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Section 15: Magnetic propertiesof materials

Definition of fundamental quantities

When a materia medium is placed in a magnetic field, the medium is magnetized. This
magnetization is described by the magnetization vector M, the dipole moment per unit volume.
Since the magnetization is induced by the field, we may assume that M is proportional to H. That
is,

M= xB. «y

The proportionality constant x is known as the magnetic susceptibility of the medium. Note that the
magnetic susceptibility y bears no physical relationship to the electric susceptibility, athough the
same symbol is used for both. Note aso that our discussion assumes that the medium is
magnetically isotropic. But real crystals are anisotropic, and the susceptibility is represented by a
second-rank tensor. In order to avoid mathematical complications, however, we shall ignore
anisotropic effects in our treatment.

Note, that in Eq. (1) we assumed that M is proportional to B, the externa field, and in doing so we
ignored such things as demagnetization field, which were included in the electric case. The neglect
of these factors is justifiable in the case of paramagnetic and diamagnetic materials because M is
very small compared to B (typically y =B/M ~107°), unlike the electric case, in which y ~ 1. But
when we deal with ferromagnetic materials, where M is quite large, this omission is no longer
tenable, and the above effects must be included. Because of small value of the magnetic
susceptibility we will not make distinction between magnetic field and magnetic induction.

Note also that y in Eqg.(1) can be dependent on the applied magnetic field. In this case, we can
define the magnetic susceptibility as follows

oM

=, 2
X=3 @)
The magnetization can be defined as

oE
M = -——, 3
B ©)

where E is the total energy of the system. Definitions (2) and (3) are more general and can be used
in calculations.

Classification of materials

All magnetic materials may be grouped into three magnetic classes, depending on the magnetic
ordering and the sign, magnitude and temperature dependence of the magnetic susceptibility. We
will discuss properties of five classes of materials. diamagnetic, paramagnetic, ferromagnetic,
antiferromagnetic and ferrimagnetic. There is no magnetic order at any temperature in diamagnetic
and paramagnetic materials, whereas there is a magnetic order at low temperatures in
ferromagnetic, antiferromagnetic and ferrimagnetic materials.



Physics 927
E.Y.Tsymbal

In diamagnetic materials the magnetic susceptibility is negative. Usually its magnitude is of the
order of -10°° to -10°. The negative value of the susceptibility means that in an applied magnetic
field diamagnetic materials acquire the magnetization, which is pointed opposite to the applied
field. In diamagnetic materials the susceptibility nearly has a constant value independent of
temperature.

lonic crystals and inert gas atoms are diamagnetic. These substances have atoms or ions with
complete shells, and their diamagnetic behavior is due to the fact that a magnetic field acts to distort
the orbital motion. Another class of diamagnetic materialsis noble metals.

All the other classes of materials have positive susceptibility. Within these classes the magnitude of
the susceptibility varies over a very wide range. However, at sufficiently high temperatures the
susceptibility decreases with increasing temperature for all materials in these classes. It was found
experimentally that all these materials follow the relationship

C

T+T, “)

X:

more or less exactly for sufficiently high T. Here C and T are positive constants independent of
temperature and different for each material.

It was found that in some materials Tc=0 and this equation is obeyed down to the lowest
temperatures at which measurements have been made. This class of materials is called
paramagnetic. In paramagnetic materials y is positive - that is, for which M is parallel to B. The
susceptibility is however is also very small: 10 to 10”°. The best-known examples of paramagnetic
materials are the ions of transition and rare-earth ions. The fact that these ions have incomplete
atomic shellsiswhat is responsible for their paramagnetic behavior.

In al other materials equation (4) breaks down as temperature decreases. They all have a critical
temperature below which the variation of susceptibility with temperature is very different from its
variation above this temperature.

