11082/ BEG20 - Medical Imaying -

Computed Tomography
(part 1)

Yao Wang
Polytechnic University, Brooklyn, NY 11201

Based on J. L. Prince and J. M. Links, Medical Imaging Signals and
Systems, and lecture notes by Prince. Figures are from the textbook.



Lecture Outline

e |nstrumentation
— CT Generations
— X-ray source and collimation
— CT detectors

* Image Formation

— Line integrals

— Parallel Ray Reconstruction
* Radon transform
* Back projection
 Filtered backprojection
« Convolution backprojection
* Implementation issues
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Limitation of Projection Radiography

* Projection radiography
— Projection of a 2D slice along one direction only
— Can only see the “shadow” of the 3D body

 CT: generating many 1D projections in different angles

— When the angle spacing is sufficiently small, can reconstruct the
2D slice very well
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15t Generation CT: Parallel Projections
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2nd Generation
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3G: Fan Beam

/ Much faster than 2G

i
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EL5823 CT-1
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Fast

Cannot use
collimator at
detector, hence
affected by
scattering



5G: Electron Beam CT (EBCT)
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0G: Helical CT




7G: Multislice

Single slice

e Features:

— 40 parallel detector rows

— 35,840 detector elements

— 32mm detector length

— 16 0.5bmm slices with each second
gantry revolution

Single row

of detectors

e CT 1s becoming “cone beam”
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X-ray Source

e Use only one tube (except EBCT)
e S0kVp-140kVp, continuous excitation
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X-ray Detectors

e Nlost are solid-state:

— scintillation crystal

— solid state photo-diode

A-rays

(a)
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CT Measurement Model

e Monoenergetic model:

1= Iyexp-

o £ is effective energyv
E is that energy which in a given
material will produce the same mea-
sured intensity from a monoenergetic
source as from the actual polyener-
oetlc source.
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e Observe 1,
e Rearrange monoenergetic model:

Iff
— In —
Ly

(d -3
= f[} p(s: E)ds

® ¢, is a line integral of the linear attenuation

d

coefficient at the effective energy
e Note: Requires calibration measurement of
Ly
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CT Number

e Consistency across C'1' scanners desired
e C'T' number is defined as:
o — Hwater
Hwater
e /1 has Hounsfield units (HU)
e Usually rounded or truncated to nearest

h = 1000 x

Integer
e Range: —1.000 to ~3,000

Need 12 bits to represent

EL5823 CT-1 Yao Wang, NYU-Poly

15



Parameterization of a Line

VA Each projection line is
‘ defined by (1,6

A point on this line (x,y) can
be specified with two options

y Option 1 (parameterized by s):

- x(s) = lcost — ssinf
“y(s) = (sinf®+ scosd

Option 2:

rcost +ysinf =
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Line Integral: parametric form

e What is integral of f(x,y)on L((,6)?
e Step 1: Parameterize L(¢,0):

rl el — ( u..!q cam H
el \\LT)] L L « 7 L2LLN LS
Y N /B ) I T
i}k"ﬁj — £l T+ SCOsU

e Step 2: Integrate f(x,y) over parameter s

= [ fla(s), y(s))ds

e Use this form for the forward problem
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Line Integral: set form

e Integrate over whole plane;
non-zero only on L({, 0)
e Key is sifting property

a(0) = [ q()s(t" = t)al’

e Use line impulse on L((,6)

()
{tl

/i/m flx,y)o(xcosO +ysinh — () drdy

o0
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Physical meaning of “f” & “g”

e Recall monoenergetic model:

I[; = Iyexp {— U(I [l s; E)u’s}

-
-
=

e Relationship is:

f(z,y) = plz,y; E)

7,
gll.0) = —111ﬁ
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What is g(1,0)?

e Fix ( and 6: line integral of f(x,y)

e Fix #: projection of f(x,y) at angle
e Function of # and (:
g(l.0)is the Radon transform of f(z, y)

g(t.0) = Rif(r,y);

EL5823 CT-1 Yao Wang, NYU-Poly
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Example

« Example 1: Consider an image slice which contains a
single square in the center. What is its projections along
0, 45, 90, 135 degrees?

« Example 2: Instead of a square, we have a rectangle.
Repeat.

