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 Section 6: Thermal properties 
Heat Capacity 
There are two contributions to thermal properties of solids: one comes from phonons (or lattice 
vibrations) and another from electrons. This section is devoted to the thermal properties of solids due 
to lattice vibrations (the contribution from electrons in metals will be considered separately). First, we 
consider the heat capacity of the specific heat. The heat capacity C is defined as the heat ∆Q which is 
required to raise the temperature by ∆T, i.e.  

QC
T

∆
=
∆

. (6.1) 

If the process is carried out at constant volume V, then ∆Q = ∆E, where ∆E is the increase in internal 
energy of the system. The heat capacity at constant volume CV is therefore given by 

V
V

EC
T
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

.  (6.2) 

The contribution of the phonons to the heat capacity of the crystal is called the lattice heat capacity.  

The total energy of the phonons at temperature T in a crystal can be written as the sum of the energies 
over all phonon modes, so that     

( )p p
p

E n ω=∑ q
q

q , (6.3) 

where pnq  is the thermal equilibrium occupancy of phonons of wavevector q and mode p (p = 1…3s, 
where s is the number of atoms in a unit cell). The angular brackets denote the average in thermal 
equilibrium. Note that we assumed here that the zero-point energy is chosen as the origin of the 
energy, so that the ground energy lies at zero. Now we calculate this average.  

Consider a harmonic oscillator in a thermal bath. The probability to find this oscillator in an excited 
state, which is characterized by a particular energy En is given by the Boltzmann distribution: 

/
0

Bn k T
nP P e ω−=  ,  (6.4) 

where the constant P0 is determined from the normalization condition 

0

1n
n

P
∞

=

=∑ ,  (6.5) 

so that 
1

/
0
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−

=
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⎝ ⎠
∑ ⎞

⎟ . (6.6) 

The average excitation number of the oscillator is given by 
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The summation in the enumerator can be performed using the known property of geometrical 
progression: 

0
1n
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∞

=

=∑ . (6.8) 

 Using this property we find: 
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x
x

, (6.9) 

where . Thus we obtain / kTx e ω−=

/1

1 1
(1 ) 1 1Bk T

xn
x x e ω−= = =

− − −
. (6.10) 

The distribution given by Eq. (6.10) is known as the Planck distribution. Coming back to the 
expression for the total energy of the phonons, we find that 

( ) /

( )
1p B
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k T

p

E
e ω

ω
=

−
∑ q
q

q
. (6.11) 

Usually it is convenient to replace the summation over q by an integral over frequency. In order to do 
this we need to introduce the density of modes or the density of states Dp(ω). Dp(ω)dω  represents the 
number of modes of a given number s in the frequency range  (ω, ω + dω). Then the energy is 

/( )
1Bp k T

p
E d D

e ω

ωω ω=
−∑∫  (6.12) 

The lattice heat capacity can be found by differentiation of this equation with respect to temperature, 
so that 
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. (6.13) 

We see that the central problem is to find the density of states Dp(ω), the number of modes per unit 
frequency range.   

Density of states. Consider the longitudinal waves in a long bar. The solution for the displacement of 
atoms is given by 

( ) iqxu x Ae= , (6.14) 
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where we omitted a time-dependent factor as irrelevant for the present discussion. We shall now 
consider the effects of the boundary conditions on this solution. These boundary conditions are 
determined by the external constraints applied to the ends of the bar. The most convenient type of 
boundary condition is known as the periodic boundary condition. By this we mean that the right end of 
the bar is constrained in such a way that it is always in the same state of oscillation as the left end. It is 
as if the bar were deformed into a circular shape so that the right end joined the left. Given that the 
length of the bar is L, if we take the origin as being at the left end, the periodic condition means that 

u(x = 0) = u(x = L), (6.15) 

where u is the solution given by Eq.(6.14). If we substitute (6.14) into (6.15), we find that 

1iqLe = . (6.16) 
This equation imposes a condition on the admissible values of q:  

2q n
L
π

= , (6.17) 

where n = 0, + 1, ±2, etc. When these values are plotted along a q-axis, they form a one-dimensional 
mesh of regularly spaced points. The spacing between the points is 2π/L. When the bar length is large, 
the spacing becomes small and the points form a quasi-continuous mesh. 