In ferromagnetic materials the critical temperature is called the Curie temperature. Above the Curie
temperature the susceptibility follow relationship (4) with a negative sign. When temperature
approaches T the magnetic susceptibility tendsto be infinite. An infinite susceptibility means that a
finite magnetization can exist even in zero applied field, which is the case in permanent magnets.
The problem is that the magnetization of ferromagnetic materials in zero field can have a range of
different values and consequently cannot be regarded as a property of the material. However, it is
found that if arelatively small magnetic field is applied to these materials, the magnetization tends
to a constant value, which is called the saturation magnetization Ms or spontaneous magnetization.
Below Curie temperature Mg(T) against T follows a universal curve: it tends to a constant value as
T=0; as T increases, the spontaneous magnetization decreases more and more rapidly. At the Curie
temperature the magnetization disappeared.

Ferrimagnetic materials have non-zero magnetization below the Curie temperature which is similar
to ferromagnetic materials. However, significant departures from (4) occur over a range of
temperatures. This behaviour is only followed at temperatures large compared with the Curie
temperature. Another difference between ferrimagnets and ferromagnets is that in ferrimagnetic
materials the saturation magnetization against temperature behave in a more complicated way. For
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example, for some ferrimagnets the magnetization can increase with increasing temperature and
then drops down.

Antiferromagnetic materials have small positive susceptibilities at al temperatures. At high
temperatures they follow eg. (4) with T¢ usually having a positive sign. A critical temperature in
this case is called Nee temperature. Below the Neel temperature the susceptibility generally
decreases with decreasing temperature. There is no spontaneous magnetization in antiferromagnetic
materials.

Calculation of atomic susceptibilities

In the presence of a uniform magnetic field the Hamiltonian of an ion (atom) is modified in the two
major ways:

(2) Inthetotal kinetic energy term the momentum of each electron is replaced by
e
p-p +EA ' (5)

where A isthe vector potential associated with the magnetic field such that
B=0xA. (6)
We assume that the applied field is uniform so that

A:—érXB. (7)

(2) Theinteraction energy of the field with each electron spin must be added to the Hamiltonian:
Hspin = ZILIBBS’ (8)
where 1 is the Bohr magneton

eh

Uy =——=058107°eV/G. 9
2mc

Asthe result the total energy of electronswill have aform

H :iz(p. —Er.xsz+2,uBBS. (10)
2m<“\""' 2c '

We denote by Ty the kinetic energy in the absence of the applied field, i.e.
1
T =—Y'p2. 11
0 2m Iz p| ( )
The crossterm is the brackets can be rewritten taking into account that

p; [fr, xB) =-B r; xp;). (12)

We note that adso r and p are quantum-mechanical operators, here we can work with these
quantities as with classical variables because only non-diagonal components enter this product (i.e.
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there no terms which contain, e.g., x components of both r and p which do not commute). Note:
1.0, |=ino,,.

Assuming that thefield is along z direction, we can rewrite

(r,xB)" =B*(x +y’). (13)

Finally we find for the field-dependent correction to the total Hamiltonian:

BZZ(KZ‘FMZ), (14)

e2
AH =H -T, = (L +25) B +
0 /'lB( ) 8”[:2

where L isthetota orbital momentum:

AL =Y (r,xp,). (15)

The energy correction due to the applied electric field is small compared to electron energies. For
example, 1T= 4, ITesla=0.58[10"eV . Therefore one can compute the changes in the energy
levelsinduced by the field with ordinary perturbation theory.

Equation (14) is the basis for theories of the magnetic susceptibility of individual atoms, ions, or
molecules.

L angevin diamagnetism

Let us now apply these results to a solid composed of ions or atoms with all electronic shells filled.
Such atoms have zero spin and orbital angular momentum in its ground state, i.e.

(0[s[0)=(0[L |0)=o0. (16)

Consequently only last term in eq.(14) contributes to the field-induced shift in the ground state
energy:

= = (0110} = 52 B (0] (4 7)) = B (010710 @)

where the last form follows from the spherical symmetry of the closed-shell ion,
1
(0]3(0)= (0] y7]0)=(0 £ 2]0) = (0] [0} 9
It is conventional to define a mean sgquare ionic radius by
(r?) :%<O|Zri2|0>, (19)

where Z is the total number of electronsin anion. We obtain then for the magnetization induced by
the applied magnetic field, according to (3):
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0B 6me
which implies a negative magnetic susceptibility:
e’NZ <r 2>
X= _?, (21)
mc

where N is the number of atoms per unit volume.

