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Crystal Directions

We have referred to various directions in the crystal as (100), (110), 

and (111).  What do these mean?

How are these directions determined?

Consider a cube-

and a plane-

1/2

1

2/3

The plane has intercepts: x = 0.5a, y = 0.667a, z = a.



Crystal Directions

We want the NORMAL to the surface.  So we take these intercepts 
(in units of a), and invert them:

Then we take the lowest common set of integers:

These are the MILLER INDICES of the plane.

The NORMAL to the plane is the (4,3,2) direction, which is 
normally written just (432).  (A negative number is indicated by a 
bar over the top of the number.)
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Crystal Directions
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Crystal Directions
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So far, we have discussed the concept of crystal directions:
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We want to say a few more things about this.

x

y

z
Consider this plane.

The intercepts are 0,0,,
which leads to 1,1,0 for 
Miller indices.

What are the normals to 
the plane?
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The intercepts are 1, -1, , 
which leads to

The normal direction is

 011

 011��  yx

The intercepts are -1, 1, , 
which leads to

The normal direction is

 101

 101��  yx
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We can easily shift the planes by one lattice vector in x or y
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 011

 101

These are two different 
normals to the same plane.

Directions have square brackets [�]
Planes have parentheses (�)
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Now consider the following plane:

 011

 110

This direction lies in the original plane.
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Now consider the following plane:

 001

This direction lies in the original plane.
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 101 points into the page

 110

 001  111



Crystal Directions

We want the NORMAL to the surface.  So we take these intercepts 
(in units of a), and invert them:

Then we take the lowest common set of integers:

These are the MILLER INDICES of the plane.

The NORMAL to the plane is the [4,3,2] direction, which is 
normally written just [432].  (A negative number is indicated by a 
bar over the top of the number.)
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This inversion 
creates units of 1/cm 

These �numbers�
define a new VECTOR 
in this �reciprocal 
space�



Crystal Directions

1/2

1

1

[100]

1/2

[220]

These vectors 
are normal to the 
planes, but are 
defined in this 
new space.

What is this new reciprocal space?



In earlier circuit courses, we used Laplace transforms, such as

If we let s =  + i, we can get the Fourier transform as ( = 0)

ste

tie 

units = timeunits = 1/time=2Hz

Hence, frequency space is the 
reciprocal space for time.  The 
units are 1/seconds.

Now, let�s talk a little more about waves, and how these waves will be 
important in our crystals.



In electromagnetics (EEE 340), we deal with waves (more on this 
next time).  In this course, we deal with exponentials that vary as:

tiikxe 

Spatially varying part of the exponent.

x corresponds to distance (cm)

k corresponds to 1/distance or 1/cm
This is the reciprocal space term
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Fourier transformation in space and time:

The dimensions of space and time go into the 
dimensions of �wave number� (reciprocal space) and 
frequency (reciprocal time)
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Velocity is distance per unit 
time, but can be defined in at 
least two ways:

In either case, the units of 
velocity are cm/s.
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wave number k
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The idea of velocity must carry 
over to the Fourier transform 
space:

The units remain cm/s.
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What about multiple spatial dimensions?

Phase velocity

Group velocity



For the FACE CENTERED CUBIC lattice, we have to define the three lattice 
vectors so that they fully account for the atoms at the face centers.

a

b

c

The three primitive vectors run 
from a corner atom to the three 
adjacent faces of that corner.  
Again, these form a tetrahedron.

There will be 3 vectors in the 
reciprocal space, which 
correspond to the three 
vectors a, b, c in real space.

These will define a unit cell 
in the reciprocal space!

The Multiple Space of Concern is the Lattice

We do not care what these vectors are at present; 
the important point is that our reciprocal space is 
periodic, just as the lattice.  We will learn what the 
period is later.



So, why do we care about this reciprocal space?

We will learn later that the onset of quantum 
mechanics around 1900 led to a connection between 
energy and frequency, which is known as the Planck 
relation:

Hence, the frequency space goes into the energy
space!
Similarly, momentum is mv, which is

Hence, the wave number space goes into the 
momentum space! 
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Max Karl Ernst 
Ludwig Planck,
Nobel Prize in 
Physics, 1918
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The two axes scale equally with the so-called
reduced Planck�s constant 



� A hundred years ago our understanding of nature relied on CLASSICAL PHYSICS

* NEWTON�S laws of motion and MAXWELL�S equations

� An important notion in classical physics is the concept of PARTICLES and WAVES

* Particles are SOLID objects such as PLANETS and ATOMS

* While waves show the property of PROPAGATING through space (would
you ever think of water as particles?)

A Brief Review of Classical Physics

PARTICLES

PLANETS
TENNIS BALLS

ORANGES
BALL BEARINGS

ATOMS
ELECTRONS

PROTONS

WAVES

WATER
LIGHT
RADIO
HEAT

RADIATION
X-RAYS

CLASSICAL PHYSICS MAKES 
AN IMPORTANTDISTINCTION BETWEEN

PARTICLES & WAVES



In our classical world, waves and particles are distinct and 
separate entitites.

