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The complex structural organization of the white matter of the brain
can be depicted in vivo in great detail with advanced diffusion mag-
netic resonance (MR) imaging schemes. Diffusion MR imaging tech-
niques are increasingly varied, from the simplest and most commonly
used technique—the mapping of apparent diffusion coefficient val-
ues—to the more complex, such as diffusion tensor imaging, g-ball
imaging, diffusion spectrum imaging, and tractography. The type of
structural information obtained differs according to the technique
used. To fully understand how diffusion MR imaging works, it is help-
ful to be familiar with the physical principles of water diffusion in the
brain and the conceptual basis of each imaging technique. Knowledge
of the technique-specific requirements with regard to hardware and
acquisition time, as well as the advantages, limitations, and potential
interpretation pitfalls of each technique, is especially useful.
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Introduction
Diffusion-weighted magnetic resonance (MR)
imaging, boosted by established successes in clini-
cal neurodiagnostics and powerful new applica-
tions for studying the anatomy of the brain in
vivo, has been an important area of research in
the past decade. Current clinical applications are
based on many different types of contrast, such
as contrast in relaxation times for T'1- or T2-
weighted MR imaging, in time of flight for MR
angiography, in blood oxygen level dependency
for functional MR imaging, and in diffusion for
apparent diffusion coefficient (ADC) imaging.
Even more advanced techniques than these are in
use today for the study of neural fiber tract anat-
omy and brain connectivity.

Over the years, increasingly complex data
acquisition schemes have been developed, while
the theoretical foundations of diffusion MR imag-
ing have come to be better understood. For the
radiologist who wants to use these techniques in
clinical practice and research, it is important to
understand a few key principles of diffusion imag-
ing so as to select the appropriate technique for
answering a specific question. The article there-
fore begins with an explanation of the physics of
water diffusion and the ways in which the great
complexity of diffusion in the brain, the main or-
gan targeted for investigation with diffusion MR
imaging, can be described. Next, the basic prin-
ciples that underlie diffusion contrast encoding
with MR imaging are described to enable the
reader to understand the relation between the
MR imaging signal and diffusion as well as the
limitations of simple diffusion imaging tech-
niques. This discussion provides a context for the
description of diffusion spectrum imaging, the
most complex diffusion MR imaging technique,
which provides the largest body of information
and the greatest detail. With the general prin-
ciples of diffusion MR imaging in mind, the range
of current diffusion MR imaging techniques, from
the simplest to the most sophisticated, is then re-
viewed with an emphasis on the underlying as-
sumptions and hypotheses, advantages, and po-
tential pitfalls of each. The technical require-
ments (hardware capabilities, acquisition time)
for each type of diffusion imaging examination,
and the types of data provided by each type, are
compared.
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Figure 1.
dom trajectory (red line) of a single water molecule
during diffusion. The dotted white line (vector r) rep-
resents the molecular displacement during the diffusion
time interval, between z; = 0 and 7, = A.

Diagram shows the diffusion-driven ran-

The Physics and
Representation of Diffusion

Molecular diffusion, or brownian motion, was
first formally described by Einstein in 1905 (1).
The term molecular diffusion refers to the notion
that any type of molecule in a fluid (eg, water) is
randomly displaced as the molecule is agitated by
thermal energy (Fig 1). In a glass of water, the
motion of the water molecules is completely ran-
dom and is limited only by the boundaries of the
container. This erratic motion is best described in
statistical terms by a displacement distribution.
The displacement distribution describes the pro-
portion of molecules that undergo displacement
in a specific direction and to a specific distance.
To illustrate this idea, we can perform an imagi-
nary experiment. Let us imagine that we launch,
at time ¢ = 0, a given number N of labeled water
molecules in water, and we measure their indi-
vidual displacement after a given time interval A
(hereafter, diffusion time interval). For each dis-
placement distance r, we count the number 7 of
labeled water molecules that are displaced that
distance. We use the resultant data to plot a histo-
gram of the relative number of labeled molecules
(n/N) versus displacement distance (r) in a single
direction. Most of the molecules travel short dis-
tances, and only a few travel farther (Fig 2). Typi-
cally, the displacement distribution for free water
molecules is a Gaussian (bell-shaped) function.
At 37°C, with a diffusion time interval of A = 50
msec, the characteristic distance (standard devia-
tion of the Gaussian distribution) typically is 17
pm, which means that about 32% of the mol-
ecules have moved at least this far, whereas only
5% of them have traveled farther than 34 pm (2).

Teaching
Point



Teaching Point
In a glass of water, the motion of the water molecules is completely random and is limited only by the boundaries of the container. This erratic motion is best described in statistical terms by a displacement distribution. The displacement distribution describes the proportion of molecules that undergo displacement in a specific direction and to a specific distance.
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Figure 2. (a) Histogram shows a typical displace-
ment distribution due to diffusion in a one-dimensional
model. For each displacement distance r (x-axis) there
is a corresponding probability #/N (y-axis), which is the
proportion of molecules within a voxel that were dis-
placed that distance within a time interval A (the dura-
tion of the diffusion experiment). The top of the histo-
gram is centered on zero, indicating that most mol-
ecules had the same position atz = 0 and ¢ = A. The
proportion of molecules that traveled the given distance
r is indicated by the dotted red line. The horizontal
color bar, in which blue signifies a high probability and
red a low probability of displacement, shows the same
Gaussian distribution. (b) Histogram shows a typical
displacement distribution due to flux (ie, nonzero aver-
age displacement). All the molecules have moved the
given distance r, as shown by N/N = 1.