Diamagnetism is associated with the tendency of electrical charges partially to shield the interior of
a body from an applied magnetic field. In electro-magnetism we are familiar with Lenz's law: when
the magnetic energy flux through an electrical circuit is changed, an induced current is set up in
such a direction as to oppose the flux change.

Formula (21) can be derived classically.

Consider an electron rotating about the nucleus in a circular orbit, and let a magnetic field be
applied perpendicular to the plane of the paper, as shown in Fig. 1. Before this field is applied, we
have, according to Newton's second law,

Fo = magr (22)

where Fq is the attractive Coulomb force between the nucleus and the electron, and ) is the angular
velocity.

Nucleus @ B
Ze

4
¥ Electron
P

£y

Fig. 1 Atomic origin of diamagnetism. The Lorentz force F_ opposes the Coulomb force Fy; v is the electron velocity.

When the field is applied, an additiona force starts to act on the electron: the Lorentz force
~e/c(vxB). For the geometry of Fig.1, the effect is to produce a radially outward force given by

eBuwyr/c, and Eq. (22) should therefore be amended to
F, _& Bayr = masr . (23)
c

Assuming that B is small we can look for asolutionisaform
w=w)+Aw. (24)
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Substituting (24) in the right-hand part of the Eq.(23) we find
pro=-28_ (25)
2mc

which shows that the rotation of the electron has been slowed down. This reduction in frequency
produces a corresponding change in the magnetic moment. This can be calculated as follows. The
change in the frequency of rotation is equivalent to the change in the current around the nucleus,
whichis

| = (charge) x (revolutions per unit time) = (—Ze)(zize—Bj.
7T 2me

The magnetic moment p of a current loop is given by the product (current) x (area of the loop)/c,
where c appears due to CGS units. The area of the loop of radiusr is 772, We have then

,u:(—Ze)(i eB Jﬂ<l‘2> =_eZZ<r2> 5 (26)

2mr2me) ¢ amc®

Here <r®> = <x*> + <y*> isthe mean square of the perpendicular distance of the electron from the
field axis through the nucleus. The mean square distance of the el ectrons from the nucleusis <r>> =
<x*> + <y?> + <7Z>>. For a spherically symmetrical distribution of charge we have <x*> = <y*>
=<7Z>, w0 that is <r®>> in eq.(26) should be replaced by 3/2<r?>, which gives identical result to
eq.(20).

Diamagnetism can be found in ionic crystals and crystals composed of inert gas atoms, because
these substances have atoms or ions with complete electronic shells. Another class of diamagnetic
materialsis noble metals which will be discussed |ater.

Paramagnetism of insulators

If atoms in a solid have non-filled electronic shells than we have to take into account the first term
in the Hamiltonian (14). Its contribution is then much larger than the contribution from the second
term so that we can ignore it. We consider the effect of this term on an ion in a ground state which
can be described by quantum numbersL, S Jand J,, where J isthe total angular momentum and J,
isthe projection of this momentum into a quantization axis. It can be shown that

(LS1J,|L +2S|LS1;) = g(LSI3, |I| LS, (27)
where g isthe g-factor, which is given by
1+ J(I+)+S(S+1)-L(L+12)

2J(J +1) '
We stress that this relation is valid only within the (2J + 1) dimensional set of states that make up
the degenerate atomic ground state in zero field; i.e., (28) is obeyed only for matrix elements taken
between states that are diagonal in J, L, and S. If the splitting between the zero-field atomic ground-

state multiplet and the first excited multiplet is large compared with ksT (as is frequently the case),
then only the (2J + 1) states in the ground-state multiplet will contribute appreciably to the free

g= (28)
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energy. In that case (and only in that case) Eqg. (28) permits one to interpret the first term in the
Hamiltonian (14) as expressing the interaction

