=

This shows a filling from the first curve to the second using a nondefault filling style.

In[17]:= Plot@8Sin@xD, Cos@xD<, 8x, 0, 3<, Filling Ø 81 Ø 82<<, FillingStyle Ø LightBrownD

Out[17]=
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Redrawing and Combining Plots

Mathematica saves information about every plot you produce, so that you can later redraw it.

When you redraw plots, you can change some of the options you use.

Show@plot,option->valueD redraw a plot with options changed

Show@plot1,plot2,…D combine several plots

GraphicsGrid@88plot1,plot2,…<,…<D

draw an array of plots

InputForm@plotD show the underlying textual description of the plot

Functions for manipulating plots.

Visualization and Graphics 9

Here is a simple plot.

In[1]:= Plot@ChebyshevT@7, xD, 8x, -1, 1<D

Out[1]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

When you redraw the plot, you can change some of the options. This changes the choice of y
scale.

In[2]:= Show@%, PlotRange -> 8-1, 2<D

Out[2]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

This takes the plot from the previous line, and changes another option in it.

In[3]:= Show@%, PlotLabel -> "A Chebyshev Polynomial"D

Out[3]=

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0
A Chebyshev Polynomial

By using Show with a sequence of different options, you can look at the same plot in many

different ways. You may want to do this, for example, if you are trying to find the best possible

setting of options.

You can also use Show to combine plots. All of the options for the resulting graphic will be based

upon the options of the first graphic in the Show expression.

10 Visualization and Graphics

This sets gj0 to be a plot of J0HxL from x = 0 to 10.

In[4]:= gj0 = Plot@BesselJ@0, xD, 8x, 0, 10<D

Out[4]=

2 4 6 8 10

-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

Here is a plot of Y1HxL from x = 1 to 10.

In[5]:= gy1 = Plot@BesselY@1, xD, 8x, 1, 10<D

Out[5]=
4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Plot specifies an explicit PlotRange for each graphic.

In[6]:= Options@gj0, PlotRangeD

Out[6]= 8PlotRange Ø 880, 10<, 8-0.402759, 1.<<<

This uses PlotRange to override the explicit value set for gj0.

In[7]:= gjy = Show@gj0, gy1, PlotRange Ø AutomaticD

Out[7]=
2 4 6 8 10

-0.5

0.5

1.0

All Mathematica graphics are expressions and can be manipulated in the same way as any other

expression. Doing these kinds of manipulations does not require the use of Show.

Visualization and Graphics 11

This replaces all instances of the symbol Line with the symbol Point in the graphics expres-
sion represented by gj0.

In[8]:= gj0 ê. Line Ø Point

Out[8]=

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Using Show@plot1, plot2, …D you can combine several plots into one. GraphicsGrid allows you

to draw several plots in an array.

GraphicsGrid@88plot11,plot12,…<,…<D

draw a rectangular array of plots

GraphicsRow@8plot1,plot2,…<D

draw several plots side by side

GraphicsColumn@8plot1,plot2,…<D

draw a column of plots

GraphicsGridAplots,Spacings->8h,v<E

put the specified horizontal and vertical spacing between
the plots

Drawing arrays of plots.

This shows the previous plots in an array.

In[9]:= GraphicsGrid@88gj0, gjy<, 8gy1, gjy<<D

Out[9]=

2 4 6 8 10
-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
-0.5

0.5

1.0

4 6 8 10

-0.8
-0.6
-0.4
-0.2

0.2
0.4

2 4 6 8 10
-0.5

0.5

1.0

12 Visualization and Graphics

If you redisplay an array of plots using Show, any options you specify will be used for the whole
array, rather than for individual plots.

In[10]:= Show@%, Frame -> True, FrameTicks -> NoneD

Out[10]=

2 4 6 8 10
-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
-0.5

0.5

1.0

4 6 8 10

-0.8
-0.6
-0.4
-0.2

0.2
0.4

2 4 6 8 10
-0.5

0.5

1.0

GraphicsGrid by default puts a narrow border around each of the plots in the array it gives.

You can change the size of this border by setting the option Spacings -> 8h, v<. The parame-

ters h and v give the horizontal and vertical spacings to be used. The Spacings option uses the

width and height of characters in the default font to scale the h and v parameters by default,

but it is generally more useful in graphics to use Scaled coordinates. Scaled scales widths and

heights so that a value of 1 represents the width and height of one element of the grid.

This increases the horizontal spacing, but decreases the vertical spacing between the plots in
the array.

In[11]:= GraphicsGrid@88gj0, gjy<, 8gy1, gjy<<, Spacings -> 8Scaled@.3D, Scaled@0D<D

Out[11]=

2 4 6 8 10
-0.4
-0.2

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10
-0.5

0.5

1.0

4 6 8 10

-0.8
-0.6
-0.4
-0.2

0.2
0.4

2 4 6 8 10
-0.5

0.5

1.0

When you make a plot, Mathematica saves the list of points it used, together with some other

information. Using what is saved, you can redraw plots in many different ways with Show.

However, you should realize that no matter what options you specify, Show still has the same

basic set of points to work with. So, for example, if you set the options so that Mathematica

displays a small portion of your original plot magnified, you will probably be able to see the

individual sample points that Plot used. Options like PlotPoints can only be set in the original

Plot command itself. (Mathematica always plots the actual points it has; it avoids using

smoothed or splined curves, which can give misleading results in mathematical graphics.)

Here is a simple plot.

Visualization and Graphics 13

Here is a simple plot.

In[12]:= Plot@Cos@xD, 8x, -Pi, Pi<D

Out[12]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

This shows a small region of the plot in a magnified form. At this resolution, you can see the
individual line segments that were produced by the original Plot command.

In[13]:= Show@%, PlotRange -> 880, .005<, 8.99999, 1<<D

Out[13]=

0.999990

0.999992

0.999994

0.999996

0.999998

1.000000

Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options

you can set. Mathematica provides some general mechanisms for handling such options.

If you do not give a specific setting for an option to a function like Plot, then Mathematica will

automatically use a default value for the option. The function Options@ function, optionD allows

you to find out the default value for a particular option. You can reset the default using

SetOptions@ function, option -> valueD. Note that if you do this, the default value you have given

will stay until you explicitly change it.

Options@ functionD give a list of the current default settings for all options

Options@ function,optionD give the default setting for a particular option

SetOptions@ function,option->value,…D

reset defaults

Manipulating default settings for options.

14 Visualization and Graphics

Here is the default setting for the PlotRange option of Plot.

In[1]:= Options@Plot, PlotRangeD

Out[1]= 8PlotRange Ø 8Full, Automatic<<

This resets the default for the PlotRange option. The semicolon stops Mathematica from
printing out the rather long list of options for Plot.

In[2]:= SetOptions@Plot, PlotRange -> AllD;

Until you explicitly reset it, the default for the PlotRange option will now be All.

In[3]:= Options@Plot, PlotRangeD

Out[3]= 8PlotRange Ø All<

The graphics objects that you get from Plot or Show store information on the options they use.

You can get this information by applying the Options function to these graphics objects.

Options@plotD show all the options used for a particular plot

Options@plot,optionD show the setting for a specific option

AbsoluteOptions@plot,optionD show the absolute form used for a specific option, even if
the setting for the option is Automatic or All

Getting information on options used in plots.

Here is a plot, with default settings for all options.

In[4]:= g = Plot@SinIntegral@xD, 8x, 0, 20<D

Out[4]=

5 10 15 20

0.5

1.0

1.5

The setting used for the PlotRange option was All.

In[5]:= Options@g, PlotRangeD

Out[5]= 8PlotRange Ø 8All, All<<

AbsoluteOptions gives the absolute automatically chosen values used for PlotRange.

In[6]:= AbsoluteOptions@g, PlotRangeD

Out[6]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

Visualization and Graphics 15

While it is often convenient to use a variable to represent a graphic as in the above examples,

the graphic itself can be evaluated directly. The typical ways to do this in the notebook interface

are to copy and paste the graphic or to simply begin typing in the graphical output cell, at

which point the output cell will be converted into a new input cell.

When a plot created with no explicit ImageSize is placed into an input cell, it will automatically

shrink to more easily accommodate input.

The following input cell was created by copying and pasting the graphical output created in the
previous example.

In[7]:= AbsoluteOptionsB

5 10 15 20

0.5

1.0

1.5

, PlotRangeF

Out[7]= 9PlotRange Ø 994.08163µ10-7, 20.=, 94.08163µ10-7, 1.85194===

Three-Dimensional Surface Plots

Plot3D@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a three-dimensional plot of f as a function of the
variables x and y

Basic 3D plotting function.

This makes a three-dimensional plot of the function sinHxyL.
In[1]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<D

Out[1]=

16 Visualization and Graphics

Three-dimensional graphics can be rotated in place by dragging the mouse inside of the

graphic. Dragging inside of the graphic causes the graphic to tumble in a direction that follows

the mouse, and dragging around the borders of the graphic causes the graphic to spin in the

plane of the screen. Dragging the graphic while holding down the Shift key causes the graphic

to pan. Use the Ctrl key (Cmd key on Macintosh) to zoom.

There are many options for three-dimensional plots in Mathematica. Some are discussed here;

others are described in "The Structure of Graphics and Sound".

