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Free Materials Online	



Photonic Crystals book: jdj.mit.edu/book	


	



Tutorial slides: jdj.mit.edu/photons/tutorial	


	



Free electromagnetic simulation software	


(FDTD, mode solver, etc.)	



jdj.mit.edu/wiki	
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To Begin: A Cartoon in 2d	



planewave	



 

E,

H ~ ei(


k ⋅ x−ω t )

 


k =ω / c = 2π

λ

 

k

scattering	





…Waves Can Scatter	


here: a little circular speck of silicon	



scattering by spheres:	


solved by Gustave Mie (1908)	



small particles:	


Lord Rayleigh (1871)	


why the sky is blue	



checkerboard pattern: interference of waves	


	

 	

 	

traveling in different directions	





Multiple Scattering is Just Messier?	


here: scattering off three specks of silicon	



can be solved on a computer, but not terribly interesting…	
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for most λ, beam(s) propagate	


through crystal without scattering	


(scattering cancels coherently)	



...but for some λ (~ 2a), no light can propagate: a photonic band gap	



a	



planewave	
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An even bigger mess?���
zillons of scatterers	



Blech, light will just scatter like crazy	


and go all over the place … how boring!	





Not so messy, not so boring…	



the light seems to form several coherent beams	


that propagate without scattering	



… and almost without diffraction (supercollimation) 	





…the magic of symmetry…	



[ Emmy Noether, 1915 ]	



Noether’s theorem:	


	

symmetry = conservation laws	



	


In this case, periodicity 	



	

= conserved “momentum”	


	

= wave solutions without scattering	


	

 	

[ Bloch waves ]	



Felix Bloch	


(1928)	





A slight change? Shrink l by 20%���
an “optical insulator” (photonic bandgap)	



light cannot penetrate the structure at this wavelength!	


all of the scattering destructively interferes 	





1887	

 1987	



Photonic Crystals	


periodic electromagnetic media	



with photonic band gaps: “optical insulators”	



2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

(need a 
more 

complex 
topology)	





3µm	



Photonic Crystals in Nature	



wing scale:	



Morpho rhetenor butterfly	



[ P. Vukosic et al., 
Proc. Roy. Soc: Bio. 

Sci. 266, 1403 
(1999) ]	



Peacock feather	



[J. Zi et al, Proc. Nat. Acad. Sci. USA,	


 100, 12576 (2003) ]	



[figs: Blau, Physics Today 57, 18 (2004)]	



http://www.bugguy012002.com/MORPHIDAE.html


[ also: B. Gralak et al., Opt. Express 9, 567 (2001) ]	





Photonic Crystals	


periodic electromagnetic media	



with photonic band gaps: 	


“optical insulators”	



for holding and controlling light	



3D Photonic C rysta l with Defectscan trap light in cavities	

 and waveguides (“wires”)	





Photonic Crystals	


periodic electromagnetic media	



But how can we understand such complex systems?	


Add up the infinite sum of scattering?  Ugh!	



	



3D Photonic C rysta l

High index
of refraction

Low index
of refraction



A mystery from the 19th century	



e–	



e–	
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
J = σ


Ecurrent:	



conductivity (measured)	



mean free path (distance) of electrons	



conductive material	





A mystery from the 19th century	
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crystalline conductor (e.g. copper)	



10’s	


of	



periods!	



 

E

 

J = σ


E



A mystery solved…	



electrons are waves (quantum mechanics)	

1	



waves in a periodic medium can propagate 
without scattering:	



	


Bloch’s Theorem (1d: Floquet’s) 	



2	



The foundations do not depend on the specific wave equation.	





Electronic and Photonic Crystals	


atoms in diamond structure	



wavevector	
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dielectric spheres, diamond lattice	



wavevector	
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strongly interacting fermions	

 weakly-interacting bosons	





Time to Analyze the Cartoon	
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for most λ, beam(s) propagate	


through crystal without scattering	


(scattering cancels coherently)	



...but for some λ (~ 2a), no light can propagate: a photonic band gap	
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Fun with Math	



  

� 

 
∇ ×
 
E = − 1

c
∂
∂t

 
H = iω

c

 
H 

 
∇ ×
 
H = ε 1

c
∂
∂t

 
E +
 
J = −iω

c
ε
 
E 

0	



dielectric function ε(x) = n2(x)	



First task:	


get rid of this mess	



 
∇ ×

1
ε
∇ ×

H =

ω
c

⎛
⎝⎜

⎞
⎠⎟
2 
H

eigen-operator	

 eigen-value	

 eigen-state	



 ∇ ⋅

H = 0

+ constraint	





Hermitian Eigenproblems	



 
∇ ×

1
ε
∇ ×

H =

ω
c

⎛
⎝⎜

⎞
⎠⎟
2 
H

eigen-operator	

 eigen-value	

 eigen-state	



 ∇ ⋅

H = 0

+ constraint	



Hermitian for real (lossless) ε	


well-known properties from linear algebra:	



ω are real (lossless)	


eigen-states are orthogonal	



eigen-states are complete (give all solutions)*	



* Technically, completeness requires slightly more than just Hermitian-ness.	





Periodic Hermitian Eigenproblems	


[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]	



[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]	



if eigen-operator is periodic, then Bloch-Floquet theorem applies:	



 

H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:	



periodic “envelope”	


planewave	



Corollary 1: k is conserved, i.e. no scattering of Bloch wave	



Corollary 2:        given by finite unit cell,	


	

 	

so ω are discrete ωn(k)	



 

H k



Periodic Hermitian Eigenproblems	


Corollary 2:        given by finite unit cell,	



	

 	

so ω are discrete ωn(k)	


 

H k

ω1	



ω2	



ω3	



ω	



k	



band diagram (dispersion relation)	



map of	


what states	



exist &	


can interact	



?	


range of k?	





Periodic Hermitian Eigenproblems in 1d	


ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	



ε(x) = ε(x+a)	



H (x) = eikxHk (x)

a	



Consider k+2π/a:	

 e
i(k+ 2π

a
)x
H

k+
2π
a

(x) = eikx e
i
2π
a
x
H

k+
2π
a

(x)
⎡

⎣
⎢

⎤

⎦
⎥

periodic!	


satisfies same	


equation as Hk	



 = Hk	


	



k is periodic:	


k + 2π/a equivalent to k	



“quasi-phase-matching”	





band gap	



Periodic Hermitian Eigenproblems in 1d	


k is periodic:	



k + 2π/a equivalent to k	


“quasi-phase-matching”	



k	



ω	



0	

 π/a	

–π/a	



irreducible Brillouin zone	



ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	

 ε1	

 ε2	



ε(x) = ε(x+a)	

a	





Any 1d Periodic System has a Gap	



ε1	



k	



ω	



0	



[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	



Start with	


a uniform (1d) medium:	



ω =
ck
ε1



Any 1d Periodic System has a Gap	



ε1	



ε(x) = ε(x+a)	

a	



k	



ω	


	



0	

 π/a	

–π/a	



[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	



Treat it as	


“artificially” periodic	



bands are “folded”	


by 2π/a equivalence	



� 

e
+ iπ
a
x
,e

− iπ
a
x

→ cos π
a
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , sin

π
a
x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 



ε(x) = ε(x+a)	

a	


ε1	



Any 1d Periodic System has a Gap	



ω	



0	

 π/a	



[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	



sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

x = 0	



Treat it as	


“artificially” periodic	





ε(x) = ε(x+a)	

a	


ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	



Any 1d Periodic System has a Gap	



ω	



0	

 π/a	



[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	



Add a small	


“real” periodicity	


ε2 = ε1 + Δε	



sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

x = 0	





band gap	



Any 1d Periodic System has a Gap	



ω	



0	

 π/a	



[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of 
waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]	



Add a small	


“real” periodicity	


ε2 = ε1 + Δε	



sin π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

cos
π
a
x

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

ε(x) = ε(x+a)	

a	


ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	

 ε1	

ε2	



x = 0	



Splitting of degeneracy:	


state concentrated in higher index (ε2)	



has lower frequency	





Some 2d and 3d systems have gaps	


• In general, eigen-frequencies satisfy Variational Theorem:	



  

� 

ω1(
 
k )2 = min 

E 1
∇⋅ε
 
E 1= 0

∇ + i
 
k ( ) ×  E 1

2

∫
ε
 
E 1

2∫
c 2

  

� 

ω2(
 
k )2 = min 

E 2
∇⋅ε
 
E 2= 0

εE1
* ⋅E2= 0∫

""

“kinetic”	



inverse	


“potential”	



bands “want” to be in high-ε	



…but are forced out by orthogonality	


è band gap (maybe)	





A 2d Model System	


a	



Square lattice of dielectric rods (ε = 12 ~ Si) in air (ε = 1)	





Solving the Maxwell Eigenproblem	



where magnetic field = H(x) ei(k�x – ωt)	