E=-nuB (29)

of the field with a magnetic moment that is proportional to the total angular momentum of the ion,
so that

H=—gLd. (30)

The applied magnetic field lifts degeneracy of the manifold of states and splits it into 2J+1
equidistant levels, which his known as Zeeman splitting. The energies of these levels are given by

E, =0gu:BJ,, (31)

Where J, is an integer and has values from —=J to J. If thermal energy is less or comparable with the
Zeeman splitting, these levels will be populated differently and give a different contribution to the
magnetic moment of the ion. The magnetization of the solid is determined by the average value of

the magnetic moment, so that M = N(p), where N is the concentration of ions if the solid and (p)
is the value of magnetic moment averaged over the Boltzmann distribution:

94sBJ,

J

z \]Ze kT
M =N () = ~Ngps “=——m— (32)

z e kT

J,=-3
The summation can be easily performed due to geometric progression and the result for the
magnetization is

M = NgJ145B, (), (33)

where x:%?r‘]B and B, (x) isthe Brillouin function defined by

B, (x) = 2J +lcoth(2‘] +1xj—icoth(i]. (34)
2J 2J 2J 2J

Figure 2 shows the dependence of the magnetization for three different ions as a function of applied
magnetic field. Note that in order to reach the saturation, very low temperatures and very high
magnetic fields are required.

At relatively low fields and not too low temperatures we can expand the coth in (34) assuming that
X << 1, so that
1 x
coth(x)==+—. 35
(X)=>*3 (35)

We can then find for the susceptibility:
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_M _NJQ@+)g’u; _ Np* _C
B 3K, T KT T

X , (36)

where p is the effective number of Bohr magnetons, defined as

1/2

p=g[I(I+D|". (37)

C isthe Curie constant and the form (37) is known as the Curie low.
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Fig.2 Magnetic moment versus B/T for samples of (1) potassium chromium aum, (I1) ferric ammonium alum, and (I11)
gadolinium sulfate octahydrate. Over 99.5% magnetic saturation is achieved at 1.3 K and about 5T.

Hund Rules

The Hund rules as applied to atoms and ions affirm that electrons will occupy orbitals in such a way
that the ground state is characterized by the following:

1. The maximum value of the total spin Sallowed by the exclusion principle;
2. The maximum value of the orbital angular momentum L consistent with thisvalue of S

3. The value of thetotal angular momentum J is equal to |L-§ when the shell isless than half full
and to L+Swhen the shell is more than half full. This due to the spin-orbit interaction the constant
of which has opposite sign depending on whether is less than half full or more than half full. When
the shell isjust half full, the application of the first rulegivesL =0, sothat J=S.
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Table 1. Ground states of ions with partially filled d- or f-shells, as constructed from Hund's rules

d-shell (I = 2)

hol=2 1., 0, T SYMBOL
1 1 1/2 2 3/2 D3
2 ! ) 1 3 2 " 3F,
3 I & ¢ | 3 |ap(f TES e,
4 g ! l ! 2 2 0 Dy
5 ! ! ) ! ! 5/2 0 5/2 ®Ss)2
6 ¢ 1 s 1 1 2 2 4 5D,
7 or 1t 1 1 3/2 3 gl . P
8 L N 1 1 3 g o lBs Py
9 [ N N 1/2 2 5/2 -
10 I L 0 0 'So
f-shell (I = 3)

Blb=3% 2 1, 0~1-3-3 S | L= g J

1 ! 12| 3 52 2F,,,
;) I & 1 5 4 H,
3 i L 4 32 6 5 Ly o Um
4 Loyl 2 § |a (T=I-8I|q
5 T A 502 5 5/2 SHs),
6 B 4 & & & 4 3 3 & . Fo
7 (R T /2 0 72 88112
8 F ¥ 4 7T F % 4 3 3 6 Fe
9 - A 512 5 152 Hys2
10 T S S O 2 6 8 3 51,
11 Bohowos ottt a6 |sp{TLEES e,
12 T S S S 1 5 6 3Hy
13 S, - S S N 1/2 3 72 ZF s
14 [ N S N S 0 0 0 184

Rare-earth ions

Experiments on rare-earth ions in crystals show that they obey the Curie law, with an effective
number of magnetons in agreement with the theory of spin-orbit interaction. Table 2 confirms this.
In these ions, therefore, the angular momenta L and S are strongly coupled, and the moment of the
ion can respond freely to the external field.