EL5823 CT-1 Yao Wang, NYU-Poly
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Sinogram

e (T data acquired for collection of ¢ and #

e ('] scanners acquires a sinogram
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Backprojection

* The simplest method for reconstructing an image from a
projection along an angle is by backprojection

— Assigning every point in the image along the line defined by (1,0) the
projected value g(l, 0), repeat for all | for the given 6

EL5823 CT-1 Yao Wang, NYU-Poly
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e hy(x.y) is a laminar image

EL5823 CT-1 Yao Wang, NYU-Poly
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Two Ways of Performing Backprojection

Option 1: assigning value of g(l, 6) to all points on the line (|, 0)
— d(l, ©) is only measured at certain I: |,=n Al

— If l'is coarsely sampled (Al is large), many points in an image will not be
assigned a value

— Many points on the line may not be a sample point in a digital image
Option 2: going through all sampling points (x,y) in an image, find its
corresponding “I=x cos 6+y sin 0” for the given 0, take the g value for
(6 .

bo(x.y) = g(xrcost +ysinb, )

— g(l, 8) is only measured at certain I: | ,=n Al

— must interpolate ¢(I, 6) for any | from given g(l,,, 0)

Option 2 is better, as it makes sure all sample points in an image are
assigned a value

For more accurate results, the backprojected value at each point
should be divided by the length of the underlying image in the
projection direction (if known)

EL5823 CT-1 Yao Wang, NYU-Poly
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Backprojection Summation

e “Add up” all the backprojection images:

i

'

0

g(xcosf +ysinb, 0)do

Replaced by a

sum in practice \ —
— /U [g(f, 9)}{’:.?: cos A4y sin f d

o fi(x,y)is called a laminogram or

backprojection summation image

EL5823 CT-1 Yao Wang, NYU-Poly
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Implementation Issues

In practice this integral needs to be evaluated numerically. This
require 1D interpolation: Measurements g(s, ¢) are only given for
discrete angles ¢ = n Ap and discrete excentricities s = m As.

bix,y)=A¢Y g(xcosd,+ysing,,d,)

n=1
Values, s = x cos ¢ + y sin ¢ , at intermediate locations will be

required and so g(s . ) has to be interpolated from the values

g(s,.0), m=1, .., M foragiven ¢

Back-projection in MATLAB:

b = zeros(I,Jd);

[x,v] = meshgrid([1:J]-J/2,([1:I]-1I/2);

for phi=0:179
8 = X*cos (pi/180*phi)+y*=sin(pi/180*phi);
b = b + interpl(sn,g(:,phi+l),h=);

end

From L. Parra at CUNY, http://bme.ccny.cuny.edu/faculty/parra/teaching/med-imaging/lecture4.pdf
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Implementation: Projection

To create projection data using computers, also has similar problems.
Possible | and g are both quantized. If you first specify (l,q), then find (x,y)
that are on this line. It is not easy. Instead, for given q, you can go through
all (x,y) and determine corresponding |, quantlze | to one of those you want
to collect data.

Sample matlab code (for illustration purpose only)
[x,y]=meshgrid([0:J-1]-J/2,[0:1-1]-1/2);
N=ceil(sqgrt(I*1+J*J))+1,

NO= floor((N-1)/2);
ql=1;
G=zeros(N,180);
for phi=0:179
for (x=-3/2:3/2-1; y=-1/12:1/2-1)
|I=x*cos(phi*pi/180)+y*sin(phipi/180);
|I=round(l/gl)+NO+1;
If (I>=1) && (I<=N)
G(l,phi+1)=G(l,phi+1)+f(x+J/2+1,y+1/2+1);
End
end
end

EL5823 CT-1 Yao Wang, NYU-Poly
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Example

Continue with the example of the image with a square in
the center. Determine the backprojected image from
each projection and the reconstruction by summing
different number of backprojections

EL5823 CT-1 Yao Wang, NYU-Poly
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Problems with Backprojection

e “Bright spots™ tend to reinforce - Blurring
e Problem:

fle.y) # flr.y)

e What is wrong?

EL5823 CT-1 Yao Wang, NYU-Poly
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Projection Slice Theorem

e Radon transform:

g(l,0) =RA{f(x.y)}

e Fourier transforms: G(p,0) = _Lo g(1.8) exp{~)27pl }d

/
G(o.0) = Fip{a(t.0)}

Flu,v) = Fop if(ry)}

e Projection-slice theorem:

G(0.0) = F(ocosh, psinf)

The Fourier Transform of a projection at angle 6 is a line in the
Fourier transform of the image at the same angle.
If (1,0) are sampled sufficiently dense, then from g (1,6) we
essentially know F(u,v) (on the polar coordinate), and by inverse
transform can obtain f(x,y)!
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lllustration of the Projection Slice
Theorem

2D Fourier Transform
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Proof

e Go through on the board
* Using the set form of the line integral
e See Prince&links, P. 198

g(l.0) =

oo 00 ., . L
[ [ flr a0\ I'f-f\t.;fq—l— i A — N dareag

.JJ \'_t._ 4 .l; ;l_J’ \o_l_ LWL W B Vo I '[._f RPLLL WS 1 )f L Y (_'.-'l.!
J—od)—o0 7 ' / '

