
Wolfram Mathematica ® Tutorial Collection

NOTEBOOKS AND DOCUMENTS

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software
unless pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an
infringement of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of which
are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet your
requirements or that the operation of the Software will be uninterrupted or error free. As such, Wolfram
does not recommend the use of the software described in this document for applications in which errors
or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Notebook Interface
Notebook Interfaces . 1

Doing Computations in Notebooks . 4

Notebooks as Documents . 7

Working with Cells . 12

The Option Inspector . 21

Notebook History Dialog . 23

Input and Output in Notebooks
Entering Greek Letters . 28

Entering Two-Dimensional Input . 30

Editing and Evaluating Two-Dimensional Expressions . 36

Entering Formulas . 38

Entering Tables and Matrices . 43

Subscripts, Bars and Other Modifiers . 45

Non-English Characters and Keyboards . 47

Other Mathematical Notation . 48

Forms of Input and Output . 50

Mixing Text and Formulas . 53

Displaying and Printing Mathematica Notebooks . 54

Setting Up Hyperlinks . 55

Automatic Numbering . 56

Exposition in Mathematica Notebooks . 57

Named Characters . 58

Textual Input and Output
How Input and Output Work . 61

The Representation of Textual Forms . 62

The Interpretation of Textual Forms . 64

Short and Shallow Output . 67

String-Oriented Output Formats . 70

Output Formats for Numbers . 74

Tables and Matrices . 79

Styles and Fonts in Output . 91

Representing Textual Forms by Boxes . 92

String Representation of Boxes . 97

Converting between Strings, Boxes and Expressions . 102
The Syntax of the Mathematica Language . 106

The Syntax of the Mathematica Language . 106
Operators without Built-in Meanings . 111
Defining Output Formats . 114
Low-Level Input and Output Rules . 116
Generating Unstructured Output . 118
Formatted Output . 121
Requesting Input . 135
Messages . 136
International Messages . 141
Documentation Constructs . 142

Manipulating Notebooks
Cells as Mathematica Expressions . 145
Notebooks as Mathematica Expressions . 148
Manipulating Notebooks from the Kernel . 152
Manipulating the Front End from the Kernel . 166
Front End Tokens . 167
Executing Notebook Commands Directly in the Front End . 169
The Structure of Cells . 170
Styles and the Inheritance of Option Settings . 171
Options for Cells . 175
Text and Font Options . 181
Options for Expression Input and Output . 186
Options for Notebooks . 189
Global Options for the Front End . 193

Mathematical and Other Notation
Mathematical Notation in Notebooks . 194
Special Characters . 199
Names of Symbols and Mathematical Objects . 206
Letters and Letter-like Forms . 209
Operators . 220
Structural Elements and Keyboard Characters . 229

Notebook Interface

Using a Notebook Interface

If you use your computer via a purely graphical interface, you will typically double-click the

Mathematica icon to start Mathematica. If you use your computer via a textually based operat-

ing system, you will typically type the command mathematica to start Mathematica.

use an icon or the Start menu graphical ways to start Mathematica

mathematica the shell command to start Mathematica

text ending with Shift+Return input for Mathematica (Shift+Return on some keyboards)

choose the Exit menu item exiting Mathematica (Quit on some systems)

Running Mathematica with a notebook interface.

In a "notebook" interface, you interact with Mathematica by creating interactive documents.

The notebook front end includes many menus and graphical tools for creating and reading

notebook documents and for sending and receiving material from the Mathematica kernel.

A notebook mixing text, graphics and Mathematica input and output.

When Mathematica is first started, it displays an empty notebook with a blinking cursor. You

can start typing right away. Mathematica by default will interpret your text as input. You enter

Mathematica input into the notebook, then type Shift+Return to make Mathematica process

your input. (To type Shift+Return, hold down the Shift key, then press Return.) You can use

the standard editing features of your graphical interface to prepare your input, which may go

on for several lines. Shift+Return tells Mathematica that you have finished your input. If your

keyboard has a numeric keypad, you can use its Enter key instead of Shift+Return.

2 Notebooks and Documents

After you send Mathematica input from your notebook, Mathematica will label your input with

In[n]:=. It labels the corresponding output Out[n]=. Labels are added automatically.

You type 2 + 2, then end your input with Shift+Return. Mathematica processes the input, then
adds the input label In[1]:=, and gives the output.

The output is placed below the input. By default, input/output pairs are grouped using rectangu-

lar cell brackets displayed in the right margin.

In Mathematica documentation, "dialogs" with Mathematica are shown in the following way:

With a notebook interface, you just type in 2 + 2. Mathematica then adds the label In[1]:=,
and prints the result.

In[1]:= 2 + 2

Out[1]= 4

You should realize that notebooks are part of the "front end" to Mathematica. The Mathematica

kernel which actually performs computations may be run either on the same computer as the

front end, or on another computer connected via a network. Sometimes, the kernel is not even

started until you actually do a calculation with Mathematica.

The built-in Mathematica Documentation Center (Help  Documentation Center), where you

might be reading this documentation, is itself an example of a Mathematica notebook. You can

evaluate and modify examples in place, or type your own examples.

In addition to the standard textual input, Mathematica supports the use of generalized, non-

textual input such as graphics and user interface controls, freely mixed with textual input.

To exit Mathematica, you typically choose the Exit menu item in the notebook interface.

Notebooks and Documents 3

Doing Computations in Notebooks

A typical Mathematica notebook containing text, graphics and Mathematica expressions. The
brackets on the right indicate the extent of each cell.

Mathematica notebooks are structured interactive documents that are organized into a

sequence of cells. Each cell may contain text, graphics, sounds or Mathematica expressions in

any combination. When a notebook is displayed on the screen, the extent of each cell is indi-

cated by a bracket on the right.

The notebook front end for Mathematica provides many ways to enter and edit the material in a

notebook. Some of these ways will be standard to whatever computer system or graphical

interface you are using. Others are specific to Mathematica.

Shift +Return send a cell of input to the Mathematica kernel

Doing a computation in a Mathematica notebook.

Once you have prepared the material in a cell, you can send it as input to the Mathematica

kernel simply by pressing Shift+Return. The kernel will send back whatever output is gener-

ated, and the front end will create new cells in your notebook to display this output. Note that if

you have a numeric keypad on your keyboard, then you can use its Enter key as an alternative

to Shift+Return.

4 Notebooks and Documents

Once you have prepared the material in a cell, you can send it as input to the Mathematica

kernel simply by pressing Shift+Return. The kernel will send back whatever output is gener-

ated, and the front end will create new cells in your notebook to display this output. Note that if

you have a numeric keypad on your keyboard, then you can use its Enter key as an alternative

to Shift+Return.

Here is a cell ready to be sent as input to the Mathematica kernel.

The output from the computation is inserted in a new cell.

Most kinds of output that you get in Mathematica notebooks can readily be edited, just like

input. Usually Mathematica will convert the output cell into an input cell when you first start

editing it.

Once you have done the editing you want, you can typically just press Shift+Return to send

what you have created as input to the Mathematica kernel.

Here is a typical computation in a Mathematica notebook.

If you start editing the output cell, Mathematica will automatically change it to an input cell.

After you have edited the output, you can send it back as further input to the Mathematica
kernel.

Notebooks and Documents 5

After you have edited the output, you can send it back as further input to the Mathematica
kernel.

When you do computations in a Mathematica notebook, each line of input is typically labeled

with In@nD :=, while each line of output is labeled with the corresponding Out@nD =.

There is no reason, however, that successive lines of input and output should necessarily

appear one after the other in your notebook. Often, for example, you will want to go back to an

earlier part of your notebook, and reevaluate some input you gave before.

It is important to realize that in most cases wherever a particular expression appears in your

notebook, it is the line number given in In@nD := or Out@nD = which determines when the expres-

sion was processed by the Mathematica kernel. Thus, for example, the fact that one expression

may appear earlier than another in your notebook does not mean that it will have been evalu-

ated first by the kernel. This will only be the case if it has a lower line number.

Each line of input and output is given a label when it is evaluated by the kernel. It is these
labels, not the position of the expression in the notebook, that indicate the ordering of evalua-
tion by the kernel.

The exception to this rule is when an output contains the formatted results of a Dynamic or

Manipulate function. Such outputs will reevaluate in the kernel on an as-needed basis long

after the evaluation which initially created them. See "Dynamic Interactivity Language" for

more information on this functionality.

6 Notebooks and Documents

The exception to this rule is when an output contains the formatted results of a Dynamic or

Manipulate function. Such outputs will reevaluate in the kernel on an as-needed basis long

after the evaluation which initially created them. See "Dynamic Interactivity Language" for

more information on this functionality.

As you type, Mathematica applies syntax coloring to your input using its knowledge of the

structure of functions. The coloring highlights unmatched brackets and quotes, undefined global

symbols, local variables in functions and various programming errors. You can ask why Mathe-

matica colored your input by selecting it and using the Why the Coloring? item in the Help

menu.

If you make a mistake and try to enter input that the Mathematica kernel does not understand,

then the front end will produce a beep and emphasize any syntax errors in the input with color.

In general, you will get a beep whenever something goes wrong in the front end. You can find

out the origin of the beep using the Why the Beep? item in the Help menu.

Notebooks as Documents

Mathematica notebooks allow you to create documents that can be viewed interactively on

screen or printed on paper.

Particularly in larger notebooks, it is common to have chapters, sections and so on, each repre-

sented by groups of cells. The extent of these groups is indicated by a bracket on the right.

Notebooks and Documents 7

The grouping of cells in a notebook is indicated by nested brackets on the right.

A group of cells can be either open or closed. When it is open, you can see all the cells in it

explicitly. But when it is closed, you see only the cell around which the group is closed. Cell

groups are typically closed around the first or heading cell in the group, but you can close a

group around any cell in that group.

Large notebooks are often distributed with many closed groups of cells, so that when you first

look at the notebook, you see just an outline of its contents. You can then open parts you are

interested in by double-clicking the appropriate brackets.

8 Notebooks and Documents

Double-clicking the bracket that spans a group of cells closes the group, leaving only the first
cell visible.

When a group is closed, the bracket for it has an arrow at the bottom. Double-clicking this
arrow opens the group again.

Double-clicking the bracket of a cell that is not the first of a cell group closes the cell group
around that cell and creates a bracket with up and down arrows (or only an up arrow if the cell
was the last in the group).

Notebooks and Documents 9

Double-clicking the bracket of a cell that is not the first of a cell group closes the cell group
around that cell and creates a bracket with up and down arrows (or only an up arrow if the cell
was the last in the group).

Each cell within a notebook is assigned a particular style which indicates its role within the

notebook. Thus, for example, material intended as input to be executed by the Mathematica

kernel is typically in Input style, while text that is intended purely to be read is typically in

Text style.

The Mathematica front end provides menus and keyboard shortcuts for creating cells with

different styles, and for changing styles of existing cells.

10 Notebooks and Documents

This shows cells in various styles. The styles define not only the format of the cell contents, but
also their placement and spacing.

By putting a cell in a particular style, you specify a whole collection of properties for the cell,

including for example how large and in what font text should be given.

The Mathematica front end allows you to modify such properties, either for complete cells, or

for specific material within cells.

Even within a cell of a particular style, the Mathematica front end allows a wide range of proper-
ties to be modified separately.

Ordinary Mathematica notebooks can be read by non-Mathematica users using the free product,

Mathematica Player, which allows viewing and printing, but does not allow computations of any

kind to be performed. This product also supports notebook player files (.nbp), which have been

specially prepared by Wolfram Research to allow interaction with dynamic content such as the

output of Manipulate. For example, all the notebook content on The Wolfram Demonstrations

Project site is available as notebook player files.

Notebooks and Documents 11

Ordinary Mathematica notebooks can be read by non-Mathematica users using the free product,

Mathematica Player, which allows viewing and printing, but does not allow computations of any

kind to be performed. This product also supports notebook player files (.nbp), which have been

specially prepared by Wolfram Research to allow interaction with dynamic content such as the

output of Manipulate. For example, all the notebook content on The Wolfram Demonstrations

Project site is available as notebook player files.

Mathematica front end creating and editing Mathematica notebooks

Mathematica kernel doing computations in notebooks

Mathematica Player reading Mathematica notebooks and running
Demonstrations

Programs required for different kinds of operations with notebooks.

Working with Cells

Mathematica notebooks consist of sequences of cells. The hierarchy of cells serves as a struc-

ture for organizing the information in a notebook, as well as specifying the overall look of the

notebook.

Font, color, spacing, and other properties of the appearance of cells are controlled using

stylesheets. The various kinds of cells associated with a notebook's stylesheet are listed in

Format  Style. Mathematica comes with a collection of color and black-and-white stylesheets,

which are listed in the Format  Stylesheet menu.

In a New Session:

When Mathematica is first started, it displays an empty notebook with a blinking cursor. You

can start typing right away.

The insertion point is indicated by the cell insertion bar, a solid gray line with a small black

cursor running horizontally across the notebook. The cell insertion bar is the place where new

cells will be created, either as you type or programmatically. To set the position of the insertion

bar, click in the notebook.

12 Notebooks and Documents

The insertion point is indicated by the cell insertion bar, a solid gray line with a small black

cursor running horizontally across the notebook. The cell insertion bar is the place where new

cells will be created, either as you type or programmatically. To set the position of the insertion

bar, click in the notebook.

To Create a New Cell:

Move the pointer in the notebook window until it becomes a horizontal I-beam.

Click, and a cell insertion bar will appear; start typing. By default, new cells are Mathematica

input cells.

Notebooks and Documents 13

To Create a New Cell to Hold Ordinary Text:

Click in the notebook to get a cell insertion bar. Choose Format  Style  Text or use the

keyboard shortcut Cmd+7.

When you start typing, a text cell bracket appears.

To Change the Style of a Cell:

Click the cell bracket. The bracket is highlighted.

Select a style from Format  Style. The cell will immediately reflect the change.

14 Notebooks and Documents

Alternatively, you can simultaneously press Cmd with one of the numbered keys, 0 through 9,

to select a style.

Choose Window  Show Toolbar to get a toolbar at the top of the notebook.

Choose Window  Show Ruler to get a ruler at the top of the notebook.

Notebooks and Documents 15

To Close a Group of Cells:

Double-click the outermost cell bracket of the group.

16 Notebooks and Documents

When a group is closed, only the first cell in the group is displayed by default. The group

bracket is shown with a triangular flag at the bottom.

Notebooks and Documents 17

To specify which cells remain visible when the cell group is closed, select those cells and double-

click to close the group. The closed group bracket is shown with triangular flags at the top and

bottom if the visible cells are within a cell group, or with a triangular flag at the top if they are

at the end of a cell group.

18 Notebooks and Documents

To Open a Group of Cells:

Double-click a closed group’s cell bracket.

To Print a Notebook:

Choose File  Print. The notebook style will be automatically optimized for printing.

To Change the Overall Look of a Notebook:

Notebooks and Documents 19

Choose Format  Stylesheet. Select a stylesheet from the menu. All cells in the notebook will

change appearance, based on the definitions in the new stylesheet.

Use Format  Edit Stylesheet to customize stylesheets for Mathematica notebooks.

Changes to a notebook that only involve opening or closing cell groups will not cause the front

end to ask you if you want to save such changes when you close the notebook before saving.

To save these changes, use File  Save before you close the notebook or quit Mathematica.

To close a notebook, click the Close button in the title bar. You will be prompted to save any

unsaved changes.

On Windows, to close notebooks without being prompted to save, hold down the Shift key when

clicking the Close box.

The Option Inspector

20 Notebooks and Documents

The Option Inspector

Introduction

Many aspects of the Mathematica front end, such as the styles of cells, the appearance of

notebooks, or the parameters used in typesetting, are controlled by options. For example, text

attributes such as size, font, and color each correspond to a separate option. You can set

options by directly editing the expression for a cell or notebook. But in most cases it is simpler

to use the Option Inspector.

The Option Inspector is a special tool for viewing and modifying option settings. It provides a

comprehensive listing of all front end options, grouped according to their function. You can

specify not only the setting for an option, but also the level at which it will take effect: globally,

for an entire notebook, or for a selection.

To use the Option Inspector, choose Format  Option Inspector. This brings up a dialog box

with two popup menus on top. The popup menu on the left specifies the level at which options

will take effect. The popup menu on the right allows you to choose if you want the options listed

by category, alphabetically, or as text.

Inheritance of Options

The Option Inspector allows you to set the value of an option on three different levels. In increas-

ing order of precedence, the levels are as follows.

Global Preferences - settings for the entire application

Selected Notebook - settings for an entire notebook

Selection - settings for the current selection, e.g. for a group of cells, a single cell, or text

within a cell

Notebooks and Documents 21

The levels lower in the hierarchy inherit their options from the level immediately above them.

For example, if a notebook has the option Editable set to True, by default all cells in the

notebook will be editable.

You can, however, override the inherited value of an option by explicitly changing its value. For

example, if you do not want a particular cell in your notebook to be editable, you can select the

cell and set Editable to False. This inheritance property of options provides you with a great

deal of control over the behavior of the front end, since you can set any option to have different

values at each level, as required.

Note: At each level, only the options that can be set at that level are listed in the Option Inspec-

tor. All other options appear dimmed, indicating that they cannot be changed unless you go to

a higher or lower level.

Searching for an Option

To search for a specific option, begin typing its name in the text field. The Option Inspector

goes to the first matching option. Press Enter to go to the next matching item on the list. (On

Macintosh, the Option Inspector displays all matching options at once).

Each line in the list of options gives the option name followed by its current value. You can

change the option's value by choosing from the popup menu next to the option setting, or by

selecting the option and clicking the value, typing over it, and pressing Enter.

When you start Mathematica for the first time, the values of all the options are set to their

default values. Each time you modify one of the options, a symbol appears next to it, indicating

that the value has been changed. Clicking the symbol resets the option to its default value.

22 Notebooks and Documents

Setting Options: An Example

Suppose you want to draw a frame around a cell. The option that controls this property of a cell

is called CellFrame.

To Draw a Frame around a Cell:

1. Select the cell by clicking the cell bracket.

2. Choose Format  Option Inspector to open the Option Inspector window.

3. Choose Selection from the first popup menu.

4. Click Cell Options  Display Options. This gives a list of all options that control how a
cell is displayed in the notebook.

5. Type True into the value field next to the option CellFrame. An icon appears next to the
option, indicating that its value has been changed. The cell that you selected now has a
frame drawn around it.

Alternatively, you can begin typing "cellframe" in the text field. This leads you directly to the

CellFrame option without having to search by category. This feature provides a useful way to

locate an option if you are unsure of the category it belongs in.

Notebook History Dialog

This dialog displays information regarding the editing times of the input notebook. This is a

"live" dialog that dynamically updates as changes are made to the notebook. It can be accessed

through Cell  Notebook History.

Notebooks and Documents 23

The time information is saved in each cell of the notebook, in the form of a list of numbers

and/or pairs of numbers.

Cell[
BoxData["123"], "Input",
 CellChangeTimes->{{3363263352.09502, 3363263354.03695}, 3363263406.22268,
3363263441.939}
]

Each number represents the exact time of an edit, in absolute time units. A list of pairs indi-

cates multiple edits that have occurred during this interval.

