ELECTROMAGNETIC
SIMULATION USING
THE FDTD METHOD

DENNIS M.

e

1

:\3 IEEE PRESS SERIES ON RF AND MICROWAVE TECHNOLOGY
Roger D. Pollard and Richard Booton, Series Editors

ELECTROMAGNETIC SIMULATION
USING THE FDTD METHOD

IEEE Press
445 Hoes Lane, PO. Box 1331
Piscataway, NJ 08855-1331

IEEE Press Editorial Board
Robert J. Herrick, Editor in Chief

M. Akay M. Eden M. S. Newman
J. B. Anderson M. E. El-Hawary M. Padgett
P. M. Anderson R. F. Hoyt W. D. Reeve
J. E. Brewer S. V. Kartalopoulos ~ G. Zobrist
D. Kirk

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor
Linda Matarazzo, Associate Acquisitions Editor
Anthony VenGraitis, Project Editor
Marilyn G. Catis, Marketing Manager

IEEE Microwave Theory and Techniques Society, Sponsor
MTT-S Liaison to IEEE Press, Lawrence Dunleavy

Cover Design: William T. Donnelly, WT Design

Technical Reviewers

Roger Pollard, University of Leeds, United Kingdom
Richard W. Ziolkowski, University of Arizona, Tucson, AZ
Tatsuo Itoh, UCLA
Raymond Luebbers, Pennsylvania State University, University Park, PA
Melinda Piket-May, University of Colorado at Boulder
Nihad 1. Dib, Jordan University of Science and Technology, Irbid, Jordan

Books of Related Interest from the IEEE Press

MAGNETIC RECORDING: The First 100 Years
Eric D. Daniel, Denis C. Mee, Mark Clark
1999 Softcover 360 pp IEEE Order No. PP5396 ISBN 0-7803-4709-9

MAGNETIC HYSTERESIS
Edward Della Torre
1999 Hardcover 240 pp IEEE Order No. PC5766 ISBN 0-7803-4719-6

MAGNETO-OPTICAL RECORDING MATERIALS
Edited by Richard J. Gambino and Takao Suzuki
2000 Hardcover 424 pp [EEE Order No. PC3582 ISBN 0-7803-1009-8

EMC AND THE PRINTED CIRCUIT BOARD: Design, Theory, and Layout Made Simple
Mark I. Montrose
1999 Hardcover 344 pp IEEE Order No. PC5756 ISBN 0-7803-4703-X

PRINTED CIRCUIT BOARD DESIGN TECHNIQUES FOR EMC COMPLIANCE: A Handbook
for Designers, Second Edition

Mark I. Montrose

2000 Hardcover 336 pp IEEE Order No. PC5816 ISBN 0-7803-5376-5

ELECTROMAGNETIC SIMULATION
USING THE FDTD METHOD

Dennis M. Sullivan
Electrical Engineering Department

University of Idaho

IEEE Microwave Theory and Techniques Society, Sponsor

IEEE
7 PRESS

IEEE Press Series on RF and Microwave Technology

Roger D. Pollard and Richard Booton, Series Editors

The Institute of Electrical and Electronics Engineers, Inc., New York

This book and other books may be purchased at a discount
from the publisher when ordered in bulk quantities. Contact:

IEEE Press Marketing

Attn: Special Sales

445 Hoes Lane

P.O. Box 133]

Piscataway, NJ 08855-1331
Fax: +1 732 981 9334

For more information about 1EEE Press products, visit the
IEEE Online Catalog & Store: http://www.ieee.org/ieeestore.

© 2000 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, 17th Floor, New York, NY 10016-5997

All rights reseirved. No part of this book may be reproduced in any form,
nor may it be stored in a retrieval system or transmitted in any form,
without written permission from the publisher.

Printed in the United States of America.

w 9 8 7 6 S5 4 3 2 1

ISBN 0-7803-4747-1
IEEE Order No. PC5400

Library of Congress Cataloging-in-Publication Data

Sullivan, Dennis M.

Electromagnetic simulation using the FDTD method / Dennis M. Sullivan ; IEEE

Microwave Theory and Techniques Society, sponsor.
p. cm. -- (IEEE Press series on RF and microwave technology)

Includes bibliographical references and index.

ISBN 0-7803-4747-1

L. Electromagnetism--Computer simulation. 2. Finite differences. 3. Time-domain
analysis. L. Title. 11. Series.

QC760 .592 2000
537.01'13--dc21 00-038922

To
Sully and Jane

Contents

GUIDE TO THE BOOK xi

CHAPTER 1

CHAPTER 2

ONE-DIMENSIONAL SIMULATION
WITH THE FDTD METHOD 1

1.1 One-Dimensional Free Space Formulation 1

1.2 Stability and the FDTD Method 4

1.3 The Absorbing Boundary Condition in One Dimension 4
1.4 Propagation in a Dielectric Medium 5

1.5 Simulating Different Sources 7

1.6 Determining Cell Size 8§

1.7 Propagation in a Lossy Dielectric Medium 9

Appendix LA 11
References 11

MORE ON ONE-DIMENSIONAL SIMULATION 19

2.1 Reformulation Using the Flux Density 19
2.2 Calculating the Frequency Domain Output 21
2.3 Frequency-Dependent Media 23

2.3.1 Auxiliary Differential Equation Method 26
2.4 Formulation Using Z Transforms 27

2.4.1 Simulation of an Unmagnetized Plasma 28
2.5 Formulating a Lorentz Medium 31

2.5.1 Simulation of Human Muscle Tissue 33
References 35

vii

viii

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

APPENDIX

TWO-DIMENSIONAL SIMULATION 49

3.1 FDTD in Two Dimensions 49

3.2 The Perfectly Matched Layer (PML) 51

3.3 Total/Scattered Field Formulation 58
3.3.1 A Planc Wave Impinging on a Dielectric Cylinder 59
3.3.2 Fourier Analysis 61

References 63

THREE-DIMENSIONAL SIMULATION 79

4.1 Free Space Formulation 79

4.2 The PML in Three Dimensions 83

4.3 Total/Scattered Field Formuiation in Three Dimensions
4.3.1 A Planc Wave Impinging on a Dielectric Sphere 85

References 89

TWO APPLICATIONS USING FDTD 109

5.1 Simulation of a Microstrip Antenna 109
5.1.1 Description of the Problem 109
5.1.2 Modeling the Materials 110
5.1.3 Source [l
5.1.4 Boundary Conditions |11
5.1.5 Calculating the §,, 112
5.2 Calculation of the Far Field of an Aperture Antenna 113
5.2.1 Formulating the Transformation from the Aperture 115
5.2.2 Verification of the Accuracy of the Transformation 118

85

5.2.3 FDTD Implementation of the Far Field Calculations 120

References 121

USING FDTD FOR OTHER TYPES OF SIMULATION 133

6.1 The Acoustic FDTD Formulation 133

6.2 Simulation of the Schroedinger Equation 136
6.2.1 Formulating the Schroedinger Equation into FDTD 137

6.2.2 Calculating the Expcctation Values of the Observables 138
6.2.3 Simulation of an Elcctron Striking a Potential Barrier 139

References 140

THE Z TRANSFORM 147

A.l Definition of the Z Transtorm 147

A2 Convolution Using the Z Transform [48
A.2.1 Proof of the Convolution Theorem [49
A.2.2 Example: A Low-Pass Filter 150

A.3 Convolution of Sampled Signals 52
A.3.1 Simulation of a Two-Pole Digital Filter 152
A.3.2 Sum of Two Parallel Systems 54

Contents

Contents

A4 Alternative Methods to Formulate the Z Transform
A.4.1 Backward Rectangular Approximation 156
A.4.2 Trapezoidal Approximation (Bilinear Transform)

A5 Summary 158

References 159

INDEX 161

LIST OF C PROGRAMS 163

ABOUT THE AUTHOR 165

155

157

ix

Guide to the Book

PURPOSE

This book has one purpose only: to enable the reader or student to learn how to do three-
dimensional electromagnetic simulation using the finite-difference time-domain (FDTD) method.
It does not attempt to explain the theory of FDTD simulation in great detail. It is not a survey of
all possible approaches to the FDTD method nor is it a “cookbook’ of applications. It is aimed at
those who would like to learn to do FDTD simulation in a reasonable amount of time.

FORMAT

This book is tutorial in nature. Every chapter attempts to address an additional level of complex-
ity. The text increases in complexity in two major ways:

Dimension of Simulation Type of Material
One-dimensional Free space
Two-dimensional Dielectric material
Three-dimensional Lossy dielectric material

Frequency-dependent material

The first section of Chapter 1 is one-dimensional simulation in free space. From there it
progresses to more complicated media. In Chapter 2, the simulation of frequency-dependent
media is addressed. Chapter 3 introduces two-dimensional simulation, including the simulation
of plane waves and how to implement the perfectly matched layer. Chapter 4 introduces three-
dimensional simulation. This is the approach taken throughout the book.

SPECIFIC CHOICES DEALING WITH SOME TOPICS

There are many ways to handle individual topics having to do with FDTD simulation. This book
does not attempt to address all of them. In most cases, one single approach is taken and used

xi

xii Guide to the Book

throughout the book for the sake of clarity. My philosophy is that when first learning the FDTD
method, it is better to learn one specific approach and learn it well rather than to be confused by
switching among different approaches. In most cases, the approach being taught is this author’s
preference. That does not make it the only approach or even the best; it is just the approach that
this author has found to be effective. In particular, the following are some of the choices that have
been made.

1. The use of normalized (Gaussian) units. Maxwell’s equations have been normalized

by substituting

= &

E= Ho E.
This is a system called Gaussian units, which is frequently used by physicists. The reason
for using it here is simplicity in the formulations. The E field and the H fields have the
same order of magnitude. This has an advantage in formulating the perfectly matched
layer (PML), which is a crucial part of FDTD simulation.

2. The PML for boundary conditions. The absorbing boundary conditions (ABCs) are an
important topic in FDTD simulation. The ABCs prevent spurious reflections from the
edge of the problem space. There are numerous approaches to this, but this book will use
the perfectly matched layer (PML) for two- and three-dimensional simulation exclusively.
(A simpler boundary condition will be used in one dimension just for convenience.) The
reason is its effectiveness and versatility in working with different media.

3. Maxwell’s equations with flux density. There is some leeway in forming the time-

domain Maxwell’s equations from which the FDTD formulation is developed. The fol-
lowing is used in Chapter 1:

dE 1 o

E—E—OVXH—E—OE (])
oH 1
— = —VXE. 2
5=V 2)

This is a straightforward formulation and among the most commonly used. However, by
Chapter 2, the following formulation using the flux density is adopted:

oD

5, =VxH 3)
D=¢E 4
oH _ 1
57——#0V><E. (5

In this formulation, it 1s assumed that the materials being simulated are nonmagnetic; that

is, H= ﬁlo B. However, we will be dealing with a broad range of dielectric properties, so

Eq. (4) could be a complicated convolution. There is a reason for using this formulation:
Eqgs. (3) and (5) remain the same regardless of the material; any complicated mathemat-
ics stemming from the material is in Eq. (4). We will see that the solution of Eq. (4) can
be looked upon as a digital filtering problem. In fact, the use of signal processing
techniques in FDTD simulation will be a recurring theme in this book.

Z TRANSFORMS

As mentioned above, the solution of Eq. (4) for most complicated material can be viewed as a
digital filtering problem. That being the case, the most direct approach to solving the problem is

Guide to the Book xiii

to take Eq. (4) into the Z domain. Z transforms are a regular part of electrical engineering educa-
tion, but not that of physicists, mathematicians, and others. In teaching a graduate class on FDTD
simulation, I begin the semester by teaching two topics in parallel: FDTD sunulation and Z trans-
forms. When we have progressed to the simulation of complicated dispersive materials, the stu-
dents are ready to apply the Z transform theory. This had two distinct advantages over and above
the simulation applications: (1) Electrical engineering students have had another application of Z
transforms to strengthen their understanding of signal processing and filter theory; and (2) phys-
ics students and others now know and can use Z transforms, something that had not previously
been part of their formal education. Based on my positive experience, I would encourage anyone
using this book when teaching an FDTD course to consider this approach. However, | have left the
option open to simulate dispersive methods with other techniques. The sections on Z transforms
are optional and may be skipped. An appendix of Z transform theory is provided.

PROGRAMMING EXERCISES

The philosophy behind this book is that the student will learn by doing. Therefore, the majority of
exercises involve programming. Each chapter has one or more FDTD programs written in C. If
there is more than one program per chapter, typically only the first will be a complete program
listing. The subsequent programs will not be complete, but will only show changes as compared
to the first program. For instance, section 1 of Chapter 1 describes one-dimensional FDTD simu-
lation in free space. The program fd1d_1.1.c at the end of the chapter is a simulation of a pulse in
free space. Section 3 describes how a simple absorbing boundary condition is implemented. The
program fdld_1.2.c is not a complete program, but shows the changes necessary to fdld_1.1.c to
implement the boundary condition. Furthermore, important lines of code are highlighted in bold-
face.

PROGRAMMING LANGUAGE

The programs at the end of each chapter are written in the C programming language. The reasons
for this are the almost universal availability of C compilers on UNIX workstations, and the fact
that so many engineers and scientists know C. However, the reader should keep one fact in mind:
most researchers who do large scientific programming use FORTRAN because FORTRAN was
written for scientific programming. The structured style of C may have aesthetic appeal, but it
typically runs slower than FORTRAN. This is particularly true of supercomputers.

Dennis M. Sullivan
Electrical Engineering Department
Universiry of Idaho

Acknowledgments

I am deeply indebted to Professor John Schneider of Washington State University for technical
assistance, and to Ms. Judith C. Breedlove for editorial assistance.

Dennis M. Sullivan
Electrical Engineering Department
University of Idaho

XV

One-Dimensional Simulation
with the FDTD Method

This chapter is a step-by-step introduction to the FDTD method. It begins with the simplest
possible problem, the simulation of a pulse propagating in free space in one dimension. This
example is used to illustrate the FDTD formulation. Subsequent sections lead to the formulation
for more complicated media

1.1 ONE-DIMENSIONAL FREE SPACE FORMULATION

The time-dependent Maxwell’s curl equations in free space are

JF 1

— = —Vx H (1.1a)
at £o

JoH 1

at Hao

E and H are vectors in three dimensions, so in general, Eq. (1.1a) and (1.1b) represent three
equations each. We will start with a simple one-dimensional case using only E, and H,, so
Eg. (1.1a) and (1.1b) become

OF, 1 8H,
— = (1.2a)
at &0 dz
oH 1 9E,

AL (1.2b)
at Ho 0z

These are the equations of a plane wave with the electric field oriented in the x direction, the
magnetic field oriented in the y direction, and traveling in the z direction.
Taking the central difference approximations for both the temporal and spatial derivatives

gives
E) — B) L HIGk+1/2) - HY(—1/2) (1.30)
At - 0] Ax ~a
Hy(k+1/2) — Hy(k +1/2) 1 EST Pk + 1)~ BV
) ! - . (1.3b)
At o Ax

Chapter 1 ® One-Dimensional Simulation with the FDTD Method

In these two equations, time is specified by the superscripts, 1.e., “n” actually means a time
t = At -n. Remember, we have to discretize everything for formulation into the computer.
The term “n + 1” means one time step later. The terms in parentheses represent distance,
i.e., “k” actually means the distance z = Ax - k. (It might seem more sensible to use Az as
the incremental step, since in this case we are going in the z direction. However, Ax is so
commonly used for a spatial increment that I will use Ax.) The formulation of Eq. (1.3a) and
(1.3b) assumes that the E and H fields are interleaved in both space and time. H uses the
arguments k£ + 1/2 and k& — 1/2 to indicate that the H field values are assumed to be located
between the E field values. This is illustrated in Fig. 1.1. Similarly, then + 1/2 0orn —1/2
superscript indicates that it occurs slightly after or before n, respectively.

Er- 12
k-2 | k~1 | k [k+1 l k+2 |
\ /
Hy N ¥
| k-11/2 ' k—1/2 ‘ k+1/2 k+ 1172 k+2172
l N /
g \ ¥
k-2 l k-1 I k l k+1 l k+2 I

Figure 1.1 Interleaving of the E and H fields in space and time in the FDTD formulation.
To calculate Hy (k + 1/2), for instance, the neighboring values of E at k and
k + 1 are needed. Similarly, to calculate E, (k + 1), the value of H, atk 4 1/2
and k + 1 1/2 are needed.

Eq. (1.3a) and (1.3b) can be rearranged in an iterative algorithm:

H“WH=ETW&%~£1{MQ+UD—WQ—UD] (1.4a)
Eo-Ax . ’

HIP K 4+1/2) = B+ 1/2) = — B P+ 1) = EZ2(0) (1.4b)
Ho - Ax

Notice that the calculations are interleaved in both space and time. In Eq. (1.4a), for example,

the new value of E, is calculated from the previous value of £, and the most recent values of

H,,. This is the fundamental paradigm of the finite-difference time-domain (FDTD) method [1].
Eqgs. (1.4a) and (1.4b) are very similar, but because &y and uy differ by several orders

of magnitude, E, and H, will differ by several orders of magnitude. This is circumvented by

making the following change of variables [2]:

E= |2 (1.5)
H“o

Substituting this into Eqs. (1.4a) and (1.4b) gives

- - 1 Ar
EF) = EXTV) -~

At

JEolo Ax

[H!k+1/2) — H'(k — /2] (1.6a)

HY e+ 1/2) = HJ (k4 1/2) = (B2 + D — EXT2601 - (1.6b)

Section 1.1 ® One-Dimensional Free Space Formulation 3

Once the cell size Ax is chosen, then the time step At is determined by

Ax
2. Co

At =

(1.7)

where ¢, is the speed of light in free space. (The reason for this will be explained later.)
Therefore,
I At Ax/2. 1
Al g A2 1 (1.8)
JEolo Ax Ax 2

Rewriting Eqgs. (1.6a) and (1.6b) in C computer code gives the following:

ex[k] = ex[k] + 0.5*(hylk-1] - hyl[k]) (1.9a)
hy[k] = hy(k] + 0.5*(ex([k] - ex[k+1]). (1.9b)

Note that the n or n 4+ 1/2 or n — 1/2 in the superscripts is gone. Time is implicit in the
FDTD method. In Eq. (1.9a), the ex on the right side of the equal sign is the previous value
atn — 1/2, and the ex on the left side is the new value, n + 1/2, which is being calculated.
Position, however, is explicit. The only difference is that k + 1/2 and k — 1/2 are rounded off
to k and k — 1 in order to specify a position in an array in the program.

The program fd1d_1.1.c at the end of the chapter is a simple one-dimensional FDTD
program. It generates a Gaussian pulse in the center of the problem space, and the pulse
propagates away in both directions as seen in Fig. 1.2. The FE, field is positive in both
directions, but the H, field is negative in the negative direction. The following things are
worth noting about the program:

1. The E, and H, values are calculated by separate loops, and they employ the inter-
leaving described above.

2. After the E, values are calculated, the source is calculated. This is done by simply
specifying a value of E, at the point k = ke, and overriding what was previously
calculated. This is referred to as a “hard source,” because a specific value is imposed

on the FDTD grid.
1F T T T T T T T T T 3
T=100
w0
1E 1 I 1 1 1 1 L 1 1 =
0 20 40 60 80 100 120 140 160 180 200
1F T T T T T T T T T =
X 0
—~le 1 1 L 1 1 1 1 I 1 b
0 20 40 60 80 100 120 140 160 180 200
FDTD cclls

Figure 1.2 FDTD simulation of a pulse in free space after 100 time steps. The pulse
originated in the center and travels outward.

4 Chapter 1 @ One-Dimensional Simulation with the FDTD Method

PROBLEM SET 1.1

1. Get the program fd1d_1.1.c running. What happens when the pulsc hits the end of the array?
Why?

2. Modify the program so it has two sources, one atke - 20 andone atkc + 20 (Notice that
ke is the center of the problem space). What happens when the pulses meet? Explain this from
basic EM theory.

3. Instead of E, as the source, use H, atk = kc as the source. What difference does it make?
Try a two-point magnetic source at k¢ - 1 and kc such that hy [ke-1] = -hylkc].
What does this look like? What does it correspond to physically?

1.2 STABILITY AND THE FDTD METHOD

Let us return to the discussion of how we determine the time step. An electromagnetic wave
propagating in free space cannot go faster than the speed of light. To propagate a distance
of one cell requires a minimum time of Ar = Ax/cy. When we get to two-dimensional
simulation, we have to allow for the propagation in the diagonal direction, which brings the
time requirement to At = Ax/(ﬂco). Obviously, three-dimensional simulation requires
At = Ax/(ﬁco). This is summarized by the well-known “Courant Condition™ [3, 4]:

At < —— —

=)

n-Cy

(1.10)

where n is the dimension of the simulation. Unless otherwise specified, throughout this book
we will determine At by

Ax
2 (&) '

This is not necessarily the best formula; however, we will use it for simplicity.

At =

(1.1

PROBLEM SET 1.2

1. In fd1d_1.t.c, go to the two governing equations, Eq. (1.9a) and (1.9b), and change the factor
0.5 to 1.0. What happens? Change it to 1.1. Now what happens? Change it to .25 and see
what happens.

1.3 THE ABSORBING BOUNDARY CONDITION IN ONE
DIMENSION

Absorbing boundary conditions are necessary to keep outgoing E and H fields from being
reflected back into the problem space. Normally, in calculating the E field, we need to know
the surrounding H values; this is a fundamental assumption of the FDTD method. At the edge
of the problem space we will not have the value to one side. However, we have an advantage
because we know there are no sources outside the problem space. Therefore, the fields at the
edge must be propagating outward. We will use these two facts to estimate the value at the
end by using the value next to it [S].

Suppose we are looking for a boundary condition at the end where k ="0. If a wave is
going toward a boundary in free space, it is traveling at ¢, the speed of light. So in one time
step of the FDTD algorithm, it travels

. Ax Ax
distance = ¢y - At =¢g - — = ——.

4] 2

Section 1.4 ®m Propagation in a Dielectric Medium 5

This equation basically explains that it takes two time steps for a wave front to cross one cell.
So a common sense approach tells us that an acceptable boundary condition might be

E"(0) = E"2(1). (1.12)

It is relatively easy to implement this. Simply store a value of E, (1) for two time steps, and
then put it in E,(0). Boundary conditions such as these have been implemented at both ends
of the E, array in the program fd1d_1.2.c. (In the printout labeled fd1d_1.2.c at the end of the
chapter, the entire program hasn’t been reproduced, only those parts which are different from
fd1d_1.1.c. Furthermore, key points are highlighted in boldface.) Figure 1.3 shows the results
of a simulation using fd1d_1.2.c. A pulse that originates in the center propagates outward and
is absorbed without reflecting anything back into the problem space.

T T T T T T T T T
1+

W 05 T=100 7
0 1 T] | I | L 1 I
20 40 60 80 100 120 140 160 180
1 E T T T T T T T T T B
W 05 T=225 T
or 1] I L 1 1 1 1 L]
20 40 60 80 100 120 140 160 180
1 L T T T T T T T T T
W05 \ T =250
o I [I 1 1 1 T I I
20 40 60 80 100 120 140 160 180
FDTD cells

Figure 1.3 Simulation of an FDTD program with absorbing boundary conditions. Notice
that the pulse is absorbed at the edges without reflecting anything back.

PROBLEM SET 1.3

1. The program fd1d_1.2.c has absorbing boundary conditions at both ends. Get this program
running and test it to ensure the boundary conditions are completely absorbing the pulse.

1.4 PROPAGATION IN A DIELECTRIC MEDIUM

In order to simulate a medium with a dielectric constant other than one, which corresponds to
free space, we have to add the relative dielectric constant e, to Maxwell’s equations:

oF 1
— =—VxH (1.13a)
at £,8p
oH 1
=——VxE. (1.13b)

W Ho

Chapter 1 W One-Dimensional Simulation with the FDTD Method

We will stay with our one-dimensional example and make the change of variables in Eq. (1.5),

IE() 1 IH, (1)
ot - & JE0MO 0z
dH,(1) 1 AE. (1)

at v EOMO oz

and then go to the finite difference approximations

EXT'2 (0 - EX ' () 1 HIG+1/2)— H!'(k+1/2)
At B & JEOMO Ax
HyWl(k+1/2) - HyGe+1/2) 1 Bt 1) - BV
At Ho Ax ’

From the previous section

1 At

1
J&‘()[L()E a 5’

so Eq. (1.14) becomes

1/2

Em12(ky = En12(k) + . [Hj(k + 1/2) — HJ (k + 1/2)]

1 - -
H;Hrl(k +1/2) = Hy”(k +1/2) — 5[E;+|/2(k +1)— E;’+l/2(k)].

From these we can get the computer equations

ex[k] = exl[k] + cbikl*(hylk-11 - hylk])
hy [k] hy [k] + 0.5*(ex[k] - ex[k+1l]),

where
cb[k] = .5/epsilon

over those values of k which specify the dielectric material.

(1.14a)

(1.14b)

(1.15a)

(1.15b)

(1.16a)
(1.16b)

(1.17)

The program fd1d_1.3.c simulates the interaction of a pulse traveling in free space until
it strikes a dielectric medium. The medium is specified by the parameter cb in Eq. (1.17).
Figure 1.4 shows the result of a simulation with a dielectric medium having a relative dielectric
constant of 4. Note that a portion of the pulse propagates into the medium and a portion is

reflected, in keeping with basic EM theory [6].

PROBLEM SET 1.4

1. The program fd1d_1.3.c simulates a problem partly containing free space and partly dielectric

material. Run this program and duplicate the results of Fig. 1.4.

2. Look at the relative amplitudes of the reflected and transmitted pulses. Are they correct? Check
them by calculating the reflection and transmission coefficients. (See the appendix at the end

of this chapter.)

3. Still using a dielectric constant of 4, let the transmitted pulse propagate until it hits the far right

wall. What happens? What could you do to correct this?

Section 1.5 ® Simulating Different Sources 7

1 ~ T T T T | I— — 1T — I i — — — [— — 4
| _
_o0sf T=100 Eps=4 -
& I
0 oD
_0‘5 i | 1 [L | [1 1
20 40 60 80 100 120 140 160 180 200
1 (o T T T T | — — = — T — 0 — R — —
. 05F T=220 Eps =4 1
i I
o o
_0‘5 1 [1 L | | 1. 1 1
20 40 60 80 100 120 140 160 180 200
1 T T T T | RN p— — . — — U —
[_
oSt T=320 Eps =4 .
8 l
0 — — _ p—
_0.5 1 { H | 1 | 1 | 1
20 40 60 80 100 120 140 160 180 200
I C T T T T L T T RS S | — — I _—_ 3
I _
_ 05 T = 440 Eps=4 i
W |
of =
_0 5 1 | 1 | i 1 | | }
‘ 20 40 60 80 100 120 140 160 180 200

FDTD cells

Figure 1.4 Simulation of a pulse striking a diclectric material with a dielectric constant of
4. The source originates at cell number 5.

1.5 SIMULATING DIFFERENT SOURCES

In the first two programs, a source is assigned a value to E.; this is referred to as a hard source.
In fd1d_1.3.c, however, a value is added to E, at a certain point; this is called a soft source.
The reason is that with a hard source, a propagating pulse will see that value and be reflected,
because a hard value of E, looks like a metal wall to FDTD. With the soft source, a propagating
pulse will just pass through.

Up until now, we have been using a Gaussian pulse as the source. It is very easy to
switch to a sinusoidal source. Just replace the parameter pulse with the following:

pulse = sin([2*pi*freqg in*dt*T]

ex[5] = ex[5] + pulse.

The parameter freq_in determines the frequency of the wave. This source is used in the program
fdld_1.4.c. Figure 1.5 shows the same dielectric medium problem with a sinusoidal source.
A frequency of 700 MHz is used. Notice that the simulation was stopped before the wave
reached the far right side. Remember that we have an absorbing boundary condition, but it
was only for free space!

Note that in fd1d_1.4.c the cell size ddx and the time step dt are specified explicitly.
We do this because we need dt in the calculation of pulse. The cell size ddx is only specified
because it is needed to calculate dt from Eq. (1.7).

8 Chapter 1 ® One-Dimensional Simulation with the FDTD Method

e
20 40 60 80 100 120 140 16() 180
FDTD cells

Figure 1.5 Simulation of a propagating sinusoidal wave of 700 MHz striking a medium
with a relative diclectric constant of 4.

PROBLEM SET 1.5

1. Modify your program fd{d_1.3.c 10 simulale the sinusoidal source (sce fd1d_1.4.c).

2. Keep increasing your incident frequency from 700 MHz upward at intervals of 300 MHz. Whai
happens?

3. A 1ype of propagating wave function that is of great interest in arcas such as optics is the
“wave packet,” which is a sinusoidal function in a Gauassian envelope. Modify your program
to simulate a wave packet.

1.6 DETERMINING CELL SIZE

Choosing the cell size to be used in an FDTD formulation is similar to any approximation
procedure: enough sampling points must be taken to ensure that an adequate representation is
made. The number of points per wavelength is dependent on many factors [3, 4]. However,
a good rule of thumb is 10 points per wavelength. Experience has shown this to be adequate,
with inaccuracies appearing as soon as the sampling drops below this rate.

Naturally, we must use a worst-case scenario. In general, this will involve looking at
the highest frequencies we are simulating and determining the corresponding wavelength. For
instance, suppose we are running simulations at 400 MHz. In free space, EM energy will
propagate at the wavelength

o 3% 10° m/sec
400 MHz ~ 4 x 108 sec™!

If we were only simulating free space we could choose

=.75m. (1.18)

Ao =

Ax = ho/10=7.5cm.

However, if we are simulating EM propagation in biological tissues, for instance, we must
look at the wavelengths in the tissue with the highest dielectric constant, because this will have
the corresponding shortest wavelength. For instance, muscle has a relative dielectric constant
of about 50 at 400 MHz, so

co/V/50 424 x 10® m/sec

Ay = St R 0.6 em. (1.19)
400 MHz MHz 4 x 105 sec!

and we would probably select a cell size of one centimeter.

Section 1.7 W Propagation in a Lossy Dielectric Medium 9

PROBLEM SET 1.6

1. Simulate a 3-GHz sinc wave impinging on a material with a dielectric constant of e, = 20.

1.7 PROPAGATION IN A LOSSY DIELECTRIC MEDIUM

So far, we have simulated EM propagation in free space or in simple media that are specified
by the relative dielectric constant €,. However, there are many media that also have a loss
term specified by the conductivity. This loss term results in the attenuation of the propagating
cnergy.

Once more we will start with the time-dependent Maxwell’s curl equations, but we will
write them in a more general form, which will allow us to simulate propagation in media that
have conductivity:

oE
e—=VxH-] (1.20a)
at
oH 1 .)
M lvxE (1.200)
at o

J is the current density, which can also be written
J =0 E,
where o 1s the conductivity. Putting this into Eq. (1.20a) and dividing through by the dielectric
constant we get
IE 1 o
— = —VxH-—E.
Jat EoEr EQE,

We now revert to our simple one-dimensional equation:

OE (1 1 9H,(
LR g,
Jat £, Ep az ErEp
and make the change of variable in Eq. (1.5), which gives
IE (1 i IH, (1 -
(ATEA N N - LA N AN (1.21a)
ar er/Eolko Jaz £,8p
9 H., (1 1 IE (1)
o 1 R (1.21b)
at NG dz

Next take the finite difference approximations for both the temporal and spatial derivatives
similar to Eq. (1.3a):

EVN a0 — BV I HINGK+1/2) — HI(k = 1/2)
At T e JEomn Ax

EC i + B k)

80 2 ’

(1.22)

Notice that the last term in Eq. (1.21a) is approximated as the average across two time steps
in Eq. (1.22). From the previous section

\7/ Eofly AX

10

Chapter I ® One-Dimensional Simulation with the FDTD Method

so Eq. (1.22) becomes

or

- At - ~ At -

By |14+ 200 2 Bz |1 - 222
2¢e,80 2¢, 8
1/2

&

[H)k +1/2) — H!(k ~ 1/2)]

(1 A -a)
. ; 2
Eri2 () = S 260) proipgy 1/ (H! K +1/2) = Bk = 1/2)].

. At - o 4 At - o
&+
2¢,80 26,8y

From these we can get the computer equations

where

ex[k] = calk]l*ex{k] + cblk] *(hylk-1]1 - hyl[k]) (1.23a)
hy (k] = hylk] + 0.5*(exlk] - exl[k+1]), (1.23b)
eaf = dt*sigma/(2*epsz*epsilon) (1.24a)
calk]l = (1. - eaf)/(1. + eaf) (1.24b)
cblk] =0.5/(epsilon* (1. + eaf)). (1.24¢)

The program fd1d_1.5.c simulates a sinusoidal wave hitting a lossy medium that has a dielectric
constant of 4 and a conductivity of 0.04. The pulse is generated at the far left side and propagates
to the right. This is illustrated in Fig. 1.6. Notice that the waveform in the medium is absorbed
before it hits the boundary, so we don’t have to worry about absorbing boundary conditions.

Cond = 0.04

1 i 1 | 1

1
20 40 60 80 100 120 140 160 180
FDTD cells

Figure 1.6 Simulation of a propagating sinusoidal wave striking a lossy dielectric material

with a dielectric constant of 4 and a conductivity of 0.04 (S/m). The source is
700 MHz, and originates at cell number 5.