G(p,0) = ["; g(1,0) exp{- j2zol}dl

EL5823 CT-1 Yao Wang, NYU-Poly



The Fourier Method

e The projection slice theorem leads to the following

conceptually simple reconstruction method

— Take 1D FT of each projection to obtain G(p,0) for all 6

— Convert G(p,0) to Cartesian grid F(u,v)

— Take inverse 2D FT to obtain f(x,y)
* Not used because
— Difficult to interpolate polar data onto a Cartesian grid
— Inverse 2D FT is time consuming
« But is important for conceptual understanding

— Take inverse 2D FT on G(p,0) on the polar coordinate leads to
the widely used Filtered Backprojection algorithm

EL5823 CT-1 Yao Wang, NYU-Poly
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Filtered Backprojection

Inverse 2D FT in Cartesian coordinate:
f(x,y) = j j F (u,v)e 2704 M gydy

Inverse 2D FT in Polar coordinate: =G(p,6) =|

SO A
f(x,y)= I jF(pcose,psinQ)ejz”p(xcos‘mys'”e)pdpd@

0—>27 0—>c0

Proof of filtered backprojection algorithm

Inverse FT

IIT .I‘I 1 -
fle.y) = / [/ 0| G (0. 8)e +""hmrfy db
JO — f=xcosf4ysind

EL5823 CT-1 Yao Wang, NYU-Poly
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Filtered Backprojection Algorithm

 Algorithm:
— For each 0
 Take 1D FT of g(l,0) for each 6 -> G(p,0)
* Frequency domain filtering: G(p,0) -> Q(p,0)=|p|G(p.0)
« Take inverse 1D FT: Q(p,0) -> q(1,0)
« Backprojecting q(l,6) to image domain -> b,y(X,y)
— Sum of backprojected images for all 6

EL5823 CT-1 Yao Wang, NYU-Poly

36



Function of the Ramp Filter

* Filter response:
— ¢(p) =lpl
— High pass filter

 G(p,0) Is more densely
sampled when p is small, and
vice verse AV

* The ramp filter compensate
for the sparser sampling at
higher p u

EL5823 CT-1 Yao Wang, NYU-Poly 37



Convolution Backprojection

The Filtered backprojection method requires taking 2 Fourier
transforms (forward and inverse) for each projection

Instead of performing filtering in the FT domain, perform convolution
In the spatial domain

Assuming c(l) is the spatial domain filter
— |lpl <->c(l)
— |plG(p,0) <->c(l) * 9(1.6)
For each 6:
— Convolve projection g(l,0) with c(l): q(1,6)= g(1,6) * c(l)
— Backprojecting q(1,0) to image domain -> b,y(X,y)
— Add by(x,y) to the backprojection sum
Much faster if c(l) is short
— Used in most commercial CT scanners

EL5823 CT-1 Yao Wang, NYU-Poly 38



e Correct reconstruction formula:

flay) = [ 1e(0) % 906, 0)] 1, conpiyeine 0
where

c(0) = F{|ol}
1s called the ramp filter.

e Three steps: <— know /understand these!!
— 1. convolution

— 2. backprojection

— 3. summadtion

EL5823 CT-1 Yao Wang, NYU-Poly
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Step 1: Convolution

e Convolve every projection with ¢(¢)

e the horizontal direction in a sinogram

¥}
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Step 2: Backprojection

e 1D projection — 2D laminar function
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Step 3: Summation

e Accumulate sum of backprojection images
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Accumulate
“smeared”
projections

complete ———
reconstruction
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Ramp Filter Design

® |o| is not integrable
e = (/) does not exist
e Actual ramp filter is designed as

o(0) = Fipiv(o)lel}

e Simplest window function is

EL5823 CT-1 Yao Wang, NYU-Poly
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Practical Implementation

* Projections g(l, 8) are only measured at finite intervals
— l=ng;
— zchosen based on maximum frequency in G(p,8), W

o 1/>=2W or r<=1/2W (Nyquist Sampling Theorem)

» W can be estimated by the number of cycles/cm in the projection direction in the most detailed
area in the slice to be scanned

* For filtered backprojection:

— Fourier transform G(p, 6) is obtained via FFT using samples g(nz, 6)

— If N sample are available in g, 2N point FFT is taken by zero padding g(nz, 6)
* For convolution backprojection

— The ramp-filter is sampled at |=nz

— Sampled Ram-Lak Filter

1/ 47°: n=0
c(n) ={-1/(nzz¥; n = odd
0; n=-even

EL5823 CT-1 Yao Wang, NYU-Poly
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The Ram-Lak Filter (from [Kak&Slaney])

H(w)=|w|b(w)

41 |w| < W
AW = [ﬂ otherwise.
|
W=— cycles/cm.
2T

hir)= rw H(w)eH/Imwt gy

I sin 2wt/27 1 (sin wf.—‘!r)l
P

T2 2mt/27 ari \ wt/27
].-"rdlfz', H=1{0
" H even
hint)= 1
I n odd.
niwir?