The first set of options for three-dimensional plots is largely analogous to those provided in the

two-dimensional case.

option name default value
Axes True whether to include axes
AxesLabel None labels to be put on the axes: zlabel specifies

a label for the z axis,
8xlabel, ylabel, zlabel< for all axes

BaseStyle 8< the default style to use for the plot
Boxed True whether to draw a three-dimensional box

around the surface
FaceGrids None how to draw grids on faces of the bounding

box; All draws a grid on every face
LabelStyle 8< style specification for labels
Lighting Automatic simulated light sources to use
Mesh Automatic whether an xy mesh should be drawn on

the surface
PlotRange 9Full,Full,

Automatic=
the range of z or other values to include

SphericalRegion False whether to make the circumscribing sphere
fit in the final display area

ViewAngle All angle of the field of view
ViewCenter 81,1,1<ê2 point to display at the center
ViewPoint 81.3,-2.4,2< the point in space from which to look at the

surface
ViewVector Automatic position and direction of a simulated camera
ViewVertical 80,0,1< direction to make vertical
BoundaryStyle Automatic how to draw boundary lines for surfaces
ClippingStyle Automatic how to draw clipped parts of surfaces
ColorFunction Automatic how to determine the color of the surfaces
Filling None filling under each surface

Visualization and Graphics 17

FillingStyle Opacity@.5D style to use for filling
PlotPoints 25 the number of points in each direction at

which to sample the function; 9nx, ny=
specifies different numbers in the x and y
directions

PlotStyle Automatic graphics directives for the style of each
surface

Some options for Plot3D. The first set can also be used in Show.

This redraws the previous plot with options changed. With this setting for PlotRange, only the
part of the surface in the range -0.5 § z § 0.5 is shown.

In[2]:= Show@%, PlotRange -> 8-0.5, 0.5<D

Out[2]=

The ClippingStyle option of Plot3D can be used to fill in the clipped regions.

In[3]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<,
PlotRange -> 8-0.5, 0.5<, ClippingStyle Ø 8Opacity@.9, GrayD<D

Out[3]=

When you make the original plot, you can choose to sample more points. Mathematica adap-
tively samples the plot, adding points for large variations, but occasionally you may still need to
specify a greater number of points.

In[4]:= Plot3D@10 Sin@x + Sin@yDD, 8x, -10, 10<, 8y, -10, 10<, PlotPoints -> 50D

Out[4]=

18 Visualization and Graphics

Here is the same plot, with labels for the axes, and grids added to each face.

In[5]:= Show@%, AxesLabel -> 8"Time", "Depth", "Value"<, FaceGrids -> AllD

Out[5]=

Probably the single most important issue in plotting a three-dimensional surface is specifying

where you want to look at the surface from. The ViewPoint option for Plot3D and Show allows

you to specify the point 8x, y, z< in space from which you view a surface. The details of how the

coordinates for this point are defined are discussed in "Coordinate Systems for Three-Dimen-

sional Graphics". When rotating a graphic using the mouse, you are adjusting the ViewPoint

value.

Here is a surface, viewed from the default view point 81.3, -2.4, 2<. This view point is
chosen to be “generic”, so that visually confusing coincidental alignments between different
parts of your object are unlikely.

In[6]:= Plot3D@Sin@x yD, 8x, 0, 3<, 8y, 0, 3<D

Out[6]=

This redraws the picture, with the view point directly in front. Notice the perspective effect that
makes the back of the box look much smaller than the front.

In[7]:= Show@%, ViewPoint -> 80, -2, 0<D

Out[7]=

Visualization and Graphics 19

The ViewPoint option also accepts various symbolic values which represent common view
points.

In[8]:= Show@%, ViewPoint Ø AboveD

Out[8]=

81.3,-2.4,2< default view point

Front in front, along the negative y direction

Back in back, along the positive y direction

Above above, along the positive z direction

Below below, along the negative z direction

Left left, along the negative x direction

Right right, along the positive x direction

Typical choices for the ViewPoint option.

The human visual system is not particularly good at understanding complicated mathematical

surfaces. As a result, you need to generate pictures that contain as many clues as possible

about the form of the surface.

View points slightly above the surface usually work best. It is generally a good idea to keep the

view point close enough to the surface that there is some perspective effect. Having a box

explicitly drawn around the surface is helpful in recognizing the orientation of the surface.

20 Visualization and Graphics

Here is a plot with the default settings for surface rendering options.

In[9]:= Plot3D@Exp@-Hx^2 + y^2LD, 8x, -2, 2<, 8y, -2, 2<D

Out[9]=

This shows the surface without the mesh drawn. It is usually much harder to see the form of
the surface if the mesh is not there.

In[10]:= Plot3D@Exp@-Hx^2 + y^2LD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø NoneD

Out[10]=

To add an extra element of realism to three-dimensional graphics, Mathematica by default

colors three-dimensional surfaces using a simulated lighting model. In the default case, Mathe-

matica assumes that there are four point light sources plus ambient lighting shining on the

object. "Lighting and Surface Properties" describes how you can set up other light sources, and

how you can specify the reflection properties of an object.

Lighting can also be specified using a string which represents a collection of lighting properties.

For example, the option setting Lighting -> "Neutral" uses a set of white lights, and so can

be faithfully reproduced on a black and white output device such as a printer.

In[11]:= Plot3D@8Sin@x yD<, 8x, 0, 3<, 8y, 0, 3<, Lighting Ø "Neutral"D

Out[11]=

Visualization and Graphics 21

The ColorFunction option by default uses Lighting -> "Neutral" so that the surface
colors are not distorted by colored lights.

In[12]:= Plot3D@8Sin@x yD<, 8x, 0, 3<, 8y, 0, 3<, ColorFunction Ø HueD

Out[12]=

Plotting Lists of Data

Mathematica can be used to make plots of functions. You give Mathematica a function, and it

builds up a curve or surface by evaluating the function at many different points.

Here we describe how you can make plots from lists of data, instead of functions. ("Importing

and Exporting Data" discusses how to read data from external files and programs.) The Mathe-

matica commands for plotting lists of data are direct analogs of the ones for plotting functions.

ListPlot@8y1,y2,…<D plot y1, y2, … at x values 1, 2, …

ListPlot@88x1,y1<,8x2,y2<,…<E plot points Hx1, y1L, …

ListLinePlot@listD join the points with lines

ListPlot3D@88z11,z12,…<,8z21,z22,…<,…<D

make a three-dimensional plot of the array of heights zyx

ListPlot3D@88x1,y1,z1<,8x2,y2,z2<,…<D

make a three-dimensional plot with heights zi at positions
8xi, yi<

ListContourPlot@arrayD make a contour plot

ListDensityPlot@arrayD make a density plot

Functions for plotting lists of data.

Here is a list of values.

In[1]:= t = Table@i^2, 8i, 10<D

Out[1]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

22 Visualization and Graphics

This plots the values.

In[2]:= ListPlot@tD

Out[2]=

2 4 6 8 10

20

40

60

80

100

This joins the points with lines.

In[3]:= ListLinePlot@tD

Out[3]=

2 4 6 8 10

20

40

60

80

100

When plotting multiple datasets, Mathematica chooses a different color for each dataset
automatically.

In[4]:= ListPlot@8t, 2 t<D

Out[4]=

2 4 6 8 10

50

100

150

200

This gives a list of x, y pairs.

In[5]:= Table@8i^2, 4 i^2 + i^3<, 8i, 10<D

Out[5]= 881, 5<, 84, 24<, 89, 63<, 816, 128<, 825, 225<,
836, 360<, 849, 539<, 864, 768<, 881, 1053<, 8100, 1400<<

Visualization and Graphics 23

This plots the points.

In[6]:= ListPlot@%D

Out[6]=

20 40 60 80 100

200

400

600

800

1000

1200

1400

This gives a rectangular array of values. The array is quite large, so we end the input with a
semicolon to stop the result from being printed out.

In[7]:= t3 = Table@Mod@x, yD, 8x, 30<, 8y, 20<D;

This makes a three-dimensional plot of the array of values.

In[8]:= ListPlot3D@t3D

Out[8]=

This gives a density plot of the array of values.

In[9]:= ListDensityPlot@t3D

Out[9]=

24 Visualization and Graphics

Parametric Plots

"Basic Plotting" described how to plot curves in Mathematica in which you give the y coordinate

of each point as a function of the x coordinate. You can also use Mathematica to make paramet-

ric plots. In a parametric plot, you give both the x and y coordinates of each point as a function

of a third parameter, say t.

ParametricPlotA9 fx, fy=,9t,tmin,tmax=E

make a parametric plot

ParametricPlotA99 fx, fy=,9gx,gy=,…=,9t,tmin,tmax=E

plot several parametric curves together

Functions for generating parametric plots.

Here is the curve made by taking the x coordinate of each point to be Sin@tD and the y coordi-
nate to be Sin@2 tD.

In[1]:= ParametricPlot@8Sin@tD, Sin@2 tD<, 8t, 0, 2 Pi<D

Out[1]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ParametricPlot3DA9 fx, fy, fz=,9t,tmin,tmax=E

make a parametric plot of a three-dimensional curve

ParametricPlot3DA9 fx, fy, fz=,9t,tmin,tmax=,9u,umin,umax=E

make a parametric plot of a three-dimensional surface

ParametricPlot3DA99 fx, fy, fz=,9gx,gy,gz=,…=,…E

plot several objects together

Three-dimensional parametric plots.

Visualization and Graphics 25

ParametricPlot3D@8 fx, fy, fz<, 8t, tmin, tmax<D is the direct analog in three dimensions of

ParametricPlotA9 fx, fy=, 8t, tmin, tmax<E in two dimensions. In both cases, Mathematica effec-

tively generates a sequence of points by varying the parameter t, then forms a curve by joining

these points. With ParametricPlot, the curve is in two dimensions; with ParametricPlot3D, it

is in three dimensions.

