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Last Lecture

* Instrumentation
— CT Generations
— X-ray source and collimation
— CT detectors

« Image Formation
— Line integrals

— Parallel Ray Reconstruction
« Radon transform

Back projection

Filtered backprojection

Convolution backprojection

Implementation issues
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This Lecture

Review of Parallel Ray Projection and Reconstruction
Practical implementation with samples

Fan Beam Reconstruction

Signal to Noise in CT
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Review: Projection Slice Theorem

« Projection Slice theorem

— The Fourier Transform of a projection at angle 0 is a line in the Fourier
transform of the image at the same angle.

G(o,0) = F(ocosb, psind)

2D Fourier Transform
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Reconstruction Algorithm for Parallel

« Backprojection:

— Backprojection of each projection
—_ Sum fb('r'.' U) — /(;T [Q(E 9)](:'::3' cos 41 sin dé’

 Filtered backprojection:
— FT of each projection
— Filtering each projection in frequency domain

— Inverse FT

. . ™ o0 _
— Backprojection  f(x.y) = f [ / |Q|G{g.Q)WWW} T
B Sum 0 —00 {=x cos 0+ sin #

« Convolution backprojection
— Convolve each projection with the ramp filter
— Backprojection

— Sum T :
f(\"r‘-' y) — ./(] [(({) * Q(F 9”&::{’ cos 04y sin f 0
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Practical Implementation

* Projections g(I, 8) are only measured at finite intervals
— I=nrt
— 7chosen based on maximum frequency in G(p, 8), W

o 1/7>=2Wor t<=1/2W (Nyquist Sampling Theorem)

* W can be estimated by the number of cycles/cm in the projection direction in the most detailed
area in the slice to be scanned

« For filtered backprojection:
— Fourier transform G(p,8) is obtained via FFT using samples g(nz, 6)
— If N sample are taken, 2N point FFT is taken by zero padding g(nz, 6)
* Recall convolving two signals of length N leads to a single of length 2N-1
* For convolution backprojection
— The ramp-filter is sampled at [=n7
— Sampled Ram-Lak Filter

1/477; n=>0
c(n)=4-1/(nzr)’; n=odd
0; n=even
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The Ram-Lak Filter (from [Kak&Slaney])
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1st Generation CT: Parallel Projections

i
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3G: Fan Beam

L

/ Much faster than 2G
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Fan Beam: Equiangular Ray
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We will focus on the equiangular detector setting on the right in this lecture.
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Fan Beam: Equidistant Ray

Angular interval
5 between rays
is NOT equal

N

Rays arranged
with equal
detector spacing

We will skip the discussion on reconstruction from equidistant Ray.
Details can be found at [Kak&Slaney]
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Equiangular Ray Projection

A

Yao Wang, NYU-Poly

L(,0)

EL5823/BE6203: CT-2

Source location is described by (3, D)
D is typically fixed, £ varies to
provide a large view angle.

To provide complete view, S € (0,27)

For a given source with angle £,
¥ specifies the detector position
or the projection line.

For each f3, ¥ varies over a range (—7,,,7,,)

(D, 3, 7) completely specifies oD
the line of projection : bet2 |
ol

6=p+y,1=Dsin(y)

Instead of g(1, 8), we can
use p(¥, ) to represent a

projection
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Equiangular Ray Reconstruction

A

Yao Wang, NYU-Poly

Derivation not required for this class. Detail can be found at [Kak&Slaney].

L(,0)

Reconstructed image is represented

in the polar coordinate using (r, ).

The relative position of a pixel at (r, @)

to the source at (D, ) is specified by (D', 7') :

D?(r,¢)=(D+rsin(B—9)) +(rcos(B—9))
tany'(r,9) = 4 COS(ﬂ_m%D + rsin(f - ¢))

Re construction formular :

2r

fr9)= [[—3a(r. Brdp
0 Weighted backprojection

ay.B)=p' 7.B*c,(¥)

p'(y,8)=p(y,B)Dcos(y)
BRI

c, ()= Z[Sin yj c(y)

c(y)1s the ramp filter used in

parallel projection.

Note typos in [Prince&Links]

EL5823/BE6203: CT-2
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Equiangular Ray Reconstruction

A Reconstructed image is represented

in the polar coordinate using (r, ).

The relative position of a pixel at (r,¢)

to the source at (D, ) is specified by (D', ) :

B
D” (r.9)=(D+rsin(8-9))* +(rcos(8-¢))*
an y(r.9) = "6~ ¢%D +rsin(B-¢))
Y )’ Re construction formular:
D 2 2z
N > = [[—5ar.prdp
0 Weighted backprojection
qv.B)=p'r.p)*cy(y)
L(£,0)

p'(v, )= p(y, B)Dcos(y)

| g
Cf(?’)za(m) c(7)

c(y)1s the ramp filter used in

parallel projection.

Derivation not required for this class. Detail can be found at [Kak&Slaney].
Note typos in [Prince&Links]
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Typos in [Prince&Links]

- P.207, Eq. (6.38), change to

o(D'sin ) =( - 4 j c(7)

'sin ¥

2
. Eg. (6.39) change to cf(y):l( ,7/ jC(J’)
2\ siny

. Eq. (6.40)(641) PX-A P 1)
p'(v.p)=p(y,B)Dcos(y)
97, 6) = p'(y. p)*c; (7)

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Practical Implementation

Projections P(y [) are only
measured at finite intervals

— n={0
— Yo Bex?
— «achosen based on maximum glna) =J 0, n is even
frequency in ydirection, W

o 1/0>=2Wor a<=1/2W -1/2
For convolution backprojection
— The filter c,(y) is sampled at

2
) » mn 15 odd.

T SIN Mo

ot D2 (r,¢):(D+rsin(,B—¢))2 +(I’COS(,B_¢))2
— Sampled Filter g(na) tan y(r,9) = (FCOS('B_@%DJF rsin(f —¢))
For backprojection o
— For given (r,¢), determine f(r,g)= qu(y,,B)d,B

(D”ﬁ 0 (D')Z

qr.B)=p'.p)*cr(y)
. , _ p'(v. )= p(y,p)Dcos(y)
— Use interpolation to determine
q(y,p) from known values at
Yao Wang, Dmllaly EL5823/BE6203: CT-2



Matlab Functions for Fan Beam CT

* Relevant functions:
— fanbeam(), ifanbeam()

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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CT Quality Evaluation

 Blurring Effect
- SNR

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Effect of Area Detector

 Practical detector integrates the detected photons over
an area
- Mathematically, the detector can be characterized by an
indicator function s(!) (aka impulse response)
- The measured projection g’(/,6) is related to “real”
projection g(l,6) by
— &'(L,O)=g(1,6) *s(1)
- G'(p0)=G(p,8)S(p)

S(o)=F{s(l)}

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Windowing Function

Recall that the ideal filter c(p)
is typically modified by a
window function W(p)

Overall Effect

fla,y) =
T o0 _ |
/ [f G(0.0)S(0)W (0)|o|e’*™ do d
0

—o0 {=xcosf+ysint

f(x,y)canbe thought of as the reconstructed image from the

projection g(/,8), whose Fourier transformis

G(p,0)=G(p,0)S(PIW(p) = &(1,0) = g(1,0)*s(1)* w(l)

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Blurred Projection

e Blurry projection:

§(0,0) = g(€,0) % s(€) % w(l)
= g(0,0) % h(()

e Radon transform convolution theorem

e [.cads to h(x,y): PSF of the blurring

fla,y) = fx,y) *

Yao Wang, NYU-Poly EL5823/BE6203: CT-2 21



Circular Symmetry of Blurring

e ('l image blurred by convolution kernel

h(z.y) =Rh(0)}

e Fourier transform of A(()

H(o) = Fi{h(0)} = S(0)W (o)

which is independent of 6.

e Therefore, H(u,v) is circularly symmetric

£

H(q) = Fo{h(x,y)} = S(¢)W(q)

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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PSF given by Hankel Transform

e PSE 1s circularly symmetric and given by

h(r) = H{S(0)W (o)}

e Reconstructed image given by

s

flr.y) = f(a.y) *h(r)

r2:x2+y2

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Circularly Symmetric Functions and
Hankel Transform

Circularly symmetric:
— f(x,y) = 1(r), only depends on the distance to the origin, not angle

Fourier transform of circularly symmetric function is also circularly symmetric
— F(u,v)=F(p)

Let x=rcos@,y=rsing;,u = pcosé,v= psiné

F(p,0) = j j F(r, ) expi—j27(rpcos @cos @+ rpsin gsin 0)yrdrdg
- j j F(r.d)expi—j2arpcos(é—6) yrdrde

It f(x,y)=f(r)
F(p,0) = j {j exp{— j2mrpcos(p—6) }d¢}f(r)rdr Y j:f(r)Jo(zyzpr)rdr = F(p)

Hankel Transform

F(p)=2r j:f(r)Jo(zyzpr)rdr; Jo(r) = % j:cos(r sin @)do

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Common Transform pairs

e See Table 2.3

. _ 2,2 _ 2, 2
Fourter{e Ly >}: e

=> Hankel{e‘” ’ }: o

2rect(q)

7A[1—4q°

Hankel{sin c(r)}=

«  Scaling property Hankel{f(ar)} = %F(q/ a)
a
- Duality: If h(r) <> H(p), then H(r)<->h(p)

Derivation of Hankel transform pairs are not required. But you should be able to use given transform pairs, to
determine the blur function.

Yao Wang, NYU-Poly EL5823/BE6203: CT-2 25



Example

- Example 6.5 in [Prince&Links]

— Detector: rectangular detector
with width d

* S(l)=rect(l/d)
— Rectangular window function
« W(p)=rect(p/2p,); ps>>1/d
« Solution
— S(l)=rect(l/d) <-> S(p)=d sinc(dp)
— po>>1/d >
— H(p)=S(p) W(p)~= S(p) =dsinc(dp)
(Hankel transform of h(r))

lllustrate and explain h(r)

Yao Wang, NYU-Poly EL5823/BE6203: CT-2

h(r)=1inverse Hankel{H ( ,0)}

Hankel{sinc(r)} = 2rect(p)

7z\/1—4p2

Hankel{f(ar)} = % F(p/a)
a

Using duality property
2rect(r/d)

md? —4r?

hr)=d
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Noise in CT Measurement

e Basic measurement 1s:

1 (i\}j)
Gij — — M| 7
/ Ny

— line L;;
— angle 1
— position 7j

e

e Noise 1s “in” Poisson random variable N,

k

AT a _,
— mean N, Pr{N, =k} =" ¢ k=0l..

— varlance NNj; E{N;=k}=a
Var{N, =k}=a

Yao Wang, NYU-Poly EL5823/BE6203: CT-2 27



What about the measured projection

o [t follows that g;; is a random variable

Y
i1 o~ 1| =
9 N ij

1

Var(g;) =~

e /i(x,y) is approximate reconstruction
e [t follows that ji(x,y) is a random variable
e What are the mean and variance of 17
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CBP Approximation

e Convolution backprojection (CBP):

T ]
(e, y) = / / g(£.0)c(xcost + ysinb — {)dlde
0 J—oco

e Approximations:
— M angles; A0 =7 /M
— N + 1 detectors; Al =T
— () =~ c(f)

e Discrete CBP:

Jl'Llr —hrr ,."ll. 2

(. y) = (%) Z T Z g1, jm/M)é(x cosBj+ysinb;—iT)
=1 i=—Ny2

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Definitions and Assumptions

o \T is mean for i-th detector and j-th angle

o |V i] is independent for different measurements

e N;; = N, an “object uniformity” assump-
t1on

e ¢(() is created using rectangular window W (o)
with cutoft op.

g; are independent because Nj are independent
Deriving mean and variance of u(x,y) based on the independence assumption
See [Prince&Links] for derivation

Yao Wang, NYU-Poly EL5823/BE6203: CT-2 30



e NMean(/1) is desired result

S 2
o\ a.r( [ 1.-) —s) ;, IS Inaccuracy

e Be cautious on conclusions: not all variables
are independent in a real physical system

« Variance increases with p, (cut-off freq. of filter), and T (detector
spacing), decreases with M (number of angles),\bar N (or N,) (x-ray
intensity)

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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SNR of the Reconstructed Image

L C: fractional change of
e Definition (usual) u from \bar

C'h

(T Jﬁ_

SNR =

e After substitution:

™ \2a 1

SNR =

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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SNR in a good design

e What should gy be?
e | et dectector width = w
e oy should be anti-aliasing filter:

k
0p = — Where k =~ 1
.?_,L"I

e [n 3G scanner w =1’
e |'hen

SNR ~ 0.4kC pw

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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SNR in Fan Beam

e Definitions:

— Ny is mean photon count per fan

— [) i1s number of detectors

— L is length of detector array

e [hen

SNR ~ 0.4kC i L

SNR decreases as D increases.