Consecutive edits are recorded as an interval if they happen within a set time period. This

period is determined by CellChangeTimesMergeInterval, which can be set through the Option

Inspector or the Advanced section of the Preferences dialog. The default is 30 seconds.

The notebook history tracking feature can be turned off at the global level by using the Prefer-

ences dialog or by setting TrackCellChangeTimes to False.

24 Notebooks and Documents

Features

Controls

Notebook Chooser Popup Menu

This popup menu allows users to choose from all current open notebooks. The chosen notebook

will be brought to the front, making it the new input notebook.

Track History Checkbox

This checkbox enables or disables the notebook history tracking feature for the input notebook.

All/Selected Cells Radio Buttons

These radio buttons allow the graphics display to show information associated only with the

selected cells or all cells in the input notebook.

Clear History Button

This button will clear the stored edit time information from all currently displayed cells. This

operation cannot be undone.

Copy Buttons

The Copy Raw Data button will copy the raw data (in the form of a list of numbers and/or

pairs of numbers) from currently displayed cells to the clipboard.

The Copy Image button will copy the currently displayed graphics to the clipboard. All dynamic

features, except tooltips, are stripped from the copied graphics. This includes the zooming

features.

Notebooks and Documents 25

Graphics

The graphics display plots cells versus time. Each cell in the notebook corresponds to each row

on the y axis. The corresponding edit times are plotted as points, while edit intervals are repre-

sented by lines.

Mouse Events

As you mouse over the graphics, the mouse tooltip may provide some useful details for the

following elements:

† Each row on the y axis will display the corresponding cell's contents.

† Points will display the exact time of the edit (which corresponds to the computer clock at
the time of edit).

† Lines will display the length of the edit interval (this value may be greater than the
CellChangeTimesMergeInterval value).

Clicking a highlighted row will select the corresponding cell in the input notebook if and only if

the selection-only checkbox is unchecked.

26 Notebooks and Documents

Zooming

The graphics display comes with a couple of zooming features for the time axis:

† The blue triangles at the bottom can be dragged to change the plotted time interval. Use
the middle diamond to pan the graphics using the same time interval.

† Clicking any time label blocks will zoom into that interval of time. With this feature, users
can actually zoom down to the last second (which may be out of range with the previous
zoom feature).

† Clicking the shaded area will undo the last zoom action. Click outside the shaded area to
revert to showing the entire time interval.

Summary

The summary is a concise, overall display of relevant cell information. This display also respects

the setting of the selection-only checkbox.

Notebooks and Documents 27

Input and Output in Notebooks

Entering Greek Letters

click on a use a button in a palette

\[Alpha] use a full name

Esc aEsc or Esc alphaEsc use a standard alias (shown below as EscaEsc)

Esc \alpha Esc use a TEX alias

Esc & alpha;Esc use an HTML alias

Ways to enter Greek letters in a notebook.

Here is a palette for entering common Greek letters.

You can use Greek letters just like the ordinary letters that you type on your keyboard.

In[1]:= Expand@Ha + bL^3D

Out[1]= a3 + 3 a2 b + 3 a b2 + b3

28 Notebooks and Documents

There are several ways to enter Greek letters. This input uses full names.

In[2]:= Expand@Ha + bL^3D

Out[2]= a3 + 3 a2 b + 3 a b2 + b3

Esc ThetaEsc

Esc

Esc

Esc

Esc PhiEsc

Esc ChiEsc

Esc PsiEsc

Esc OmegaEsc

Commonly used Greek letters. TeX aliases are not listed explicitly.

Notebooks and Documents 29

full name aliases

Α \[Alpha] Esc aEsc, Esc alphaEsc

Β \[Beta] Esc bEsc, Esc betaEsc

Γ \[Gamma] Esc gEsc, Esc gammaEsc

∆ \[Delta] Esc dEsc, Esc deltaEsc

Ε \[Epsilon] Esc eEsc, Esc epsilonEsc

Ζ \[Zeta] Esc zEsc, Esc zetaEsc

Η \[Eta] Esc hEsc, Esc etEsc, Esc etaEsc

Θ \[Theta] Esc qEsc, Esc thEsc, Esc thetaEsc

Κ \[Kappa] Esc kEsc, Esc kappaEsc

Λ \[Lambda] Esc lEsc, Esc lambdaEsc

Μ \[Mu] Esc mEsc, Esc muEsc

Ν \[Nu] Esc nEsc, Esc nuEsc

Ξ \[Xi] Esc xEsc, Esc xiEsc

Π \[Pi] Esc pEsc, Esc piEsc

Ρ \[Rho] Esc rEsc, Esc rhoEsc

Σ \[Sigma] Esc sEsc, Esc sigmaEsc

Τ \[Tau] Esc tEsc, Esc tauEsc

Φ \[Phi] Esc fEsc, Esc phEsc, Esc phiEsc

j \[CurlyPhi] Esc jEsc, Esc cphEsc, Esc cphiEsc

Χ \[Chi] Esc cEsc, Esc chEsc, Esc chiEsc

Ψ \[Psi] Esc yEsc, Esc psEsc, Esc psiEsc

Ω \[Omega] Esc oEsc, Esc wEsc, Esc omegaEsc

full name aliases

G \[CapitalGamma] Esc GEsc, Esc GammaEsc

D \[CapitalDelta] Esc DEsc, Esc DeltaEsc

Q \[CapitalTheta] Esc QEsc, Esc ThEsc, Esc ThetaEsc

L \[CapitalLambda] Esc LEsc, Esc LambdaEsc

P \[CapitalPi] Esc PEsc, Esc PiEsc

S \[CapitalSigma] Esc SEsc, Esc SigmaEsc

U \[CapitalUpsilon] Esc UEsc, Esc UpsilonEsc

F \[CapitalPhi] Esc FEsc, Esc PhEsc, Esc PhiEsc

C \[CapitalChi] Esc CEsc, Esc ChEsc, Esc ChiEsc

Y \[CapitalPsi] Esc YEsc, Esc PsEsc, Esc PsiEsc

W \[CapitalOmega] Esc OEsc, Esc WEsc, Esc OmegaEsc

Note that in Mathematica the letter p stands for Pi. None of the other Greek letters have spe-

cial meanings.

p stands for Pi.

In[3]:= N@pD

Out[3]= 3.14159

You can use Greek letters either on their own or with other letters.

In[4]:= Expand@HRab + XL^4D

Out[4]= Rab4 + 4 Rab3 X + 6 Rab2 X2 + 4 Rab X3 + X4

The symbol pa is not related to the symbol p.

In[5]:= Factor@pa^4 - 1D

Out[5]= H-1 + paL H1 + paL I1 + pa2M

Entering Two-Dimensional Input

When Mathematica reads the text x^y, it interprets it as x raised to the power y.

In[1]:= x^y

Out[1]= xy

In a notebook, you can also give the two-dimensional input xy directly. Mathematica again
interprets this as a power.

In[2]:= xy

Out[2]= xy

One way to enter a two-dimensional form such as xy into a Mathematica notebook is to paste

this form into the notebook by clicking the appropriate button in the palette.

30 Notebooks and Documents

Here is a palette for entering some common two-dimensional notations.

There are also several ways to enter two-dimensional forms directly from the keyboard.

x Ctrl+^ y Ctrl+Space use control keys that exist on most keyboards

x Ctrl+6 y Ctrl+Space use control keys that should exist on all keyboards

Ways to enter a superscript directly from the keyboard.

You type Ctrl+^ by holding down the Control key, then pressing the ^ key. As soon as you do

this, your cursor will jump to a superscript position. You can then type anything you want and it

will appear in that position.

Notebooks and Documents 31

When you have finished, press Ctrl+Space to move back down from the superscript position.

You type Ctrl+Space by holding down the Control key, then pressing the Space bar.

This sequence of keystrokes enters xy.

In[3]:= x Ctrl+^ y

Out[3]= xy

Here the whole expression y + z is in the superscript.

In[4]:= x Ctrl+^ y + z

Out[4]= xy+z

Pressing Ctrl+Space takes you down from the superscript.

In[5]:= x Ctrl+^ y Ctrl+Space + z

Out[5]= xy + z

You can remember the fact that Ctrl+^ gives you a superscript by thinking of Ctrl+^ as just a

more immediate form of ^. When you type x^y, Mathematica will leave this one-dimensional

form unchanged until you explicitly process it. But if you type x Ctrl+^ y then Mathematica will

immediately give you a superscript.

On a standard English-language keyboard, the character ^ appears as the shifted version of 6.

Mathematica therefore accepts Ctrl+6 as an alternative to Ctrl+^. Note that if you are using

something other than a standard English-language keyboard, Mathematica will almost always

accept Ctrl+6 but may not accept Ctrl+^.

x Ctrl+_ y Ctrl+Space use control keys that exist on most keyboards

x Ctrl+- y Ctrl+Space use control keys that should exist on all keyboards

Ways to enter a subscript directly from the keyboard.

32 Notebooks and Documents

Subscripts in Mathematica work very much like superscripts. However, whereas Mathematica

automatically interprets xy as x raised to the power y, it has no similar interpretation for xy.

Instead, it just treats xy as a purely symbolic object.

This enters y as a subscript.

In[6]:= x Ctrl+_ y
Out[6]= xy

Here is the usual one-dimensional Mathematica input that gives the same output expression.

In[7]:= Subscript@x, yD

Out[7]= xy

x Ctrl+/ y Ctrl+Space use control keys

How to enter a built-up fraction directly from the keyboard.

This enters the built-up fraction x
y
.

In[8]:= x Ctrl+/ y

Out[8]=
x

y

Here the whole y + z goes into the denominator.

In[9]:= x Ctrl+/ y + z

Out[9]=
x

y + z

But pressing Ctrl+Space takes you out of the denominator, so the +z does not appear in the
denominator.

In[10]:= x Ctrl+/ y Ctrl+Space + z

Out[10]=
x

y
+ z

Notebooks and Documents 33

Mathematica automatically interprets a built-up fraction as a division.

In[11]:=
8888

2222
Out[11]= 4

Ctrl+@ x Ctrl+Space use control keys that exist on most keyboards

Ctrl+2 x Ctrl+Space use control keys that should exist on all keyboards

Ways to enter a square root directly from the keyboard.

This enters a square root.

In[12]:= Ctrl+@ x + y

Out[12]= x + y

Ctrl+Space takes you out of the square root.

In[13]:= Ctrl+@ x Ctrl+Space + y

Out[13]= x + y

Here is the usual one-dimensional Mathematica input that gives the same output expression.

In[14]:= Sqrt@xD + y

Out[14]= x + y

Ctrl+^ or Ctrl+6 go to the superscript position

Ctrl+_ or Ctrl+- go to the subscript position

Ctrl+@ or Ctrl+2 go into a square root

Ctrl+% or Ctrl+5 go from subscript to superscript or vice versa, or to the
exponent position in a root

Ctrl+/ go to the denominator for a fraction

Ctrl+Space return from a special position

Special input forms based on control characters. The second forms given should work on any keyboard.

34 Notebooks and Documents

This puts both a subscript and a superscript on x.

In[15]:= x Ctrl+^ y Ctrl+% z

Out[15]= xz
y

Here is another way to enter the same expression.

In[16]:= x Ctrl+_ z Ctrl+% y

Out[16]= xz
y

The same procedure can be used to enter a definite integral.

In[17]:= Esc intEsc Ctrl+_ 0 Ctrl+% 1 Ctrl+Space f[x] Esc ddEsc x

Out[17]= ‡
0

1
f@xD „x

In addition to subscripts and superscripts, Mathematica also supports the notion of underscripts

and overscripts~elements that go directly underneath or above. Among other things, you can

use underscripts and overscripts to enter the limits of sums and products.

x Ctrl+Plus y Ctrl+Space or x Ctrl+= y Ctrl+Space

create an underscript x
y

x Ctrl+& y Ctrl+Space or x Ctrl+7 y Ctrl+Space

create an overscript x
y

Creating underscripts and overscripts.

Here is a way to enter a summation.

In[18]:= Esc sumEsc Ctrl+Plus x=0 Ctrl+% n Ctrl+Space f[x]

Out[18]= ‚

x=0

n

f@xD

Notebooks and Documents 35

Editing and Evaluating Two-Dimensional Expressions

When you see a two-dimensional expression on the screen, you can edit it much as you would

edit text. You can for example place your cursor somewhere and start typing. Or you can select

a part of the expression, then remove it using the Delete key, or insert a new version by typing

it in.

In addition to ordinary text editing features, there are some keys that you can use to move

around in two-dimensional expressions.

Ctrl+. select the next larger subexpression

Ctrl+Space move to the right of the current structure

Ø move to the next character

 move to the previous character

Ways to move around in two-dimensional expressions.

This shows the sequence of subexpressions selected by repeatedly typing Ctrl+..

36 Notebooks and Documents

Shift+Return evaluate the whole current cell

Shift+Ctrl+Enter (Windows/Unix/Linux) or Cmd+Return (Mac OS X)

evaluate only the selected subexpression

Ways to evaluate two-dimensional expressions.

In most computations, you will want to go from one step to the next by taking the whole expres-

sion that you have generated, and then evaluating it. But if for example you are trying to manip-

ulate a single formula to put it into a particular form, you may instead find it more convenient

to perform a sequence of operations separately on different parts of the expression.

You do this by selecting each part you want to operate on, then inserting the operation you

want to perform, then using Shift+Ctrl+Enter for Windows/Unix/Linux or Cmd+Return for Mac

OS X.

Here is an expression with one part selected.

Pressing Shift+Ctrl+Enter (Windows/Unix/Linux) or Cmd+Return (Mac OS X) evaluates the selected
part.

The Basic Commands  y=x tab in the Basic Math Assistant, Classroom Assistant, and

Writing Assistant palettes also provides a number of convenient operations which will trans-

form in place any selected subexpression.

Notebooks and Documents 37

Entering Formulas

character short form long form symbol

p Esc pEsc \[Pi] Pi

¶ Esc infEsc \[Infinity] Infinity

° Esc degEsc \[Degree] Degree

Special forms for some common symbols.

This is equivalent to Sin@60 DegreeD.

In[1]:= Sin@60 °D

Out[1]=
3

2

Here is the long form of the input.

In[2]:= Sin@60 °D

Out[2]=
3

2

You can enter the same input like this.

In[3]:= Sin[60 ÇdegÇ]

Out[3]=
3

2

Here the angle is in radians.

In[4]:= SinB
p

3
F

Out[4]=
3

2

38 Notebooks and Documents

special characters short form long form ordinary characters

x§y x Esc <=Esc y x \@LessEqualD y x <= y

x¥y x Esc >=Esc y x
\@GreaterEqualD
y

x >= y

x≠y x Esc !=Esc y x \@NotEqualD y x != y

xœy x Esc elEsc y x \@ElementD y Element@x,yD

xØy x Esc ->Esc y x \@RuleD y x -> y

Special forms for a few operators. "Operator Input Forms" gives a complete list.

Here the replacement rule is entered using two ordinary characters, as ->.

In[5]:= x ê Hx + 1L ê. x -> 3 + y

Out[5]=
3 + y

4 + y

This means exactly the same.

In[6]:= x ê Hx + 1L ê. x Ø 3 + y

Out[6]=
3 + y

4 + y

As does this.

In[7]:= x/(x+1) /. x Esc ->Esc 3 + y

Out[7]=
3 + y

4 + y

When you type the ordinary-character form for certain operators, the front end automatically

replaces them with the special-character form. For instance, when you type the last three

examples, the front end automatically substitutes the Ø character for ->.

The special arrow form Ø is by default also used for output.

In[8]:= Solve@x^2 == 1, xD

Out[8]= 88x Ø -1<, 8x Ø 1<<

Notebooks and Documents 39

special characters short form long form ordinary characters

x ¸ y x Esc divEsc y x \@DivideD y x ê y

x µ y x Esc *Esc y x \@TimesD y x * y

x ä y x Esc
crossEsc y

x \@CrossD y Cross@x,yD

x ã y x Esc ==Esc y x \@EqualD y x == y

x  y x Esc l =Esc y x \@LongEqualD y x == y

x Ï y x Esc &&Esc y x \@AndD y x && y

x Í y x Esc »»Esc y x \@OrD y x »» y

Ÿ x Esc !Esc x \@NotD x ! x

x fl y x Esc =>Esc y x \@ImpliesD y x => y

x ‹ y x Esc unEsc y x \@UnionD y Union@x,yD

x › y x Esc
interEsc y

x \@IntersectionD y Intersection@x,yD

xy x Esc ,Esc y x \@InvisibleCommaD y x , y

f x f Esc üEsc x f
\@InvisibleApplicatiÖ

onD
x

f ü x or f@xD

x y
z

x Esc +Esc y
z

x \@ImplicitPlusD y
z

x + y ê z

Some operators with special forms used for input but not output.

Mathematica understands ¸, but does not use it by default for output.

In[9]:= x ¸ y

Out[9]=
x

y

Many of the forms of input discussed here use special characters, but otherwise just consist of

ordinary one-dimensional lines of text. Mathematica notebooks, however, also make it possible

to use two-dimensional forms of input.

40 Notebooks and Documents

two-dimensional one-dimensional

xy x^y power
x
y

xêy division

x Sqrt@xD square root

x
n

x^H1ênL nth root

⁄i=imin
imax f Sum@ f,8i,imin,imax<D sum

¤i=imin
imax f Product@ f,8i,imin,imax<D product

Ÿ f „ x Integrate@ f,xD indefinite integral

Ÿxmin
xmax f „ x Integrate@ f,8x,xmin,xmax<D definite integral

∂x f D@ f,xD partial derivative

∂x,y f D@ f,x,yD multivariate partial derivative

z Conjugate@xD complex conjugate

m Transpose@mD transpose

mæ ConjugateTranspose@mD conjugate transpose

expr@@ i, j,… DD Part@expr,i, j,…D part extraction

Some two-dimensional forms that can be used in Mathematica notebooks.

You can enter two-dimensional forms using any of the mechanisms discussed in "Entering Two-

Dimensional Input". Note that upper and lower limits for sums and products must be entered as

overscripts and underscripts~not superscripts and subscripts.

This enters an indefinite integral. Note the use of Esc ddEsc to enter the “differential d”.

In[10]:= Esc intEsc f[x] Esc ddEsc x

Out[10]= ‡ f@xD „x

Here is an indefinite integral that can be explicitly evaluated.

In[11]:= ‡ ExpA-x2E „x

Out[11]=
1

2
p Erf@xD

Notebooks and Documents 41

Here is the usual Mathematica input for this integral.

In[12]:= Integrate@Exp@-x^2D, xD

Out[12]=
1

2
p Erf@xD

short form long form

Esc sum Esc \@SumD summation sign ⁄

Esc prodEsc \@ProductD product sign ¤

Esc intEsc \@IntegralD integral sign Ÿ

Esc ddEsc \@DifferentialDD special „ for use in integrals

Esc pdEsc \@PartialDD partial derivative operator ∂

Esc coEsc \@ConjugateD conjugate symbol 
Esc trEsc \@TransposeD transpose symbol 
Esc ctEsc \@ConjugateTransposeD conjugate transpose symbol æ
Esc @@Esc \@LeftDoubleBracketD part brackets

Some special characters used in entering formulas. "Mathematical and Other Notation" gives a complete
list.