Each q-value of (6.17) represents a mode of vibration. Suppose we choose an arbitrary interval dq in q-
space, and look for the number of modes whose q’s lie in this interval. We assume here that L is large, 
so that the points are quasi-continuous, which is true for the macroscopic objects. Since the spacing 
between the points is 2π/L, the number of modes is 

2
L dq
π

. (6.18) 

We are interested in the number of modes in the frequency range dω lying between (ω, ω + dω). The 
density of states D(ω) is defined such that D(ω)dω  gives this number. Comparing this definition with 
(6.18), one may write D(ω)dω  = (L/2π) dq, or D(ω)  = (L/2π)/(dω/dq). We note from Fig. 1, however, 
that in calculating D(ω) we must include the modes lying in the negative q-region as well as in the 
positive region. The effect is to multiply the above expression for D(ω) by a factor of two. That is, 

1( )
/

LD
d dq

ω
π ω

=  (6.19) 

We see that the density of states D(ω) is determined by the dispersion relation ( )qω ω= .    

 

 

Fig.1  

 

 3



Physics 927 
E.Y.Tsymbal  

 

Now we extend these results to the 3D case. The wave solution analogous to (6.14) is  
( )x y zi q x q y q ze + +=u A , (6.20) 

where the propagation is described by the wave vector q = (qx, qy, qz), whose direction specifies the 
direction of wave propagation. Here again we need to take into account the boundary conditions. For 
simplicity, we assume a cubic sample whose edge is L. By imposing the periodic boundary conditions, 
one finds that the allowed values of q must satisfy the condition 

1yx ziq Liq L iq Le e e= = = . (6.21) 

Therefore, the values are given by 

( ) 2 2 2, , , ,x y zq q q l m n
L L L
π π π⎛= ⎜

⎝ ⎠
⎞
⎟ , (6.22) 

where l, m, n are some integers. 

If we plot these values in a q-space, as in Fig. 2, we obtain a three-dimensional cubic mesh. The 
volume assigned to each point in this q-space is (2π/L)3.  
 
 
 
 
 
 
 
 
 
 
 

dq 

 
 
Fig. 2   Allowed values of q for a wave traveling in 3 dimensions. Only the cross section in the (qx, qy) plane is shown. The 
shaded circular shell is used for counting the modes. 
 
Each point in Fig. 2 determines one mode. We now wish to find the number of modes lying in the 
spherical shell between the radii q and q + dq, as shown in Fig.2. The volume of this shell is , 24 q dqπ
and since the volume per point is (2π/L)3, it follows that the number we seek is 

( )

3
2 2

34 4
2 2
L Vq dq q dqπ π
π π

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (6.23) 

where V = L3 is the volume of the sample. By definition of the density of modes, this quantity is equal 
to D(ω)dω . Thus, we arrive at 

2

2

1( )
2 /
VqD

d dq
ω

π ω
= . (6.24) 
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We note that Eq.(6.24) is valid only for an isotropic solid, in which the vibrational frequency, ω, does 
not depend on the direction of q. Also we note that in the above discussion we have associated a single 
mode with each value of q. This is not quite true for the 3D case, because for each q there are 
actually three different modes, one longitudinal and two transverse, associated with the same value of 
q. In addition, in the case of non-Bravais lattice we have a few sites, so that the number of modes is 3s, 
where s is the number of non-equivalent atoms. This should be taken into account by index p=1…3s in 
the density of states as was done before because the dispersion relations for the longitudinal and 
transverse waves are different, and acoustic and optical modes are different.  

Debye model 
The Debye model assumes that the acoustic modes give the dominant contribution to the heat capacity.  
Within the Debye approximation the velocity of sound is taken a constant independent of polarization 
as it would be in a classical elastic continuum. The dispersion relation is written as 

vqω = , (6.25) 

where v is the velocity of sound.  

In this approximation the density of states is given by 

 
2

2 3( )
2 v
VD ωω
π

= , (6.26) 

i.e. the density of states increases quadratically with the frequency. 

