Notes on Fermi-Dirac I ntegrals
3? Edition

Raseong Kim and Mark Lundstrom
Network for Computational Nanotechnology
Purdue University

December 10, 2008
(Last revised on August 4, 2011)

1. Introduction

Fermi-Dirac integrals appear frequently in semiaatdr problems, so a basic
understanding of their properties is essential. pugose of these notes is to collect in one
place, some basic information about Fermi-Diraegndls and their properties. We also present
Matlab functions (see Appendix and [1]) that cadtel Fermi-Dirac integrals (the “script F”
defined by Dingle [2] and reviewed by Blakemore) [iB]three different ways.

To see how they arise, consider computing the ibguin electron concentration per unit
volume in a three-dimensional (3D) semiconductahva parabolic conduction band from the
expression,
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where g(E) is the density of stated,(E) is the Fermi function, ané_ is the conduction band
edge. For 3D electrons with a parabolic band strect
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which can be used in Eqg. (1) to write
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By making the substitution,

e=(E-E.)/kT, (4)

Eq. (3) becomes
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where we have defined

e = (B -E)/kT. 6)

By collecting up parameters, we can express tharele concentration as
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where
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is the so-called effective density-of-states and
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is the Fermi-Dirac integral of order 1/2. This igital can only be evaluated numerically. Note
that its value depends ap, which measures the location of the Fermi levehwespect to the

conduction band edge. It is more convenient tongedi related integral,
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so that Eqg. (7) can be written as
n= Nso'/iz(m:)- (11)

It is important to recognize whether you are deplivith the “Roman” Fermi-Dirac integral or
the “script” Fermi-Dirac integral.

There are many kinds of Fermi-Dirac integrals. Esample, in two dimensional (2D)
semiconductors with a single parabolic band, thesitig-of-states is
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and by following a procedure like that one we usethree dimensions, one can show that the
electron density per unit area is

Ng = N,y /;(HF) , (13)
where
k. T
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is the Fermi-Dirac integral of order 0, which canibtegrated analytically.
Finally, in one-dimensional (1D) semiconductorshvatparabolic band, the density-of-states
is
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and the equilibrium electron density per unit lémigt

N = Np g (’7|=) ) (17)
where
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and
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is the Fermi-Dirac integral of orderl/ 2, which must be integrated numerically.

2. General Definition

In the previous section, we saw three examplesohFDirac integrals. More generally, we
define



00

1 J elde
F(j+1) 31+ expe-7; )

) = (20)

wherel is the gamma function. Thie function is just the factorial when its argumestai
positive integer,

r(n)=(n-1)! (for na positive integer) (21a)
Also

ras/2)=+mn, (21b)
and

M(p+1)=pr(p). (21c)

As an example, let's evaluate, ,, (/7. ) from Eq. (20):
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so we need to evaluafg(3/2). Using Egs. (21b-c), we find,
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S0 . 4,,(n:) is evaluated as
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which agrees with Eq. (10). For more practice, theegeneral definition, Eq. (20) and Egs. (21a-
c) to show that the results for,(77:) and. ,,(77:) agree with Egs. (15) and (19).

3. Derivativesof Fermi-Dirac Integrals
Fermi-Dirac integrals have the property that
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which often comes in useful. For example, we havesalytical expression for,(#.) , which
means that we have an analytical expression g, ),
_ _dy 1
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Similarly, we can show that there is an analytipression for any Fermi-Dirac integral of
integer orderj, forj < -2,
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where B, is a polynomial of degrele and the coefficientp, ; are generated from a recurrence
relation [4] (note that the relation in Eq. (26&)issing in p. 222 of [4])

pk,O :1’ (26&)
P = (1+1) P —(K+1-1) pyey i= 1000 k=1, (26b)
Pak = 7 Py-r k-1 (260)

For example, to evaluate/:,(qF):dF/(h er )4>< Fg( éF), polynomial coefficients are
generated from Egs. (26a-c) as [4]
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and we find
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4. Asymptotic Expansionsfor Fermi-Dirac Integrals

It is useful to examine Fermi-Dirac integrals inetmon-degenerate 7{- <<0) and
degeneratesfz >>0) limits. For the non-degenerate limit, the ressipparticularly simple,
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which means that for all orderg,the Fermi-Dirac integral approaches the expoakimi the
non-degenerate limit. To examine Fermi-Dirac inadgin the degenerate limit, we consider the
complete expansion for the Fermi-Dirac integral for -1 ands. >0 [2, 5, 6]
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wheret, =1/2, t = z:zl(—l)”_l/,u” = (1— 2““){ (n), and{ (n) is the Riemann zeta function.
The expressions for the Fermi-Dirac integrals i dlegenerate limit/{z >>0) come from Eq.