This makes a parametric plot of a helical curve. Varying t produces circular motion in the x-y
plane, and linear motion in the z direction.

In[2]:= ParametricPlot3D@8Sin@tD, Cos@tD, t ê 3<, 8t, 0, 15<D

Out[2]=

1.0 0.5 0.0 0.5 1.0

1.0
0.5

0.0
0.5

1.0

0

2

4

ParametricPlot3D@8 fx, fy, fz<, 8t, tmin, tmax<, 8u, umin, umax<D creates a surface, rather than a

curve. The surface is formed from a collection of quadrilaterals. The corners of the quadrilater-

als have coordinates corresponding to the values of the fi when t and u take on values in a

regular grid.

Here the x and y coordinates for the quadrilaterals are given simply by t and u. The result is a
surface plot of the kind that can be produced by Plot3D.

In[3]:= ParametricPlot3D@8u Sin@tD, u Cos@tD, u<, 8t, 0, 2 Pi<, 8u, -1, 1<D

Out[3]=

26 Visualization and Graphics

This shows the same surface as before, but with the y coordinates distorted by a quadratic
transformation.

In[4]:= ParametricPlot3D@8u Sin@tD, u^2 Cos@tD, u<, 8t, 0, 2 Pi<, 8u, -1, 1<D

Out[4]=

This produces a helicoid surface by taking the helical curve shown above, and at each section of
the curve drawing a quadrilateral.

In[5]:= ParametricPlot3D@8u Sin@tD, u Cos@tD, t ê 3<, 8t, 0, 15<, 8u, -1, 1<D

Out[5]=

In general, it is possible to construct many complicated surfaces using ParametricPlot3D. In

each case, you can think of the surfaces as being formed by “distorting” or “rolling up” the t-u

coordinate grid in a certain way.

Visualization and Graphics 27

This produces a cylinder. Varying the t parameter yields a circle in the x-y plane, while varying
u moves the circles in the z direction.

In[6]:= ParametricPlot3D@8Sin@tD, Cos@tD, u<, 8t, 0, 2 Pi<, 8u, 0, 2<D

Out[6]=

This produces a torus. Varying u yields a circle, while varying t rotates the circle around the z
axis to form the torus.

In[7]:= ParametricPlot3D@
8Cos@tD H3 + Cos@uDL, Sin@tD H3 + Cos@uDL, Sin@uD<, 8t, 0, 2 Pi<, 8u, 0, 2 Pi<D

Out[7]=

This produces a sphere.

In[8]:= ParametricPlot3D@8Cos@tD Cos@uD, Sin@tD Cos@uD, Sin@uD<,
8t, 0, 2 Pi<, 8u, -Pi ê 2, Pi ê 2<D

Out[8]=

You should realize that when you draw surfaces with ParametricPlot3D, the exact choice of

parametrization is often crucial. You should be careful, for example, to avoid parametrizations

28 Visualization and Graphics

in which all or part of your surface is covered more than once. Such multiple coverings often

lead to discontinuities in the mesh drawn on the surface, and may make ParametricPlot3D

take much longer to render the surface.

Some Special Plots

As discussed in "The Structure of Graphics and Sound", Mathematica includes a full graphics

programming language. In this language, you can set up many different kinds of plots. A few of

the common ones are included in standard Mathematica packages.

LogPlot@ f,8x,xmin,xmax<D generate a linear-log plot

LogLinearPlot@ f,8x,xmin,xmax<D generate a log-linear plot

LogLogPlot@ f,8x,xmin,xmax<D generate a log-log plot

ListLogPlot@listD generate a linear-log plot from a list of data

ListLogLinearPlot@listD generate a log-linear plot from a list of data

ListLogLogPlot@listD generate a log-log plot from a list of data

PolarPlot@r,8t,tmin,tmax<D generate a polar plot of the radius r as a function of angle t

SphericalPlot3D@r,8theta,min,max<,8phi,min,max<D

generate a three-dimensional spherical plot

BarChart@listD plot a list of data as a bar chart

ErrorListPlot@88x1,y1,dy1<,…<D generate a plot with error bars

PieChart@listD plot a list of data as a pie chart

Some special plotting functions. The second group of functions are defined in standard Mathematica
packages.

This generates a log-linear plot.

In[1]:= LogPlot@Exp@-xD + 4 Exp@-2 xD, 8x, 0, 6<D

Out[1]=

1 2 3 4 5 6

0.01

0.1

1

Visualization and Graphics 29

Here is a list of the first 10 primes.

In[2]:= p = Table@Prime@nD, 8n, 10<D

Out[2]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29<

Here is a bar chart of the primes.

In[3]:= Needs@"BarCharts`"D

In[4]:= BarChart@pD

Out[4]=

This gives a pie chart.

In[5]:= Needs@"PieCharts`"D

In[6]:= PieChart@pD

Out[6]= 1
2

3

4

5
6

7

8

9

10

30 Visualization and Graphics

Sound

On most computer systems, Mathematica can produce not only graphics but also sound. Mathe-

matica treats graphics and sound in a closely analogous way.

For example, just as you can use Plot@ f, 8x, xmin, xmax<D to plot a function, so also you can use

Play@ f, 8t, 0, tmax<D to “play” a function. Play takes the function to define the waveform for a

sound: the values of the function give the amplitude of the sound as a function of time.

Play@ f,8t,0,tmax<D play a sound with amplitude f as a function of time t in
seconds

Playing a function.

On a suitable computer system, this plays a pure tone with a frequency of 440 hertz for one
second.

In[1]:= Play@Sin@2 Pi 440 tD, 8t, 0, 1<D

Out[1]=

Sounds produced by Play can have any waveform. They do not, for example, have to consist of

a collection of harmonic pieces. In general, the amplitude function you give to Play specifies

the instantaneous signal associated with the sound. This signal is typically converted to a volt-

age, and ultimately to a displacement. Note that amplitude is sometimes defined to be the peak

signal associated with a sound; in Mathematica, it is always the instantaneous signal as a

function of time.

This plays a more complex sound.

In[2]:= Play@Sin@700 t + 25 t Sin@350 tDD, 8t, 0, 4<D

Out[2]=

Visualization and Graphics 31

Play is set up so that the time variable that appears in it is always measured in absolute sec-

onds. When a sound is actually played, its amplitude is sampled a certain number of times

every second. You can specify the sample rate by setting the option SampleRate.

PlayA f,9t,0,tmax=,SampleRate->rE

play a sound, sampling it r times a second

Specifying the sample rate for a sound.

In general, the higher the sample rate, the better high-frequency components in the sound will

be rendered. A sample rate of r typically allows frequencies up to r ê2 hertz. The human auditory

system can typically perceive sounds in the frequency range 20 to 22000 hertz (depending

somewhat on age and sex). The fundamental frequencies for the 88 notes on a piano range

from 27.5 to 4096 hertz.

The standard sample rate used for compact disc players is 44100. The effective sample rate in

a typical telephone system is around 8000. On most computer systems, the default sample rate

used by Mathematica is around 8000.

You can use Play@8 f1, f2, …D to produce stereo sound. In general, Mathematica supports any

number of sound channels.

ListPlayA8a1,a2,…<,SampleRate->rE

play a sound with a sequence of amplitude levels

Playing sampled sounds.

The function ListPlay allows you simply to give a list of values which are taken to be sound

amplitudes sampled at a certain rate.

When sounds are actually rendered by Mathematica, only a certain range of amplitudes is

allowed. The option PlayRange in Play and ListPlay specifies how the amplitudes you give

should be scaled to fit in the allowed range. The settings for this option are analogous to those

for the PlotRange graphics option discussed in "Options for Graphics".

32 Visualization and Graphics

PlayRange->Automatic use an internal procedure to scale amplitudes

PlayRange->All scale so that all amplitudes fit in the allowed range

PlayRange->8amin,amax< make amplitudes between amin and amax fit in the allowed
range, and clip others

Specifying the scaling of sound amplitudes.

While it is often convenient to use the setting PlayRange -> Automatic, you should realize that

Play may run significantly faster if you give an explicit PlayRange specification, so it does not

have to derive one.

EmitSound@sndD emit a sound when evaluated

Playing sounds programmatically.

A Sound object in output is typically formatted as a button which contains a visualization of the

sound and which plays the sound when pressed. Sounds can be played without the need for

user intervention or producing output by using EmitSound. In fact, the internal implementation

of Sound buttons uses EmitSound when the button is pressed.

The internal structure of Sound objects is discussed in "The Representation of Sound".

The Structure of Graphics and Sound

The Structure of Graphics

"Graphics and Sound" discusses how to use functions like Plot and ListPlot to plot graphs of

functions and data. Here, we discuss how Mathematica represents such graphics, and how you

can program Mathematica to create more complicated images.

The basic idea is that Mathematica represents all graphics in terms of a collection of graphics

primitives. The primitives are objects like Point, Line and Polygon, that represent elements of

a graphical image, as well as directives such as RGBColor and Thickness.

Visualization and Graphics 33

This generates a plot of a list of points.

In[1]:= ListPlot@Table@Prime@nD, 8n, 20<DD

Out[1]=

5 10 15 20

10

20

30

40

50

60

70

InputForm shows how Mathematica represents the graphics. Each point is represented as a
coordinate in a Point graphics primitive. All the various graphics options used in this case are
also given.