The normalization condition for the density of states determines the limits of integration over ω. The 
lower limit is obviously ω=0. The upper limit can be found from the condition that the number of 
vibrational modes in a crystal is finite and is equal to the number of degrees of freedom of the lattice. 
Assuming that there are N unit cells is the crystal, and there is only one atom in per cell (so that there 
are N atoms in the crystal), the total number of phonon modes is 3N. Therefore, we can write 

0

( ) 3
D

p
D d N

ω

ω ω =∑ ∫  (6.27) 

where the cutoff frequency ωD is known as Debye frequency. Assuming that the velocity of the three 
acoustic modes is independent of polarization and substituting (6.26) in (6.27) we obtain: 

1/32 36 v
D

N
V

πω
⎛ ⎞

= ⎜
⎝ ⎠

⎟ . (6.28) 

The cutoff wavevector which corresponds to this frequency is given by 
1/326

v
D

D
Nq

V
ω π⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

, (6.29) 

so that modes of wavevector larger than qD are not allowed. This is due to the fact that the number of 
modes with q≤qD exhausts the number of degrees of freedom of the lattice.  

The thermal energy is given by Eq. (6.12), so that  
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where a factor of 3 is due to the assumption that the phonon velocity is independent of polarization. 
This leads to 

4 43 3
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where / Bx k Tω≡  and  

/ /D D B Dx k T Tω θ≡ ≡ .  (6.32) 

The latter expression defines the Debye temperature 
1/32v 6

D
B

N
k V

πθ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (6.33) 

The total phonon energy is then 
3 3

0

9
1

Dx

B x
D

TE Nk T dx
eθ

⎛ ⎞
= ⎜ ⎟ −⎝ ⎠

∫
x , (6.34) 

where N is the number of atoms in the crystal and /D Dx Tθ≡ .  

The heat capacity is most easily found by differentiating the middle expression of (6.31) with respect 
to the temperature (in Eq.(6.34) we should have to differentiate the upper limit) so that 

( ) ( )

3/2 4
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2
x e

∫

B

. (6.35) 

In the limit T>>θ, we can expand the expression under the integral and obtain: . This is 
exactly the classical value for the heat capacity, which is known from the elementary physics. Recall 
that according to the elementary thermodynamics the average thermal energy per a degree of freedom 
is equal to . Therefore for a system of N atoms 

3VC Nk=

BE k T= 3 BE Nk T=  which results in . This 
is known as the Dulong-Petit law. 

3VC Nk= B

Now consider an opposite limit, i.e. T<<θ.  At very low temperatures we can approximate (6.34) by 
letting the upper limit go to infinity. We obtain 

3 33 4 4

0

39 9
1 15 5B Bx

D D

T x T TE Nk T dx Nk T Nk T
e

π π
θ θ

∞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫
3

B
Dθ

, (6.36) 

and therefore  

 6



Physics 927 
E.Y.Tsymbal  

 

3412
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D
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θ
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= ⎜ ⎟
⎝ ⎠

. (6.37) 

We see that within the Debye model at low temperatures the heat capacity is proportional to T3.  

The cubic dependence may be understood from the following qualitative argument. At low temperature, 
only a few modes are excited. These are the modes whose quantum energy ω  is less than kBT. The 
number of these modes may be estimated by drawing a sphere in the q-space whose frequency 

/Bk Tω = , and counting the number of points inside, as shown in Fig. 3. This sphere may be called 
the thermal sphere, in analogy with the Debye sphere discussed above. The number of modes inside 
the thermal sphere is proportional to q3 ~ ω3 ~ T3. Each mode is fully excited and has an average 
energy equal to kBT. Therefore the total energy of excitation is proportional to T4, which leads to a 
specific heat proportional to T3, in agreement with (6.37). 

 
Fig. 3  The thermal sphere which is the frequency contour /Bk Tω = . 

To compare these predictions with experimental results one should know the Debye temperature. This 
temperature is normally determined by fitting experimental data. Fig.4 shows the fitted data versus the 
reduced temperature T/θ. You see that the curve is universal; it is the same for different substances. 
The agreement between the calculated and experimental data is remarkable. 