PROBLEM SET 1.7

. Run program fd1d_I.5.c to simulate a complex dielectric material. Duplicate the results of

Fig. 1.6.

. Verify that your calculation of the sine wave in the lossy dielectric is correct, i.e., it is the correct

amplitude going into the slab, and then it attenuates at the proper rate. You can best do this by
writing a little program that calculates the parameters given in the appendix of this chapter.

. How would you write an absorbing boundary condition for a lossy material?
. Simulate a pulse hitting a metal wall. This is very easy to do, it you remember that metal has a

very high conductivity. For the complex dielectric, just use o = 1.e6, or any large number. (It
does not have to be the correct conductivity of the metal, just very large.) What does this do to
the FDTD parameters ca and cb? What result does this have for the field parameters E, and
H,? If you didn’t want to specify dielectric parameters, how else could you simulate metal in
an FDTD program?

References 11

APPENDIX 1.A

When a plane wave traveling in medium 1 strikes a medium 2, the fraction that is reflected is
given by the reflection coefficient I', and the fraction that is transmitted into medium 2 is given
by the transmission coefficient 7. These are determined by the intrinsic impedances 7, and 7,
of the respective media [6, p. 398]:

E,e/ m—m
N=—= (L.A.1
Ein(r n+ ni)
Emms 2772
T = = —", (1.LA2
Ein(: m + m)
The impedances are given by
Y (1.A.3)
EoE}
where €7 is the complex relative dielectric constant
&=+ —.
Jweo
For the case where i = 110, Eqs. (1.A.1) and (1.A.2) become
1 1
&} et e — /&
r= 12 \f:\ﬁl \/j (1.LA4)
RNV
NCRING
2/./€} 2./¢&f
T /\/‘2 \/T (1.A.5)

TR E
The amplitude of an electric field propagating in the positive z direction in a lossy
dielectric medium is given by

E, = Ege *e P2

where Ej is the amplitude at z = 0. The parameters « and 8 are determined by the dielectric
constant &,, the conductivity o, and the radian frequency w = 27 f of the propagating wave,
via the following two formulas [6, p. 420]:

1/2
2
a=2 /50 4 (7) 1 (Np/m) (1LA.6)
Co 2 WEHNE,
o [¢ o \? .
B=—[Z 1+ <) +1 (rad/m). (1.LA7)
Cp 2 WEHE,

REFERENCES

[11 K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media, IEEE Trans. Antennas and Propagat., vol. 17, 1966, pp. 585-589.

[2] A. Taflove and M. Brodwin, Numerical solution of steady state electromagnetic scattering problems
using the time-dependent Maxwell’s equations, IEEE Trans. Microwave Theory Tech., vol. 23, 1975,
pp- 623-730.

12

Chapter | ® One-Dimensional Simulation with the FDTD Method

[31 A. Taflove, Compuzation Electrodynamics: The Finite-Difference Time-Domain Method. Boston,
MA: Artech House, 1995.

[4] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.
Boca Raton, FL; CRC Press, 1993.

[51 G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time domain
clectromagnetic field equations, IEEE Trans. Electromagn. Compat., vol. 23, 1981, pp. 377-384.

[6] D. K. Cheng, Field and Wave Electromagnetics, Menlo Park, CA: Addison-Wesley, 1992.

C Programs
/* FD1D 1
include

include
include

.l.c.

<math.h>
<stdlib.h>
<stdio.h>

13

1D FDTD simulation in free space */

#define KE 200 /* KE is the number of cells to be used */

main ()

{
float ex[KE], 6 hyI[KE];
int n,k,kc,ke,NSTEPS;

float T;
float tO,spread,pulse;
FILE *fp, *fopen();

/* Initialize */

for (k=1; k < KE; k++)
{ ex[k] = 0;
hylk] = 0. }
ke = KE/2; /* Center of the problem space */
t0 = 40.0; /* Center of the incident pulse */
spread = 12; /* Width of the incident pulse */
T = 0;
NSTEPS = 1;
while (NSTEPS > 0) {

/* NSTEPS is the number of times the */
/* main loop has executed */

"NSTEPS ")
&NSTEPS) ;

printf (

-->

scanf ("&d",

printf ("$d \n", NSTEPS) ;
n= 0;
for (n=1; n <=NSTEPS ; n++)
{
T =T+ 1; /* T keeps track of the total number */
/* of times the main loop is executed */
/* Main FDTD Loop */

/* Calculate the Ex field */
for (k=1; k < KE; k++)
{ ex[k] = ex[k] + .5*(hylk-1] - hy[k]) ; }

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ex[kc] = pulse;
printf("%5.1f %6.2f\n",t0-T,ex[kc]);

14

Chapter 1 ® One-Dimensional Simulation with the FDTD Method

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hylk]l = hylk] + .5%(ex[k] - ex[k+1]) ; }

/* End of the Main FDTD Loop */

/* At the end of the calculation, print out
the Ex and Hy fields */
for (k=1; k <= KE; k++)
{ printf("%3d %6.2f %6.2f\n" k,ex(k] hylkl); }

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");

for (k=1; k <= KE; k++)

{ fprintf(fp," %6.2f \n",ex[k]l); }
fclose (fp) ;

/* Write the H field out to a file "Hy" */
fp = fopen("Hy", "w");

for (k=1; k <= KE; k++)

{ fprintf(fp," %6.2f \n",hy(kl); }
fclose (fp) ;

printf("T = %5.0f\n",T);

C Programs

/* FD1D_1.2.c. 1D FDTD simulation in free space */
/* Absorbing Boundary Condition added */

main ()

{

float ex[KE],hyI[KE];

float ex low ml,ex low m2,ex high ml,ex high m2;

for (n=1; n <=NSTEPS ; n++)

{

/*

T =T+ 1;
Main FDTD Loop */
/* Calculate the Ex field */
for (k=1; k < KE; k++)
{ ex[k] = ex[k] + .5*(hylk-1] - hyl[k]) ; }
/* Put a Gaussian pulse in the middle */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ex[kc] = ex[kc] + pulse;
printf("$5.1f %6.2f %6.2f cn",t0-T,arg,ex[kcl);

/* Absorbing Boundary Conditions */

ex[0]
ex low_m2

ex low _m2;

ex low ml;

ex_low ml ex[1];

ex [KE-1] = ex high m2;
ex _high m2 = ex high ml;
ex_high ml = ex [KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hy[k] = hylk] + .5*(ex[k] - ex[k+1]) ; }

}

/* End of the Main FDTD Loop */

15

16 Chapter | ® One-Dimensional Simulation with the FDTD Method

/* FDID 1.3.c. */
/* Simulation of a pulse hitting a dielectric medium */

main ()
{
float ex[KE], hy[KE];
int n,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon, sigma,eaf;
float cb[KE];

for { k=1; k <= KE; k++) { /* Initialize to free space */
cb [k] .5;

I

printf("Dielectric starts at --> ");
scanf ("%d", &kstart);

printf("Epsilon --> ");

scanf ("%f", &epsilon);

printf("%d %6.2f \n", kstart,epsilon);

for (k=kstart; k <= KE; k++) {
cblk] = .5/epsilon;

for (k=1; k <= KE; k++)
{ printf("%2d %4.2f\n",k,cblk]); }

/* Main part of the program */

while (nsteps > 0) {
printf ("nsteps --> ");
scanf ("%d", &nsteps);
printf ("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)

{

T =T+ 1;

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k] = ex[k] + cblkl*(hy[k-11 - hyl[k]) ; }

/* Put a Gaussian pulse at the low end */
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));

ex[5] = ex[5] + pulse;
printf("%$5.1f %6.2f %6.2f\n",T,pulse,ex[5]);

C Programs 17

/* FDID_1l.4.c. */
/* Simulation of a sinusoidal wave hitting a dielectric medium */

float ddx, dt;
float freq in;

ddx = .01; /* Set the cell size to 1 cm */
dt = ddx/(2*3e8) /* Calculate the time step */

/* These parameters specify the input pulse */
printf("Input freq (MHz)--> ");
scanf ("%f", &freq in);
freq in = freq _in*leb;
printf (" %8.0f \n", freq in);

T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf ("nsteps --> ");
scanf ("%d", &nsteps);
printf ("$d \n", nsteps);

for (n=1; n <=nsteps ; n++)

{

T=T+ 1;

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k] = ex[k] + cblkl*(hylk-1] - hylk]) ; }

/* Put a sinusoidal source at cell 5 po0

*/

pulse = sin(2*pi*freq in*dt*T);
ex[5] = ex[5] + pulse;
printf("%5.1f %6.2f %6.2f\n",T,pulse,ex[5]);

18 Chapter | B One-Dimensional Simulation with the FDTD Method
/*FD1D 1.5.c. 1D FDTD simulation of a logsy dielectric medium */
float calKE],cb[KE];
epsz = 8.85419%e-12;
for (k=1; k <= KE; k++) { /* Initialize to free space */

calk] 1.;
cb [k] .5;

printf("Dielectric starts at --> ");
scanf ("%4", &kstart);
printf("Epsilon --> "};
scanf ("%f", &epsilon);
printf("Conductivity --> ");
scanf ("%£", &sigma);
printf ("%d %6.2f %6.2f \n", kstart,epsilon, sigma);

eaf = dt*sigma/(2*epsz*epsilon);
printf(" %6.4f \n", eaf);

for (k=kstart; k <= KE; k++) {
calk]l] = (1. - eaf)/(1 + eaf) ;
cb[k]l] = .5/(epsilon*(1 + eaf));

}

/* Main part of the program */

/* Calculate the Ex field */
for (k=0; k < KE; k++)
{ ex[k]l = calkl*ex[k]l + cblkl*(hy(k-1] - hylk]l) ; }

More on One-Dimensional
Simulation

Before moving on to two- and three-dimensional problems, we will stay with one-dimensional
simulation in order to introduce some advanced concepts. First we will change the formulation
slightly and introduce the use of the flux density into the simulation. This may initially seem
like an unnecessary complication. However, as we get to frequency-dependent materials in
section 2.3, the advantages will become apparent. Then in section 2.2 we introduce the use of
the discrete Fourier transform in FDTD simulation. This is an extremely powerful method to
quantify the output of the simulation.

It should become very apparent in this chapter how closely signal processing is linked
to time-domain EM simulation. This will be most obvious in section 2.4, where we use Z
transforms to simulate complicated media.

2.1 REFORMULATION USING THE FLUX DENSITY

Up to now, we have been using the form of Maxwell’s equations given in Eq. (1.1), which uses
only the E and the H fields. However, a more general form is

T =VxH (2.1a)
D(w) =¢p - 6] (w) - E(w) (2.1b)

oH 1

o __VxE, @.1¢)

or Mo

where D is the electric flux density. Notice that Eq. (2.1b) is written in the frequency domain.
The reason for this will be explained later. We will begin by normalizing these equations,
using

~ EO

E=/— -F (2.2a)
Mo

- 1

D= - D, (2.2b)
€ - Ko

19

20

Chapter 2 ® More on One-Dimensional Simulation

which leads to

D 1
Wb _ 1 g g (2.3a)
at JEolo
D(w) = e*(w) - E(w) (2.3b)
H 1 .
oH _ vV xE. (2.3¢)
at A Eollo

We saw in Chapter 1 that this form of Eqgs. (2.3a) and (2.3c) will lead to the very simple
finite difference equations, Eq. (1.4a) and (1.4b). The only change is the use of D instead
of E. However, we still have to get Eq. (2.3b) into a time domain difference equation for
implementation into FDTD. The first task is to get it from the frequency domain to the time
domain. We will assume we are dealing with a lossy dielectric medium of the form

e w) =& + - 24
JwEo
and substitute Eq. (2.4) into (2.3b):
D(@) =&, - E() + — E(w). 2.5)
JwéEp

Taking the first term into the time domain is not a problem because it is simple multiplication.
In the second term, Fourier theory tells us that 1/jw in the frequency domain is integration in
the time domain, so Eq. (2.5) becomes

D(1) =8,~E(t)+g—/ E() - dt’.
&0 Jo

We will want to go to the sampled time domain, so the integral will be approximated as a
summation over the time steps At:

pr=g B+ AN 2.6)
SIU—

Note that £ and D are specified at time ¢ = »n - At. There is one problem remaining: looking

back at Eq. (2.3b), we see that we have to solve for E” given the value D". Unfortunately, the

value E” is needed in the calculation of the summation. We will circumvent this by separating

the E” term from the rest of the summation:

N; oA
D' =g - E"+ = E"+ S E
€0 U

Now we can calculate E” from
n—1
o - At :
D" — E E'
€0 i=0

. ,
e @.7)
&r

€0

We can calculate E”, the current value of E, from the current value of D and previous values
of E. It will prove advantageous to define a new parameter for the summation

n_a-At” ;
= — ;()E

Section 2.2 W Calculating the Frequency Domain Output 21

so Eq. (2.7) can be reformulated with the following two equations:

B D" — Infl 58
= o Ar (28a)
&+
€0
N
r=p-ty 28 (2.8b)

&0
Note that the summation is calculated by Eq. (2.8b), which, at every time step #, simply adds
the value E£” times the constant term to the previous values of the summation at n — 1. It is
not necessary to store all the value of E” from 0 to n! Now the entire FDTD formulation is

dx[k] = dx[k] + .5*%(hylk-1] - hyl[k]) (2.9a)
ex[k] = gax[k]*{(dx[k] - ix[k]) (2.9b)
ix[k] = ixI[k] + gbx[k]*ex[k] (2.9¢)
hy (k] = hy(k] + .5* (ex[k] - ex[k+1]) (2.9d)
where
gax (k] = 1/ (epsilon+ (sigma*dt/epsz)) (2.10a)
gbx [k] = sigma*dt/epsz. (2.10b)

The important point is this: all of the information regarding the mediais contained in Eqs. (2.9b)
and (2.9¢). For free space,gax = 1 and gbx = 0.;forlossy material, gax and gbx are
calculated according to Egs. (2.10a) and (2.10b). In calculating ex (k] at the point k, it uses
only values of dx (k] and previous values of ex [k] in the time domain. Equations (2.9a)
and (2.9d), which contain the spatial derivatives, do not change regardless of the media!

It may seem as though we have paid a high price for this fancy formulation compared to
the formulation of Chapter 1. We now need D, as well as E, and an auxiliary parameter i.x.
The real advantage comes when we deal with more complicated materials, as we’ll see in the
following sections.

PROBLEM SET 2.1

1. The program fd1d_2.1.c implements the reformulation using the flux density. Get this program
running and repeat the results of problem 1.7.1.

2.2 CALCULATING THE FREQUENCY DOMAIN OUTPUT

Up until now, the output of our FDTD programs has been the E field itself, and we have been
content to simply watch a pulse or sine wave propagate through various media. Needless to
say, before any such practical applications can be implemented, it will be necessary to quantify
the results. Suppose now that we are asked to calculate the E field distribution at every point
in a dielectric medium subject to illumination at various frequencies. One approach would be
to use a sinusoidal source and iterate the FDTD program until we observe that a steady state
has been reached, and determine the resulting amplitude and phase at every point of interest
in the medium. This would work, but then we must repeat the process for every frequency of
interest. System theory tells us that we can get the response to every frequency if we use an
impulse as the source. We could go back to using the Gaussian pulse, which, if it is narrow
enough, is a good approximation to an impulse. We then iterate the FDTD program until the
pulse has died out, and take the Fourier transform of the E fields in the slab. If we have the
Fourier transform of the E field at a point, then we know the amplitude and phase of the E
field that would result from illumination by any sinusoidal source. This, too, has a very serious

22

Chapter 2 ® More on One-Dimensional Simulation

drawback: the E field for all the time domain data at every point of interest would have to
be stored until the FDTD program is through iterating so the Fourier transform of the data
could be taken, presumably using a fast Fourier transform algorithm. This presents a logistical
nightmare.

Here is an alternative. Suppose we want to calculate the Fourier transform of the E field
E () at a frequency f;. This can be done by the equation

E(f) =/I E(r)-e /7N dr. 2.11)
0

Notice that the lower limit of the integral is 0 because the FDTD program assumes
all causal functions. The upper limit is ¢z, the time at which the FDTD iteration is halted.
Rewriting (2.11) in a finite difference form,

T
E(f) =) E(n-Ar)-e />0, (2.12)

n=0

where T is the number of iterations and A¢ is the time step, so tr = T - At. Equation (2.12)
may be divided into its real and imaginary parts

T
E(f)=)_ E(n-At)-cosQufi - At-n)

n=0
. 2.13)
—j Y _E(m-an-sin@ufi- At-n),
n=0
which may be implemented in computer code by
real pt(m,k] = real pt[m,k] + ex[k]*cos(2*pi*freq(m)+*dt+*n) (2.14a)
imag pt[m,k] = imag ptim,k] + ex[k]*sin(2*pi*freg(m)*dt*n). (2.14b)

For every point k, in the region of interest, we require only two buffers for every frequency of
interest f,,. At any point k, from the real part of E(f;), real pt [m, k], and the imaginary
part imag_pt [m, k], we can determine the amplitude and phase at the frequency f,,:

amp [m,k] = sqgrt (pow(real pt[m,k],2.)+pow(imag _pt[m,k],2.)) (2.15a)
phase [m,k] = atan2(imag_pt [m, k], real pt(m,k]). (2.15b)

Note that there is an amplitude and phase associated with every frequency at each cell
(1, 2]. The program fd1d_2.2.c at the end of the chapter calculates the frequency response at
three frequencies throughout the problem space. Figure 2.1 is a simulation of a pulse hitting a
dielectric medium with a dielectric constant of 4, similar to Fig. 1.4. The frequency response
at 500 MHz is also displayed. At T = 200, before the pulse has hit the medium, the frequency
response is 1 through that part of the space where the pulse has traveled. After 400 time steps,
the pulse has hit the medium, and some of it has penetrated into the medium and some of it
has been reflected. The amplitude of the transmitted pulse is determined by Eq. (1.A.2) at the
end of Chapter 1,

NZES

T=—

1+/4

which is the Fourier amplitude in the medium. The Fourier amplitude outside the medium
varies between 1 — .333 and 1 4 .333. This is in keeping with the pattern formed by the

standing wave that is created from a sinusoidal signal, whose reflected wave is interacting with
the original incident wave.

= .667,

Section 2.3 ®m Frequency-Dependent Media 23

1 T T T I ' ' I l
Time Domain T = 200 / _ f

-1 L 1 1 1 L L 1 I A

20 40 60 80 100 120 140 160 180 200

T T T T T T T T T

20 40 60 80 100 120 140 160 180 200

1 T T T T T T T T T

Time Domain T = 400 | AN
m’(0

20 40 60 80 100 120 140 160 180 200
T T T T T T T T T
= Freq. Domain at 500 MHz
&1 J\/\/\ _____________________ S
< .
() I 1 1 1 ’I 1 Il L 1
20 40 60 80 100 120 140 160 180 200

Figure 2.1 Simulation of a pulse striking a dielectric medium with £, = 4. The top figure
is the pulse after 200 time steps. Notice that the Fourier amplitude is 1 in that
part of the space where the pulse has traveled, but 0 elsewhere. After 400 time
steps, the pulse has struck the medium, and part of it has been transmitted and
part reflected. The Fourier amplitude in the medium is 0.667, which is the
percentage that has been transmitted.

PROBLEM SET 2.2

1. The program fdid_2.2.c implements the discrete Fourier transform with a Gaussian pulse as
its source. Get this program running. Duplicate the resuits in Fig. 2.1.

2.3 FREQUENCY-DEPENDENT MEDIA

The dielectric constant and conductivity of most media vary at different frequencies. The
pulses we have been using as a source in Chapters 1 and 2 contain a spectrum of frequencies.
In order to simulate frequency-dependent material, we will need a way to account for this.
One of the most significant developments in the FDTD method was a means to simulate
frequency-dependent materials [3].

We will start with a very simple example to illustrate the ideas. Suppose we have a
medium whose dielectric constant and conductivity vary over the frequency range of 10 to
1000 MHz as shown in Fig. 2.2. A material like this can be adequately represented by the
following formulation:

X1

er(w) =& + - +
Jwes 1+ jory

(2.16)

This is referred to as the Debye formulation. In this formulation, there is a dielectric constant &,
and a conductivity o, but there is also a frequency-dependent term. The following parameters

24 Chapter 2 ® More on One-Dimensional Simulation

Dielectric constant Conductivity
" 0.04 —
4
G

5 t) 0.02
0 2 3 0 2 3
10 10 10° 10 10 10

Frequency (MHz) Frequency (MHz)

Figure 2.2 Relative dielectric constant and conductivity as functions of frequency for a
Debye medium with the following properties: &, = 2,0 = .1, x =2, 7 =
.001 psec.

represent the medium of Fig. 2.2:
g =2, oc=.01, =2, ty=.001 usec.

In order to simulate this medium in FDTD, Eq. (2.16) must be put into the sampled time
domain. Let us define the last term times the E field as

X1
S(w) = T jwtOE(w). 2.17)
The inverse Fourier transform of the Debye term is () /t0)e™ "/ u(t), where u(z) is the
Heavyside, or rectangular function, which is O for t < 0 and 1 thereafter. (Remember we said
that implicit to FDTD is the fact that all functions are causal, i.e., zero for r < 0, because
our computer programs initialize the field values to zero.) Equation (2.17) in the frequency
domain becomes the convolution

t
S@t) = ﬁf e UTMEQR - dr
fo Jo

in the time domain. We now have to approximate this as a summation in the sampled time

domain:
s" = X1 - ﬁ e—»At(n—i)/to B Ei
L
- (2.18)
At .)
— el En —At(n—1)/t . El .
X1 % (+ Ze

i=0

Notice that
n—1
s =y, DL pmara-t-i g
fo i=0
n—1
At At/ty —At(n—i)/t [
— . n—i . El.
X1 o e Ze

l=0

Substituting this value into Eq. (2.18) above gives
At
§" = xy - — E" 4 e Ao g1 (2.19)

Iy

Section 2.3 W Frequency-Dependent Media 25

Similar to the way we handled the lossy dielectric, we can write
D'=¢ -E"+1"4+ 5"

(2.20)
n g - At n—1 At n —t/1 n—1
=¢-E"+ -E"+1 +lx1-— - E"+e V0.8 ,
£ Iy
and solving for E"
0 D" — In—l _ e*At/toSn-l
E" = o - Af At (221a)
& + + X1 —
&o)
n n—1 o - At n
I"=7"+ -E (2.21b)
)
At
st = e_.At/mSn-l + X - t_ . E". (221C)
0
This formulation is implemented by the following computer code:
dx [k]= dx[k] + .5*(hylk-11 - hy(k]) (2.22a)
ex[k] = gax[k]*(dx[k] - ix[k] - del_exp*sx[k]) (2.22b)
ix[k] = ix[k] + gbx[k]*ex[k] (2.22c¢)
sx[k] = del exp*sx[k] + gexik]*ex[k] (2.22d)
hy (k] = hyl[k] + .5* (ex[k] - ex[k+1]) (2.22¢)
where
gax[k] = 1/(epsr + (sigma*dt/epsz) + (chil*dt/t0)) (2.23a)
gbx [k] = sigma*dt/epsz (2.23b)
gbc(kl= chil*dt/to (2.23¢)
and

del exp = exp{-dt/t0).

Once again, note that everything concerning the medium is contained in Egs. (2.22b)
through Eq. (2.22d); Equations (2.22a) and (2.22e), the calculation of the flux density and
magnetic field, are unchanged.

The program fd1d_2.3.c calculates the frequency domain amplitude and phase for three
frequencies. Figure 2.3 shows a simulation of a pulse going into a frequency-dependent
dielectric material with the properties

e =2, o=.01 ,x =2, ty=.00l usec.
This set of parameters has the following effective dielectric constants and conductivities at the

three frequencies:

Frequency (MHz) & o (S/m)

50 6.55 024
200 3.94 .047
500 246 .06

Notice that the Fourier amplitude attenuates more rapidly at 200 MHz than at 50 MHz, and
more rapidly still at 500 MHz. This is because the conductivity is higher at these frequencies.
At the same time, the higher relative dielectric constant at the lower frequencies means the
amplitude just inside the medium is smaller.

26

Chapter 2 ® More on One-Dimensional Simulation

I T T T T T__ _17____1_____]___7____.]
e :
= 051 / 7
~ Time Domain T = 250
53] 0 -
i 1 A 1 1 1 1 1 1
20 40 60 80 100 12 140 160 180 200
2 k- T T T T T T T T T
E OL-—'——~’———'—'—'~'—'--——I Time D - F=T1000 1
5 2} 4
~ N
k' —4 ' ¢ 0 - i] 1 | |
20 40 60 80 100 120 140 160 180 200
2 -1 T F T ¥ T T T T
o Freq. Domain at 50 MHz
=3 el
g 1r |
< , rans. coef. =0.51
O 1 | L 1 Y- L — 1
20 40 60 80 100 120 140 160 180 200
2 T T T T T T T T T
— Freq. Domain at 200 MHz
g‘ lyr >~ -/ T~ T T T T T s s e
< i ns. coef. = 0.72
0 . | 1 A 1 i l —4
20 40 60 80 100 120 140 160 180 200
2 T T T T T i T —T —T
~ Freq. Domain at 500 MHz
=3 il
g 1
< | ns. coef. = 0.79
0 1 1 | I I 1 1 =
20 40 60 80 100 120 140 160 180 200

Figure 2.3 Simulation of a pulse striking a frequency-dependent dielectric medium (Debye
medium) with the following properties: ¢, = 2, ¢ = 00L, xy; = 2,1y =
.001 psec. After 250 time steps (top), the pulse has struck the medium, and
part of it has been transmitted and part reflected. After 1000 steps (second
from top) the pulse has penetrated into the medium, but has spread. Notice
the different percentages of transmittance and the different rates of attenuation
within the medium at each frequency due to the different effective dielectric
constants and conductivities.

2.3.1 Auxiliary Differential Equation Method

We could have taken a somewhat different approach to the simulation of the dispersive
medium described by Eq. (2.16). There is another method, usually referred to as the auxiliary
differential equation (ADE) method [4, 5]. Let’s look at Eq. (2.17), but rewrite it in the
following manner:

1+ joty) S{w) = x1 E(w). (2.24)

Once again, we must find a way to take this to the discrete time domain for implementation
in the FDTD formulation. We will start by going to the continuous time domain, so (2.24)
becomes

ds(t)
dt

s(t)+ 1 = yie(t). (2.25)
In the sampled time domain, this becomes
S+ Sn\l i st — Sn—l
2 0 At

= X[E".

Section 2.4 ® Formulation Using Z Transforms 27

Notice that we approximated the s(¢) term over two time steps. We did this because we needed
two time steps to approximate the derivative. As before, we solve for S™:

At At
(-5%) ., (B)xe
§" = 0/ gn-14 20 . (2.26)

- 1+ Ar 1+ Al
21 2t
We can use this instead of Eq. (2.19) to calculate E” in Eq. (2.21). How can we be sure these

will give equivalent answers? You are probably familiar with the following approximations:

1-86=e¢? ifs<<l

| R S,
—=e ifé<<1.

1446
Putting the two together gives
1-38
s = jfs<<l.
In this case
At
§=—)
21
so we have
At
(-5%)
R e M, (2.27)

1+ Al
21

This leaves only the following question: How do we know that A/t is small enough? Recall
earlier that the cell size has to be small enough to get about ten points per wavelength for the
smallest wavelength in the simulation. This is a similar situation. If the medium that we are
trying to simulate has a Debye term with a time constant of fy, we must be sure that our time
steps are small compared to ty, say At < t,/10. This insures that Eq. (2.27) is a fairly good
approximation.

PROBLEM SET 2.3

1. The program fd1d_2.3.c implements the frequency-dependent formulation. Get this program
running and repeat the results of Fig. 2.3.

2.4 FORMULATION USING Z TRANSFORMS

If you’ve been studying the Z transform theory in the appendix, or if you are already familiar
with Z transforms, you will now see the advantage of using Z transforms for the FDTD
formulation of frequency-dependent media [6]. Returning to the problem of calculating E in
a Debye media, we begin with our frequency domain equation

[e2
D(w) = (g, + -2 L o0) E(w).
Jowegy 1+ jor

We can avoid dealing with troublesome convolution integrals in the time domain because we
will go immediately to the Z domain,

o - At/e - At/
/0~E(z)+Xl /to

D@z)=¢ - E
@ =& E@+ 775 1+

- E(2). (2.28)

28

Chapter 2 ®m More on One-Dimensional Simulation

Note that the factor At, which is the time step, had to be added to the last two terms in going
from the time domain to the Z domain. (See section A.2 in the appendix at the end of book).
Similar to what we did above, we will define some auxiliary parameters:

o - At/gg 1 oAt
@)= ——F— E@Q=2"1Q)+ —E@ (2.29a)
1 -zt £0
- At/t < At
Sy = XAy e aing gy 4+ KU By (200
1 —e At/z(,z 1 to
Equation (2.28) then becomes
4 o - At
D@ =& E@ + 1@ + ——E@
AIO (2.30)
4o Mmglse) + A2 p(y),
0
from which we can solve for E(z) by
D(z) — ,][_ oAty 7IS
E() = (2)—z71(@) — e 7' 8(z) 2.31)

o- At - At
+ Xl
&gy fo

&+

Here is the advantage of the Z transform formulation: to get to the sampled time domain,
replace E(z) with E*, z7'E(z) with E"~', and make a similar replacement with the other
parameters in Eqs. (2.31), (2.29a), and (2.29b). What you get is

D" — Infl _ e—AT/IoSn—l
E" = STAT AT (2.32a)
&+ +

£0 fo
- At

o=ty T e (2.32b)
£0

X1 At

St = Ao gnl E", (2.32¢)

fo
which is exactly what we got in the previous section. The difference is, we didn’t have to do
anything with integrals and their approximations. As we move to formulations that are more
complicated, the advantage of the Z transform will become evident.

2.4.1 Simulation of an Unmagnetized Plasma

In this section, we will demonstrate the versatility of the methods we have learned in
this chapter by simulating a completely different medium from those we have been working
with so far. The permittivity of unmagnetized plasmas is given as [7]

0y
fwy=14+ ——~~——, (2.33)
(L)(] Ve — (L))
where w, =27 f,
fp 1s the plasma frequency
v, 1s the electron collision frequency.

By using partial fraction expansion, Eq. (2.33) can be written as

@3 /v, @3 /v,
8*(60) — 1 + P ¢ _ I/

. 2.34
jo v je e

Section 2.4 ® Formulation Using Z Transforms 29

This is the value we will use for the complex dielectric constant in Eq. (2.3b). Notice that the
form resembles Eq. (2.16), the expression for alossy material with a Debye term. There are sev-
eral ways of approaching this problem, but let’s start by taking the Z transform of (2.34) to obtain

2 /v, w? /v
£*(z) = i1 n 1wf/z_| - — ei{irfr (2.35)
By the convolution theorem, the Z transform of Eq. (2.3b) is
D(z)=¢"() - E(2) - At. (2.36)
By inserting Eq. (2.35) into (2.36) we obtain
D@ = B+ 22 [Lo !] E()
ve pl—z7! 1 —eveagl
w? At —piraty
=E@)+ pC |:1 — _(el_vr‘it)rl)i ew-A’zz] E(z).

Notice that we cross multiplied the term in the brackets. An auxiliary term will be defined as
w) At [(1 — e7¥an)

Sz) =
() 1 — (1 _ efv,-At)Zfl + e“’v'A’z

_2] E(2).

Vv,

E(z) can be solved for by

E(z)=D@) —z7'S®) (2.37a)
—v Aty -1 —vo A2 wiAt —ve- At
S@=U4+e"*)z7'S@) —e 7Sk + (1 —e " 3NYE(2). (2.37b)
Therefore, the FDTD simulation becomes
ex[k] = dx[k] - sx[k]; (2.38a)
sx[k] = (1 + exp(-vc*dt) *sxml [k]
- exp(-vce*dt) *sxm2 [k]
+ (pow{omega,2.)*dt/vc)* (l-exp(-vc*dt)) *ez k] ; (2.38b)
sxm2 [k] = sxml[k]; (2.38¢)
sxml [k] = sx[k]; (2.38d)

Notice from Eq. (2.38b) that we need the two previous values of § in our calculation. This is
accomplished by Eqs. (2.38c) and (2.38d).

We will do a simulation of a pulse propagating in free space that comes upon a plasma.
Plasma is a very interesting medium. At relatively low frequencies, it looks like a metal, and
at higher frequencies, it becomes transparent. By lower or higher frequencies, I mean below
or above the plasma resonance frequency f,. This simulation will use the properties of silver:
v. = 57 THz, f, = 2000 THz. Of course, since we are simulating much higher frequencies,
we will need a much smaller cell size. In the course of this problem, it will be necessary to
simulate EM waves of 4000 THz (tera => 10'?). At this frequency, the free space wavelengthiis

8
r= 2210 507,
4 x 1055
In following our rule of thumb of at least ten points per wavelength, a cell size of one nanome-
ter, i.e., Ax = 1072, will be used. Figure 2.4 shows our first simulation at 500 THz, well below
the plasma frequency. The incident pulse is a sine wave inside a Gaussian envelope. Notice
that it interacts with the plasma almost as if it were a metal barrier and is almost completely
reflected. Figure 2.5 is a similar simulation at 4000 THz, well above the plasma frequency. A
small portion of it is reflected, but the majority of the pulse passes right through.