(30)as.~ (1) - n* I' j+2 [7]. Specific results for several Fermi-Dirac igitals are shown
j F
below.
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The complete expansion in Eq. (30) can be relaigtie well-known Sommerfeld expansion [8,
9]. First, note that the integrals to calculateieardensities in Egs. (1) and (3) are all of tbef

T H (E) f,(E) dE. (32)

If H (E) does not vary rapidly in the range of a féyl aboutE., then we can write the
Taylor expansion o (E) aboutE;. as [9]

H(e)=3 L n(g),, EEL @)

E=E: nl

Using this Taylor series expansion, the integraEmp (32) can be written as (see [9] for a
detailed derivation)
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where
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and it is noted thag, =2t, . Equation (34) is known as the Sommerfeld expan$d 9].
Typically, the first term in the sum in Eq. (34)alt that is needed, and the result is

jH(E)fO(E)dE:T E)dEl- (51) H( E). (36)

If we scaleE by k,T in Eq. (34),6 =E/k,T, then Eq. (34) becomes
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Then the Sommerfeld expansion for the Fermi-Dirategral of ordenj can be evaluated by
lettingH () =&’ /T (j +1) in Eq. (37), and the result is

) =2ty (38)

n:Or(J-I_2 m)ﬂén .

Equation (38) is the same as Eq. (30) except tlmsécond term in Eq. (30) is omitted [5]. In
the degenerate limit, however, the second termgn(B0) vanishes, so the Egs. (30) and (38)
give the same results as Egs. (31a-e).

5. Approximate Expressionsfor Common Fermi-Dirac Integrals

Fermi-Dirac integrals can be quickly evaluated bipulation [2, 7, 10, 11] or analytic
approximation [12-14]. We briefly mention some bE&tanalytic approximations and refer the
reader to a Matlab function. Bednarcatkal. [12] proposed a single analytic approximatiort tha
evaluates the Fermi-Dirac integral of order1/2 with errors less than 0.4 % [3]. Aymerich-
Humetet al [13, 14] introduced an analytic approximation ogeneraj, and it gives an error
of 1.2 % for-1/2< j<1/2and 0.7 % fol/2< j < 5/2, and the error increases with larger
The Matlab fuction, “FD_int_approx.m,” [1] calcuést the Fermi-Dirac integral defined in EQ.
(10) with orders j=-1/2 using these analytic approximations. The sourcdecof this

relatively short function is listed in the Appendix



If a better accuracy is required and a longer CiRi¢ is allowed, then the approximations
proposed by Halen and Pulfrey [15, 16] may be ugdedthis model, several approximate
expressions are introduced based on the seriesxg@rpain Eq. (30), and the error is less than
10° for -1/2< j< 7/2[15]. The Matlab function, “FDjx.m,” [1] is the nima function that
calculates the Fermi-Dirac integrals using this elodThis function includes tables of
coefficients, so it is not simple enough to be showthe Appendix, but it can be downloaded
from [1].

There also have been discussions on the simplgtanablculation of the inverse Fermi-
Dirac integrals of ordelj =1/2 [3]. This has been of particular interest becatisan be used to

calculate the Fermi level from the known bulk cteadgnsity in Eq. (11), ag. =, (n/Ny).
Joyce and Dixon [17] examined a series approachgh'&s|A/7F|sO.01 for 77 .. =5.5 [3],
and a simpler expression from Joyce [18] giMeM <0.03for 7., =5 [3]. Nilsson proposed
two different full-range £10<7. < 20) expressions [19] withA7.|< 0.01 and |A7, | < 0.00E
[3]. Nilsson later presented two empirical approaiions [20] that give|A/7F|s 0.01 for
Nemax = 9.5 @nd sy, = 20, respectively [3].

6. Numerical Evaluation of Fermi-Dirac Integrals

Fermi-Dirac integrals can be evaluated accuratglpumerical integration. Here we briefly
review the approach by Prestsal. for generalized Fermi-Dirac integrals with order -1 [21].

In this approach, the composite trapezoidal rulén wariable transformatios = exp(t—e’t) IS
used forn. < 15 and the double exponential (DE) rule is useddager /.. Double precision

(eps, ~2.2x10") can be achieved after 60 to 500 iterations [Zle Matlab function,
“FD_int_num.m,” [1] evaluates the Fermi-Dirac intaly numerically using the composite
trapezoidal rule following the approach in [21].€Thource code is listed in the Appendix. This
approach provides very high accuracy, but the Ciri tis considerably longer. An online
simulation tool that calculates the Fermi-Diracegrals using this source code has been
deployed at nanoHUB.org [22]. Note that the nunadrapproach we consider in this note is
relatively simple, and there are other advancedarigal integration algorithms [23] suggested
to improve the calculation speed.