\

D:ﬂ

Reason: Convolution of the projection reading with the ramp filter couples the noise between

detectors, and effectively increases the noise as the number of detector increases

But larger D is desired to obtain a good resolution.

Yao Wang, NYU-Poly

EL5823/BE6203: CT-2
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Rule of Thumb

e Variables:
— D is number of detectors
— M is number of angles
— J? is number of pixels in image

5y
”.
L

e Very approximate “rule
D~M=~.J
e ['ypical numbers:
Lo: D700 M=a~1,000 J=a512
Hi: D~90 M=~1,600 J=a1,024

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Aliasing Artifacts

* Nyquist Sampling theorem:

— If the maximum freq of a signal is fmax, it should be sampled
with a freq fs>=2max, or sampling interval T<=1/2fmax

— If sampled at a lower freq. without pre-filtering, aliasing will occur
 High freq. content fold over to low freq
— Prefilter to lower fmax, and then sample

 If the number of samples in each projection (D) or the
number of projection angles (M) are not sufficiently
dense, the reconstructed image will have streak artifacts
— Caused by aliasing

— Practical detectors are area detectors and perform pre-filtering
implicitly

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Yao Wang, NYU-Poly

Projec

Samples per

From [Kak&Slaney] Fig. 5.1

EL5823/BE6203: CT-2

512
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Summary

Parallel projection reconstruction
— Backprojection summation
— Fourier method (projection slice theorem)
— Filtered backprojection
— Convolution backprojection
— Practical implementation: using finite samples
Fan beam projection and reconstruction
— Weighted backprojection
Blurring due to non-ideal filters and detectors
— Approximate the overall effect by a filter:
h(l)=w(l)*s(l); H(p)=W(p) S(p)
— Circularly symmetric functions and Hankel transform
Equivalent spatial domain filter h(r)=inverse Hankel {H(q)}
Noise in measurement and reconstructed image
— Factors influencing the SNR of reconstructed image
Number of angles (M), number of samples per angle (D), filter cut-off p_
Impact of number of projection angles and samples on reconstruction image
quality
— Nyquist sampling theorem
— Streak artifacts

Yao Wang, NYU-Poly EL5823/BE6203: CT-2



Reference

Prince and Links, Medical Imaging Signals and Systems, Chap 6.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging. Originally published by IEEE, 1998. E-copy available at
http://www.slaney.org/pct/

— Chap 3 Contain detailed derivation of reconstruction algorithms both for

parallel and fan beam projections. Have discussions both in continuous
domain and implementation with sampled discrete signals.

— Chap 5 discusses noise in measurement and reconstructed image.

— Chap 5 also covers aliasing effect with more mathematical
interpretations

Yao Wang, NYU-Poly EL5823/BE6203: CT-2 39



Homework

Reading:

— Prince and Links, Medical Imaging Signals and Systems, Chap 6,
Sec.6.3.4-6.5

Note down all the corrections for Ch. 6 on your copy of the textbook
based on the provided errata.

Problems for Chap 6 of the text book:

— P.6.9
— P.6.10 (part e is not required)
- P.6.13. Bulali2+1)  —al2<1<0
« Hint: solution for part (a) should be  ¢(1,60)={\3u(a/2-1) 0<i<al2
0 otherwise
— P.6.17
— P.6.19
— P.6.20

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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Computer Assignment

Learn how do ‘fanbeam’.’ifanbeam’ work; summarize their functionalities.
Type ‘demos’ on the command line, then select ‘toolbox -> image
processing -> transform -> reconstructing an image from projection data’.
Alternatively, you can use ‘help’ for each particular function.

Write a MATLAB program that 1) generate a phantom image (you can use
a standard phantom provided by MATLAB or construct your own), 2)
produce equiangular fan beam projections; 3) reconstruct the phantom
using filtered backprojection algorithm; Your program should allow the user
to specify the number of fan beams, and the number of projections per fan
beam, the angular spacing between the projections. Run your program
with different number of projections for the same view angle, and with
different view angles, and compare the quality. Use the same filter and
interpolation algorithm for all the comparisons. Compare the reconstructed
image quality obtained with different number of view angles and number of
projections per view angle. Also, compare the image quality with those
obtained with parallel projections for the same phantom image when the
same total number of measurements are used (from your last assignment).
You can use the “fanbeam()” and “ifanbeam()” functions in MATLAB.

Yao Wang, NYU-Poly EL5823/BE6203: CT-2
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