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Section 4: Elastic Properties
Elastic constants

Elastic properties of solids are determined by interatomic forces acting on atoms when they are
displaced from the equilibrium positions. At small deformations these forces are proportional to the
displacements of atoms. As an example, consider a 1D solid. A typical binding curve has a minimum
at the equilibrium interatomic distance Ry :

U

Expanding the energy at the minimum in the Taylor series we find:
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where we defined Ek_ R and u=R-R, is the displacement of an atom from equilibrium
R

position Ry. Differentiating Eq.(4.2), F = —Z—Lé , weobtain force F acting on an atom :

F =—ku. (4.3)

The constant k is an interatomic force constant. Eq.(4.3) represents the simplest expression for the
Hooke' s law showing that the force acting on an atom, F, is proportional to the displacement u. This
law isvalid only for small displacements and characterizes alinear region in which the restoring force
is linear with respect to the displacement of atoms.

The elastic properties are described by considering a crystal as a homogeneous continuum medium
rather than a periodic array of atoms. In ageneral case the problem is formulated as follows:

(i) Apply forces, which are described in terms of stress g, and determine displacements of atoms
which are described in terms of strain &

(i) Define elastic constants C relating stress gand strain &, sothat o= Ce.
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Example: In 1D case, F = —ku, where u isachange in the crystal length under applied force F. We can
therefore write

o=F - (‘—"L](E] =Ce, (4.4)
A LA NL

where A is the area of the cross section, and L is the equilibrium length of the 1D crystal. The stress o
is defined as the force per unit area and the strain ¢ is the dimensionless constant which describes the
relative displacement (deformation).

In ageneral case of a 3D crystal the stress and the strain are tensors which are defined as follows.
Stress has the meaning of local applied “pressure”. It has componentso;; , showing that the force can
be applied along 3 directions “i” and 3 faces“j”. The stressis defined locally, so that o; = g, (r) .

Compresson gtress (o,, 0, 0,):
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Shear forces must come in pairs to conserve angular acceleration inside the crystal:
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That makes the stresstensor diagonal, i.e.
o =0, (4.7)
Strain determines relative atomic displacement:
du
g (ry=—, 4.8
1= (48)
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where u; is displacement in “i” direction and x; is the direction along which u; may vary.



Physics 927

E.Y.Tsymbal
Compression gtrain (&, &, &,):
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==, 4.9
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In ahomogeneous crystal &, isaconstant &£, :% , Where u is the change in the crystal length L.

Shear strain (e, €, &, &, £, &)

o =9 P ’ X (4.10)
yx dX ! uy .

Since g; and o; must always be applied together, we can define shear strains symmetrically:

- du.
gi, :‘S'i :E ﬂ+i . (411)
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Elastic constants C relate the strain and the stress in a linear fashion:
Oy = zcljklgkl - (4.12)
K

Eq.(4.12) isageneral form of the Hooke's law. The matrix C in a most general form has 3x3x3x3=81
components. However, due to the symmetrical form of o; and ¢; - each of them have 6 independent

components, we need only 36 elastic constants. There is a convention to denote these constants by Cp,
where indices m and n are defined as 1=xx, 2=yy, 3=zz for the compression components and as 4=yz,

5=zx, 6=xy for the shear components. For example, C, =C,,., C,=C,_,, C,=C,,,.
Therefore, the general form of the Hooke' s law is given by

compression mixed

UXX Cll C12 C13 E Cl
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All 36 elastic constants are independent. However in crystals many of them are the same due to
symmetry. In particular, in cubic crystals C,=C,=C,, C,=C, =C,=C,,=C,=C,,
C, =C, =C,, duethefact that X, y, and z axes are identical by symmetry. Also the off diagonal shear
components are zero, i.e. C,=C,=C,=C,=C,=C,, =0, and mixed compression/shear

coupling does not occur, i.e. C, =C,, =...=0. Therefore, the cubic elasticity matrix has the form
Cll C12 C12
C, C, C, 0
C12 C12 Cll (414)
c, 0 O
0) 0o Cc, O
0O 0 C,

We have only 3 independent constants.