30 Chapter 2 ® More on One-Dimensional Simulation

}_ . T 7 T q
| Plasma l
L
! 1 | 1 i 1 J
50 100 150 200 250 300 350 400 450 500
T T T
1+ 4
SHG
- | L L]
50 100 450 500
1]. . - U 7 T q
) Plasma I
w0 i
-1 1) - I | |
50 100 150 200 250 300 350 400 450 500
Figure 2.4 Simulation of a wave propagating in free space and striking a plasma medium.
The plasma has the properties of silver; f,, = 2000 THz and v.. = 57 THz. the
propagating wave has a center frequency of 500 THz. After 1200 time steps, it
has been completely reflected by the plasma.
—T 3
..
450 500
—T 3
N i
450 500
1F T T T T T — T - 1 -3 —T
Plasma |
Lu" 0 RV Y VNP 1
T =1000
-1 1 1 1 i i i 1 1 Ty
50 100 150 200 250 300 350 400 450 500

Figure 2.5 Simulation of a wave propagating in free space and striking a plasma medium.
The plasma has the properties of silver; f, = 2000 THz and v, = 57 THz.
The propagating wave has a center frequency of 4000 THz. After 1000 time
steps, it has completely passed through the plasma.

PROBLEM SET 2.4

1. Modify the program fd1d_2.3.c to simulate plasma and duplicate the results of Figs. 2.4 and
2.5. This is much easier than it might look. First change your cell size to ! nanometer. Then
replace the calculation of the E field for a lossy Debye medium with that of Egs. (2.38). After
doing the simulations at 500 THz and 4000 THz, repeat at 2000 THz. What happens?

2. Repeat problem 2.4.1, but use a narrow Gaussian pulse as your input and calculate the fre-

quency response at 500, 2000, and 4000 THz. Does the result look the way you would expect,
particularly at 2000 THz?

Section 2.5 ® Formulating a Lorentz Medium 31
2.5 FORMULATING A LORENTZ MEDIUM

The Debye model described a single-pole frequency dependence. We move now to the next
level, which is a two-pole dependence refetred to as a Lorentz formulation:
&1

5
w w
wq wq

Figure 2.6 is a graph of the dielectric constant and conductivity of a material with the following
Lorentz parameters: ¢, = 2, &; = 2, fy = 100 MHz, § = .25 (wy = 27 fy). To simulate a
Lorentz medium in the FDTD formulation, we first put Eq. (2.39) into Eq. (2.3b),

D(w) = &, E(w) + o1 5 E(w)

. w w
1+ j28 (w—0> - (w—0> (2.40)

=& E(w) + S(w),

where we have again defined an auxiliary term,

g =¢+ (2.39)

60%81
Wi + jw28w + (jw)?

We will use the ADE method to move this to the time domain. Start by rewriting it in the
following manner:

S(w) = E(w).

(0 + jw28owo + (jw)?) S(w) = wie E(w).
Finally, we proceed to the finite difference approximations
sno— Sn~2 sno— 2sn—l + Sn—2
+

2 on—1 2 n—1
wp St 4 280w = whe1E"T .
0 2A1 INE 0
‘ A few things are worth noting: the second-order derivative generated a second-order differ-
encing
d’s(r) _ S — 28" 4 g2
arr At? ’
The first-order equation is taken over two time steps instead of one:
dsit) _ S"— 5"
. 2Ar
Dielectric constant ' Conductivity
0.03 N
4
0.02
E
2 2
0.01
0 0
10! 10 10° 10! 10? 10°%
Frequency (MHz) Frequency (MHz)

Figure 2.6 Relative dielectric constant and conductivity as functions of frequency for a
Lorentz medium with the following properties:

e = 2.6 =2, fo = 100 MHz, § = 25.

32

Chapter 2 m More on One-Dimensional Simulation

This was done because the second-order derivative spanned two time steps. Next, we solve
for the newest value of S:

800)() 1 _{ 2 2 _2 Spawp 1 2 -1
Sn vy o Sn _ = Sn vy . — Eﬂ
(At T Atz) + D= xp)t At T Ap) T %

2 2 80(1)0 1
i ——— 1+ —)
" — — At Snfl . At At Sn—2 + Wpél En—l
80w0 4 1 80w0 4 1 80w0 + 1
At A7 At A2 At A2
2 2 2
o _ (2 Arw) g1 (L= Ardowy) o, Arrwie g 2.41)
(1 4+ Ardpwp) (1 + Atépwp) (1 + Sowo At)

Now let’s go back to Eq. (2.40) and take it to the sampled time domain
D" =¢,E" 4 S,
and since we are interested in solving for E, we’ll write it as
D" —§"
&y

E" =

Notice that we already have a solution for $" in Eq. (2.41). And since we need only the
previous value of E, i.e., E"~! we are in business! We don’t need to worry about expanding
the auxiliary term to make sure they don’t require values of E that we don’t have yet.

Let’s try a different approach. Go back to Eq. (2.39). An alternative form of the Lorentz
formulation is

vB
S(w) = & E(w), (2.42)
(@ +) + jw2a + (jw)?
where
wo

y = ———

J1— 85
a = 80w0

,BZO)O‘II—(S(%.

At this point, we can go to Table A.1 and look up the corresponding Z transform, which gives
e A sin (B A1) - At - 77!
S(z) = e E(w).
2 1 —2e 28 . cos(B-At)z) + e720 vk

The corresponding sampled time domain equation is

S =2e7%A Lcos (B ALY ST — e AGnE L oA Gin (B - At)y - At - g EMTL
(2.43)
Well and good. But if both methods are correct, they should both yield the same answers,

which means the corresponding terms in Egs. (2.41) and (2.43) should be the same. Let’s see
if that’s true.

5§72 term: We saw earlier that

s = (1= Atdowo)
I+ Atdpwg)

Section 2.5 ® Formulating a Lorentz Medium 33

E"'term: If B - At < 1, thensin(B8 - At) = (8 - At), and

—aAr B At
e Mgin(B-AD -y - At=——— .y At
(P-A0-y ita-ar”
J1 =82 At
_ (CI)O 1 50) wo . CU%'A[z
1 + dpwg - At 1 _ 52 _1+~50w0At’
0

57! term: By using a Taylor series expansion of the cosine function, we get

o 1 (B - Ar)?
Qe CADE2| —m——— - —
e cos(f) <1+a-At>(>)
2 (B Ar)? _2—a)§-(1—8§)~At2
T 14a-At 1+ wody - At '

The last step is perhaps our weakest one. In depends upon § being small compared to 1
so 82 will be negligible.

2.5.1 Simulation of Human Muscle Tissue

We will end with the simulation of human muscle tissue. Muscle tissue can be adequately
simulated over a frequency range of about two decades with the following formulation:
wy

o
e (w) =6 + - +e - .
(@) Jweg l(a)g+a2)+]2aw+a)2

(2.44)

(Problem 2.5.2 addresses how one determines the specific parameters, but we will not be
concerned with that here.) Inserting Eq. (2.44) into Eq. (2.1b) and taking the Z transforms we
get

D@ =5 E(2) + 2750 gy 4 e sin(wy An - Ar 27 E)
D=k 1 —2z! vTa 1 —2e~Acos(wy - At) - 77! + e~ 20A17-2 -
(2.45)
We will define two auxiliary parameters:
- At/e
1) = (’1_—;10 EQ@) (2.462)
—a-At H
£ -e csin(wg « At) - At - E(2)
S(@2) = . 2.46b
@ 1 — 2e~*Al cos(wyg - At) - 77} 4 e~ 20 b17-2 ()
Now Eq. (2.45) becomes
D) =6E@)+1@)+727'50x). (2.47)
Once we have calculated E(z), 1(z) and S(z) can be calculated from Eqs. (2.46a) and (2.46b):
-1 o - At
I(&)=z""1(2) + . E(2) (2.48a)
0

=1 —a-At A - -1
S(z) = 2% cos(wp - A1) - 27" 8(2) (2.48b)

— e D28y + g e AT Lsin(wg - A) - At - E(2).

Remember that in calculating E(z), we need the previous value of S(z) (as indicated by
27'S(z2)), the present value of D(z), and the present value of 7(z). The present value of D(z)

34

Chapter 2 ® More on One-Dimensional Simulation

is not a problem because, in the order in which the algorithm is implemented, it has already
been calculated in Eq. (2.1a). However, we will need the expanded version of I(z). Equation
(2.47) becomes

~1 o - At 1
D(zy=¢eE@ +z 1)+ o E(2)+z7'S(2),
0
from which E(z) can be calculated by
_ D) —-z'1(2)-z7'S(»)
E(z) = e to - Af/ey e E(2) (2.49a)
1 o - At
I()=z""1() + -E(2) (2.49b)

&0

S(z) = 2e7** cos(wg - Af) - 727 18(z)
(2.49¢)
— e M 28(7) + £y - e N sin(wy - AL) - AT - EZ).
Note that S(z) did not have to be expanded out because it already had a z' in the
numerator.

PROBLEM SET 2.5

1. Modify fd1d_2.3.c to simulate a Lorentz medium with the properties used in Fig. 2.6. Calculate
the Fourier amplitudes at 50, 100, and 200 MHz. In light of Fig 2.6, do you get the results you
expect?

2. Quantify the results of problem 2.5.1 by comparing them with analytic calculations of the
reflection coefficient and transmission coefficient at the three frequencies using Appendix 1A.

3. FDTD simulation has been used extensively to model the effects of electromagnetic radiation
on human tissue both for safety [8] and for therapeutic applications [9]. Human muscle tissue
is highly frequency dependent. Table 2.1 shows how the dielectric constant and conductivity
of muscle vary with frequency [10]. Other tissues display similar frequency dependence [11].

TABLE 2.1 Properties of Human Muscle Tissue

Frequency (MHz) Dielectric Constant Conductivity (S/m)

10 160 625
40 97 693

100 72 .89

200 56.5 1.28

300 54 1.37

433 53 1.43

915 51 1.60

Write a program to calculate values of ¢, o, x;, and ¢, that would give an adequate Debye
representation of the data in Table 2.1. You probably will not be able to fit the values exactly.
(Hint: Do not try for a purely analytic solution; do it by trial and error. In other words, have
your program prompt you for the parameters €, o, x,, and #, and then calculate and display
the effective dielectric constant and conductivity at each frequency of interest.) Then write a
program that will do a similar calculation for the Lorentz parameters. Which one is better?

4. Using a Debye or Lorentz formulation, use the parameters you found from problem 2.5.3 to
do a simulation of a pulse striking a medium of muscle tissue at 50, 100, and 433 MHz.

References

(1]

(2]

(3]

(4]

[5]

[6]

{7

(8]

9]

[10]

{11]

35

REFERENCES

C. M. Furse, S. P. Mathur, and O. P. Gandhi, Improvements to the finite-difference time-domain
method for calculating the radar cross section of a perfectly conducting target, IEEE Trans. Mi-
crowave Theory and Tech., vol. MTT-38, July 1990, pp. 919-927.

D. M. Sullivan, Mathematical methods for treatment planning in deep regional hyperthermia, /IEEE
Trans. Microwave Theory and Tech., vol. MTT-39, May 1991, pp. 864—872.

R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, A frequency-dependent finite-
difference time-domain formulation for dispersive materials, /[EEE Trans. Electromag. Compat.,
vol. EMC-32, Aug. 1990, pp. 222-227.

R.M.Joseph, S. C. Hagness, and A. Taflove, Direct time integration of Maxwell’s equations in linear
dispersive media with absorption for scattering and popagation of femtosecond electromagnetic
pulses, Optics Letters, vol. 16, Sept. 1991, pp. 1412-1414.

O. P. Gandhi, B. Q. Gao, and Y. Y. Chen, A frequency-dependent finite-difference time-domain
formulation for general dispersive media, IEEE Trans. Microwave Theory Tech., vol. 41, April
1993, pp. 658-665.

D. M. Sullivan, Frequency-dependent FDTD methods using Z transforms, JEEE Trans. Antenna
Prop., vol. AP-40, Oct. 1992, pp. 1223-1230.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, Englewood Cliffs, NJ:
Prentice Hall, 1991.

D. M. Sullivan, Use of the finite-difference time-domain method in calculating EM absorption in
human tissues, /[EEE Trans. Biomed., vol. BME-34, Feb. 1987, pp. 148-157.

D. M. Sullivan, Three dimensional computer simulation in deep regional hyperthermia using the
finite-difference time-domain method, JEEE Trans. Microwave Theory and Tech., vol. MTT-38,
Feb. 1990, pp. 204-211.

C. C. Johnson and A. W. Guy, Nonionizing electromagnetic wave effects in biological materials
and systems, Proc. [EEE, vol. 60, June 1972, pp. 692-718.

M. A. Stuchly and S. S. Stuchly, Dielectric properties of biological substances—tabulated, J. Mi-
crowave Power, vol. 15, 1980, pp. 19-16.

36 Chapter 2 ® More on One-Dimensional Simulation

/* FD1D 2.l.c. 1D FDTD simulation of a pulse
a dielectric medium */

hitting
/* New formulation using flux density */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{
float dx[KE],ex[KE], hy[KE],ix [KE];
float gal[KE],gb[KE];
int n,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon, sigma;
float tO0,spread,pi,freq in,arg,pulse;
FILE *fp, *fopen();
float ex_low ml,ex_low m2,ex_high ml,ex high m2;

pi = 3.14159;
ke = KE/2; /* Center of the problem space */
ddx = .01; /* Cell size */
dt = ddx/6e8; /* Time steps */
epsz = 8.8e-12;
for (k=0; k < KE; k++) { /* Initialize to free space *
galk]l] = 1.;
gb(k] = 0.;
ex[k] = 0.;
dx[k] = 0.;
hy k]l = 0.;
}
printf ("Dielectric starts at --> ");
scanf ("%$d", &kstart);
printf("Epsilon --> ");
scanf ("%f", &epsilon);
printf ("Conductivity --» ");
scanf ("%f", &sigma);
printf("%d %6.2f %6.2f \n", kstart,epsilon, sigma);
for (k=kstart; k <= KE; k++) {
galk] = 1./(epsilon + sigma*dt/epsz) ;
gblk]l = sigma*dt/epsz ;
}
for (k=1; k <= KE; k++)
{ printf("$2d %4.2f %4.2f\n",k,galk],gblk]l); }

/* These parameters specify the input pulse */

C Programs

t0 = 50.0;
spread = 20.0;
T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf { “nsteps --> ");
scanf ("$d", &nsteps);
printf ("$d \n", nsteps);

for (n=1; n <=nsteps ; n++)

{

T =T+ 1;

/* Calculate the Dx field */
for (k=1; k < KE; k++)
{ dx[k] = dx[k] + 0.5*(hylk-1] - hy(k]) ; }

/* Put a Gaussian pulse at the low end */

freq in = 3e8;
pulse = exp(-.5*{pow({t0-T)/spread,2.0)));
dx [kc] = dx[kc]l + pulse;
printf("$5.1f %6.2f %6.2f\n",T,pulse,dx[kc]);

/* Calculate Ex from Dx */
for (k=0; k < KE-1; k++)
{ ex[k] = galk]l*(dx[k] - ix[k]);
ix[k] = ix[k] + gblkl*ex(k]; }

/* Boundary conditions */
ex [0] = ex_low _m2;

ex_low_m2 ex_low_ml;

ex_low ml = ex[1];
ex[KE-1] = ex_high m2;
ex_high m2 = ex high mil;
ex_high ml = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)
{ hylkl = hyl[kl + .5%(ex[k] - ex[k+1]) ; }

for (k=0; k <« KE; k++)

{ printf("%2d %6.2f %6.2 \n",k,dx[k],ex(kl); }

37

38

Chapter 2 B More on One-Dimensional Simulation

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");

for (k=0; k < KE; k++)

{ fprintf(fp," %6.3f \n",ex[k]); }
fclose (fp) ;

printf("%5.1f \n",T);

C Programs

/* FD1D 2.

include
include
include

2.c. The Fourier Tranform has been added.*/

<math.h>
<stdlib.h>
<stdio.h>

#define KE 200

main ()

{

float
float

int n,

float
float

dx [KE] ,ex [KE] ,hy [KE] ,ix [KE] ;
ga[KE] ,gb[KE] ;
m,k,kc, ke, kstart,nsteps;
ddx,dt,T,epsz,epsilon, sigma;
t0, spread, pi,pulse;

FILE *fp, *fopen();

float
float
float
float
float

kc =
pi =
epsz
ddx =
dt =

ex_low _ml,ex low_m2,ex_high ml,ex high m2;
real_pt [5] [KE], imag_pt [5] [KE];
freq(5],arg([5],ampn[5] [KE], phasen[5] [KE] ;
real_in(5],imag_in(5],amp_in([5],phase_in(5];
mag [KE] ;
KE/2; /* Center of the space */
3.14159;
8.8e-12;
.01; /* Cells size */
ddx/6e8; /* Time steps */

printf (" %6.4f %10.5e \n",ddx,dt);

for (

galk] =
gb k] =
dx [k] =
ex[k] =
hy (k] =
ix[k] =

k=1; k < KE; k++) { /* Initialize to free space */

L]

o 0O O o O B

mag (k] = 0.;

for (m=0; m <= 2; m++) {

real ptim] {k] = 0.; /* Real and imaginary parts
imag ptim] [k] = 0.; /* of the PFourier Transform
ampn [m] [k] = 0.; /* Amplitude and phase of the
phasen [m] [k] = 0.; /* Fourier Transforms
}

for (m=0; m <= 2; m++)
real_in[m] = 0.; /* Fourier Trans. of input pulse */
imag in[m] = 0.;

39

*/
*/
*/
*/

40

Chapter 2 m More on One-Dimensional Simulation

ex_low ml = 0.;
ex_low m2 = 0.;
ex_high mi = 0.;
ex_high m2 = 0.;

/* Parameters for the Fourier Transform */

freg(0] = 100.e6;
freg(l] = 200.e6;
freg(2] = 500.e6;

for (n=0; n<= 2; n++)
{ argln] = 2*pi*freqg[n]*dt;
printf("%2d %6.2f %7.5f \n",n,freqg[n)*le-6,argln]);

}

printf("Dielectric starts at --> ");

scanf ("%d", &kstart);

printf ("Epsilon --> ");

scanf ("%f", &epsilon);

printf ("Conductivity --> ");

scanf ("%f", &sigma);

printf("3d %6.2f %6.2f \n", kstart,epsilon, sigma);

for (k=kstart; k <= KE; k++) {
galk] = 1./(epsilon + sigma*dt/epsz) ;
gb (k] = sigma*dt/epsz ;

for (k=1; k <= KE; k++)

{ printf("%24 %$6.2f %6.4f \n",k,galk]),gblk])); }
/* These parameters specify the input pulse */
td0 = 50.0;

spread = 10.0;

T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {

printf ("nsteps --> ");
scanf ("%d", &nsteps);
printf ("%d \n", nsteps);

for (n=1; n <=nsteps ; n++)

{

T=T + 1;

C Programs

/* Calculate the Dx field */
for (k=0; k < KE; k++)
{ ax[k] = dx(k] + 0.5*(hy[k-1] - hy(k]) ; }

/* Initialize with a pulse */

pulse = exp(-.5* (pow((t0-T)/spread,2.0)));
dx[5] = dxI[5] + pulse;
printf("%5.1f %6.2f %6.2f \n",T,pulse,dx[5]);

/* Calculate Ex from Dx */

for (k=0; k < KE-1; k++)

{ ex[k] = galkl*(dx[k] - ix[k]) ;
ix[k] = ix[k] + gblk]*ex[k] ;

}

/* Calculate the Fourier transform of Ex. */
for (k=0; k < KE; k++)
{ for (m=0; m <= 2; m++)

{ real pt[m] [k] = real ptim] [k] + cos(arg[m]*T)*ex[k]
- gin(arg[m] *T) *ex [k]

imag pt[m] [k] imag pt[m] [k]

/* Fourier Transform of the input pulse */
if (T < 100) {
for (m=0; m <= 2 ; m++)

{ real in[m] = real in[m]

imag in[m] =

imag in([m]

+ cos(arg[m]*T) *ex[10] ;
- sin(arg([m] *T) *ex[10] ;

/* Boundary conditions */

ex [0] =
ex_low m2 =
ex low ml =

ex [KE-1] =
ex_high m2 =
ex_high ml =

ex low_m2;
ex_low_ml;
ex[1];

ex_high_m2;
ex_high _ml;
ex [KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)

{ hylk] = hylk]l + .5%(ex[k] - ex[k+1]

/* End of the main loop */

/* for (k=0; k < KE; k++)
{ printf("s2d $6.2f %6.2

i}

\n",k,dx[k],ex[k]); } */

7

7

41

42

Chapter 2 ® More on One-Dimensional Simulation

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %6.3f \n",ex[k]); }
fclose (fp) ;

/* Calculate the amplitude and phase of each frequency */

/* Amplitude and phase of the input pulse */
for (m=0; m <= 2; m++)

{ amp in[m] = sqrt(pow(imag in[m],2.)
+ pow(real in[m],2.));
phase_in[m] = atan2(imag in[m],real in[m]);

printf("$d Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",
m,real_in[m],imag in[m],amp_in[m], (180.0/pi) *phase _in([m]):;

for (k=1; k < KE; k++)
{ ampn[m] [k] = (1./amp in[m])*sqrt(pow(real pt[m] [k],2.)
+ pow (imag pt(m] [k],2.));
phasen([m] [k] = atan2(imag pt[m] [k],real pt[m] [k])
- phase in[m];

/* for (k=1; k < KE; k++)
{ printf("%d %6.3f %6.3f %6.3f \n",
k,ampn[0] [k]),ampn [1] [k],ampn[2] [k]; } */

/* Write the amplitude field out to a files "Amp" */
fp = fopen("AmpO","w");
for (k=0; k < KE; k++)
{ fprintf(£p," %8.5f \n",ampnl0] [k]1); }
fclose (£fp);
fp = fopen("Ampl"™, "w");
for (k=0; k < KE; k++)
{ fprintf(£p," %8.5f \n",ampn[l] (k]); }
fclose (fp);
fp = fopen("Amp2","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %8.5f \n",ampn([2] [k]); }
fclose (£fp);

printf("%5.1f \n",T);

C Programs
/* FD1D 2.3. 1D FDTD simulation of a frequency dependent material */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 200

main ()
{
float dx[KE],ex[KE], hy[KE], ix[KE], sx [KE] ;
float galKE],gb[KE],gc[KE] ;
int n,m,k,kc,ke,kstart,nsteps;
float ddx,dt,T,epsz,epsilon, sigma;
float tO,spread,pi,pulse;
FILE *fp, *fopen{();
float ex_low ml,ex_low m2,ex_high ml,ex high m2;
float tau,chil,del_exp;
float real pt[5] [KE], imag pt [5] [KE];
float freql[5],argl[5],ampni5] [KE], phasen[5] [KE];
float real in[5],imag_in[5],amp_in[5],phase_in([5];
float mag[KE] ;

kc = KE/2; /* Center of the space */
pi = 3.14159;

epsz = 8.8e-12;

ddx = .01; /* Cells size */

dt = ddx/6ée8; /* Time steps */

printf (" %6.4f %10.5e \n",ddx,dt);

for (k=1; k < KE; k++) { /* Initialize to free space */

galk] = 1.;

gblk]l = 0.;

gclk]l] = 0.;

dx[k] = 0.;

ex[k] = 0.;

hy [kl = 0.;

ix[k] = 0.;

sx[k] = 0.;

for (m=0; m <= 4; m++) {
real ptlm] [kl = 0.; /* Real and imaginary parts */
imag pt[m] [kl = 0.; /* of the Fourier Transform */
ampn [m] [k] = 0.; /* Amplitude and phase of the */
phasen[m] [k] = 0.; /* Fourier Transforms */

for (m=0; m <= 4; m++) {

44

Chapter 2 ® More on One-Dimensional Simulation

real_in[m] = 0.; /* Fourier Trans. of input pulse */
imag _in[m] = 0.;
}
ex low ml = 0.;

li
o

ex low_m2

ex high m1 = 0.;
ex_high_m2

i
o

/* Parameters for the Fourier Transform */

freq[0] = 50.e6;
freq(1l] 200.€6;
freql[2] 500.e6;

for (n=0; n<= 4; n++)
{ argln] = 2*pi*freqln]*dt;
printf("%$2d %6.2f %7.5f \n",n,freqln]l*le-6,arg(n]);

}

printf ("Dielectric starts at --> ");
scanf ("%$d", &kstart);
printf{ "Epsilon --» ");

scanf ("$f", s&epsilon);

printf ("Conductivity --> ");

scanf ("%$f", &sigma);

printf{ "chii --> ");

scanf ("%f", &chil);

tau = 1000.; /* Make sure tau is > 0. */
if(chil > 0.0001) {

printf("tau (in microseconds) --> ");

scanf ("$f", &tau);

del exp = exp(-dt/tau); }

printf("%d %6.2f %6.2f %6.2f %6.2f\n", kstart,epsilon,
sigma, tau,chil) ;

tau = l.e-6*tau;

{ printf("del exp = %8.5f \n",del exp); }

for (k=kstart; k <= KE; k++) {
galk] = 1./ (epsilon + sigma*dt/epsz + chilx*dt/tau) ;
gb[k] = sigma*dt/epsz ;)
gclk]l = chil*dt/tau ;

}

for (k=1; k <= KE; k++)

{ printf(»%2d $6.2f %6.4f %6.4f \n",k,galk],gb(k]l,gclk]);

/* These parameters specify the input pulse */
t0 = 50.0;

}

C Programs
spread = 10.0;

T = 0;
nsteps = 1;

/* Main part of the program */

while (nsteps > 0) {
printf ("nsteps --> "});
scanf ("%d", &nsteps);
printf ("$d \n", nsteps);

for (n=1; n <=nsteps ; n++)

{

T =T + 1;

/* Calculate the Dx field */
for (k=0; k < KE; k++)
{ dx[k] = dx[k] + 0.5%*(hy[k-1] - hy[k]) ; }

/* Initialize with a pulse */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dx[5] = dx[5] + pulse;
printf("$5.1f %6.2f %6.2f \n",T,pulse,dx[5]);

/* Calculate Ex from Dx */

for (k=0; k < KE-1; k++)

{ ex[k] = galkl*(ax(k] - ix[k] - sxI[kl) ;
ix[k] = ix[k] + gblk]*ex[k] ;

sx (k] del_exp*sx[k] + gclkl]*ex[k])

/* Calculate the Fourier transform of Ex. */
for (k=0; k < KE; k++)
{ for (m=0; m <= 2; m++)
{ real pt[m] [k] = real pt(m]l[k] + cos(arg[m]l*T)*ex[k] ;
imag_pt[m] [k] = imag_pt[m] (k] - sin(arg[m]*T)*ex[k] ; }

/* Fourier Transform of the input pulse */
if (T < 100) {
for (m=0; m <= 2 ; m++)
{ real_in[m] = real_in[m] + cos(arg[m]*T)*ex[10] ;
imag_in[m] = imag_in[m] - sin(arg([m]*T)*ex[10] ; }

/* Boundary conditions */
ex[0] = ex low m2;
ex_low m2 = ex_low ml;

46 Chapter 2 ® More on One-Dimensional Simulation

ex_low ml = ex[1];

ex [KE-1] = ex_high m2;
ex high m2 = ex _high mi;
ex_high _ml = ex[KE-2];

/* Calculate the Hy field */
for (k=0; k < KE-1; k++)

{ hylk] = hy[k]l + .5*(ex[k] - ex[k+1]) ; }

/* End of the main loop */

/* for (k=0; k < KE; k++)
{ printf ("%2d %6.2f %6.2 \n",k,dx[k],ex[k]); } */

/* Write the E field out to a file "Ex" */
fp = fopen("Ex","w");
for (k=0; k < KE; k++)
{ fprintf(fp," %6.3f \n",ex[k]); }
fclose (fp) ;

/* Calculate the amplitude and phase of each frequency */

/* Amplitude and phase of the input pulse */
for (m=0; m <= 2; m++)

{ amp_in[m] = sgrt(pow(imag inm],2.)
+ pow(real in[ml,2.));
phase_in[m] = atan2(imag in[m],real_in[m]);
printf("$d Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",

m,real_in[m],imag_in[m],amp_in[m], (180.0/pi) *phase_in[m]) ;

for (k=1; k < KE; k++)
{ ampnIm] [k] = (1./amp_in[m])*sqgrt(pow(real ptlm] [k],2.)
+ pow(imag ptm] [k],2.));
phasen[m] [k] = atan2(imag_pt [m] [k],real pt[m] [k])-phase_in[m];
printf("%$d %8.4f %8.4f %8.5f %8.2f \n",
k,real pt[m] [k],imag pt[m] [k],ampn[m] [k], (180.0/pi) *phasen[m] [k])

; ;

/* for (k=kstart; k < KE; k++)
{ printf("%d %6.3f %6.3f %6.3f \n",
k,ampn[1] [k]),ampn[2] [k] ,ampn[3] [k]; } */

/* Write the amplitude field out to a file "Amp" */
fp = fopen("AmpO", "w");
for (k=1; k < KE; k++)

C Programs

{ fprintf(fp,"
fclose (fp) ;

$8.5f \n",ampn[0] [k]); }

fp = fopen("Ampl","w");
for (k=1; k < KE; k++)

{ fprintf(fp,"
fclose (fp) ;

$8.5f \n",ampnl[1] [k1); }

fp = fopen("Amp2","w");
for (k=1; k < KE; k++)

{ fprintf(fp,"
fclose (fp) ;

printf("%5.1f \n",T);

$8.5f \n",ampn(2] [k]); }

47

Two-Dimensional Simulation

This chapter introduces two-dimensional simulation. It begins with the basic two-dimensional
formulation in FDTD and a simple example using a point source. Then the absorbing boundary
conditions are described, along with their implementation into the FDTD program. Finally,
the generation of electromagnetic plane waves using FDTD is described.

3.1 FDTD IN TWO DIMENSIONS

Once again, we will start with the normalized Maxwell’s equations that we used in Chapter 2:

oD 1
— = VxH (3.1a)
at JEolo

D(w) = ¢! (w) - E(w) (3.1b)
OH 1 5
— = VxE. 3.1¢)
ot NG

When we get to three dimensional-simulation, we will wind up dealing with six different fields:
E. E, E, 6 H,H, and H,. In doing two-dimensional simulation, we choose between one of
two groups of three vectors each: (1) the transverse magnetic (TM) mode, which is composed

of Ez, H,, and H,, or (2) transverse electric (TE) mode, which is composed of E,, Ey, and
H,. We will work w1th the TM mode. Equations (3.1) are now reduced to
oD, 1 0H 0H,
L = — - (3.2a)
ar JEolog \ dx dy
D (0) = & (w) - E(w) (3.2b)
J0H, 1 O8E
=~ z (3.2¢)
at J/Eolto 3y
JdH 1 dE,
— = : (3.2d)
at JEog 0x

As in one-dimensional simulation, it is important that there is a systematic interleaving
of the fields to be calculated. This is illustrated in Fig. 3.1. Putting Egs. (3.2a), (3.2¢), and

49

I

50

j+1

P

Chapter 3 ® Two-Dimensional Simulation

Y
b

|
e~
| | |
Th T T

e

|-

HX [1,\' X A
| | b | " |
L 4 #’y_d _T_Vd_ ?_Y_; —
E. E, E, E,
| £2 | P2 | |
—> —t —> —
H, H, H, H,
[i | H | " |
| — — %-V——‘» T—‘o— ?——o —
E, E, E, E,
| | 72 < M
—l —ly —L» —b
| H, | H, | Hx | H,
| | | |
} 1 | | »
' T | L o Figure 3.1 Interleaving of the E and H fields for
i1 i i+ 1 i+2 X the two-dimensional TM formulation.

(3.2d) into the finite differencing scheme results in the following difference equations [1]:

DGy~ pr1g, 1) | <Hg(i+1/2,j)—H;'(i—1/2,j)
At ,/80#0 Ax
1 (Hx"(i,.i +1/2) —HI, j - 1/2))
JEolo Ax
(3.3a)
HelGj+1/2) -G+ 1) 1 BTG D BTG
At - JEOMQ Ax ’
HIPG+1/2, j) = HIG +1/2,) OETa L) - BTG) (330
- - = . .0C
At JEoko Ax
Using the same type of manipulation as in Chapter 1, including
Ax
At = ——,
2'C0
we get the equations:
dz[i] [§1 = dz[i}[]]
+.5% (hy[1] [§] - hy[i-11[3] - hx[i][3] + hx[i] [§-1]) (3.4a)
z[1]1 (3] = gaz[i] [§1*(dz{i] [§} - 1=z[il[3]); (3.4b)
z[i1 (3] = iz [i] (3] + gbz[il [j]1*ez[i] []]; (3.4¢)
x[1]1 {31 = hx[i] [j] + .5*(ez[i] [§] - ez [i] [j+1]); (3.4d)
yI[il (31 = hy[i]1 [§1 + .5*(ez[i+1][j] - ezI[il [4]): (3.4e)

Note that the relationship between E, and D, is the same as that for the simple lossy dielectric in
the one-dimensional case. Obviously, the same modification can be made to include frequency-
dependent terms.