A histogram like that in Figure 2 is adequate
for the display of one-dimensional data, but it is
not practical for visualizing displacement in mul-
tiple dimensions. A useful approach is instead to
color-code the probability. With such a represen-
tation, the one-dimensional problem can be visu-
alized as a colored displacement axis (x-axis) in
which blue codes for high and red for low prob-
ability (Fig 2). According to this rule, we can rep-
resent actual three-dimensional (3D) diffusion as
a 3D image in which the probability of displace-
ment in three intersecting planes is coded in color
(Fig 3a). The central voxel of the image is the
origin, and its value codes for the probability, or
the proportion of molecules (#/N) that do not
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Figure 3. Diffusion within a single voxel. (a) Dia-
gram shows the 3D diffusion probability density func-
tion in a voxel that contains spherical cells (top left) or
randomly oriented tubular structures that intersect,
such as axons (bottom left). This 3D displacement dis-
tribution, which is roughly bell shaped, results in a
symmetric image (center), as there is no preferential
direction of diffusion. The distribution is similar to that
in unrestricted diffusion but narrower because there are
barriers that hinder molecular displacement. The cen-
ter of the image (origin of the r vector) codes for the
proportion of molecules that were not displaced during
the diffusion time interval. The color bar (right) shows
the spectrum used in color coding to represent prob-
ability, from the lowest value, which is indicated by red,
to the highest, which is indicated by blue. (b) Diagram
shows the diffusion probability density function within
a voxel in which all the axons are aligned in the same
direction. The displacement distribution is cigar
shaped and aligned with the axons. (¢) Diagram shows
the diffusion probability density function within a voxel
that contains two populations of fibers intersecting at
an angle of 90°. The molecular displacement distribu-
tion produces a cross shape.
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undergo displacement between ¢t = 0 and z = A.
This 3D diagram represents the displacement
distribution. A simple practical analogy is a drop
of dye falling in a glass of water. On a photograph
taken at z = A, the dye will have been diluted (dif-
fused), and the relative color density will indicate
the proportion of dye molecules displaced a given
distance.

Diffusion in a homogeneous medium is well
described as having a Gaussian distribution. De-
pending on the type of molecule, the temperature
of the medium, and the time allowed for diffu-
sion, the distribution will be wider or narrower.
The spread of the Gaussian distribution is con-
trolled by a single parameter: variance (¢2). Vari-
ance, in turn, depends on two variables, so that
o2 =2+D-A, where D, the diffusion coefficient,
characterizes the viscosity of the medium or the
ease with which molecules are displaced. The dif-
fusion coefficient for water at 37°C is approxi-
mately D = 3 - 107° m?/sec. The longer the diffu-
sion time interval, the larger the variance, because
there is more time in which molecules may be
displaced.

Molecular Displace-

ment, Diffusion, and Flux
To describe the global behavior of a population of
water molecules contained in an imaging voxel,
we use the term displacement distribution. Equiva-
lent terms to the latter are displacement probabiliry
densiry function and image of molecular displacement.
In the present article, these terms are used inter-
changeably. When molecules are agitated by ther-
mal energy alone (ie, when molecular displace-
ment takes place through the process of diffu-
sion), the displacement distribution is centered.
This means that the average or net displacement
of the molecular population is zero. Factors other
than heat also may contribute to molecular dis-
placement. For example, a pressure gradient in a
pipe may affect molecular displacement. In an
ideal setting with no turbulence and no friction,
all molecules undergo the same nonzero displace-
ment r. Such a setting produces a very different
displacement distribution, in which the histogram
is zero everywhere except in the position r, which
has the value N/N = 1 (Fig 2b) because all the
molecules have been displaced the same distance.
This type of displacement is called flux. In flux,
molecules are displaced over a nonzero average
distance. Although diffusion and flux may occur
together, for the sake of simplicity we have chosen
in the present article to focus on diffusion only.
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Figure 4. Diagram shows the cellular elements
that contribute to diffusion anisotropy.
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Therefore, the word displacement is often replaced
with the more specific term diffusion.

Diffusion in a Complex Medium
As mentioned earlier, a water molecule in a glass
of water moves randomly and, given sufficient
time, may circumnavigate the internal contents of
the glass but cannot go beyond it. The same is
true for water molecules within impermeable
spheres that may be introduced into the glass of
water (Fig 3a). The water molecules inside each
sphere diffuse within the restricted space of that
sphere, and the water molecules outside the
spheres move randomly around them. Accord-
ingly, the displacement distribution associated
with a volume (ie, voxel) that contains the imper-
meable spheres and their surround will be rather
different from that associated with the same vol-
ume before the spheres were introduced. The dif-
ference reflects the presence of water restriction.
Because molecules inside the sphere cannot move
beyond its boundaries, and because molecules
outside cannot penetrate the sphere, the expected
displacement distance is reduced. It is difficult to
predict the shape of the resultant displacement
distribution, but it will be more or less bell shaped
and markedly narrower than that for unrestricted
diffusion, if the diffusion time interval is suffi-
ciently long (Fig 3a). As in free diffusion, the dis-
placement is isotropic, with no preferential direc-
tion. To approximate the biological reality, one
could introduce into the glass of water a popula-
tion of semipermeable spheres with a membrane
that water molecules can cross with some resis-
tance. Such intermediate conditions will produce
a displacement distribution that is not as narrow
as that for a volume containing impermeable
spheres but narrower than that for a volume with
free diffusion.

Biological tissues are highly heterogeneous me-
dia that consist of various compartments and bar-
riers of different diffusivities. In terms of its cyto-
histologic architecture, a tissue can be regarded as
a porous structure made up of a set of more or
less connected compartments in a networklike
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Left part of diagram shows that standard imaging methods provide one value

(gray level) for every 3D position p. That value or gray level may code for the linear x-ray
attenuation coefficient at CT or for the relative signal intensity at MR imaging. Right part of
diagram shows that in diffusion imaging every 3D position p (voxel) is associated not with a
gray level but with a 3D image that encodes the molecular displacement distribution in that
voxel. The value measured at the coordinates p,r—f (p,r)—indicates the proportion of mol-

ecules in the voxel that have moved the given distance r.

arrangement. The movement of water molecules
during diffusion-driven random displacement is
impeded by compartmental boundaries and other
molecular obstacles in such a way that the actual
diffusion distance is reduced, compared with that
expected in unrestricted diffusion. A defining
characteristic of neuronal tissue is its fibrillar
structure. Neuronal tissue consists of tightly
packed and coherently aligned axons that are sur-
rounded by glial cells and that often are organized
in bundles. As a result, the micrometric move-
ments of water molecules are hindered to a
greater extent in a direction perpendicular to the
axonal orientation than parallel to it (Fig 3b).
Consequently, molecular displacement parallel to
the fiber typically is greater than that perpendicu-
lar to it. When diffusive properties change with
the direction of diffusion, the prevailing condition
is anisotropy, and the associated displacement
distribution is no longer isotropic and Gaussian,
like that in unrestricted diffusion, but cigar
shaped. Of course, the distribution may be even
more complicated if the underlying tissue con-
tains fibers with various orientations (Fig 3¢) (3).

Experimental evidence suggests that the tissue
component predominantly responsible for the
anisotropy of molecular diffusion observed in
white matter is not myelin, as one might expect,
but rather the cell membrane (4) (Fig 4). The
degree of myelination of the individual axons and
the density of cellular packing seem merely to
modulate anisotropy. Furthermore, axonal trans-
port, microtubules, and neurofilaments appear to
play only a minor role in anisotropy measured at
MR imaging (4).