You should realize that even though a summation sign can look almost identical to a capital

sigma it is treated in a very different way by Mathematica. The point is that a sigma is just a

letter; but a summation sign is an operator which tells Mathematica to perform a Sum operation.

Capital sigma is just a letter.

In[13]:= a + S^2

Out[13]= a + S2

A summation sign, on the other hand, is an operator.

In[14]:= Esc sumEsc Ctrl++ n=0 Ctrl+% m Ctrl+Space 1/f[n]

Out[14]= ‚

n=0

m 1

f@nD

Much as Mathematica distinguishes between a summation sign and a capital sigma, it also

distinguishes between an ordinary d, the “partial d” ∂ that is used for taking derivatives, and

the special “differential d” „ that is used in the standard notation for integrals. It is crucial that

you use the differential „~entered as Esc ddEsc~when you type in an integral. If you try to use

an ordinary d, Mathematica will just interpret this as a symbol called d~it will not understand

that you are entering the second part of an integration operator.

42 Notebooks and Documents

Much as Mathematica distinguishes between a summation sign and a capital sigma, it also

distinguishes between an ordinary d, the “partial d” ∂ that is used for taking derivatives, and

the special “differential d” „ that is used in the standard notation for integrals. It is crucial that

you use the differential „~entered as Esc ddEsc~when you type in an integral. If you try to use

an ordinary d, Mathematica will just interpret this as a symbol called d~it will not understand

that you are entering the second part of an integration operator.

This computes the derivative of xn.

In[15]:= ∂xxn

Out[15]= n x-1+n

Here is the same derivative specified in ordinary one-dimensional form.

In[16]:= D@x^n, xD

Out[16]= n x-1+n

This computes the third derivative.

In[17]:= ∂x,x,xxn

Out[17]= H-2 + nL H-1 + nL n x-3+n

Here is the equivalent one-dimensional input form.

In[18]:= D@x^n, x, x, xD

Out[18]= H-2 + nL H-1 + nL n x-3+n

Entering Tables and Matrices

The Mathematica front end provides an Insert  Table/Matrix submenu for creating and

editing arrays with any specified number of rows and columns. Once you have such an array,

you can edit it to fill in whatever elements you want.

Mathematica treats an array like this as a matrix represented by a list of lists.

In[1]:=
a b c
1 2 3

Out[1]= 88a, b, c<, 81, 2, 3<<

Putting parentheses around the array makes it look more like a matrix, but does not affect its
interpretation.

In[2]:= K
a b c
1 2 3

O

Out[2]= 88a, b, c<, 81, 2, 3<<

Using MatrixForm tells Mathematica to display the result of the Transpose as a matrix.

Notebooks and Documents 43

Using MatrixForm tells Mathematica to display the result of the Transpose as a matrix.

In[3]:= MatrixFormBTransposeBK
a b c
1 2 3

OFF

Out[3]//MatrixForm=
a 1
b 2
c 3

Ctrl+, add a column

Ctrl+Enter add a row

Tab go to the next Ñ or É element

Ctrl+Space move out of the table or matrix

Entering tables and matrices.

Note that you can use Ctrl+, and Ctrl+Enter to start building up an array, and particularly for

small arrays this is often more convenient than using the New menu item in the Table/Matrix

submenu. The Table/Matrix menu items typically allow you to make basic adjustments, such

as drawing lines between rows or columns.

Entering a Piecewise expression is a special case of entering a table.

Enter the \@PiecewiseD character and press Ctrl+, to get a template of placeholders for two
cases.

In[4]:= f@x_D := 
Ñ Ñ
Ñ Ñ

Fill in the placeholders to complete the piecewise expression.

In[5]:= f@x_D := 
0 x < 0
1 x = 0

To add additional cases, use Ctrl+Enter.

In[6]:= f@x_D :=
0 x < 0
1 x = 0
Ñ Ñ

You can make an element in a table span over multiple rows or columns by selecting the entire

block that you want the element to span and using the Insert  Table/Matrix  Make Span-

ning menu command. To split a spanning element into individual components, use Insert 
Table/Matrix  Split Spanning.

44 Notebooks and Documents

To make the top element span across both columns, first select the row.

In[7]:=
x Ñ
y z

Now use the Make Spanning menu command.

In[8]:=
x

y z

Subscripts, Bars and Other Modifiers

Here is a typical palette of modifiers.

Mathematica allows you to use any expression as a subscript.

In[1]:= ExpandAH1 + x1+nL4E

Out[1]= 1 + 4 x1+n + 6 x1+n
2 + 4 x1+n

3 + x1+n
4

Notebooks and Documents 45

Unless you specifically tell it otherwise, Mathematica will interpret a superscript as a power.

In[2]:= FactorAxn
4 - 1E

Out[2]= H-1 + xnL H1 + xnL I1 + xn
2M

Ctrl+_ or Ctrl+- go to the position for a subscript

Ctrl++ or Ctrl+= go to the position underneath

Ctrl+^ or Ctrl+6 go to the position for a superscript

Ctrl+& or Ctrl+7 go to the position on top

Ctrl+Space return from a special position

Special input forms based on control characters. The second forms given should work on any keyboard.

This enters a subscript using control keys.

In[3]:= Expand[(1 + xCtrl+_1+nCtrl+Space)^4]

Out[3]= 1 + 4 x1+n + 6 x1+n
2 + 4 x1+n

3 + x1+n
4

Just as Ctrl+^ and Ctrl+_ go to superscript and subscript positions, so also Ctrl+& and Ctrl+=

can be used to go to positions directly above and below. With the layout of a standard English-

language keyboard Ctrl+& is directly to the right of Ctrl+^ while Ctrl+= is directly to the right

of Ctrl+_.

key sequence displayed form expression form
x Ctrl+& _ x OverBar@xD
x Ctrl+& Esc vecEsc x” OverVector@xD
x Ctrl+& ~ xè OverTilde@xD
x Ctrl+& ^ x` OverHat@xD
x Ctrl+& . x° OverDot@xD
x Ctrl+= _ x UnderBar@xD

Ways to enter some common modifiers using control keys.

Here is x.

In[4]:= xCtrl+&_ Ctrl+Space

Out[4]= x

You can use x as a variable.

In[5]:= Solve@a^2 == %, aD

Out[5]= ::a Ø - x >, :a Ø x >>

Non-English Characters and Keyboards

46 Notebooks and Documents

Non-English Characters and Keyboards

If you enter text in languages other than English, you will typically need to use various addi-

tional accented and other characters. If your computer system is set up in an appropriate way,

then you will be able to enter such characters directly using standard keys on your keyboard.

But however your system is set up, Mathematica always provides a uniform way to handle such

characters.

full name alias
à î @AGraveD Ça`Ç

å î @ARingD ÇaoÇ

ä î @ADoubleDotD Ça "Ç
ç î @CCedillaD Çc, Ç

č î @CHacekD ÇcvÇ
é î @EAcuteD Çe' Ç

è î @EGraveD Çe`Ç
í î @IAcuteD Çi' Ç

ñ î @NTildeD Çn~Ç
ò î @OGraveD Ço`Ç

full name alias
ø î @OSlashD Ço ê Ç

ö î @ODoubleDotD Ço "Ç
ù î @UGraveD Çu`Ç
ü î @UDoubleDotD Çu "Ç
ß î @SZD ÇszÇ, ÇssÇ

Å î @CapitalARingD ÇAoÇ

Ä î @CapitalADoubleDotD ÇA "Ç

Ö î @CapitalODoubleDotD ÇO "Ç

Ü î @CapitalUDoubleDotD ÇU "Ç

Some common European characters.

Here is a function whose name involves an accented character.

In[1]:= Lamé@x, yD

Out[1]= Lamé@x, yD

This is another way to enter the same input.

In[2]:= LamÇe'Ç[x, y]

Out[2]= Lamé@x, yD

You should realize that there is no uniform standard for computer keyboards around the world,

and as a result it is inevitable that some details of what has been said in this tutorial may not

apply to your keyboard.

Notebooks and Documents 47

In particular, the identification for example of Ctrl+6 with Ctrl+^ is valid only for keyboards on

which ^ appears as Shift+6. On other keyboards, Mathematica uses Ctrl+6 to go to a super-

script position, but not necessarily Ctrl+^.

Regardless of how your keyboard is set up you can always use palettes or menu items to set up

superscripts and other kinds of notation. And assuming you have some way to enter characters

such as î, you can always give input using full names such as \[Infinity].

Other Mathematical Notation

Mathematica supports an extremely wide range of mathematical notation, although often it

does not assign a pre-defined meaning to it. Thus, for example, you can enter an expression

such as x ⊕ y, but Mathematica will not initially make any assumption about what you mean by

⊕.

Mathematica knows that ⊕ is an operator, but it does not initially assign any specific meaning to
it.

In[1]:= 817 ⊕ 5, 8 ⊕ 3<

Out[1]= 817⊕5, 8⊕3<

This gives Mathematica a definition for what the ⊕ operator does.

In[2]:= x_ ⊕ y_ := Mod@x + y, 2D

Now Mathematica can evaluate ⊕ operations.

In[3]:= 817 ⊕ 5, 8 ⊕ 3<

Out[3]= 80, 1<

48 Notebooks and Documents

full name alias
⊕ \@CirclePlusD Çc+Ç

⊗ \@CircleTimesD Çc*Ç

± \@PlusMinusD Ç+-Ç

Ô \@WedgeD Ç^Ç

Ó \@VeeD ÇvÇ

> \@TildeEqualD Ç~=Ç

º \@TildeTildeD Ç~~Ç

~ \@TildeD Ç~Ç

∝ \@ProportionalD ÇpropÇ

ª \@CongruentD Ç===Ç

t \@GreaterTildeD Ç>~Ç

p \@GreaterGreaterD
ê \@SucceedsD
@ \@RightTriangleD

full name alias
ö \@LongRightArrowD Ç-->Ç

\@LeftRightArrowD Ç<->Ç

\@UpArrowD

\@EquilibriumD ÇequiÇ

¢ \@RightTeeD
⊃ \@SupersetD ÇsupÇ

Æ \@SquareIntersectionD

œ \@ElementD ÇelemÇ

– \@NotElementD Ç!elemÇ

Î \@SmallCircleD ÇscÇ

\ \@ThereforeD
\@VerticalSeparatorD Ç|Ç

˝ \@VerticalBarD Çâ|Ç

ï \@BackslashD Ç\Ç

A few of the operators whose input is supported by Mathematica.

Mathematica assigns built-in meanings to ¥ and r, but not to t or p.

In[4]:= 83 ¥ 4, 3 r 4, 3 t 4, 3 p 4<

Out[4]= 8False, False, 3 t 4, 3 p 4<

There are some forms which look like characters on a standard keyboard, but which are inter-

preted in a different way by Mathematica. Thus, for example, î[Backslash] or Ç \ Ç displays as î

but is not interpreted in the same way as a î typed directly on the keyboard.

The î and Ô characters used here are different from the î and ^ you would type directly on a
keyboard.

In[5]:= {a Ç\Ç b, a Ç^Ç b}

Out[5]= 8aîb, aÔb<

Most operators work like ⊕ and go in between their operands. But some operators can go in

other places. Thus, for example, Ç < Ç and Ç > Ç or î[LeftAngleBracket] and î[RightAngleBracket]

are effectively operators which go around their operand.

The elements of the angle bracket operator go around their operand.

In[6]:= X 1 + x \

Out[6]= X1 + x\

Notebooks and Documents 49

full name alias
 \[ScriptL] ÇsclÇ

 \[ScriptCapitalE] ÇscEÇ

ℜ \[GothicCapitalR] ÇgoRÇ

 \[DoubleStruckCapitalZ] ÇdsZÇ

¡ \[Aleph] ÇalÇ

« \[EmptySet] ÇesÇ

µ \[Micro] ÇmiÇ

full name alias
fi \[Angstrom] ÇAngÇ

— \[HBar] ÇhbÇ

£ \[Sterling]
— \[Angle]
• \[Bullet] ÇbuÇ

† \[Dagger] ÇdgÇ

⁄ \[Natural]

Some additional letters and letter-like forms.

You can use letters and letter-like forms anywhere in symbol names.

In[7]:= 8ℜ«, —ABC<

Out[7]= 8ℜ«, —ABC<

« is assumed to be a symbol, and so is just multiplied by a and b.

In[8]:= a « b

Out[8]= a b «

Forms of Input and Output

Here is one way to enter a particular expression.

In[1]:= x^2 + Sqrt@yD

Out[1]= x2 + y

Here is another way to enter the same expression.

In[2]:= Plus@Power@x, 2D, Sqrt@yDD

Out[2]= x2 + y

With a notebook front end, you can also enter the expression directly in this way.

In[3]:= x2 + y

Out[3]= x2 + y

50 Notebooks and Documents

Mathematica allows you to output expressions in many different ways.

In Mathematica notebooks, expressions are by default output in StandardForm.

In[4]:= x^2 + Sqrt@yD

Out[4]= x2 + y

OutputForm uses only ordinary keyboard characters and is the default for text-based
interfaces to Mathematica.

In[5]:= OutputForm@x^2 + Sqrt@yDD

Out[5]//OutputForm= 2
x + Sqrt[y]

InputForm yields a form that can be typed directly on a keyboard.

In[6]:= InputForm@x^2 + Sqrt@yDD

Out[6]//InputForm= x^2 + Sqrt[y]

FullForm shows the internal form of an expression in explicit functional notation.

In[7]:= FullForm@x^2 + Sqrt@yDD

Out[7]//FullForm= Plus@Power@x, 2D, Power@y, Rational@1, 2DDD

FullForm@exprD the internal form of an expression

InputForm@exprD a form suitable for direct keyboard input

OutputForm@exprD a two-dimensional form using only keyboard characters

StandardForm@exprD the default form used in Mathematica notebooks

Some output forms for expressions.

Output forms provide textual representations of Mathematica expressions. In some cases these

textual representations are also suitable for input to Mathematica. But in other cases they are

intended just to be looked at, or to be exported to other programs, rather than to be used as

input to Mathematica.

TraditionalForm uses a large collection of ad hoc rules to produce an approximation to
traditional mathematical notation.

In[8]:= TraditionalForm@x^2 + Sqrt@yD + Gamma@zD EllipticK@zDD

Out[8]//TraditionalForm=

x2+KHzL GHzL+ y

Notebooks and Documents 51

TeXForm yields output suitable for export to TeX.

In[9]:= TeXForm@x^2 + Sqrt@yDD

Out[9]//TeXForm= x^2+\sqrt{y}

MathMLForm yields output in MathML.

In[10]:= MathMLForm@x^2 + Sqrt@yDD

Out[10]//MathMLForm=
<math>
 <mrow>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>+</mo>
 <msqrt>
 <mi>y</mi>
 </msqrt>
 </mrow>
</math>

CForm yields output that can be included in a C program. Macros for objects like Power are
included in the header file mdefs.h.

In[11]:= CForm@x^2 + Sqrt@yDD

Out[11]//CForm= Power(x,2) + Sqrt(y)

FortranForm yields output suitable for export to Fortran.

In[12]:= FortranForm@x^2 + Sqrt@yDD

Out[12]//FortranForm=
x**2 + Sqrt(y)

TraditionalForm@exprD traditional mathematical notation

TeXForm@exprD output suitable for export to TEX

MathMLForm@exprD output suitable for use with MathML on the web

CForm@exprD output suitable for export to C

FortranForm@exprD output suitable for export to Fortran

Output forms not normally used for Mathematica input.

"Low-Level Input and Output Rules" discusses how you can create your own output forms. You

should realize however that in communicating with external programs it is often better to use

MathLink to send expressions directly than to generate a textual representation for these expres-

sions.

52 Notebooks and Documents

† Exchange textual representations of expressions.

† Exchange expressions directly via MathLink.

Two ways to communicate between Mathematica and other programs.

Mixing Text and Formulas

The simplest way to mix text and formulas in a Mathematica notebook is to put each kind of

material in a separate cell. Sometimes, however, you may want to embed a formula within a

cell of text, or vice versa.

Ctrl+(or Ctrl+9 begin entering a formula within text, or text within a
formula

Ctrl+) or Ctrl+0 end entering a formula within text, or text within a formula

Entering a formula within text, or vice versa.

Here is a notebook with formulas embedded in a text cell.

Mathematica notebooks often contain both formulas that are intended for actual evaluation by

Mathematica, and ones that are intended just to be read in a more passive way.

When you insert a formula in text, you can use the Convert to StandardForm and Convert

to TraditionalForm menu items within the formula to convert it to StandardForm or

TraditionalForm. StandardForm is normally appropriate whenever the formula is thought of

as a Mathematica program fragment.

In general, however, you can use exactly the same mechanisms for entering formulas, whether

or not they will ultimately be given as Mathematica input.

Notebooks and Documents 53

You should realize, however, that to make the detailed typography of typical formulas look as

good as possible, Mathematica automatically does things such as inserting spaces around

certain operators. But these kinds of adjustments can potentially be inappropriate if you use

notation in very different ways from the ones Mathematica is expecting. In such cases, you may

have to make detailed typographical adjustments by hand.

Displaying and Printing Mathematica Notebooks

Depending on the purpose for which you are using a Mathematica notebook, you may want to

change its overall appearance. The front end allows you to specify independently the styles to

be used for display on the screen and for printing. Typically you can do this by choosing appropri-

ate items in the Format menu.

ScreenStyleEnvironment styles to be used for screen display

PrintingStyleEnvironment styles to be used for printed output

Working standard style definitions for screen display

Presentation style definitions for presentations

SlideShow style definitions for displaying presentation slides

Printout style definitions for printed output

Front end settings that define the global appearance of a notebook.

Here is a typical notebook as it appears in working form on the screen.

54 Notebooks and Documents

Here is a preview of how the notebook would appear when printed out.

Setting Up Hyperlinks

Insert  Hyperlink menu item to make the selected object a hyperlink

Hyperlink@"uri"D generate as output a hyperlink with the label and destina -
tion set as uri

Hyperlink@"label","uri"D generate as output a hyperlink with the label label and the
destination uri

HyperlinkA9" file.nb",None=E generate as output a hyperlink to the specified notebook

Hyperlink@8" file.nb","tag"<D generate as output a hyperlink to the cell tagged as tag in
the specified notebook

Methods for generating hyperlinks.

A hyperlink is a special kind of button which jumps to another part of a notebook when it is

pressed. Typically hyperlinks are indicated in Mathematica by blue text.

To set up a hyperlink, just select the text or other object that you want to be a hyperlink. Then

choose the menu item Insert  Hyperlink and fill in the specification of where you want the

destination of the hyperlink to be.

The destination of a hyperlink can be any standard web address (URI). Hyperlinks can also

point to notebooks on the local file system, or even to specific cells inside those notebooks.

Hyperlinks which point to specific cells in notebooks use cell tags to identify the cells. If a particu -

lar cell tag is used for more than one cell in a given notebook, then the hyperlink will go to the

first instance of a cell with that cell tag.

A hyperlink can be generated in output by using the Mathematica command Hyperlink. These

hyperlinks can be copied and pasted into text or used in a larger interface being generated by

Mathematica.

Notebooks and Documents 55

A hyperlink can be generated in output by using the Mathematica command Hyperlink. These

hyperlinks can be copied and pasted into text or used in a larger interface being generated by

Mathematica.