The program fd2d_3.1.c implements the above equations. It has a simple Gaussian
pulse source that is generated in the middle of the problem space. Figure 3.2 demonstrates a
simulation for the first 50 time steps.

Section 3.2 @ The Perfectly Matched Layer (PML) 51

0.5

1)

0
I
s

R
i
40 60

cm 20 em

0.5

1pstts A
T, SR
OB
OSSR

AP KSN BT
RSN
TSI
ORI

60 40
cm 20 cm cm 2 20

Figure 3.2 Results of a simulation using the program fd2d_3.1.c. A Gaussian pulse is
initiated in the middle and travels outward.

PROBLEM SET 3.1

1. Get the program fd2d_3.1.c running. Duplicate the results of Fig. 3.2. Let it run until it hits
the boundary. What happens?

3.2 THE PERFECTLY MATCHED LAYER (PML)

Up to now, we have only briefly mentioned the issue of absorbing boundary conditions (ABCs).
The size of the area that can be simulated using FDTD is limited by computer resources. For
instance, in the two-dimensional simulation of the previous section, the program contains two-
dimensional matrices for the values of all the fields, dz, ez, hx, and hy, as well as matrices
to hold the parameters gaz, gbz, and iz. Suppose we are simulating a wave generated from
a point source propagating in free space as in Fig. 3.2. As the wave propagates outward, it
will eventually come to the edge of the allowable space, which is dictated by how the matrices
have been dimensioned in the program. If nothing were done to address this, unpredictable
reflections would be generated that would go back inward. There would be no way to determine
which is the real wave and which is the reflected junk. This is the reason that ABCs have been
an issue for as long as FDTD has been used. There have been numerous approaches to this
problem [2, 3].

One of the most flexible and efficient ABCs is the perfectly matched layer (PML) de-
veloped by Berenger [4]. The basic idea is this: if a wave is propagating in medium A and it
impinges upon medium B, the amount of reflection is dictated by the intrinsic impedances of
the two media

F:TIA‘UB

, 3.5)
na + 1B

h—

52

Chapter 3 B Two-Dimensional Simulation

which are determined by the dielectric constants & and permeabilities u of the two media

p= & (3.6)
£
Up to now, we have assumed that # was a constant, so when a propagating pulse went from
e = 1 toe = 4, as in Fig. 2.1, it saw a change in impedance and reflected a portion of the
pulse given by Eq. (3.5). However, if u changed with £ so # remained a constant, I would
be zero and no reflection would occur. This still doesn’t solve our problem, because the pulse
will continue propagating in the new medium. What we really want is a medium that is also
lossy so the pulse will die out before it hits the boundary. This is accomplished by making
both ¢ and u of Eq. (3.6) complex, because the imaginary part represents the part that causes
decay. (See Appendix 1A at the end of Chapter 1.)
Let us go back to Egs. (3.2), but move everything to the Fourier domain. (We are going to
the Fourier domain in time, so d /dt becomes jw. This does not affect the spatial derivatives.)

oH 0H,

JoD; =cq - (Y) (3.7a)

d9x dy

D (w) =¢/(w) - E;(w) (3.7b)

. oE,

jJoH, = —cy 3.7¢)
dy

. JE

jowH, = cozf (3.7d)

Remember that we have eliminated ¢ and 1« from the spatial derivatives in Eqgs. (3.7a), (3.7¢),
and (3.7d) for the normalized units. Instead of putting them back to implement the PML, we
will add fictitious dielectric constants and permeabilities %, 1}, and u%, [S]:

. . . dH, 8H,
joD; - EFZ(X) . EFZ(.V) = Co - o - Ty_ (3.8a)
D, (w) = & (w) - E;(w) (3.8b)
IE
JoH, - e (x) - np (¥) = —co 8; (3.8¢)
. . . IE
JoHy - pe, () - w5, () = co 8xl (3.8d)

A few things are worth noting: first, the value eF is associated with the flux density D,
not the electric field E; second, we have added two values each of ¢ in Egs. (3.8a), and pr in
Eq. (3.8¢) and (3.8d), one for the x direction and one for the y direction; and finally, nothing
was added to Eq. (3.8b). These fictitious values to implement the PML have nothing to do
with the real values of &} (w) which specify the medium.

Sacks, et al. [6] shows that there are two conditions to form a PML:

1. The impedance going from the background medium to the PML must be constant,

Wy
no=1nm=|=*=1 (3.9)
EFx

The impedance is 1 because of our normalized units.

2. In the direction perpendicular to the boundary (the x direction, for instance), the
relative dielectric constant and relative permeability must be the inverse of those in

Section 3.2 @ The Perfectly Matched Layer (PML) 53

the other directions; i.e.,
1

£y = . (3.10a)
F 81:‘),
1
Wry = < (3.10b)
Hpy

We will assume that each of these is a complex quantity of the form

£ = e+ 2% form=xory (3.11a)

JweEp

* OHm
HEp = KFm + = form =xory. (3.11b)

Jwio

The following selection of parameters satisfies Egs. (3.10a) and (3.10b) [7]:
EFm = UFm = 1 (3123)
ODm _ OHm — G_D (312b)
&0 Ko €9

Substituting Eq. (3.12) into (3.11), the value in Eq. (3.9) becomes

,U,Fx +G(x)/Jw80 N

£y 14+ o0((x)/jwey
This fulfills the first requirement above. If ¢ increases gradually as it goes into the PML,
Egs. (3.8a), (3.8¢) and (3.8d) will cause D, and H, to be attenuated.

We will start by implementing a PML only in the X direction. Therefore, we will retain
only the x dependent values of ¢} and p} in Eq. (3.8)

) . oH, 0H,
JoD; - e5. (x) =co - (—a—x— — 3y)
. . oE,

JoH, K () = 07y
oE,

iwH, - u; = ,
JWiy ﬂpy(x) 0 o

and use the values of Eq. (3.12):

0H, 9H,
jol1+ 29N p o (22 (3.13a)
Jweg dox dy
-1
IE
o (1 + ”,D(x)) H, = —cyt (3.13b)
Jweg dy
IE
jo <1+G,D(x)>Hy = ot (3.13¢)
Jweo d9x

Note that the permeability of H, in Eq. (3.13b) is the inverse of that of H, in Eq. (3.13¢) in
keeping with Eq. (3.10b). Therefore, we have fulfilled the second requirement for the PML.
(Eq. (3.10a) is irrelevant for this 2D case, because we only have an E field in the z direction,
which is perpendicular to both x and y, the directions of propagation.)

Now Egs. (3.13) have to be put into the FDTD formulation. First, look at the left side of
Eq. (3.13.a):

<1+0D(x))D — joD, + D(X)DZ.
JwEo £o

S

54

Chapter 3 ® Two-Dimensional Simulation

Moving to the time domain, and then taking the finite difference approximations, we get the
following:

4D op(i) Nlﬂ+”%hj>—lﬁ*”%nj)+opa)D?””a,n—kD?””a,n

D, =
ot &0 At &0 2
oo op(i) - At YN op(i) - At
= DGy — |1+ ————— =D, jy— |1 - |
z ¢ J)Al * 2.8 z g j)AI 2.8
If we put this into Eq. (3.13a) along with the spatial derivatives, we get
n+1/2c0 o ey, D20

D75, j) = gi3() - D3,) (3.14)

+ gi2(i)-0.5- [H;’(i +1/2,) = H} (G —1/2, j) — H}(,j+ 1/2) — H{ (i, j — 1/2)],
where once again we have used the fact that
At Ax/(2-cp) 1
—c) = ———Cp .
Ax Ax 2

The new parameters gi2 and gi3 are given by

o I

8120) = S AR - 20) (3.152)
o 1—op(i)- A)

830 = 1o A TG ey (3.15b)

An almost identical treatment of Eq. (3.13¢) gives

(3.16)
+ fi2(i +1/2)- 0.5 - [EFTV26 + 1. j) — EMVAG,)],
where
o ~ 1
SR+ D =) A2 5) (3.172)
Fi3li+1/2) = L= opUH /D) - A/Q - &) (3.17b)

1+opli +1/2)-At/(2- &)
Notice that these parameters are calculated at i + 1/2 because of the position of H, in the
FDTD grid (Fig. 3.1).

Equation (3.13b) will require a somewhat different treatment than the other two. Start
by rewriting it as

oE, 1 0F,
jCL)HX = —Cp l:—:- + UD(X) ~] .

dy g jo 8y
Remember (1/jw) may be regarded as an integration operator over time and jo as a derivative
over time. The spatial derivative will be written as

dE, E?H/z(i,j +1) - EgH/z(i, J_ curl e

ay Ax Ax
Implementing this into an FDTD formulation gives

H G j 41/ - HEG j+1/2) e |:_curl_e o) i curl_e]

At Ax & Ax

n=0

Note the extra At in front of the summation. This is part of the approximation of the time

Section 3.2 ® The Perfectly Matched Layer (PML) 55

domain integral. Finally we get

n+l, . - _ n,e . Co - Af))
H(, j+1/2y=H!U,j+1/2)+ X curl_e
’ X

At - ¢y op(x) - Af1n+1/2

+1/2
Ax o Hx /)
L. co - At
=H!i, j+1/2)+ curl_e
Ax
At
n op(x) - n+1/2(i+1/2).
26‘0
Eq. (3.13b) is implemented as the following series of equations:
curl_e = [E"“/Z(i, J)— E?“/z(i. Jj+ 1)] (3.18a)
LG 4+ 12 =126+ 1/2) + curle (3.18b)
H' 6, j41/2) = HYG, j+1/2) +0.5-curl_e (3.18¢)
+ il - 1A+ 1/2)
with
) - At
fity = 2980 (3.19)
26‘0

In calculating the f and g parameters, it is not necessary to actually vary conductivities.
Instead, we calculate an auxiliary parameter,

o - At
2. o
that increases as it goes into the PML. The f and g parameters are then calculated:

xn =

. 3
i
= — | = .. 3.
xn(i) = 333 % (length_pml> i=1,2,...,length_pml (3.20)
fil@i) = xn(i) (3.21a)
' 1
20y =| —— 3.21b
8i2(0) <l+xn(i)> (3:21b)
1 —xn()
3@y =(——). 3.
gi33) (l+xn(i)> (3.21¢)

Notice that the quantity in parentheses in Eq. (3.20) ranges between 0 and 1. The factor **.333”
was found empirically to be the largest number that remained stable. Similarly, the cubic
factor in Eq. (3.20) was found empirically to be the most effective variation— fi2 and fi3 are
different only because they are computed at the half intervals, i + 1/2. The parameters vary
in the following manner:

fil(i) fromOto .333 (3.22a)
gi2(i) from 1 to .75 (3.22b)
gi3() from 1 to .5. (3.22¢)

Throughout the main problem space, fi1 is zero, while gi2 and gi3 are 1. Therefore,
there is a “‘seamless” transition from the main part of the program to the PML (Fig. 3.3).

So far, we have shown the implementation of the PML in the x direction. Obviously, it
must also be done in the y direction. Therefore, we have to go back and add the y dependent

I

56

The comers are an
overlap of both sets
of parameters.

Chapter 3 ®m Two-Dimensional Simulation

Decreasing values of
fjl; increasing values of
f2j. f3i. g2j, and g3j.

Decreasing values
of fil; increasing
values of £ 2i, £3i,
22i, and g3i.

X
N\
\ N

//'/l

Figure 3.3 Parameters related to the perfectly matched layer (PML).

terms from Eq. (3.8) that were set aside. So instead of Eq. (3.13) we have

o (14 229) (14222 b — o (5e-5F) o
Jjweg JwEo Jx 8V
(1 N aD(x)) (1 4 a?(y)> H, =co- (_£> (3.23b)
Jweg Jwey dy
-1
jw (1 . (x)) (N O.D(y)> H, = co- (3£) (3.23¢)
Jjweo Jweo ’ dx

Using the same procedure as before, the following replaces Eq. (3.14):
DIV, j) = gi3(i) - j3() - D7)

+gi2(i)~g12(j)-(0.5).[HyGi+1/2.j) = Hy (i = 1/2.)]

—H G, j+1/2)+ HI(, j—1/2)

In the Y direction, H, will require an implementation similar to the one used for H, in
the X direction giving

curl_e = [EZM'2(+ 1, j) — EXTV2(,] (3.24a)
L2+ 1720) = 1, PG+ 12,) + curl_e (3.24b)

H}YN i+ 172,) = fi3G +1/2) - HI G+ 1/2, j)
— fi2G+1/2)- 0.5 - curl_e + fi1(j) - Iyt 4+ 1/2, j). (3.240)

Finally, the H, in the x direction becomes
curl_e = [EMV2, j)y — EMYY2GL j + D]
DG i 12 = 0726+ 172) + curl_e
HI'G, j+1/2) = [j3(+1/2) - H! G, j+1/2)
+ £i2(j +1/2)-0.5 - curl_e
+ 1G-SR G+ 172).

Section 3.2 ® The Perfectly Matched Layer (PML) 57

Now the full set of parameters associated with the PML are the following:

Fil(H&fi1()) from 0 to .333 (3.25a)
Fi260), gi2(0), £j2(j), & gj2(j) from1to.75 (3.25b)
Fi3(i), gi3(), fj3(j), & gj3(j) from1to 5. (3.25¢)

Notice that we could simply “turn off” the PML in the main part of the problem space
by setting fil and fj1 to 0, and the other parameters to 1. They are only one-dimensional
parameters, so they add very little to the memory requirements. However, Iy, and Iy, are 2D
parameters. Whereas memory requirements are not a main issue while we are in 2D, when we
get to three dimensions, we will think twice before introducing two new parameters that are
defined throughout the problem space, but are needed only in a small fraction of the space.

The PML is implemented in the program fd2d_3.2.c. Figure 3.4 illustrates the effec-
tiveness of an 8-point PML with the source offset five cells from center in both the X and
Y directions. Note that the outgoing contours remain concentric. Only when the wave gets
within eight points of the edge, which is inside the PML, does distortion start to occur.

60

- T=100

<m

Figure 3.4 Results of a simulation using the program fd2d_3.2.c. A sinusoidal source is
initiated at a point that is offset five cells from the center of the problems space
in each direction. As the wave reaches the perfectly matched layer (PML),
which is eight cells on every side, it is absorbed. The effectiveness of the PML
is apparent in the bottom figure because the contours would not be concentric
circles if the outgoing wave were partially reflected.

I

Chapter 3 ® Two-Dimensional Simulation

PROBLEM SET 3.2

1. The program fd2d_3.2.c is the same as fd2d_3.1.c, but with the 2D PML added. Add the PML
to your version of fd2d_3.1.c. Offset the point source by setting ic = IE/2 - 5 and jc = JE/2 -
5. Verify the results of Fig. 3.4.

3.3 TOTAL/SCATTERED FIEL.D FORMULATION

The simulation of plane waves is often of interest in computational electromagnetics. Many
problems, such as the calculation of radar cross sections [2, 3], deal with plane waves. Fur-
thermore, after a distance on the order of tens of wavelengths, the field from most antennas
can be approximated as a plane wave.

In order to simulate a plane wave in a 2D FDTD program, the problem space will be
divided up into two regions, the fotal field and the scattered field (Fig. 3.5). There are two
primary reasons for doing this: (1) The propagating plane wave should not interact with the
absorbing boundary conditions; (2) the load on the absorbing boundary conditions should be
minimized. These boundary conditions are not perfect, i.e., a certain portion of the impinging
wave is reflected back into the problem space. By subtracting the incident field, the amount
of the radiating field hitting the boundary is minimized, thereby reducing the amount of error.

One-dimensional
incident array

9 7 %
ABCs 7 7772770 Incident plane
V7 ___'é-waveis
%/ | Total field | subtracted out
7 I here.
7 |
. 1 |
%1 Incident plane
Source Il ja % lJ 4444 L*_x‘// wave is generated
poim—’ 7 7 }j/tw d, 1 here.
ia ib

—_— X

Figure 3.5 Total field/scattered field of the two-dimensional problem space.

Figure 3.5 illustrates how this is accomplished. First note that there is an auxiliary one-
dimensional buffer called the incident array. Because this is a one-dimensional array, it is easy
to generate a plane wave: a source point is chosen and the incident E, field is just added at that
point. Then a plane wave propagates away in both directions. Since it is a one-dimensional
array, the boundary conditions are perfect.

As illustrated in Fig. 3.6, in the two-dimensional field every point in the problem space
is either in the total field or it is not; no point lies on the border. Therefore, if a point is in the
total field but it uses points outside to calculate the spatial derivatives when updating its value,
it must be modified. The same is true of a point lying just outside that uses points inside the
total field. This is the reason for the incident array: it contains the needed values to make these
modifications.

There are three places that must be modified:

1. The D, value at j = ja or j = jb:
D-Gi, j.) = DG, jo) + 0.5 Hy ine(a — 1/2) (3.26a)
D.(, ju) = D, j») — 0.5 - He_inc(ip +1/2) (3.26b)

Section 3.3 m Total/Scattered Field Formulation 59
| Total field
Y
ja+1 -‘-l— [+] TH.\-I] TH,\' o TH«" [}
D, D, D, D,
—> I——b» — —
HX l HX Hx H.r
D, Lo ' P P o
— — — —
Hvx HX H’(H.x
ja-14 °D T H,o0 T H,0 T H, 0
: D, D, D,
— — —_— —
H, H, H,

Scattered field

]]] .
I 1 I T
ja-1 ia ia+1 ia+2 X

Figure 3.6 Every point is in either the total field or the scattered field.

2. The H, field just outside j = ja and j = jb:

Hc(Q, jo —1/2) = Hc(, jo —1/2) + .5 E;_inc(Jo) (3.27a)

He(Q, jp+1/2) = He(G, jo +1/2) = .5 E;_inc(jb) (3.27b)
3. H, justoutsidei =iaandi = ib:

Hy(, —1/2,) = He(la — 1/2,) — .5 Ep_inc(J) (3.28a)

Hy(ip +1/2, j) = H(p + 1/2, j) + .5 Epinc(j) (3.28b)

Figure 3.7 illustrates the propagation of a Gaussian pulse through the problem space.
Notice how the pulse is generated at one end and completely subtracted out the other end.

3.3.1 A Plane Wave Impinging on a Dielectric Cylinder

Now we have the ability to simulate a plane wave. To simulate a plane wave interacting
with an object, we have to specify the object according to its electromagnetic properties, the
dielectric constant and the conductivity. For instance, suppose we are simulating a plane wave
striking a dielectric cylinder 20 cm in diameter which has a dielectric constant specified by the
parameter epsilon and a conductivity specified by the parameter sigma. The cylinder is
specified by the following computer code:

for (j = ja; 3 < db; j++) {

for (i=ia; i < ib; i++) {
xdist = (ic-1i);
ydist = (jc-3j);

dist = sgrt(pow(xdist,2.) + pow{ydist,2.));
if(dist <= radius) ({
galil[j] = 1./(epsilon + (sigma*dt/epsz));
gb[il [j] = sigma*dt/epsz;

by

Of course, this assumed that the problem space was initialized to free space. For every cell,

I

60 Chapter 3 ® Two-Dimensional Simulation

T=115 -

05
o
0
0.5
40 60
c¢m cm

Figure 3.7 Simulation of a plane wave pulse propagating in free space. The incident pulse
is generated at one end and subtracted out the other end.

the distance to the center of the problem space is calculated, and if it is less than the radius,
the dielectric constant and conductivity are reset to epsilon and sigma, respectively. A
diagram of the problem space to simulate a plane wave interacting with a dielectric cylinder
is shown in Fig. 3.8.

. //7

i l—_Center i
I axis
7/

Scattering from
the cylinder

| .- .
Y 7 * :
// | Plane wave source I
L AN 7
7% L
Figure 3.8 Diagram of the simulation of a plane
ia ib wave striking a dielectric cylinder. The fields
scattered from the cylinder are the only fields to
EE—— D leave the total field and strike the PML.

The weaknesses of this approach are obvious: since we determined the properties by
a simple “in or out” approach, we are left with the “staircasing” at the edge of the cylinder.

Section 3.3 ® Total/Scattered Field Formulation 61

Clearly it would be better if we had a way to make a smooth transition from one medium to
another. One method is to divide every FDTD cell up into subcells; then determine the average
dielectric properties according to how many subcells are in one medium and how many are
in the other. The following code implements such a procedure. The ability to model multiple
layers of different material has also been added.

for (j = ja; J < jb; j++) |

for (i=ia; i < ib; i++) |
eps = epsilon(0];
cond = sigmal[0];
for (jj = -1; 33 <= 1; Ji++) {
for (ii = -1; ii <= 1; ii++) {
xdist = (ic-1) + .333*ij;
ydist = (jc-j) + .333*33;

dist = sgrt(pow(xdist,2.) + pow(ydist,2.));
for (n=1; n <= numcyl: n++1) {
if (dist <= radius) {

eps = eps + (1./9)*(epsilon[n] - epsilon[n-1]);
cond = cond + (1./9)*(sigma[n] - sigmaln-1]);
bl
b}
gal[i]l [J] = 1./(eps + (sigma*dt/epsz));

gb{il [§j] = cond*dt/epsz;

bl

Each cell is initialized to the values epsilon (0], sigma [0]. Notice that the inner
loops, which are iterated by the parameters /i and jj, each move the distance 1/3 of a cell
length. Therefore, the cell has been divided up into nine subcells. Also, notice that as a
subcell is determined to be within the radius, its contribution is added to the total epsilon
(epsilon [n]), while subtracting out the previous epsilon (epsilon[n-1]). The above
code is valid for an arbitrary number of layers in the cylinder, specified by numcyl.

The simulation of a plane wave pulse hitting a dielectric cylinder with &, = 30 and
o = .3 is shown in Fig. 3.9. After 25 time steps, the plane wave has started from the side;
after 50 time steps, the pulse is interacting with the cylinder. Some of it passes through the
cylinder, and some of it goes around it. After 100 steps, the main part of the propagating pulse
is being subtracted out the end of the total field.

3.3.2 Fourier Analysis

Suppose we want to determine how the EM energy is deposited within the cylinder for
a plane wave propagating at a specific frequency. Recall that we did something similar to
this in section 2.4 where we were able to determine the attenuation of the energy at several
frequencies by using a pulse for a source and calculating the discrete Fourier transform at the
frequencies of interest. This is exactly what we will do here. The only difference is that we
have a larger number of points because it is a two-dimensional space. Furthermore, we can
use the Fourier transform of the pulse in the one-dimensional incident buffer to calculate the
amplitude and the phase of the incident pulse.

There is a reason why a dielectric cylinder was used as the object: it has an analytical
solution. The fields resulting from a plane wave at a single frequency interacting with a
dielectric cylinder can be calculated through a Bessel function expansion [8]. This gives us

62

Chapter 3 ® Two-Dimensional Simulation

A

|

!l

|

N

o
S
RN

cm

Figure 3.9 Simulation of a planc wave pulse impinging on a dielectric cylinder. The cylin-
der is 20 ¢cm in diameter and has a dielectric constant of 30 and a conductivity
of 0.3 S/m.

an opportunity to check the accuracy of our simulations. Figure 3.10 is a comparison of the
FDTD calculations versus analytic solutions from Bessel function expansions along the center
axis of the cylinder in the propagating direction (see Fig. 3.8) at 50, 300, and 700 MHz. This
was calculated with the program that averaged the values across the boundaries, as described
above. The accuracy is quite good. Remember, we were able to calculate all three frequencies
with one computer run by using the impulse response method.

PROBLEM SET 3.3

1. The program fd2d_3.3.c implements the 2D TM FDTD algorithm with an incident plane wave.
Note that Eq. (3.26) is implemented to give the correct E. field at the total/scattered field bound-
ary and Eq. (3.27) is implemented to give the correct H, field. Why is there no modification
to the H, field?

2. Get the program fd2d_3.3.c running. You should be able to observe the pulse that is generated
at j=ja, propagates through the problem space, and is subtracted out at j=jb.

3. The program fd2d_3.4.c differs from fd2d_3.3.c in that it simulates a plane wave hitting a
dielectric cylinder. It also calculates the frequency response at three frequencies within the
cylinder. Get this running and verify the results in Fig. 3.10.

4. The cylinder generated in fd2d_3.4.c generates the cylinder by the “in-or-out” method. Change
this to the averaged values and add the ability to generate layered cylinders, as described in the
last section of this chapter.

(1

(2]

3]

[4]

151

(6]

[7]

(8]

I

References 63
1 0
50 MHz g —100
= c
> 05 Q
= CWW%W 2 -200 %@Q_@Q&Qﬂ
=™
-300
0
-10 -5 0 5 10 -10 -5 0 5 10
1 0
% —100
Q
= =
‘*QN 0.5 300 MHz 2 200 }
Ly o
= d ﬁ
-300 }
0
-10 -5 0 5 10 -10 -5 0 5 10
1
E
=)
> 05y 700 MHz 2
) 2
=™
W
0
-10 -5 0 5 10

cm cm

Figure 3.10 Comparison of the FDTD results vs. Bessel function expansion results along
the propagation center axis of a cylinder at three frequencies. The cylinder is
20 c¢m in diameter and has a dielectric constant of 30 and a conductivity of
0.3 S/m.

REFERENCES

K. S. Yee, Numiterical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media, IEEE Trans. on Antennas and Propagation, vol. AP-17, 1996, pp. 585-589.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain. Boston: Artech
House, 1995.

K. S. Kunz, and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.
Boca Raton, FL: CRC Press, 1993.

J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput.
Phys., vol. 114, 1994, pp. 185-200.

D. M. Sullivan, A simplified PML for use with the FDTD method, IEEE Microwave and Guided
Wave Letters, vol. 6, Feb. 1996, pp. 97-99.

Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, A perfectly matched anisotropic absorber
for use as an absorbing boundary condition, IEEE Trans. Anten. and Prop., vol. 43, Dec. 1995,
pp. 1460-1463.

D. M. Sullivan, An unsplit step 3-D PML for use with the FDTD method, IEEE Microwave and
Guided Wave Letters, vol. 7, July 1997, pp. 184-186.

R. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.

64

/* fd2d 3.1l.c.
include <math.h>

include <stdlib.h>

include <stdio.h>

#define IE 60
#define JE 60

main ()

{

2D TM program */

Chapter 3 ® Two-Dimensional Simulation

float galIE] [JE],dz[IE] [JE],ez[IE] [JE], hx[IE] [JE], hy[IE] [JE];
int 1,n,1i,j,1ic,jc,nsteps;

float ddx,dt,T,epsz,pi,epsilon, sigma,eaf;
float tO,spread,pulse;
FILE *fp, *fopen();

ic = IE/2;
Jje = JE/2;
ddx = .01;

dt =ddx/é6e8;
epsz = 8.8e-12;
pi=3.14159;

/* Cell size */
/* Time steps */

for (j=0; j < JE; J++) {

printf("%2d
for (i=0; i
dz [1]1 [3]1 =
ez [1i] []]
hx i1 [j]
hyli] [31 =

it

o O O O A

lllj);
IE; i++) {

-7

gali]l [§]= 1.0 ;

printf (

}

"$5.2f ",galil [11);

printf(" \n");

}

t0 = 20.0;
spread = 6.0;
T = 0;

nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf ("%d", &nsteps);

printf ("%$d \n", nsteps);

for (n=1; n <=nsteps ; n++) {

T =T+ 1;

Start of the Main FDTD loop ----

*/

C Programs

/*

/* Calculate the Dz field */
for (j=1; j < IE; j++) |
for (i=1; i < IE; i++) {
dz[i]1 [§] = dz[i] []]
+ .5%(hy[i] [j] - hy[i-1]1([Jj] - hx[i] []]

}

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz [ic] [je]l = pulse;

/* Calculate the Ez field +*/
for (j=1; j < JE; j++) |
for (i=1; i < IE; i++) |
ez [i] [§]1 = galil [§1*d=z (4] (3] ;

}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) |
for (i=0; i < IE-1; i++) {

+ hx[i1] []-1])

hx[i] [3] = hx[i] [§]1 + .5*(ez[i][j] - ez[i][j+1])

}

/* Calculate the Hy field */
for (j=0; j < JE-1; j++) |
for (i=0; i <= IE-1; i++) {
hy (1] (3] = hy[i1 {31 + .5*%(ez[i+1] (3]

}
}

---- End of the main FDTD loop ---- */

for (j=1; j < je; j++) {
printf("$24d ",j);
for (i=1; i < ic; i++) {
printf ("%$5.2f ",ez[2*i] [2*j]);

printf(" \n");
printf { "T = %5.0f \n",T);

/* Write the E field out to a file "Ez" */
fp = fopen("Ez", 6 "w")};
for (j=0; j < JE; j++) {
for (i=0; i < IE; i++) {
fprintf(fp,"%6.3f ",ez[i]l [§1);

- ezlil [31)

I

65

66

fprintf (fp," \n");

}

fclose (fp) ;

I

Chapter 3 ® Two-Dimensional Simulation

C Programs 67

/* Fd2d 3.2.c. 2D TM program with the PML */
include <math.h>

include <stdlib.h>

include <stdio.h>

#define IE 60
#define JE 60

main ()
{
float galIE] [JE],dz[IE] [JE],ez[IE] [JE], hx[IE] [JE], hy[IE] [JE];
int 1,n,i,j,ic,jc,nsteps,npml;
float ddx,dt,T,epsz,pi,epsilon, sigma,eaf;
float xn,xxn,xnum, xd, curl_e;
float tO,spread,pulse;
float gi2 [IE],gi3 [IE];
float gj2I[JE],gj3 [IE];
float fi1[IE],fi2[IE],£fi3[JE];
float £j1[JE],£j2[JE], £33 [JE];
float ihx[IE] [JE],ihy[IE] [JE];
FILE *fp, *fopen() ;

ic = IE/2-5;

je = JE/2-5;

ddx = .01; /* Cell size */
dt =ddx/6e8; /* Time steps */
epsz = B.Be-12;

pi=3.14159;

/* Initialize the arrays */
for (3=0; j < JE; j++) {
printf("%$2d ",3);
for (i=0; i < IE; i++) {
dz[i] [j]1= 0.0
hx[i] [j]1= 0.0 ;
hy[i] [j]= 0.0
ihx[1i] [j]= 0.0 ;
ihy (i1 [{1= 0.0
gal[il [j]1= 1.0 ;
printf("%5.2f ",gali] [§1);
}

printf(" \n");

/* Calculate the PML parameters */

for (i=0;i< IE; i++) {

gi2[i] = 1.0;
gi3[i] = 1.0;
£i1[1i] = 0.0;

S

68 Chapter 3 ® Two-Dimensional Simulation

fi2[i] = 1.0;

£i3[i] = 1.0;

}
for (j=0;j< IE; j++) {
gj2[jl = 1.0;

gj3(jl = 1.0;

£3103]1 = 0.0;

£32(31 = 1.0;

£93(31 = 1.0;

printf ("Number of PML cells --> ");
scanf ("%d", &npml);

for (i=0;i<= npml; i++) {

xnum = npml - i;

xd = npml;

xxn = xnum/xd;

xn = 0.33*pow(xxn,3.0);

printf (" %d %7.4f %7.4f \n",i,xxn,xn);
gi2[i] = 1.0/(1.0+xn);
gi2 [IE-1-1i] 1.0/ (1.0+xn) ;

gi3[i] = (1.0 - xn)/(1.0 + xn);

gi3 [IE-i-1] = (1.0 - xn)/ (1.0 + xn);
xxXn = (xnum-.5)/xd;
xn = 0.25*pow(xxn,3.0};

fi1 (i) = xn;

fil[IE-2-1i] = xn;

fi2[i] = 1.0/ (1.0+xn);

fi2 [IE-2-1] = 1.0/ (1.0+xn);

fi3[i] = (1.0 - xn) /(1.0 + xn);
fi3[IE-2-1i] = (1.0 - xn)/ (1.0 + xn);

}

for (j=0;j<= npml; j++) {
xnum = npml - j;

xd = npml;

xxn = xnum/xd;

xn = 0.33*pow(xxn,3.0);

printf (" %d %7.4f %7.4f \n",i,xxn,xn);
gj21j] = 1.0/(1.0+xn);
gj2 [JE-1-7] 1.0/(1.0+xn);
gj3[j] = (1.0 - xn) /(1.0 + xn);

gj3[JE-j-1]1 = (1.0 -~ xn)/(1.0 + xn);
xxn = (xnum-.5)/xd;
xn = 0.25*pow(xxn,3.0);

f31{j] = xn;

£fj1[JE-2-3] = xn;

£32[3) = 1.0/(1.0+xn);
fj2[JE-2-j] = 1.0/ (1.0+xn);

C Programs
£33 {31 = (1.0 - xn) /(1.0 + xn);

£j3[JE-2-3] = (1.0 - xn)/ (1.0 +

printf("gi + £i \n");
for (i=0; i< IE; 1i++) {

Xn) ;

printf("$2d %5.2f %5.2f \n",

i,9i2fi]l,9i3[i]),

printf(" $5.2f %5.2f %5.
) .

£11 (41, £42(4],£413(i]);

printf("gj + £j \n");
for (3=0; j< JE; j++) {

2f \n ",

printf("$2d %5.2f %5.2f \n",

j,gj2(31,933[31),
printf(" %5.2f %5.2f %5
£311031,£321031,£33131)

7

t0 = 40.0;
spread = 15.0;
T = 0;

nsteps = 1;

while (nsteps > 0)} {
printf("nsteps --> ");
scanf ("%d", &nsteps);
printf ("$d \n", nsteps):;

for (n=1; n <=nsteps ; n++)
T=T4+ 1;

Jx ---- Start of the Main FDTD loop --

/* Calculate the Dz field */
for (j=1; j < IE; j++) {
for (i=1; i < IE; i++) {
dz[i] [§] = gi3[i]l*gj3([jl~*dz
+ gi2[il*gj2[jl1*.5*(hy[i] []]

.2f \n ",

. */

[i1 [3]
- hy(i-1] (3]

- hx(il (4] + hx[il(5-11) ;

/* Sinusoidal Source */

pulse = sin(2*pi*1500*le6*dt*T) ;;
dzlic] [jc] = pulse;

/* Calculate the Ez field */

69

70

/*

Chapter 3 m Two-Dimensional Simulation

for (§=0; j < JE; j++) {
for (i=0; i < IE; i++) {
ez{i] [§] = galil [§1*dz[i] [3] ;

printf ("$3f %6.2f \n ",T,ezlic] [jel);
/* Set the Ez edges to 0, as part of the PML */

for (j=0; j < JE-1; j++) {
ez [0] [§]1 = 0.0;

ez [IE-1] [j] = 0.0;

}

for (i=0; i < IE-1; i++) {
ez [1i] [0] = 0.0;

ez [i] [JE-1] = 0.0;

}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) {
for (i=0; 1 < IE; i++) {
curl e = ez[i] [§] - ez[i] [j+1] ;
ihx[i] [§] = ihx[i] [j] + fil[i]*curl_e ;
hx [1] [3] = £33[31*hx[i] []]
+ fj2[jl*.5*(curl e + ihx[4i] [j]);

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {
for (i=0; 1 < IE-1; i++) {
curl e = ez[i+1][j] - ez[il [j];
ihy (1] [§] = ihy[i] [§] + £31[j]l*curl e ;
hy (1] [j]1 = £i3[i)*hy[i] []]
+ fi2[i]*.5* (curl_e + ihy[i] [J]);

}

---- End of the main FDTD loop ---- */

for (j=1; j < JE; j++) {
printf ("%$24 ",3);
for (i=1; i <= IE; i++) {
printf("$4.1£f",ez2[i] [J]);

printf(" \n");

C Programs

/* Write the E field out to a file "Ez" */
fp = fopen("Ez", "w");
for (j=0; j < JE; j++) {
for (1=0; i < IE; i++) {
fprintf(fp,"%6.3f ",ez[il [{]);

}
fprintf(fp," \n");
}
fclose(fp) ;
printf("T = %6.0f \n ",T);

71

72 Chapter 3 ® Two-Dimensional Simulation
/* Fd2d 3.3.c. 2D TM program with plane wave source */

#define IE 60
#define JE 60

main ()

{

float ez inc[JE],hx inc[JE];

float ez_inc_low ml,ez_inc_low m2;
float ez inc high ml,ez inc_high m2;
int ia,ib,ja,jb;

ic = IE/2;
jo = JE/2;
ia = 7; /* Total/scattered field boundaries */
ib = IE-ia-1;
ja = 7;
jb = JE-ja-1;
ddx = .01; /* Cell size */
dt =ddx/ée8; /* Time step */
epsz = 8.8e-12;
pi=3.14159;
t0 = 20.0;
spread = 8.0;
T = 0;

nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf ("%$d", &nsteps);
printf("%d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T=T+ 1;
VAT Start of the Main FDTD loop ---- */

for (j=1; j< JTE; j++) {
ez _inc[j]l = ez inc[j] + .5*(hx inc[j-1]-hx_inc[jl);

/* ABC for the incident buffer */

ez_inc[0] = ez_inc_low m2;
ez inc low m2 = ez inc low ml;
ez_inc_low ml = ez_inc[l];
ez_inc[JE-1] = ez_inc_high m2;

ez_inc_high m2 ez_inc_high ml;

C Programs 73
ez_inc_high ml = ez_inc[JE-2];

/* Calculate the Dz field */
for (j=1; j < IE; j++) |
for (i=1; i < IE; i++) {
dz [1] (3] = gi3[il*gj3[jl*dz(1] []]
+ gi2 [11*g32([j1*.5*(hy[i] [j] - hyl[i-1]([3]
- hx[1i] (3] + hx([i][]j-11) ;

/* Source */

/* pulse = sin(2*pi*400*1e6*dt*T) ; */
pulse = exp(-.5* (pow((t0-T)/spread,2.0)));
ez inc[3] = pulse;

/* Incident Dz values */

for (i=ia; i<= ib; i++) {
dz[i] [jal = dz[i] [jal + 0.5*hx inc[ja-1];
dz [i] [jb] = dz[il [jb] - 0.5*hx inc[jbl;

/* Calculate the Ez field */
for (4=0; j < JE; J++) {
for (i=0; 1 < IE; 1++) {
ez[1i] [§] = galil [§]1*d=z[i] (]3] :

printf ("$3£.0 %6.2f \n ",T,ez[ic] [jcl);
/* Set the Ez edges to 0, as part of the PML */

for (3=0; j < JE-1; j++) {
ez [0] [J] = 0.0;

ez [IE-1] [j] = 0.0;

}

for (i=0; i < IE-1; i++) {
ez[i] [0] = 0.0;

ez [1i] [JE-1] = 0.0;

}

for (j=0; j< JE; j++) {
hx inc[j] = hx inc[j] + .5*(ez _inc[jl-ez inc[j+l1l]l);

/* Calculate the Hx field */
for (§=0; j < JE-1; j++) |

b—l

74 Chapter 3 ® Two-Dimensional Simulation

for (i=0; i < IE; i++) {
curl e = ez (1] [j] - ez[il [j+1] :
ihx[i] [j] = ihx[i]1[j] + fil[i]*curl_ e ;
hx[1i]1 [3] = £33[j]1*hx[i] [J]

+ £j2[jl1*.5*%(curl_e + ihx[i] [j]1);

!
!
/* Incident Hx values */
for (i=ia; i<= ib; i++) {
hx[i] [ja-1] = hx[i] [ja-1] + .5*ez_inc[jal;
hx[i] [jb] = hx[i] [jb] - .5%*ez_inc[jbl:
}

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {
for (i=0; i < IE-1; i++)} {
curl_e = ez[i+1][j] - ez[ilI[j];
ihy[i]1[j] = ihy[ilj] + £j1[jl*curl_e ;
hy[i1[j] = £i3[i]*hy[i] (]
+ £i2[i]1*.5*% (curl_e + ihyI[i] [§1);

!
!
/* Incident Hy values */
for (j=ja; j<= jb; j++) {
hy([ia-1] [§] = hy(ia-1] [j] - .5*ez_inec(jl;
hy [ib] [F] = hy[ib] [j] + .5%ez inc[jl;
}
}
/* ---- End of the main FDTD loop ---- */

C Programs

/* Fd2d 3.4.c. 2D TM simulation of a plane
wave source impinging on a dielectric cylinder.
Analysis using Fourier Transforms */

include <math.h>

include <stdlib.h>

include <stdio.h>

#tdefine IE 60
#define JE 60
#define NFREQS 3

main ()

{

float real pt[NFREQS] [IE] [JE], imag pt [NFREQS] [IE] [JE];
float real amp[IE] [JE],phase[IE] [JE];

float real in[5],imag in[5],amp_in[5],phase_in[5];

/* Parameters for the Fourier Transforms */

freq[0] = 50.e6;
freq[l] = 300.e6;
freq[2] = 700.e6;

for (n=0; n < NFREQS; n++)
{ argln] = 2*pi*freq[n]*dt;
printf("%d %6.2f %7.5f \n",n,freq[n]*le-6,argl(nl);

}
/* Specify the dielectric cylinder */

printf("Cylinder radius (cells), epsilon, sigma --> ");

scanf ("%f %f %f", &radius, &epsilon, &sigma);

printf("Radius = %5.2f Eps = %6.2f Sigma = %6.2f \n ",
radius, epsilon,sigma);

for (§ = ja; i < ib; j++) {
for (i=ia; i < ib; i++) {
xdist = (ic-1);
ydist = (je-j):
dist = sqrt(pow(xdist,2.) + pow(ydist,2.));
if(dist <= radius) {
galil [§j] = 1./(epsilon + (sigma*dt/epsz));
gbl[il [j] = sigma*dt/epsz;

} o}

printf(" Ga \n");
for (j=ja; j < jb; Jj++) {
for (i=ia; i <= ib; i++) {
printf("%5.2f",gal[i] [§]);

76 Chapter 3 ® Two-Dimensional Simulation

printf(" \n");

printf(" Gb \n");
for (j=ja; 3 < jb; j++) {
for (i=ia; i <= ib; i++) {
printf("%5.2£",gb[i] []1);

}
printf(" \n");
}
t0 = 25.0;
spread = 8.0;
T = 0;

nsteps = 1;

while (nsteps > 0) {
printf("nsteps --> ");
scanf ("%d", &nsteps);
printf ("$d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T =T + 1;

/* ---- Start of the Main FDTD loop ---- */

/* Calculate the incidnet Ez */
for (j=1; j< JE; j++) {
ez_inc[j] = ez_inc[j] + .5*(hx_inc[j-1]-hx_inc[jl);

/* Fourier Transform of the incident field */
for (m=0; m < NFREQS ; m++)
{ real in[m] = real_in[m] + cos(arg[m]*T)*ez_inc[ja-1] ;
imag in[m] = imag in(m] - sin(arg([m]*T)*ez_inc[ja-1] ;

/* Calculate the Dz field */
for (j=1; 3 < IE; j++) {
for (i=1; i < IE; i++) {
dz[1] [j] = gi3[1i]1*gj3([j]l*d=z[i] []]
+ gi2 [i]*gj2[jl1*.5*(hy[i] [J] - hyli-1]I[3]
- hx{i] [§] + hx[il[j-11) ;

/* Source */

C Programs

pulse = exp(-.5%(pow((t0-T)/spread,2.0)));
ez inc{3] = pulse;

printf ("%3.0f %6.2f \n ",T,ez inc([3]);
/* Incident Dz values */

for (i=ia; i<= ib; i++) {
dz [i] [ja] = dz[i]l [Jal + 0.5*hx_inc[ja-1];
dz[i] [jb] = dz[i] [jb]l - 0.5*hx_inc[jb];

}

/* Calculate the Ez field */
for (j=1; j < JE-1; J++) {
for (i=1; 1 < IE-1; 1i++) {
ez[i]1 [J] = galil [§1*(dz{il [j] - 1=z[i]l [3])
iz[1] [§] = iz [il [§] + gblil [j]l*ez[i]l [3] ;

b}

/* Calculate the Fourier transform of Ex. */
for (j=0; j < JE; J++)
{ for (i=0; i < JE; i++)
{ for (m=0; m < NFREQS; m++)
{ real pt[m][i] [j] = real ptlm][i] [§] +
cos(arg[m] *T)*ez [i] [§] ;
imag ptm] [i] [j] = imag ptIm] [i] [j] +
sin(arg[m] *T) *ez [1] [j] ;

} o}

/* Calculate the incident Hx */
for (j=0; j< JE; j++) {
hx_inc[j] = hx_inc[j] + .5*(ez_inc[j]l-ez_inclj+11);

}

/* Calculate the Hx field */
for (j=0; j < JE-1; j++) |
for (i=0; 1 < IE; di++) {
curl_ e = ez [i] [§] - ez[i] [j+1] :
ihx [1] [§] = ihx[i1[3] + fi1[il*curl_e ;
hx[i]l [§] = £33 [j1*hx[i] []j]
+ £j2[j1*.5*%(curl_e + ihx[i] [3]1);

bl

/* Incident Hx values */

for (i=ia; i<= ib; i++) {
hx[i] [ja-1] = hx{i]l [ja-1] + .5*ez_inc(jal;
hx[i] [jb] = hx[i] [jb] - .5%*ez inc[jb];

}

78 Chapter 3 ® Two-Dimensional Simulation

/* Calculate the Hy field */
for (j=0; j <= JE-1; j++) {
for (i=0; i < IE-1; i++) {
curl e = ez[i+1] [j] - ez[i] []1;
ihy {11 [j] = ihy[il [3] + £31[jl*curl e ;
hy (il [31 = £i3[il*hy[i] [j]
+ fi2[i1*.5* (curl e + ihy[i] [j]);

/* Incident Hy values */
for (j=ja; j<= jb; Jj++) {

hylia-1][j] = hylia-1]1[]j] - .5*ez_inc([jl;
hy [ib] [5] = hy{ib] [j] + .5*ez_inc[3];
}
}
/* ---- End of the main FDTD loop ---- */

/* Calculate the Fouier amplitude and phase of the incident pulse */
for (m=0; m < NFREQS; m++)

{ amp in([m] =
{sqrt (pow(real in([m],2.)+pow(imag in[ml,2.));
phase_in[m] = atan2(imag in[m],real in[m]) ;

printf("%d Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",
m,real in[m],imag in[m],amp in[ml, (180.0/pi) *phase_in(m]);

}
/* Calculate the Fouier amplitude and phase of the total field
field */

for (m=0; m < NFREQS; m++)

{
if(m == 0) fp = fopen("ampl","w");
else if(m == 1) f£fp = fopen("amp2","w");
else if(m == 2) £fp = fopen("amp3","w");
{ printf("%2d %7.2f MHz\n",m, freqlm]*1l.e-6);

for (j=ja; j <= db; Jj++)
{ if(galicl[4]l < 1.00)
{ amplicl[i] = (1./amp_inI[ml)
*sgrt(pow(real ptim] [ic]l [j]1,2.) +
pow(imag pt[m] [ic] [§]1,2.));
printf("%2d %9.4f \n",jc-j,amplic] [{]);
fprintf(£p," %9.4f \n",amp(ic] []);

Yoy o

close (fp) ;

}

Three-Dimensional Simulation

At last we have come to three-dimensional simulation. In actuality, three-dimensional FDTD
simulation is very much like two-dimensional simulation—it’s just harder! It’s harder because
of logistical problems: you are using all vector fields and each one is in three dimensions.
Nonetheless, if you pay attention and build your programs carefully, the process is straight-
forward.

4.1 FREE SPACE FORMULATION

The original FDTD paradigm was described by the Yee cell, (Fig. 4.1), named, of course, after
Kane Yee [1]. Note that the £ and H fields are assumed interleaved around a cell whose
origin is at the location i, j, k. Every E field is located 1/2 cell width from the origin in the
direction of its orientation; every H field is offset 1/2 cell in each direction except that of its

orientation.
Not surprisingly, we will start with Maxwell’s equations:

aD 1
— = -VxH (4.1a)
at JEolto

D(w) = ¢*(w) - E(w) (4.1b)
oH 1 ~
— = — VxE. (4.1c)
at Eolto

Once again, we will drop the ~ notation, but it will always be assumed that we are referring
to the normalized values.

79

80 Chapter 4 ® Three-Dimensional Simulation

z
Gjk+1)
A - - 7 = 1
s
P |
s . |
E.
v g * \ / M, |
I H}\’ I
| » . [
| [(G0 g | Gj+ 1k
| Y
| g
|

Figure 4.1 The Yee cell.

Eqs. (4.1a) and (4.1c) produce six scalar equations:

aD, 1 dH- JdH,
= — (4.2a)

ot \/m dy az

aD, 1 oH, oH.

at €00 0z ox

0D 1 dH, IH,
= — — — — (4.2¢)

ot gofo \ OX ay

(
(

OH, _ | <8Ev_f”{_"5f> (4.2d)
(5 %)

at JEo o az y
AH, 1 JE. OE, 42
— = -— - 2e
ot JEGHLG dx 0z
dH. I 9E, OE,
at JEOMY 8y dx

The first step is to take the finite difference approximations. We will use only Eqs. (4.2¢) and
(4.2f) as examples:

D"V ok 1/2) = DMV, jok 4+ 1/2)
At
o (H"(+ 1/2, j k+1/2) = H'(i —1/2. j k+1/2) (4.3a)
Ax - Jfeopo :
SHMGL A2k 2+ H G - 1/2.k 4 1/2)
HY W+ 172, j+ 12,k = H' (i + 172, j + 1/2.k)
At

 Ax- VEolo
— EUMPG 2 Lk 4+ ENTRG 12, k)).

(BTG, 417200 — EVYRGL 4 172,40 (4.3b)

Section 4.1 ® Free Space Formulation 81

From the difference equations, the computer equations can be written:

dx [1] [3] [k] = dx[i] [3] [K]
+ .5*%(hz[i] [j] [k] hz [i] [j-11 [k]
- hy[i] [3] (k] + hy[il(j][k-11) ;
dy[i]1 [31 [kl = dy[i]l [3] [Kk]
+ 5% (hx[i]l [§1 [k] - hx[i] [j] [k-1]
- hz[i1 (31 k]l + hz(i-1]1 (3] (k1) ;
dz[i] [3] [k] = dz[i] (3] [k 1
+ .5*(hy[i] (3] [k] - hyli-1]1(3] (k]
- hx[i] [3]1 [k] + hx[i] [j-11[k]) ;

hx[i] [§]1 k] = hx[i] [j] [k]
+ .5%(ey[i] [J] [k+1] - eyl[i]
- ez[i] [§+1]1 [k] + ezli]
hy[i] [§]1 [k] = hy[i1][3j] [k]
+ .5%(ez [i+1] [§] [k] - ezli]l [j] [k]
- ex[i] [§] [k+1] + ex[i][3]1[k]) ;
hz[1] [§1 [k] = hz[i]l [3] [k]
+ 5% (ex[i] [§+11[k] - ex[ilI[3] [kl
- ey[i+11[j1 (k] + ey[i1([]]1[k]l) ;

[31 (k]
(31 (k1) ;

The relationship between E and D, corresponding to Eq. (4.1b), is exactly the same as
the one-dimensional or two-dimensional cases, except now there will be three equations!

The program fd3d_4.1.c at the end of the chapter is a very basic three-dimensional
FDTD program with a source in the middle of the problem space. This is similar to the two-
dimensional program fd2d_3.1.c, except that the source is not a simple point source. In three
dimensions, the E field attenuates as the square of the distance as it propagates out from the
point source, so we would have trouble just seeing it. Instead, we use a dipole antenna as the
source. A simple dipole antenna is illustrated in Fig. 4.2. It consists of two metal arms. A
dipole antenna functions by having current run through the arms, which results in radiation.
FDTD simulates a dipole in the following way: The metal of the arms is specified by setting
the gaz parameters to zero in the cells corresponding to metal (See Eqs. (2.9) and (2.10)).
This insures that the corresponding E; field at this point remains zero, as it would if that point
were inside metal. The source is specified by setting the E, field in the gap to a certain value.
In fd3d_4.1.c, we specify a Gaussian pulse. (In a real dipole antenna, the E, field in the gap
would be the result of the current running through the metal arms.) Notice that we could have
specified a current in the following manner: Ampere’s circuital law says [2]

‘(fH-dl.—_[,
c

i.e., the current through a surface is equal to the line integral of the H field around the sur-
face. We could specify the current by setting the appropriate H field values around the
gap, as illustrated in Fig. 4.2. 1 think you can see that specifying the E field in the gap is
easier.

Figure 4.3 shows the propagation of the E, from the dipole in the XY plane level with
the gap of the dipole. Of course, there is radiation in the Z direction as well. This illustrates
a major problem in three-dimensional simulation: unless one has unusually good graphics,
visualizing three dimensions can be difficult.

82 Chapter 4 ® Three-Dimensional Simulation

te—— gaz = 0 to specify metal

l H fields resulting from the
current in the dipole
|| -

< LT

14_ The stimulating E_ value is
specified at the gap.

Figure 4.2 A dipole antenna. The FDTD pro-
gram specifies the metal arms of the dipole by I
setting gaz = 0. The source is specified by setting
the E- field to a value at the gap. |

T=40"

““'ﬂ”"é";c.

s

§\\\\‘\\:‘20.¢’0'::,/l/ \
RIS ST
IR
N
SRS
SIS

17

T=60"

T, N 00ty
! R RS S,
/ ", AN N N S b 77
0 e e e SN 0 R &
s BRI 2%
R s, i s
o2 005009 > IR eI 0908, XK
20 LS 20 "';;323"“““3':’.:3"({\\“
Sss 253 et
cm 20 em 20
cm cm

Figure 4.3 F field radiation from a dipole antenna in a three-dimensional FDTD program.

PROBLEM SET 4.1

1. Get the program fd3d_4.1.c running. Duplicate the results of Fig. 4.3. (Remember, there is no

PML yet!)

rmn

Section 4.2 ® The PML in Three Dimensions 83
4.2 THE PML IN THREE DIMENSIONS

The development of the PML for three dimensions closely follows the two-dimensional version.
The only difference is that you deal with three directions instead of two [3]. For instance,
Eq. (3.23a) becomes

—1
jo- (1 + “f(")) (1 + “_(”) (1 4 °—”) D. = ¢y (3”" - 3”-*) (44)
Jjwey jweg Jjweg ax dy

and implementing it will closely follow the two-dimensional development. Start by rewriting

Eq. (4.4) as
0 .(z oH, 0H,
jw- <1+§ (r)> <1+ U‘y(y))DZ :CO<1+ 0:(2)> ‘ (v OH)
Jjweg Jweg Jjwey ox ay
4.5)
() 1
=cy-curl_h+cp- o:(2) —curl_h,
&y Jw
We will define
Ip, = —curl_h,
jw

which is an integration when it goes to the time domain, so Eq. (4.5) becomes

jo- (1 + of‘(x)> (1 + “y(y)> D. =cy- (curl_h S 1D:> .

Jweg Jjweg £

The implementation of this into FDTD parallels that of the two-dimensional PML, except the
right side contains the integration term /p,. Therefore, following the same math we used in
Chapter 3, we get

HIG+1/2, j k+1/2) — H' G — 1/2, j. k +1/2)
curl_h= | —H"Gi, j+1/2,k+1/2) (4.6a)
+H" (i, j = 1/2,k +1/2)

15.G, j o k+1/2) = 157G, jok+1/2) +curl_h (4.6b)
D™, j k+1/2) = gi3G) - gj3(j) - DTV, jok+1/2) (460
.0C

+ gi2(1) - gj2(j)- .5 (curi_h+ gkl(k) - Igz(i, Jok+1/2)).

The one-dimensional g parameters are defined the same as Eq. (3.25).

We also mentioned in the last chapter that this is a “seamless” transition from the main
problem space to the PML, but it suffers from one main drawback: the integral parameter I,
is an additional three-dimensional array that is dimensioned throughout the problem space, but
used only at two edges. The three-dimensional implementation will have a total of six such
arrays, which clearly is a waste of computer resources. For this reason, Ip, will be broken up
into two smaller three-dimensional arrays, one defined at the low values of k (1dz1) and one
defined at the high values of k (idzh).

for(i=1; i< IE,i++) {
for(j=1; j< JE,j++) {
for(k=0; k <ka; k++) {
curl_h = (hy[i][J] (k] - hy(i-1]{3] [k]
- hx[i1 [3]1 [k] + hx[i] [§-11[k]);

idzl[i] [§] [k] = idzl[i] (3] [k]+ curl h;

dz [1] [31 [k] = gi3[il*gj3[jl*dzI[i] [J] [k]

+ giz2[il*gj2[j]l.5*(curl_h + gkl[k]*idz1l[i] [j] [k]);

bl

84 Chapter 4 ® Three-Dimensional Simulation

for(i=1; i< IE,i++) {
for(j=1; j< JE,j++) {
for(k=ka; k <=kb; k++) {
dz[i] [§] [k] = gi3[i]l*gj3[jl*d=zI[i][]] [k]
+ gi2[il*gj2[j].5*curl_h ;

for(i=1; i< IE,i++) {

for(j=1; j< JE,j++) {
for (k=kb+1l; k < KE; k++)
kzh = KE - k - 1;{

curl_h = (hy[i] [§]1[k] - hyl[i-111[3j] [k]
- hx[i] {31 [k] + hx[i] [§-1] [k])

idzh[i] [j] [kzh] = idzh[i] [j] [kzh]l+ curl h
dz (1] (31 (k] = gi3 [i]l*gj3(j1*dz(i] [j] (k]
+ gi2[il*gj2 (3] .5* (curl_h + gkl ([k]*idzh[i] [j] [kzh]);

yoor o)

Figure 4.4 shows the E field emanating from a dipole source in a program using a seven-
point PML. Notice that the part of the field not in the PML radiates concentrically from the
source, as it should.

40

0.02

I

KT
RV

I

0y
KN

W

-0.02

40
40

0.02

-0.02

40

10 20 30 40
cm

Figure 4.4 Radiation from a dipole antenna in an FDTD program with a seven-point PML.
The contour diagrams on the right illustrate the fact that the fields remain
concentric until they reach the PML.,

Section 4.3 m Total/Scattered Field Formulation in Three Dimensions 85

PROBLEM SET 4.2

1. Add the PML to your three-dimensional program. The program fd3d_4.2.c at the end of the
chapter has the PML, but it also has the things described in the next section. You should be
able to pick out those things having to do with the PML. Duplicate the results of Fig. 4.4.

4.3 TOTAL/SCATTERED FIELD FORMULATION IN THREE
DIMENSIONS

Generating plane waves in three dimensions is similar to two dimensions. The three-dimen-
sional problem is illustrated in Fig. 4.5. A plane wave is generated in one plane of the three-
dimensional problem space, in this case an X Z plane, at j = ja and subtracted out at j = jb.
Therefore, in free space with no obstacle in the total field, we should see only E. and H,. The
plane wave is generated at one side and subtracted out the other side by adding to D or H fields
that are on the boundary and subtracting from D or H fields that are next to the boundary.
Therefore, Egs. (3.26) through (3.28) are still used, but they are imposed on an entire plane
instead of just a line as in two dimensions. Another difference in three dimensions is the
additional surfaces at k = ka and k = kb. Figure 4.6 illustrates the & = ka boundary. The
calculation of D, (i, j. ka), which is in the scattered field, requires the values of H,(i. j. ka),
which is in the total field. The difference between the two is the incident component of the H,
field. A similar difference exists at the & = kb boundary, where D, (i. j. kb + 1) is just above
the scattered field. Therefore, besides equations similar to Egs. (3.26), (3.27), and (3.28) the
following are necessary:

Dy(i.j+1/2.ka) = Dy(i. j+ 1/2.ka) — .5 H, 1uc()) (4.72)
Dyl j+1/2.kb+ 1) = Dyl j+ 1/2,kb+ 1) +.5 - Ho juej). (4.7b)
W4

" The plane wave is generated at this wall.

¥ &
SAR
i
L L
i
L

|ia 7

ib _____I

Figure 4.5 Total/scattered field in 3D.

4.3.1 A Plane Wave Impinging on a Dielectric Sphere

Now that we have a program that generates a plane wave in three dimensions, we will
want to start putting objects in the problem space to see how the plane wave interacts with
them. In two dimensions, we chose a cylinder because we had an analytic solution with which

Chapter 4 ® Three-Dimensional Simulation

?H‘ ® Dijka+1) ?H\'

Total field —» H(jka)
k=ka

Scattered field ? H, @ ? H,
D(i,j.ka)
> H.(i,jka~-1)

- b
! © Dyijka-1) '

X Figure 4.6 Total/scattered field boundary at
—_ k = ka.

we could check the accuracy of our calculation via a Bessel function expansion. It turns out
that the interaction of a plane wave with a dielectric sphere can be determined through an
expansion of the modified Bessel functions [4].

Specifying a sphere in three dimensions is very similar to specifying a cylinder in two
dimensions. The major difference is that it must be done for all three electric fields. The
following code specifies the parameters needed for the E field calculation:

for (i=ia; 1 < ib; i++)} {
for (j = ja; j < jb; j++) {
for (k = ka; k < kb; k++) {

xdist = (ic-1);
ydist = (jc-3j);
zdist = (kc-k-.5);
dist

= sgrt (pow(xdist,2.)+pow(ydist,2.) +pow(zdist,2.))
if (dist <= radius) {

gaz[1i]1[§]1 [k] = 1./(epsilon + (sigma*dt/epsz));

gbz [1] [J] [k] = sigma*dt/epsz;

I

Besides the obvious differences, e.g., three loops instead of two, there is another that
should be pointed out; the parameter zdist calculates the distance to the point as if it were
1/2 a cell further in the z direction. That’s because it is! Look at the diagram of the Yee cell
in Fig. 4.1. Each E field is assumed offset from 7, j, k by a half a cell in its own direction.

In Fig. 4.7, we show a comparison between FDTD results and Bessel function expansion
results for a plane wave incident on a dielectric sphere. The sphere had a diameter of 20 cm, a
dielectric constant of 30, and a conductivity of 0.3. The FDTD program is 40 x 40 x 40, and

Section 4.3 m Total/Scattered Field Formulation in Three Dimensions 87

0.1

V/m

0.05
D

50 MHz

Q

200 MHz B

V/m
jo)
s

500 MHz

| 1 1

-5 0 5 10
cm

Figure 4.7 Comparison of FDTD calculation (circles) with Bessel function expansion
calculations (lines) along the main axis of a dielectric sphere, 20 cm in diameter,
with &, = 30 and ¢ = 0.3. The program for the FDTD calculation used the
simple “in or out” strategy to determine the parameters.

uses a seven-point PML. Apparently, the “in and out” method of determining the parameters
like gaz and gbz is not as forgiving as it was in two dimensions!

This method of determining parameters in three dimensions will give the same ‘“stair-
casing” that we faced in two dimensions. We can do an averaging over subcells to improve

efficiency.

We might jump to the conclusion that because this meant averaging subcells in a

plane in two dimensions, we will have to average subcubes in three dimensions. It turns out

that this is

H,and H,

not the case. Figure 4.8 illustrates the calculation of E_, which uses the surrounding
values. Since this calculation is confined to a plane, we may think of the calculation
Medium 2
Medium 1 HG+1/2,j,k+1/2)
—— i - — — 3
/s / /s /
H G+ 12, j,k+1/2) A N .
(i,). k 2
’ IEL(”” +%Hx(i+ 12+ 1 k+172)
—— 7= - - -
/ /s / /s
L — 7 S — 7

HG+1/2,j+1,k+1/2)

Figure 4.8 E. is calculated by the surrounding H, and H, parameters. The paramneters
used to calculate E, are determined by the percentage of subcells that lie in
each medium. In the above example, six subcells are in medium 1 and three
subcells are in medium 2.

88

Chapter 4 B Three-Dimensional Simulation

0.1 T T T

04r 200 MHz n

V/m

-10 -5 0 5 10

0.6 [

500 MHz

= 04
S
0.2
0 i 1 1
~10 -5 0 5 10
cm

Figure 4.9 Comparison of FDTD calculation (circles) with Bessel function expansion
calculations (lines) along the main axis of a dielectric sphere, 20 cm in diameter,
with &, = 30 and ¢ = 0.3. The program used for the FDTD calculation
averaged over nine subcells within each cell to determine the parameters.

of E. as being a two-dimensional problem. Therefore, in determining the parameters gaz and
gbz, we will go by how much of the area of the plane containing H, and H, is in each of the
difterent media. The following code averages the properties over nine subcells:

for (j = ja; 3 < jb; J++) {

for (i=ia; i < ib; i++) {
eps = epsilon(0);
cond = sigma(0) ;
for (33 = -1; 33 <= 1; ++) {
for (ii = -1; 1ii <= 1; ii++) {
xdist = (ic-1i) + .333*1ii;
ydist = (jec-3j) + .333*33;
zdist = (jc-j-.5);
dist =

sqgrt (pow (xdist,2.) +pow(ydist,2.) +pow(zdist,2.);
for (n=1; n <+ numcyl: n++1) {
if (dist <= radius) {

eps = eps + (1./9)*(epsilonin] - epsilon[n-11);
cond = cond + (1./9)*(sigmaln] - sigmaln-11);
Pl
1}
gaz[i] [jJ] = 1./ (eps + (sigmax*dt/epsz));
gbz[1] [j] = cond*dt/epsz;

b

References 89

Figure 4.9 repeats the FDTD/Bessel comparison, but with the averaged parameter values.
Clearly, it results in an improvement.

PROBLEM SET 4.3

1. Add the plane wave propagation to your 3D FDTD program. Make sure that it can propagate
a wave through and subtract it out the other end. (See the program td3d_4.2.c).

2. The program fd3d_4.2.c creates the spheres by “in or out.” Get this program running and
duplicate the results of Fig. 4.7.

3. Use the averaging technique to get a more accurate calculation of the parameters, and duplicate
the results of Fig. 4.9.

REFERENCES

[1] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media, I[EEE Trans. on Antennas and Propagation, vol. AP-17, 1996, pp. 585-589.

[2] D. K. Cheng, Field and Wave Electromagnetics, Menlo Park, CA: Addison-Wesley, 1992.

[3] D. M. Sullivan, A simplified PML for use with the FDTD method, /[EEE Microwave and Guided
Wave Letters, vol. 6, Feb. 1996, pp. 97-99.

[4] R. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.

90 Chapter 4 B Three-Dimensional Simulation

/* FdA3d 4.1.c. 3D FDTD. Dipole in free space.*/
include <math.h>

include <stdlib.h>

include <stdio.h>

#define IE 40
#define JE 40
#define KE 40

main ()

{
float gax[IE] [JE] [KE],gay[IE] [JE] [KE],gaz[IE] [JE] [KE];
float dx[IE] [JE] [KE],dy[IE] [JE] [KE],dz [IE] [JE] [KE];
float ex[IE] [JE] [KE],ey[IE] [JE] [KE], ez [IE] [JE] [KE];
float hx[IE] [JE] [KE],f hy[IE] [JE] [KE],6 hz [IE] [JE] [KE] ;
int 1,n,i,j,k,ic,jc,ke,nsteps, npml;
float ddx,dt,T,epsz,pi,epsilon, sigma,eaf;
float xn,xxn,xnum,xd,curl_e;
float tO,spread,pulse;
FILE *fp, *fopen();

ic = IE/2;

je = JE/2;

ke = KE/2;

ddx = .01; /* Cell sgize */
dt =ddx/6e8; /* Time steps */
epsz = 8.8e-12;

pi=3.14159;

/* Initialize the arrays */
for (k=0; k < KE; k++) {

for (§=0; j < JE; j++) {
for (i=0; i
ex[i] [3] [k]=
ey[i] [§] [k]=
ez [i] (] [k]=
dx [1] [3] [k]=
dy i} {31 kl=
dz [i] (3] [k]=
1=
1=
]
[k

=
1

iv+) |

hx[i] (31 [k
hy [i] (31 [k

o O 0O 0O O O O O O A
o O 0O 0O 0 O O O O

hz (1] [§] (k] =
gax [i] []] [k]=
gay[i] [J] [k]=
gaz [i] [J] [k]=

e

P

/* Specify the dipole */

C Programs

for (k=11; k < 30; k++

t0 =

)
gazlic] [jel [k] = 0.
)

gaz[ic] [jecl [ke] = O.;

20.0;

spread = 6.0;
T = 0;
nsteps = 1;

while (nsteps > 0) ({
printf("nsteps --> ");

/*

scanf ("%d", &nsteps);

printf ("$d \n", nsteps);

for
T

(

I

7

(n=1; n <=nsteps ; n++) {
=T + 1;
Start of the Main FDTD loop ---- */

/* Calculate the Dx field */
for (k=1; k < KE; k++)
for (j=1; j < JE; j++) {

}

for (i=1; i < 1IE;

{

iv+) |

dx[i] [3]1 [k] = dx[i] []] [k]

+ .5*(hz[i] [3] [k]
- hy[i] [3] [k]

bl

- hz[i] [j-1] [Kk]
+ hy[il [§] [k-1])

/* Calculate the Dy field */
for (k=1; k < KE; k++)
for (j=1; j < JE; j++) {

bl

for (i=1; i < IE;

{

iv+) |

dy (1] [J1 [k] = dy[i] []] [k]

+ .5%(hx[i] [j] [k]
- hz[i] [3] [k]

- hx[i] [j] [k-1]
+ hz[i-1113] [k])

/* Calculate the Dz field */
for (k=1; k < KE; k++)
for (j=1; j < JE; j++) {

for (i=1; i < IE;

{

iv+) |

dz [1] (3] [k] = dz[i][j] [k]

.5*(hy[i] [3] [k]
- hx[1] [3] [Kk]

- hy([i-11 (3] [k]
+ hx[i] [j-11 [k])

I

7

I

91

92 Chapter 4 ® Three-Dimensional Simulation
/* Source */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz [ic] [jc] [kec] = pulse;

/* Calculate the E from D field */
for (k=1; k < KE-1; k++) {
for (j=1; j < JE-1; j++) {
for (i=1; i < IE-1; i++) {
ex[i] [3] [k] gax[i] [§] [k]*ax[
[
[

i) (31 [k1;
1] [31 [k];
i] (31 [k1;

ey [i] [3] [k] gay[i] [j] [k]*dy
ez [i] [7] [k] gaz[i] [j] [k]*dz

Py o

/* Calculate the Hx field */
for (k=1; k < KE-1; k++) {
for (j=1; j < JE-1; Jj++)
for (i=1; i < IE; i++) {
hx[i] [§] (k1 = hx[i] [j] [k]
+ .5%(ey[i] [§] [k+1] - eyI[i] [3] [k]
- ez [i] [§+1] [k] + ez[il [3] [k]) ;

Py o)

/* Calculate the Hy field */
for (k=1; k < KE-1; k++) {
for (j=1; j < JE; j++)
for (i=1; i < IE-1; i++) {
hy[i] (3] (k] = hy(i] [3] [Kk]
+ .5%(ez[i+1] [§]1 (k] - ezl[i] [§] [k]
- ex[i] [§] [k+1] + ex[il[4]1 (k1) ;

/* Calculate the Hz field */
for { k=1; k < KE; k++) {
for (j=1; j < JE-1; j++) {
for (i=1; i < IE-1; i++) {
hz [i] [3] [k] = hz[i] [3] [k]
+ .5*%(ex[i] [j+1] [k] - ex[i] [3] [k]
- ey[i+1] (3] (k] + ey[i]l (31 (kD) ;

Py

/* ---- End of the main FDTD loop ---- */

printf("Ez \n");
for (k=1; k < KE; k++) {
printf ("%2d ",k);
for (i=1; i < IE-1; i++) {
printf("%e6.3f",ez[i] [jc] [k]);

}

C Programs

printf(" \n");

/* Write the E field out to a file "Ez"
fp = fopen("Ez","w");
for (j=0; j < JE; J++) {

for (i=0; 1 < IE; i++) {
fprintf (fp,"%7.4f ",ez[i] [j] [kcl);
!

fprintf (fp," \n");

}

fclose (fp) ;

*/

93

94 Chapter 4 ® Three-Dimensional Simulation

/* FA3d _4.2.c. 3D FDTD, plane wave on a dielectric sphere. */
include <math.h>

include <stdlib.h>

include <stdio.h>

#define IE 40
#define JE 40
#define KE 40
#define ia 7
#define ja 7
#define ka 7
#define NFREQS 3

main ()

{
float dx[IE] [JE] [KE],dyI[IE] [JE] [KE],dz [IE] [JE] [KE] ;
float ex[IE] [JE] [KE],ey[IE] [JE] [KE], ez[IE][JE][KE];
float hx[IE] [JE] [KE],hy[IE] [JE] [KE],6 hz[IE] [JE] [KE];
float ix[IE][JE][KE],iy[IE][JE][KE],1 [IE] [JE] [KE] ;
float gax[IE] [JE] [KE],gay[IE] [JE] [KE],gaz[IE] [JE] [KE];
float gbx[IE] [JE] [KE],gby[IE] [JE] [KE],6 gbz [IE] [JE] [KE];
int 1,m,n,1i,j,k,ic,jc,kc,nsteps,n_pml;
float ddx,dt,T,epsz,muz,pi,eaf,npml;
int ib, jb, kb;
float xn,xxn,xnum,xd,curl_e;
float tO,spread,pulse;
FILE *fp, *fopen();
float ez inc[JE], hx_inc [JE];
float ez_low ml,ez_low _m2,ez_high ml,ez_high m2;

float idxl[ial [JE] [KE],idxh[ia] [JE] [KE];
float ihxl[ia] [JE] [KE],ihxh[ia] [JE] [KE] ;
float idylI[IE] [jal] [KE],idyh[IE] [jal] [KE];
float ihylI[IE] [jal] [KE],ihyh[IE] [ja] [KE];
float idzl [IE] [JE] [ka],idzh[IE] [JE] [kal;
float ihzl1 [IE] [JE] [ka],ihzh[IE] [JE] [ka] ;

int ixh, jyh, kzh;

float gil[IE],gi2[IE],gi3 [IE];
float gj1[JE],gj2I[JE],gj3 [JE];
float gkl [KE],gk2[KE],gk3 [KE];
float fill[IE],fi2[IE],fi3[IE];
float £j1[JE],fj2[JE], £33 [JE];
float fk1[KE], fk2[KE], fk3 [KE];

float curl_h,curl 4d;
float radius[10],epsilon[10],sigmall10],eps, cond;

int ii,3jj,kk,numsph;
float dist,xdist,ydist, zdist;

C Programs 95

float freq[NFREQS],arg [NFREQS] ;

float real_pt[NFREQS][IE][JE],imag_pt[NFREQS][IE][JE];
float amp[IE] [JE], phase[IE] [JE];

float real_in[5],imag_in([5],amp_in[5],phase_in[5];

ic = IE/2 ;
jc = JE/2 ;
ke = KE/2 ;

ib = IE - ia - 1;
jb = JE - ja - 1;
kb = KE - ka - 1
pi = 3.14159;
epsz = 8.8e-12;

7

muz = 4*pi*l.e-7;
ddx = .01; /* Cell size */
dt = ddx/6e8; /* Time steps */

/* Initialize the arrays */
for (j=0; J < JE; j++) {

ez_inc[j] = 0.;

hx_inc[j] = 0.;

for (k=0; k < KE; k++) {
for (i=0; 1 < PR T B |
ex[i] [§] [k]l=
ey[i] [3] [k]l=
ez[1i] [3] [k]=
dx[i] [3] [k]=
dy[il [§] [k]=
dz [i] [3] [k]=
hx[1] [3] [k]=
hy (il [3] [k]=
hz[i] [3] [k]=
ix[1]1 [3] [k]=
iy[i] (3] [k]=
iz [1) 3] k1=
gax[i] [§] [kl =
gay[i] [§] [k]=
gaz[i] []] [k]l=
gbx[i] [j] [k]=
gby (il [3]1 [k]l=
gbz [i] [j] [k]l=

Poyod

H
=

O O 0O 0O 0O O O o O o o o

o oo r B
S0 T 0 D 00000 00000 00

for (n=0; i < NFREQS; n++) {
real in[n] = 0.;
imag_inl[n]l = 0.;
for (j=0; j < JE; j++) {
for (i=0; i < IE; i++) {
real pt(n] [i] [j] = 0.;
imag pt(n] (1] []] 0.;

Chapter 4 ® Three-Dimensional Simulation

/* Parameters for the Fourier Transforms */

freq[0] = 10.e6;
freq[l] = 100.e6;
freq[2] = 433.e6;

for (n=0; n < NFREQS; n++)
{arg[n] = 2*pi*freqin]*dt;
printf("%2d %6.2f %7.5f \n",n,freqlnl*l.e-6,arglnl);

}
for (i=0; i < ia; i++) {
for (j=0; j < JE; j++) |
for (k=0; k < KE; k++) {
idx1[i] [§j1[k] = 0.0;
idxh[i] [§1 [k] = 0.0;
ihx1[il [j]1 k] = 0.0;
ihxh[1i] [§) [k] = 0.0;
Yooy
for (i=0; 1 < IE; i++) {
for (3=0; J < Jja; j++) {
for (k=0; k < KE; k++) {
idyl (il [j1[k] = 0.0;
idyh[il [j] [k] = 0.0;
ihyl [i] [j1 (k] = 0.0;
ihyh[i] [j]1 (k] = 0.0;
Yooy o)

for (i=0; i < IE; i++) {
for (j=0; j < JE; j++) {
for (k=0; k < ka; k++) {

idz1[i] [§] [k] = 0.0;
idzh([i] [3]1 [k] = 0.0;
ihz1[i] (31 (k] = 0.0;
ihzh[i] [§]1[k] = 0.0;

by o}

/* Boundary Conditions */

for (i=0
gill[il =
fil1[i] =
giz[i] =
fi2 [i] =
gi3[i] =
fi3{i] =

}

i < IE; i++) |

B BB R oo~

C Programs

for (j=0;
gjllil =
£31[3]1 =
gj2[jl =
£521[31 =
gi3ljl =
£93[3] =

}

for (k=0
gkll(k] =
fki[k] =
gk2 [k] =
fk2[k] =
gk3 [k] =
fk3 [k] =

}

H P R RO O -

R R R R OO~

j < JE; j++) {

k < IE; k++) {

printf("npml --> ");

scanf ("%

&npml) ;

printf ("$f \n", npml);
; n_pml = npml;

for (i=0; i1 < n_pml; i++) {
xxn = (npml-i)/npml;
xn = .33*pow(xxn,3.);
printf("%d xn = %8.4f xn = %8.4f \n",
1,xxn,xn) ;
fil[i] = xn;
fil[IE-i-1] = xn;
gi2[i] = 1./(1.+xn);
gi2 [IE-i-1] = 1./(1.+xn);
gi3[i] = (1.-xn)/(1.+xn);
gi3 [IE-i-1] = (1.-xn)/(1.+xn);
xxn = (npml-i-.5)/npml;
xn = .33*pow(xxn,3.);
gil[i] = xn;
gil[IE-i-2] = xn;
fi2[1i] = 1./(1.+xn);
fi2 [IE-i-2] = 1./(1.4xn);
fi3[i] = (1.-xn)/(1.+xn);
fi3[IE-1-2] = (1.-xn)/(1.+xn);

printf("f \n");

for (i=0;
printf (

1 < IE; i++) {
"$2d %6.4f %6.4f %6.4f %6.4f\n",

i,fi1[i],gi2[i]l,gi3[i]);

printf (

u %6.4f %6.4f %6.4f %6.4f\n",

gillil,£i2[i],£i3[i]);

97

98

for (j=0; j < n_pml; j++)
(npml-j) /npml;
.33*pow(xxn, 3.);
fj1[j] = xn;

fj1[JE-j-1] = xn;

gj2[j] = 1./(1.+xn);

gj2 [JE-j-1] = 1./(1.+xn);

XXn =
Xn

Chapter 4 B Three-Dimensional Simulation

{

gj3[j] = (1.-xn)/(1l.+xn);

gj3 [JE-F-1] = (1.-xn)/(1.+xn);
Xxxn = (npml-j-.5)/npml;

xn = .33*pow(xxn,3.);

93i1l[j] = xn;

gjl[JE-j-2] = xn;

£32[j§] = 1./(1.+xn);

£j2 [JE-j-2] 1./(1.+xn);
£33[3]1 = (1.-xn)/(1.+xn);

i

%$6.4f %6.4f %6.4f %6.4f\n",

$6.4f %6.4f %6.4f %6.4f\n",

£3[JE-j-2] = (1.-xn)/(1.+xn);
}
printf("fj & gj \n");
for (§=0; j < JE; j++) {
printf("%2d
j,£31031.,9321031,93331);
printf("
gjlljl,£321031,£330[31);
}

for (k=0; k < n pml; k++)
xxn = (npml-k)/npml;

{

xn = .33*pow(xxn,3.);

fk1[k] = xn;

fk1[KE-k-1] = xn;

gk2[k] = 1./(1.+xn);

gk2 [KE-k-1] = 1./(1.+xn);
gk3([k] = (1.-xn)/{1.+xn);

gk3 [KE-k-1] = (1.-xn)/(1.+xn);
xxn = (npml-k-.5)/npml;

Xn = .33*pow(xxn,3.);

gkl [k] = xn;

gkl [KE-k-2] = xn;

fk2[k] = 1./(1.+xn);

fk2 [KE-k-2] = 1./(1l.+xn);

fk3[k] = (1.-xn)/(1.+xn);
fk3[KE-k-2] = (1.-xn)/(1l.+xn);
}
printf("fk & gk \n");

for (k=0; k < JE; k++) {

C Programs

/* Specify the dielectric sphere */

/*

printf("
k,fk1[k],gk2[k],gk3[k]);

printf("
gkl ([k], fk2 k], £k3[k]);

epsilon{0]

sigma[0]

printf (

scanf ("%d",

printf (

for

$2d %6.4f %6.4f %6.4f %6.4f\n",

%$6.4f %6.4f %6.4f %$6.4f\n",

1l.;
= 0;

&numsph) ;

"numsph= %d \n ",numsph) ;

"Number spheres --> ");

(n = 1; n <= numsph; n++)
(cells),

printf (

printf ("Radius = %6.2f Eps
radius [n],epsilon([n],sigma[n]);
}
for {(n = 0; n <= numsph; n++)
printf("Radius = %5.2f Eps
radius[n],epsilonin],sigmalin]) ;
}
Calculate gax,gbx */
for (i = ia; i < ib; i++) {
for (3 = ja; 3 < 3b; j++) {
for (k = ka; k < kb; k++) {
eps = epsilon(0];
cond = sigmal0];
ydist = (je-3j);
xdist = (ic-i-.5);
zdist = (ke-k);
dist = sqgrt(pow(xdist,2.)
for (n=1; n<= numsph; n++)
if(dist <= radius[n])
eps = epsilon(n];
cond = sigmaln] ;
}
}
gax[i] [31 (k] =
gbx[1] [j] [k] = cond*dt/epsz;
b
printf(" Gax \n");
for (j=ja; j <= jb; F++) {
printf ("%3d",j);

"Sphere radius

scanf ("3f %f sf",

&radius [n],

{

epsilon,
&epsilon(n],
%6.2f Sigma

%6.2f Sigma

+ pow(ydist,2.)

{

1./(eps + (cond*dt/epsz));

sigma --> ");
&sigma (n]) ;
$6.2f \n ",

= %6.2f \n ",

99

+ pow(zdist,2.));

100 Chapter 4 ® Three-Dimensional Simulation

for (i=ia; 1 <= ib; i++) {
printf("%$5.2f",gax[i] [j] [kecl) ;
} printf(" \n");

} fclose(fp);

/* Calculate gay,gby */
for (i = ia; 1 < ib; i++) |
for (j = ja; j < jb; j++) |
for (k = ka; k < kb; k++) {

eps = epsilon[0];
cond = sigma[0] ;
xdist = (ic-1i);
ydist = (jc-3j-.5);
zdist = (kc-k);
dist = sqgrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
for (n=1; n<= numsph; n++) {
if(dist <= radius[nl) {
eps = epsilon([n] ;
cond = sigma[n] ;
}
}
gay[i] [3] [kl
gby [1] [3] [kl

)

1./(eps + (cond*dt/epsz));
cond*dt /epsz;

printf(" Gay \n");
for (j=ja; j <= jb; Jj++) {
printf ("%3d",3j);
for (i=ia; 1 <= ib; i++) {
printf ("%5.2f",gay[i] [§] [ke]);
} printf("™ \n");
} fclose (fp);

/* Calculate gaz,gbz */
for (i = ia; i < ib; i++) |
for (j = ja; j < jb; j++) {
for (k = ka; k < kb; k++) {

eps = epsilon([0];
cond = sigmal0];

xdist = (ic-1);
ydist = (jc-3);
zdist = (kc-k-.5);

dist = sqrt(pow(xdist,2.) + pow(ydist,2.) + pow(zdist,2.));
for (n=1; n<= numsph; n++) {
if (dist <= radius([n]) {
eps = epsilon[n] ;
cond = sigmaln];
bl
gaz [1] [3] [k]
gbz [1] [F] [k]

1./(eps + (cond*dt/epsz));
cond*dt/epsz;

C Programs 101

1}

printf{ " Gaz \n");
for (j=ja; J <= jb; J++) {
printf{ "%34",3);
for (i=ia; i <= ib; i++) {
printf("%5.2f",gaz (il [§] [kel);
} printf(" \n");
} fclose (fp);

t0 = 40.0;
spread = 10.0;
T = 0;

nsteps = 1;

while (nsteps > 0) {
printf ("nsteps --> "};
scanf ("%d", &nsteps);
printf ("%d \n", nsteps);

for (m=1; n <=nsteps ; n++) {
T =T + 1;

/* ---- Start of the Main FDTD loop ---- */
/* Calculate the incident buffer =*/
for (j=1; j < JE; j++) {

ez _inc[j] = ez_inc([j] + .5*(hx inc[j-1] - hx inc[j]);

}

/* Fourier Tramsform of the incident field */
for (m=0; m < NFREQS ; m++)
{ real inm]

real_inim] + cosf{argim]*T)*ez_inclja-1] ;
imag in[m] = imag in[m] - sin(argim]*T)*ez_incija-1] ;

/* Source */

/* pulse = sin(2%pi*400*le6*dt*T); */
pulse = exp(-.5*%(pow((t0-T)/spread,2.0)));
ez_inc(3] = pulse;

printf ("%4.0f %6.2f \n ",T,pulse);
/* Boundary conditions for the incident bufferx/

ez_inc[0] = ez _low_m2;
ez_low_m2 = ez_low _ml;

ez_low ml = ez_inc[1];

102 Chapter 4 B Three-Dimensional Simulation

ez_inc{JE-1] = ez high m2;
ez_high m2 = ez_high ml;
ez_high ml = ez_inc[JE-2];

/* Calculate the Dx field */

for (i=1; 1 < ia; i++) {
for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {
curl h = (hz[i] [j] [k] - hz[i][j-1] [k]
- hy[il [§1 (k] + hy (il [3] [k-11) ;
idx1(i] [j]1 [k] = idx1[i] [j][k] + curl_h;
dx [i] [§] [k] = g3j3[j]*gk3[k]*dx[i] [j] [k]
+ gj2[jl*gk2[k]*.5*%(curl h + gii[i]*idx1[i] []§] (k]);

I

for (i=ia; i <= ib; i++) {
for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {
curl_h = (hz[i] [§] [k] - hz[i] [§-1] [k]
- hy (1] (3] [k] + hy[i] (3] [k-11) ;
dx [11[3] [k] = gj3[jl*gk3[k]l*dx[i] [J] [k]
+ gj2[jl*gk2[jl*.5*curl h ;

I

for (i=ib+l; i < IE; i++) {
ixh = 1 - ib - 1;
for (j=1; j < JE; j++) {
for (k=1; k < KE; k++) {
curl_h = (hz[i] (3] [k] - hz[i] [j-1] [k]
- hy[i] [3) [k] + hy[i] [J] [k-1]) ;
idxh[ixh] [j] [k] = idxh[ixh] [j] [k] + curl h;
dx [i] [§] [k] = gj3[jl*gk3[k]l*dx[i] [3] [k]
+ gj2[jl*gk2[k]l*.5* (curl_h + gil[i]*idxh[ixh] (] [k]);

Yoo
/* Calculate the Dy field */

for (i=1; i < IE; i++) {
for (j=1; j < ja; J++) {
for (k=1; k < KE; k++) {
curl_h = (hx[i] [§]1[k] - hx[i] [§] [k-1]
- hz[1]1 [§]1 [k] + hz[i-11T[3](k]) ;
idyl[i] [3] [k] = idyl([i][3] (k] + curl_h;
dy [1] [§1 [k] = gi3[i]l*gk3[k]*dy[i] [j] [k]
+ gi2[1)*gk2[k]*.5%(curl h + gj1l[jl*idylI[i] [F] [k]);

bobd

for (i=1; 1 < IE; i++) {
for (j=ja; j <= jb; j++) {

C Programs 103

for (k=1; k < KE; k++) {
curl_h = (hx[i] [J][k] - hx([i][]] [k-1]
- hz[i] [j]1 (k] + hz[i-1][]] k1) ;
dy (1] [§]1 [k] = gi3[i]l*gk3{k]*dy[i] [j] [k]
+ gi2[i]*gk2 [k]*.5*% curl_h ;

borod

for (i=1; i < IE; i++) {
for (j=jb+l; j < JE; j++) {
jyh = j - b - 1;
for (k=1; k < KE; k++) {
curl_h = (hx[i] (j] [k] - hxI[i] [j] [k-1]
- hz[i] [§] [k] + hz[i-1] (3] [k]) ;
idyh[i] [jyh] (k] = idyh[i] [jyh] [k] + curl h;
dy[i] [3] [k] = gi3[i]l*gk3[k]*dy[i] [J] [k]
+ gi2[i]l*gk2[k]*.5*%(curl_h + gjl[jl*idyh(i] [jyh] [k]);

bobod

/* Incident Dy */
for (i=ia; i <= ib; i++) {
for (j=ja; j <= jb-1; j++) {
dy [i] (3] [ka] dy[i] [F] [kal - .5*hx inc(j];
dy[i] [j] [kb+1] dy[i] [§] [kb+1] + .5*hx_inc[j];

/* Calculate the Dz field */

for (i=1; i < IE; i++) {
for (j=1; 3 < JE; j++) {
for (k=0; k < ka; k++) {
curl_h = (hy[i] [j] (k] - hy[i-1][j] [k]
- hx[i] [§] (k] + hx[i] [§-1](k]) ;
idzl [i] [§] [k] = idzl[i][j] [k] + curl h;
dz [1] [j] [k] = gi3[il*gj3(jl+*dz[i] [j] [k]
+ gi2 [il1*gj2([j1*.5*%(curl h + gkl (kl*id=z1([i] (3] (k] };

b o)

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) |
for (k=ka; k <= kb; k++) {
curl_h = (hy[il (31 (k] - hy(i-11 (3] (k]
- hx[i][3] [k] + hx[i] [§-11[k]) ;
dz [i] [j] (k] = gi3[i]l*gj3[ji1*d=z[i] []] [k]
+ gi2[i]*gj2[j]l*.5* curl_h ;

b}

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) |
for (k=kb+l; k < KE; k++) {

104 Chapter 4 ® Three-Dimensional Simulation

kzh = k - kb - 1;
curl_h = (hy[i] [j] [k] - hy[i-1] (3] [k]
- hx[i] [§]1 (k] + hx[i][j-1](k]) ;
idzh[i] [j] [kzh] = idzh[i] [j] [kzh] + curl_h;
dz[i] [§]1 [k] = gi3[i]l*gj3([j]1*dz[i]l []] [kl
+ gi2[i]l*gj2[jl*.5*(curl_h + gkl[k]*idzh[i] [j] [kzh]);

bob o)

/* Incident Dz */
for (i=ia; i <= ib; i++) {
for (k=ka; k <= kb; k++)} {
dz [i] [ja] [k] dz[i] [ja] [k] + .5*hx_inc[ja-1];

dz[i] [§bl (k] = dz[i] [ib] [k] - .S5*hx_inc{jbl;
o}
/* Source */
/* pulse = sin(2*pi*400*1e6*dt*T) ;

for (k=kc-6; k <= kc+6; k++) {
dz[ic] [jel [k] = 0.;
}
pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
dz[ic] [jc] [ke]l = pulse;

printf ("%4.0f %6.2f \n ",T,pulse); */

/* Calculate the E from D field */
/* Remember: part of the PML is E=0 at the edges */
for (i=1; i < IE-1; i++) {
for (j=1; j < JE-1; j++) {
for (k=1; k < KE-1; k++) {
ex[i] [j]1[k] = gax[il [§] [k]*(dx[i]l[§] (k] -~ ix[i]l [§][k]);
ix[i] [§1 (k] = ix[i]1[j][k] + gbx[i] [j] [k]l*ex[i] [j] [k];
ey [i] [§1 [k] = gay[i]l [§]1 [kI*(dy[i]l [§]1 (k] - iy (i1 (31 (kl);
iy (i1 [3]1 (k] = iy [il [j]1 [kl + gbyl[il [j] [k]l*ey[il [3][k];
ez [i]1 [j]1 (k] = gaz (il (3] [k1*(dz[i1 (3] (k] - iz[il [§1(k]);
iz[11 [3]1 (k] = 1z [i]1[j]1[k] + gbz[il [j] [k]*ez[i] [j] [k];

bl

/* Calculate the Fourier transform of Ex. */
for (j=0; j < JE; j++)
{ for (i=0; i < JE; i++)
{ for (m=0; m < NFREQS; m++)
{ real ptim]{i] (i1 = real ptim] [i] [j]
+ cos(arg[m] *T) *ez [1] [§] [kec] ;
imag_pt(m] [i] [j] = imag_ptim] [i] []]
+ sin(arg[m] *T) *ez [i] [j] [kec] ;

Pyl

/* Calculate the incident field */

C Programs 105

for (j=0; j < JE-1; j++) {
hx_inc[j] = hx_inc[j] + .5*(ez_inc([j] - ez _inc[j+1]);

}
/* Calculate the Hx field */

for (i=0; 1 < ia; i++) {
for (j=0; j <« JE-1; j++) {
for (k=0; k < KE-1; k++) {
curl_e = (eyl[i]l [j] [k+1] - eyI[il [j] [k]
- ez [i] [+1] (k] + ez[il (3] (k]) ;
ihx1[i] [§] [k] = ihx1T[i] [j] [k] + curl_e;
hx[i] [J]1[k] = £33 ([j1*fk3[k]*hx([i] []] [k]
+ £§2[J1*fk2[k]*.5%(curl e + fil[il*ihx1[i][§](k]);

I

for (i=ia; i <= ib; i++) {
for (3=0; j < JE-1; J++) {
for (k=0; k < KE-1; k++) {
curl_e = {(ey[i]l[j] [k+1]1 - ey (il [3] [k]
- ez[i] [J+1]1 [k] + ez[i] [j]k]) ;
hx [i]1 [j]1 [k] = £33[3j1*£fk3 [k]l*hx[i] []] [k]
+ £j2[jl*fk2([k]*.5%curl_e ;

b o

for (i=ib+1l; i < IE; i++) {
ixh = 1 - ib-1;
for (j=0; j < JE-1; j++) |
for (k=0; k < KE-1; k++) {
curl_e = (ey[i] [j] [k+1] - ey[i][j] [kl
- ez[i] [j+1] [k] + ez[il [3] (k1)
ihxh[ixh] [j] [k] = ihxh[ixh] [j] [k] + curl_e;
hx (1] [§]1 [k] = £33[j1*£fk3[k]l*hx([i] [F] (k]
+ f£j2[j1*fk2 [kl *.5*%(curl_e + fil[il*ihxh[ixh] [j] [k]);

S

/* Incident Hx */
for { i=ia; i <= ib; i++) {
for (k=ka; k <= kb; k++) {
hx[i] [ja-1] [k] = hx[i] [ja-1] [k] + .S5*ez_inc([jal;
hx [i] [jb] [k] hx[i] [jb] [k] - .5*ez_inc[jbl;

/* Calculate the Hy field */

for (i=0; i < IE-1; i++) {
for (§=0; j < ja; j++) {
for (k=0; k < KE-1; k++) {

106 Chapter 4 ® Three-Dimensional Simulation

curl e = (ez[i+1][j] [k] - ez[i] []] [k]
- ex[i] [J] [k+1] + ex[i] [j][k]) ;
ihyl[i] [j]1 [k] = ihyl[il [j]1[k] + curl_e ;
hy (i1 (3] [k] = £i3[i]*fk3 [k]*hy[i] [j] [k]
+ £i2[11*fk3 [k]*.5*(curl_e + £j1[jl*ihyl[i] [j] [k]);

b}

for (1i=0; i < IE-1; i++)
for (j=ja; j <= jb; J++) {
for (k=0; k < KE-1; k++) {
curl e = (ez[i+1]1[j] [k] - ez[i] []] [k]
- ex[1]1[3]1 [k+1] + ex[il[j1I[k]l) ;
hy (11 [§]1 [k] = £i3[11*£fk3 [k]*hy[i] [§] (k]
+ fi2[i]1*fk3 [k]*.5*curl e ;

b o}

for (i=0; i < IE-1; i++) {
for (j=jb+l; j < JE; j++) {
jyh = j - jb-1;
for (k=0; k < KE-1; k++) {
curl e = (ez[i+1][j][k] - ez[i] []] [k]
- ex[1] [3] [k+1] + ex[i][3] [(k]) ;
ihyh[i] [jyh] [k] = ihyh[i] [jyh] [k] + curl_e ;
hy [i1 [31 [k] = £i3[i]1*£fk3 [k]*hy[i] [§] [k]
+ fi2[i]1*fk3 [k]1*.5*(curl_e + f£j1[jl*ihyh[i] [jyh] [k]);

| I
/* Incident Hy */

for (j=ja; j <= jb; j++) |
for (k=ka; k <= kb; k++) {
hylia-1] []1 [k] = hylia-11[j]1[k] - .5*ez_inc[j];
hy [ib] [§] [k] hy [ib] [§] [k] + .5*ez_inc(j];

b}

/* Calculate the Hz field */

for (i=0; i < IE-1; i++) {
for (j=0; j < JE-1; j++) {
for (k=0; k < ka; k++) {
curl e = (ex[i] [j+1] [k] - ex[i] [j] [k]
- ey [i+1]1 [3] [k] + ey[i]l [3]1 k]);
ihz1[i] (31 (k] = ihz1[i] [j] [k] + curl_e;
hz[1] [3] (k] = £4i3[i1*£33[j]1*hz[1] [j] [k]
+ fi2[i]1*£j2[j1*.5*(curl e + fki1[k]*ihz1[i] [§] (k]);

b o}

for (i=0; 1 < IE-1; i++) {
for (j=0; j < JE-1; j++) {
for (k=ka; k <= kb; k++) {

C Programs

/*

}

curl_e = (ex[i] [j+1] [k] - ex[i] []] [k]
- eyli+1] [j1 [k] + ey[i] (31 (k]);
hz[i] [J]1[k] = £i3[i]*£33[j]*hz[i] []] [k]
+ fi2[i1*£j2[j1*.5*curl_e ;

bl

for (i=0; i < IE-1; i++) {

}

}

for (j=0; j < JE-1; j++) {
for (k=kb+l; k < KE; k++) {
kzh = k - kb - 1;

curl e = (ex[i] [j+1] [k] - ex[i] []] [k]
- eyli+1] [j] (k] + ey[i] (3] [k] };

ihzh[i] [j] [kzh] = ihzh[i] [j] [kzh]

+ curl_e;

hz[i] [j] [k] = £i3[i]1*£33([j]1*hz[i] [j] [k]

+ fi2[i]1*fj2([jl*.5%(curl e + fkl1[k]l*ihzh[i] [j] [kzh]

bl

End of the main FDTD loop ---- */

printf ("JC Plane \n");

printf("Ez \n");

f

}

or (k=0; k < KE; k++) {
printf ("%24 ", k);
for (i=0; i < IE; i++) {
printf("%$6.3f",ez[i] [jel [k]);

printf(" \n");

printf ("KC Plane \n");

printf("Ez \n");

£

or (§=0; j < JE; j++) {
printf("%24 ",j);
for (i=0; i < IE; i++) {
printf("%$6.3f",ez[1i] [§] [kel);

printf(" \n");

/* Write the E field out to a file "Ez" */

fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {

fprintf(fp,"%9.6f ",ez[i] [J] [ke]);

)

107

108 Chapter 4 ® Three-Dimensional Simulation

fprintf (fp," \n");

}

fclose (fp) ;

/* Write the E field out to a file "Ezk" */
fp = fopen("Ezk","w");
for (k=0; k < KE; k++) {
for (i=0; i < IE; i++) {
fprintf(fp,"%7.4f ",ez[i] [jc] [k]);

}

fprintf(fp," \n");
}
fclose (fp);

printf ("T = %4.0f \n",T);

/* Calculate the Fouier amplitude and phase of the incident pulse */
/* for (m=0; m < NFREQS; m++)

{ amp_in [m] = sqrt(pow(real_in[m],2.) + pow(imag_in[m],2.));
phase_in[m] = atan2(imag_in[m],real_in[m]) ;
printf("% Input Pulse : %8.4f %8.4f %8.4f %7.2f\n",
m,real_in[m],imag in[m],amp_in[m], (180.0/pi) *phase_in[m]);
y o/
/* Calculate the Fouier amplitude and phase of the total field field */
/* for (m=0; m < NFREQS; m++)
{
if(m == 0) fp = fopen("ampl","w");
else if(m == 1) £fp = fopen("amp2","w");
else if(m == 2) fp = fopen("amp3","w");

{ printf ("%2d %7.2f MHz\n",m,freq[m]l*1.e-6);
for (j=ja; j <= jb; j++)
{ 4if(gazliecl [§][kc] < 1.00)
{ amplicl [j] = (1./amp_in [m]
*sqrt (pow(real pt[m] [ic] [j1,2.) + pow(imag pt[m] [ic] [j],2.));
printf("%2d %9.4f \n",jc-j,amplic] [§]);
fprintf (fp," %9.4f \n",amp[ic] [j]);

}
}
}
fclose (fp) ;
}or/

Two Applications Using FDTD

So far, the examples have been rather simple exercises to illustrate the use of FDTD—for
instance, the radiation from a dipole antenna or a plane wave illuminating a dielectric sphere.
In this chapter, we will look at two very specific applications: the characterization of a stripline
antenna and the calculation of the far field of an aperture antenna using a time domain trans-
formation.