Diffusion Represented

by a Six-dimensional Image
The image data acquired with computed tomog-
raphy (CT) or MR imaging are usually 3D data.
Every position in 3D space is associated with a
gray level that encodes the linear attenuation co-
efficient at CT or the relative signal intensity at
MR imaging. In mathematical terms, the 3D im-
age is a function of the position variable p (a 3D
vector) and is designated as f(p). Furthermore,
the brain is a highly compartmentalized and het-
erogeneous medium, with a different cytoarchi-
tecture in different locations. Accordingly, if the
local displacement distribution were measured in
various brain locations (voxels), there would be as
many different 3D displacement distributions as
there are voxels. To describe diffusion properly in
such a medium, every voxel position p must be
assigned a diffusion probability density function
(equivalent to the displacement distribution).
Since the visual representation of a diffusion
probability density function is a 3D image, the
natural result of the combination of the two vari-
ables p and r is a six-dimensional (6D) image.
The 6D image fully characterizes diffusion in a
heterogeneous medium, as it depicts the propor-
tion of molecules f(p,r) in voxel position p that
have been displaced a distance r (Fig 5). In other
words, instead of each individual position being
assigned a single gray level as in CT or standard
MR imaging, each position p is associated with
a new 3D image on which molecular displace-
ment is encoded. The resultant 6D image rep-
resents the function of three position variables


Teaching Point
A defining characteristic of neuronal tissue is its fibrillar structure. Neuronal tissue consists of tightly packed and coherently aligned axons that are surrounded by glial cells and that often are organized in bundles. As a result, the micrometric movements of water molecules are hindered to a greater extent in a direction perpendicular to the axonal orientation than parallel to it.
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(3D position vector p) and three displacement
variables (3D displacement vector r). This con-
cept of multidimensionality may not be intuitive
to nonspecialists in mathematics but is nonethe-
less essential for understanding diffusion imaging.

Representing 6D

Data in Three Dimensions
In standard 3D imaging, there is little difference
between the data that are a function of position p
and their representation on the display monitor as
a section in which the function intensity is en-
coded in gray levels. However, the distinction
between the two is more important when the data
are six dimensional, as six dimensions cannot be
represented straightforwardly in a single section;
specific computer visualization techniques must
be used to reduce the overwhelming amount of
information in six dimensions to the most impor-
tant features. Typically, at diffusion imaging,
there is less interest in obtaining a detailed diffu-
sion profile than in determining the direction of
the most rapid diffusion, because the latter pa-
rameter likely corresponds to the orientation of
axons or other fibrillar structures. One possible
approach would be to replace the diffusion prob-
ability density function with an isosurface, which
is a surface that passes through all points of equal
value, or, in other words, where the value of f(r)
is a constant (Fig 6). A more commonly used
technique that is less sensitive to noise involves
the computation of the orientation distribution
function from the displacement distribution (Figs
6, 7). An orientation distribution function may be
considered a deformed sphere whose radius in a
given direction is proportional to the sum of val-
ues of the diffusion probability density function in
that direction. For ease of visualization, we color
code the surface according to the diffusion direc-
tion ([x,v,2] = [r,b,g], where r = red, b = blue,
and g = green). An orientation distribution func-
tion or isosurface can be plotted for each indi-
vidual MR imaging voxel in a section (Fig 8).

A General Description
of Diffusion Contrast Encoding

To depict the displacement distribution, diffusion
must be linked to the signal intensity measured at
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acement

distribution

Figure 6. Diagram shows two approaches that may

be used to simplify the visual representation of 3D dif-
fusion data: replacement of the displacement distribu-
tion with an isosurface, and computation of the orien-
tation distribution function (ODEF).

MR imaging. As previously mentioned, water
molecules move randomly in the presence of ther-
mal energy. In 1950, Hahn noted that the motion
of spins (ie, hydrogen protons of the water mole-
cule) in the presence of a heterogeneous magnetic
field led to a decrease in signal intensity (5). In
1956, Torrey established the fundamental equa-
tions used to describe the magnetization of spins
in an MR spectroscopy experiment (6). Since
then, these equations have come to be regarded as
the most fundamental equations in diffusion im-
aging.

The results of the first MR spectroscopy
experiment specifically designed to measure
diffusion were reported in 1965 by Stejskal and
Tanner (7). In their experiment, the investigators
used a pulsed gradient spin-echo (SE) sequence,
a technique based on the observation that spins
moving in the magnetic field gradient direction
are exposed to different magnetic field strengths
depending on their position along the gradient
axis. As is well known in MR imaging, an ad-
equately applied magnetic field influences the
phase of the spins, with the degree of influence
depending on the strength of the field. Compared
with a classic SE sequence, the pulsed gradient
SE sequence includes two additional diffusion


Teaching Point
An orientation distribution function may be considered a deformed sphere whose radius in a given direction is proportional to the sum of values of the diffusion probability density function in that direction.
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Sum of the areas under the curve

Area under
the curve

Figure 7. Diagram shows how an orientation distribution function (ODF) is computed
and represented. Left: Image of a section through a schematized 3D displacement distribu-
tion. The value of the orientation distribution function was computed along two axes (yellow
lines). Center: Histograms represent the displacement distribution along the two axes. The
value of the orientation distribution function along those axes equals the area under the
curve for each axis. In this example, the two areas under the curve are respectively small and
large, indicating that there is much less diffusion in the one direction than in the other.
Right: The sum of the areas under the curve is represented by a deformed sphere in which
the lengths of the two radii (yellow lines) are short and long, corresponding to little diffusion
and much diffusion, respectively. To compute the orientation distribution function, the area
under the curve is computed for every direction.
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Figure 8. Orientation distribution function map of a coronal brain section. For every brain
position p, an orientation distribution function is plotted to characterize the local diffusion
probability density function. It is easy to identify the corticospinal tract, in which the domi-
nant color is blue, and the corpus callosum, in which red is predominant. More difficult to
see are the cingulum and the arcuate fasciculus, depicted predominantly in green, and the
middle cerebellar peduncle, in red.
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gradient pulses (Fig 9). The first of the two gradi-
ent pulses in this sequence introduces a phase
shift that is dependent on the strength of the gra-
dient at the position of the spin at # = 0. Before
the application of the second gradient pulse,
which induces a phase shift dependent on the spin
position at z = A, a 180° RF pulse is applied to
reverse the phase shift induced by the first gradi-
ent pulse. Since the diffusion-encoding gradient
causes the field intensity (ie, phase shift) to vary
with position, all spins that remain at the same
location along the gradient axis during the two
pulses will return to their initial state. However,
spins that have moved will be subjected to a dif-
ferent field strength during the second pulse and
therefore will not return to their initial state but
will experience a total phase shift that results in
decreased intensity of the measured MR spectro-
scopic signal. The longer the displacement dis-
tance is, the higher the phase shift and the greater
the decrease in signal will be. Hence, the resultant
image shows low signal intensity in regions where
diffusion along the applied diffusion gradient is
high.

A diffusion gradient can be represented as
a 3D vector q whose orientation is in the direc-
tion of diffusion and whose length is proportional
to the gradient strength. The gradient strength,
or more often the diffusion weighting, is some-
times expressed in terms of the & value, which is
proportional to the product of the square of the
gradient strength ¢ and the diffusion time interval
(b~ g-A).

q-Space Explained

in Analogy to k-Space
According to basic MR imaging principles (8,9),
the measured signal at conventional MR imaging
is phase and frequency encoded. It is the result of
the application of gradients in different directions
and with different intensities at specific moments
of the acquisition sequence. The values of the
measured signal are organized in a coordinate
system known as k-space. Performing the acquisi-
tion enables the filling of k-space. To transform
the raw MR imaging data from k-space into a po-
sition-encoded visual image, a mathematical op-
eration known as a Fourier transform is applied
(Fig 10) (9,10).

The process in diffusion MR imaging is analo-
gous. Let us first define a new 3D space, called
g-space, the coordinates of which are defined by a
vector q (11). The application of a single pulsed
gradient SE sequence produces one diffusion-
weighted image that corresponds to one position
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Figure 9. Diagram shows the pulsed gradient SE se-
quence used for diffusion MR imaging. Two diffusion-
encoding gradient (G4y) pulses are added to the stan-
dard SE MR imaging sequence to introduce a phase
shift proportional to molecular displacement along the
gradient direction. § = duration of the diffusion-en-
coding gradient, A = diffusion time interval, G5 =
phase-encoding gradient, G,,,; = readout gradient,
Gy = section-selective gradient, RF = radiofrequency
pulse, z = acquisition time. The diffusion-encoding
gradient often is symbolized by the vector q, which is
equal to the product of vy - 6 + Ggjs, Where 7y is the gyro-
magnetic ratio; thus, it represents the effective diffusion
gradient.

Slice in position-

Fourier
Transform

Figure 10. Diagram shows the process with which a
standard position-encoded MR image is obtained.
First, the MR signal that was generated by the applica-
tion of phase- and frequency-encoding gradients is
sampled to fill k-space (a coordinate system used to
organize the signal measurements). Next, the raw data
(k-space images) are subjected to a mathematical op-
eration known as a Fourier transform to reconstruct an
image in the standard position space.

in g-space or, more precisely, that depicts the dif-
fusion-weighted signal intensity in a specific posi-
tion q for every brain position. Repeated applica-
tions of the sequence with gradients that vary in
strength and in direction (ie, with variations of q)
allow data sampling throughout g-space. Like the
data from conventional MR imaging, in which

a Fourier transform is applied to the data in
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Figure 11. Diagram shows the process with which a 3D diffusion probability density func-
tion is obtained for one voxel (one brain position). In 4, a 3D grid that represents g-space,
each yellow dot corresponds to an MR signal sampling point. The signal is sampled at each
point by varying the direction and strength of the diffusion gradient (q vector) of the pulsed
gradient SE sequence. With a single application of the pulsed gradient SE sequence, one
point in g-space is sampled for each brain position simultaneously, and the result is one dif-
fusion-weighted image. In B, the left panel shows sections through the MR signal sampled in
g-space for a specific brain position (one voxel), and the right panel shows the diffusion
probability density function in the same voxel after a 3D Fourier transform of the MR signal
in g-space is performed. The cross-shaped appearance of the diffusion probability density
function is often seen in voxels in the brainstem, where axons of the corticospinal tract cross
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with axons of the middle cerebellar peduncle.

k-space, the g-space data are subjected to a Fou-
rier transform in every brain position. The result
is a displacement distribution in each brain posi-
tion (ie, voxel) (Fig 11). In other words, a single
application of the pulsed gradient SE sequence
produces one brain image with a given diffusion
weighting. Multiple repetitions of the sequence,
each with a different diffusion weighting, are nec-
essary to sample the entirety of g-space; the result
is hundreds of brain images, each of which re-
flects the particular diffusion weighting used. One
must then imagine that the data are reorganized
so that in every brain position there is a g-space

Figure 12. Series of diffusion-weighted
MR brain images obtained with variations
in the direction and strength of the diffu-
sion gradient in the pulsed gradient SE
sequence. Each image shows the signal
sampled at one point in g-space (one yel-
low dot). Every sampling point in g-space
corresponds to a specific direction and
strength of the diffusion gradient.

signal sample that consists of hundreds of values
and that in every brain position a Fourier trans-
form relates the raw g-space data to the diffusion
probability density function (Fig 12).

q-Space is always sampled for a specific diffu-
sion time interval A, which is determined by the
duration of the interval between the two gradient
pulses. The diffusion time interval can be varied
to enhance different properties. For example, a
longer interval produces better directional resolu-
tion. Imagine diffusion within an axon: With a
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very short diffusion time interval, there is a similar
amount of diffusion in every direction. When the
interval is longer, diffusion perpendicular to the
direction of the axon stops when the molecules
reach the axon wall, while diffusion along the long
axis of the axon continues. Thus, a longer interval
increases the distinction between the signals in
different directions; however, it also leads to a
lower signal-to-noise ratio.

To describe the parameters applied in sam-
pling g-space, the term “b value” is often used.
The b value is proportional to the product of the
diffusion time interval and the square of the
strength of the diffusion gradient. All diffusion
images should be compared with a reference im-
age that is not diffusion weighted (a standard
SE image)—in other words, one for which the
strength of the diffusion gradient is zero (¢ = 0
and b = 0).

Diffusion Spectrum Imaging
Diffusion spectrum imaging may be described as
the reference standard of diffusion imaging be-
cause it is the practical implementation of the
principles derived earlier and is the diffusion im-
aging technique that has a sound basis in physical
theory (12). Suitable for in vivo application, it
provides a sufficiently dense g-space signal
sample from which to derive a displacement dis-
tribution with the use of the Fourier transform.
The technique was first described by Wedeen et
al (13).

If established practice is followed, 515 diffu-
sion-weighted images are acquired successively,
each corresponding to a different q vector, that
are placed on a cubic lattice within a sphere with
a radius of five lattice units. The lattice units cor-
respond to different b (or q) values, from b = 0
(which corresponds to the centerpoint of the
sphere) to, typically, b = 12,000 sec/mm? (which
is a very high & value). The Fourier transform is
computed over the g-space data. If the imaging
matrix size is 128 X 128 X 30, the same number
of Fourier transform operations will be necessary
as the diffusion probability density function is
computed for every brain location.

Traditionally, 515 images were considered
necessary to obtain data of good quality, although
the acquisition of that number of images is very
time consuming. With improvements in MR im-
aging hardware and techniques in recent years,
and in view of additional very recent experience,
fewer sampling points seem to be necessary; the
probability density function can be reconstructed
with approximately 257 or even 129 images by
sampling only one hemisphere in g-space. Of
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Figure 13. Diffusion-weighted image (right) from
signal sampling at a single point in 3D g-space (left).
Brain areas where diffusion is intense in the direction of
the applied gradient (') appear darker because of a
decrease in the measured signal that results from
dephasing.

course, the signal-to-noise ratio and angular reso-
lution may change accordingly. The time for im-
aging of both brain hemispheres thus can be re-
duced from approximately 45— 60 minutes to as
little as 10—-20 minutes, an acquisition time that
makes the technique feasible in a clinical setting
(14).

With the application of the Fourier transform
over g-space in every brain position, a 6D image
of both position and displacement is obtained.
Diffusion at each position is described by the dis-
placement distribution or the probability density
function, which provides a detailed description of
diffusion and excellent resolution of the highly
complex fiber organization, including fiber cross-
ings. Since diffusion spectrum imaging is mostly
used for fiber tractography, in which only direc-
tional information is needed, the probability den-
sity function is normally reduced to an orientation
distribution function by summing the probabili-
ties of diffusion in each direction (Fig 7).

From the Simplest to the
Most Sophisticated Technique

Diffusion-weighted MR Imaging
Diffusion-weighted MR imaging is the simplest
form of diffusion imaging. A diffusion-weighted
image is one of the components needed to recon-
struct the complete probability density function
as in diffusion spectrum imaging. A diffusion-
weighted image is the unprocessed result of the
application of a single pulsed gradient SE se-
quence in one gradient direction, and it corre-
sponds to one point in g-space. Even though such
an image is rather simple, it does contain some
information about diffusion. In Figure 13, the left
splenium of the corpus callosum appears bright,
whereas the right splenium appears dark. In re-
gions such as the right splenium, where the main
diffusion direction is aligned with the applied dif-
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fusion gradient, the intensity of the signal is mark-
edly decreased, and the region therefore appears
darker on the image. In the ventricles, diffusion is
free and substantial in all directions, including the
applied gradient direction, and therefore the en-
tirety of the ventricles appears dark. Despite its
simplicity, diffusion-weighted imaging is routinely
used in investigations of stroke (15). Indeed, in
acute stroke, the local cell swelling produces in-
creased restriction of water mobility and hence a
bright imaging appearance due to high signal in-
tensity in the area of the lesion. The benefit of
diffusion-weighted imaging is that the acquisition
time is short, since only one image is needed.

ADC and Trace

The problem of diffusion-weighted imaging is
that the interpretation of the resultant images is
not intuitive. To resolve this problem, let us as-
sume that the diffusion has no restrictions and
that its displacement distribution therefore can be
described with a free-diffusion physical model,
which is a 3D isotropic Gaussian distribution. In
this model, the physical diffusion coefficient D is
replaced by the ADC, which is derived from the
equation ADC = —b In(DW1/by), where DWI is
the diffusion-weighted image intensity for a spe-
cific b value and diffusion gradient direction, de-
fined as in the previous section, and b, is a refer-
ence image without diffusion weighting. Thus, to
obtain an image of the ADC values, two acquisi-
tions are necessary.

Hagmann etal S215

Figure 14. Series of diffusion-weighted
images obtained for diffusion tensor imag-
ing, in which g-space is sampled in at least
six different directions and in which a non—
diffusion-weighted reference image is ob-
tained. The direction but not the strength
of the diffusion gradient is changed for
each sampling.

The ADC is very dependent on the direction of
diffusion encoding. To overcome this limitation,
one can perform three orthogonal measurements
and average the result to obtain a better approxi-
mation of the diffusion coefficient. This method
is equivalent to the derivation of the trace from
the diffusion tensor, described in more detail in
the next section.

Diffusion Tensor

Imaging and Derived Scalars

For ADC imaging, we have assumed that diffu-
sion follows a free-diffusion physical model and is
described by an isotropic Gaussian distribution.
This model often is too simplistic, especially if we
are interested in the orientation of axonal bundles
in which diffusion is expected to be anisotropic
(ie, not the same in all directions). For purposes
of discussion, then, let us assume that diffusion
remains Gaussian but may be anisotropic. In
other words, diffusion may be cigar or disc
shaped but also may be spherical, as in isotropic
diffusion. Anisotropic Gaussian distributions
have six degrees of freedom instead of one.
Therefore, to fit our model, we must sample at
least six points in g-space with ¢ # 0 (diffusion-
weighted images) and one point with ¢ = 0 (refer-
ence image) (Fig 14). In general, a b value of ap-
proximately 1000 sec/mm? is used. To fit the re-
sultant data to the model, we must solve a set of
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six equations like the equation given earlier. The
result is a diffusion tensor (instead of a diffusion
coefficient) that is proportional to the Gaussian
covariance matrix (instead of the Gaussian vari-
ance) (16). This diffusion tensor is a 3 X 3 matrix
that fully characterizes diffusion in 3D space, as-
suming that the displacement distribution is
Gaussian. The diffusion tensor is usually repre-
sented by an ellipsoid or an orientation distribu-
tion function (Fig 15).

The mathematical properties of the diffusion
tensor make it possible to extract several useful
scalar measures from diffusion tensor images.
The mean diffusion, also known as the trace, is
computed by averaging the diagonal elements of
the matrix (16). The result is an image like that in
Figure 16a and is the same as the result obtained
by estimating the ADC in three orthogonal direc-
tions. The direction of the diffusion maximum is
called the principal direction of diffusion and can
be directly obtained by computing eigenvectors
and eigenvalues of the tensor. Eigenvectors are
orthogonal to one another, and, with eigenvalues,
describe the properties of the tensor. Eigenvalues
are ordered as A; = N\, = \3, and each corre-
sponds to one eigenvector. The eigenvector that
corresponds to the largest eigenvalue (\;) is the
principal direction of diffusion. If the eigenvalues
are significantly different from each other, diffu-
sion is said to be anisotropic (Fig 15). If A; is
much larger than the second eigenvalue, \,, the
diffusion is cigar shaped (Fig 15). If \; and \, are
similar but are much larger than A3, the diffusion
is said to be planar or disc shaped. When all the
eigenvalues are approximately equivalent, diffu-
sion is isotropic and may be represented as a
sphere (17).