Longitudinal compression (Young's modulus):
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Transverse expansion:
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Elastic waves

So far, we have assumed that atoms were at rest at their lattice sites. Atoms, however, are not quite
stationary, but can oscillate around their equilibrium positions (e.g., as aresult of thermal energy). This
leads to lattice vibrations.

When considering lattice vibrations three major approximations are made:
(i) It isassumed that displacements of atoms are small, i.e. u< a, where ais a lattice parameter.

(if) Forces acting on atoms are assumed to be harmonic, i.e. proportional to the displacements:
F =—Cu. Thisisthe same approximation which is used to describe a harmonic oscillator.

(i) It is assumed that the adiabatic approximation is valid — electrons follow atoms, so that the nature
of bond is not affected by vibrations.

The discreteness of the lattice must be taken into account in the discussion of lattice vibrations.
However, when the wavelength is very long, i.e. A>a, one may disregard the atomic nature and
treat the solid as a continuous medium. Such vibrations arereferred to as elastic waves.

We consider an elastic wave in along bar of cross-sectional area A and massdensity p=M /V .

(2) First, we consider alongitudinal wave of compression/expansion.

u
—
il A
F(x) ~1 2 F(x+dx)
X  X+dx

We look at a segment of width dx at the point x and denote the elastic displacement by u. According to
the Newton’s second low

2
m% =S°F, (4.18)
which implies that
du _
(pAdx)F =F(x+dx)-F(x), (4.19)
2
d’u :ld_F :_dUXX , (420)

where we introduced the compression stress o, . Assuming that the wave propagates along the [100]
direction, we can write the Hooke' s law in the form

Uxx = C11"3xx ’ (421)
du

O this leads to the wave equation
X

where Cy; is Young's modulus. Since £, =
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A solution if the wave equation has the form of a propagating longitudinal plane wave
u(x,t) = Ag@ O g, (4.23)
where g is the wave vector,
w=Vv.q,
is the frequency, and (4.24)
P (4.25)
isthe longitudinal velocity of sound.
(2) Now we consider atransverse wave which is controlled by shear stress and strain.
u
m y
X
X x+dx
In this case

d’u _da,,

— = 4.26
- dt*>  dx (4.26)
where the shear stress o, is determined by the shear modulus Cas and shear strain €, :% :

0, =CuE,, - (4.27)
Therefore EQ.(4.26) takesthe form
d®u de d?u
=C Y =C,—, 4.28
P~ "% e (4.28)

resulting in the wave equation

du _(Cy \du
dt? o )dx®

This is the equation for the transverse plane wave, which has displacements in the y direction but
propagates in the x direction:

u(x,t) = A¢@ 0y (4.30)

(4.29)
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where g is the wave vector,
w=Vv:q,
in the frequency, and (4.31)
v, = [Su 4.32)
P

is the transverse velocity of sound. Note that there are two linear independent transverse modes
characterized by the displacements in y and in z directions. For the [100] direction, by symmetry the
velocities of these modes are the same and given by Eq.(4.32).

Normally C,, >C,, and therefore v, >v;.
Waves we have considered are in [100] direction, i.e. q || [100]. In other directions, the sound velocity
depends on combinations of elastic constants:

v= | (4.33)
0

where Cg; is an effective elastic constant which is given for cubic crystals in the table:

Mode q || [100] q || [110]. q [l [111]
L Cu 1/2(C11+C12+2C44) 1/3(C11+2 C12+4C44)
T Cua Caa ¥ (C11—Ci2+Cuas)
T, Cas YAC11—C12) 73 (Cri—Ci2+Cuaa)

The relation connecting the frequency w and the wave vector g is known as the dispersion relation. For
elastic waves, w is proportional to g, and the ratio w/q gives a constant velocity. The figure below
shows the dispersion relation for elastic waves. There are three modes — one longitudinal and two
transverse, which represent straight lines whose slopes are equal to the respective velocities of sound.
For the [100] and [111] directions the two transverse modes are degenerate, i.e. have the same vr.