In Fig. 1, we compare the accuracy and the timih¢he three approaches that calculate

() - The Fermi-Dirac integral of ordejr=1/2 (. ~,,(17:)) is calculated for-10<7, <10

with 7. spacing = 0.01 using approximate expressions (ffDapprox.m” and “FDjx.m”) and
the rigorous numerical integration (“FD_int_num.my¥ijth double-precision. The relative errors

of the approximate expressions are calculate(jq‘g,appmx—./Zzynum) / Z yznum WHETE. A5 oo

and. 1, represent the results from the approximate exjmessd the numerical integration

respectively. The elapsed time measured for eaphoaph (using Matlab commands “tic/toc”
for Pentium 4 CPU 3.4 GHz and 2.0 GB RAM) clearhows the compromise between the
accuracy and the CPU time.
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Fig. 1. (a) Relative errors from the approximat@ressions for -, (/7F) with respect to the
numerical integration (“FD_int_num.m”). (A) Relaéiverror from “FD_int_approx.m”. (B)
Relative error from “FDjx.m”. All Matlab functionare available in [1].(b) The absolute values
of the relative errors in the log scale. The eldps®me measured for the three approaches clearly
shows the trade-off between the accuracy and thé tPRe.
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Appendix

“FD_int_approx.m”
function y = FD_int_approx( eta, j )

% Analytic approximations for Fermi-Dirac integrals of order j > -1/2

% Date: September 29, 2008

% Author: Raseong Kim (Purdue University)

%

% Inputs

% eta: eta_F

% j: FD integral order

%

% Outputs

% y: value of FD integral (the "script F" defined by Blakemore (1982))

%

% For more information in Fermi-Dirac integrals, see:

% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark

% Lundstrom at http://nanohub.org/resources/5475

%

% References

% [1]D. Bednarczyk and J. Bednarczyk, Phys. Lett. A, 64, 409 (1978)

% [2]J. S. Blakemore, Solid-St. Electron, 25, 1067 (1982)

% [3]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Solid-St. Electron, 24, 981 (1981)
% [4]X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, J. Appl. Phys., 54, 2850 (1983)

ifj<-1/2
error( 'The order should be equal to or larger than -1/2.")
else
X = eta;
switch j
case 0
y=log(1l+exp(x)); % analytic expression

case 1/2
% Model proposed in [1]
% Expressions from egs. (22)-(24) of [2]
mu=x."4+50+33.6*x.*(1-0.68*exp(-0.17*(x+1).~2));
Xi=3*sqrt(pi)./(4*mu.r(3/8));
y=(exp(-x)+xi)."-1;

case 3/2
% Model proposed in [3]
% Expressions from eq. (5) of [3]
% The integral is divided by gamma( j + 1) to make it consistent with [1] and [2].
a=14.9;
b =2.64;
c=9/4;
y=((j+1)*27(j+1)./(b+x+(abs(x-b)"c+a) N(1l/c))  (j+1)..
+exp(-x)./gamma(j+1)).~-1./gamma(j+1);

otherwise
% Model proposed in [4]
% Expressions from egs. (6)-(7) of [4]
% The integral is divided by gamma( j + 1) to make it consistent with [1] and [2].
a=(1+15/4*(j+1)+1/40*(j+1)r2)"(1/2);
b=18+0.61*j;
c=2+(2-sqrt(2))*2"(-]);
y=((j+1)*2~(j+1)./(b+x+(abs(x-b).rc+arc) (1/c)) (j+1)..
+exp(-x)./gamma(j+1)).~-1./gamma(j+1);
end
end
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“FD_int_num.m”

function [y N err ] = FD_int_num( eta, j, tol, Nmax )

% Numerical integration of Fermi-Dirac integrals for order j > -1.

% Author: Raseong Kim (Purdue University)

% Date: September 29, 208

% Extended (composite) trapezoidal quadrature rule with variable

% transformation, x = exp(t-exp(t))

% Valid for eta ~< 15 with precision ~eps with 60~500 evaluations.

%

% Inputs

% eta: eta_F

% j: FD integral order

% tol: tolerance

% Nmax: number of iterations limit

%

% Note: When "eta" is an array, this function should be executed

% repeatedly for each component.

%

% Outputs

% y: value of FD integral (the "script F" defined by Blakemore (1982))

% N: number of iterations

% err: error

%

% For more information in Fermi-Dirac integrals, see:

% "Notes on Fermi-Dirac Integrals (3rd Edition)" by Raseong Kim and Mark
% Lundstrom at http://nanohub.org/resources/5475

%

% Reference

% [1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
% Numerical recipies: The art of scientific computing, 3rd Ed., Cambridge
% University Press, 2007.

for N =1 : Nmax
a=-4.5; % limits for t
b =5.0;
t=linspace(a, b, N+1); % generate intervals
x=exp(t-exp(-t));
f=x*(1+exp(-t)) . *x."Nj./(1l+exp(x-eta));
y =trapz(t, f);

ifN>1 % test for convergence
err =abs(y-y_old);
if err < tol
break;
end
end

_old=y;
end

if N == Nmax
error( 'Increase the maximum number of iterations.")
end

y=y./gamma(j+1);
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