In electromagnetics and optics, waves have the properties:

Particles, on the other hand, have a different behavior:
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The two velocities are different!
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What is the velocity?

In electromagnetics and optics, these are the 
phase velocity
group velocity

In free space, these two velocities are equal for optics, 
but not for particles.  Particles are dispersive.



� By the end of the last century light was thought of as a WAVE phenomenon

* Since MANY properties of light conform to MAXWELL�S EQUATIONS

* And since light exhibits many phenomena typically associated with waves

 Including INTERFERENCE and DIFFRACTION

Light as a Wave Phenomenon

CLASSICALLY LIGHT IS TREATED AS AN
ELECTROMAGNETIC WAVE IN WHICH ELECTRIC AND MAGNETIC 
FIELD COMPONENTS OSCILLATE IN PHASE WITH EACH OTHER
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Light as a Wave Phenomenon

DIFFRACTION PATTERN
FORMED ON A SCREEN

INCOMING WAVE

OBSTACLE 2


INTERFERENCE and DIFFRACTION



COHERENT
LIGHT SOURCE

Light as a Wave Phenomenon

INTERFERENCE and DIFFRACTION

Light is diffracted by the
aperatures

Just as for X-ray diffraction, the 
light has constructive and 
destructive interference where the 
diffracted beams come together



Black-Body Radiation
The Arrival of Quantum Mechanics

Everything radiates �light� waves,
whether in the visible or the infrared
(heat).  The intensity of this radiation
is frequency dependent.

The two limiting forms 
were known in the mid-1800s.

Max Planck derived this form
ca. 1900.  This required him to 
postulate

E = h

h ~ 6.6248  10-34 joule-sec





Planck�s relationship between energy and frequency requires 
that light be made up of small �packets� of energy.  These 
packets have come to be known as photons.

That is, wave intensity is quantized into basic units given by the 
frequency and Planck�s constant.  If we talk about the power in 
a light wave (energy/time), then we must talk about so many 
photons/second arriving at the measurement point.

THE LIGHT WAVE HAS BECOME A SET OF PARTICLES 
(PHOTONS).  DOES THIS CHANGE OUR UNDERSTANDING?



The Miller indices for any given plane of atoms within a 
crystal are obtained by following this four-step procedure:

1. After setting up the coordinate axes along the edges of 
the unit cell, note where the plane to be indexed 
intercepts the axes. Divide each intercept value by the 
unit cell length along the respective coordinate axis. 
Record the intercept values  in order x,y,z.

2. Invert the intercept values.

3. Using appropriate multiplier, convert the [1/intercept] set 
to the smallest possible set of whole numbers.

4. Enclose the whole-number set in curvilinear brackets.

Miller Indices



Note:

 If a plane is parallel to some of the coordinate axes, 
then the intercept is µ , which gives Miller index =0 
for that coordinate.

 If a plane to be indexed has an intercept along the 
negative portion of a coordinate axis, a minus sign 
is placed over the corresponding index number.

Notation:

(hkl)  => Miller indices for planes

{hkl} => Miller indices for planes of equivalent symmetry



Example:
Calculate the Miller indices for the following plane:

 reciprocal of the 
intercepts: 1/2, 1/4, 1/2

 conversion to the 
smallest possible set of 
whole numbers: 2,1,2

Miller indices for this 
plane are: (212).x

y

z

2

4

2



The Miller indices for direction are established using the 
same procedure for finding the components of a vector:

1. Set up a vector of arbitrary length in the direction of 
interest.

2. Decompose the vector into its components along 
the principal axes.

3. Using an appropriate multiplier, convert the 
component values into the smallest possible whole-
number set.

Notation:

[hkl] => specific direction within crystal

<hkl>   => an equivalent set of directions

For cubic crystals, a plane and the direction normal to the 
plane have precisely the same indices.



Calculation of the Miller indices using vectors is 
explained through the following example:

Consider a plane defined by three points: 

P1:(022), P2:(202) and P3:(210).

Step 1:

Define vectors:

and find the differences:



Step 2:

Recall that a plane is defined with the following equation:

For vectors a,b and c with coordinates (A1,A2,A3), 
(B1,B2,B3) and (C1,C2,C3), the above requirement is 
equivalent to:

For our example this leads to:



Step 3:

Once we have the equation for the plane, we can find the 
following:

 The intercepts of this plane are: 3,3,6

 1/intercept equals to: 1/3,1/3,1/6

 Miller indices for the plane are (221)



Additional information:

Adjacent planes (hkl) in a cubic crystal have a spacing d 
given by:

The angle between planes (h1k1l1) and (h2k2l2) is given by the 
following expression:


