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Lecture Outline
• Overview of different imaging systems
• Review of basic signals and systemsg y
• Image quality assessment
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What is Medical Imaging?
• Using an instrument to see the inside of a human body

– Non-invasive
– Some with exposure to small amount of radiation (X-ray, CT and 

nuclear medicine)
– Some w/o (MRI and ultrasound)( )

• The properties imaged vary depend on the imaging 
modality

X ( j ti CT) tt ti ffi i t t X– X-ray (projection or CT): attenuation coefficient to X-ray
– Nuclear medicine (PET, SPECT): distribution of introduced radio 

source
– Ultrasound: sound reflectivity
– MRI: hydrogen proton density, spin relaxation
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Projection vs. Tomography
• Projection: 

– A single image is created for a 3D body, 
which is a “shadow” of the body in a 
particular direction (integration through 
the body)
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Projection vs. Tomography
• Tomography

– A series of images are generated, one from each slice of a 3D object in 
a particular direction (axial coronal sagital)a particular direction (axial, coronal, sagital)

– To form image of each slice, projections along different directions are 
first obtained, images are then reconstructed from projections (back-
projection, Radon transform)p j , )
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Anatomical vs. Functional Imaging
• Some modalities are very good at depicting anatomical structure (bone, different 

tissue types, boundary between different organs)
– X-ray, X-ray CT
– MRI

• Some modalities do not depict anatomical structures well, but reflect the functional 
status (blood flow, oxygenation, etc.)

– UltrasoundUltrasound
– PET, functional MRI

• Boundaries between the two classes are blurring as the imaging resolution continues 
to improve

Functional
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Common Imaging Modalities
• Projection radiography (X-ray)
• Computed Tomography (CT scan or CAT Scan)p g p y ( )
• Nuclear Medicine (SPECT, PET)
• Ultrasound imaging
• MRI
• Optical imaging
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Projection Radiography
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• Year discovered: 1895 (Röntgen, NP 1905)
• Form of radiation: X-rays = electromagnetic 

di ti ( h t )radiation (photons) 
• Energy / wavelength of radiation: 0.1 – 100 keV / 10 – 0.01 nm

(ionizing)
• Imaging principle: X-rays penetrate tissue and 

create "shadowgram" of 
differences in density.  

• Imaging volume: Whole body
• Resolution: Very high (sub-mm)
• Applications: Mammography, lung diseases,pp g p y g

orthopedics, dentistry, 
cardiovascular, GI
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Computed Tomography
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• Year discovered: 1972 (Hounsfield, NP 1979)
• Form of radiation: X-rays
• Energy / wavelength of radiation: 10 – 100 keV / 0.1 – 0.01 nm 

(ionizing)
• Imaging principle: X-ray images are taken under 

many angles from which 
tomographic ("sliced") views 
are computed

• Imaging volume: Whole body
• Resolution: High (mm)
• Applications: Soft tissue imaging (brain, pp g g (

cardiovascular, GI)
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Nuclear Medicine
• Images can only be made when appropriate radioactive 

substances (called radiotracer) are introduced into the 
body that emit gamma rays.

• A nuclear medicine image reflects the local 
concentration of a radiotracer within the bodyconcentration of a radiotracer within the body

• Three types
– Conventional radionuclide imaging or scintigraphy
– Single photon emission computed tomography (SPECT)
– Positron emission tomography (PET)
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SPECT
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SPECT

• What do you see?
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• Year discovered: 1953 (PET), 1963 (SPECT)
• Form of radiation: Gamma rays
• Energy / wavelength of radiation: > 100 keV / < 0.01 nm

(ionizing)
• Imaging principle: Accumulation or "washout" of 

radioactive isotopes in the 
body are imaged with x-ray 
cameras. 

• Imaging volume: Whole body
• Resolution: Medium – Low (mm - cm)
• Applications: Functional imaging (cancer pp g g (

detection, metabolic 
processes, myocardial 
infarction)
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Ultrasound Imaging
• High frequency sound are emitted into the imaged body, 

time and strength of returned sound pulses are 
measured

• Comparatively inexpensive and completely non-invasive
Image quality is relatively poor (but is improving!)• Image quality is relatively poor (but is improving!)
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SPECT

• What do you see?
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• Year discovered: 1952 (clinical: 1962)
• Form of radiation: Sound waves (non-ionizing)

NOT EM di ti !NOT EM radiation!
• Frequency / wavelength of radiation: 1 – 10 MHz /  1 – 0.1 mm 

• Imaging principle: Echoes from discontinuities in 
tissue density/speed of sound 
are registered. 

• Imaging volume: < 20 cm
• Resolution: High (mm)
• Applications: Soft tissue, blood flow pp

(Doppler)
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Magnetic Resonance Imaging
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Wh t d ?
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• Year discovered: 1945 ([NMR] Bloch, NP 1952)
1973 (Lauterbur, NP 2003)
1977 (Mansfield NP 2003)1977 (Mansfield, NP 2003) 
1971 (Damadian, SUNY DMS)

• Form of radiation: Radio frequency (RF)
(non ionizing)(non-ionizing)

• Energy / wavelength of radiation: 10 – 100 MHz / 30 – 3 m 
(~10-7 eV)

I i i i l P t i fli i d d• Imaging principle: Proton spin flips are induced, 
and the RF emitted by their 
response (echo) is detected. 

I i l Wh l b d• Imaging volume: Whole body
• Resolution: High (mm)
• Applications: Soft tissue, functional imaging
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Waves Used by Different Modalities
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Course breakdown
• Biomedical Imaging is a multi-disciplinary field involving

– Physics (matter, energy, radiation, etc.)
– Math (linear algebra, calculus, statistics)
– Biology/Physiology
– Engineering (implementation)Engineering (implementation)
– Signal processing and Image processing (modeling imaging 

system as linear systems, image reconstruction and 
enhancement and analysis)enhancement and analysis)

• Course breakdown:
– 1/3 physics
– 1/3 instrumentation
– 1/3 signal processing

• Understand the imaging system from a “signals and
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Signals and Systems View Point

• The object being imaged is an input signal
– Typically a 3D signal

• The imaging system is a transformation of the input 
signal to an output signal
The data measured is an output signal• The data measured is an output signal
– A 2D signal (an image, e.g. an X-ray) or a series of 2D signals 

(e.g. measured projections from a CT scan), or  4D data (a 
i f 3D l i ti )series of 3D volume in time)

• Image reconstruction
– An inverse process: from the measured output signal -> desired p p g

images of the object (a series of 2D slices)
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Example: Projection X-Ray
• Input signal: (x; y) is the linear attenuation coefficient 

for x-rays of a body component along a line
• Imaging Process: integration over x variable:

• Output signal: g(y)
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Example Signals
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Transformation of Signals
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Linear Systems
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Shift-Invariant Systems
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Linear and Shift-Invariant System

h(x,y) is called the Impulse Response or Point Spread Function 
(PSF) of a LSI system, which indicates the output signal 
corresponding to a single impulse or point at origin.
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Fourier Transform: 1D signals

• x has units of length (mm, cm, m) or time (for 1D signal in time)
• u has units of inverse length (cycles/unit-length), which is referred to 

as spatial frequency, or inverse time (cycles/sec), which is referred to 
as temporal frequency
|F( )| i di t th t f i l t i f( ) ith f• |F(u)| indicts the amount of signal component in f(x) with frequency u
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Fourier Transform: 2D signals

• 2D signal’s frequency can be measured in different directions 
(horizontal, vertical, 45^, etc.), but only two orthogonal directions are 
necessaryy

• u and v indicate cycles/horizontal-unit and cycles/vertical-unit
• |F(u,v)| indicates the amount of signal component with frequency u,v.
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Spatial Frequency
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Spatial Frequency
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FT of Typical Images
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Convolution Property and 
Frequency Responseq y p

• Convolution in space domain = Product in frequency domain

• For LSI system

Impulse response

g(x,y) = h(x,y) * f(x,y)
G(u,v) = H(u,v) F(u,v)

Frequency response

H(u,v) indicates how a complex exponential signal with frequency u,v
will be modified by the system in its magnitude and phase

 ),()(2)(2)(2 ),(),( vuHvyuxjvyuxjvyuxj evuHevuHe   
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Extra Readings
• See Chap 2 of textbook for more extensive reviews of 

signals and systems
• For more exposition, see

– Oppenheim and Wilsky, Signals and Systems

We will review a particular subject more when needed• We will review a particular subject more when needed
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Image Quality
• Introduction
• Contrast
• Resolution
• Noise
• Artifacts
• Distortions
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Measures of Quality
• Physics-oriented issues:

– contrast, resolution
– noise, artifacts, distortion
– Quantitative accuracy

• Task-oriented issues:• Task-oriented issues:
– sensitivity, specificity
– diagnostic accuracy
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What is Contrast?
• Difference between image characteristics (e.g. gray scale intensity) 

of an object of interest and surrounding objects or background
Whi h i b l h hi h t t?• Which image below has higher contrast?
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Contrast
• General definition

– fmax, fmin: maximum and minimum values of the signal in an 
image

• For a sinusoidal signal
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Modulation Transfer Function
• The actual signal being imaged can be decomposed into many 

sinusoidal signals with different frequencies
B

• Suppose the imaging system can be considered as a LSI system with 
A
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kfkk
k

k   ,);22sin(),( 

frequency response H(u,v)
• Imaged signal is

BvuH
myvxuBvuHAHyxg kkk ),(

);22sin()()00()(   

• The MTF refers to the ratio of the contrast (or modulation) of the 
imaged signal to the contrast of the original signal at different

AH
myvxuBvuHAHyxg kgkk

k
kkk )0,0(

);22sin(),()0,0(),( ,   

imaged signal to the contrast of the original signal at different 
frequencies

)00(
),(

),( ,,

H
vuH

m
m

vuMTF vug 

EL5823, Intro Yao Wang, NYU-Poly 45

)0,0(,, Hm vuf



More on MTF
• MTF characterizes how the contrast (or modulation) of a signal 

component at a particular frequency changes after imaging
MTF it d f th f f th i i• MTF = magnitude of the frequency response of the imaging 
system (normalized by H(0,0))

• Typically 1)0,0(),(0  MTFvuMTF

Decreasing MTF at higherDecreasing MTF at higher 
frequencies causes the 
blurring of high frequency 
features in an image
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Impact of the MTF on the Image Contrast
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Local Contrast

A target is an object of g j
interest in an image 
Eg. a tumor (target) in a liver 
(background)

EL5823, Intro Yao Wang, NYU-Poly 48



What is Resolution?
• The ability of a system to depict spatial details. 
• Which image below has higher resolution?g g

EL5823, Intro Yao Wang, NYU-Poly 49



Resolution
• Resolution refers to the 

ability of a system to depict 
spatial detailsspatial details.

• Resolution of a system can 
be characterized by its line 
spread function
– How wide a very thin line 

becomes after imaging
– Full width at half maximum 

(FWHM) determines the 
distance between two lines 
which can be separated afterwhich can be separated after 
imaging

– The smaller is FWHM, the 
higher is the resolution
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Distance > FWHM

Distance > FWHM

Distance = FWHM
(barely separate)

Distance < FWHM
(cannot separate)
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Resolution and MTF
• A pure vertical sinusoidal pattern can be thought of as the blurred 

image of uniformly spaced vertical lines
Th di t b t li i l t di t b t i• The distance between lines is equal to distance between maxima

• If the frequency = u0, the distance = 1/ u0

)2sin()( xuBAyxf 

)2sin()0,0()0,()0,0(
)2sin()0,()0,0(),(
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00
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









• If MTF(u0)=0, the sinusoidal patterns become all constant and one 

)(),(),(),( 00

cannot see different lines
• If MTF(u) first becomes 0 at frequency uc , the minimum distance 

between distinguishable lines  = 1/ uc

EL5823, Intro Yao Wang, NYU-Poly 52

• Resolution is directly proportional to the stopband edge in MTF



Example
• Which system below has better contrast and resolution?
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Bar Phantom 
• The resolution of an 

imaging system can be 
evaluated by imaging aevaluated by imaging a 
bar phantom.

• The resolution is the 
frequency (in lp/mm) of 
the finest line group that 
can be resolved after 
imaging.
– Gamma camera: 2-3 

lp/cm
– CT: 2 lp/mm
– chest x-ray: 6-8 lp/mm

•
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What is noise? 
• Random fluctuations in image intensity that are not due to actual 

signal
Th f i i i i t d d th h i• The source of noise in an imaging system depends on the physics 
and instrumentation of the imaging modality

• Which image below is most noisy?
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Noise
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White vs. Correlated Noise
• Model of a typical imaging system

• White Noise: Noise values at different positions are independent of 
each other, and position independent 
– Mean and variance at different (x,y) are same

• Correlated noise: noise at adjacent positions are correlatedCorrelated noise: noise at adjacent positions are correlated 
– Described by the correlation function R(x,y), whose Fourier transform is 

the noise power spectrum  density NPSD(u,v) or simply NPS(u,v)
– White noise has a PSD = constant = variance
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Random Variables
• The most complete description of a random variable is 

its probability density function (pdf) for continuous-valued 
RV, or probability mass function (pmf) for discrete-valued  
RV.