 
Fig. 4.  Specific heats versus reduced temperature for four substances.  
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Einstein model 
Within the Einstein model the density of states is approximated by a delta function at some frequency 
ωE, i.e 

( ) ( )ED Nω δ ω ω= − , (6.38) 

where N is the total number of atoms (oscillators). ωE is known as the Einstein frequency. The thermal 
energy of the system (6.12) is then 

 /

3
1E B

E
k T

NE
e ω

ω
=

−
, (6.39) 

where a factor of 3 reflects the fact that there are three degree of freedom for each oscillator. The heat 
capacity is then  

( )

2 /

2/
3

1

E B

E B

k T
E

V B k T
B

E eC Nk
T k T e

ω

ω

ω⎛ ⎞∂
= = ⎜ ⎟∂ ⎝ ⎠ −

. (6.40) 

The high temperature limit for the Einstein model is the same as that for the Debye model, i.e. 
, which is the Dulong-Petit law. At low temperatures however (6.40) decreases as 3VC Nk= B

/~ E Bk T
VC e ω− , which is different from the Debye T3 low. The reason for this disagreement is that at 

low temperatures only acoustic phonons are populated and the Debye model is much better 
approximation that the Einstein model. The Einstein model is often used to approximate the optical 
phonon part of the phonon spectrum.   

Concluding our discussion about the heat capacity we note that a real density of vibrational modes 
could be much more complicated than those described by the Debye and Einstein models. Fig.5 shows 
the density of states for Cu. The dashed line is the Debye approximation. The Einstein approximation 
would a delta peak at some frequency. At low frequencies the density of states varies quadratically 
with the frequency, which is due to acoustic modes and similar to that within the Debye 
approximation. At higher frequencies there is a peak which is due to optical modes. This density of 
states has to be included in order to obtain quantitative description of experimental data.   

 
Fig. 5. Total density of states for Cu, as deduced from data on neutron scattering. Dashed curve is the Debye 
approximation, which has the same area (under the curve) as the solid curve. 
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Thermal Conductivity 
When the two ends of the sample of a given material are at two different temperatures, T1 and T2 
(T2>T1), heat flows down the thermal gradient, i.e. from the hotter to the cooler end. Observations 
show that the heat current density j (amount of heat flowing across unit area per unit time) is 
proportional to the temperature gradient (dT/dx). That is, 

dTj K
dx

= − . (6.41) 

The proportionality constant K, known as the thermal conductivity, is a measure of the ease of 
transmission of heat across the bar (the minus sign is included so that K is a positive quantity). 

Heat may be transmitted in the material by several independent agents. In metals, for example, the 
heat is carried both by electrons and phonons, although the contribution of the electrons is much 
larger. In insulators, on the other hand, heat is transmitted entirely by phonons, since there are no 
mobile electrons in these substances. Here we consider only transmission by phonons.  

When we discuss transmission of heat by phonons, it is convenient to think of these as forming a 
phonon gas. In every region of space there are phonons traveling randomly in all directions, 
corresponding to all the q's in the Brillouin zone, much like the molecules in an ordinary gas. The 
concentration of phonons at the hotter end of the sample is larger and they move to the cooler end. 
The advantage of using this gas model is that many of the familiar concepts of the kinetic theory of 
gases can also be applied here. In particular, thermal conductivity is given by 

1

3
vVK C l=  (6.42) 

where CV is the specific heat per unit volume, v the velocity of the particle, and l its mean free path. In 
the present case, v and l refer, of course, to the velocity and the mean free path of the phonon, 
respectively. The mean free path is defined as the average distance between two consecutive scattering 
events, so that l=vτ, where τ is the average time between collisions which is called collision time or 
relaxation time.  

Let us give a qualitative explanation for Eq.(6.42). For simplicity we consider a one-dimensional 
picture, in which phonons can move only along the x axis. We assume that a temperature gradient is 
imposed along the x axis. We also assume that collisions between phonons maintain local 
thermodynamic equilibrium, so that we can assign local thermal energy density to a particular point of 
the sample E[T(x)]. The phonons which originate from this point have this energy on average. At a 
given point x half the phonons come from the high temperature side and half phonons come from the 
low temperature side. The phonons which arrive to this point from the high-temperature side will, on 
the average, have had their last collision at point x−l, and will therefore carry a thermal energy density 
of E[T(x−l)]. Their contribution to the thermal current density at point x will therefore be the 
½vE[T(x−l)]. The phonons arriving at x from the low temperature side, on the other hand, will 
contribute −½vE[T(x+l)], since they come from the positive x-direction and are moving toward 
negative x. Adding these together gives 