EL5823 CT-1 Yao Wan
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Common Filters

Ram-Lak: using the rectangular window
Shepp-Logan: using a sinc window

Cosine: using a cosine window

Hamming: using a generalized Hamming window

See Fig. B.5 in A. Webb, Introduction to biomedical
Imaging

EL5823 CT-1 Yao Wang, NYU-Poly
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Matlab Implementation

« MATLAB (image toolbox) has several built-in functions:

— phantom: create phantom images of size NxN
I = PHANTOM (DEF, N) DEF= ‘Shepp-Logan’ ,’ Modified Shepp-Logan’
Can also construct your own phantom, or use an arbitrary image

— radon: generate projection data from a phantom
« Can specify sampling of 6
R = RADON (I, THETA)
The number of samples per projection angle = sqrt(2) N

— iradon: reconstruct an image from measured projections
» Uses the filtered backprojection method

« Can choose different filters and different interpolation methods for
performing backprojection
[T, H]=IRADON (R, THETA, INTERPOLATION, FILTER, FREQUENCY SCALING, OUTPUT SIZE)

— Use ‘help radon’ etc. to learn the specifics
— Other useful command:
* imshow, imagesc, colormap

EL5823 CT-1 Yao Wang, NYU-Poly
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Summary

Different generations of CT machines:

— Difference and pros and cons of each
X-ray source and detector design

— Require (close-to) monogenic x-ray source

Relation between detector reading and absorption properties of the
Imaged slice

— Line integral of absorption coefficients (Radon transform)
Reconstruction methods

— Backprojection summation

- Fpurler method (pro_jectlon slice theorem) : Equivalent, but differ in
— Filtered backprojection / computation

— Convolution backprojection

Impact of number of projection angles on reconstruction image
guality

Matlab implementations

EL5823 CT-1 Yao Wang, NYU-Poly
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Reference

Prince and Links, Medical Imaging Signals and Systems,
Chap 6.

Webb, Introduction to biomedical imaging, Appendix B.

Kak and Slanley, Principles of Computerized
Tomographic Imaging, IEEE Press, 1988. Chap. 3

— Electronic copy available at http://www.slaney.org/pct/pct-
toc.html
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Homework

* Reading:

— Prince and Links, Medical Imaging Signals and Systems, Chap
6, Sec.6.1-6.3.3

* Note down all the corrections for Ch. 6 on your copy of
the textbook based on the provided errata.

* Problems for Chap 6 of the text book:

— P6.5

— Consider a 4x4 image that contains a diagonal line
1=[0,0,0,1;0,0,1,0;0,1,0,0;1,0,0,0];

EL5823 CT-1

a) determine its projections in the directions: 0, 45,90,135 degrees.
b) determine the backprojected image from each projection;

c) determine the reconstructed images by using projections in the O
and 90 degrees only.

d) determine the reconstructed images by using all projections.
Comment on the difference from c).

Yao Wang, NYU-Poly
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Computer Assignment
Due: Two weeks from lecture date

Learn how do ‘phantom’.’radon’,’iradon’ work; summarize their
functionalities. Type ‘demos’ on the command line, then select ‘toolbox ->
Image processing -> transform -> reconstructing an image from projection
data’. Alternatively, you can use ‘help’ for each particular function.

Write a MATLAB program that 1) generate a phantom image (you can use
a standard phantom provided by MATLAB or construct your own), 2)
produce projections in a specified number of angle, 3) reconstruct the
phantom using backprojection summation; Your program should allow the
user to specify the number of projection angle. Run your program with
different number of projections for the same view angle, and the different
view angles, and compare the quality. You should NOT use the ‘radon( )’
and ‘iradon()’ function in MATLAB.

Repeat 1 but uses filter backprojection method for step 3). In addition to
the number of projection angles, you should be able to specify the filter
among several filters provided by Matlab and the interpolation filters used
for backprojection. Compare the reconstructed image quality obtained with
different filters and interpolation methods for the same view angle and
number of projections. You can use the “iradon()” function in MATLAB

(Optional) Repeat 3 but uses convolution backprojection method. You
have to do your own program.

EL5823 CT-1 Yao Wang, NYU-Poly
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