Table 2. Effective Number of Magnetons for Rare-Earth lons

Theory Experiment (Eq. 9.43)
Ion Ground state p=gJiGG+ 1) P
La’* 1% 0 Diamagnetic
pr3t 3H, 3.58 3.6
Nd>* *Loj2 3.62 3.6
Dy3* H,s2 10.6 10.6
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This result is not surprising. In these ions - from La to Lu in the periodic table - the 4f shell is
incompletely filled. The outer 5p shell is completely filled, while the 5d and 6s shells which are still
further out are stripped of their electrons to form the ionic crystal. Thus the only incomplete shell is
the 4f shell, and this is the one in which the magnetic behavior occurs. Since electrons in this shell
lie deep within the ion, screened by the outer 5p and 5d shells, they are not appreciably affected by
other ionsin the crystal. Magneticaly their behavior is much like that of a free ion. Another reason
why the free-ion treatment applies to the rare-earth ions is that the spin-orbit interaction is strong in
these substances, because this interaction is proportiona to Z, the atomic number of the element
concerned, and all the rare-earth ions have large Z's. Typica values for the spin-orbit and the
crystal-field interactions in these materials are 10 eV and 10 eV, respectively.

Iron-group ions

Table 3 shows that iron-group ions behave magnetically asif J = S that is, only the spin moment
can contribute to magneti zation. We can see this by means of the following argument. The magnetic
properties of this group of elements are due to the electron in the incomplete 3d shell. Since
electrons in this outermost shell interact strongly with neighboring ions, the orbital motion is
essentially destroyed, or quenched, leaving only the spin moment to contribute to the magnetization.
In other words, in these ions, the strength of the crystal field is much greater than the strength of the
spin-orbit interaction, just the reverse of the situation in rare-earth ions. Typica strengths of the
crystal field and spin-orbit interactions in the iron group are 1 eV and 10 eV, respectively.

Table 3. Iron-Group lons

Ion Ground Theory Experiment
state (Eq. 9.43)

p=9giG+1)  p=2ysis+ 1) P

K*, Ca3* 's, 0 0 Diamagnetic
Tiot, vt Dy 1.55 1.73 1.7
Vet *Bs 1.63 2.83 2.8
vt ert, Mottt 4F, ), 0.77 3.87 3.8
Mn2*, Fe3* By 5.92 5.92 5.9
Fe’* D, 6.70 4.90 5.4
Ca?* D5 3.55 1.73 1.9

In the case of the transition metal ions from the iron group (partialy filled 3d shells) the crysta
field is very much larger than the spin-orbit coupling. This perturbation will not lift the spin
degeneracy, since it depends only on spatial variables and therefore commutes with S, but it can
completely lift the degeneracy of the orbital L-multiplet, if it is sufficiently asymmetric. The result
will then be a ground-state multiplet in which the mean value of every component of L vanishes
(even though L ° still has the mean value L(L + 1)). One can interpret this classically as arising from
a precession of the orbital angular momentum in the crystal field, so that although its magnitude is
unchanged, al its components average to zero.

10
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Paramagnetism of conduction electrons

Spin paramagnetism arises from the fact that each conduction electron carries a spin magnetic
moment which tends to align with the field. An electron has spin ¥2. One might expect that the
conduction would make a Curie-type paramagnetic contribution (36) to the magnetization of the
metal with J=S=1/2:

N2
=—, 38
X kT (38)

This shows that the susceptibility is inversely proportional to temperature. Experiments show,
however, that spin susceptibilities in metals are essentialy independent of temperature. The
observed values are also considerably smaller than those predicted by (38). These facts clearly cast
strong doubts on the applicability of (36) to the conduction electrons. The source of the difficulty
lies in the fact that Eq. (36) was derived on the basis of localized electrons obeying the Boltzmann
distribution, whereas the conduction electrons are delocalized and satisfy the Fermi distribution.