[ ] [ ]½v ( ) ½v ( )j E T x l E T x l= − − + . (6.43) 
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Provided that the variation in the temperature over the mean free path is very small we may expand 
this about the point x to find: 

2v vdE dT dE dTj l
dT dx dT dx

τ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.44) 

This result can be easily generalized to the three dimensional case. We need to replace v by the x-
component vx, and then average over all the angles. Since 2 2 2v v v 1/ 3x y z= = = 2v  and since 

V
dEC
dT

=  is the heat capacity, we obtain 

1

3
vV

dTj C l
dx

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, (6.45) 

where v is the phonon velocity.  

Let us now discuss the dependence of the thermal conductivity j on temperature. The dependence of 
CV on temperature has already been studied in detail, while the velocity v is found to be essentially 
insensitive to temperature. The mean free path l depends strongly on temperature. Indeed, l is the 
average distance the phonon travels between two successive collisions. Three important mechanisms 
may be distinguished: (a) The collision of a phonon with other phonons, (b) the collision of a phonon 
with imperfections in the crystal, such as impurities and dislocations, and (c) the collision of a phonon 
with the external boundaries of the sample. 

Consider a collision of type (a). The phonon-phonon scattering is due to the anharmonic interaction 
between them. When the atomic displacements become appreciable, this gives rise to anharmonic 
coupling between the phonons, causing their mutual scattering.  

Suppose that two phonons of vectors q1 and q2 collide, and produce a third phonon of vector q3. Since 
momentum must be conserved, it follows that q3 = q1 + q2. Although both q1 and q2 lie inside the 
Brillouin zone, q3 may not do so. If it does, then the momentum of the system before and after 
collision is the same. Such a process has no effect at all on thermal resistivity, as it has no effect on the 
flow of the phonon system as a whole. It is called a normal process. 

  

 

 

 

 
Fig. 6 Umklapp process 

 

By contrast, if q3 lies outside the BZ, such a vector is not physically meaningful according to our 
convention. We reduce it to its equivalent q4 inside the first BZ, where q3 = q4 + G and G is the 
appropriate reciprocal lattice vector. As is seen from Fig.6, the phonon q4 produced by the collision 
travels in a direction almost opposite to either of the original phonons q1 and q2. The difference in 
momentum is transferred to the center of mass of the lattice. This type of process is highly efficient in 
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changing the momentum of the phonon, and is responsible for phonon scattering at high temperatures. 
It is known as the umklapp process (German for "flipping over").  

Phonon-phonon collisions become particularly important at high temperature, at which the atomic 
displacements are large. In this region, the corresponding mean free path is inversely proportional to 
the temperature, that is, l ~ 1/T. This is reasonable, since the larger T is, the greater the number of 
phonons participating in the collision. 

The second mechanism (b) which results in phonon scattering results from defects and impurities. Real 
crystals are never perfect and there are always crystal imperfections in the crystal lattice, such as 
impurities and defects, which scatter phonons because they partially destroy the perfect periodicity of 
the crystal.  

At very low temperature (say below 100K), both phonon-phonon and phonon-imperfection collisions 
become ineffective, because, in the former case, there are only a few phonons present, and in the latter 
the few phonons which are excited at this low temperature are long-wavelength ones. These are not 
effectively scattered by objects such as impurities, which are much smaller in size than the 
wavelength. In the low-temperature region, the primary scattering mechanism is the external boundary 
of the specimen, which leads to the so-called size or geometrical effects. This mechanism becomes 
effective because the wavelengths of the excited phonons are very long - comparable, in fact, to the 
size of the specimen. The mean free path here is l ~ L, where L is roughly equal to the diameter of the 
specimen, and is therefore independent of temperature. 

Figure 7 illustrates the temperature dependence of thermal conductivity K. At low temperature K ~ T3, 
the dependence resulting entirely from the specific heat CV, while at high temperature K ~ 1/T, the 
dependence now being entirely due to l.  

 
Fig.7.  Thermal conductivity of a highly purified crystal of sodium fluoride. 

 11



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