The relationship between the eigenvalues re-
flects the characteristics of diffusion. To describe
the shape of diffusion with a scalar value, frac-
tional anisotropy is most often used (16). How-
ever, other measures, such as those described by
Westin et al (17), are available. Fractional anisot-
ropy is computed by comparing each eigenvalue
with the mean of all the eigenvalues ((\)), as in
the following equation:

3 -2+ -0+ (- (V)
FA = \E\/ A2+ N2 ’

where FA is the fractional anisotropy. The frac-
tional anisotropy of a section of diffusion tensors
can be seen in Figure 16b.
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Figure 15. Diagram of diffusion tensors. In A4, the
diffusion tensor is shown as an ellipsoid (an isosur-
face) with its principal axes along the eigenvectors
(N15A2,73). In B, the diffusion tensor is shown as an ori-
entation distribution function.

The ellipsoid or the orientation distribution
function is the most accurate method for visualiz-
ing the diffusion tensor data, but sometimes it is
difficult to represent it over an imaging section on
a display monitor (18). Color coding of the diffu-
sion data according to the principal direction of
diffusion may be a more practical way of visualiz-
ing the data (16). In the color coding system that
we use, red corresponds to diffusion along the
inferior-superior axis (x-axis); blue, to diffusion
along the transverse axis (y-axis); and green, to
diffusion along the anterior-posterior axis (z-axis).
The intensity of the color is proportional to the
fractional anisotropy. An example of this color
coding scheme is shown in Figure 16c¢.

The diffusion tensor model performs well in
regions where there is only one fiber population
(ie, fibers are aligned along a single axis), where it
gives a good depiction of the fiber orientation.
However, it fails in regions with several fiber
populations aligned along intersecting axes be-
cause it cannot be used to map several diffusion
maxima at the same time. In such areas, imaging
techniques that provide higher angular resolution
are needed.

Diffusion Tensor Imaging

and Diffusion Spectrum Imaging

Because of the limited number of applied diffu-
sion gradients and degrees of freedom, the diffu-
sion tensor model is incapable of resolving fiber
crossings. In contrast, diffusion spectrum imaging
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This diffusion tensor is a 3 X 3 matrix that fully characterizes diffusion in 3D space, assuming that the displacement distribution is Gaussian. The diffusion tensor is usually represented by an ellipsoid or an orientation distribution function.

Teaching Point
The diffusion tensor model performs well in regions where there is only one fiber population (ie, fibers are aligned along a single axis), where it gives a good depiction of the fiber orientation. However, it fails in regions with several fiber populations aligned along intersecting axes because it cannot be used to map several diffusion maxima at the same time. In such areas, imaging techniques that provide higher angular resolution are needed.
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Figure 16. Extraction of scalar values from diffusion tensor imaging. (a) Image shows
mean diffusion, which is the trace of the diffusion tensor. An image of ADC averaged over
three orthogonal directions would have a similar appearance. (b) Image shows the fractional
anisotropy, which is computed from the eigenvalues of the diffusion tensor. (c) Color-coded
image shows the orientation of the principal direction of diffusion, with red, blue, and green
representing diffusion along x-, y-, and z-axes, respectively. The color intensity is propor-

tional to the fractional anisotropy.
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is not predicated on any particular hypothesis
concerning diffusion. Accordingly, its capability
to resolve the diffusion probability density func-
tion depends only on the resolution in g-space,
and its capability to resolve fiber crossings de-
pends only on the related angular resolution. In
Figure 17, images obtained with the two methods

Figure 17. Comparison be-
tween diffusion tensor and
diffusion spectrum imaging

in regions that contain fiber
crossings. In A, a color-coded
coronal diffusion image shows
the pons (B) and the centrum
semiovale (C), in which diffu-
sion is depicted by both diffu-
sion tensor images (B-DT1,
C-DTI) and diffusion spec-
trum images (B-DSI, C-DSI).
In the pons, the middle cer-
ebellar peduncle crosses the
corticospinal tract. In the cen-
trum semiovale, the cortico-
spinal tract crosses the corpus
callosum and the arcuate fas-
ciculus. In the circled sections
(C-DTI, C-DSD), it can be
seen that diffusion tensor im-
aging is not capable of resolv-
ing fiber crossings, whereas
diffusion spectrum imaging is.

are juxtaposed. The regions in which the most
striking difference can be seen are the pons,
where the corticospinal tract and middle cerebel-
lar peduncle cross, and the centrum semiovale,
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where the corticospinal tract crosses the corpus
callosum and the arcuate fasciculus.

With regard to acquisition times, diffusion ten-
sor imaging has a clear advantage over diffusion
spectrum imaging in that it requires a minimum
of only seven images, whereas diffusion spectrum
imaging requires several hundred images. Diffu-
sion spectrum imaging previously involved long
acquisition times, but with constant improve-
ments the acquisition time is decreasing (14).

Increased Angular

Resolution with q-Ball Imaging

We have seen, on one hand, that diffusion tensor
imaging is insufficient in many brain areas for ac-
curately mapping the orientation of major tracts.
On the other hand, we would like to have avail-
able a faster technique than diffusion spectrum
imaging, which is time consuming for routine
clinical applications, although improvements in
this regard are currently being evaluated. g-Ball
imaging is an attempt to combine the best at-
tributes of these two techniques (19). Although
we decided for illustrative purposes to discuss
g-ball imaging only, there are many other heuris
tic methods, such as those based on persistent
angular structure (20) and spherical deconvolu-
tion (21). All these techniques are based on an
identical or nearly identical scheme that consists
of rather dense sampling of the signal within a
sphere with a constant high & value in g-space.
The orientation distribution function is estimated
from the resultant data by using various algo-
rithms.

Like diffusion tensor imaging, g-ball imaging is
based on a hypothesis about the shape of the dif-
fusion probability density function. This hypoth-
esis is complex and demands a more in-depth
consideration of the spatial frequency content of
the signal in g-space than can be provided in the
present article. Here, we consider only a specific
type of diffusion probability density function for
which g-ball imaging provides an adequate basis.
We assume that the compartments inside a voxel
consist of a set of straight and very thin pipes with
impermeable walls. Water molecules inside the
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pipes are assumed to diffuse uniformly along the
length of the pipes but to have no transverse mo-
tion. The diffusion probability density function in
this case would look like a pincushion. With this
model, diffusion can be reconstructed by sam-
pling points in g-space on a sphere with a con-
stant radius, at a high & value (typically, >4000
sec/mm?). The data are reconstructed by using
the Funk-Radon transform, an algorithm that can
be described as follows: Suppose that we want to
know the diffusion intensity (ie, the value of the
orientation distribution function) in a direction
that corresponds to the North Pole and that the
MR signal has been sampled over the globe. If we
add together the values of the signal intensity
measured along the equator, the sum will be pro-
portional to the diffusion intensity at the North
Pole. If we redefine the location of the North Pole
as, for example, LLausanne and redefine the equa-
tor accordingly, the value of the orientation distri-
bution function at Lausanne can be computed in
a similar fashion. The same can be done to recon-
struct the orientation distribution function for any
point (eg, Boston, Stockholm, Brussels) on the
globe (Fig 18).

Unlike diffusion tensor imaging, q-ball imaging
can account for multiple crossing fibers within a
single voxel and therefore can provide realistic
depiction of areas of complex fiber architecture,
such as the centrum semiovale and the pons.
With g-ball imaging, the images obtained re-
semble those acquired with diffusion spectrum
imaging. However, further validation studies
must be performed to determine whether g-ball
imaging provides high-quality depiction of all re-
gions of the brain and whether the reconstructed
images are accurate.

Diffusion MR Tractography

Brain fiber tractography is a rendering method for
improving the depiction of data from diffusion
imaging of the brain. Although a detailed discus-
sion of tractography is beyond the scope of this
article, a short introduction is necessary because
tractography is one of the most powerful tools
developed to aid image interpretation. The pri-
mary purpose of tractography is to clarify the ori-
entational architecture of tissues by integrating
pathways of maximum diffusion coherence. Fi-
bers are grown across the brain by following from
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voxel to voxel the direction of the diffusion maxi-
mum. The fibers depicted with tractography are
often considered to represent individual axons or
nerve fibers, but they are more correctly viewed in
physical terms as lines of fast diffusion that follow
the local diffusion maxima and that only generally
reflect the axonal architecture. This distinction is
useful because, for a given imaging resolution and
signal-to-noise ratio, lines of maximum diffusion
coherence (ie, the computer-generated fibers)
may differ from the axonal architecture in some
brains. Tractography adds information and inter-
est to the MR imaging depiction of the human
neuronal anatomy.

The connectivity maps obtained with tractog-
raphy vary according to the diffusion imaging mo-
dality used to obtain the diffusion data. For ex-
ample, diffusion tensor imaging provides a Gauss-
ian approximation of the actual displacement
distribution, and since the representation of that
distribution is restricted to variations of an ellip-
soid, this method creates various biases in the
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Figure 18. Diagram shows
that in g-ball imaging, points
on a shell with a constant b
value are acquired in g-space.
At least 60 images are neces-
sary to reconstruct an orienta-
tion distribution function that
is realistic.

> 60
images

tractography result. In contrast, diffusion spec-
trum imaging with tractography overcomes many
of those biases and allows more realistic mapping
of connectivity. The tractography result also de-
pends on the tracking algorithm used. Determin-
istic fiber tracking from diffusion tensor imaging
uses the principal direction of diffusion to inte-
grate trajectories over the image (22) but ignores
the fact that fiber orientation is often undeter-
mined in the diffusion tensor imaging data. To
overcome this limitation of the data, Hagmann
and colleagues, as well as other investigators, in-
vestigated statistical fiber tracking methods based
on consideration of the tensor as a probability
distribution of fiber orientation (23-25).

The application of fiber tractography to data
such as those obtained with diffusion spectrum
imaging or g-ball imaging results in the depiction
of a large set of fiber tracts with a more complex
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Figure 19.
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Comparison of fiber tractography based on diffusion tensor imaging

(DTI) versus fiber tractography based on diffusion spectrum imaging (DSI) in two
healthy volunteers. The diffusion spectrum imaging data were obtained with a
3.0-T imager and a twice-refocused SE pulse (repetition time msec/echo time

msec = 3000/154; byax = 17,000 sec/mm?; voxel size of 3 X 3 X 3 mm); tractogra-
phy was performed according to the method described in reference 26. The diffu-
sion tensor imaging data were obtained with a 1.5-T imager and a single-shot echo-
planar sequence (1000/89; b = 1000 sec/mm?; voxel size of 1.64 X 1.64 X 3 mm);
tractography was performed as described in reference 23. Because diffusion spec-
trum imaging provides higher angular resolution, fiber crossings are better resolved
and fibers from different tracts are more clearly separated. The most visible differ-
ences between the two axial views (bottom row) are the greater predominance of
red, which represents decussating callosal fibers that connect both the parietal and
the temporal lobes, and the more uniform distribution of callosal fibers that project

into the frontal lobe, on the diffusion spectrum image. These differences reflect
typical errors of diffusion tensor imaging tractography in areas where fibers cross.

geometry (26). The greater complexity obtained
with this method, compared with that from trac-
tography with diffusion tensor MR imaging data,
is due to the consideration of numerous intersec-
tions between fibers that can be resolved or differ-
entiated. The difference between tractography
performed with diffusion tensor imaging data and
tractography performed with diffusion spectrum
imaging data can be seen in Figure 19.