5.1 SIMULATION OF A MICROSTRIP ANTENNA

In this section we will use an FDTD program to characterize a microstrip antenna [1-4]. In
microwave engineering, devices are often characterized by the scattering parameters, usually
given by §; ;, where i is the input port and j is the output port [1]. Specifically, the parameter
S11 determines the frequency domain at port one when port one is used for both the input and
output. This characterization of a microstrip antenna illustrates the versatility of the FDTD
method. This example differs from earlier examples in the following ways: (1) there are two
different background media; (2) we will use cells which are of different sizes in the three
directions; (3) we have to model metallic surfaces that are not simple wires, and (4) we are not
interested so much in the resulting field distribution as we are in the input parameters of the
antenna itself.

5.1.1 Description of the Problem

Figure 5.1 illustrates the antenna we are going to simulate. Remember, we are more
interested in the internal properties of the antenna rather than in the resulting radiating pattern,
so it will not be necessary to model a large part of the surrounding area. However, since Sy
depends on the geometry of the antenna, it is crucial that we model the metallic patch to its
dimensions as closely as possible. Looking at the dimensions in Fig. 5.1, we might be inclined
to say we need cells of about .05 mm to accurately get these dimensions. Then we could model
the X direction as 12.45 mm, the Y direction as 16 mm, and the thickness of the substrate as
.05 or .1 mm. This has two drawbacks: the accuracy of the thickness of the substrate would be

109

110

Chapter 5 ® Two Applications Using FDTD

y z
12.45 mm i X

16.0 mm

v e =22 :[794 mm Figure 5.1 Line-fed rectangular microstrip an-
- - tenna. V| represents the input port, the point into
2.09 mm I‘_"I which the input voltage is fed and also at which

2.46 mm the output voltage is measured.

unacceptable, and the dimensions of the rectangular patch in FDTD cells would be 249 by 320!
Even though the Z dimension would be small, we would still have a huge three-dimensional
problem.

This is one of those times when it is better to use cells with different sizes in the different
directions. Following the example of Sheen, et al. [1], we choose Ax = 0.389 mm, Ay =
0.4 mm, and Az = .265 mm. Now we have a rectangular patch that is 32 Ax by 40 Ay; the
substrate is 3 Az thick. In choosing the time step, we take the smallest dimension Az to get

Af — Az

2- Co
Now the question is: How do we change the code? We could go back to Egs. (4.3a) and
(4.3b) and instead of getting a simple 0.5 factor in front of the spatial derivatives, we would
get something different for each direction. However, the following will prove simpler. Just
use Az = .265 mm. as the basic cell size for the FDTD algorithm, and then modify any spatial
derivative in the X or Y direction with the following factors:

= .441 picoseconds.

Az 265
rax = —% =22 _ 06812 (5.1a)

Ax .389

Az 265
=28 - 222 6625, 5.1b
Y= Ay T a0 (5-1)

(See the program fd3d_patch.c at the end of the chapter.)
5.1.2 Modeling the Materials

We will assume that we are only dealing with three materials: free space, the dielectric
material of the substrate, and metal. We will assume that the substrate has a relative dielectric
constant of 2.2 and no appreciable loss term. Therefore, the relationship between the flux
density and electric field need only be the simple one

ex[1] [§]1 [k] = gax[i] [§] [k]1*dx[i][3] [k];
and we set

gax[i]1[§1[k] = 1./2.2

at those points corresponding to the substrate. Now what about the metal? Remember we said
that metal could be specified by ensuring that the E fields within those points corresponding
to metal remain as zero? That is what we’ll do. In fact, we can do that simply by setting gax,
gay, or gaz equal to zero at those points. In choosing which values to set as metal, we must
be cognizant of the relative positions of the fields in the Yee cell (Fig. 4.1). Suppose we are
viewing the FDTD lattice under the antenna, looking in the X direction. This is illustrated in

Sec

Fig
the
and
int
as |
at
ant

Section 5.1 ® Simulation of a Microstrip Antenna 111

e e — _—]|
| e G U SR W 1
I k=2 T Ez T T I
| I
L " =" _—* —* _
r——T—— i —— = ——
|, T E T r T Substrate I
| < |
- = " " T - _ 4
Figure 5.2 Positions of the E fields relative to I— ________ T _______ 1
the materials being modeled. Notice that the E | k=0 [E £ £ £ [
and E, fields at k = 0 are metal because they are 2 | y E, ¥ ¥ |
in the ground plane, but E, at k¥ = 0 is modeled — : ’ Gr dl] | I
as part of the substrate. Similarly, £; and E, - e __ & Qund plane __
at k = 3 are metal because they are part of the
antenna, but E; at k = 3 is in air. Yy

Fig. 5.2. From Fig. 5.1, we see that the entire configuration lays on a ground plane, so we will
specify all E, and E, values for k = 0 to remain at zero. (Only the E, values are shown in
Fig. 5.2.) However, since the E, value at k = 0 lies 1/2 cell above the k = O plane, it will be

in the substrate. Similarly, in specifying the metal of the antenna, E, and E, are set to zero
for the k = 3 level, but E, at k = 0 is in free space.

5.1.3 Source

So far, we have used either a point source or a plane wave as input to our simulations.
Now we will be doing something in between. The input to the antenna is that small strip
leading to the larger rectangle. The source will be initialized by a uniform E field between the
antenna surface and the ground plane at the point V; in Fig. 5.1.

We can’t just enter a hard source, because the main information is the reflection coming
back the opposite way. A hard source would look like a metal barrier. Actually, one of the best
ways is just to use the plane wave source that we’ve been using, but limit the active region to
that little bit under the input strip. So we eliminate everything having to do with the generation
of the plane wave, except at j = ja. There we have to modify the input:

ex[i] [jal [k] = ez[i] [ja] [k]

+.5*shape[i] [(k]* hx_inc{jal.
hx[i] [ja-1] [k] = hx[i] [Ja-1] [k]

+ .5*gshape[i] [k] *ez_inc[jal

The function shape [1] [k] has the value of one for that portion directly under the stripline
and zero everywhere else.

5.1.4 Boundary Conditions

‘We have been using the PML for our absorbing boundary condition, but that was always
for homogenous media. The question is, what modifications are necessary when half the
medium is the dielectric substrate, and half is free space. The answer is: none! If you didn’t
love the PML before, you should now. Most other boundary conditions require substantial
modifications when there is a transition from one medium to another. The PML does not.

112

Chapter 5 ®m Two Applications Using FDTD

There is only one thing we have to do differently. As Fig. 5.1 shows, the whole structure that
we are modeling rests on a conducting medium. We will also use this as the k = 0 border of
our problem space. Therefore, no PML is needed on this face.

There is one other change having to do with the one-dimensional incident simulation.
Because the pulse is generated in the substrate medium, the incident simulation should also be
in the substrate medium, which is accomplished with the following minor change:

ez_inc[j] = gj3[jl*ez_inclj]

+

gj2[jl*(.5/eps_sub)*(hx _inc[j-1] - hx_inc[j])
hx_inc(j] = £33 ([jl*hx_inc(j]
+ £§2[31*.5*(ez _inc[j] - ez inclj+1])

Notice that in calculating ez_inc, it was necessary to include the term eps_sub. Further-
more, we could no longer use the simple free space boundary condition for the incident buffer.
Instead we have implemented a PML using the same PML parameters as the main problem
space.

5.1.5 Calculating the S,

The output of this new program is different from previous programs in the following
ways: (1) the information of interest is at a single point (V in Fig. 5.1) as opposed to calculating
the resulting fields throughout an entire area; (2) the frequency response is calculated over an
entire range of frequencies, as opposed to getting the response at a few discrete frequencies; and
(3) we will store the time domain data during the simulation, and then calculate the frequency
response after the simulation is over. This third difference is possible because we need only
the time domain data at one point V;. As we mentioned earlier, it is usually the voltage that is
of interest in calculating S;. Therefore, to calculate V|, we would need E, at the three points
in the k direction between the ground plate and the lead of the conductor. In practice, any one
of the E, values is adequate because magnitude divides out.

Figure 5.3 shows the time domain data from a simulation. The first 350 points are taken
as the input. This is the dashed line in Fig. 5.3. The rest of the data is the reflection coming
out of the conductor, which appears as the solid line. We take this as the output. Figure 5.4
shows the absolute values of the Fourier transforms of the input and output. To get the transfer
function of the reflected waveform, we divide the output by the input. In actuality, engineers

Reflected waveform

0 500 1000 1500 2000 2500 3000

Time steps

Figure 5.3 Time domain E, field at the input point V p. The dashed line is the input pulse
and the solid line is the reflected waveform.

Se

Section 5.2 ® Calculation of the Far Field of an Aperture Antenna 113

l 20 T T T T T T T T T
100 - » 1

o2}
<

Fourier amplitudes
I3
<)

40 -
20
0 1 ! 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
GHz

Figure 5.4 Amplitudes of the Fourier transforms of the input pulse (dashed line) and the
reflected waveform (solid line}.

$,,(dB)

—20)1 =20 «log(E (fVEW(F)) .

GHz

Figure 5.5 The input impedance (S|, paramelter) in decibels.

usually prefer this to appear in the form of decibels, which is computed by

E()Ltl (‘f‘)
Ein(f)
This is plotted in Fig. 5.5, which compares favorably with the experimental results that Sheen
et al. [1] used to verify their simulation results.

The simulation of ¢ircuits using FDTD has become an active research field [2-4].

S11(fap =20 -log, (5.2)

PROBLEM SET 5.1

1. The program td3d_patch.c at the end of this section was used to do the simulations. Get this
program running and verify the results. This program is provided in its entirety. However,
don’t type it in from scratch. Take the program fd3d_4.3.c and make the appropriate changes
the way it is described in the text.

5.2 CALCULATION OF THE FAR FIELD OF AN APERTURE
ANTENNA

In this example, we will look at the calculation of the far field pattern from a slot antenna like
the one shown in Fig. 5.6. There is a source to the left of the aperture, which we can assume
is a plane wave. We are interested in the radiation pattern that comes out from the slot. The
calculation of the impinging wave on the slot is not a problem. We know how to simulate a
plane wave, and we know how to simulate metal by specifying some cells as having very high
conductivities, or in some other way ensuring that the E fields at that point are zero. However,

114 Chapter 5 ® Two Applications Using FDTD

_ Efxy)
-~
Plane -
wave R .~
E ~
H z

Metal
plate

Figure 5.6 The electric field in the aperture E(x’, ¥') can be used to calculate the far field
E,(x,y,z). The aperture is an opening in a metal plate that lies in the xy plane.

we also want to know the radiation pattern many wavelengths away from the slot. This would
requiring modeling a prohibitively large problem space for simulation with FDTD. In cases
like this, one usually uses the equivalence principle [5] to calculate the far fields after FDTD
has calculated the near fields [6-10]. The necessary computation can often be considerable.

In this section we present a method that calculates the far field at a few specific points
as the FDTD simulation is running. We can do this because we know that the source of the
far field is confined to a limited number of points in the slot. We will also use the equivalence
principle, which says we can treat the slot of the antenna as a group of radiating currents,
similar to an antenna. Therefore, we will only have to model the area immediately in front of
and in back of the slot. This is illustrated in Fig. 5.7. The first thing we have to do is develop
the formulation for the calculation of the external fields based on the field within the slot.

Point
source

BC
A@ *

Incident array

— Aperture

’ / Figure 5.7 Diagram of the FDTD program used
Plane wave to calculate the data needed to determine the ex-
source ternal points.

Sec

Section 5.2 ® Calculation of the Far Field of an Aperture Antenna 115

This section illustrates several important characteristics of time domain simulation. Per-
haps the most important is the following: while computer simulation makes possible the
calculation of many problems which can’t be handled analytically, it does not replace electro-
magnetic theory. Specifically, we will use the well-known Green’s function approach to calcu-
late the far field. This section will further demonstrate how a complicated frequency domain
expression can be converted into the sampled time domain for implementation into FDTD.

5.2.1 Formulating the Transformation from the Aperture

We begin with the vector potentlal [11,12]

Alr) = — //L(r)

Js = the current source,

dS’, (5.3)

where

o JkR

= the Green’s function,

and the magnitude of R is

R = [(x _x/)z +(y— y/)z +22]1/2.
The primed parameters indicate the source while the unprimed parameters are the scattered
field (See Fig. 5.6). The H field can be obtained by

H=V,xA. 5.4)
Putting these together gives
1 —jkR
H=—V, ds’
aw / L) R
55
1 e kR e
=— |V, ! ds'.
4 X [Js) =% }
s
The integrand can be simplified by the following:
e JkRT oJkR o—JkR
v, x [J(r) = V. x J(r'y=J(r) x V,
R R
o JkR
=—J(r)xV
The V, x J(r') term can be dropped because J(r') is only a function of r’. Also,
o JKR e~ kR
V, =-V,
R R
and
V’e—ij o~ JkR - 1\ .
= —)r
R R U"TR
where
. . . . R
r=ryx+r y+rzZ=E- (5.6)

We now have

1 1) e/*R
— R ik+—) ——ds’.
v / T x (']k+R> ® S

N

116

Chapter 5 ® Two Applications Using FDTD Sectio

Using the principle of duality [5] we can deduce the following equation:

1 e 1Y e 4k
Ezzj?//(M(r)xr)(jk-{-E) —as’. (5.7)
N

Now we have an expression for the external E field in terms of the magnetic current M in the
aperture. The magnetic current is a fictitious current that is calculated from the E fields in the
aperture [5]. We know that the fields in the aperture result from an x-polarized plane wave,
and the direction normal to the aperture is the z direction, so we can write

M=2E, xn

. . (5.8)
=2E,x xz==-2E;y.
Hence,
1 1) e /4R
E=— 2E, 0Ny x| jk+ = ds’.
- / ((r)yxr)<.1 +R> R
aper.
From Eq. (5.6)
¥ xF=(rz—rk),
so we can write the E field in terms of the two polarizations:
1 1) e /¥R
E,=— -Eq | jk+ = das’ 59
- /] re (] + R) R (5.9a)

aper.

: // E, (ks ey (5.9b)
- re - Eq, — . .
o T*TR) TR

aper.

E;

r, and r, represent the portions of the unit vector 7 in the x and z directions, respectively.
From here on, we will restrict our development to the E, term, which is the dominant

term as long as the incoming plane wave in Fig. 5.6 is x polarized. Just be aware that we could

always come back and duplicate the following results for E,. We begin by separating E, into

two terms
| R eikR
E, = — E,- jk ds' + — L ES _ay. 5.10
2n//rz IFTR +271,[/r tT R (5.10)

aper. aper.

Starting with the first term, we will rewrite it as an explicit frequency domain function of x,
v, and z:

~ 1 E.x. Y, ® . ,
Ea(x,y,z,0) = Y // re - By o))jke_Jdex dy’.
s

R
aper.
The following changes will be helpful:
jk = ﬂ e~ IkR _ p=joR/cy.
co
So now we have
. 1 Ea "y, —joR/co
By, z,0) = —— // r, - joteE Y0 dx' dy'. 5.11)
ZJTCO R
aper.

The first step to implementing an equation like (5.11) into the FDTD formulation is to take it
to the time domain:
1 d E.(x',y,t = R/co)
Eu(x,y,z,0) = P dx'dy'. 5.12
1(x, ¥, 2, 1) ch()//rzdt R x dy (5.12)

aper.

Section 5.2 ® Calculation of the Far Field of an Aperture Antenna 117

The exponential term in the frequency domain resulted in a retardation in the time domain; the
Jj@ term became a time domain differentiation. In FDTD, the time is quantized as
t=n-At
and the distance R is quantized as
R = Ax - Ray
where Ax is the cell size used in the FDTD simulation. (We use cubic cells, i.e., Ax = Ay =
Az.) We will use the usual relationship between the time step and the cell size:
ar= 2%
- 2. Co)
Therefore, the retardation in E, in Eq. (5.12) is approximated by
R Ra,-Ax Ra,-(At-2¢
. Ax _ Ax (0) =2'RAX'At. (513)
Co Co Co
We will further use the spatial quantization

XZEi-Ax,y=j-Ax, andz =k - Ax
to give
Ei(x',y',t = R/c)) Z E,(i’,j',n—2 Rax). (5.14)
The first-order approximation for the time derivative in Eq. (5.12) is
d E,(i',j',n—2-Ray) —Eq(i',j',n—1-2-R
—Ea(x/, y/,t—R/CO) ; (l .] hn A) (l .] n Ax).

dt At
For convenience, we will define the parameter

del_EN(i,j,n—2-Ray) = E,(',j,n—2-Ray) —E,(i',j',n—1-2-Ra).

(5.15)
The finite difference approximation of Eq. (5.12) is
) 1 del_E;(i',j',n—2-Rax) ,
E% (i, j, k) = < A
xl(l J. k) ZNCOiZ;rz Rar Ax - At X
oo (5.16)
1 del_E"(i’,j',n—2-Ra,
L) e LR AL DN
2mey i Ry - Ax - (Ax/2 - cp)
By dividing out extra terms, we obtain the expression
N | del_EZ(i’, j',n—2-Ray)
E} G jok) = — ZZQ % . (5.17)
v

We will now go back and transform the second term of Eq. (5.10) into the time domain

1 Ea(xvyvt_R/CO)
En(x,y,z,1) = . // r, e dx'dy’.

aper.
Following the same quantization procedures, we obtain the following expression:

n . ~ 1 E:;(i/!j,’n_z'RAx)
Ex2(l’]5k)=z_’;;;rz Rix . (518)

Finally, we write the two components of E, together:

o 1 r ; E}(i, j'n =2 Ray)
E'(,j, k)= — t_ldel_E"(i, j’n —2- Rax 4
2L J, k) ”,ZIZ [e_ "G jhn Ax) +

2 Rax

Rol :| (5.19)

Obviously, we would obtain identical expressions for the calculation of E, in Eq. (5.9b),
except with an r, term instead of an r, term.

118

Chapter 5 ® Two Applications Using FDTD

There is a point worth emphasizing: Eq. (5.19) was developed using no assumptions
other than Eq. (5.8), which assumes that the magnetic current is exclusively y polarized because
the incoming plane wave was z polarized. These equations are not far field approximations,
nor are they restricted to the area perpendicular to the aperture.

5.2.2 Verification of the Accuracy of the Transformation

The accuracy of this method is verified by using an FDTD program that calculates the £
field at three external points via Eq. (5.19) and compares these to the FDTD computed values.
This is illustrated in Fig. 5.8. The FDTD program is 140 x 100 x 100 cells and occupies twelve
megawords of core memory on a Cray T90 supercomputer. It is bordered by a 15 cell PML.
Each cell is a 1 cm cube. The slot antenna is a rectangular aperture that is 10 cm in the X
direction and 5 cm in the Y direction in Fig. 5.6. The plane wave pulse is a Gaussian pulse 0.25
nanoseconds wide. A simulation is illustrated in Fig. 5.9 showing the incoming plane wave
interacting with the aperture. The comparison results are shown in Fig. 5.10. The first plot,
labeled Source, is the Gaussian pulse of the incoming plane wave. The second plot, Egrid,
is the E field in the center of the aperture. The third plot, labeled E-deriv, is the derivative
function of Eq. (5.15). The other plots correspond to E field data at the points in Fig. 5.8,
with the solid lines representing the FDTD simulation and the dashed line the computation of
Eq. (5.19). Point 1 is 2 cm directly perpendicular from the center of the aperture; point 2 is 80
cm out. Point 3 is also 80 cm from the aperture, but 30 cm to the side. Clearly, the agreement
is quite good. These points were chosen as representative. We could have done the calculation

Metal screen
’

\

Aperture

|<— —l\- —_ — —m— — = — —Pp
Plane wave
source

Figure 5.8 Diagram of the problem space for the three-dimensional FDTD program. By
using the time domain values in the aperture, the time domain fields at points
1, 2, and 3 are calculated via Eq. (5.5). The accuracy is verified by comparison
with the time domain data calculated directly by the FDTD program. Point 1
is 2 ¢m in front of the aperture, point 2 is 80 cm in front of the aperture, and
point 3 is 80 cm from the aperture and 30 cm to the side.

Se

Section 5.2 & Calculation of the Far Field of an Aperture Antenna 119

/Q) T=150
i -

! .
i)

5
0 0
70 90
om 140
0 0
70 140 90
<m <m

Figure 5.9 Simulation of a plane wave hitting a slot in a metal screen, as illustraled in
Fig. 5.8. After 100 time steps the plane wave is propagaling toward the screen.
After 150 steps, it has hit the screen, and part of it has started to propagate
through the aperture. By 170 steps, part of the pulse has made it through the
aperture, while the majority has been reflected. After 270 steps, the pulse
resulting from the interaction with the aperture is propagating away from the
slot.

for any number of points at any position in the three-dimensional space, including distances
far out of reach of a reasonable FDTD computation.

It is interesting to compare the shapes of point 1 with those of points 2 and 3. Look at
the Egrid plot in Fig. 5.10. Its amplitude is an order of magnitude greater than E-deriv.
However, in the generating function of Eq. 5.19, the function E,, is divided by an additional term
of Ra, compared with the derivative function del_E,. It is not surprising that the waveform
at point 1 resembles Egrid more closely than E-deriv, because it is in the near field and
the additional 1/R,, effect has not attenuated it. However, when we get to point 2, which is
80 cm away, the Egrid term has been substantially attenuated compared to E-deriv, and
points 2 and 3 both resemble E-dexr iv more closely.

This simulation was done in the large FDTD space to verify the method. Now that
we have confidence in the accuracy of the transformation, we can go back and use the much
smaller problem space illustrated in Fig. 5.7 to calculate any points in the far field.

You may have already noticed one glaring disadvantage to this method: the far field is
only being calculated at a small number of points. Of course, we could increase this number
very substantially, but it still would not give us the time domain wave patterns that we are able
to see when using FDTD. We could simply store all the time domain data that appears in the
aperture. Then we could go back and generate the far field at any given time. However, the
storage of all that time domain data could be a problem, particularly if the aperture is fairly
large and the time domain excitation is fairly long.

120

Chapter 5 ® Two Applications Using FDTD

1 F T T —T T T T T —1 3
£
= 051 Source 7
0 I | 1 1 1 1 I !
1] 1 2 3 4 5 6 7 8
04 T T T T
£
S J
0.4 1 t 1 L
0 1 6 7 8
T T T T
\E 0
> 0.04F
L) | ! j
0 1 6 7 8
0 3 T T T T T T T T]
£
= 0
7 o3t /\/\m J
- 1 i L t i 1 L 1
0 1 2 3 4 5 6 7 8
T 7 T - T T ™
E 0
Z Point #2
=50 | L i i ! I 1 1
0 1 2 3 4 5 6 7 8
T T T T T T T T
E 0
E Point #3
50t 8 L 1 L 1 L 1 1
0 1 2 3 4 5 6 7 8
nsec

Figure 5.10 Comparison of the transformation values and the direct FDTD as illustrated
in Fig. 5.8. The top graph labeled “Source” is the Gaussian plane wave pulse
that impinges on the metal screen. “E deriv” is the derivative of the E field
in the center of the aperture, as calculated by Eq. (5.15). Points 1, 2, and 3
show the comparison of the FDTD generated time domain data (solid line)
and the time domain data generated via Eq. (5.19). The aperture was 10 cm
(x direction) by 5 cm (y direction). The E field was x polarized.

One solution is to use wavelets to compress the time domain data down to a manageable
set of parameters [13]. Then the parameters can be uncompressed and the time domain used
to generate the far fields [14]. The use of wavelets is beyond the scope of this book. However,
it is mentioned to illustrate how important the use of signal processing techniques can be in
doing FDTD simulation.

5.2.3 FDTD Implementation of the Far Field Calculations

The file fdtd_far_field.c printout at the end of this chapter shows some of the critical
parts of the program used to calculate the far field points via the transformation of Eq. (5.19).
(The coordinates used in Fig. 5.6 are the traditional coordinates used in electromagnetic theory;
specifically the Z direction is the direction of propagation. Of course, we are used to using the
Y direction as the direction of propagation, so the coordinate system used in fdtd_far_field.cis
essentially rotated ninety degrees compared to Fig. 5.6.) First of all, note that it would be very
wasteful to stop and calculate the values for the parameters Ra, and r, every time, because

Ref

References 121

they consist of values that are used at every iteration. Therefore, they are calculated prior to
the main FDTD loop and stored in the arrays R_dist and r_z, respectively. Also note that
the value n — 2 - Ra, is an integer, so 2 - R, will have to be an integer. These values are stored
in the array N_shift. The values of E, (i, j, k) in Eq. (5.19) are calculated and stored in the
array Eana.

PROBLEM SET 5.2

1. Write a program to simulate a plane wave impinging on an aperture in a metal screen. By
now you should have enough experience to alter one of your previous programs. Begin with
the simulation of a plane wave. Add the metal screen in the main problem space, and in the
incident buffer, as shown in Fig. 5.7. Your program should have the ability to generate a plane
wave and then subtract the reflection from the screen.

2. When you have the program of problem 5.2.1 running, then add the ability to put a rectangular
aperture in the screen. You should be able to generate waveforms like the ones shown in
Fig. 5.9.

3. Add the transformation of Eq. (5.19) to your aperture simulation. Duplicate the results of
Fig. 5.10.

REFERENCES

[1] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, Application of the three-dimensional
finite-difference time-domain method to the analysis of planar microstrip circuits, /JEEE Trans.
Microwave Theory Tech., vol. MTT-38, July 1990, pp. 446-453.

[2] P.C.Cherry and M. F. Iskander, FDTD analysis of high frequency electronic interconnection effects,
IEEE Trans. Microwave Theory Tech., vol. MTT-43, Oct. 1995, pp. 2445-2451.

[3] S. G. Garcia, T. M Hung-Boa, R. G. Martin, and B. G. Olmedo, On the application of finite
methods in time domain to anisotropic dielectric waveguides, /EEE Trans. Microwave Theory
Tech., vol. MTT-44, Dec. 1996, pp. 2195-2206.

[4] A.P.Zhao, J. Juntunen, and A. V. Rasisanen, An efficient FDTD algorithm for the analysis of mi-
crostrip patch antennas printed on a general anisotripoc dielectric substrate, IEEE Trans. Microwave
Theory Tech., vol. MTT-47, July 1999, pp. 1142-1146.

[5] R. Harrington, Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.

{61 A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain. Boston: Artech
House, 1995.

[7]1 K. S. Yee, D. Ingham, and D. Shlager, Time-domain extrapolation to the far field based on FDTD
calculations, /EEE Trans. on Antennas and Propagation, vol. AP-39, March 1991, pp. 410-413.

[8] R.J.Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, A finite-difference time-domain near
zone to far zone transformation, IEEE Trans. on Antennas and Propagation, vol. AP-39, March,
1991, pp. 29-433.

[9] M. Kragalott, M. S. Kluskens, and W. P. Pala, Time-domain fields exterior to a two-dimesional
FDTD space, IEEE Trans. on Antennas and Propagation, vol. AP-45, Nov. 1997, pp. 1655-1663.

[10] J. De Moerloose, and D. De Zutter, Surface integral representation radiation boundary condition for
the FDTD method, IEEE Trans. on Antennas and Propagation, vol. AP-41, Nov. 1993, pp. 850-895.

[11] D. K. Cheng, Field and Wave Electromagnetics, Menlo Park, CA: Addison-Wesley, 1992.
{121 S. Silver, Microwave Antenna Theory and Design. London: Peter Pergrinus, Ltd., 1984.

[13] G. Strang, and T. Nguyen, Wavelets and Filter Banks, Wellesley, MA: Wellesley-Cambridge Press,
1996

[14] D. M. Sullivan and J. Young, Far field time domain calculation from aperture radiators using the
FDTD method, /IEEE Trans. on Antennas and Propagation, submitted for review.