This command generates a hyperlink to the web.

In[1]:= Hyperlink@"Wolfram Research, Inc.", "http:êêwww.wolfram.com"D

Out[1]= Wolfram Research, Inc.

Automatic Numbering

† Choose a cell style such as DisplayFormulaNumbered.

† Use the Insert  Automatic Numbering menu item, with a counter name such as Section
.

Two ways to set up automatic numbering in a Mathematica notebook.

Using the DisplayFormulaNumbered style

These cells are in DisplayFormulaNumbered style. DisplayFormulaNumbered style is
available in stylesheets such as "Report".

Using the AutomaticNumbering menu item

The input for each cell here is exactly the same, but the cells contain an element that displays
as a progressively larger number as one goes through the notebook.

Exposition in Mathematica Notebooks

56 Notebooks and Documents

Exposition in Mathematica Notebooks

Mathematica notebooks provide the basic technology that you need to be able to create a very

wide range of sophisticated interactive documents. But to get the best out of this technology

you need to develop an appropriate style of exposition.

Many people at first tend to use Mathematica notebooks either as simple worksheets containing

a sequence of input and output lines, or as onscreen versions of traditional books and other

printed material. But the most effective and productive uses of Mathematica notebooks tend to

lie at neither one of these extremes, and instead typically involve a fine-grained mixing of

Mathematica input and output with explanatory text. In most cases the single most important

factor in obtaining such fine-grained mixing is uniform use of the Mathematica language.

One might think that there would tend to be four kinds of material in a Mathematica notebook:

plain text, mathematical formulas, computer code, and interactive interfaces. But one of the

key ideas of Mathematica is to provide a single language that offers the best of both traditional

mathematical formulas and computer code.

In StandardForm, Mathematica expressions have the same kind of compactness and elegance

as traditional mathematical formulas. But unlike such formulas, Mathematica expressions are

set up in a completely consistent and uniform way. As a result, if you use Mathematica expres-

sions, then regardless of your subject matter, you never have to go back and reexplain your

basic notation: it is always just the notation of the Mathematica language. In addition, if you

set up your explanations in terms of Mathematica expressions, then a reader of your notebook

can immediately take what you have given, and actually execute it as Mathematica input.

If one has spent many years working with traditional mathematical notation, then it takes a

little time to get used to seeing mathematical facts presented as StandardForm Mathematica

expressions. Indeed, at first one often has a tendency to try to use TraditionalForm whenever

possible, perhaps with hidden tags to indicate its interpretation. But quite soon one tends to

evolve to a mixture of StandardForm and TraditionalForm. And in the end it becomes clear

that StandardForm alone is for most purposes the most effective form of presentation.

In traditional mathematical exposition, there are many tricks for replacing chunks of text by

fragments of formulas. In StandardForm many of these same tricks can be used. But the fact

that Mathematica expressions can represent not only mathematical objects but also procedures,

algorithms, graphics, and interfaces increases greatly the extent to which chunks of text can be

replaced by shorter and more precise material.

Notebooks and Documents 57

In traditional mathematical exposition, there are many tricks for replacing chunks of text by

that Mathematica expressions can represent not only mathematical objects but also procedures,

algorithms, graphics, and interfaces increases greatly the extent to which chunks of text can be

replaced by shorter and more precise material.

Named Characters

Mathematica provides systemwide support for a large number of special characters. Each charac -

ter has a name and a number of shortcut aliases. They are fully supported by the standard

Mathematica fonts.

Interpretation of Characters

The interpretations given here are those used in StandardForm and InputForm. Most of the

interpretations also work in TraditionalForm.

You can override the interpretations by giving your own rules for MakeExpression.

Letters and letter-like forms used in symbol names

Infix operators e.g. x⊕y

Prefix operators e.g. Ÿ x

Postfix operators e.g. x !

Matchfix operators e.g. Xx\

Compound operators e.g. Ÿ f „ x

Raw operators operator characters that can be typed on an ordinary
keyboard

Spacing characters interpreted in the same way as an ordinary space

Structural elements characters used to specify structure; usually ignored in
interpretation

Uninterpretable elements characters indicating missing information

Types of characters.

The precedences of operators are given in "Operator Input Forms".

Infix operators for which no grouping is specified in the listing are interpreted so that for exam-

ple x⊕y⊕z becomes CirclePlus@x, y, zD.

Naming Conventions

58 Notebooks and Documents

Naming Conventions

Characters that correspond to built-in Mathematica functions typically have names correspond-

ing to those functions. Other characters typically have names that are as generic as possible.

Characters with different names almost always look at least slightly different.

\@Capital…D uppercase form of a letter

\@Left…D and \@Right…D pieces of a matchfix operator (also arrows)

\@Raw…D a printable ASCII character

\@…IndicatorD a visual representation of a keyboard character

Some special classes of characters.

style Script, Gothic, etc.

variation Curly, Gray, etc.

case Capital, etc.

modifiers Not, Double, Nested, etc.

direction Left, Up, UpperRight, etc.

base A, Epsilon, Plus, etc.

diacritical mark Acute, Ring, etc.

Typical ordering of elements in character names.

Aliases

Mathematica supports both its own system of aliases, as well as aliases based on character

names in TeX and SGML or HTML. Except where they conflict, character names corresponding

to plain TeX, LaTeX and AMSTeX are all supported. Note that TeX and SGML or HTML aliases

are not given explicitly in the list of characters below.

Esc xxxEsc ordinary Mathematica alias

Esc îxxxEsc TeX alias

Esc & xxxEsc SGML or HTML alias

Types of aliases.

Notebooks and Documents 59

The following general conventions are used for all aliases:

† Characters that are alternatives to standard keyboard operators use these operators as
their aliases (e.g. Esc ->Esc for Ø, Esc &&Esc for fl).

† Most single-letter aliases stand for Greek letters.

† Capital-letter characters have aliases beginning with capital letters.

† When there is ambiguity in the assignment of aliases, a space is inserted at the beginning
of the alias for the less common character (e.g. Esc ->Esc for î @RuleD and Esc â->Esc for î
@RightArrowD).

† ! is inserted at the beginning of the alias for a Not character.

† TeX aliases begin with a backslash î.

† SGML aliases begin with an ampersand &.

† User-defined aliases conventionally begin with a dot or comma.

Font Matching

The special fonts provided with Mathematica include all the characters given in this listing.

Some of these characters also appear in certain ordinary text fonts.

When rendering text in a particular font, the Mathematica notebook front end will use all the

characters available in that font. It will use the special Mathematica fonts only for other charac-

ters.

A choice is made between Times-like, Helvetica-like (sans serif) and Courier-like (monospaced)

variants to achieve the best matching with the ordinary text font in use.

60 Notebooks and Documents

Textual Input and Output

How Input and Output Work

Input convert from a textual form to an expression

Processing do computations on the expression

Output convert the resulting expression to textual form

Steps in the operation of Mathematica.

When you type something like x^2 what Mathematica at first sees is just the string of charac-

ters x, ^, 2. But with the usual way that Mathematica is set up, it immediately knows to convert

this string of characters into the expression Power@x, 2D.

Then, after whatever processing is possible has been done, Mathematica takes the expression

Power@x, 2D and converts it into some kind of textual representation for output.

Mathematica reads the string of characters x, ^, 2 and converts it to the expression
Power@x, 2D.

In[1]:= x^2

Out[1]= x2

This shows the expression in Fortran form.

In[2]:= FortranForm@%D

Out[2]//FortranForm= x**2

FortranForm is just a “wrapper”: the value of Out@2D is still the expression Power@x, 2D.

In[3]:= %

Out[3]= x2

It is important to understand that in a typical Mathematica session In@nD and Out@nD record

only the underlying expressions that are processed, not the textual representations that happen

to be used for their input or output.

If you explicitly request a particular kind of output, say by using TraditionalForm@exprD, then

what you get will be labeled with Out@nD êê TraditionalForm. This indicates that what you are

seeing is expr êê TraditionalForm, even though the value of Out@nD itself is just expr.

Notebooks and Documents 61

If you explicitly request a particular kind of output, say by using TraditionalForm@exprD, then

what you get will be labeled with Out@nD êê TraditionalForm. This indicates that what you are

seeing is expr êê TraditionalForm, even though the value of Out@nD itself is just expr.

Mathematica also allows you to specify globally that you want output to be displayed in a particu -

lar form. And if you do this, then the form will no longer be indicated explicitly in the label for

each line. But it is still the case that In@nD and Out@nD will record only underlying expressions,

not the textual representations used for their input and output.

This sets t to be an expression with FortranForm explicitly wrapped around it.

In[4]:= t = FortranForm@x^2 + y^2D

Out[4]//FortranForm= x**2 + y**2

The result on the previous line is just the expression.

In[5]:= %

Out[5]= x2 + y2

But t contains the FortranForm wrapper, and so is displayed in FortranForm .

In[6]:= t

Out[6]//FortranForm= x**2 + y**2

Wherever t appears, it is formatted in FortranForm .

In[7]:= 8t^2, 1 ê t<

Out[7]= :x ** 2 + y ** 22,
1

x ** 2 + y ** 2
>

The Representation of Textual Forms

Like everything else in Mathematica the textual forms of expressions can themselves be repre-

sented as expressions. Textual forms that consist of one-dimensional sequences of characters

can be represented directly as ordinary Mathematica strings. Textual forms that involve sub-

scripts, superscripts and other two-dimensional constructs, however, can be represented by

nested collections of two-dimensional boxes.

62 Notebooks and Documents

One-dimensional strings InputForm , FullForm , etc.

Two-dimensional boxes StandardForm , TraditionalForm , etc.

Typical representations of textual forms.

This generates the string corresponding to the textual representation of the expression in
InputForm.

In[1]:= ToString@x^2 + y^3, InputFormD

Out[1]= x^2 + y^3

FullForm shows the string explicitly.

In[2]:= FullForm@%D

Out[2]//FullForm= "x^2 + y^3"

Here are the individual characters in the string.

In[3]:= Characters@%D

Out[3]= 8x, ^, 2, , +, , y, ^, 3<

Here is the box structure corresponding to the expression in StandardForm.

In[4]:= ToBoxes@x^2 + y^3, StandardFormD

Out[4]= RowBox@8SuperscriptBox@x, 2D, +, SuperscriptBox@y, 3D<D

Here is the InputForm of the box structure. In this form the structure is effectively repre-
sented by an ordinary string.

In[5]:= ToBoxes@x^2 + y^3, StandardFormD êê InputForm

Out[5]//InputForm= \(x\^2 + y\^3\)

If you use the notebook front end for Mathematica, then you can see the expression that corre-

sponds to the textual form of each cell by using the Show Expression menu item.

Here is a cell containing an expression in StandardForm.

Notebooks and Documents 63

Here is the underlying representation of that expression in terms of boxes, displayed using the
Show Expression menu item.

ToString@expr, formD create a string representing the specified textual form of
expr

ToBoxes@expr, formD create a box structure representing the specified textual
form of expr

Creating strings and boxes from expressions.

The Interpretation of Textual Forms

ToExpression@inputD create an expression by interpreting strings or boxes

Converting from strings or boxes to expressions.

This takes a string and interprets it as an expression.

In[1]:= ToExpression@"2 + 3 + xêy"D

Out[1]= 5 +
x

y

Here is the box structure corresponding to the textual form of an expression in StandardForm.

In[2]:= ToBoxes@2 + x^2, StandardFormD

Out[2]= RowBox@82, +, SuperscriptBox@x, 2D<D

ToExpression interprets this box structure and yields the original expression again.

In[3]:= ToExpression@%D

Out[3]= 2 + x2

In any Mathematica session, Mathematica is always effectively using ToExpression to interpret

the textual form of your input as an actual expression to evaluate.

64 Notebooks and Documents

In any Mathematica session, Mathematica is always effectively using ToExpression to interpret

the textual form of your input as an actual expression to evaluate.

If you use the notebook front end for Mathematica, then the interpretation only takes place

when the contents of a cell are sent to the kernel, say for evaluation. This means that within a

notebook there is no need for the textual forms you set up to correspond to meaningful Mathe-

matica expressions; this is only necessary if you want to send these forms to the kernel.

FullForm explicit functional notation

InputForm one-dimensional notation

StandardForm two-dimensional notation

The hierarchy of forms for standard Mathematica input.

Here is an expression entered in FullForm.

In[4]:= Plus@1, Power@x, 2DD

Out[4]= 1 + x2

Here is the same expression entered in InputForm.

In[5]:= 1 + x^2

Out[5]= 1 + x2

And here is the expression entered in StandardForm.

In[6]:= 1 + x2

Out[6]= 1 + x2

Built into Mathematica is a collection of standard rules for use by ToExpression in converting

textual forms to expressions.

These rules define the grammar of Mathematica. They state, for example, that x + y should be

interpreted as Plus@x, yD, and that xy should be interpreted as Power@x, yD. If the input you

give is in FullForm, then the rules for interpretation are very straightforward: every expression

consists just of a head followed by a sequence of elements enclosed in brackets. The rules for

InputForm are slightly more sophisticated: they allow operators such as +, =, and ->, and

understand the meaning of expressions where these operators appear between operands.

StandardForm involves still more sophisticated rules, which allow operators and operands to be

arranged not just in a one-dimensional sequence, but in a full two-dimensional structure.

Mathematica is set up so that FullForm, InputForm and StandardForm form a strict hierarchy:

anything you can enter in FullForm will also work in InputForm, and anything you can enter in

InputForm will also work in StandardForm.

Notebooks and Documents 65

Mathematica is set up so that FullForm, InputForm and StandardForm form a strict hierarchy:

anything you can enter in FullForm will also work in InputForm, and anything you can enter in

InputForm will also work in StandardForm.

If you use a notebook front end for Mathematica, then you will typically want to use all the

features of StandardForm. If you use a text-based interface, however, then you will typically be

able to use only features of InputForm.

When you use StandardForm in a Mathematica notebook, you can enter directly two-dimen-

sional forms such as x2 or annotated graphics. But InputForm allows only one-dimensional

forms.

If you copy a StandardForm expression whose interpretation can be determined without evalua-

tion, then the expression will be pasted into external applications as InputForm. Otherwise, the

text is copied in a linear form that precisely represents the two-dimensional structure using î

! î H… îL. When you paste this linear form back into a Mathematica notebook, it will automati-

cally "snap" into two-dimensional form.

ToExpression@input, formD attempt to create an expression assuming that input is
given in the specified textual form

Importing from other textual forms.

StandardForm and its subsets FullForm and InputForm provide precise ways to represent any

Mathematica expression in textual form. And given such a textual form, it is always possible to

convert it unambiguously to the expression it represents.

TraditionalForm is an example of a textual form intended primarily for output. It is possible to

take any Mathematica expression and display it in TraditionalForm. But TraditionalForm

does not have the precision of StandardForm, and as a result there is in general no unambigu-

ous way to go back from a TraditionalForm representation and get the expression it

represents.

Nevertheless, ToExpression@input, TraditionalFormD takes text in TraditionalForm and

attempts to interpret it as an expression.

This takes a string and interprets it as TraditionalForm input.

In[7]:= ToExpression@"fH6L", TraditionalFormD

Out[7]= f@6D

In StandardForm the same string would mean a product of terms.

66 Notebooks and Documents

In StandardForm the same string would mean a product of terms.

In[8]:= ToExpression@"fH6L", StandardFormD

Out[8]= 6 f

When TraditionalForm output is generated as the result of a computation, the actual collec-

tion of boxes that represent the output typically contains special Interpretation objects or

other specially tagged forms which specify how an expression can be reconstructed from the

TraditionalForm output.

The same is true of TraditionalForm that is obtained by explicit conversion from

StandardForm. But if you edit TraditionalForm extensively, or enter it from scratch, then

Mathematica will have to try to interpret it without the benefit of any additional embedded

information.

Short and Shallow Output

When you generate a very large output expression in Mathematica, you often do not want to

see the whole expression at once. Rather, you would first like to get an idea of the general

structure of the expression, and then, perhaps, go in and look at particular parts in more detail.

The functions Short and Shallow allow you to see “outlines” of large Mathematica expressions.

Short@exprD show a one-line outline of expr

Short@expr,nD show an n-line outline of expr

Shallow@exprD show the “top parts” of expr

Shallow@expr,8depth,length<D show the parts of expr to the specified depth and length

Showing outlines of expressions.

This generates a long expression. If the whole expression were printed out here, it would go on
for 23 lines.

In[1]:= t = Expand@H1 + x + yL^12D;

This gives a one-line “outline” of t. The << >> indicates the number of terms omitted.

In[2]:= Short@tD

Out[2]//Short= 1 + 12 x + 66 x2 + 220 x3 + 495 x4 + á81à + 132 x y10 + 66 x2 y10 + 12 y11 + 12 x y11 + y12

When Mathematica generates output in a textual format such as OutputForm, it first effectively

writes the output in one long row. Then it looks at the width of text you have asked for, and it

chops the row of output into a sequence of separate “lines”. Each of the “lines” may of course

contain superscripts and built-up fractions, and so may take up more than one actual line on

your output device. When you specify a particular number of lines in Short, Mathematica takes

this to be the number of “logical lines” that you want, not the number of actual physical lines on

your particular output device.

Notebooks and Documents 67

When Mathematica generates output in a textual format such as OutputForm, it first effectively

writes the output in one long row. Then it looks at the width of text you have asked for, and it

chops the row of output into a sequence of separate “lines”. Each of the “lines” may of course

contain superscripts and built-up fractions, and so may take up more than one actual line on

your output device. When you specify a particular number of lines in Short, Mathematica takes

this to be the number of “logical lines” that you want, not the number of actual physical lines on

your particular output device.

Here is a four-line version of t. More terms are shown in this case.

In[3]:= Short@t, 4D

Out[3]//Short= 1 + 12 x + 66 x2 + 220 x3 + 495 x4 + 792 x5 + 924 x6 + 792 x7 + 495 x8 + 220 x9 + 66 x10 +

12 x11 + x12 + 12 y + 132 x y + á61à + 495 y8 + 1980 x y8 + 2970 x2 y8 + 1980 x3 y8 + 495 x4 y8 +

220 y9 + 660 x y9 + 660 x2 y9 + 220 x3 y9 + 66 y10 + 132 x y10 + 66 x2 y10 + 12 y11 + 12 x y11 + y12

Short works in other formats too, such as StandardForm and TraditionalForm. When using

these formats, linewrapping is determined by the notebook interface when displaying the out-

put rather than by the kernel when creating the output. As a result, setting the number of lines

generated by Short can only approximate the actual number of lines displayed onscreen.

You can use Short with other output forms, such as InputForm.

In[4]:= Short@InputForm@tDD

Out[4]//Short= 1 + 12*x + 66*x^2 + 220*x^3 + 495*x^4 + <<83>> + 12*y^11 + 12*x*y^11 + y^12

Short works by removing a sequence of parts from an expression until the output form of the

result fits on the number of lines you specify. Sometimes, however, you may find it better to

specify not how many final output lines you want, but which parts of the expression to drop.

Shallow@expr, 8depth, length<D includes only length arguments to any function, and drops all

subexpressions that are below the specified depth.

Shallow shows a different outline of t.

In[5]:= Shallow@tD

Out[5]//Shallow= 1 + 12 x + 66 Power@á2àD + 220 Power@á2àD + 495 Power@á2àD + 792 Power@á2àD +
924 Power@á2àD + 792 Power@á2àD + 495 Power@á2àD + 220 Power@á2àD + á81à

This includes only 10 arguments to each function, but allows any depth.

In[6]:= Shallow@t, 8Infinity, 10<D

Out[6]//Shallow= 1 + 12 x + 66 x2 + 220 x3 + 495 x4 + 792 x5 + 924 x6 + 792 x7 + 495 x8 + 220 x9 + á81à

Shallow is particularly useful when you want to drop parts in a uniform way throughout a

highly nested expression, such as a large list structure returned by Trace.

68 Notebooks and Documents

Shallow is particularly useful when you want to drop parts in a uniform way throughout a

highly nested expression, such as a large list structure returned by Trace.

Here is the recursive definition of the Fibonacci function.

In[7]:= fib@n_D := fib@n - 1D + fib@n - 2D; fib@0D = fib@1D = 1

Out[7]= 1

This generates a large list structure.

In[8]:= tr = Trace@fib@8DD;

You can use Shallow to see an outline of the structure.

In[9]:= Shallow@trD

Out[9]//Shallow= 8fib@á1àD, Plus@á2àD, 88á2à<, á1à, á1à, 8á7à<, 8á7à<, á1à, á1à<,
88á2à<, á1à, á1à, 8á7à<, 8á7à<, á1à, á1à<, Plus@á2àD, 34<

Short gives you a less uniform outline, which can be more difficult to understand.

In[10]:= Short@tr, 4D

Out[10]//Short= 8fib@8D, fib@8 - 1D + fib@8 - 2D, 888 - 1, 7<, fib@7D, á3à, 13 + 8, 21<, 8á1à<, 21 + 13, 34<

When generated outputs in the notebook interface are exceedingly large, Mathematica automati-

cally applies Short to the output. This user interface enhancement prevents Mathematica from

spending a lot of time generating and formatting the printed output for an evaluation which

probably generated output you did not expect.

Typically, an assignment like this would have a semicolon at the end.

In[11]:= lst = RangeA106E

Out[11]=

A very large output was generated. Here is a sample of it:

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, á999 964à,
999983, 999984, 999985, 999986, 999987, 999988, 999989, 999990, 999991,
999992, 999993, 999994, 999995, 999996, 999997, 999998, 999999, 1000000<

Show Less Show More Show Full Output Set Size Limit...

The buttons in the user interface allow you to control how much of the output you see. The size

threshold at which this behavior takes effect is determined by the byte count of the output

expression. That byte count can be set in the Preferences dialog of the notebook interface,

which is opened by the Set Size Limit button.

String-Oriented Output Formats

Notebooks and Documents 69

String-Oriented Output Formats

"text" a string containing arbitrary text

Text strings.

The quotes are not included in standard Mathematica output form.

In[1]:= "This is a string."

Out[1]= This is a string.

In input form, the quotes are included.

In[2]:= InputForm@%D

Out[2]//InputForm= "This is a string."

You can put any kind of text into a Mathematica string. This includes non-English characters, as

well as newlines and other control information. "Strings and Characters" discusses in more

detail how strings work.

StringForm@"cccc``cccc",x1,x2,…D output a string in which successive `` are replaced by
successive xi

StringForm@"cccc`i`cccc",x1,x2,…D output a string in which each ` i ` is replaced by the
corresponding xi

Using format strings.

In many situations, you may want to generate output using a string as a “template”, but

“splicing” in various Mathematica expressions. You can do this using StringForm.

This generates output with each successive `` replaced by an expression.

In[3]:= StringForm@"x = ``, y = ``", 3, H1 + uL^2D

Out[3]= x = 3, y = H1 + uL2

You can use numbers to pick out expressions in any order.

In[4]:= StringForm@"8`1`, `2`, `1`<", a, bD

Out[4]= 8a, b, a<

The string in StringForm acts somewhat like a “format directive” in the formatted output state-

ments of languages such as C and Fortran. You can determine how the expressions in

StringForm will be formatted by wrapping them with standard output format functions.

70 Notebooks and Documents

The string in StringForm acts somewhat like a “format directive” in the formatted output state-

ments of languages such as C and Fortran. You can determine how the expressions in

StringForm will be formatted by wrapping them with standard output format functions.

You can specify how the expressions in StringForm are formatted using standard output
format functions.

In[5]:= StringForm@"The `` of `` is ``.", TeXForm, a ê b, TeXForm@a ê bDD

Out[5]= The TeXForm of
a

b
is \frac 8a< 8b<.

You should realize that StringForm is only an output format. It does not evaluate in any way.

You can use the function ToString to create an ordinary string from a StringForm object.

StringForm generates formatted output in standard Mathematica output form.

In[6]:= StringForm@"Q: `` -> ``", a, bD

Out[6]= Q: a -> b

In input form, you can see the actual StringForm object.

In[7]:= InputForm@%D

Out[7]//InputForm= StringForm["Q: `` -> ``", a, b]

This creates an ordinary string from the StringForm object.

In[8]:= InputForm@ToString@%DD

Out[8]//InputForm= "Q: a -> b"

StringForm allows you to specify a “template string”, then fill in various expressions. Some-

times all you want to do is to concatenate together the output forms for a sequence of expres-

sions. You can do this using Row.

Row@8expr1,expr2,…<D give the output forms of the expri concatenated together

Row@list, sD insert s between successive elements

Spacer@wD a space of w points which can be used in Row

Invisible@exprD a space determined by the physical dimensions of expr

Output of sequences of expressions.

Notebooks and Documents 71

Row prints as a sequence of expressions concatenated together.

In[9]:= Row@8"@x = ", 56, "D"<D

Out[9]= @x = 56D

Row also works with typeset expressions.

In[10]:= Row@8"@y = ", Subscript@a, bD, "D"<D

Out[10]= @y = abD

Row can automatically insert any expression between the displayed elements.

In[11]:= Row@8a, b, c, d<, "õ"D

Out[11]= aõbõcõd

Spacer can be used to control the precise spacing between elements.

In[12]:= Row@8"x", Spacer@10D, "y"<D

Out[12]= x y

Column@8expr1,expr2,…<D a left-aligned column of objects

Column@list,alignmentD a column with a specified horizontal alignment (Left,
Center or Right)

Column@list,alignment,sD a column with elements separated by s x-heights

Output of columns of expressions.

This arranges the two expressions in a column.

In[13]:= Column@8a + b, x^2<D

Out[13]=
a + b

x2

Defer@exprD give the output form of expr, with expr maintained
unevaluated

Interpretation@e,exprD give an output which displays as e, but evaluates as expr

Output of unevaluated expressions.

Using text strings and functions like Row, you can generate pieces of output that do not necessar -

ily correspond to valid Mathematica expressions. Sometimes, however, you want to generate

output that corresponds to a valid Mathematica expression, but only so long as the expression

is not evaluated. The function Defer maintains its argument unevaluated, but allows it to be

formatted in the standard Mathematica output form.

72 Notebooks and Documents

Using text strings and functions like Row, you can generate pieces of output that do not necessar-

output that corresponds to a valid Mathematica expression, but only so long as the expression

is not evaluated. The function Defer maintains its argument unevaluated, but allows it to be

formatted in the standard Mathematica output form.

Defer maintains 1 + 1 unevaluated.

In[14]:= Defer@1 + 1D

Out[14]= 1 + 1

The Defer prevents the actual assignment from being done.

In[15]:= Defer@x = 3D

Out[15]= x = 3

When the output of Defer is evaluated again, which might happen by modifying the output or

by using copy and paste, it will evaluate normally.

The following output was copied from the previous output cell into an input cell.

In[16]:= x = 3

Out[16]= 3

It is also possible to produce output whose appearance has no direct correlation to how it

evaluates by using Interpretation. This method is effectively used by Mathematica when

formatting some kinds of outputs where the most readable form does not correspond well to

the internal representation of the object. For example, Series always generates an

Interpretation object in its default output.

Although this output displays as y, it will evaluate as x.

In[17]:= Interpretation@y, xD

Out[17]= y

Copying and pasting the previous output will reference the value earlier assigned to x.

In[18]:= 2 y

Out[18]= 6

Notebooks and Documents 73

Output Formats for Numbers

ScientificForm@exprD print all numbers in scientific notation

EngineeringForm@exprD print all numbers in engineering notation (exponents
divisible by 3)

AccountingForm@exprD print all numbers in standard accounting format

Output formats for numbers.

These numbers are given in the default output format. Large numbers are given in scientific
notation.

In[1]:= 86.7^-4, 6.7^6, 6.7^8<

Out[1]= 90.00049625, 90458.4, 4.06068µ106=

This gives all numbers in scientific notation.

In[2]:= ScientificForm@%D

Out[2]//ScientificForm=

94.9625µ10-4, 9.04584µ104, 4.06068µ106=

This gives the numbers in engineering notation, with exponents arranged to be multiples of
three.

In[3]:= EngineeringForm@%D

Out[3]//EngineeringForm=
9496.25µ10-6, 90.4584µ103, 4.06068µ106=

In accounting form, negative numbers are given in parentheses, and scientific notation is never
used.

In[4]:= AccountingForm@85.6, -6.7, 10.^7<D

Out[4]//AccountingForm=
85.6, H6.7L, 10000000.<

NumberForm@expr,totD print at most tot digits of all approximate real numbers in
expr

ScientificForm@expr,totD use scientific notation with at most tot digits

EngineeringForm@expr,totD use engineering notation with at most tot digits

Controlling the printed precision of real numbers.

74 Notebooks and Documents

Here is p9 to 30 decimal places.

In[5]:= N@Pi^9, 30D

Out[5]= 29809.0993334462116665094024012

This prints just 10 digits of p9.

In[6]:= NumberForm@%, 10D

Out[6]//NumberForm= 29809.09933

This gives 12 digits, in engineering notation.

In[7]:= EngineeringForm@%, 12D

Out[7]//EngineeringForm=

29.8090993334µ103

option name default value
DigitBlock Infinity maximum length of blocks of digits

between breaks
NumberSeparator 8","," "< strings to insert at breaks between blocks

of digits to the left and right of a decimal
point

NumberPoint "." string to use for a decimal point
NumberMultiplier "î@TimesD" string to use for the multiplication sign in

scientific notation
NumberSigns 8"-",""< strings to use for signs of negative and

positive numbers
NumberPadding 8"",""< strings to use for padding on the left and

right
SignPadding False whether to insert padding after the sign
NumberFormat Automatic function to generate final format of number
ExponentFunction Automatic function to determine the exponent to use

Options for number formatting.

All the options in the table except the last one apply to both integers and approximate real

numbers.

All the options can be used in any of the functions NumberForm, ScientificForm ,

EngineeringForm and AccountingForm . In fact, you can in principle reproduce the behavior of

any one of these functions simply by giving appropriate option settings in one of the others.

The default option settings listed in the table are those for NumberForm.

Notebooks and Documents 75

Setting DigitBlock -> n breaks digits into blocks of length n.

In[8]:= NumberForm@30!, DigitBlock -> 3D

Out[8]//NumberForm= 265,252,859,812,191,058,636,308,480,000,000

You can specify any string to use as a separator between blocks of digits.

In[9]:= NumberForm@30!, DigitBlock -> 5, NumberSeparator -> " "D

Out[9]//NumberForm= 265 25285 98121 91058 63630 84800 00000

This gives an explicit plus sign for positive numbers, and uses » in place of a decimal point.

In[10]:= NumberForm@84.5, -6.8<, NumberSigns -> 8"-", "+"<, NumberPoint -> "»"D

Out[10]//NumberForm=
8+4»5, -6»8<

When Mathematica prints an approximate real number, it has to choose whether scientific

notation should be used, and if so, how many digits should appear to the left of the decimal

point. What Mathematica does is first to find out what the exponent would be if scientific nota-

tion were used, and one digit were given to the left of the decimal point. Then it takes this

exponent, and applies any function given as the setting for the option ExponentFunction. This

function should return the actual exponent to be used, or Null if scientific notation should not

be used.

The default is to use scientific notation for all numbers with exponents outside the range -5 to
5.

In[11]:= 88.^5, 11.^7, 13.^9<

Out[11]= 932768., 1.94872µ107, 1.06045µ1010=

This uses scientific notation only for numbers with exponents of 10 or more.

In[12]:= NumberForm@%, ExponentFunction -> HIf@-10 < Ò < 10, Null, ÒD &LD

Out[12]//NumberForm=

932768., 19487171., 1.06045µ1010=

This forces all exponents to be multiples of 3.

In[13]:= NumberForm@%, ExponentFunction -> H3 Quotient@Ò, 3D &LD

Out[13]//NumberForm=
932.768µ103, 19.4872µ106, 10.6045µ109=

Having determined what the mantissa and exponent for a number should be, the final step is to

assemble these into the object to print. The option NumberFormat allows you to give an arbi-

trary function which specifies the print form for the number. The function takes as arguments

three strings: the mantissa, the base, and the exponent for the number. If there is no expo-

nent, it is given as "".

76 Notebooks and Documents

Having determined what the mantissa and exponent for a number should be, the final step is to

assemble these into the object to print. The option NumberFormat allows you to give an arbi-

trary function which specifies the print form for the number. The function takes as arguments

three strings: the mantissa, the base, and the exponent for the number. If there is no expo-

nent, it is given as "".

This gives the exponents in Fortran-like “e” format.

In[14]:= NumberForm@85.6^10, 7.8^20<, NumberFormat -> HSequenceForm@Ò1, "e", Ò3D &LD

Out[14]//NumberForm=
83.03305e7, 6.94852e17<

You can use FortranForm to print individual numbers in Fortran format.

In[15]:= FortranForm@7.8^20D

Out[15]//FortranForm=
6.94851587086215e17/

PaddedForm@expr,totD print with all numbers having room for tot digits, padding
with leading spaces if necessary

PaddedForm@expr,8tot, frac<D print with all numbers having room for tot digits, with
exactly frac digits to the right of the decimal point

NumberForm@expr,8tot, frac<D print with all numbers having at most tot digits, exactly
frac of them to the right of the decimal point

Column@8expr1,expr2,…<D print with the expri left aligned in a column

Controlling the alignment of numbers in output.

Whenever you print a collection of numbers in a column or some other definite arrangement,

you typically need to be able to align the numbers in a definite way. Usually you want all the

numbers to be set up so that the digit corresponding to a particular power of 10 always appears

at the same position within the region used to print a number.

You can change the positions of digits in the printed form of a number by “padding” it in various

ways. You can pad on the right, typically adding zeros somewhere after the decimal. Or you can

pad on the left, typically inserting spaces in place of leading zeros.

This pads with spaces to make room for up to 7 digits in each integer.

In[16]:= PaddedForm@8456, 12345, 12<, 7D

Out[16]//PaddedForm=
8 456, 12345, 12<

This creates a column of integers.

Notebooks and Documents 77

This creates a column of integers.

In[17]:= PaddedForm@Column@8456, 12345, 12<D, 7D

Out[17]//PaddedForm=
456

12345
12

This prints each number with room for a total of 7 digits, and with 4 digits to the right of the
decimal point.

In[18]:= PaddedForm@8-6.7, 6.888, 6.99999<, 87, 4<D

Out[18]//PaddedForm=
8 -6.7000, 6.8880, 7.0000<

In NumberForm, the 7 specifies the maximum precision, but does not make Mathematica pad
with spaces.

In[19]:= NumberForm@8-6.7, 6.888, 6.99999<, 87, 4<D

Out[19]//NumberForm=
8-6.7000, 6.8880, 7.0000<

If you set the option SignPadding -> True, Mathematica will insert leading spaces after the
sign.

In[20]:= PaddedForm@8-6.7, 6.888, 6.99999<, 87, 4<, SignPadding -> TrueD

Out[20]//PaddedForm=
8- 6.7000, 6.8880, 7.0000<

Only the mantissa portion is aligned when scientific notation is used.

In[21]:= PaddedForm@Column@86.7 µ 10^8, 48.7, -2.3 10^-16<D, 84, 2<D

Out[21]//PaddedForm=

6.70µ108

48.70

-2.30µ10-16

With the default setting for the option NumberPadding, both NumberForm and PaddedForm insert

trailing zeros when they pad a number on the right. You can use spaces for padding on both the

left and the right by setting NumberPadding -> 8" ", " "<.

This uses spaces instead of zeros for padding on the right.

In[22]:= PaddedForm@8-6.7, 6.888, 6.99999<, 87, 4<, NumberPadding -> 8" ", " "<D

Out[22]//PaddedForm=
8 -6.7 , 6.888 , 7. <

78 Notebooks and Documents

BaseForm@expr,bD print with all numbers given in base b

Printing numbers in other bases.

This prints a number in base 2.

In[23]:= BaseForm@2342424, 2D

Out[23]//BaseForm= 10001110111110000110002

In bases higher than 10, letters are used for the extra digits.

In[24]:= BaseForm@242345341, 16D

Out[24]//BaseForm= e71e57d16

BaseForm also works with approximate real numbers.

In[25]:= BaseForm@2.3, 2D

Out[25]//BaseForm= 10.0100110011001100112

You can even use BaseForm for numbers printed in scientific notation.

In[26]:= BaseForm@2.3 µ 10^8, 2D

Out[26]//BaseForm= 1.10110110101100001012 µ2
27

"Digits in Numbers" discusses how to enter numbers in arbitrary bases, and also how to get

lists of the digits in a number.

Tables and Matrices

Column@listD typeset as a column of elements

Grid@listD typeset as a grid of elements

TableForm@listD print in tabular form

Formatting lists as tables and matrices.

Here is a list.

In[1]:= Table@Hi + 45L^j, 8i, 3<, 8j, 3<D

Out[1]= 8846, 2116, 97336<, 847, 2209, 103823<, 848, 2304, 110592<<

Notebooks and Documents 79

Grid gives the list typeset in a tabular format.

In[2]:= Grid@%D

Out[2]=
46 2116 97336
47 2209 103823
48 2304 110592

TableForm displays the list in a tabular format.

In[3]:= TableForm@%%D

Out[3]//TableForm=
46 2116 97336
47 2209 103823
48 2304 110592

Grid and Column are wrappers which do not evaluate, but typeset their contents into appropri-

ate forms. They are typesetting constructs and require a front end to render correctly.

Column is a shorthand for a Grid with one column.

In[4]:= Column@Range@5DD

Out[4]=

1
2
3
4
5

The FullForm of a Grid or Column demonstrates that the head is inert.

In[5]:= FullForm@%D

Out[5]//FullForm= Column@List@1, 2, 3, 4, 5DD

All of these wrappers can be used to present any kind of data, including graphical data.

In[6]:= Grid@88"disk", Graphics@Disk@D, ImageSize Ø 25D<,
8"square", Graphics@Rectangle@D, ImageSize Ø 25D<<D

Out[6]=
disk

square

80 Notebooks and Documents

PaddedFormAColumn@listD,totE print a column with all numbers padded to have room for
tot digits

PaddedFormAGrid@listD,totE print a table with all numbers padded to have room for tot
digits

PaddedFormAGrid@listD,8tot, frac<E put frac digits to the right of the decimal point in all approxi-
mate real numbers

Printing tables of numbers.