Conclusions
Water diffusion is produced by the random mo-
tion of water molecules because of thermal en-
ergy. The molecular displacement depicted at
diffusion MR imaging is best described at the
level of a selected molecular population—typi-
cally, the water molecules contained in a voxel—
by calculating the probability density function or
displacement distribution. The 3D diffusion
probability density function is shaped by local
tissue structure, which hinders molecular dis-
placement. Because biological tissue is heteroge-
neous, with a different tissue architecture in
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Table 1
Technical Requirements of Diffusion MR Imaging Techniques
3.0 T and Maximal
Technique High Gradient No. of Gradient  Acquisition
and Strength Gradient Strength Time
Reference Capabilities  Directions (sec/mm?) (min)* Postprocessing Display
Diffusion- Optional 1 =1000 1-3 None Gray-scale sec-
weighted tions
imaging (15)
Trace and Optional =3 =1000 2-4 Simple summa- Gray-scale sec-
ADC imag- tion, usually tions
ing (16) performed auto-
matically by the
imaging system
Diffusion ten-  Optional =6 =1000 3-6 Simple matrix Gray-scale sec-
sor imaging operation, usu- tions for derived
(16) ally performed scalars (eg,
automatically trace, fractional
by the imaging anisotropy),
system color-coded
sections for dif-
fusion direction,
ellipsoid recon-
struction of ori-
entation distri-
bution function,
tractography
g-Ball imaging  Desirable =60 >4000 10-20 Complex filtered  Trace, general
(19) back-projection fractional an-
with many pa- isotropy, orien-
rameters tation distribu-
tion function,
tractography
Diffusion spec- Very =200 >8000 15-60 Complex (filtered Trace, general
trum imag- desirable Fourier trans- fractional an-
ing (12) form and radial isotropy, prob-
projection with ability density
multiple param- function, orien-
eters) tation distribu-
tion function,
tractography
*]t is assumed that 30 axial sections are acquired, each with a thickness of 3 mm.

different anatomic positions, a 3D displacement
distribution must be calculated for every 3D
voxel, to produce a 6D image that depicts both
position and displacement. This 6D image is best
obtained with diffusion spectrum imaging, the
reference standard. Diffusion spectrum imaging
is a rather complex and demanding technique
(Table 1), with stringent hardware requirements.
Many simpler diffusion imaging techniques also
exist that can provide important information
about diffusion and tissue structure; however, the
information they provide is partial and often hy-
pothesis based, and those who use such tech-
niques must be aware of their limitations. Imag-

ing of the ADC and trace are extremely simple
methods and provide only basic information,
namely an estimate of the variance of the diffu-
sion function. Diffusion tensor imaging and g-ball
imaging are hypothesis-based simplifications that
are used to shorten image acquisition time and
reduce hardware requirements. Like diffusion
spectrum imaging, they can be used to obtain
maps of the orientation distribution functions.
Care must be taken when interpreting diffusion
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Table 2

Advantages and Drawbacks of Diffusion MR Imaging Techniques

Technique

Information Obtained

Advantages

Drawbacks

Diffusion-weighted
imaging

Trace and ADC
imaging

Diffusion tensor
imaging

g-Ball imaging

Diffusion spectrum
imaging

Diffusion measurement in

one direction

Estimated diffusion coeffi-

cient

Estimated diffusion tensor

Estimated map of orienta-

tion distribution function
values

Full 3D diffusion probabil-

ity density function map,
true 6D images

Short acquisition time, no

postprocessing, images
easy to interpret. Exami-
nation well tolerated by
patients. Adequate hard-
ware capabilities readily
available.

Short acquisition time,

nearly no (or automated)
postprocessing, images
easy to interpret. Voxel
intensity has physical
meaning. Examination
well tolerated by patients.
Adequate hardware capa-
bilities readily available.

Short acquisition time,

some postprocessing re-
quired (automated on
recent imaging systems).
Provides information
about diffusion orienta-
tion and anisotropy. Ex-
amination well tolerated
by patients. Adequate
hardware capabilities
readily available.

Feasible with reasonable

acquisition time. Pro-
vides information about
diffusion orientation and
anisotropy, accurate de-
piction of fiber crossings.
Examination tolerated by
most patients.

Principle based, hypothesis

free, has already received
theoretical and practical
validation. Provides ac-
curate depiction of fiber
crossings with a specific
angular resolution. Maps
the entire field of diffu-
sion, providing 6D data
and increasing the possi-
bility of quantitation.
Provides diffusion tensor
information.

Provides unidirectional dif-
fusion measurement
only, limited informa-
tion. Voxel intensity is
not a natural physical
unit but a measure of
restriction.

Hypothesis based (hypoth-
esis not always true).
Limited information (no
measurement of orienta-
tion or anisotropy).

Hypothesis based (hypoth-
esis not always true).
Does not provide accu-
rate map of complex fiber
architecture. Tractogra-
phy results are vulnerable
to severe artifacts.

Hypothesis based. Al-
though results seem cor-
rect in important brain
areas, accuracy is not
guaranteed in all brain
regions. Further valida-
tion is required. Hard-
ware requirements are
high.

Hardware requirements are
high, and acquisition
time is comparatively
long. Whole-brain stud-
ies were not tolerable for
patients. Recent im-
provements in hardware
and imaging techniques
have made shorter acqui-
sition times possible, al-
lowing future patient
studies.

tensor imaging data and g-ball imaging data, as
there may be brain areas in which the underlying
hypotheses are not applicable, whereas diffusion

spectrum imaging is limited only by factors such
as k- and g-space resolution and signal-to-noise
ratio. Tractography is a visualization technique
that can be used to extract lines of maximum dif-
fusion coherence from any orientation distribu-
tion function map. These lines reflect the anat-
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omy of the axonal trajectories. Many uses are
foreseen for fiber tractography, from single-tract
analysis to whole-brain connectivity analysis
(27,28). The technical requirements and the re-
sults that can be achieved with each diffusion MR
imaging method are described in Table 1. The
radiologist should weigh the pros and cons (Ta-
ble 2) of each technique and, depending on the
question addressed and the equipment available,
choose the most adequate. It is our hope that the
information in this article will be helpful in mak-
ing that decision.
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Page S206

In a glass of water, the motion of the water molecules is completely random and is limited only by the
boundaries of the container. This erratic motion is best described in statistical terms by a
displacement distribution. The displacement distribution describes the proportion of molecules that
undergo displacement in a specific direction and to a specific distance.
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A defining characteristic of neuronal tissue is its fibrillar structure. Neuronal tissue consists of tightly
packed and coherently aligned axons that are surrounded by glial cells and that often are organized in
bundles. As a result, the micrometric movements of water molecules are hindered to a greater extent
in a direction perpendicular to the axonal orientation than parallel to it.
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An orientation distribution function may be considered a deformed sphere whose radius in a given
direction is proportional to the sum of values of the diffusion probability density function in that
direction.
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This diffusion tensor is a 3 X 3 matrix that fully characterizes diffusion in 3D space, assuming that the
displacement distribution is Gaussian. The diffusion tensor is usually represented by an ellipsoid or
an orientation distribution function.
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The diffusion tensor model performs well in regions where there is only one fiber population (ie,
fibers are aligned along a single axis), where it gives a good depiction of the fiber orientation.
However, it fails in regions with several fiber populations aligned along intersecting axes because it
cannot be used to map several diffusion maxima at the same time. In such areas, imaging techniques
that provide higher angular resolution are needed.