In[2]:= InputForm@%D

Out[2]//InputForm= Graphics[{{{}, {Hue[0.67, 0.6, 0.6], Point[{{1., 2.},
 {2., 3.}, {3., 5.}, {4., 7.}, {5., 11.}, {6., 13.},
 {7., 17.}, {8., 19.}, {9., 23.}, {10., 29.}, {11.,
 31.}, {12., 37.}, {13., 41.}, {14., 43.}, {15.,
 47.}, {16., 53.}, {17., 59.}, {18., 61.}, {19.,
 67.}, {20., 71.}}]}, {}}},
 {AspectRatio -> GoldenRatio^(-1), Axes -> True,
 AxesOrigin -> {0, 0}, PlotRange ->
 {{0., 20.}, {0., 71.}}, PlotRangeClipping -> True,
 PlotRangePadding -> {Scaled[0.02], Scaled[0.02]}}]

Each complete piece of graphics in Mathematica is represented as a graphics object. There are

several different kinds of graphics object, corresponding to different types of graphics. Each

kind of graphics object has a definite head which identifies its type.

Graphics@listD general two-dimensional graphics

Graphics3D@listD general three-dimensional graphics

Graphics objects in Mathematica.

The functions like Plot and ListPlot discussed in "The Structure of Graphics and Sound" all

work by building up Mathematica graphics objects, and then displaying them.

You can create other kinds of graphical images in Mathematica by building up your own graph-

ics objects. Since graphics objects in Mathematica are just symbolic expressions, you can use

all the standard Mathematica functions to manipulate them.

Graphics objects are automatically formatted by the Mathematica front end as graphics upon

output. Graphics may also be printed as a side effect using the Print command.

34 Visualization and Graphics

The Graphics object is computed by Mathematica, but its output is suppressed by the
semicolon.

In[3]:= Graphics@Circle@DD;
2 + 2

Out[3]= 4

A side effect output can be generated using the Print command. It has no Out@D label
because it is a side effect.

In[4]:= Print@Graphics@Circle@DDD;
2 + 2

Out[4]= 4

Show@g, optsD display a graphics object with new options specified by opts

Show@g1,g2,…D display several graphics objects combined using the
options from g1

Show@g1,g2,…,optsD display several graphics objects with new options specified
by opts

Displaying graphics objects.

Show can be used to change the options of an existing graphic or to combine multiple graphics.

This uses Show to adjust the Background option of an existing graphic.

In[5]:= g1 = Plot@Sin@xD, 8x, 0, 2 Pi<D;
Show@g1, Background Ø PinkD

Out[8]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Visualization and Graphics 35

This uses Show to combine two graphics. The values used for PlotRange and other options are
based upon those which were set for the first graphic.

In[6]:= Show@8g1, Graphics@Circle@DD<D

Out[9]=
-1 1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Here, new options are specified for the entire graphic.

In[7]:= Show@8g1, Graphics@Circle@DD<, PlotRange Ø All, AspectRatio Ø AutomaticD

Out[10]=
-1 1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Graphics directives Examples: RGBColor, Thickness

Graphics options Examples: PlotRange, Ticks, AspectRatio ,
ViewPoint

Local and global ways to modify graphics.

Given a particular list of graphics primitives, Mathematica provides two basic mechanisms for

modifying the final form of graphics you get. First, you can insert into the list of graphics primi-

tives certain graphics directives, such as RGBColor, which modify the subsequent graphical

elements in the list. In this way, you can specify how a particular set of graphical elements

should be rendered.

This creates a two-dimensional graphics object that contains the Polygon graphics primitive.

In[8]:= poly = Polygon@Table@N@8Cos@n Pi ê 5D, Sin@n Pi ê 5D<D, 8n, 0, 5<DD;
Graphics@polyD

Out[8]=

36 Visualization and Graphics

InputForm shows the complete graphics object.

In[9]:= InputForm@%D

Out[9]//InputForm= Graphics[Polygon[{{1., 0.}, {0.8090169943749475,
 0.5877852522924731}, {0.30901699437494745,
 0.9510565162951535}, {-0.30901699437494745,
 0.9510565162951535}, {-0.8090169943749475,
 0.5877852522924731}, {-1., 0.}}]]

This takes the graphics primitive created above, and adds the graphics directives RGBColor
and EdgeForm.

In[10]:= Graphics@8RGBColor@0.3, 0.5, 1D, EdgeForm@Thickness@0.01DD, poly<D

Out[10]=

By inserting graphics directives, you can specify how particular graphical elements should be

rendered. Often, however, you want to make global modifications to the way a whole graphics

object is rendered. You can do this using graphics options.

By adding the graphics option Frame you can modify the overall appearance of the graphics.

In[11]:= Show@%, Frame -> TrueD

Out[11]=

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

InputForm shows that the option was introduced into the resulting Graphics object.

In[12]:= InputForm@%D

Out[12]//InputForm= Graphics[{RGBColor[0.3, 0.5, 1],
 EdgeForm[Thickness[0.01]],
 Polygon[{{1., 0.}, {0.8090169943749475,
 0.5877852522924731}, {0.30901699437494745,
 0.9510565162951535}, {-0.30901699437494745,
 0.9510565162951535}, {-0.8090169943749475,
 0.5877852522924731}, {-1., 0.}}]}, {Frame -> True}]

Visualization and Graphics 37

You can specify graphics options in Show. As a result, it is straightforward to take a single

graphics object, and show it with many different choices of graphics options.

Notice however that Show always returns the graphics objects it has displayed. If you specify

graphics options in Show, then these options are automatically inserted into the graphics objects

that Show returns. As a result, if you call Show again on the same objects, the same graphics

options will be used, unless you explicitly specify other ones. Note that in all cases new options

you specify will overwrite ones already there.

Options@gD give a list of all graphics options for a graphics object

Options@g,optD give the setting for a particular option

Finding the options for a graphics object.

Some graphics options can be used as options to visualization functions which generate graph-

ics. Options which can take the right-hand side of Automatic are sometimes resolved into

specific values by the visualization functions.

Here is a plot.

In[13]:= zplot = Plot@Abs@Zeta@1 ê 2 + I xDD, 8x, 0, 10<, PlotRange Ø AutomaticD

Out[13]=

Mathematica uses an internal algorithm to compute an explicit value for PlotRange in the
resulting graphic.

In[14]:= Options@zplot, PlotRangeD

Out[14]= 8PlotRange Ø 880., 10.<, 80.526253, 1.54919<<<

FullGraphics@gD translate objects specified by graphics options into lists of
explicit graphics primitives

Finding the complete form of a piece of graphics.

When you use a graphics option such as Axes, the Mathematica front end automatically draws

objects such as axes that you have requested. The objects are represented merely by the

38 Visualization and Graphics

2 4 6 8 10

0.8

1.0

1.2

1.4

option values rather than by a specific list of graphics primitives. Sometimes, however, you

may find it useful to represent these objects as the equivalent list of graphics primitives. The

function FullGraphics gives the complete list of graphics primitives needed to generate a

particular plot, without any options being used.

This plots a list of values.

In[15]:= ListPlot@Table@EulerPhi@nD, 8n, 10<DD

Out[15]=

2 4 6 8 10

2

3

4

5

6

FullGraphics yields a graphics object that includes graphics primitives representing axes and
so on.

In[16]:= Short@InputForm@FullGraphics@%DD, 6D

Out[16]//Short=
Graphics@8888<, 8Hue@0.67, 0.6, 0.6D, Point@881., 1.<, 82., 1.<, 83., 2.<, 84., 2.<, 85.,

4.<, 86., 2.<, 87., 6.<, 88., 4.<, 89., 6.<, 810., 4.<<D<, 8<<<, 88GrayLevel@0.D,
AbsoluteThickness@0.25D, Line@882., 1.<, 82., 1.0505635621484342<<D<, <<56>><<D

Two-Dimensional Graphics Elements

Point@8x,y<D point at position x, y

Line@88x1,y1<,8x2,y2<,…<D line through the points 8x1, y1<, 8x2, y2<, …
Rectangle@8xmin,ymin<,8xmax,ymax<D filled rectangle

Polygon@88x1,y1<,8x2,y2<,…<D filled polygon with the specified list of corners

Circle@8x,y<,rD circle with radius r centered at x, y

Disk@8x,y<,rD filled disk with radius r centered at x, y

Raster@88a11,a12,…<,8a21,…<,…<E rectangular array of gray levels between 0 and 1

Text@expr,8x,y<D the text of expr, centered at x, y (see "Graphics Primitives
for Text")

Basic two-dimensional graphics elements.

Here is a line primitive.

In[1]:= sawline = Line@Table@8n, H-1L^n<, 8n, 6<DD

Out[1]= Line@881, -1<, 82, 1<, 83, -1<, 84, 1<, 85, -1<, 86, 1<<D

Visualization and Graphics 39

This shows the line as a two-dimensional graphics object.

In[2]:= sawgraph = Graphics@sawlineD

Out[2]=

This redisplays the line, with axes added.

In[3]:= Show@%, Axes -> TrueD

Out[3]=
2 3 4 5 6

-1.0

-0.5

0.5

1.0

You can combine graphics objects that you have created explicitly from graphics primitives with

ones that are produced by functions like Plot.

This produces an ordinary Mathematica plot.

In[4]:= Plot@Sin@Pi xD, 8x, 0, 6<D

Out[4]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This combines the plot with the sawtooth picture made above.

In[5]:= Show@%, sawgraphD

Out[5]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

40 Visualization and Graphics

You can combine different graphical elements simply by giving them in a list. In two-dimen-

sional graphics, Mathematica will render the elements in exactly the order you give them. Later

elements are therefore effectively drawn on top of earlier ones.

Here are two blue Rectangle graphics elements.