Here is a list of numbers.

In[7]:= fac = 810!, 15!, 20!<

Out[7]= 83628800, 1307674368000, 2432902008176640000<

Column displays the list in a column.

In[8]:= Column@facD

Out[8]=
3628800
1307674368000
2432902008176640000

This aligns the numbers by padding each one to leave room for up to 20 digits.

In[9]:= PaddedForm@Column@facD, 20D

Out[9]//PaddedForm=
3628800

1307674368000
2432902008176640000

In this particular case, you could also align the numbers using the Alignment option.

In[10]:= Column@fac, Alignment -> 8Right<D

Out[10]=
3628800

1307674368000
2432902008176640000

This lines up the numbers, padding each one to have room for 8 digits, with 5 digits to the right
of the decimal point.

In[11]:= PaddedForm@Column@86.7, 6.888, 6.99999<D, 88, 5<D

Out[11]//PaddedForm=
6.70000
6.88800
6.99999

Notebooks and Documents 81

SpanFromLeft span from the element on the left

SpanFromAbove span from the element above

SpanFromBoth span from the element above and to the left

Symbols used to represent spanning in Grid.

Grid takes a rectangular matrix as its first argument. Individual elements of the Grid can span

across multiple rows, columns, or a rectangular subgrid by specifying the areas to be spanned.

The spanning element is always specified in the upper left-hand corner of the spanning area,

and the remaining area is filled in with the appropriate spanning symbols.

This shows a spanning row, where the spanning portion is filled in using SpanFromLeft.

In[12]:= Grid@88"t", SpanFromLeft, SpanFromLeft, SpanFromLeft<, 8"a", "b", "c", "d"<<D

Out[12]=
t

a b c d

Similarly, a column can be spanned using SpanFromAbove.

In[13]:= Grid@88"t", "a"<, 8SpanFromAbove, "b"<<D

Out[13]=
t a

b

When specifying a rectangular spanning area, SpanFromBoth is used in every element which is
both below and to the right of the spanning element.

In[14]:= Grid@88"t", SpanFromLeft, "a"<,
8SpanFromAbove, SpanFromBoth, "b"<, 8"c", "d", "e"<<D

Out[14]=
t a

b
c d e

option default value
Background None what background colors to use
BaselinePosition Automatic what to align with a surrounding text

baseline
BaseStyle 8< base style specifications for the grid
Frame None where to draw frames in the grid
FrameStyle Automatic style to use for frames

Some options which affect the behavior of a Grid as a whole.

82 Notebooks and Documents

The Frame option can specify a frame around the entire Grid.

In[15]:= Grid@88"a", "b"<, 8"c", "d"<<, Frame Ø TrueD

Out[15]=
a b
c d

This uses FrameStyle to change the appearance of a frame.

In[16]:= Grid@88"a", "b"<, 8"c", "d"<<, Frame Ø True,
FrameStyle Ø 8Brown, AbsoluteThickness@5D<D

Out[16]=
a b
c d

This uses Background to specify a background color for the entire Grid.

In[17]:= Grid@88"a", "b"<, 8"c", "d"<<, Background Ø Pink, Frame Ø TrueD

Out[17]=
a b
c d

The position of a Grid relative to its surroundings can be controlled using the
BaselinePosition option.

In[18]:= Row@8"A matrix:", Grid@881, 2<, 83, 4<<, BaselinePosition Ø TopD<D

Out[18]= A matrix:
1 2
3 4

This aligns the bottom of the grid with the baseline.

In[19]:= Row@8"A matrix:", Grid@881, 2<, 83, 4<<, BaselinePosition Ø BottomD<D

Out[19]= A matrix:

1 2
3 4

This sets the base style of the entire Grid to be the Subsection style.

In[20]:= Grid@88"a", "bit"<, 8"of", "text"<<, BaseStyle Ø 8"Subsection"<D

Out[20]=
a bit
of text

Notebooks and Documents 83

Column is a shorthand for specifying a Grid with one column. Since the two functions are simi-

lar, the same options can be used for each one.

This sets some Grid options for Column.

In[21]:= Column@81, 2, 3, 4<, Background Ø Pink, Frame Ø TrueD

Out[21]=

1
2
3
4

option default value
Alignment 9Center,

Baseline=
horizontal and vertical alignment of items

Dividers None where to draw divider lines in the grid
ItemSize Automatic width and height of each item
ItemStyle None styles for columns and rows
Spacings 80.8,0.1< horizontal and vertical spacings

Some options which affect the columns and rows of a Grid.

The options for Grid which affect individual rows and columns all share a similar syntax. The

options can be specified as 8x, y<, where x applies to all of the columns and y applies to all of the

rows; x and y can be single values, or they can be a list of values which represent each column

or row in turn.

With no Alignment setting, elements align to the center horizontally and on the baseline
vertically.

In[22]:= Grid@88"ten", 10!<, 8"twenty", 20!<<D

Out[22]=
ten 3628800

twenty 2432902008176640000

This changes the horizontal alignment of columns to be on the right.

In[23]:= Grid@88"ten", 10!<, 8"twenty", 20!<<, Alignment Ø 8Right, Baseline<D

Out[23]=
ten 3628800

twenty 2432902008176640000

This sets the horizontal alignment of each column separately.

In[24]:= Grid@88"ten", 10!<, 8"twenty", 20!<<, Alignment Ø 88Left, Right<, Baseline<D

Out[24]=
ten 3628800
twenty 2432902008176640000

When Background or ItemStyle options specify distinct settings for rows and columns, the

front end will attempt to combine the settings where the rows and columns overlap.

84 Notebooks and Documents

When Background or ItemStyle options specify distinct settings for rows and columns, the

front end will attempt to combine the settings where the rows and columns overlap.

This shows how the green row combines with columns of various colors.

In[25]:= Grid@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<,
Background Ø 88Orange, None, Cyan<, 8None, Green, None<<D

Out[25]=
1 2 3
4 5 6
7 8 9

This example shows how ItemStyle can combine styles specified in both rows and columns.

In[26]:= Grid@881, 2<, 83, 4<<, ItemStyle Ø 88Red, Automatic<, 8Bold, Italic<<D

Out[26]=
1 2
3 4

To repeat an individual row or column specification over multiple rows or columns, wrap it in a

list. The repeated element will be used as often as necessary. If you wrap multiple elements in

a list, the entire list will be repeated in sequence.

The red divider is repeated.

In[27]:= Grid@881, 2, 3, 4, 5, 6<, 87, 8, 9, 10, 11, 12<<,
Dividers Ø 88None, 8Red<, None<, None<D

Out[27]=
1 2 3 4 5 6
7 8 9 10 11 12

Here, red and black dividers are repeated in sequence.

In[28]:= Grid@881, 2, 3, 4, 5, 6<, 87, 8, 9, 10, 11, 12<<,
Dividers Ø 88None, 8Red, Black<, None<, None<D

Out[28]=
1 2 3 4 5 6
7 8 9 10 11 12

The ItemSize and Spacings options take their horizontal measurements in ems and their

vertical measurements in line heights based upon the current font. Both options also can take a

Scaled coordinate, where the coordinate specifies the fraction of the total cell width or window

height. The ItemSize option also allows you to request as much space as is required to fit all of

the elements in the given row or column by using the keyword Full.

This makes all of the items 3 ems wide and 1 line height tall.

In[29]:= Grid@881, 2<, 83, 4<<, Dividers Ø All, ItemSize Ø 83, 1<D

Out[29]=
1 2
3 4

The same example in a new font size will show at a different size.

Notebooks and Documents 85

The same example in a new font size will show at a different size.

In[30]:= Style@Grid@881, 2<, 83, 4<<, Dividers Ø All, ItemSize Ø 83, 1<D, FontSize Ø 18D

Out[30]=
1 2
3 4

The buttons in this example will always be sized to be a quarter of the width of the cell.

In[31]:= Grid@88Button@"Left button"D, Button@"Right button"D<<,
ItemSize Ø 888Scaled@0.25D<<, Full<D

Out[31]= Left button Right button

The first and last settings for Spacings specify one-half of the top and bottom space.

In[32]:= Grid@881, 2<, 83, 4<<, Frame Ø True, Spacings Ø 881, 0, 1<, 81, 1, 1<<D

Out[32]=
12

34

option default value
Alignment 9Center,

Baseline=
horizontal and vertical alignment of items

Background None what background colors to use
BaseStyle 8< base style specifications for the item
Frame None where to draw frames around the item
FrameStyle Automatic style to use for frames
ItemSize Automatic width and height of each item

Some options for Item.

Many of the settings which can be applied to entire rows and columns can also be applied

individually to the elements of a Grid or Column by using the Item wrapper. Item allows you to

change these settings at the granularity of a single item. Settings which are specified at the

Item level always override settings from the Grid or Column as a whole.

This sets item-specific options for the lower left-hand element.

In[33]:= Grid@881, 2<, 8Item@3, Background Ø LightGreen, Frame Ø TrueD, 4<<D

Out[33]=
1 2
3 4

86 Notebooks and Documents

The Background setting for Item overrides the one for the Column.

In[34]:= Column@81, 2, Item@3, Background Ø PinkD<, Background Ø YellowD

Out[34]=
1
2
3

Most of the options to Item take the same settings as their Grid counterparts. However, the

Alignment and ItemSize options, which allow complex row and column settings in Grid, take

only the 8horizontal, vertical< setting in Item.

This specifies a larger item area and how the text should be aligned within it.

In[35]:= Column@8Item@"Some aligned text", Frame Ø True,
ItemSize Ø 815, 3<, Alignment Ø 8Center, Bottom<D, "caption"<D

Out[35]= Some aligned text
caption

The width value of the ItemSize option is used to determine line breaking.

In[36]:= Column@8Item@N@Pi, 20D, ItemSize Ø 810, 2<D, "digits of pi"<D

Out[36]=
3.141592653589793Ö
2385

digits of pi

The ItemSize here specifies a minimum height of 2 line heights, but the item is larger.

In[37]:= Column@8Item@N@Pi, 50D, ItemSize Ø 810, 2<D, "digits of pi"<D

Out[37]=

3.141592653589793Ö
238462643383279Ö
502884197169399Ö
3751

digits of pi

Formatting Higher-Dimensional Data

Column supports one-dimensional data, and Grid supports two-dimensional data. To print

arrays with an arbitrary number of dimensions, you can use TableForm.

Here is the format for a 2×2 array of elements a@i, jD.

In[39]:= TableForm@Array@a, 82, 2<DD

Out[39]//TableForm=
a@1, 1D a@1, 2D
a@2, 1D a@2, 2D

Here is a 2×2×2 array.

Notebooks and Documents 87

Here is a 2×2×2 array.

In[40]:= TableForm@8Array@a, 82, 2<D, Array@b, 82, 2<D<D

Out[40]//TableForm=

a@1, 1D
a@1, 2D

a@2, 1D
a@2, 2D

b@1, 1D
b@1, 2D

b@2, 1D
b@2, 2D

And here is a 2×2×2×2 array.

In[41]:= TableForm@
88Array@a, 82, 2<D, Array@b, 82, 2<D<, 8Array@c, 82, 2<D, Array@d, 82, 2<D<<D

Out[41]//TableForm=

a@1, 1D a@1, 2D
a@2, 1D a@2, 2D

b@1, 1D b@1, 2D
b@2, 1D b@2, 2D

c@1, 1D c@1, 2D
c@2, 1D c@2, 2D

d@1, 1D d@1, 2D
d@2, 1D d@2, 2D

In general, when you print an n-dimensional table, successive dimensions are alternately given

as columns and rows. By setting the option TableDirections -> 8dir1, dir2, …<, where the diri

are Column or Row, you can specify explicitly which way each dimension should be given. By

default, the option is effectively set to 8Column, Row, Column, Row, …<.

The option TableDirections allows you to specify explicitly how each dimension in a multidi-
mensional table should be given.

In[42]:= TableForm@8Array@a, 82, 2<D, Array@b, 82, 2<D<,
TableDirections -> 8Row, Row, Column<D

Out[42]//TableForm=
a@1, 1D
a@1, 2D

a@2, 1D
a@2, 2D

b@1, 1D
b@1, 2D

b@2, 1D
b@2, 2D

TableForm can handle arbitrary “ragged” arrays. It leaves blanks wherever there are no ele-

ments supplied.

TableForm can handle “ragged” arrays.

In[43]:= TableForm@88a, a, a<, 8b, b<<D

Out[43]//TableForm=
a a a
b b

You can include objects that behave as “subtables”.

In[44]:= TableForm@88a, 88p, q<, 8r, s<<, a, a<, 88x, y<, b, b<<D

Out[44]//TableForm=
a p q

r s a a

x
y b b

88 Notebooks and Documents

You can control the number of levels in a nested list to which TableForm goes by setting the

option TableDepth.

This tells TableForm only to go down to depth 2. As a result 8x, y< is treated as a single table
entry.

In[45]:= TableForm@88a, 8x, y<<, 8c, d<<, TableDepth -> 2D

Out[45]//TableForm=
a 8x, y<
c d

option name default value
TableDepth Infinity maximum number of levels to include in

the table
TableDirections 9Column,Row,

Column,…=

whether to arrange dimensions as rows or
columns

TableAlignments 9Left,Bottom,
Left,…=

how to align the entries in each dimension

TableSpacing 81,3,0,1,0,…< how many spaces to put between entries in
each dimension

TableHeadings 9None,None,…= how to label the entries in each dimension

Options for TableForm.

With the option TableAlignments, you can specify how each entry in the table should be

aligned with its row or column. For columns, you can specify Left, Center or Right. For rows,

you can specify Bottom, Center or Top. If you set TableAlignments -> Center, all entries will

be centered both horizontally and vertically. TableAlignments -> Automatic uses the default

choice of alignments.

Entries in columns are by default aligned on the left.

In[46]:= TableForm@8a, bbbb, cccccccc<D

Out[46]//TableForm=
a
bbbb
cccccccc

This centers all entries.

In[47]:= TableForm@8a, bbbb, cccccccc<, TableAlignments -> CenterD

Out[47]//TableForm=
a

bbbb
cccccccc

Notebooks and Documents 89

You can use the option TableSpacing to specify how much horizontal space there should be

between successive columns, or how much vertical space there should be between successive

rows. A setting of 0 specifies that successive objects should abut.

This leaves 6 spaces between the entries in each row, and no space between successive rows.

In[48]:= TableForm@88a, b<, 8ccc, d<<, TableSpacing -> 80, 6<D

Out[48]//TableForm= a b
ccc d

None no labels in any dimension

Automatic successive integer labels in each dimension

88lab11,lab12,…<,…< explicit labels

Settings for the option TableHeadings.

This puts integer labels in a 2×2×2 array.

In[49]:= TableForm@Array@a, 82, 2, 2<D, TableHeadings -> AutomaticD

Out[49]//TableForm=

1 2

1
1 a@1, 1, 1D
2 a@1, 1, 2D

1 a@1, 2, 1D
2 a@1, 2, 2D

2
1 a@2, 1, 1D
2 a@2, 1, 2D

1 a@2, 2, 1D
2 a@2, 2, 2D

This gives a table in which the rows are labeled by integers, and the columns by a list of strings.

In[50]:= TableForm@88a, b, c<, 8ap, bp, cp<<,
TableHeadings -> 8Automatic, 8"first", "middle", "last"<<D

Out[50]//TableForm=
first middle last

1 a b c
2 ap bp cp

This labels the rows but not the columns. TableForm automatically drops the third label since
there is no corresponding row.

In[51]:= TableForm@882, 3, 4<, 85, 6, 1<<,
TableHeadings -> 88"row a", "row b", "row c"<, None<D

Out[51]//TableForm=
row a 2 3 4
row b 5 6 1

90 Notebooks and Documents

Styles and Fonts in Output

Style@expr,optionsD print with the specified style options

Style@expr,"style"D print with the specified cell style

Specifying output styles.

The second x2 is here shown in boldface.

In[1]:= 8x^2, Style@x^2, FontWeight -> "Bold"D<

Out[1]= 9x2, x2=

This shows the word text in font sizes from 10 to 20 points.

In[2]:= Table@Style@"text", FontSize -> sD, 8s, 10, 20<D

Out[2]= :text, text, text, text, text, text, text, text, text, text, text>

This shows the text in the Helvetica font.

In[3]:= Style@"some text", FontFamily -> "Helvetica"D

Out[3]= some text

Style allows an abbreviated form of some options. For options such as FontSize, FontWeight,

FontSlant and FontColor, you can include merely the setting of the option.

Options are specified here in a short form.

In[4]:= Style@"text", 20, ItalicD

Out[4]= text

option typical setting(s)
FontSize 12 size of characters in printer's points
FontWeight "Plain" or "Bold" weight of characters
FontSlant "Plain" or "Italic" slant of characters
FontFamily "Courier" ,

"Times" , "Helvetica"
font family

FontColor GrayLevel@0D color of characters
Background GrayLevel@1D background color for characters

A few options that can be used in Style.

If you use the notebook front end for Mathematica, then each piece of output that is generated

will by default be in the style of the cell in which the output appears. By using

Style@expr, "style"D however, you can tell Mathematica to output a particular expression in a

different style.

Notebooks and Documents 91

If you use the notebook front end for Mathematica, then each piece of output that is generated

will by default be in the style of the cell in which the output appears. By using

Style@expr, "style"D however, you can tell Mathematica to output a particular expression in a

different style.

Here is an expression output in the style normally used for section headings.

In[5]:= Style@x^2 + y^2, "Section"D

Out[5]= x2 + y2

"Cells as Mathematica Expressions" describes in more detail how cell styles work. By using

Style@expr, "style", optionsD you can generate output that is in a particular style, but with cer-

tain options modified.

Representing Textual Forms by Boxes

All textual and graphical forms in Mathematica are ultimately represented in terms of nested

collections of boxes. Typically the elements of these boxes correspond to objects that are to be

placed at definite relative positions in two dimensions.

Here are the boxes corresponding to the expression a + b.

In[1]:= ToBoxes@a + bD

Out[1]= RowBox@8a, +, b<D

DisplayForm shows how these boxes would be displayed.

In[2]:= DisplayForm@%D

Out[2]//DisplayForm= a + b

DisplayForm@boxesD show boxes as they would be displayed

Showing the displayed form of boxes.

This displays three strings in a row.

In[3]:= RowBox@8"a", "+", "b"<D êê DisplayForm

Out[3]//DisplayForm= a + b

92 Notebooks and Documents

This displays one string as a subscript of another.

In[4]:= SubscriptBox@"a", "i"D êê DisplayForm

Out[4]//DisplayForm= ai

This puts two subscript boxes in a row.

In[5]:= RowBox@8SubscriptBox@"a", "1"D, SubscriptBox@"b", "2"D<D êê DisplayForm

Out[5]//DisplayForm= a1 b2

"text" literal text

RowBox@8a,b,…<D a row of boxes or strings a, b, …
GridBox@88a1,b1,…<,8a2,b2,…<,…<D

a grid of boxes

a1 b1 …
a2 b2 …
ª ª

SubscriptBox@a,bD subscript ab

SuperscriptBox@a,bD superscript ab

SubsuperscriptBox@a,b,cD subscript and superscript ab
c

UnderscriptBox@a,bD underscript a
b

OverscriptBox@a,bD overscript a
b

UnderoverscriptBox@a,b,cD underscript and overscript a
b

c

FractionBox@a,bD fraction a
b

SqrtBox@aD square root a

RadicalBox@a,bD bth root a
b

Some basic box types.