� 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn = ωn

2

c 2
Hn

� 

∇ + ik( ) ⋅H = 0constraint:	



1	



Want to solve for ωn(k),	


& plot vs. “all” k for “all” n, 	



Finite cell è discrete eigenvalues ωn	



Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	





Solving the Maxwell Eigenproblem: 1	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



—Bloch’s theorem: solutions are periodic in k	



kx	



ky	


first Brillouin zone	



= minimum |k| “primitive cell”	



� 

2π
a

G	



M	



X	



irreducible Brillouin zone: reduced by symmetry	





Solving the Maxwell Eigenproblem: 2a	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis (N)	



3	

 Efficiently solve eigenproblem: iterative methods	



H =H(xt ) = hmbm (x t )
m=1

N

∑ solve:	

 ˆ A H =ω 2 H

Ah =ω 2Bh

  Aml = bm
ˆ A bl   Bml = bm blf g = f * ⋅g∫

finite matrix problem:	





Solving the Maxwell Eigenproblem: 2b	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



� 

(∇ + ik) ⋅H = 0— must satisfy constraint:	



Planewave (FFT) basis	



H(x t ) = HGe
iG⋅xt

G
∑

� 

HG ⋅ G + k( ) = 0constraint:	



uniform “grid,” periodic boundaries,	


simple code, O(N log N)	



Finite-element basis	


constraint, boundary conditions:	



Nédélec elements	


[ Nédélec, Numerische Math.	



35, 315 (1980) ]	



nonuniform mesh,	


more arbitrary boundaries,	



complex code & mesh, O(N)	


[ figure: Peyrilloux et al.,	



J. Lightwave Tech.	


21, 536 (2003) ]	





Solving the Maxwell Eigenproblem: 3a	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh

Faster way:	


	

— start with initial guess eigenvector h0	


	

— iteratively improve	


	

— O(Np) storage, ~ O(Np2) time for p eigenvectors	



Slow way: compute A & B, ask LAPACK for eigenvalues	


	

— requires O(N2) storage, O(N3) time	



(p smallest eigenvalues)	





Solving the Maxwell Eigenproblem: 3b	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh
Many iterative methods:	



	

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	


	

     Rayleigh-quotient minimization	





Solving the Maxwell Eigenproblem: 3c	


1	

 Limit range of k: irreducible Brillouin zone	



2	

 Limit degrees of freedom: expand H in finite basis	



3	

 Efficiently solve eigenproblem: iterative methods	



Ah =ω 2Bh
Many iterative methods:	



	

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,	


	

     Rayleigh-quotient minimization	



for Hermitian matrices, smallest eigenvalue ω0 minimizes:	



ω0
2 = min

h

h' Ah
h' Bh

minimize by preconditioned	


 conjugate-gradient  (or…)	



“variational	


theorem”	
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2d periodicity, ε=12:1	
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irreducible Brillouin zone	



gap for	


n > ~1.75:1	



k	





2d periodicity, ε=12:1	



E	



H	


TM	



Ez	
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 +	



Ez	



(+ 90° rotated version)	



gap for	


n > ~1.75:1	
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2d periodicity, ε=12:1	



E	



H	



E	



H	


TM	

 TE	



a	



fre
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cy

 ω
  (

2π
c/
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  =

 a
 / 
λ	



Γ	

 X	



M	


irreducible Brillouin zone	

 Γ	

 X	

 M	

 Γ	



k	





What a difference���
a boundary condition makes…	



ε1	

 ε2	



E1,|| = E2,||	



ε1E1,⊥ = ε2E2,⊥	



E|| is continuous:	


energy density ε|E|2	



more in larger ε	



εE⊥ is continuous:	


energy density |εE|2/ε	



more in smaller ε	



To get strong confinement & gaps,	


want E mostly parallel to interfaces	



TM: ||	

 TE: ⊥	





2d photonic crystal: TE gap, ε=12:1	



Γ M K Γ

0.1

0.2

0.3

0.5

0

0.4

TE gap

a

Γ

M K

TE bands	



TM bands	



gap for n > ~1.4:1	



E	



H	


TE	





3d photonic crystal: complete gap , ε=12:1	



U’ L Γ X W K

0.1

0.2
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0.4
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0.7

0.8

0

21% gap

L'

L
K'

Γ
W

U'
X
U'' U
W' K

z

I:  rod layer II:  hole layer

I.	



II.	



[ S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000) ]	



gap for n > ~2:1	





You, too, can compute���
photonic eigenmodes!	



MIT Photonic-Bands (MPB) package:	


http://ab-initio.mit.edu/mpb!



The Mother of (almost) All Bandgaps	



The diamond lattice:	


	



fcc (face-centered-cubic)	


with two “atoms” per unit cell	



(primitive)	



fcc = most-spherical Brillouin zone	



+ diamond “bonds” = lowest (two) bands can concentrate in lines	



Recipe for a complete gap:	



a

x
y

z



fre
qu
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cy

 (c
/a

)	


The First 3d Bandgap Structure	



K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).	



11% gap	



overlapping Si spheres	



MPB tutorial, http://ab-initio.mit.edu/mpb	



L

Γ
W

X
U
K

for gap at λ = 1.55µm,	


sphere diameter ~ 330nm	





Layer-by-Layer Lithography	



• Fabrication of 2d patterns in Si or GaAs is very advanced	


(think: Pentium IV, 50 million transistors)	



So, make 3d structure one layer at a time	



…inter-layer alignment techniques are only slightly more exotic	



Need a 3d crystal with constant cross-section layers	





A Schematic	



[ M. Qi, H. Smith, MIT ]	





Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	



s	

u	

b	

s	

t	

r	

a	

t	

e	



A	

 A	

 A	

 A	



A	

 A	

 A	

 A	


A	

 A	

 A	



A	

 A	

 A	

 A	


A	

 A	

 A	



A	

 A	

 A	

 A	


A	

 A	

 A	



expose/etch	


holes	





Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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Making Rods & Holes Simultaneously	
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7-layer E-Beam Fabrication	



5 µm

[ M. Qi, et al., Nature 429, 538 (2004) ]	





Supercontinuum-Source vs. Theoretical 
Transmission Spectra	
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(with defects)

Measurement Simulation
(without
defect)

[ M. Qi, H. Smith, MIT ]	





The Woodpile Crystal	



[ S. Y. Lin et al., Nature 394, 251 (1998) ]	



gap	



(4 “log” layers = 1 period) 	



http://www.sandia.gov/media/photonic.htm!

Si	



[ K. Ho et al., Solid State Comm. 89, 413 (1994) ]	

 [ H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994) ]	



an earlier design:	


(& currently more popular)	





1.25 Periods of Woodpile @ 1.55µm	


[ Lin & Fleming, JLT 17, 1944 (1999) ]	



gap	



(4 “log” layers = 1 period) 	



1.3µm	



180nm	



Si	
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Two-Photon Lithography	



Atom	



e	

 E0	



hν = ∆E	



hν	

 photon	



hν	


photon	



2	

 2-photon probability ~ (light intensity)2	



lens	



some chemistry	


(polymerization)	



3d Lithography	



…dissolve unchanged stuff	


(or vice versa)	





2µm	



Lithography is a Beast	


[ S. Kawata et al., Nature 412, 697 (2001) ]	



λ = 780nm	


resolution = 150nm	



7µm	



(3 hours to make)	





Holographic Lithography	


[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]	



absorbing material	



Four beams make 3d-periodic interference pattern	



(1.4µm)	



k-vector differences give reciprocal lattice vectors (i.e. periodicity)	



beam polarizations + amplitudes (8 parameters) give unit cell	





One-Photon ���
Holographic Lithography	



[ D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) ]	



huge volumes, long-range periodic, fcc lattice…backfill for high contrast	



10µm	





Mass-production II: Colloids	



microspheres (diameter < 1µm)	


silica (SiO2)	



sediment by gravity into	


close-packed fcc lattice!	



(evaporate)	





Mass-production II: Colloids	



http://www.icmm.csic.es/cefe/!