In[6]:= 8Blue, Rectangle@81, -1<, 82, -0.6<D, Rectangle@84, .3<, 85, .8<D<

Out[6]= 8RGBColor@0, 0, 1D, Rectangle@81, -1<, 82, -0.6<D, Rectangle@84, 0.3<, 85, 0.8<D<

This draws the rectangles on top of the line that was defined above.

In[7]:= Graphics@8sawline, %<D

Out[7]=

The Polygon graphics primitive takes a list of x, y coordinates, corresponding to the corners of a

polygon. Mathematica joins the last corner with the first one, and then fills the resulting area.

Here are the coordinates of the corners of a regular pentagon.

In[8]:= pentagon = Table@8Sin@2 Pi n ê 5D, Cos@2 Pi n ê 5D<, 8n, 5<D

Out[8]= ::
5

8
+

5

8
,
1

4
-1 + 5 >, :

5

8
-

5

8
,
1

4
-1 - 5 >,

:-
5

8
-

5

8
,
1

4
-1 - 5 >, :-

5

8
+

5

8
,
1

4
-1 + 5 >, 80, 1<>

This displays the pentagon. With the default choice of aspect ratio, the pentagon looks some-
what squashed.

In[9]:= Graphics@Polygon@pentagonDD

Out[9]=

Visualization and Graphics 41

Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …

Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements.

A large number of points can be represented by putting a list of coordinates inside of a single

Point primitive. Similarly, a large number of lines or polygons can be represented as a list of

coordinate lists. This representation is efficient and can generally be rendered more quickly by

the Mathematica front end. Graphics directives such as RGBColor apply uniformly to the entire

set of primitives.

This creates a multipolygon based upon the set of coordinates defined previously.

In[10]:= Graphics@Polygon@8pentagon, 1 + .5 pentagon, 1.5 + .2 pentagon<DD

Out[10]=

Here is a multipoint which is colored blue.

In[11]:= Graphics@8Blue, Point@Table@8x, Cos@xD<, 8x, -6, 6, .2<DD<, Axes Ø TrueD

Out[11]=
-6 -4 -2 2 4 6

-1.0
-0.5

0.5
1.0

Circle@8x,y<,rD a circle with radius r centered at the point 8x, y<

CircleA9x,y=,9rx,ry=E an ellipse with semi-axes rx and ry

Circle@8x,y<,r,8theta1,theta2<D a circular arc

CircleA
9x,y=,9rx,ry=,8theta1,theta2<E

an elliptical arc

DiskA9x,y=,rE , etc. filled disks

Circles and disks.

42 Visualization and Graphics

This shows two circles with radius 2.

In[12]:= Graphics@8Circle@80, 0<, 2D, Circle@81, 1<, 2D<D

Out[12]=

This shows a sequence of disks with progressively larger semi-axes in the x direction, and
progressively smaller ones in the y direction.

In[13]:= Graphics@Table@Disk@83 n, 0<, 8n ê 4, 2 - n ê 4<D, 8n, 4<DD

Out[13]=

Mathematica allows you to generate arcs of circles, and segments of ellipses. In both cases, the

objects are specified by starting and finishing angles. The angles are measured counterclock-

wise in radians with zero corresponding to the positive x direction.

This draws a 140È wedge centered at the origin.

In[14]:= Graphics@Disk@80, 0<, 1, 80, 140 Degree<DD

Out[14]=

RasterA
98a11,a12,…<,9a21 , … }, … }]

array of gray levels between 0 and 1

Raster@888a11,o11<,…<,…<D array of gray levels with opacity between 0 and 1

Visualization and Graphics 43

Raster@888r11,g11,b11<,…<,…<D array of rgb values between 0 and 1

Raster@888r11,g11,b11,o11<,…<,…<D array of rgb values with opacity between 0 and 1

Raster@array,88xmin,ymin<,
8xmax,ymax<<,8zmin,zmax<D

array of gray levels between zmin and zmax drawn in the
rectangle defined by 8xmin, ymin< and 8xmax, ymax<

Raster-based graphics elements.

Here is a 4×4 array of values between 0 and 1.

In[15]:= modtab = Table@Mod@i, jD ê 3, 8i, 4<, 8j, 4<D êê N

Out[15]= 880., 0.333333, 0.333333, 0.333333<,
80., 0., 0.666667, 0.666667<, 80., 0.333333, 0., 1.<, 80., 0., 0.333333, 0.<<

This uses the array of values as gray levels in a raster.

In[16]:= Graphics@Raster@modtabDD

Out[16]=

This shows two overlapping copies of the raster.

In[17]:= Graphics@8Raster@modtab, 880, 0<, 82, 2<<D, Raster@modtab, 881.5, 1.5<, 83, 2<<D<D

Out[17]=

The ColorFunction option can be used to change the default way in which a Raster is
colored.

In[18]:= Graphics@8Raster@modtab, ColorFunction Ø HueD<D

Out[18]=

44 Visualization and Graphics

Graphics Directives and Options

When you set up a graphics object in Mathematica, you typically give a list of graphical ele-

ments. You can include in that list graphics directives which specify how subsequent elements

in the list should be rendered.

In general, the graphical elements in a particular graphics object can be given in a collection of

nested lists. When you insert graphics directives in this kind of structure, the rule is that a

particular graphics directive affects all subsequent elements of the list it is in, together with all

elements of sublists that may occur. The graphics directive does not, however, have any effect

outside the list it is in.

The first sublist contains the graphics directive GrayLevel.

In[1]:= 88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Rectangle@81, 1<, 82, 2<D<

Out[1]= 88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Rectangle@81, 1<, 82, 2<D<

Only the rectangle in the first sublist is affected by the GrayLevel directive.

In[2]:= Graphics@%D

Out[2]=

GrayLevel@iD gray level between 0 (black) and 1 (white)

RGBColor@r,g,bD color with specified red, green and blue components, each
between 0 and 1

Hue@hD color with hue h between 0 and 1

Hue@h,s,bD color with specified hue, saturation and brightness, each
between 0 and 1

Basic Mathematica color specifications.

Visualization and Graphics 45

Mathematica accepts the names of many colors directly as color specifications. These color

names, such as Red, Gray, LightGreen and Purple, are implemented as variables which evalu-

ate to an RGBColor specification. The color names can be used interchangeably with color

directives.

The first plot is colored with a color name, while the second one has a fine-tuned RGBColor
specification.

In[3]:= Plot@8BesselI@1, xD, BesselI@2, xD<, 8x, 0, 5<,
PlotStyle -> 88Red<, 8RGBColor@0.3, 0.7, 0.1D<<D

Out[3]=

1 2 3 4 5

5

10

15

20

25

The function Hue@hD provides a convenient way to specify a range of colors using just one

parameter. As h varies from 0 to 1, Hue@hD runs through red, yellow, green, cyan, blue,

magenta, and back to red again. Hue@h, s, bD allows you to specify not only the “hue”, but also

the “saturation” and “brightness” of a color. Taking the saturation to be equal to one gives the

deepest colors; decreasing the saturation toward zero leads to progressively more “washed out”

colors.

When you give a graphics directive such as RGBColor, it affects all subsequent graphical ele-

ments that appear in a particular list. Mathematica also supports various graphics directives

which affect only specific types of graphical elements.

The graphics directive PointSize@dD specifies that all Point elements which appear in a graph-

ics object should be drawn as circles with diameter d. In PointSize, the diameter d is

measured as a fraction of the width of your whole plot.

Mathematica also provides the graphics directive AbsolutePointSize@dD, which allows you to

specify the “absolute” diameter of points, measured in fixed units. The units are 1
72

 of an inch,

approximately printer’s points.

PointSize@dD give all points a diameter d as a fraction of the width of the
whole plot

AbsolutePointSize@dD give all points a diameter d measured in absolute units

Graphics directives for points.

46 Visualization and Graphics

Here is a list of points.

In[4]:= Table@Point@8n, Prime@nD<D, 8n, 6<D

Out[4]= 8Point@81, 2<D, Point@82, 3<D, Point@83, 5<D, Point@84, 7<D, Point@85, 11<D, Point@86, 13<D<

This makes each point have a diameter equal to one-tenth of the width of the plot.

In[5]:= Graphics@8PointSize@0.1D, %<, PlotRange -> AllD

Out[5]=

Here each point has size 3 in absolute units.

In[6]:= ListPlot@Table@Prime@nD, 8n, 20<D, PlotStyle -> AbsolutePointSize@3DD

Out[6]=

5 10 15 20

10

20

30

40

50

60

70

Thickness@wD give all lines a thickness w as a fraction of the width of the
whole plot

AbsoluteThickness@wD give all lines a thickness w measured in absolute units

Dashing@8w1,w2,…<D show all lines as a sequence of dashed segments, with
lengths w1, w2, …

AbsoluteDashing@8w1,w2,…<D use absolute units to measure dashed segments

Graphics directives for lines.

This generates a list of lines with different absolute thicknesses.

In[7]:= Table@8AbsoluteThickness@nD, Line@880, 0<, 8n, 1<<D<, 8n, 4<D

Out[7]= 88AbsoluteThickness@1D, Line@880, 0<, 81, 1<<D<, 8AbsoluteThickness@2D, Line@880, 0<, 82, 1<<D<,
8AbsoluteThickness@3D, Line@880, 0<, 83, 1<<D<, 8AbsoluteThickness@4D, Line@880, 0<, 84, 1<<D<<

Visualization and Graphics 47

Here is a picture of the lines.

In[8]:= Graphics@%D

Out[8]=

The Dashing graphics directive allows you to create lines with various kinds of dashing. The

basic idea is to break lines into segments which are alternately drawn and omitted. By changing

the lengths of the segments, you can get different line styles. Dashing allows you to specify a

sequence of segment lengths. This sequence is repeated as many times as necessary in draw-

ing the whole line.

This gives a dashed line with a succession of equal-length segments.

In[9]:= Graphics@8Dashing@80.05, 0.05<D, Line@88-1, -1<, 81, 1<<D<D

Out[9]=

This gives a dot-dashed line.

In[10]:= Graphics@8Dashing@80.01, 0.05, 0.05, 0.05<D, Line@88-1, -1<, 81, 1<<D<D

Out[10]=

Dashing can be turned off by specifying an empty list. Here, Dashing is turned off for only
the second line.

In[11]:= Graphics@8Dashing@80.05<D, Line@880, 0<, 81, 1<<D,
8Dashing@8<D, Line@880, 0<, 82, 1<<D<,
Line@880, 0<, 83, 1<<D<D

Out[11]=

48 Visualization and Graphics

Graphics directives which require a numerical size specification can also accept values of Tiny,

Small, Medium, and Large. For each directive, these values have been fine-tuned to produce an

appearance which will seem appropriate to the human eye.

This specifies a large thickness with medium dashing.

In[12]:= Plot@Sin@xD, 8x, 0, 2 Pi<, PlotStyle Ø 88Dashing@8Medium<D, Thickness@LargeD<<D

Out[12]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This specifies that the entire multipoint should use large, green points.

In[13]:= Graphics@8PointSize@LargeD, Green, Point@880, 0<, 81, 0.5<, 82, 0<, 81, -.5<<D<D

Out[13]=

One way to use Mathematica graphics directives is to insert them directly into the lists of graph-

ics primitives used by graphics objects. Sometimes, however, you want the graphics directives

to be applied more globally, and for example to determine the overall “style” with which a

particular type of graphical element should be rendered. There are typically graphics options

which can be set to specify such styles in terms of lists of graphics directives.

PlotStyle->style specify a style to be used for all curves in Plot

PlotStyle->88style1<,8style2<,…< specify styles to be used (cyclically) for a sequence of
curves in Plot

MeshStyle->style specify a style to be used for a mesh in density and surface
graphics

BoxStyle->style specify a style to be used for the bounding box in three-
dimensional graphics

Some graphics options for specifying styles.

Visualization and Graphics 49

This generates a plot in which all curves are specified to use the same style.

In[14]:= Plot@8BesselJ@1, xD, BesselJ@2, xD<,
8x, 0, 10<, PlotStyle -> 88Thickness@0.02D, Gray<<D

Out[14]=

2 4 6 8 10

-0.2

0.2

0.4

0.6

A different PlotStyle expression can be used to give specific styles to each curve.

In[15]:= Plot@8BesselJ@1, xD, BesselJ@2, xD<, 8x, 0, 10<,
PlotStyle -> 88Thickness@0.02D, Gray<, 8Red<<D

Out[15]=

2 4 6 8 10

-0.2

0.2

0.4

0.6

The various “style options” allow you to specify how particular graphical elements in a plot

should be rendered. Mathematica also provides options that affect the rendering of the whole

plot.

Background->color specify the background color for a plot

BaseStyle->color specify the base style for a plot, affecting elements not
affected by PlotStyle

Prolog->g give graphics to render before a plot is started

Epilog->g give graphics to render after a plot is finished

Graphics options that affect whole plots.

This draws the plot in white on a gray background.

In[16]:= Plot@Sin@Sin@xDD, 8x, 0, 10<, Background Ø Gray, PlotStyle Ø WhiteD

Out[16]=
2 4 6 8 10

-0.5

0.5

50 Visualization and Graphics

This makes the axes white as well.

In[17]:= Show@%, BaseStyle Ø WhiteD

Out[17]=
2 4 6 8 10

-0.5

0.5

Coordinate Systems for Two-Dimensional Graphics

When you set up a graphics object in Mathematica, you give coordinates for the various graphi-

cal elements that appear. When Mathematica renders the graphics object, it has to translate

the original coordinates you gave into "display coordinates" which specify where each element

should be placed in the final display area.

PlotRange->99xmin,
xmax=,9ymin,ymax==

the range of original coordinates to include in the plot

Option which determines translation from original to display coordinates.

When Mathematica renders a graphics object, one of the first things it has to do is to work out

what range of original x and y coordinates it should actually display. Any graphical elements

that are outside this range will be clipped, and not shown.

The option PlotRange specifies the range of original coordinates to include. As discussed in

"Options for Graphics", the default setting is PlotRange -> Automatic, which makes Mathemat-

ica try to choose a range which includes all "interesting" parts of a plot, while dropping

"outliers". By setting PlotRange -> All, you can tell Mathematica to include everything. You

can also give explicit ranges of coordinates to include.

This sets up a polygonal object whose corners have coordinates between roughly ±1.

In[1]:= obj = Polygon@Table@8Sin@n Pi ê 10D, Cos@n Pi ê 10D< + 0.05 H-1L^n, 8n, 20<DD;

Visualization and Graphics 51

In this case, the polygonal object fills almost the whole display area.

In[2]:= Graphics@objD

Out[2]=

Specifying an explicit PlotRange allows you to zoom in on a section of a graphic.

In[3]:= Graphics@obj, PlotRange Ø 880, 1<, All<D

Out[3]=

AspectRatio->r make the ratio of height to width for the display area equal
to r

AspectRatio->Automatic determine the shape of the display area from the original
coordinate system

Specifying the shape of the display area.

What we have discussed so far is how Mathematica translates the original coordinates you

specify into positions in the final display area. What remains to discuss, however, is what the

final display area is like.

On most computer systems, there is a certain fixed region of screen or paper into which the

Mathematica display area must fit. How it fits into this region is determined by its “shape” or

aspect ratio. In general, the option AspectRatio specifies the ratio of height to width for the

final display area.

52 Visualization and Graphics

It is important to note that the setting of AspectRatio does not affect the meaning of the

scaled or display coordinates. These coordinates always run from 0 to 1 across the display area.

What AspectRatio does is to change the shape of this display area.

For two-dimensional graphics, AspectRatio is set by default to Automatic. This determines the

aspect ratio from the original coordinate system used in the plot instead of setting it at a fixed

value. One unit in the x direction in the original coordinate system corresponds to the same

distance in the final display as one unit in the y direction. In this way, objects that you define in

the original coordinate system are displayed with their "natural shape".

This generates a graphic object corresponding to a regular hexagon. With the default value of
AspectRatio -> Automatic, the aspect ratio of the final display area is determined from the
original coordinate system, and the hexagon is shown with its "natural shape".

In[4]:= Graphics@Polygon@Table@8Sin@n Pi ê 3D, Cos@n Pi ê 3D<, 8n, 6<DDD

Out[4]=

This renders the hexagon in a display area whose height is three times its width.

In[5]:= Show@%, AspectRatio -> 3D

Out[5]=

Visualization and Graphics 53

Sometimes, you may find it convenient to specify the display coordinates for a graphical ele-

ment directly. You can do this by using scaled coordinates Scaled@8sx, sy<D rather than 8x, y<.

The scaled coordinates are defined to run from 0 to 1 in x and y, with the origin taken to be at

the lower-left corner of the plot range.

8x,y< original coordinates

Scaled@8sx,sy<D coordinates scaled to the plot range

ImageScaled@8sx,sy<D coordinates scaled to the display area

Coordinate systems for two-dimensional graphics.

The display area is significantly larger than the plot range due to the frame label.

In[6]:= g = Graphics@8Green, Disk@D<, PlotRange Ø 2,
Frame Ø True, FrameLabel Ø 8Style@"x", LargeD<D

Out[6]=

-2 -1 0 1 2
-2

-1

0

1

2

x

Using Scaled coordinates, the rectangle falls at the origin, which is at the center of the speci-
fied plot range.

In[7]:= Show@g, Prolog Ø 8Rectangle@Scaled@80.25, 0.25<D, Scaled@80.75, 0.75<DD<D

Out[7]=

-2 -1 0 1 2
-2

-1

0

1

2

x

54 Visualization and Graphics

Using ImageScaled coordinates, the rectangle falls at exactly the center of the graphic, which
does not coincide with the center of the plot range.

In[8]:= Show@g, Prolog Ø 8Rectangle@ImageScaled@80.25, 0.25<D, ImageScaled@80.75, 0.75<DD<D

Out[8]=

-2 -1 0 1 2
-2

-1

0

1

2

x

When you use 8x, y<, Scaled@8sx, sy<D or ImageScaled@8sx, sy<D, you are specifying position

either completely in original coordinates, or completely in scaled coordinates. Sometimes,

however, you may need to use a combination of these coordinate systems. For example, if you

want to draw a line at a particular point whose length is a definite fraction of the width of the

plot, you will have to use original coordinates to specify the basic position of the line, and

scaled coordinates to specify its length.

You can use Scaled@8dsx, dsy<, 8x, y<D to specify a position using a mixture of original and

scaled coordinates. In this case, 8x, y< gives a position in original coordinates, and 8dsx, dsy<

gives the offset from the position in scaled coordinates.

CircleA8x,y<,Scaled@sxDE a circle whose radius is scaled to the width of the plot range

DiskA8x,y<,Scaled@sxDE a disk whose radius is scaled to the width of the plot range

FontSize->Scaled@sxD specification for a font size scaled to the width of the plot
range

Some places where Scaled can be used with a single argument.

Visualization and Graphics 55

Both the radius of the circle and the size of the font are specified in Scaled values.