This nests a fraction inside a radical.

In[6]:= RadicalBox@FractionBox@x, yD, nD êê DisplayForm

Out[6]//DisplayForm=
x

y
n

Notebooks and Documents 93

This puts a superscript on a subscripted object.

In[7]:= SuperscriptBox@SubscriptBox@a, bD, cD êê DisplayForm

Out[7]//DisplayForm= ab
c

This puts both a subscript and a superscript on the same object.

In[8]:= SubsuperscriptBox@a, b, cD êê DisplayForm

Out[8]//DisplayForm= ab
c

FrameBox@boxD render box with a frame drawn around it

GridBoxAlist,RowLines->TrueE put lines between rows in a GridBox

GridBoxAlist,ColumnLines->TrueE put lines between columns

GridBoxAlist,RowLines->9True,False=E

put a line below the first row, but not subsequent ones

Inserting frames and grid lines.

This shows a fraction with a frame drawn around it.

In[9]:= FrameBox@FractionBox@"x", "y"DD êê DisplayForm

Out[9]//DisplayForm=
x

y

This puts lines between rows and columns of an array.

In[10]:= GridBox@Table@i + j, 8i, 3<, 8j, 3<D,
RowLines -> True, ColumnLines -> TrueD êê DisplayForm

Out[10]//DisplayForm=
2 3 4
3 4 5
4 5 6

And this also puts a frame around the outside.

In[11]:= FrameBox@%D êê DisplayForm

Out[11]//DisplayForm=

2 3 4
3 4 5
4 5 6

94 Notebooks and Documents

StyleBox@boxes,optionsD render boxes with the specified option settings

StyleBox@boxes,"style"D render boxes in the specified style

Modifying the appearance of boxes.

StyleBox takes the same options as Style. The difference is that Style is a high-level function

that applies to an expression to determine how it will be displayed, while StyleBox is the corre-

sponding low-level function in the underlying box structure.

This shows the string "name" in italics.

In[12]:= StyleBox@"name", FontSlant -> "Italic"D êê DisplayForm

Out[12]//DisplayForm=
name

This shows "name" in the style used for section headings in your current notebook.

In[13]:= StyleBox@"name", "Section"D êê DisplayForm

Out[13]//DisplayForm=

name

This uses section heading style, but with characters shown in gray.

In[14]:= StyleBox@"name", "Section", FontColor -> GrayLevel@0.5DD êê DisplayForm

Out[14]//DisplayForm=

name

If you use a notebook front end for Mathematica, then you will be able to change the style and

appearance of what you see on the screen directly by using menu items. Internally, however,

these changes will still be recorded by the insertion of appropriate StyleBox objects.

FormBox@boxes, formD interpret boxes using rules associated with the specified
form

InterpretationBox@boxes,exprD interpret boxes as representing the expression expr

TagBox@boxes,tagD use tag to guide the interpretation of boxes

ErrorBox@boxesD indicate an error and do not attempt further interpretation
of boxes

Controlling the interpretation of boxes.

Notebooks and Documents 95

This prints as x with a superscript.

In[15]:= SuperscriptBox@"x", "2"D êê DisplayForm

Out[15]//DisplayForm=
x2

It is normally interpreted as a power.

In[16]:= ToExpression@%D êê InputForm

Out[16]//InputForm= x^2

This again prints as x with a superscript.

In[17]:= InterpretationBox@SuperscriptBox@"x", "2"D, vec@x, 2DD êê DisplayForm

Out[17]//DisplayForm=

x2

But now it is interpreted as vec@x, 2D, following the specification given in the
InterpretationBox.

In[18]:= ToExpression@%D êê InputForm

Out[18]//InputForm= vec[x, 2]

If you edit the boxes given in an InterpretationBox, then there is no guarantee that the

interpretation specified by the interpretation box will still be correct. As a result, Mathematica

provides various options that allow you to control the selection and editing of

InterpretationBox objects.

option default value
Editable Automatic whether to allow the contents to be edited
Selectable True whether to allow the contents to be selected
Deletable True whether to allow the box to be deleted
DeletionWarning False whether to issue a warning if the box is

deleted
BoxAutoDelete False whether to strip the box if its contents are

modified
StripWrapperBoxes False whether to remove StyleBox etc. from

within boxes in TagBox@boxes, …D

Options for InterpretationBox and related boxes.

TagBox objects are used to store information that will not be displayed but which can neverthe-

less be used by the rules that interpret boxes. Typically the tag in TagBox@boxes, tagD is a symbol

which gives the head of the expression corresponding to boxes. If you edit only the arguments of

this expression then there is a good chance that the interpretation specified by the TagBox will

still be appropriate. As a result, Editable -> True is effectively the default setting for a

TagBox.

96 Notebooks and Documents

TagBox objects are used to store information that will not be displayed but which can neverthe-

less be used by the rules that interpret boxes. Typically the tag in TagBox@boxes, tagD is a symbol

which gives the head of the expression corresponding to boxes. If you edit only the arguments of

this expression then there is a good chance that the interpretation specified by the TagBox will

still be appropriate. As a result, Editable -> True is effectively the default setting for a

TagBox.

The rules that Mathematica uses for interpreting boxes are in general set up to ignore details of

formatting, such as those defined by StyleBox objects. Thus, unless

StripWrapperBoxes -> False, a red x, for example, will normally not be distinguished from an

ordinary black x.

A red x is usually treated as identical to an ordinary one.

In[19]:= ToExpression@StyleBox@x, FontColor -> RGBColor@1, 0, 0DDD == x

Out[19]= True

String Representation of Boxes

Mathematica provides a compact way of representing boxes in terms of strings. This is particu-

larly convenient when you want to import or export specifications of boxes as ordinary text.

This generates an InputForm string that represents the SuperscriptBox.

In[1]:= ToString@SuperscriptBox@"x", "2"D, InputFormD

Out[1]= \Hx\^2\L

This creates the SuperscriptBox.

In[2]:= \Hx \^ 2\L

Out[2]= SuperscriptBox@x, 2D

ToExpression interprets the SuperscriptBox as a power.

In[3]:= ToExpression@%D êê FullForm

Out[3]//FullForm= Power@x, 2D

Notebooks and Documents 97

It is important to distinguish between forms that represent just raw boxes, and forms that

represent the meaning of the boxes.

This corresponds to a raw SuperscriptBox.

In[4]:= \Hx \^ 2\L

Out[4]= SuperscriptBox@x, 2D

This corresponds to the power that the SuperscriptBox represents.

In[5]:= \!\Hx \^ 2\L

Out[5]= x2

The expression generated here is a power.

In[6]:= FullForm@\!\Hx \^ 2\LD

Out[6]//FullForm= Power@x, 2D

îHinputîL raw boxes

î!îHinputîL the meaning of the boxes

Distinguishing raw boxes from the expressions they represent.

If you copy the contents of a StandardForm cell into another program, such as a text editor,

Mathematica will generate a î ! î H… îL form where necessary. This is done so that if you

subsequently paste the form back into Mathematica, the original contents of the StandardForm

cell will automatically be re-created. Without the î !, only the raw boxes corresponding to

these contents would be obtained.

With default settings for options, î ! î H… îL forms pasted into Mathematica notebooks are

automatically displayed in two-dimensional form.

"îHinputîL" a raw character string

"î!îHinputîL" a string containing boxes

Embedding two-dimensional box structures in strings.

Mathematica will usually treat a î H… îL form that appears within a string just like any other

sequence of characters. But by inserting a î ! you can tell Mathematica instead to treat this

form like the boxes it represents. In this way you can therefore embed box structures within

ordinary character strings.

Mathematica treats this as an ordinary character string.

98 Notebooks and Documents

Mathematica treats this as an ordinary character string.

In[7]:= "\H x \^ 2 \L"

Out[7]= \H x \^ 2 \L

The ! î tells Mathematica that this string contains boxes.

In[8]:= "\!\H x \^ 2 \L"

Out[8]= x2

You can mix boxes with ordinary text.

In[9]:= "box 1: \!\Hx\^2\L; box 2: \!\Hy\^3\L"

Out[9]= box 1: x2; box 2: y3

îHbox1,box2,…îL RowBox@box1,box2,…D

box1î^box2 SuperscriptBox@box1,box2D

box1ï_ box2 SubscriptBox@box1,box2D

box1ï_ box2î% box3 SubsuperscriptBox@box1,box2,box3D

box1î& box2 OverscriptBox@box1,box2D

box1î+box2 UnderscriptBox@box1,box2D

box1î+box2î% box3 UnderoverscriptBox@box1,box2,box3D

box1îêbox2 FractionBox@box1,box2D

îübox SqrtBox@boxD

\übox1\%box2 RadicalBox@box1,box2D

formî` box FormBox@box, formD

*input construct boxes from input

Input forms for boxes.

Mathematica requires that any input forms you give for boxes be enclosed within î H and î L.

But within these outermost î H and î L you can use additional î H and î L to specify grouping.

Here ordinary parentheses are used to indicate grouping.

In[10]:= \Hx \ê Hy + zL\L êê DisplayForm

Out[10]//DisplayForm=
x

Hy + zL

Notebooks and Documents 99

Without the parentheses, the grouping would be different.

In[11]:= \Hx \ê y + z\L êê DisplayForm

Out[11]//DisplayForm=
x

y
+ z

î H and î L specify grouping, but are not displayed as explicit parentheses.

In[12]:= \Hx \ê \Hy + z\L\L êê DisplayForm

Out[12]//DisplayForm=
x

y + z

The inner î H and î L lead to the construction of a RowBox.

In[13]:= \Hx \ê \Hy + z\L\L

Out[13]= FractionBox@x, RowBox@8y, +, z<DD

When you type aa + bb as input to Mathematica, the first thing that happens is that aa, + and bb

are recognized as being separate “tokens”. The same separation into tokens is done when

boxes are constructed from input enclosed in î H… îL. However, inside the boxes each token is

given as a string, rather than in its raw form.

The RowBox has aa, + and bb broken into separate strings.

In[14]:= \Haa + bb\L êê FullForm

Out[14]//FullForm= RowBox@List@"aa", "+", "bb"DD

Spaces around the + are by default discarded.

In[15]:= \Haa + bb\L êê FullForm

Out[15]//FullForm= RowBox@List@"aa", "+", "bb"DD

Here two nested RowBox objects are formed.

In[16]:= \Haa + bb ê cc\L êê FullForm

Out[16]//FullForm= RowBox@List@"aa", "+", RowBox@List@"bb", "ê", "cc"DDDD

The same box structure is formed even when the string given does not correspond to a com-
plete Mathematica expression.

In[17]:= \Haa + bb ê\L êê FullForm

Out[17]//FullForm= RowBox@List@"aa", "+", RowBox@List@"bb", "ê"DDDD

Within î H… îL sequences, you can set up certain kinds of boxes by using backslash notations

such as î ^ and î ü. But for other kinds of boxes, you need to give ordinary Mathematica

input, prefaced by î *.

100 Notebooks and Documents

Within î H… îL sequences, you can set up certain kinds of boxes by using backslash notations

such as î ^ and î ü. But for other kinds of boxes, you need to give ordinary Mathematica

input, prefaced by î *.

This constructs a GridBox.

In[18]:= \H*GridBox@88"a", "b"<, 8"c", "d"<<D\L êê DisplayForm

Out[18]//DisplayForm=
a b
c d

This constructs a StyleBox.

In[19]:= \H*StyleBox@"text", FontWeight -> "Bold"D\L êê DisplayForm

Out[19]//DisplayForm=
text

î * in effect acts like an escape: it allows you to enter ordinary Mathematica syntax even

within a î H… îL sequence. Note that the input you give after a î * can itself in turn contain

î H… îL sequences.

You can alternate nested î * and î H… îL. Explicit quotes are needed outside of î H… îL.

In[20]:= \Hx + *GridBox@88"a", "b"<,
8\Hc \^ 2\L, \Hd \ê *GridBox@88"x", "y"<, 8"x", "y"<<D\L<<D\L êê DisplayForm

Out[20]//DisplayForm=

x +

a b

c2 d
x y
x y

î!îHinputîL interpret input in the current form

î!îH formî`inputîL interpret input using the specified form

Controlling the way input is interpreted.

In a StandardForm cell, this will be interpreted in StandardForm, yielding a product.

In[21]:= \!\Hc H1 + xL\L

Out[21]= c H1 + xL

The backslash backquote sequence tells Mathematica to interpret this in TraditionalForm.

In[22]:= \!\HTraditionalForm \` c H1 + xL\L

Out[22]= c@1 + xD

When you copy the contents of a cell from a notebook into a program such as a text editor, no

explicit backslash backquote sequence is usually included. But if you expect to paste what you

get back into a cell of a different type from the one it came from, then you will typically need to

include a backslash backquote sequence in order to ensure that everything is interpreted

correctly.

Notebooks and Documents 101

When you copy the contents of a cell from a notebook into a program such as a text editor, no

explicit backslash backquote sequence is usually included. But if you expect to paste what you

get back into a cell of a different type from the one it came from, then you will typically need to

include a backslash backquote sequence in order to ensure that everything is interpreted

correctly.

Converting between Strings, Boxes and Expressions

ToString@expr, formD create a string representing the specified textual form of
expr

ToBoxes@expr, formD create boxes representing the specified textual form of expr

ToExpression@input, formD create an expression by interpreting a string or boxes as
input in the specified textual form

ToString@exprD create a string using OutputForm

ToBoxes@exprD create boxes using StandardForm

ToExpression@inputD create an expression using StandardForm

Converting between strings, boxes and expressions.

Here is a simple expression.

In[1]:= x^2 + y^2

Out[1]= x2 + y2

This gives the InputForm of the expression as a string.

In[2]:= ToString@x^2 + y^2, InputFormD

Out[2]= x^2 + y^2

In FullForm explicit quotes are shown around the string.

In[3]:= FullForm@%D

Out[3]//FullForm= "x^2 + y^2"

This gives a string representation for the StandardForm boxes that correspond to the expres-
sion.

In[4]:= ToString@x^2 + y^2, StandardFormD êê FullForm

Out[4]//FullForm= "\!\Hx\^2 + y\^2\L"

102 Notebooks and Documents

ToBoxes yields the boxes themselves.

In[5]:= ToBoxes@x^2 + y^2, StandardFormD

Out[5]= RowBox@8SuperscriptBox@x, 2D, +, SuperscriptBox@y, 2D<D

In generating data for files and external programs, it is sometimes necessary to produce two-

dimensional forms which use only ordinary keyboard characters. You can do this using

OutputForm.

This produces a string which gives a two-dimensional rendering of the expression, using only
ordinary keyboard characters.

In[6]:= ToString@x^2 + y^2, OutputFormD

Out[6]= 2 2
x + y

The string consists of two lines, separated by an explicit î n newline.

In[7]:= FullForm@%D

Out[7]//FullForm= " 2 2\nx + y"

The string looks right only in a monospaced font.

In[8]:= Style@%, FontFamily -> "Times"D

Out[8]= 2 2
x + y

If you operate only with one-dimensional structures, you can effectively use ToString to do

string manipulation with formatting functions.

This generates a string corresponding to the OutputForm of StringForm.

In[9]:= ToString@StringForm@"``^10 = ``", 4, 4^10DD êê InputForm

Out[9]//InputForm= "4^10 = 1048576"

InputForm strings corresponding to keyboard input

StandardForm strings or boxes corresponding to standard two-dimen -
sional input (default)

TraditionalForm strings or boxes mimicking traditional mathematical
notation

Some forms handled by ToExpression.

Notebooks and Documents 103

This creates an expression from an InputForm string.

In[10]:= ToExpression@"x^2 + y^2"D

Out[10]= x2 + y2

This creates the same expression from StandardForm boxes.

In[11]:= ToExpression@RowBox@8SuperscriptBox@"x", "2"D, "+", SuperscriptBox@"y", "2"D<DD

Out[11]= x2 + y2

In TraditionalForm these are interpreted as functions.

In[12]:= ToExpression@"cH1 + xL + logHxL", TraditionalFormD

Out[12]= c@1 + xD + Log@xD

ToExpression@input, form,hD create an expression, then wrap it with head h

Creating expressions wrapped with special heads.

This creates an expression, then immediately evaluates it.

In[13]:= ToExpression@"1 + 1"D

Out[13]= 2

This creates an expression using StandardForm rules, then wraps it in Hold.

In[14]:= ToExpression@"1 + 1", StandardForm, HoldD

Out[14]= Hold@1 + 1D

You can get rid of the Hold using ReleaseHold .

In[15]:= ReleaseHold@%D

Out[15]= 2

SyntaxQ@"string"D determine whether a string represents syntactically correct
Mathematica input

SyntaxLength@"string"D find out how long a sequence of characters starting at the
beginning of a string is syntactically correct

Testing correctness of strings as input.

ToExpression will attempt to interpret any string as Mathematica input. But if you give it a

string that does not correspond to syntactically correct input, then it will print a message, and

return $Failed.

104 Notebooks and Documents

ToExpression will attempt to interpret any string as Mathematica input. But if you give it a

string that does not correspond to syntactically correct input, then it will print a message, and

return $Failed.

This is not syntactically correct input, so ToExpression does not convert it to an expression.

In[16]:= ToExpression@"1 +ê+ 2"D

ToExpression::sntx: Syntax error in or before "1 +/+ 2". ^

Out[16]= $Failed

ToExpression requires that the string correspond to a complete Mathematica expression.

In[17]:= ToExpression@"1 + 2 + "D

ToExpression::sntxi: Incomplete expression; more input is needed.

Out[17]= $Failed

You can use the function SyntaxQ to test whether a particular string corresponds to syntacti-

cally correct Mathematica input. If SyntaxQ returns False, you can find out where the error

occurred using SyntaxLength. SyntaxLength returns the number of characters which were

successfully processed before a syntax error was detected.

SyntaxQ shows that this string does not correspond to syntactically correct Mathematica input.

In[18]:= SyntaxQ@"1 +ê+ 2"D

Out[18]= False

SyntaxLength reveals that an error was detected after the third character in the string.

In[19]:= SyntaxLength@"1 +ê+ 2"D

Out[19]= 3

Here SyntaxLength returns a value greater than the length of the string, indicating that the
input was correct so far as it went, but needs to be continued.

In[20]:= SyntaxLength@"1 + 2 + "D

Out[20]= 10

Notebooks and Documents 105

The Syntax of the Mathematica Language

Mathematica uses various syntactic rules to interpret input that you give, and to convert strings

and boxes into expressions. The version of these rules that is used for StandardForm and

InputForm in effect defines the basic Mathematica language. The rules used for other forms,

such as TraditionalForm, follow the same overall principles, but differ in many details.

a , xyz , a b g symbols

"some text" , " a+b " strings

123.456 , 3.µ1045 numbers

+, ->, ≠ operators

H*comment*L input to be ignored

Types of tokens in the Mathematica language.

When you give text as input to Mathematica, the first thing that Mathematica does is to break

the text into a sequence of tokens, with each token representing a separate syntactic unit.