Inverse Opals	



fcc solid spheres do not have a gap… 	


…but fcc spherical holes in Si do have a gap	



Infiltration 

sub-micron colloidal spheres 

Template 
 (synthetic opal) 3D 

Remove 
Template 

“Inverted Opal” 

complete band gap 

~ 10% gap between 8th & 9th bands	


small gap, upper bands: sensitive to disorder	



[ figs courtesy	


D. Norris, UMN ]	



[ H. S. Sözüer, PRB 45, 13962 (1992) ]	





In Order To Form���
a More Perfect Crystal…	



meniscus	


silica ���
250nm	



Convective Assembly	


[ Nagayama, Velev, et al., Nature  (1993)	



Colvin et al., Chem. Mater. (1999) ] 	



•  Capillary forces during drying cause assembly in the meniscus	


•  Extremely flat, large-area opals of controllable thickness	



Heat Source	



80C	



65C	


1 micron 	


silica spheres	


in ethanol	



evaporate ���
solvent	



[ figs courtesy	


D. Norris, UMN ]	





A Better Opal	

 [ fig courtesy	


D. Norris, UMN ]	





Inverse-Opal Photonic Crystal	


[ fig courtesy	



D. Norris, UMN ]	



[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]	





Inverse-Opal Band Gap	



good agreement	


between theory (black)	


& experiment (red/blue)	



[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]	





Inserting Defects in Inverse Opals ���
e.g., Waveguides	



Three-photon lithography	


with	



laser scanning	


confocal microscope	



(LSCM)	


[ Wonmok,	



Adv. Materials 14, 271 (2002) ]	





Mass-Production III:���
Block (not Bloch) Copolymers	



two polymers	


can segregate,	


ordering into 

periodic arrays	



[ Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999) ]	



periodicity ~	


polymer block size	



~ 50nm	


(possibly bigger)	





Block-Copolymer 1d Visible Bandgap	



dark/light:	


polystyrene/polyisoprene	



	


n = 1.59/1.51	



reflection for differing homopolymer %	



/ homopolymer	



Flexible material:	


bandgap can be	



shifted by stretching it!	



[ A. Urbas et al., Advanced Materials 12, 812 (2000) ]	





Be GLAD: Even more crystals!	



[ O. Toader and S. John, Science 292, 1133 (2001) ]	



15% gap for Si/air	



“GLAD” = “GLancing Angle Deposition”	



diamond-like	


with “broken bonds”	



doubled unit cell, so gap between 4th & 5th bands	





Glancing Angle Deposition	



[ S. R. Kennedy et al., Nano Letters 2, 59 (2002) ]	



evaporated	


Si	



“seed” posts	



Si	



glancing-angle Si	


only builds up	


on protrusions	



…rotate to	


spiral	





An Early GLAD Crystal	



[ S. R. Kennedy et al., Nano Letters 2, 59 (2002) ]	





Outline	
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Properties of Bulk Crystals	


by Bloch’s theorem	



(cartoon)	



co
ns

er
ve

d 
fre

qu
en

cy
 ω
	



conserved wavevector k	



photonic band gap	



band diagram (dispersion relation)	



dω/dk ≈ 0: slow light	


(e.g. DFB lasers)	



backwards slope:	


	

negative refraction	



strong curvature:	


	

super-prisms, …	



(+ negative refraction)	



synthetic medium	


	

for propagation	





Superprisms	


[Kosaka, PRB 58, R10096 (1998).]	



from divergent dispersion (band curvature)	





Photonic Crystals ���
& Metamaterials	



(cartoon)	



co
ns

er
ve

d 
fre

qu
en

cy
 ω
	



conserved wavevector k	



photonic band gap	



band diagram (dispersion relation)	



synthetic medium	


	

for propagation	



at small ω	


(long wavelengths λ >> a)	



ω(k) ~ straight line	


~ effectively homogeneous material	



= metamaterials	





Microwave negative refraction	


[ D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science 305, 788 (2004) ]	



Magnetic (ring) + Electric (strip) resonances	



1 
cm
	



su
pe

rle
ns
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re
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Negative Indices & Refraction	



[ Veselago, 1968	


negative ε, µ ]	

 opposite of ordinary lens:	



only images close objects	



does not require	


curved lens	

 can exceed classical	



diffraction limit	





Negative-refractive���
 all-dielectric photonic crystals	



[ M. Notomi, PRB 62, 10696 (2000). ]	



negative refraction	

 focussing	



(2d rods in air, TE)	



not metamaterials: wavelength ~ a,	


no homogeneous material can reproduce all behaviors	





Superlensing with Photonic Crystals	


[ Luo et al, PRB 68, 045115 (2003). ]	



2/3 diffraction limit	





Negative Refraction���
and wavevector diagrams	



w contours	


in (kx,ky) space	



[ Luo et al, PRB 65, 2001104 (2002). ]	



k|| is conserved	





Classical diffraction limit comes from	


loss of evanescent waves	



… can be recovered by	


resonant coupling to surface states	



(needs band gap)	



2/3 diffraction limit	



Super-lensing	


[Luo, PRB 68, 045115  (2003).]	

 image	





the magic of periodicity:���
unusual dispersion without scattering	
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Intentional “defects” are good	



3D Photonic C rysta l with Defects

microcavities	

 waveguides (“wires”)	





420 nm	



[ Notomi et al. (2005). ]	



Resonance	


an oscillating mode trapped for a long time in some volume	



(of light, sound, …)	


frequency w0	



lifetime τ >> 2π/ω0	


quality factor Q = ω0τ/2	



energy ~ e–ω0τ/Q	



modal	


volume V	



[ Schliesser et al.,	


PRL 97, 243905 (2006) ]	



[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]	



[ C.-W. Wong,	


APL 84, 1242 (2004). ]	





Why Resonance?	


an oscillating mode trapped for a long time in some volume	


	


• long time = narrow bandwidth … filters (WDM, etc.)	


    — 1/Q = fractional bandwidth	


	


• resonant processes allow one to “impedance match”	


   hard-to-couple inputs/outputs	


	


• long time, small V … enhanced wave/matter interaction	


    — lasers, nonlinear optics, opto-mechanical coupling, 	


         sensors, LEDs, thermal sources, … 	





How Resonance?	


need mechanism to trap light for long time	



[ llnl.gov ]	



metallic cavities:	


good for microwave,	


dissipative for infrared	



ring/disc/sphere resonators:	


a waveguide bent in circle,	


bending loss ~ exp(–radius)	



[ Xu & Lipson	


     (2005) ]	



10µm	



 [ Akahane, Nature 425, 944 (2003) ]	



photonic bandgaps	


(complete or partial	



+ index-guiding)	



VCSEL	


[fotonik.dtu.dk]	



(planar Si slab)	





Why do defects in crystals ���
trap resonant modes?���

���
What do the modes look like?	





Cavity Modes	
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finite region –> discrete ω	





Cavity Modes: Smaller Change	
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Cavity Modes: Smaller Change	
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Bulk Crystal Band Diagram	





Cavity Modes: Smaller Change	
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Defect Crystal Band Diagram	



Defect bands are 
shifted up (less ε)	



∆k ~ π / L	



with discrete k	



# ⋅λ
2
~ L (k ~ 2π / λ)

confined	


modes	



k not conserved	


at boundary, so	



not confined outside gap	



escapes:	





Single-Mode Cavity	
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Bulk Crystal Band Diagram	



A point defect	


can push up	



a single mode	


from the band edge	



(k not conserved)	



ω0

ω

field decay ~ ω −ω 0

curvature



“Single”-Mode Cavity	
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Bulk Crystal Band Diagram	



A point defect	


can pull down	



a “single” mode	



(k not conserved)	


X	



…here, doubly-degenerate	


(two states at same ω)	





Tunable Cavity Modes	



Ez:	



Radius of Defect  (r/a)
0.1 0.2 0.3 0.4

0.2

0.3

0.4
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Air Defect Dielectric Defectair   bands
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Tunable Cavity Modes	



Ez:	



band #1 at M	

 band #2 at X’s	



m
ultiply by exponential decay	



monopole	

 dipole	





Intentional “defects” are good	



3D Photonic C rysta l with Defects

microcavities	

 waveguides (“wires”)	





Projected Band Diagrams	



conserved k!	



1d periodicity	



Γ	

 X	



M	



conserved	



no
t c

on
se

rv
ed
	



So, plot ω vs. kx only…project Brillouin zone onto Γ–X:	



gives continuum of bulk states + discrete guided band(s)	





Air-waveguide Band Diagram	



any state in the gap cannot couple to bulk crystal ⇒ localized	



continuum of	


bulk-crystal modes	





(Waveguides don’t really need a 
complete gap)	



Fabry-Perot waveguide:	



This is exploited e.g. for photonic-crystal fibers…	





Guiding Light in Air!	


mechanism is gap only	

 vs. standard optical fiber:	



	

“total internal reflection”	


    — requires higher-index core	



no hollow core!	



hollow = lower absorption, lower nonlinearities, higher power	





Review: Why no scattering?	



forbidden by gap	


(except for finite-crystal tunneling)	



forbidden by Bloch	


(k conserved)	





Benefits of a complete gap…	



broken symmetry –> reflections only	



effectively one-dimensional	





“1d” Waveguides + Cavities = Devices	
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Lossless Bends	



symmetry + single-mode + “1d” = resonances of 100% transmission	



[ A. Mekis et al.,	


Phys. Rev. Lett. 77, 3787 (1996) ]	





Waveguides + Cavities = Devices	



“tunneling”	



Ugh, must we simulate this to get the basic behavior?	