The proper treatment, taking this into account, isillustrated in Fig.4. In the absence of the field, half
the electrons have spins pointing in the positive z-direction, and the other half in the negative direc-
tion (Fig. 4a), resulting in a vanishing net magnetization. When afield is applied along the z-direc-
tion, the energy of the spins parallel to B is lowered by the amount 5B, while the energy of spins
opposite to B is raised by the same amount (Fig.4b). The situation which ensues is energeticaly
unstable, and hence some electrons near the Fermi level begin to transfer from the opposite-spin
half to the parallel-spin one, leading to a net magnetization. Note that only relatively few electrons
near the Fermi level are able to flip their spins and aign with the field. The other eectrons, lying
deep within the Fermi distribution, are prevented from doing so by the exclusion principle.

(@) ®

Fig. 4. (3) When B = 0, the two halves of the Fermi-Dirac distribution are equal, and thus M = 0; (b) When afield B is
applied, spinsin the antiparallel half flip into the parallel half, resulting in a net parallel magnetization.

We can now estimate the magnetic susceptibility. The electrons participating in the spin flip occupy
an energy interval of 1B (Fig.4). Thus their concentration is given by Net = ¥2D(Ef) B, where
D(EF) is the density of states at the Fermi energy level [the factor Y% is inserted because D(Er) as
defined us earlier includes both spin directions, while in the present circumstances only one spin
direction isinvolved in the flipping]. Since each spin flip increases the magnetization by 244 (from
-1 10 + L), it follows that the net magnetization is given by

11
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M =N 2445 = (gD(E;)B, (39)
leading to a paramagnetic susceptibility
X = 13D(E;) (40)

The susceptibility is thus determined by the density of states at the Fermi level, D(Eg). According to
€g. (40), yisessentialy independent of temperature. Thisis seen from the fact that temperature has
only a small effect on the Fermi-Dirac distribution of the electrons, and consequently the derivation
leading to (40) remains valid. If we apply the results for free electrons for which D(Eg) = 3N/2E¢
=3N/2kgTF, €q.(40) then leads to

_3Ny;

- , 41
YT T 4D

where Tr the Fermi temperature (Er = kgTg). Since Tk is very large, often 30,000°K or higher, we
can see that (41) is smaller than (36) by factor of 10%- in agreement with experiment.

In transition metals, the paramagnetic susceptibility is exceptionaly large, because D(Er) is large,
by virtue of the narrow and high 3d band.

Diamagnetism

Conduction electrons also exhibit diamagnetism on account of the cyclotron motion they execute in
the presence of the magnetic field. Each electron loop is equivalent to a dipole moment whose
direction is opposite to that of the applied field. Classical treatment shows that the total diamagnetic
contribution of al electrons is zero. Quantum treatment however shows that for free electrons this
causes a diamagnetic moment equal to —1/3 of the paramagnetic moment. Therefore the total
susceptibility of afree electronsgasis

N

42
KsT: (42)

X:

The net response is therefore paramagnetic. In comparing theoretical results with experiment, one
must aso include the diamagnetic effect of the ion cores. Table 4 gives the results for some metals.

Table 4. Susceptibilities of Some Monovalent and Divalent Metals x 10° (Room Temperature)

Experimental Theoretical

Element Xtotal (expt) Xcore Xelectron — Xtotal — Xcore Xelectron — Xspin + Xorbit
K 0.47 — 0.31 0.76 0.35
Rb 0.33 — 0.46 0.79 0.33
Cu — 0.76 —2.0 1.24 0.65
Ag — 2.1 — 3.0 0.9 0.60
Au —-29 — 4.3 1.4 0.60
Mg 0.95 —0.22 1.2 0.65
Ca 1.7 — 0.43 ) 2.1 0.5
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