Thus, for example, if you give the input xx + yy - zzzz, Mathematica will break this into the

sequence of tokens xx, +, yy, - and zzzz. Here xx, yy and zzzz are tokens that correspond to

symbols, while + and - are operators.

Operators are ultimately what determine the structure of the expression formed from a particu-

lar piece of input. The Mathematica language involves several general classes of operators,

distinguished by the different positions in which they appear with respect to their operands.

prefix !x Not@xD
postfix x! Factorial@xD
infix x+y+z Plus@x,y,zD
matchfix 8x,y,z< List@x,y,zD
compound xê:y=z TagSet@x,y,zD
overfix x` OverHat@xD

Examples of classes of operators in the Mathematica language.

Operators typically work by picking up operands from definite positions around them. But when

a string contains more than one operator, the result can in general depend on which operator

picks up its operands first.

Thus, for example, a * b + c could potentially be interpreted either as Ha * bL + c or as a * Hb + cL

depending on whether * or + picks up its operands first.

106 Notebooks and Documents

Thus, for example, a * b + c could potentially be interpreted either as Ha * bL + c or as a * Hb + cL

depending on whether * or + picks up its operands first.

To avoid such ambiguities, Mathematica assigns a precedence to each operator that can

appear. Operators with higher precedence are then taken to pick up their operands first.

Thus, for example, the multiplication operator * is assigned higher precedence than +, so that it

picks up its operands first, and a * b + c is interpreted as Ha * bL + c rather than a * Hb + cL.

The * operator has higher precedence than +, so in both cases Times is the innermost func-
tion.

In[1]:= 8FullForm@a * b + cD, FullForm@a + b * cD<

Out[1]= 8Plus@Times@a, bD, cD, Plus@a, Times@b, cDD<

The êê operator has rather low precedence.

In[2]:= a * b + c êê f

Out[2]= f@a b + cD

The ü operator has high precedence.

In[3]:= füa * b + c

Out[3]= c + b f@aD

Whatever the precedence of the operators you are using, you can always specify the structure

of the expressions you want to form by explicitly inserting appropriate parentheses.

Inserting parentheses makes Plus rather than Times the innermost function.

In[4]:= FullForm@a * Hb + cLD

Out[4]//FullForm= Times@a, Plus@b, cDD

Notebooks and Documents 107

Extensions of symbol names x_ , Ò2 , e::s , etc.

Function application variants e@eD , eüüe , etc.

Power-related operators
,e , e^e , etc.

Multiplication-related operators “e , eêe , e⊗e , ee , etc.

Addition-related operators e⊕e , e+e , e ‹e , etc.

Relational operators e==e , e~e , eae , e2e , eœe , etc.

Arrow and vector operators eöe , eâe , eFe , e) e , etc.

Logic operators "ee , e&&e , eÍe , e¢e , etc.

Pattern and rule operators e.. , e e , e->e , eê.e , etc.

Pure function operator e&

Assignment operators e=e , e:=e , etc.

Compound expression e;e

Outline of operators in order of decreasing precedence.

The table in "Operator Input Forms" gives the complete ordering by precedence of all operators

in Mathematica. Much of this ordering, as in the case of * and +, is determined directly by

standard mathematical usage. But in general the ordering is simply set up to make it less likely

for explicit parentheses to have to be inserted in typical pieces of input.

Operator precedences are such that this requires no parentheses.

In[5]:= "x $y x ⊗ y ê yÏ m ≠ 0 fl n E m

Out[5]= Implies@"x H$y x⊗y ê yL && m ≠ 0, n E mD

FullForm shows the structure of the expression that was constructed.

In[6]:= FullForm@%D

Out[6]//FullForm= Implies@And@ForAll@x, Exists@y, Succeeds@CircleTimes@x, yD, yDDD, Unequal@m, 0DD,
NotRightTriangleBar@n, mDD

Note that the first and second forms here are identical; the third requires explicit parentheses.

In[7]:= 8x -> Ò^2 &, Hx -> Ò^2L &, x -> HÒ^2 &L<

Out[7]= 9x Ø Ò12 &, x Ø Ò12 &, x Ø IÒ12 &M=

flat x+y+z x+y+z
left grouping xêyêz HxêyLêz
right grouping x^y^z x^Hy^zL

Types of grouping for infix operators.

Plus is a Flat function, so no grouping is necessary here.

108 Notebooks and Documents

Plus is a Flat function, so no grouping is necessary here.

In[8]:= FullForm@a + b + c + dD

Out[8]//FullForm= Plus@a, b, c, dD

Power is not Flat, so the operands have to be grouped in pairs.

In[9]:= FullForm@a^b^c^dD

Out[9]//FullForm= Power@a, Power@b, Power@c, dDDD

The syntax of the Mathematica language is defined not only for characters that you can type on

a typical keyboard, but also for all the various special characters that Mathematica supports.

Letters such as g,  and ¡ from any alphabet are treated just like ordinary English letters, and

can for example appear in the names of symbols. The same is true of letter-like forms such as

¶, — and —.

But many other special characters are treated as operators. Thus, for example, ⊕ and ù are

infix operators, while Ÿ is a prefix operator, and X and \ are matchfix operators.

⊕ is an infix operator.

In[10]:= a ⊕ b ⊕ c êê FullForm

Out[10]//FullForm= CirclePlus@a, b, cD

µ is an infix operator which means the same as *.

In[11]:= a µ a µ a µ b µ b µ c

Out[11]= a3 b2 c

Some special characters form elements of fairly complicated compound operators. Thus, for

example, Ÿ f „ x contains the compound operator with elements Ÿ and „.

The Ÿ and „ form parts of a compound operator.

In[12]:= ‡ k@xD „x êê FullForm

Out[12]//FullForm= Integrate@k@xD, xD

Notebooks and Documents 109

No parentheses are needed here: the “inner precedence” of Ÿ … „ is lower than Times.

In[13]:= ‡ a@xD b@xD „x + c@xD

Out[13]= c@xD + ‡ a@xD b@xD „x

Parentheses are needed here, however.

In[14]:= ‡ Ha@xD + b@xDL „x + c@xD

Out[14]= c@xD + ‡ Ha@xD + b@xDL „x

Input to Mathematica can be given not only in the form of one-dimensional strings, but also in

the form of two-dimensional boxes. The syntax of the Mathematica language covers not only

one-dimensional constructs but also two-dimensional ones.

This superscript is interpreted as a power.

In[15]:= xa+b

Out[15]= xa+b

∂x f is a two-dimensional compound operator.

In[16]:= ∂xxn

Out[16]= n x-1+n

⁄ is part of a more complicated two-dimensional compound operator.

In[17]:= ‚
n=1

¶ 1

ns

Out[17]= Zeta@sD

The ⁄ operator has higher precedence than +.

In[18]:= ‚
n=1

¶ 1

ns
+ n

Out[18]= n + Zeta@sD

110 Notebooks and Documents

Operators without Built-in Meanings

When you enter a piece of input such as 2 + 2, Mathematica first recognizes the + as an opera-

tor and constructs the expression Plus@2, 2D, then uses the built-in rules for Plus to evaluate

the expression and get the result 4.

But not all operators recognized by Mathematica are associated with functions that have built-in

meanings. Mathematica also supports several hundred additional operators that can be used in

constructing expressions, but for which no evaluation rules are initially defined.

You can use these operators as a way to build up your own notation within the Mathematica

language.

The ⊕ is recognized as an infix operator, but has no predefined value.

In[1]:= 2 ⊕ 3 êê FullForm

Out[1]//FullForm= CirclePlus@2, 3D

In StandardForm, ⊕ prints as an infix operator.

In[2]:= 2 ⊕ 3

Out[2]= 2⊕3

You can define a value for ⊕.

In[3]:= x_ ⊕ y_ := Mod@x + y, 2D

Now ⊕ is not only recognized as an operator, but can also be evaluated.

In[4]:= 2 ⊕ 3

Out[4]= 1

x⊕y CirclePlus@x,yD

xºy TildeTilde@x,yD

x\y Therefore@x,yD

x¨y LeftRightArrow@x,yD

“x Del@xD

Ñx Square@xD

Xx,y,…\ AngleBracket@x,y,…D

A few Mathematica operators corresponding to functions without predefined values.

Mathematica follows the general convention that the function associated with a particular opera-

tor should have the same name as the special character that represents that operator.

Notebooks and Documents 111

Mathematica follows the general convention that the function associated with a particular opera-

tor should have the same name as the special character that represents that operator.

î[Congruent] is displayed as ª.

In[5]:= x ª y

Out[5]= x ª y

It corresponds to the function Congruent.

In[6]:= FullForm@%D

Out[6]//FullForm= Congruent@x, yD

x \@nameD y name[x, y]

î@nameD x name[x]

î@Left nameD x,y,… î@Right nameD name[x, y, …]

The conventional correspondence in Mathematica between operator names and function names.

You should realize that even though the functions CirclePlus and CircleTimes do not have

built-in evaluation rules, the operators ⊕ and ⊗ do have built-in precedences. "Operator Input

Forms" lists all the operators recognized by Mathematica, in order of their precedence.

The operators ⊗ and ⊕ have definite precedences~with ⊗ higher than ⊕.

In[7]:= x ⊗ y ⊕ z êê FullForm

Out[7]//FullForm= Mod@Plus@z, CircleTimes@x, yDD, 2D

112 Notebooks and Documents

xy Subscript@x,yD

x+ SubPlus@xD

x- SubMinus@xD

x* SubStar@xD

x+ SuperPlus@xD

x- SuperMinus@xD

x* SuperStar@xD

x† SuperDagger@xD

x
y

Overscript@x,yD

x
y

Underscript@x,yD

x OverBar@xD

x” OverVector@xD

xè OverTilde@xD

x` OverHat@xD

x° OverDot@xD

x UnderBar@xD

Some two-dimensional forms without built-in meanings.

Subscripts have no built-in meaning in Mathematica.

In[8]:= x2 + y2 êê InputForm

Out[8]//InputForm= Subscript[x, 2] + Subscript[y, 2]

Most superscripts are however interpreted as powers by default.

In[9]:= x2 + y2 êê InputForm
Out[9]//InputForm= x^2 + y^2

A few special superscripts are not interpreted as powers.

In[10]:= x† + y+ êê InputForm
Out[10]//InputForm= SuperDagger[x] + SuperPlus[y]

Bar and hat are interpreted as OverBar and OverHat.

In[11]:= x + y` êê InputForm
Out[11]//InputForm= OverBar[x] + OverHat[y]

Defining Output Formats

Notebooks and Documents 113

Defining Output Formats

Just as Mathematica allows you to define how expressions should be evaluated, so also it allows

you to define how expressions should be formatted for output. The basic idea is that whenever

Mathematica is given an expression to format for output, it first calls Format@exprD to find out

whether any special rules for formatting the expression have been defined. By assigning a value

to Format@exprD you can therefore tell Mathematica that you want a particular kind of expres-

sion to be output in a special way.

This tells Mathematica to format bin objects in a special way.

In[1]:= Format@bin@x_, y_DD := MatrixForm@88x<, 8y<<D

Now bin objects are output to look like binomial coefficients.

In[2]:= bin@i + j, kD

Out[2]=
i + j
k

Internally, however, bin objects are still exactly the same.

In[3]:= FullForm@%D

Out[3]//FullForm= bin@Plus@i, jD, kD

Format@expr1D:=expr2 define expr1 to be formatted like expr2
Format@expr1, formD:=expr2 give a definition only for a particular output form

Defining your own rules for formatting.

By making definitions for Format, you can tell Mathematica to format a particular expression so

as to look like another expression. You can also tell Mathematica to run a program to determine

how a particular expression should be formatted.

This specifies that Mathematica should run a simple program to determine how xrep objects
should be formatted.

In[4]:= Format@xrep@n_DD := StringJoin@Table@"x", 8n<DD

The strings are created when each xrep is formatted.

In[5]:= xrep@1D + xrep@4D + xrep@9D

Out[5]= x + xxxx + xxxxxxxxx

Internally however the expression still contains xrep objects.

114 Notebooks and Documents

Internally however the expression still contains xrep objects.

In[6]:= % ê. xrep@n_D -> x^n

Out[6]= x + x4 + x9

Prefix@ f@xD,hD prefix form h x

Postfix@ f@xD,hD postfix form x h

Infix@ f@x,y,…D,hD infix form x h y h…
Prefix@ f@xDD standard prefix form f üx

Postfix@ f@xDD standard postfix form x êê f

Infix@ f@x,y,…DD standard infix form x~ f ~y~ f ~…
PrecedenceForm@expr,nD an object to be parenthesized with a precedence level n

Output forms for operators.

This prints with f represented by the "prefix operator" <>.

In[7]:= Prefix@f@xD, "<>"D

Out[7]= <> x

Here is output with the "infix operator" Äê.

In[8]:= s = Infix@8a, b, c<, "Äê"D

Out[8]= a Äê b Äê c

By default, the "infix operator" Äê is assumed to have "higher precedence" than ^, so no
parentheses are inserted.

In[9]:= s^2

Out[9]= Ha Äê b Äê cL2

When you have an output form involving operators, the question arises of whether the argu-

ments of some of them should be parenthesized. As discussed in "Special Ways to Input Expres-

sions", this depends on the "precedence" of the operators. When you set up output forms

involving operators, you can use PrecedenceForm to specify the precedence to assign to each

operator. Mathematica uses integers from 1 to 1000 to represent "precedence levels". The

higher the precedence level for an operator, the less it needs to be parenthesized.

Notebooks and Documents 115

Here Äê is treated as an operator with precedence 100. This precedence turns out to be low
enough that parentheses are inserted.

In[10]:= PrecedenceForm@s, 100D^2

Out[10]= Ha Äê b Äê cL2

When you make an assignment for Format@exprD, you are defining the output format for expr in

all standard types of Mathematica output. By making definitions for Format@expr, formD, you can

specify formats to be used in specific output forms.

This specifies the TeXForm for the symbol x.

In[11]:= Format@x, TeXFormD := "8\\bf x<"

The output format for x that you specified is now used whenever the TeX form is needed.

In[12]:= TeXForm@1 + x^2D

Out[12]//TeXForm= x^2+1

Low-Level Input and Output Rules

MakeBoxes@expr, formD construct boxes to represent expr in the specified form

MakeExpression@boxes, formD construct an expression corresponding to boxes

Low-level functions for converting between expressions and boxes.

MakeBoxes generates boxes without evaluating its input.

In[1]:= MakeBoxes@2 + 2, StandardFormD

Out[1]= RowBox@82, +, 2<D

MakeExpression interprets boxes but uses HoldComplete to prevent the resulting expres-
sion from being evaluated.

In[2]:= MakeExpression@%, StandardFormD

Out[2]= HoldComplete@2 + 2D

Built into Mathematica are a large number of rules for generating output and interpreting input.

Particularly in StandardForm, these rules are carefully set up to be consistent, and to allow

input and output to be used interchangeably.

It is fairly rare that you will need to modify these rules. The main reason is that Mathematica

already has built-in rules for the input and output of many operators to which it does not itself

assign specific meanings.

116 Notebooks and Documents

It is fairly rare that you will need to modify these rules. The main reason is that Mathematica

already has built-in rules for the input and output of many operators to which it does not itself

assign specific meanings.

Thus, if you want to add, for example, a generalized form of addition, you can usually just use

an operator like ⊕ for which Mathematica already has built-in input and output rules.

This outputs using the ⊕ operator.

In[3]:= CirclePlus@u, v, wD

Out[3]= u⊕v⊕w

Mathematica understands ⊕ on input.

In[4]:= u ⊕ v ⊕ w êê FullForm

Out[4]//FullForm= CirclePlus@u, v, wD

In dealing with output, you can make definitions for Format@exprD to change the way that a

particular expression will be formatted. You should realize, however, that as soon as you do

this, there is no guarantee that the output form of your expression will be interpreted correctly

if it is given as Mathematica input.

If you want to, Mathematica allows you to redefine the basic rules that it uses for the input and

output of all expressions. You can do this by making definitions for MakeBoxes and

MakeExpression. You should realize, however, that unless you make such definitions with great

care, you are likely to end up with inconsistent results.

This defines how gplus objects should be output in StandardForm.

In[5]:= gplus ê: MakeBoxes@gplus@x_, y_, n_D, StandardFormD :=
RowBox@8MakeBoxes@x, StandardFormD,

SubscriptBox@"⊕", MakeBoxes@n, StandardFormDD, MakeBoxes@y, StandardFormD<D

gplus is now output using a subscripted ⊕.

In[6]:= gplus@a, b, m + nD

Out[6]= a⊕m+n b

Mathematica cannot however interpret this as input.

In[7]:= a ⊕m+n b

Syntax::sntxi : Incomplete expression; more input is needed.

Notebooks and Documents 117

This tells Mathematica to interpret a subscripted ⊕ as a specific piece of FullForm input.

In[8]:= MakeExpression@RowBox@8x_, SubscriptBox@"⊕", n_D, y_<D, StandardFormD :=
MakeExpression@RowBox@8"gplus", "@", x, ",", y, ",", n, "D"<D, StandardFormD

Now the subscripted ⊕ is interpreted as a gplus.

In[9]:= a ⊕m+n b êê FullForm

Out[9]//FullForm= gplus@a, b, Plus@m, nDD

When you give definitions for MakeBoxes, you can think of this as essentially a lower-level

version of giving definitions for Format. An important difference is that MakeBoxes does not

evaluate its argument, so you can define rules for formatting expressions without being con-

cerned about how these expressions would evaluate.

In addition, while Format is automatically called again on any results obtained by applying it,

the same is not true of MakeBoxes. This means that in giving definitions for MakeBoxes you

explicitly have to call MakeBoxes again on any subexpressions that still need to be formatted.

† Break input into tokens.

† Strip spacing characters.

† Construct boxes using built-in operator precedences.

† Strip StyleBox and other boxes not intended for interpretation.

† Apply rules defined for MakeExpression.

Operations done on Mathematica input.

Generating Unstructured Output

The functions described in "Textual Input and Output Overview" determine how expressions

should be formatted when they are printed, but they do not actually cause anything to be

printed.

In the most common way of using Mathematica you never in fact explicitly have to issue a

command to generate output. Usually, Mathematica automatically prints out the final result that

it gets from processing input you gave. Sometimes, however, you may want to get Mathemat-

ica to print out expressions at intermediate stages in its operation. You can do this using the

function Print.

118 Notebooks and Documents

Print@expr1,expr2,…D print the expri, with no spaces in between, but with a

newline (line feed) at the end

Printing expressions.

Print prints its arguments, with no spaces in between, but with a newline (line feed) at the
end.

In[1]:= Print@a, bD; Print@cD

ab

c

This prints a table of the first five integers and their squares.

In[2]:= Do@Print@i, " ", i^2D, 8i, 5<D

1 1

2 4

3 9

4 16

5 25

Print simply takes the arguments you give, and prints them out one after the other, with no

spaces in between. In many cases, you will need to print output in a more complicated format.

You can do this by giving an output form as an argument to Print.

This prints the matrix in the form of a table.

In[3]:= Print@Grid@881, 2<, 83, 4<<DD

1 2
3 4

Here the output format is specified using StringForm.

In[4]:= Print@StringForm@"x = ``, y = ``", a^2, b^2DD

x = a2, y = b2

Notebooks and Documents 119