Temporal Coupled-Mode Theory���
(one of several things called of “coupled-mode theory”)	



[H. Haus, Waves and Fields in Optoelectronics]	



a	

input	

 output	


s1+	


s1–	

 s2–	



resonant cavity	


frequency ω0, lifetime τ	

 |s|2 = power	



|a|2 = energy	



da
dt

= −iω0a −
2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

assumes only:	


	

• exponential decay	


	

   (strong confinement)���
	

• conservation of energy	


	

• time-reversal symmetry	





Temporal Coupled-Mode Theory���
(one of several things called of “coupled-mode theory”)	



[H. Haus, Waves and Fields in Optoelectronics]	



a	

input	

 output	


s1+	


s1–	

 s2–	



resonant cavity	


frequency ω0, lifetime τ	

 |s|2 = flux	



|a|2 = energy	



transmission T	


= | s2– |2 / | s1+ |2 	



1	



w0	



T = Lorentzian filter	



=

4
τ 2

ω −ω0( )2 + 4
τ 2

w	



FWHM	


1
Q
=
2

ω0τ

…quality factor Q	





Resonant Filter Example	



Lorentzian peak, as predicted.	


	



An apparent miracle:	


	



~ 100% transmission	


at the resonant frequency	



cavity decays to input/output with equal rates	


⇒ At resonance, reflected wave	



destructively interferes	


with backwards-decay from cavity	



& the two exactly cancel.	





Wide-angle Splitters	



[ S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001) ]	





Waveguide Crossings	



[ S. G. Johnson et al., Opt. Lett. 23, 1855 (1998) ]	





Waveguide Crossings	



empty

5x5

3x3

1x1



Channel-Drop Filters	



[ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ]	



Perfect channel-dropping if:	



Two resonant modes with:	


• even and odd symmetry	


• equal frequency (degenerate)	


• equal decay rates	



Coupler	



waveguide 1	



waveguide 2	



(mirror plane)	





Enough passive, linear devices…	



Photonic crystal cavities:	


	

tight confinement (~ l/2 diameter)	



	

+ long lifetime (high Q independent of size)	



	

 	

= enhanced nonlinear effects	



e.g. Kerr nonlinearity, ∆n ~ intensity	





A Linear Nonlinear Filter	



in	

 out	



Linear response:	


Lorenzian Transmisson	

 shifted peak	



+ nonlinear	


index shift	





A Linear Nonlinear “Transistor”	



Linear response:	


Lorenzian Transmisson	

 shifted peak	



+ feedback	



Bistable (hysteresis) response	


Power threshold ~ V/Q2 is near optimal	


(~mW for Si and telecom bandwidth)	



semi-analytical	



numerical	



Logic gates, switching,	


rectifiers, amplifiers,	



isolators, …	



[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	





TCMT for Bistability	


[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	



a	

input	

 output	

s1+	

 s2–	


resonant cavity	



frequency ω0, lifetime τ, 	


SPM coefficient α  ~ χ(3)

	


(computed from perturbation theory) 	



	



|s|2 = power	


|a|2 = energy	



da
dt

= −i(ω0 −α a 2 )a − 2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

gives cubic equation	


for transmission	



	

… bistable curve	





Experimental Nonlinear Switches	



420 nm	



[ Notomi et al. (2005). ]	


[ Xu & Lipson, 2005 ]	



Q ~ 30,000	


V ~ 10 optimum	



Power threshold ~ 40 µW	



10µm	



Q ~ 10,000	


V ~ 300 optimum	



Power threshold ~ 10 mW	





Experimental Bistable Switch	



Silicon-on-insulator	



420 nm	



Q ~ 30,000	


Power threshold ~ 40 µW	


Switching energy ~ 4 pJ	



[ Notomi et al., Opt. Express 13 (7), 2678 (2005). ]	





Same principles apply in 3d…	



rod layer

hole layer

(fcc crystal)	



A	



B	



C	





2d-like defects in 3d	



modify single layer
of holes or rods

[ M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001) ]	





3d projected band diagram	



wavevector  kx ( 2π/a)
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2d-like waveguide mode	



y

-1 1
Ez y

z

y

-1 1
Ez

x x

3D Photonic Crystal 2D Photonic Crystal



2d-like cavity mode	





The Upshot	



To design an interesting device, you need only:	



symmetry	



+ resonance	



+ (ideally) a band gap to forbid losses	



+ single-mode (usually)	



Oh, and a full Maxwell simulator to get Q parameters, etcetera.	
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Review: Bloch Basics	


a	



Waves in periodic media can have:	


• propagation with no scattering (conserved k)	


• photonic band gaps (with proper ε function)	



Eigenproblem gives simple insight:	



 
(

∇ + i


k ) × 1

ε
(

∇ + i


k ) ×⎡

⎣⎢
⎤
⎦⎥

H k =

ωn (

k )
c

⎛
⎝⎜

⎞
⎠⎟

2 
H k

 Θ̂

k Hermitian –> complete, orthogonal, variational theorem, etc.	



ω	



k	



 

H = ei(


k ⋅ x−ω t ) H k (

x)Bloch form:	



band diagram	





Review: Defects and Devices	


Waveguides	



+	


Resonant	


Cavities	



Point defects = Cavities	



Line defects = Waveguides	





Review: 3d Crystals and Fabrication	



10µm	



Much progress	


in making complex structures	



…	


incorporation of defects & devices	



still in early stages	





How else can we confine light?	





Total Internal Reflection	



ni > no	



no	



rays at shallow angles > θc	


are totally reflected	



Snell’s Law:	



qi	


qo	



ni sinθi = no sinθo	



sinθc = no / ni	



< 1, so θc is real 	



i.e. TIR can only guide	


within higher index	


unlike a band gap	





Total Internal Reflection?	



ni > no	



no	



rays at shallow angles > θc	


are totally reflected	



So, for example,	


a discontiguous structure can’t possibly guide by TIR…	



the rays can’t stay inside!	





Total Internal Reflection?	



ni > no	



no	



rays at shallow angles > θc	


are totally reflected	



So, for example,	


a discontiguous structure can’t possibly guide by TIR…	



or can it?	





Total Internal Reflection Redux	



ni > no	



no	



ray-optics picture is invalid on λ scale 	


(neglects coherence, near field…)	



Snell’s Law is really	


conservation of k|| and w:	



θi	


θo	



|ki| sinθi = |ko| sinθo	



|k| = nω/c	


(wavevector)	

 (frequency)	



k||	



translational	


symmetry	



conserved!	





Waveguide Dispersion Relations ���
i.e. projected band diagrams	



ni > no	



no	



k||	



ω	

 light cone	


projection of all k⊥ in no	



(a.k.a. β)	



ω = ck / ni	



higher-index core	


pulls down state	



(      ∞)	



higher-order modes	


at larger ω, β	



weakly guided (field mostly in no)	



� 

ω = c
no

β 2 + k⊥
2



Strange Total Internal Reflection	


Index Guiding	



a	





A Hybrid Photonic Crystal:���
1d band gap + index guiding	



a	



range of frequencies	


in which there are	



no guided modes	



slow-light band edge	





A Resonant Cavity	



increased rod radius	


pulls down “dipole” mode	



(non-degenerate)	



–  +	





w	



A Resonant Cavity	



–  +	



k not conserved	


so coupling to	



light cone:	


radiation	



The trick is to	


keep the	



radiation small…	


(more on this later)	





Meanwhile, back in reality…	



5 µm	



[ D. J. Ripin et al., J. Appl. Phys. 87, 1578 (2000) ] 	



d = 703nm	

d = 632nm	

d	



Air-bridge Resonator: 1d gap + 2d index guiding	



bigger cavity	


= longer l	





Time for Two Dimensions…	


2d is all we really need for many interesting devices	



…darn z direction!	





How do we make a 2d bandgap?	



Most obvious 
solution?	



	



make	


2d pattern 
really tall	





How do we make a 2d bandgap?	



If height is finite,	


we must couple to	



out-of-plane wavevectors…	



kz not conserved	





A 2d band diagram in 3d?	



E	



H	


TM	



a	



Fr
eq

ue
nc

y 
ω

  (
2π

c/
a)

  =
 a

 / 
λ	



Γ	

 X	

 M	

 Γ	



Recall the 2d band diagram:	


… what happens in 3d?	



& what about polarization?	





A 2d band diagram in 3d	



E	



H	


TM	



a	



Fr
eq

ue
nc

y 
ω

  (
2π

c/
a)

  =
 a

 / 
λ	



Γ	

 X	

 M	

 Γ	



In 3d, continuum of kz	


fills upwards from 1st band:	



& pure polarizations disappear	



no gap remains!	