• The two most important statistics of a random variable is• The two most important statistics of a random variable is 
mean () and standard deviation (). The power of a 
random signal = variance = Both  and  can be 
d i d f th df f f RVderived from the pdf or pmf of a RV.

• Noise typically has zero mean (
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Amplitude Signal to Noise Ratio
• Amplitude SNR

– Meaning of “signal amplitude” and “noise amplitude” are case-
dependent.

– For projection radiography, the number of photons G counted per unit 
area follows a Poisson distribution. The signal amplitude is the average 
photon number per unit area () and the noise amplitude is the standard 
deviation of Gdeviation of G 









G

G
aSNR

– A higher exposure can lead to higher SNRa
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Power SNR
• Power SNR

• Signal power:
),(),(),(*),()( 22 dudvvuFvuHdxdyyxfyxhfpower  

signaltheofvariance,)(:ionApproximat
signal  theof  valueaverage  theisA   ,)(:ionApproximat

2

2

,,

f

vuyx
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



• Noise power:

signaltheof variance,)(   :ionApproximat ffpower 

 dudvvuNPSNpower ),()(

• For white noise:  

vu ,

2)( NNpower 
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SNR in dB
• SNR is more often specified in decibels (dB) 

• SNR in dB
– SNR (dB) = 20 log 10 SNRa

10 l SNR– = 10 log 10 SNRp

• Example:
– SNRp =2, SNR (dB)=3 dB 
– SNRp =10, SNR (dB)=10 dB

– SNRp =100, SNR (dB)=20 dB
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Artifacts, distortion & accuracy
• Artifacts:

– Some imaging systems can create image features that do not 
represent a valid object in the imaged patient, or false 
shapes/textures. 

• Distortion
– Some imaging system may distort the actual shape/position and 

other geometrics of imaged object. 

• Accuracy• Accuracy
– Conformity to truth and clinical utility
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Non-Random Artifacts
• Artifacts: image features that do not correspond to a real 

object, and are not due to noise
– Motion artifacts: blurring or streaks due to patient motion
– star artifact: in CT, due to presence of metallic material in a 

patientp
– beam hardening artifact: broad dark bands or streaks, due to 

significant beam attenuation caused by certain materials
– ring artifact: because detectors are out of calibrationring artifact: because detectors are out of calibration
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Star 
Motion 
artifact

artifact

Beam 
hardening

Ring 
artifact
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Geometric Distortion

I ( ) t bj t ith diff t i t h th i
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• In (a): two objects with different sizes appear to have the same size
• In (b): two objects with same shape appear to have different shapes



Accuracy
• Accuracy:

– conformity to truth
• quantitative accuracy

– clinical utility
• diagnostic accuracyg y

• Quantitative accuracy:
– numerical accuracy: accuracy in terms of signal value

bias (systematic e g due to miscalibration) imprecision (random)• bias (systematic, e.g. due to miscalibration), imprecision (random)
– geometric accuracy: accuracy in terms of object size/shape
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Diagnostic Accuracy
• Contingency Table
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• If the diagnosis is based on a single value of a test result and the decision is 
based on a chosen threshold, the sensitivity and specificity can be 
visualized as followsvisualized as follows
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Reference
• Prince and Links, Medical Imaging Signals and Systems,

Chap 1-3.p
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Homework 
• Reading: 

– Prince and Links, Medical Imaging Signals and Systems, Chap 
1 31-3.

• Note down all the corrections on your copy of the 
textbook based on the provided errata on the course 
webpage.

• Problems for Chap 3 of the text book (due at the 
beginning of next lecture):beginning of next lecture):
– P3.2
– P3.5
– P3 7P3.7
– P3.9
– P3.11
– P3 16
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– P3.16
– P3.22 (note correction in the Errata)