In[9]:= Graphics@
8Circle@80, 0<, Scaled@0.3DD, FontSize Ø Scaled@0.2D, Text@"some text", 80, 0<D<D

Out[9]= some text

Scaled@8sdx,sdy<,8x,y<D scaled offset from original coordinates

ImageScaled@8sdx,sdy<,8x,y<D image scaled offset from original coordinates

Offset@8adx,ady<,8x,y<D absolute offset from original coordinates

Offset@8adx,ady<,Scaled@8sx,sy<DD absolute offset from scaled coordinates

OffsetA8adx,ady<,
ImageScaled@8sx,sy<DE

absolute offset from image scaled coordinates

Positions specified as offsets.

Each line drawn here has an absolute length of 6 printer’s points.

In[10]:= Graphics@Table@Line@88x, x^2<, Offset@80, 6<, 8x, x^2<D<D, 8x, 10<D, Frame -> TrueD

80

100

56 Visualization and Graphics

Out[10]=

2 4 6 8 10

20

40

60

Visualization and Graphics 57

You can also use Offset inside Circle with just one argument to create a circle with a certain
absolute radius.

In[11]:= Graphics@Table@Circle@8x, x^2<, Offset@82, 2<DD, 8x, 10<D, Frame -> TrueD

Out[11]=

40

60

80

100

58 Visualization and Graphics

2 4 6 8 10

20

In most kinds of graphics, you typically want the relative positions of different objects to adjust

automatically when you change the coordinates or the overall size of your plot. But sometimes

you may instead want the offset from one object to another to be constrained to remain fixed.

This can be the case, for example, when you are making a collection of plots in which you want

certain features to remain consistent, even though the different plots have different forms.

Offset@8adx, ady<, positionD allows you to specify the position of an object by giving an absolute

offset from a position that is specified in original or scaled coordinates. The units for the offset

are printer’s points, equal to 1
72

 of an inch.

When you give text in a plot, the size of the font that is used is also specified in printer’s points.

Therefore, a 10-point font, for example, has letters whose basic height is 10 printer’s points.

You can use Offset to move text around in a plot, and to create plotting symbols or icons

which match the size of the text.

Using scaled coordinates, you can specify the sizes of graphical elements as fractions of the size

of the display area. You cannot, however, tell Mathematica the actual physical size at which a

particular graphical element should be rendered. Of course, this size ultimately depends on the

details of your graphics output device, and cannot be determined for certain within Mathemat-

Visualization and Graphics 59

Using scaled coordinates, you can specify the sizes of graphical elements as fractions of the size

ica. Nevertheless, graphics directives such as AbsoluteThickness discussed in "Graphics Direc-

tives and Options" do allow you to indicate “absolute sizes” to use for particular graphical ele-

ments. The sizes you request in this way will be respected by most, but not all, output devices.

(For example, if you optically project an image, it is neither possible nor desirable to maintain

the same absolute size for a graphical element within it.)

Labeling Two-Dimensional Graphics

Axes->True give a pair of axes

GridLines->Automatic draw grid lines on the plot

Frame->True put axes on a frame around the plot

PlotLabel->"text" give an overall label for the plot

Ways to label two-dimensional plots.

Here is a plot, using the default Axes -> True.

In[1]:= bp = Plot@BesselJ@2, xD, 8x, 0, 10<D

Out[1]=

2 4 6 8 10

-0.2

0.2

0.4

Setting Frame -> True generates a frame with axes, and removes tick marks from the ordi-
nary axes.

In[2]:= Show@bp, Frame -> TrueD

Out[2]=

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

60 Visualization and Graphics

This includes grid lines, which are shown in light gray.

In[3]:= Show@%, GridLines -> AutomaticD

Out[3]=

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

Axes->False draw no axes

Axes->True draw both x and y axes

Axes->9False,True= draw a y axis but no x axis

AxesOrigin->Automatic choose the crossing point for the axes automatically

AxesOrigin->9x,y= specify the crossing point

AxesStyle->style specify the style for axes

AxesStyle->8xstyle,ystyle< specify individual styles for axes

AxesLabel->None give no axis labels

AxesLabel->ylabel put a label on the y axis

AxesLabel->9xlabel,ylabel= put labels on both x and y axes

Options for axes.

This makes the axes cross at the point 85, 0<, and puts a label on each axis.

In[4]:= Show@bp, AxesOrigin -> 85, 0<, AxesLabel -> 8"x", "y"<D

Out[4]=

0 2 4 6 8 10
x

-0.2

0.2

0.4

y

Ticks->None draw no tick marks

Ticks->Automatic place tick marks automatically

Ticks->9xticks,yticks= tick mark specifications for each axis

Settings for the Ticks option.

Visualization and Graphics 61

With the default setting Ticks -> Automatic, Mathematica creates a certain number of major

and minor tick marks, and places them on axes at positions which yield the minimum number

of decimal digits in the tick labels. In some cases, however, you may want to specify the posi-

tions and properties of tick marks explicitly. You will need to do this, for example, if you want to

have tick marks at multiples of p, or if you want to put a nonlinear scale on an axis.

None draw no tick marks

Automatic place tick marks automatically

8x1,x2,…< draw tick marks at the specified positions

88x1,label1<,8x2,label2<,…< draw tick marks with the specified labels

88x1,label1,len1<,…< draw tick marks with the specified scaled lengths

88x1,label1,8plen1,mlen1<<,…< draw tick marks with the specified lengths in the positive
and negative directions

88x1,label1,len1,style1<,…< draw tick marks with the specified styles

func a function to be applied to xmin, xmax to get the tick mark
option

Tick mark options for each axis.

This gives tick marks at specified positions on the x axis, and chooses the tick marks automati-
cally on the y axis.

In[5]:= Show@bp, Ticks -> 880, Pi, 2 Pi, 3 Pi<, Automatic<D

Out[5]=

p 2 p 3 p

-0.2

0.2

0.4

This adds tick marks with no labels at multiples of p ê2.

In[6]:= Show@bp,
Ticks -> 880, 8Pi ê 2, ""<, Pi, 83 Pi ê 2, ""<, 2 Pi, 85 Pi ê 2, ""<, 3 Pi<, Automatic<D

Out[6]=

p 2 p 3 p

-0.2

0.2

0.4

62 Visualization and Graphics

Particularly when you want to create complicated tick mark specifications, it is often convenient

to define a "tick mark function" which creates the appropriate tick mark specification given the

minimum and maximum values on a particular axis.

This defines a function which gives a list of tick mark positions with a spacing of 1.

In[7]:= units@xmin_, xmax_D := Range@Floor@xminD, Floor@xmaxD, 1D

This uses the units function to specify tick marks for the x axis.

In[8]:= Show@bp, Ticks -> 8units, Automatic<D

Out[8]=

1 2 3 4 5 6 7 8 9 10

-0.2

0.2

0.4

Frame->False draw no frame

Frame->True draw a frame around the plot

FrameStyle->style specify a style for the frame

FrameStyle->
88left,right<,8bottom,top<<

specify styles for each edge of the frame

FrameLabel->None give no frame labels

FrameLabel->
88left,right<,8bottom,top<<

put labels on edges of the frame

RotateLabel->False do not rotate text in labels

FrameTicks->None draw no tick marks on frame edges

FrameTicks->Automatic position tick marks automatically

FrameTicks->
88left,right<,8bottom,top<<

specify tick marks for frame edges

Options for frame axes.

The Axes option allows you to draw a single pair of axes in a plot. Sometimes, however, you

may instead want to show the scales for a plot on a frame, typically drawn around the whole

plot. The option Frame allows you effectively to draw four axes, corresponding to the four edges

of the frame around a plot.

Visualization and Graphics 63

This draws frame axes, and labels each of them.

In[9]:= Show@bp, Frame -> True,
FrameLabel -> 88"left label", "right label"<, 8"bottom label", "top label"<<D

Out[9]=

0 2 4 6 8 10

-0.2

0.0

0.2

0.4

bottom label

le
ft
la
be
l

top label

rig
ht
la
be
l

GridLines->None draw no grid lines

GridLines->Automatic position grid lines automatically

GridLines->9xgrid,ygrid= specify grid lines in analogy with tick marks

Options for grid lines.

Grid lines in Mathematica work very much like tick marks. As with tick marks, you can specify

explicit positions for grid lines. There is no label or length to specify for grid lines. However, you

can specify a style.

This generates x but not y grid lines.

In[10]:= Show@bp, GridLines -> 8Automatic, None<D

Out[10]=

2 4 6 8 10

-0.2

0.2

0.4

Insetting Objects in Graphics

"Redrawing and Combining Plots" describes how you can make regular arrays of plots using

GraphicsGrid. Using the Inset graphics primitive, however, you can combine and superim-

pose plots in any way.

64 Visualization and Graphics

Inset@obj, posD specifies that the inset should be placed at position pos in
the graphic

Inset@obj,pos, opos, sizeD render an object with a given size so that point opos in obj is
positioned at point pos in the containing graphic

Inset@obj,pos, opos, size, dirsD specifies that the axes of the inset should be oriented in
directions dirs

Creating an inset.

Here is a plot.

In[1]:= p1 = Plot@8Sin@xD, Sin@2 xD<, 8x, 0, 2 p<,
ImageSize Ø 200, Frame Ø True, Background Ø LightYellowD

Out[1]=

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

This creates a plot within a parametric plot.

In[2]:= ParametricPlot@8Sin@xD, Sin@2 xD<, 8x, 0, 4 p<, Epilog Ø Inset@p1, 8.3, -.5<DD

Out[2]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Here is a three-dimensional plot.

In[3]:= p3 = Plot3D@Sin@xD Exp@yD, 8x, -5, 5<, 8y, -2, 2<D

Out[3]=

Visualization and Graphics 65

This creates a two-dimensional graphics object that contains two differently sized copies of the
three-dimensional plot.

In[4]:= Graphics@8Inset@p3, -81, 1<, Center, 82, 2<D,
Inset@p3, 8.5, .5<, Center, 83, 3<D<, PlotRange Ø 2D

Out[4]=

Here are rotated and skewed plots inset in a graphic.

In[5]:= Graphics@8
Inset@p1, 81, 0<, Center, 81, 1<, 81, 1<D,
Inset@p1, 82, 0<, Center, 81, 1<, 881, 0<, 81, 1<<D

<D

Out[5]=

0
1
2
3
4
5
6

-1
.0-0

.5
0.0

0.5
1.0

0 1 2 3 4 5 6
-1.0

-0.5
0.0
0.5
1.0

Mathematica can render plots, arbitrary 2D or 3D graphics, cells, and text within an Inset.

Notice that in general the display area for graphics objects will be sized so as to touch at least

one pair of edges of the Inset.

66 Visualization and Graphics

Density and Contour Plots

DensityPlot@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a density plot of f

ContourPlot@ f,8x,xmin,xmax<,8y,ymin,ymax<D

make a contour plot of f as a function of x and y

Density and contour plots.

This gives a density plot of sinHxL sinHyL. Lighter regions show higher values of the function.

In[1]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<D

Out[1]=

option name default value
ColorFunction Automatic what colors to use for shading; Hue uses a

sequence of hues
Mesh None whether to draw a mesh
PlotPoints Automatic number of initial sample points in each

direction
MaxRecursion Automatic the maximum number of recursive subdivi -

sion steps to do

Some options for DensityPlot .

Visualization and Graphics 67

You can include a mesh like this.

In[2]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø 19D

Out[2]=

In a density plot, the color of each point represents the value at that point of the function being

plotted. By default, the color ranges from black to white through intermediate shades of blue as

the value of the function increases. In general, however, you can specify other “color maps” for

the relation between the value at a point and its color. The option ColorFunction allows you to

specify a function which is applied to the function value to find the color at any point. The color

function may return any Mathematica color directive, such as GrayLevel, Hue or RGBColor. A

common setting to use is ColorFunction -> Hue.

This uses different hues to represent different values.

In[3]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, ColorFunction Ø HueD

Out[3]=

A significant resource for customized color functions is the ColorData function. ColorData

provides many customized sets of colors which can be used directly by ColorFunction.

68 Visualization and Graphics

This shows a list of the gradients which can be accessed using ColorData.

In[4]:= ColorData@"Gradients"D

Out[4]= 8DarkRainbow, Rainbow, Pastel, Aquamarine, BrassTones, BrownCyanTones, CherryTones, CoffeeTones,
FuchsiaTones, GrayTones, GrayYellowTones, GreenPinkTones, PigeonTones, RedBlueTones,
RustTones, SiennaTones, ValentineTones, AlpineColors, ArmyColors, AtlanticColors,
AuroraColors, AvocadoColors, BeachColors, CandyColors, CMYKColors, DeepSeaColors, FallColors,
FruitPunchColors, IslandColors, LakeColors, MintColors, NeonColors, PearlColors, PlumColors,
RoseColors, SolarColors, SouthwestColors, StarryNightColors, SunsetColors, ThermometerColors,
WatermelonColors, RedGreenSplit, DarkTerrain, GreenBrownTerrain, LightTerrain,
SandyTerrain, BlueGreenYellow, LightTemperatureMap, TemperatureMap, BrightBands, DarkBands<

This DensityPlot is identical to the one above, but uses the "SolarColors" gradient.

In[5]:= DensityPlot@Sin@xD Sin@yD, 8x, -2, 2<,
8y, -2, 2<, ColorFunction Ø ColorData@"SolarColors"DD

Out[5]=

This gives a contour plot of the function.

In[6]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<D

Out[6]=

Visualization and Graphics 69

A contour plot gives you essentially a “topographic map” of a function. The contours join points

on the surface that have the same height. The default is to have contours corresponding to a

sequence of equally spaced z values. Contour plots produced by Mathematica are by default

shaded, in such a way that regions with higher z values are lighter.

option name default value

ColorFunction Automatic what colors to use for shading; Hue uses a
sequence of hues

Contours Automatic the total number of contours, or the list of
z values for contours

PlotRange 9Full,Full,Automatic= the range of values to be included; you can
specify 8zmin, zmax<, All or Automatic, or
a list 8xrange, yrange, zrange<

ContourShading Automatic how to shade the regions; None leaves the
regions blank, or a list of colors can be
provided

PlotPoints Automatic number of initial sample points in each
direction

MaxRecursion Automatic the maximum number of recursive subdivi -
sion steps to do

Some options for ContourPlot .

This shows the plot with no shading.

In[7]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<, 8y, -2, 2<, ContourShading Ø NoneD

Out[7]=

70 Visualization and Graphics

This cycles the colors used for contour regions between light red and light purple.

In[8]:= ContourPlot@Sin@xD Sin@yD, 8x, -2, 2<,
8y, -2, 2<, ContourShading Ø 8LightRed, LightPurple<D

Out[8]=

Both DensityPlot and ContourPlot use an adaptive algorithm that subdivides parts of the plot

region to obtain more sample points for a smoother representation of the function you are

plotting. Because the number of sample points is always finite, however, it is possible that

features of your function will sometimes be missed. When necessary, you can increase the

number of sample points by increasing the values of the PlotPoints and MaxRecursion

options.

One point to notice is that whereas a curve generated by Plot may be inaccurate if your func-

tion varies too quickly in a particular region, the shape of contours generated by ContourPlot

can be inaccurate if your function varies too slowly. A rapidly varying function gives a regular

pattern of contours, but a function that is almost flat can give irregular contours. You can

typically overcome this by increasing the value of PlotPoints or MaxRecursion.

Three-Dimensional Graphics Primitives

One of the most powerful aspects of graphics in Mathematica is the availability of three-dimen-

sional as well as two-dimensional graphics primitives. By combining three-dimensional graphics

primitives, you can represent and render three-dimensional objects in Mathematica.

Visualization and Graphics 71

Point@8x,y,z<D point with coordinates x, y, z

Line@88x1,y1,z1<,8x2,y2,z2<,…<D line through the points 8x1, y1, z1<, 8x2, y2, z2<, …
Polygon@88x1,y1,z1<,8x2,y2,z2<,…<D

filled polygon with the specified list of corners

Cuboid@8xmin,ymin,zmin<,8xmax,ymax,zmax<D

cuboid

Text@expr,8x,y,z<D text at position 8x, y, z< (see "Graphics Primitives for
Text")

Three-dimensional graphics elements.

Every time you evaluate rcoord, it generates a random coordinate in three dimensions.

In[1]:= rcoord := RandomReal@1., 83<D

This generates a list of 20 random points in three-dimensional space.

In[2]:= pts = Table@Point@rcoordD, 820<D;

Here is a plot of the points.

In[3]:= Graphics3D@ptsD

Out[3]=

This gives a plot showing a line through 10 random points in three dimensions.

In[4]:= Graphics3D@Line@Table@rcoord, 810<DDD

Out[4]=

72 Visualization and Graphics

If you give a list of graphics elements in two dimensions, Mathematica simply draws each

element in turn, with later elements obscuring earlier ones. In three dimensions, however,

Mathematica collects together all the graphics elements you specify, then displays them as

three-dimensional objects, with the ones in front in three-dimensional space obscuring those

behind.

Every time you evaluate rantri, it generates a random triangle in three-dimensional space.

In[5]:= rantri := Polygon@Table@rcoord, 83<DD

This draws a single random triangle.

In[6]:= Graphics3D@rantriD

Out[6]=

This draws a collection of 5 random triangles. The triangles in front obscure those behind.

In[7]:= Graphics3D@Table@rantri, 85<DD

Out[7]=

By creating an appropriate list of polygons, you can build up any three-dimensional object in

Mathematica. Thus, for example, all the surfaces produced by ParametricPlot3D are repre-

sented essentially as lists of polygons.

Point@8pt1,pt2,…<D a multipoint consisting of points at pt1, pt2, …

Line@8line1,line2,…<D a multiline consisting of lines line1, line2, …
Polygon@8poly1,poly2,…<D a multipolygon consisting of polygons poly1, poly2, …

Primitives which can take multiple elements.

Visualization and Graphics 73

As with the two-dimensional primitives, some three-dimensional graphics primitives have multi-

coordinate forms which are a more efficient representation. When dealing with a very large

number of primitives, using these multi-coordinate forms where possible can both reduce the

memory footprint of the resulting graphic and make it render much more quickly.

74 Visualization and Graphics

rantricoords defines merely the coordinates of a random triangle.

In[8]:= rantricoords := Table@rcoord, 83<D

Using the multi-coordinate form of Polygon, this efficiently represents a very large number of
triangles.

In[9]:= Graphics3D@Polygon@Table@rantricoords, 810000<DDD

Out[9]=

Mathematica allows polygons in three dimensions to have any number of vertices in any configu-

ration. Depending upon the locations of the vertices, the resulting polygons may be non-copla-

nar or nonconvex. When rendering non-coplanar polygons, Mathematica will break the polygon

into triangles, which are planar by definition, before rendering it.

The non-coplanar polygon is broken up into triangles. The interior edge joining the triangles is
not outlined like the outer edges of the Polygon primitive.

In[10]:= Graphics3D@8Polygon@880, 0, 0<, 80, 0, 1<, 81, 1, 0<, 81, 0, 1<<D<D

Out[10]=