…but interesting	


“space” down here…	





A 2d band diagram in 3d	



projected band diagram fills gap!	



but this empty	


space looks useful…	





Photonic-Crystal Slabs	



2d photonic bandgap + vertical index guiding	



[ J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,	


Photonic Crystals: Molding the Flow of Light, 2nd edition, chapter 8]	





Rod-Slab Projected Band Diagram	


Light cone = all 
solutions in medium 
above/below slab	


	


Guided modes below	


light cone = no radiation	


	


Two “polarizations:”	


TM-like & TE-like	


	


“Gap” in guided modes	


… not a complete gap	


	


Slab thickness is crucial 
to obtain gap…	





Slab symmetry & “polarization”	


2d: TM and TE modes	



slab: odd (TM-like) and even (TE-like) modes	



mirror plane	


z = 0	



Like in 2d, there may only be a band gap	


in one symmetry/polarization	



E	

 E	





Slab Gaps	



TM-like gap	

 TE-like gap	



Rod slab	

 Hole slab	





Substrates, for the Gravity-Impaired	


(rods or holes)	



substrate breaks symmetry:	


some even/odd mixing “kills” gap	



BUT	


with strong confinement	



(high index contrast)	


mixing can be weak	



superstrate restores symmetry	



“extruded” substrate	


= stronger confinement	



(less mixing even	


without superstrate	





Extruded Rod Substrate	



(GaAs on AlOx)	


[ S. Assefa et al., APL 85, 6110 (2004). ]	





Air-membrane Slabs	



[ N. Carlsson et al., Opt. Quantum Elec. 34, 123 (2002) ]	



who needs a substrate?	



2µm	



AlGaAs	





Holes (TE-like) Rods (TM-like)

Sla b Thickness (a)

30

25

20

15

10

5

0
0.5 1.5 2.50 1 2 3

Optimal Slab Thickness	


~ λ/2, but λ/2 in what material?	



TM “sees” <ε-1>-1	



~ low ε	


TE “sees” <ε>	



~ high ε	



effective medium theory: effective ε depends on polarization	



[ Johnson et al. (1999) ]	





Photonic-Crystal Building Blocks	


point defects	



(cavities)	


line defects	


(waveguides)	





A Reduced-Index Waveguide	



Reduce the radius of a row of	


rods to “trap” a waveguide mode	


in the gap.	



(r=0.2a)	



(r=0.18a)	



(r=0.16a)	



(r=0.12a)	



(r=0.14a)	



Still have conserved	


wavevector—under the	


light cone, no radiation	



(r=0.10a)	



We cannot completely	


remove the rods—no	


vertical confinement!	





Reduced-Index Waveguide Modes	





Experimental Waveguide & Bend	


[ E. Chow et al., Opt. Lett. 26, 286 (2001) ]	



1µm	

 1µm	



GaAs	


AlO	



SiO2	



be
nd

in
g 

ef
fic

ie
nc

y	



caution:	


can easily be	


multi-mode	





Inevitable Radiation Losses ���
whenever translational symmetry is broken	



e.g. at cavities, waveguide bends, disorder…	



k is no longer conserved!	



w	


(conserved)	



coupling to light cone	


= radiation losses	





Dimensionless Losses: Q	



1	



w0	



T = Lorentzian filter	



=

4
τ 2

ω −ω0( )2 + 4
τ 2

w	



FWHM	


1
Q
=
2

ω0τ

…quality factor Q	



quality factor Q = # optical periods for energy to decay by exp(–2π)	



energy ~ exp(–ωt/Q)	



in frequency domain: 1/Q = bandwidth	



from last time:	


(coupling-of-	



        modes-in-time)	





All Is Not Lost	



Qw

A simple model device (filters, bends, …):	


Qr

Q
1

Qr
1

Qw
1= +

Q = lifetime/period	


    = frequency/bandwidth	



We want: Qr >> Qw	



1 – transmission ~ 2Q / Qr	



worst case: high-Q (narrow-band) cavities	





Radiation loss: A Fourier picture	



spatial:	


	


	


	



Fourier:	



infinitely	


extended	


in space	



k	


delta function(s) [Fourier series]	


below light cone = no radiation	



localized	


in space	



k	


delocalized in Fourier	



tails in light cone = radiation	





A tradeoff: Localization vs. Loss	



stronger spatial localization	

 weaker spatial localization	



“Uncertainty principle:”	


less spatial localization = more Fourier localization	



= less radiation loss	





(ε = 12)	



Monopole Cavity in a Slab	



decreasing ε	



Lower the ε of a single rod: push up	


a monopole (singlet) state.	



Use small Δε: delocalized in-plane,	


	

 	

   & high-Q (we hope)	



(cross-section)	





Delocalized Monopole Q	



ε=6	



ε=7	



ε=8	



ε=9	



ε=10	



ε=11	



mid-gap	



[ S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001). ]	





Super-defects	



Weaker defect with more unit cells.	


	



More delocalized	


at the same point in the gap	



(i.e. at same bulk decay rate)	





Super-Defect vs. Single-Defect Q	



ε=6	



ε=7	



ε=8	



ε=9	



ε=10	



ε=11	



ε=7	



ε=8	



ε=9	



ε=10	



ε=11	



ε=11.5	



mid-gap	



[ S. G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001). ]	





Super-Defect State���
(cross-section)	


Δε = –3, Qrad = 13,000	



(super defect)	



still ~localized: In-plane Q|| is > 50,000 for only 4 bulk periods	



Ez	





How do we compute Q?	



1	

 excite cavity with dipole source	


(broad bandwidth, e.g. Gaussian pulse)	



… monitor field at some point	



(via 3d FDTD [finite-difference time-domain] simulation)	



…extract frequencies, decay rates via	


fancy signal processing (not just FFT/fit)	



[ V. A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]	



Pro: no a priori knowledge, get all ω’s and Q’s at once	



Con: no separate Qw/Qr, 	


              mixed-up field pattern if multiple resonances	





How do we compute Q?	



2	

 excite cavity with	


narrow-band dipole source	



(e.g. temporally broad Gaussian pulse)	



(via 3d FDTD [finite-difference time-domain] simulation)	



— source is at ω0 resonance,	


which must already be known (via       )	

1	



…measure outgoing power P and energy U	



Q = ω0 U / P	



Pro: separate Qw/Qr, also get field pattern when multimode	



Con: requires separate run        to get ω0,	


                long-time source for closely-spaced resonances	



1	





Can we increase Q ���
without delocalizing (much)?	





Cancellations?	



Maybe we can make the Fourier transform oscillate 
through zero at some important k in the light cone?	



	


But what k’s are “important?”	



	


Equivalently, some kind of destructive interference	



in the radiated field?	





Need a more���
compact representation	





Multipole Expansion	


[ Jackson, Classical Electrodynamics ]	



radiated field =	



dipole	

 quadrupole	

 hexapole	



Each term’s strength = single integral over near field	


…one term is cancellable by tuning one defect parameter	





Multipole Expansion	


[ Jackson, Classical Electrodynamics ]	



radiated field =	



dipole	

 quadrupole	

 hexapole	



peak Q (cancellation) = transition to higher-order radiation	





Multipoles in a 2d example	



increased rod radius	


pulls down “dipole” mode	



(non-degenerate)	



–  +	



as we change the radius, ω sweeps across the gap	





2d multipole���
cancellation	



Q
 =

 1
,7

73
	



Q
 =

 6
,6

24
	



Q
 =

 2
8,

70
0	





An Experimental (Laser) Cavity	


[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	
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Elongation p is a tuning parameter for the cavity…	



cavity	



…in simulations, Q peaks sharply to ~10000 for p = 0.1a	


(likely to be a multipole-cancellation effect)	



* actually, there are two cavity modes; p breaks degeneracy	





An Experimental (Laser) Cavity	


[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	



el
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Elongation p is a tuning parameter for the cavity…	



cavity	



…in simulations, Q peaks sharply to ~10000 for p = 0.1a	


(likely to be a multipole-cancellation effect)	



* actually, there are two cavity modes; p breaks degeneracy	



Hz (greyscale)	





An Experimental (Laser) Cavity	


[ M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002) ]	



cavity	



quantum-well lasing threshold of 214µW	


(optically pumped @830nm, 1% duty cycle) 	



(InGaAsP)	



Q ~ 2000 observed from luminescence	





Multipole Cancellation in Stretched Cavity	


p = 0.1a p = 0.205a p = 0.3a

0 ma x
z flux
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[ calculations courtesy A. Rodriguez, 2006 ]	





Slab Cavities in Practice: Q vs. V	


 [ Loncar, APL 81, 2680 (2002) ]	



Q ~ 10,000   (V ~ 4 × optimum) 	


                                    = (λ/2n)3	



 [ Akahane, Nature 425, 944 (2003) ]	



Q ~ 45,000  (V ~ 6 × optimum)	



Q ~ 106  (V ~ 11 × optimum)	



[ Ryu, Opt. Lett. 28, 2390 (2003) ]	



Q ~ 600,000  (V ~ 10 × optimum)	



 [ Song, Nature Mat.	


 4, 207 (2005) ]	



(theory	


only)	
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protective	


polymer	


sheath	



Optical Fibers Today���
(not to scale)	



silica cladding	


n ~ 1.45	



more complex profiles	


to tune dispersion	



“high” index	


doped-silica core	



n ~ 1.46	



“LP01”	


confined mode	



field diameter ~ 8µm	



losses ~ 0.2 dB/km	


at l=1.55µm	



(amplifiers every	


50–100km)	



but this is	


~ as good as	



it gets…	


[ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]	





The Glass Ceiling: Limits of Silica	



Long Distances	


High Bit-Rates	



Dense Wavelength Multiplexing (DWDM)	



Loss: amplifiers every 50–100km	


…limited by Rayleigh scattering (molecular entropy)	



…cannot use “exotic” wavelengths like 10.6µm	



Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits	


(limited by mode area ~ single-mode, bending loss)	



also cannot be made (very) large for compact nonlinear devices	



Compact Devices	



Radical modifications to dispersion, polarization effects?	


…tunability is limited by low index contrast	





Breaking the Glass Ceiling: ���
Hollow-core Bandgap Fibers	



1000x better	


loss/nonlinear limits	



(from density)	



Photonic Crystal	



1d	


crystal	



Bragg fiber	


[ Yeh et al., 1978 ]	



+ omnidirectional	


= OmniGuides	



2d	


crystal	



PCF	


[ Knight et al., 1998 ]	

(You can also	



put stuff in here …)	





Breaking the Glass Ceiling: ���
Hollow-core Bandgap Fibers	



Bragg fiber	


[ Yeh et al., 1978 ]	



+ omnidirectional	


= OmniGuide	



 fibers	



PCF	


[ Knight et al., 1998 ]	



white/grey	


= chalco/polymer	



5µm	

[ R. F. Cregan 	


et al., 	



Science 285, 	


1537 (1999) ]	



[ figs courtesy 	


Y. Fink et al., MIT ]	



silica	





Breaking the Glass Ceiling II: ���
Solid-core Holey Fibers	



solid core	



holey cladding forms	


effective	



low-index material	



[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ]	



Can have much higher contrast	


than doped silica…	



strong confinement = enhanced	


nonlinearities, birefringence, …	





Sequence of Analysis	



1	

 Plot all solutions of infinite cladding as w vs. b	


w	



b	



empty spaces (gaps): guiding possibilities	



2	

 Core introduces new states in empty spaces	


	

— plot w(b) dispersion relation	



3	

 Compute other stuff…	



“light cone”	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	
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PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.17717a	


w

 (2
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PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.22973a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.30912a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.34197a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.37193a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.4a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.42557a	


w

 (2
πc

/a
)	



light cone	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.45a	


w

 (2
πc

/a
)	



light cone	



index-guided modes	


go here	



gap-guided modes	


go here	





PCF: Holey Silica Cladding	

 2r	



a	



n=1.46	



b (2π/a)	



r = 0.45a	


w

 (2
πc

/a
)	



light cone	

 above air line:	


guiding in air core	



is possible	



below air line: surface states of air core	


[ figs: West et al, 	



Opt. Express 12 (8), 1485 (2004) ]	





Experimental Air-guiding PCF	


Fabrication (e.g.)	



silica glass tube (cm’s)	



fiber	


draw	



~1 mm	



(outer	


cladding)	



fuse &	


draw	



~50 µm	





Experimental Air-guiding PCF	


[ R. F. Cregan et al., Science 285, 1537 (1999) ]	



10µm	



5µm	





Experimental Air-guiding PCF	


[ R. F. Cregan et al., Science 285, 1537 (1999) ]	



w (c/a) (not 2πc/a)	



transmitted intensity	


after ~ 3cm	





A more recent (lower-loss) example	



3.9µm	



hollow (air) core (covers 19 holes)	



guided field profile:	


(flux density)	



[Mangan, et al., OFC 2004 PDP24 ]	



1.7dB/km	


BlazePhotonics	



over ~ 800m @1.57µm	





Improving air-guiding losses 	



13dB/km	


Corning	



over ~ 100m @1.5µm	


[ Smith, et al., Nature 424, 657 (2003) ]	



1.7dB/km	


BlazePhotonics	



over ~ 800m @1.57µm	


[ Mangan, et al., OFC 2004 PDP24 ]	



larger core =	


less field penetrates	



cladding	



ergo,	


roughness etc.	



produce lower loss	





State-of-the-art air-guiding losses	


larger core = more surface states crossing guided mode	



	



100nm	


20nm	



13dB/km	


Corning	



over ~ 100m @1.5µm	


[ Smith, et al., Nature 424, 657 (2003) ]	



1.7dB/km	


BlazePhotonics	



over ~ 800m @1.57µm	


[ Mangan, et al., OFC 2004 PDP24 ]	



… but surface states can be removed by proper crystal termination	


[ West, Opt. Express 12 (8), 1485 (2004) ]	





Surface States vs. Termination	


1.9

2

1.8

1.7

1.5

Wave vector kza/2π
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

photonic crysta l light cone

1.6

1.4

changing the crystal termination	


can eliminate surface states	



[ West, Opt. Express 12 (8), 1485 (2004) ]	



[ Saitoh, Opt. Express 12 (3), 394 (2004) ]	



[ Kim, Opt. Express 12 (15), 3436 (2004) ]	





Bragg Fiber Cladding	


at large radius,	



becomes ~ planar	


Bragg fiber gaps (1d eigenproblem)	



wavenumber β	



β	



radial kr	


(Bloch wavevector)	



β = 0: normal incidence	


kφ	



0 by conservation	


of angular momentum	



ω	





Omnidirectional Cladding	


Bragg fiber gaps (1d eigenproblem)	



wavenumber β	


β	

 β = 0: normal incidence	



omnidirectional	


(planar) reflection	



for nhi / nlo	


big enough	


and nlo > 1	



e.g. light from	


fluorescent sources	



is trapped	



[ J. N. Winn et al,	


Opt. Lett. 23, 1573 (1998) ]	



w	





Hollow Metal Waveguides, Reborn	


OmniGuide fiber modes	



wavenumber b	

wavenumber b	



fre
qu

en
cy

 w
	



metal waveguide modes	



1970’s microwave tubes	


@ Bell Labs	



modes are directly analogous to those in hollow metal waveguide 



An Old Friend: the TE01 mode	


lowest-loss mode,	



just as in metal	

   r E 

(near) node at interface	


= strong confinement	



= low losses	



non-degenerate mode	


— cannot be split	



= no birefringence or PMD	





Yes, but how do you make it?	


[ figs courtesy Y. Fink et al., MIT ]	



find compatible materials	


(many new possibilities)	



chalcogenide glass, n ~ 2.8	


+ polymer (or oxide), n ~ 1.5	



1	



Make pre-form	


(“scale model”)	



2	



fiber drawing	



3	





A Drawn Bandgap Fiber	


•  Photonic crystal structural 

uniformity, adhesion, 
physical durability through 
large temperature excursions 

white/grey	


= chalco/polymer	



[ figs courtesy Y. Fink et al., MIT ]	





High-Power Transmission���
at 10.6µm (no previous dielectric waveguide)	



[ figs courtesy Y. Fink et al., MIT ]	
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Polymer losses @10.6µm ~ 50,000dB/m…	


…waveguide losses < 1dB/m	



[ B. Temelkuran et al.,	


Nature 420, 650 (2002) ]	





Application: Laser Surgery	



[ www.omni-guide.com]	





“ Examination today reveals dramatic improvement in both the tracheal and 
laryngeal papillomas. ... ______  has fewer papillomas than at any time in the 
past decade! “ 

     Dr. J. Koufman, Dec 17, 2004 
     Director CVSD 

An early endoscopic surgery 	





Index-Guiding PCF & microstructured fiber: ���
Holey Fibers	



solid core	



holey cladding forms	


effective	



low-index material	



[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ]	



Can have much higher contrast	


than doped silica…	



strong confinement = enhanced	


nonlinearities, birefringence, …	





Guided Mode in a Solid Core	


small computation: only lowest-w band!	



2r	



a	



n=1.45	



r = 0.3a	



power density	



(~ one minute, planewave)	



fundamenta l
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λ-dependent “index contrast”	



2r	
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Endlessly Single-Mode	


[ T. A. Birks et al., Opt. Lett. 22, 961 (1997) ]	



at higher w	


(smaller l),	



the light is more	


concentrated in silica	



http://www.bath.ac.uk/physics/groups/opto!

…so the effective	


index contrast is less	



…and the fiber can stay	


single mode for all l!	





Holey Fiber PMF ���
(Polarization-Maintaining Fiber)	



no longer degenerate with	



Can operate in a single polarization, PMD = 0	


(also, known polarization at output)	



[ K. Suzuki, Opt. Express 9, 676 (2001) ]	



birefringence B = Dbc/w	


= 0.0014	



(10 times B of silica PMF)	



Loss = 1.3 dB/km @ 1.55µm	


over 1.5km	





Truly Single-Mode Cutoff-Free Fiber	



b (2π/a)	



w
 c - 

 w
 (2
πc

/a
)	



w > wc: not guided	



single-mode	



1st mode:	


no cutoff	



2nd mode	


cutoff	





Nonlinear Holey Fibers:	



[ figs: W. J. Wadsworth et al., J. Opt. Soc. Am. B 19, 2148 (2002) ]	



Supercontinuum Generation	



e.g. 400–1600nm “white” light:	


from 850nm ~200 fs pulses (4 nJ)	



(enhanced by strong confinement + unusual dispersion)	



[ earlier work: J. K. Ranka et al., Opt. Lett. 25, 25 (2000) ]	





Low Contrast Holey Fibers	



The holes can also form an	


effective low-contrast medium	



i.e. light is only affected slightly	


by small, widely-spaced holes	



This yields	


large-area, single-mode	


fibers (low nonlinearities)	



	


…but bending loss is worse	



[ J. C. Knight et al., Elec. Lett. 34, 1347 (1998) ]	



~ 10 times standard fiber mode diameter	





Outline	



•  Preliminaries: waves in periodic media	


•  Photonic crystals in theory and practice	


•  Bulk crystal properties	


•  Intentional defects and devices	


•  Index-guiding and incomplete gaps	


•  Photonic-crystal fibers	


•  Perturbations, tuning, and disorder	





All Imperfections are Small	



• Material absorption: small imaginary De	



• Nonlinearity: small De ~ |E|2  (Kerr)	



• Stress (MEMS): small De or small e boundary shift	



• Tuning by thermal, electro-optic, etc.: small De	



• Roughness: small De or boundary shift 	



(or the device wouldn’t work)	



Weak effects, long distance/time: hard to compute directly	


— use semi-analytical methods	





Semi-analytical methods ���
for small perturbations	



• Brute force methods (FDTD, etc.):	


	

expensive and give limited insight	



• Semi-analytical methods	


	

— numerical solutions for perfect system	


	

      + analytically bootstrap to imperfections	



… coupling-of-modes, perturbation theory, 	


	

Green’s functions, coupled-wave theory, …	





Perturbation Theory���
for Hermitian eigenproblems	



given eigenvectors/values:	

 ˆ O u = u u
…find change          &            for small	

Δu Δ u Δ ˆ O 

Solution:	


expand as power series in	

Δ ˆ O 

Δu = 0 + Δu(1) + Δu(2 ) +…
Δ u = 0 + Δ u (1) +…&	



Δu(1) = u Δ ˆ O u
u u (first order is usually enough)	





Perturbation Theory���
for electromagnetism	



Δω (1) = c2

2ω
H Δ ˆ A H
H H

= −ω
2

ΔεE 2∫
εE 2∫

� 

Δk (1) = Δω(1) /vg

� 

vg = dω
dk

…e.g. absorption	


gives imaginary Dw	



= decay!	



� 

⇒ Δω(1)

ω
= − Δn

n
⋅ (fraction of ε E 2  in Δn)

or:	





A Quantitative Example	



Gas can have	


low loss	



& nonlinearity	



…but what about	


the cladding?	



& may need to use	


very “bad” material	



to get high index contrast	



…some field	


penetrates!	





Review: the TE01 mode	


lowest-loss mode,	



just as in metal	

  

E

(near) node at interface	


= strong confinement	



= low losses	



[ Johnson, Opt. Express 9, 748 (2001) ]	





Suppressing Cladding Losses	



EH11	



TE01	



Mode Losses	


÷	



Bulk Cladding Losses	



TE01 strongly suppresses	


cladding absorption	



	


(like ohmic loss, for metal)	



Large differential loss	



l (mm)	

[ Johnson, Opt. Express 9, 748 (2001) ]	





Quantifying Nonlinearity	



Db ~ power P ~ 1 / lengthscale for nonlinear effects	



g = Db / P	


	



= nonlinear-strength parameter determining	


self-phase modulation (SPM), four-wave mixing (FWM), …	



(unlike “effective area,”	


tells where the field is, 	



not just how big)	



[ Johnson, Opt. Express 9, 748 (2001) ]	

 [ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]	





Suppressing Cladding Nonlinearity	



TE01	



Mode Nonlinearity*	


÷	



Cladding Nonlinearity	



l (mm)	



Will be dominated by	


nonlinearity of air	



	


~10,000 times weaker	



than in silica fiber	


(including factor of 10 in area)	



* “nonlinearity” = Db(1) / P = g	



[ Johnson, Opt. Express 9, 748 (2001) ]	





A Linear Nonlinear “Transistor”	



Linear response:	


Lorenzian Transmisson	



Bistable (hysteresis) response	



semi-analytical	



numerical	



Entire nonlinear response	


from one linear calculation:	



	


Lorentzian mode w, Q	



+	


Kerr Dw ~ |E|2	



(to first order)	



[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]	





Tuning Microcavities	


• Correcting for fabrication error:	



	

— narrow-band filters require 10–3 or better accuracy	


	

 fabricate “close enough” and tune post-fabrication	


	

 	

… want: large tunability, slow speeds	



• Switching/routing:	


	

— require small tunability (e.g. by bandwidth: 10–3)	


	

— need high speeds (ideally, ns or better)	



Many mechanisms to change cavity index or shape:	


	

liquid crystal, thermal,	


	

nonlinearities, carrier density, MEMS…	



� 

Δω (1)

ω
= −Δn

n
⋅ (fraction of εE 2  in Δn)“easy” theory for ∆n tuning:	





Liquid-crystal Tuning	


One of the earliest proposals:	

 [ Busch & John, PRL 83, 967 (1999). ]	



Asymmetric particles oriented by external field:	


    — n on (two) “ordinary” axes can differ	


         from “extraordinary-axis” n by ∆n ~15%	



Difficulty: filling entire photonic crystal [all existing work]	


	

with liquid (n ~ 1.5) usually destroys the gap 	



Response time: 20–200µs [ Shimoda, APL 79, 3627 (2001). ]	



Possible solutions:	


	

• use thin LC coating [Busch, 1999], but small ∆frequency	


	

• use micro-fluidic droplet only in cavity? 	





Thermal tuning	


using thermal expansion, phase transitions,	



or most successfully, thermo-optic coefficient (dn/dT)	


[ Chong, PTL 16, 1528 (2004). ]	



5 nm tuning (0.3%) in Si	


time (estimated) < 1 ms	



[ Asano, Elec. Lett. 41 (1) (2005). ]	



5 nm tuning	


(0.3%)	



time ~ 20µs	





Tuning by Free-carrier Injection	


[ Leonard, PRB 66, 161102 (2002). ]	



macroporous Si	



Measured ∆reflectivity from	


band-edge shift at 1.9µm	



optical carrier injection	


by 300fs pulses	



at 800nm pump wavelength	



31 nm wavelength shift (2%)	


rise time ~ 500 fs	



but affects absorption too	





Tuning by Optical Nonlinearities	


Pockels effect (∆n ~ E)	

 Kerr effect (∆n ~ |E|2)	



[ Hu, APL 83, 2518 (2003). ]	



fcc lattice of polystyrene spheres	


(incomplete gap)	



13nm shift @ 540nm (2.4%)	


response time ~ 10 ps	



[ Takeda, PRE 69, 016605 (2004). ]	



Theory only	





Tuning by MEMS deformation	



stretch piezo-electrically	


(MEMS)	



[ C.-W. Wong, Appl. Phys. Lett. 84, 1242 (2004). ]	



1.5 nm shift @ 1.5µm (0.1%)	


response-time not measured, expected in “microseconds” range	



Theory tricky: not a ∆n shift	





Boundary-perturbation theory	



e1	



e2	


De = e1 – e2	



De = e2 – e1	



… just plug De’s into	


perturbation formulas?	



FAILS for high index contrast!	


beware field discontinuity…	



fortunately, a simple correction exists	

 [ S. G. Johnson et al.,	


PRE 65, 066611 (2002) ]	





Boundary-perturbation theory	



e1	



e2	


De = e1 – e2	



De = e2 – e1	



[ S. G. Johnson et al.,	


PRE 65, 066611 (2002) ]	



Δω (1) = −ω
2

Δh ΔεE||
2 − Δ 1

ε
D⊥

2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

surf.
∫

εE 2∫

Dh	


(continuous field components)	





Surface roughness disorder?	


disordered	



photonic crystal	

conventional	


ring resonator	



loss limited by disorder	


(in addition to bending)	



[ S. Fan et. al., J. Appl. Phys. 78, 1415 (1995). ]	



small (bounded) disorder does not destroy the bandgap	


[ A. Rodriguez et. al., Opt. Lett. 30, 3192 (2005). ]	



Q limited only by crystal size (for a 3d complete gap) …	



[ A. Rodriguez, MIT ]	



[ http://www.physik.uni-wuerzburg.de/TEP/Website/groups/opto/etching.htm ]


… but waveguides have more trouble …	





Effect of Gap on Disorder 
(e.g. Roughness) Loss?	



index-guided waveguide 

radiation blocked 
increased reflection 

radiation blocked 
no increase in reflection 

photonic-crystal waveguide: which picture is correct? 

OR 

[ with M. Povinelli ]	





Coupled-mode theory	


Expand state in ideal eigenmodes, for constant w:	



ψ = cn (z) n eiβnz
n
∑

expansion	


coefficient	

 eigenstate of perfect waveguide	



wavenumber	



state (field)	


of disordered	


waveguide	

 z	





What’s New in Coupled-Mode Theory?	



• Traditional methods (Marcuse, 1970): weak periodicity only	



— de Sterke et al. (1996): coupling in time (nonlinearities)	



— Russell (1986): weak perturbations, slowly varying only	



NEW: exact extension, for z-dependent (constant w), and:	


	

arbitrary periodicity, 	


	

arbitrary index contrast (full vector),	


	

arbitrary disorder [ and/or tapers ]	



• Strong perodicity (Bloch modes expansion):	



full-vector	


scalar	



[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	


[ S. G. Johnson et al., PRE 66, 066608 (2002). ]	

 [ M. Skorobogatiy et al., 	



Opt. Express 10, 1227 (2002). ]	





Coupled-wave Theory���
(skipping all the math…)	



dcn
dz

= coupling[ ]m ,n eiΔβ z cm
m≠n
∑

Depends only on:	


	

• strength of disorder	


	

• mode field at disorder	


	

• group velocities	



Weak disorder, short correlations: refl. ~ |coupling|2	


if disorder and modes are “same,”	



then reflection is the same	



mode	


expansion	



coefficients	


[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	





A Test Case	



strip waveguide PC waveguide 

w 

a 
index-guided	

 gap-guided, same w(b)	



Apples	

 Apples	

to	



[ M. L. Povinelli et al., APL 84, 3639 (2004). ]	





A Test Case	



pixels added/removed with probability p	



same disorder in both cases, averaged over many FDTD runs	





Test Case Results: Reflection	



disorder strength p	



re
fle

ct
ed

 p
ow

er
	



same reflection	


for weak disorder	





Test Case Results: Total Loss	



disorder strength p	



lo
ss

 =
 1

 –
 tr

an
sm

iss
io

n	



crystal has ~40%	


lower loss rate	





photonic bandgap���
(all other things equal)���

= unambiguous improvement	



But, the news isn’t all good…	





Group-velocity (v) dependence���
other things being equal	



absorption/radiation-scattering loss	


	

 	

 	

 	

(per distance)  ~ 1/v	



reflection loss	


	

(per distance)  ~ 1/v2	



(per time)  ~ 1/v	



Losses a challenge for slow light…	



[ S. G. Johnson et al., Proc. 2003 Europ. Symp. Phot. Cryst. 1, 103. ]	


[ S. Hughes et al., Phys. Rev. Lett. 94, 033903 (2005). ]	





An Easier Way to Compute Loss	



imperfection acts like a volume current	



 

J ~ Δε


E0

volume-current method	


(i.e., first Born approx. to Green’s function)	



	





An Easier Way to Compute Loss	



uncorrelated disorder adds incoherently	



So, compute power P radiated by one localized source J,	


and loss rate ~ P * (mean disorder strength)	





Losses from Point Scatterers	


strip	



Refl.	



Radiation	



photonic crystal	



same	


Refl.	



Radiation	



Loss rate ratio = (Refl. only) / (Refl. + Radiation) = 60%	

ü	





Conventional waveguide 

 

radiation	



re
fle

ct
io

n	


Effect of an Incomplete Gap	



…with Si/SiO2 Bragg mirrors (1D gap) 
50% lower losses (in dB) 

same reflection 

some radiation blocked	



sa
m

e 
re
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ct

io
n	



(matching modal area) 

on uncorrelated surface roughness	





Failure of the Volume-current Method	



imperfection acts like a volume current	



 

J ~ Δε


E0

Incorrect for large De (except in 2d TM polarization)	



E0	

 De “bump” changes E	


(E is discontinuous)	





Scattering Theory (for small scatterers)	



incident wave E0 (l >> d)	


(scattered wave)	



+	

+	

+	

 +	

+	



–	

–	


–	

 –	

 –	

=	



dipole p = a E0	



sphere: effective point current J  ~  p / DV 	


                                                              = 3 De E0 / (De + 3)	



= De E0 for small De, but very different for large De	



(quasi-static)	



[ e.g. Jackson, Classical Electrodynamics ]	





Corrected Volume Current for Large De	



=	


dipole p = a E|| + g D	



unperturbed field E	



+	

+	

+	



–	

–	


–	



e2	

 e1	



effective point current J  ~  (         p|| + ep) / DV	

e1 + e2	


2	



(compute polarizability	


numerically)	



[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	





Strip Waveguides ���
in Photonic-Crystal Slabs (3d)	



How does incomplete 3d gap affect roughness loss?	



[ Johnson et al., PRB 62, 8212 (2000) ]	

 [ Lau et al., APL 81, 3915 (2002) ]	



[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	





Rods: Surface-corrugation	


vertical “ridge”	



= line source	



frequency a / l	
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radiation only	



reflection only	



total loss	



[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	





Holes: Surface-corrugation	


vertical “ridge”	



= line source	



frequency a / l	



Lo
ss

 W
ith

 C
ry

sta
l /

 W
ith

ou
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l	



radiation only	



reflection only	



total loss	



[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	





Rods vs. Holes? Answer is in 2d.	



The hole waveguide is not single mode	


	

— crystal introduces new modes (in 2d)	


	

        and new leaky modes (in 3d)	



[ S. G. Johnson et al., Applied Phys. B 81, 283 (2005). ]	





Controlled Deviations: Tapers	


[ Johnson et al., PRE 66, 066608 (2002) ]	



• We proved an adiabatic theorem for periodic systems:	



	

slow transitions = 100% transmission	


    — with simple conditions = design criteria	



In doing so, we got something more:	


	

a new coupled-mode theory for periodic systems	


	

 	

= efficient modeling +	


	

 	

 	

results for other problems	





A simple problem?	


to	

 to	





A simple problem?	


L = 10a: L	

 L	



L (a)	



tra
ns

m
iss

io
n	



taper is	


worse!!	





What happened���
to the adiabatic theorem?	



[ Johnson et al., PRE 66, 066608 (2002) ]	





At all intermediate taper points, the operating mode:	



Must be propagating (not in the band gap).	



Must be guided (not part of a continuum).	



Intuitive!	



Easy to violate accidentally in photonic crystals.	



There is an adiabatic theorem!���
…but with two conditions	





fre
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 (c
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)	



taper position	



in-gap!	



tapering the width	



band gap	



A Problematic Taper	





ga
p 

fre
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 (c
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)	



taper position	



in-gap!	



tapering the period	



band gap	



Corrected Taper: Shifting the Gap	





taper length L	



1 
– 

Tr
an

sm
iss
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n	



1 / L2	



Corrected Taper: Shifting the Gap	


tapering the period	





At all intermediate taper points, the operating mode:	



Must be propagating (not in the band gap).	



Must be guided (not part of a continuum).	



Intuitive!	



Easy to violate accidentally in photonic crystals.	



There is an adiabatic theorem!���
…but with two conditions	





to	



Index-guided to Bandgap-guided	



?	





?	



Index-guided to Bandgap-guided	



1	



index-guided	



cartoon:	



b	
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Index-guided to Bandgap-guided	



2	



index-guided	



cartoon:	



b	
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Index-guided to Bandgap-guided	
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index-guided	



cartoon:	
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Index-guided to Bandgap-guided	
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index-guided	



cartoon:	
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Index-guided to Bandgap-guided	
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index-guided	



cartoon:	
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Index-guided to Bandgap-guided	
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index-guided	
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Index-guided to Bandgap-guided	



7	



index-guided	
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Index-guided to Bandgap-guided	
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index-guided	



cartoon:	
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Index-guided to Bandgap-guided	
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not guided!	



cartoon:	



b	



w	





?	



Index-guided to Bandgap-guided	



10	



not guided!	



cartoon:	
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Index-guided to Bandgap-guided	
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Index-guided to Bandgap-guided	
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gap-guided	
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Index-guided to Bandgap-guided	



13	
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A Working Transition	



continuum always lies below guided band	


... just far away	





frequency (c/a)	



Bad Transmission:	



Good Transmission:	



 	





Finding New Materials / Processes ���
→ Designing New Structures	



The story of photonic crystals:	





Free Materials Online	



Photonic Crystals book: jdj.mit.edu/book	


	



Tutorial slides: jdj.mit.edu/photons/tutorial	


	



Free electromagnetic simulation software	


(FDTD, mode solver, etc.)	



jdj.mit.edu/wiki	