122 Chapter 5 m Two Applications Using FDTD

/* Fd3d_patch.c. 3D simulation of a patch antenna. */
include <math.h>

include <stdlib.h>

include <stdio.h>

#define IE 62
#define JE 120
#define KE 14
#define ia 14
#define ja 15
#define ka 7
#define NFREQS 3
#define ktop 2

main ()

{
float dx[IE] [JE] [KE],dy[IE] [JE] [KE],dz[IE] [JE] [KE];
float ex[IE] [JE] [KE],ey[IE] [JE] [KE], ez [IE] [JE] [KE];
float hx[IE] [JE] [KE],hy[IE] [JE] [KE],hz[IE] [JE] [KE];
float gax[IE] [JE] [KE],gay[IE] [JE] [KE],gaz [IE] [JE] [KE] ;
int 1,m,n,i,j,k,ic,jc,kc,nsteps,n_pml;
float ddz,ra_x,ra_y,dt,T,epsz,muz,pi,eaf,npml;
int ib,jb,kb;
float xn,xxn,xnum,xd;
float tO0,spread,pulse;
FILE *fp, *fopen(),*fpt;
float ez_inc[JE] ,hx_inc[JE];
float ez_low ml,ez_low m2,ez_high ml,ez_high m2;

float idx1l[ia] [JE] [KE],idxh[ia] [JE] [KE];
float ihx1l[ia] [JE] [KE],ihxh[ia) [JE] [KE] ;
float idyl[IE] [ja] [KE],idyh[IE] [ja] [KE];

float ihyl[IE] [jal] [KE],ihyh[IE] [jal] [KE];
float idzl [IE] [JE] [kal, idzh[IE] [JE] [ka];
float ihz1[IE] [JE] [ka]l,ihzh[IE] [JE] [ka];
int ixh, jyh, kzh;

float gil[IE],gi2[IE],gi3 [IE];
float gj1([JE},gj2[JE},gj3 [JE];
float gkl [KE],gk2[KE],gk3 [KE];
float £i1[IE],fi2[IE],fi3[IE];
float f£j1[JE],£fj2[JE], £33 [JE];
float £kl [KE],fk2[KE], fk3 [KE];

float curl_h,curl_e;

int ii,jj,kk,numsph;
float dist,xdist,ydist,zdist;

int istart,iend,k ref,jend,i_ref;

D a8

C P

C Programs

int j patch_st,j patch _end,j_ref;
int i patch_st,i patch_end;

float eps_sub;

float shape[IE] [KE], half_wv;

ic = IE/2 ;
jc = JE/2 ;
ke = KE/2 ;

ib = IE - ia - 1;
ijb = JE - ja - 1;
kb = KE - ka - 1;

1_patch_st = ia+5;

i_patch_end = i_patch_st + 31;
j_patch end = jb - 5;
j_patch_st = j_patch_end - 39;
j_ref = j_patch st - 30;
k_ref = ktop - 1;

pi = 3.14159;
epsz = 8.8e-12;

muz = 4*pi*l.e-7;

ddz = .265e-3; /* Cell size */
ra y = .6625;

ra_ X = .6812;

dt = ddz/6e8; /* Time steps */

printf("%$12.5e $%12.5e \n", ddz,dt);
INITIALIZE PARAMETERS, CALCULATE PML PARAMETERS

/* Dielectric constant of the substrate material */
eps_sub = 2.2;
printf ("$f \n", eps_sub);

for (j=0; j < JE; j++) {
for (i=0; i < IE; i++) {
for (k=0; k <= ktop; k++) {

gax[i] [j]1 [k] = 1./eps_sub;

gay[i] [j]1 [k] = 1./eps_sub;

gaz [i] [§]1 [k] = 1./eps_sub;
Py o)

/* Add a metal plate at k =0 */

for (i=1; i < IE-1; i++) {
for (j=1; § < JE-1; j++) {
k=0 ;
gax[i] [3] [k]
gay[i] []] [k]

b

o
o o

123

r

124 Chapter 5 ® Two Applications Using FDTD C Prc

igstart = ia + 6;

iend istart + 6;

i_ref = istart + (iend - istart)/2;
printf ("%$d %d %d\n", istart,iend,i_ref);

half_wv = (iend - istart)/2.;
printf ("half_wv = %5.2f\n", half wv);

for (i=istart; i <= iend; i++) {
for (k=0; k <= ktop; k++) {
shape[i] [k] =1.; } }

/* Add the conductor lead at k = ktop+l */

for (j=1; j <= j_patch _st; j++) {

for (i=istart; i <= iend-1; i++) {
gax[1] [§] [ktop+1l] = 0.;
}

for (i=istart; i <= iend-1; i++) {
gay[i] [3] [ktop+1] 0.;

b

/* Add the rectangular patch at k = ktop */

for (j=j_patch st; j <= j_patch_end; j++) |{
for (i=ia+l; i <= ib-1; i++) {
gax[i]1 [1] [ktop+1l] = 0Q.;

}

for (i=ia+l; i <= ib-1; i++) {
gay[il [3] [ktop+1] = 0.;
|

t0 = 150.0;
spread = 25.0;
printf("Pulse width is %12.5e \n", spread*dt);

T = 0;
nsteps = 1;
fpt = fopen("Time", "w");

while (nsteps > 0) {
printf{ “nsteps --» “);
scanf ("%d", s&nsteps);
printf ("$d \n", nsteps);

for (n=1; n <=nsteps ; n++) {
T =T+ 1;
/* ---- Start of the Main FDTD loop ---- */

C Programs 125
/* Calculate the incident buffer */
for (j=1; j < JE; j++) {

ez_inc[j] gj3[jl*ez_inc[]]
gj2[jl*(.5*ra_y/eps_sub)*(hx_inc[j-1] - hx_inc[j]);

+

/* Source */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
ez_inc[ja-2] = pulse;
printf ("%4.0f %6.2f \n ",T,pulse);

/* Calculate the Dx field */

for (i=1; i < ia; i++) {
for (j=1; j < JE; J++) {
for (k=1; k < KE; k++) {
curl_h = (ra y*(hz[i] [j][k] - hz[i] [§-1] [k])
- hy (i1 [§1 [k] + hy[i][3][k-1]) ;

idx1[i] [§] [k] = idx1({i] [j]1[k] + curl_h;
ax [i] [31 [k] = g33[j]*gk3[k]l*dx[i] [§] [k]

+ gj2[jl*gk2[k]l*.5*(curl h + gil[i]*idx1[i] []] [k]);

Yoo}

for (i=ia; i <= ib; i++) {
for (j=1; j < JE; j++) |
for (k=1; k < KE; k++) {
curl_h = (ra_y*(hz[i] [j][k] - hz[i] [j-1][k])
- hy[i] [31 [k] + hy[i]l[§] [k-11)
dx [11 [3]1 [k] = gj3[j]*gk3[k]*dx[i] [j] [k]
+ gj2[jl*gk2[k]*.5*curl_h ;

Yoo}

for (i=ib+1l; i < IE; i++) {
ixh = i - ib - 1;
for (j=1; j < JE; j++) |
for (k=1; k < KE; k++) {
curl_h = (ra_y*(hz[i] [§] (k] - hz[i] [§-1] (k])
- hy (i1 [31 (k] + hy[i]l[3] [k-11)
idxh[ixh] [j] [k] = idxh[ixh] [j] [k] + curl_h;
Ax[i] [9] [k] = g33[]*gk3 [k]*dx[i] [§] [k]
+ gj2[jl*gk2[k]l*.5*(curl h + gil[i]*idxh([ixh] [j] [k]);

Yoo}

/* Calculate the Dy field */

for (i=1; i < IE; i++) {
for (j=1; j < ja; j++) {
for (k=1; k < KE; k++) {

126 Chapter 5 ®m Two Applications Using FDTD CP

curl_h = (hx[i][3] [k] - hx[i] [3] [k-1]
11kl - hzl[i-1][3]1[k1));
idy1[i] [§] [k] = idyl[i] [3§][k] + curl h;
dy [1]1 [§] [k] = gi3[i]*gk3[k]*dy[i] [j] [k]
+ gi2[i1*gk2 k] *.5* (curl h + gj1ljl*idyl(i] [§]1[k));

- ra_x*(hz[i] []

b

for (i=1; i < IE; i++) {
for (j=ja; j <= jb; j++) {
for (k=1; k < KE; k++) {
curl h = (hx[i] [§] (k] - hx[i] [j] [k-1]
- ra_x*(hz[i] [J) [k] - hzli-1]1I[j]1[k]));
dy[i] [j]1 [k] = gi3[i]l*gk3[k]l*dy[i] [j] [k]
+ giz2[il*gk2[k]l*.5*% curl h ;

b o

for (i=1; i < IE; i++) {
for (j=jb+l; j < JE; j++) {
jyh = j - jb - 1;
for (k=1; k < KE; k++) {
curl h = (hx{i] [31(k] - nhx{i] 3] [k-1]

- ra_x*(hz[i] [j]1 [k] - hz[i-1]1I[3]1 (k1));
idyh (il [jyhl (k] = idyh(il [jyhl (k] + curl_h;
dy[i] [§] [k] = gi3[i]*gk3[k]*dy[i] [j] [k]

+ gi2[il*gk2[k]*.5*(curl h + gjl[jl*idyh[i] [jyh] [k]);
oy o

/* Calculate the Dz field */

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {
for (k=0; k < ka; k++) {
curl_h = (ra_x*(hy[i] [J][k] - hy[i-1][3][k])
- ra y*(hx[i] [§] [k] - hx[i][j-11I[k]l));
idz1[1i] [§] [k] = idzlI[i] [§] [k] + curl_h;
dz [1] [§] [k] = gi3[i]*gj3[jl*dzI[4i] [§] [k]
+ gi2 il *gj2[ji*.5*(curl_h + gkllkl*idzl[i]{j]1 (k]);

by o

for (i=1; i < IE; i++) {
for (j=1; j < JE; j++) {
for (k=ka; k <= kb; k++) {
curl_h = (ra x*(hy[i] [j][k] - hy[i-1]1[3][k])}
- ra_y*(hx[i] [j] [k] - hx[i]l[-1]11k1));
dz[i] [§] [kK] = gi3[i])*gj3[jl*dz[i] [j] [k]
+ giz2[il*gj2 (31 *.5* curl h ;

I

for (i=1; i < IE; i++) {
for ¢ j:l; j < JE; j++) {

- AA*AM__J-------IIIIIIIIIIILIIIIIII

C Programs 127

for (k=kb+l; k < KE; k++) {
kzh = k - kb - 1;
curl h = (ra x*(hy[i] [j][k] - hy[i-1]([j] (k])}
- ra_y*(hx[1]1 [§] [k] - hx[i] [3-1](k]));
idzh[i] [j] [kzh] = idzh[i] [j] [kzh] + curl_h;
dz [1] [3] k] = gi3[i]*gj3[j]*d=z[i] [j] [k]
+ gi2[i]l*gj2([jl*.5*(curl_h + gkl[k]l*idzh[i] [j] [kzh] });

bobod

/* Incident Dz */
for (i=istart; i <= iend; i++) {
for (k=0; k <= ktop; k++) {
dz [i] [jal] [k] = dz(i] [jal [k]
+ (.5/eps_sub) *shape [i] [k]*hx_inc[ja-1];

b}

/* Calculate the E from D field */

/* Ex and Ey are zero at k = 0. */
for (i=1; i < IE-1; i++) {
for (j=1; j < JE-1; Jj++) {
for (k=1; k < KE-1; k++) {
ex[1]1 [3]1 [k]1 = gax[il [j] [k]*dx[i] [§] [k] ;
(i1 031 [kx];
(i1 [31 [k1;

ey [i] [3] [k] gay[i] [3] [k]*dy
ez [1] []] [k] gaz[i] [j] [k]l*dz
}

b}

/* Write out the time domain data at the input port */
fprintf (fpt,"%8.4f \n",ez[i_ref] [j_ref] [k_refl);
/* Calculate the incident field */

for (j=0; j < JE-1; J++) {
hx _inc(j] = £33[j]l+*hx_inc[j]
+ .5*f92([j]1*(ez _inc[j] - ez_inc[j+1]

)i
/* Calculate the Hx field */

for (1=0; 1 < ia; i++) {
for (j=0; j < JE-1; j++) {
for (k=0; k < KE-1; k++) {
curl e = (eyl[i][j] [k+1] - ey[il[3j] [kl
- ra_y*(ez[i] [§+1] [k] - ez[i] [J]1T[k]))
ihx1[i] [§] [k] = ihx1[i] [j][k] + curl_e;

hx [i] [j] [k] = £33[j]1*fk3[k]*hx[i] []] [k]
+ £32[j1*fk2 (k] *.5*(curl e + £il[i]*ihx1[i] [j] [k]);

|

128 Chapter 5 ® Two Applications Using FDTD CPr

for (i=ia; i <= ib; i++) {
for (§=0; j < JE-1; j++) {
for (k=0; k < KE-1; k++) {
curl e = (eyl[il [j] [k+1] - ey[il [j] [k]
- ra_y*(ezli]l [§+1]1[k] - ez[il [j][k]));
hx[i1 [31 (k] = £33 (J]*£fk3[k]*hx[i] [j] (k]
+ f£j2[jl*fk2[k]*.5*curl_e ;

Py

for (i=ib+l; 1 < IE; 1i++) {
=i - ib-1;
for (§=0; § < JE-1; j++) {
for (k=0; k < KE-1; k++) {
curl_e = (ey([i] [§] [k+1] - ey[i][j] [k]

- ra y*(ez[i]l [§+1]1 [k] - ez[il[j] (k1));
ihxh[ixh] [j] [k] = ihxh[ixh] [j] [k] + curl e;
hx[i] [§1 [k] = £33 [J1*fk3[k]*hx[i] [J] (k]

+ £§2031*fk2[k]*.5%(curl e + fillil*ihxh([ixh] [§] (k]);

Pyl

ixh

/* Incident Hx */
for (i=istart; i <= iend; i++) {
for (k=0; k <= ktop; k++) {
hx{i] [Ja-1]1 [k] = hx[i] [ja-1] (k]
+ (.5/eps_sub) *shape [1] [k] *ez_inc[jal;

bl

/* Calculate the Hy field */

for (i=0; i < IE-1; i++) {
for (3=0; 3 < ja; j++) {
for (k=0; k < KE-1; k++) {
curl_e = (ra x*(ez[i+1]{j] (k] - ez{i] {3} {k])
- ex[i] [§] [k+1] + ex[i]l [§] (k1)
ihy1[i] [3] [k] = ihyl[i] (] (k] + curl_e ;
hy (i1 [§]1 [k] = £i3[i]*fk3 [k]l*hy[i] (] [k]
+ fi2[1]*fk2[k]*.5*(curl e + f£j1([j]*ihyl[i] [j] (k]);

Pyl

for (i=0; i < IE-1; i++) {
for (j=ja; j <= jb; j++) {
for (k=0; k < KE-1; k++) {
curl e = (ra x*(ez[i+1] [j] [k] - ez[i] (j] [k])
- ex[i] [§] [k+1] + ex[i]l[3j]1[k]1) ; /*
hy[i] [§] [k] = £i3[i]*£fk3 [k]l*hy[i] [j] [k]
+ fi2[i]1*fk3 [k] *.5*curl e ;

Pl

for (i=0; i < IE-1; i++) {
for (j=jb+l; j < JE; j++) {

C Programs 129
jyh = 3 - jb-1;
for (k=0; k < KE-1; k++) {
curl_e = (ra x*(ez[i+1] [§] [k] - ez[i] [j] [k])
- ex[i] [3] [k+1] + ex[1][j] [k])
ihyh[i] [jyh] [k] = ihyh[i] [jyh] [k] + curl e ;
hy[i] [31 [k] = £i3[i]l*fk3 [k]*hy[i] []] [k]
+ £i2[i]1*£k2[k]*.5%(curl e + £31{31*ihyh[i] [Fyh] (k]);

b o

’

/* Calculate the Hz field */

for (i=0; i < IE-1; i++) {
for (j=0; j < JE-1; j++) |
for (k=0; k < ka; k++) {
curl_e = (ra_y*(ex[i] [j+1]1[k] - ex[il[j][k])
- ra x*(ey[i+1][j]1[k] - ey[il (3] [k]));

ihz1[i] [§] [k] = ihzl[i] [j] [k] + curl e;
hz{i)} [31 [k) = £i3[i1*£33[j)*hz[i]l []] (k]

+ fi2[il*£j2([j1*.5*(curl_e + fkl([k]*ihz1[i] [J] [k]);

b o)

for (i=0; i < IE-1; i++) {
for (§=0; j < JE-1; j++) {
for (k=ka; k <= kb; k++) {
curl_e = (ra_y*(ex[i] [j+1]1[k] - ex[i] [j][k])
- ra x*(ey[i+1] [§] [k] - eyl[il [3]1[k]));
hz [i] [§] [k] = £i3[il1*£33[j]1*hz[i] [j] [k]
+ fi2[i]*£j2[j]*.5*curl e ;

Py o}

for (i=0; i < IE-1; i++) {
for (j=0; j < JE-1; j++) {
for (k=kb+1l; k < KE; k++) {
kzh = k - kb - 1;
curl_e = (ra_y*(ex[i] [j+1] [k] - ex[i] [j] [k])

- ra x*(ey[i+1] [j]1 [k] - ey[il[j] [k]l));
ihzh[i] [§] [kzh] = ihzh[i] [j] [kzh] + curl e;
hz[i] [§] [k] = £i3[i]1*£3j3[j]*hz[i] [§] [kl

+ £i2[1i]*£3§2([§1*.5*(curl_e + fkl[k]l*ihzh[i]l [j] [kzh]);

b o)

}

/* ---- End of the main FDTD loop ---- */

/* Write the E field out to a file "Ez" */
fp = fopen("Ez","w");
for (j=0; j < JE; j++) {

for (i=0; i < IE; i++) {

130 Chapter 5 ® Two Applications Using FDTD
fprintf(fp,"%$9.6f ",ez[i] [j] [ktop]l);
fprintf(fp," \n");
}

fclose (fp) ;

printf("T = %4.0f \n",T);

fclose(fpt) ;

‘r"

CP

C Programs 131

/* Fd3d_far field.c. */

/* These arrays are calculated before the main loop */

/* ipos,jpos,and kpos are arrays which specify the location
at which the far field values will be calculated.
iwid and kwid specify the size of the slot in the I and k
directions, respecively.*/

for (1=1; 1 <= 3;1++) {
for (i = ic-iwid; i <= ic+iwid; i++) {
for (k = kc-kwid; k <= kc+kwid; k++) {
R_dist [i] [k] [1] = sqgrt(pow((ic - ipos(l)-i),2.)
+ pow((kc - kpos(l)-k),2.));
jpos/R_dist [i] [k] [1];
2*R_dist [i] [k] [1];

r_z[i] [k] [1]
N_shift[i] [k] [1]

oy o)

/* Just before the new value of Ez is calculated from the Flux
density, the old value is stored in ezml */
/* jgrid_end is the location of the slot antenna in the
j direction */

for (i = ic-iwid; i <= ic+iwid; i++) {
for (k = kc-kwid; k <= kc+kwid; k++) {
ezml [i] [k] = ez[i] [jgrid_end] (k] ;

/* Here is the calculation of the of the far field values.
This is done right after the calculation of the Ez field. */

for (1=1; 1 <= 3;1l++) {
for (i = ic-iwid; i <= ic+iwid; i++) {
for (k = kc-kwid; k <= kc+kwid; k++) {
Ena[l] [iT + N_shift[i] [k] [1]] = Eana[l] [it + N_shift[i] [k] [1]]
+ (r_z[i] [k] [1]/pi)*
(ez[i] [jgrid_end] [k] - ezml[i] [k]) /R dist[i] [k] [1]
+ ez (il [jgrid_end] [k]/ (2*pow (R _dist [i] [k] [1]),2.)

Forood

6.1

Using FDTD for Other Types
of Simulation

In this chapter, we will discuss the use of the FDTD method for applications other than
electromagnetics. The first application is an acoustic simulation problem. The mathematics of
acoustics is similar to electromagnetics [1], so it is natural that the developments of FDTD are
used in acoustic simulation [2, 3]. The second example is the simulation of the Schroedinger
equation, which is at the heart of quantum mechanics. Quantum mechanics is radically different
from both acoustics and electromagnetics. However, the Schroedinger equation is still a wave
equation and it lends itself to simulation with FDTD. In both cases, only simple examples of
one-dimensional simulations are presented.

6.1 THE ACOUSTIC FDTD FORMULATION

In the following development, we will deal only with pressure waves and ignore elastic waves.
We start with the first-order acoustic equations,

d
Kap(x,t)zv-u (6.1a)

d
popr;tu(x, 1) =Vpix,1), (6.1b)

where p(x, 1) is the pressure field [F/m?] = [kg/(m — sec?)],
u(x, t) is the vector velocity field [m/sec],
po is the mass density of water [kg/m?],
pr 1s the relative (to water) mass density of the medium,
k is the compressibility of the medium [(m — sec?)/kg] . (Table 6.1)

Notice that water has been chosen as the background medium instead of air. The compress-
ibility is

(6.2)

where ¢ is the velocity of sound.

133

134 Chapter 6 ® Using FDTD for Other Types of Simulation

TABLE 6.1 Acoustic Properties of a Few Materials

Material Speed of Sound (m/sec) Density (kg/m®) Compressibility (m - s/ kg)
1. Water 1500 1000 44 x1078

2. Air 343 1.21 7.02x 1076

3. Metal 5900 7800

Eg. (6.1a) can be written

dpix.y,z,t) 1 du(x.y.2.) duy(,y 20 du(x. 3,2 0)
dt Tk (x.y,2) dx dy dz '
We will use a differencing scheme similar to Yee’s FDTD for electromagnetics [4]; however,

we will assume that the pressure locations are at nodes in a three-dimensional lattice, and that
the velocities are located between the nodes, as shown in Fig. 6.1.

(i, jk+1)

Figure 6.1 The acoustic Yee cell.

Using first-order differencing in time and space, Eq. (6.1.a) can be written

PG — pr TG Wi+ 172, j k) —ut(i — 1/2, j. k)
At T kG Ax
Lol [k D) g k= 1/2)
K(i, j, k) Ay
+ 1 ul(i, jk+1/2y —ul(, j, k—1/2)
K(l’lvk) AZ "

First, the compressibility will be replaced by Eq. (6.2). Then Az will be moved to the right
side, giving a difference equation suitable to the FDTD formulation:

At - rC2 i neq j
p"V G, g = pr Lk + %' (Wi +1/2, .0 = ulti = 172, j. b))
At - p prC2 nesoo g
+ A—(; [0+ 172,00 — Wi, j = 1/2, 0] 63)
At - rC2 j
+ SR04 1/2) =t ok = 1/2)].

Az

Section 6.1 ® The Acoustic FDTD Formulation 135

A similar procedure in Eq. (6.1b) yields three equations of the type

WG k4 1/2) = w2, jok+1)2)
At
+ —
pr(i, jok+1/2) - pg - Az
Obviously, equations in the X and Y direction would be similar. We will limit ourselves

to a simple one-dimensional problem in the Z direction and rewrite Egs. (6.3) and (6.4) as
follows:

(6.4)
PG kD = PG G 6]

prH Py = p" Pk + gak) - [ul(k +1/2,) — ul (k — 1/2)] (6.5a)
WMk +1/2) = ul(k +1/2) + gbk +1/2) - [p"H' 2k + 1) — p" 2 (k)] (6.5b)
where we have the parameters

Af - .- C2
ga(ky = —20Pr' ¢ (6.62)
Az

At
plk+1/2) - po- Az
Notice that we have chosen to write ga in terms of the speed of sound and the pressure

rather than the compressibility since these are the parameters that are most widely used.
As before, At is chosen after Az is chosen according to

gbk+1/2) =

(6.6b)

Az

At <
Cmax
where cpax 1s the fastest velocity of sound that we encounter. We will suppose that this will
be metal, in which the velocity of sound is 5900 meters per second. Just to give ourselves a
margin, we will take

Az
At —_— W.
Since py = 1000 kg/m, Egs. (6.6) become
gatk) = 107" p, (k) c* (k) (6.7a)
bk +1/2) = 107 (6.7b)
S okt 1/2) '

For water, which we will use as our background medium, Eqs. (6.7a) and (6.7b) turn out to be
ga(k)y =10""" p, (k)2 (k) = 107" - 1 - (1, 500)* = 2.25 x 10° (6.8a)
gbtk +1/2) =107, (6.8b)

The program usl.c at the end of the chapter is a one-dimensional acoustic simulation
program. In its present form, it is only simulating water. Figure 6.2 shows the result. A pulse
is generated at one end and subtracted out at the other. So where did the PML come from?

Here is how this program was developed: I went back and made a copy of the program
fd1d_1.1.c. Using the text editor, I replaced ex with p, and hy with u. Then I went to the
program we developed in Chapter 5 to simulate microstrip antennas, and I took the PML from
the 1D incident buffer and copied it over. I added the parameters ga and gb, changed some
constants, and so forth, and there it was! The entire process took about 30 minutes. The point
is, an acoustic simulation program, complete with PML, was written by using the ideas we
had already developed for EM simulation.

136 Chapter 6 ® Using FDTD for Other Types of Simulation

L
3
s
o
w
3
4
-
1 T T T T T T T T T
g 05 b
z T= 660
L
<9
0 I 1 T I 1 I T T 1
10 20 30 40 50 60 70 80 90 100
Cells

Figure 6.2 Simulation of an acoustic pulse. The pulse is generated at cell 15 and propagales
outward in both directions. After 200 time steps, the part that propagated to
the left is being absorbed by the PML. Similarly, after 660 time steps, the part
that propagaled to the right is being absorbed.

PROBLEM SET 6.1

1. Develop your own program usl.c using the procedure described and get it running.

2. Put a metal sheet of about 10 cells in the center of the problem space and see what happens.
Then put in an air pocket of 10 cells and see what happens.

3. Repeat the above problem, but for a sinusoid wavetform of 2.5 MHz in a Gaussian envelope.
In determining the cell size remember: 10 points per wavelength of the shortest wavelength in
the problem. Since metal has the highest speed, it will have the shortest wavelength.

6.2 SIMULATION OF THE SCHROEDINGER EQUATION

In this section a simple formulation of the Schroedinger equation in FDTD is described. The
Schroedinger equation is the basis of quantum mechanics. If you do not know any quantum
mechanics, this section may prove to be a little puzzling. (An excellent text for beginning
quantum mechanics is the one by Griffiths [5].) Problems involving quantum mechanics,
unlike the previous section where it wasn’t difficult to pick up the basics of acoustics, are
quite different. For instance, the parameter used in our wave equations is ¥ (r, 1), which, like
the electric field or the pressure, is a function of space and time. But unlike the electric field
or pressure, it is a complex number, even though it is a time domain parameter. It is also
difficult to attribute any distinct physical meaning to . It is the product of ¢ with its complex
conjugate, ¥ (r, t)*y(r, t), that indicates the probability of a particle being at the point r at
time 7.

o~

Section 6.2 ®m Simulation of the Schroedinger Equation 137
6.2.1 Formulating the Schroedinger Equation into FDTD

The time-dependent Schroedinger equation is given by [5-8]

2
ih————aw(r’ n_ —ﬁ—Vzll/(r, D+V@eE D -y (6.9)
at 2m
or
I h o, i .
—r _zz—'gv Yir) hV(r, 1) - Y(r, 1), (6.10)

where m is the mass of the particle [kg],
h = 1.054 x 1073 [J — sec] is Plank’s constant,
V is the potential [J]. (It will often be more convenient to express
the potential in electron volts (eV), where 1 eV = 1.602 x 107197))

To avoid using complex numbers, we will split the variable v (r, ¢) into its real and imaginary
components

Y(r 1) = Yrealr, t)+i1//imag(r’ 1). (6.11)

Inserting Eq. (6.11) into Eq. (6.10) and separating real and imaginary parts results in the
following coupled set of equations:

81//real(r’ T) h 2 1
e D _ L 2y, —V 6.
9t m Yimag (r, 1) + ﬁvwlmdg(rv 1) (6.12a)
oy; Jt h 1
Wima D _ 1 Gy oty = Ly patrn. (6.12b)
of 2m h

We begin by assuming a one-dimensional space, arbitrarily taking the z direction. Starting
with Eq. (6.12a), the finite difference approximations in space and time result in

1ljrt.:al (k) 11/:::;11 (k)

At
L R R R S Ll B YRGS
T 2m (A7)? h imag D

from which we get

rcal (l‘) 1//rf:al (k)
At h

n—1/2 n—1/2 n—-1/2
- A—Zzﬂ l:ll/imag *k+1-— 21//imag (k) + 1ljxmdg (k — l):l (6.13)

At n—1/2
+ SV i (6.

We assume we are simulating an electron and therefore we will take m to be the mass of an
electron. We will take Az to be one-tenth of an Angstrom, so

m=091x10"" [kg]
Az =1x 107" [m].

At this point, we don’t know what the time step, Az, should be. Unfortunately, there is
no specific Courant condition to guide us, as was the case in EM simulation. We will start
by assigning what seems to be a “reasonable” number, i.e., something that will likely keep

138

Chapter 6 ® Using FDTD for Other Types of Simulation

Eq. (6.13) from blowing up. Let’s just take 1/8 for now:

At h _ 1 6.14)
AZ22m 8 '
which means

[2m 1 9.1 x 1073 kg 2
iy e (1071 m)” = 2.165 x 107 sec.
8 h ¢ 4 1.05x 1034 J -sec (m) X see

Now the constant in front of the potential term can be calculated:
At 2,165 x 107 "%sec 1.602 x 10717
h o 1.055 x 10737 . sec leV
The two coupled equations can then be written
Vrea (k) = Yoy ()
1

n—1/2 n—1/2 n—1/2
i LR e A DR (R B CR B

At

= 2.053 x 10‘511-():3.285x 1074 eVl

A _
+ VR Y0
Yrimed 2y = i T (k)

1
+ 2 Wralk + 1 = 2970 (0) + Yrea (k — 1] (6.15b)

At .
~ V0 Y.
2

To simulate a particle moving in free space, it is necessary to specify both the real and
imaginary parts in the spatial domain. For example, we will initiate a particle at a wavelength
of A in a Gaussian envelope of width o with the following two equations:

Wreal(k) = e_-S.((k-%)h cos (M) (6163)
Yrear (k) = e_.S-((k_;kQ) sin (’27[—(](}\;@) s (6.16b)

where kg is the center of the pulse. Once these equations are calculated, the amplitudes must
be normalized [5], to satisfy

/w ¥ ox ()Y (x) dx = 1. 6.17)

6.2.2 Calculating the Expectation Values of the Observables

Two quantities of importance in quantum mechanics are the expected values of the kinetic
energy and the potential energy. They are calculated from ¥ (x, ¢) as follows:

Kinetic energy. The expected value of the kinetic energy is given by

52 82 52 [+ 9] aZw
=—— 7 d
w) 2m J (\[f a9z) ¢

2m 972

(T) = <¢f

Problems 139

The Laplacian operator 9"— is approximated by

Y (k))
o = Wk = 1) = 2 (k) + Yrealk + D] /AL
8 Illlma (k)
—‘a—f~— [Illlmdg(k - l) 21//imag(k) + Ipimag (k + 1)] /Azz'
The kinetic energy in the simulation is calculated by
N 2
h . threal(k) d lllnndg(k)
Ty = — et () = i Yima . . 6.18
() z.meg{[wr 1K) = i Yimeg (K)] [G T (6.18)
Potential energy. The expected value of the potential energy is
[o¢]
Wi =wiviv) = [V@ cobd
-0
which is calculated by
N
Z V- [B2ak) + U 0], (6.19)

where V (k) is the potential at that ¢

6.2.3 Simulation of an Electron Striking a Potential Barrier

Figure 6.3 shows a simulation of an electron moving in free space next to a region with
a potential of 100 eV. It is initiated at 146 eV, which is pure kinetic energy because there is
no potential. At 350 time steps, is has propagated to the right. The waveform has begun to
spread, but the total kinetic energy remains the same. After 1300 time steps, it has struck the
potential. Part of the waveform has penetrated the potential barrier, and part has been reflected.
Notice that the total energy has remained the same, but now part of it is in the form of potential
energy, because part of the waveform is at a potential of 100 eV. Does this mean the electron
has split into two parts? No. It means there is a certain probability that it has penetrated the
barrier and a certain probability that it has been reflected. These probabilities are calculated
by the following:

Xpot
Probability of reflection = Y (x)y(x) dx (6.20a)

—00

o0
Probability of transmission = Yrx)y(x) dx, (6.20b)

Xpot
where xpy. is the location where the potential begins. For this particular problem, Eq. (6.20a)
calculated 0.206 and Eq. (6.19b) calculated 0.794. Of course, the two must sum to one.

PROBLEM SET 6.2

1. The program se.c at the end of this section was used to do the simulation in Fig. 6.3. Get this
program running and duplicate the results.

2. Repeat the simulation of problem 6.2.1, but use a potential ot —100 eV.

3. Repeat the simulation of problem 6.2.1 using a potential of 1000 eV. What happens? Does this
make sense?

140

Chapter 6 ® Using FDTD for Other Types of Simulation

0 2 T T T T T
' = 7 Tv=100ev T T
|
.)
0.2 - KE = 146 eV PE=0eV _
i i 1 1 | 1 |
50 100 150 200 250 300 350 400
0 2 T T T T T T T
“r T=350 I 7 Tv=100eV T
|
0
02t KE=146eV PE=0eV 4
| | 1 | | | 1
50 100 150 200 250 300 350 400
() 2 T T T T T T T
< T=1300 I 7 T V=100V
—0.2 L KE=67eV PE=79¢eV 4
1 1 L i I 1 1
50 100 150 200 250 300 350 400

Figure 6.3 Simulation of an electron moving in free space and then hitting a potential.
While the electron is in free space, all the energy is kinetic. After it strikes
the potential, part of the energy has been converted to potential cnergy. The
waveform at T = 1300 indicates that there is some probability that the electron
was reflected and some probability that it penetrated the potential barrier.

REFERENCES

[1] L. Beranek, Acoustics, New York: McGraw-Hill, 1954.

[2] J.J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustical Scattering by
Simple Shapes. New York: Hemisphere, 1987.

[3] J. G. Maloney and K. E. Cummings, Adaptation of FDTD techniques to acoustic modeling, /1th
Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, vol. 2, March
1995, pp. 724-731.

[4] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic media, /[EEE Trans. Antennas and Propagat., vol. 17, 1966, pp. 585-589.

[51 D. . Griftiths, Introduction to Quantum Mechanics. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[6] C.Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. New York: Wiley, 1977.

[7]1 S. Brandt and H. D. Dahmen, The Picture Book of Quantum Mechanics. Berlin: Springer Verlag,
1995.

[8] S. Borowitz, Fundamentals of Quantum Mechanics. New York: W. A. Benjamin, 1967.

C Programs 141
/* usl.c. 1D FDTD Acoustic simulation */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 100

main ()
{
float pI[KE],ul[KE];
int n, k,kc,ke,NSTEPS,n pml;
float ddx,dt,T;
float tO,spread,pulse,xn,xxn,npml;
FILE *fp, *fopen();
float g2 [KE],g3[KE], f2[KE], £3 [KE] ;

/* Initialize */

for (k=1; k < KE; k++)
{ plkl = 0.;

ulk] = 0.;

g2 (k]
g3 (k] =
£2 [k]
£3 (k]

}

I
N e

/* PML */

npml = 10;

n pml = npml;

for(k=0; k < n_pml; k++) {
xxn = (npml-k)/npml;
xn = .33*pow(xxn,3.);
g2[k] = 1./(1.+xn);
g2 [KE-k-1] = 1./(1.+xn);

g3[k] = (1.-xn)/(1.+xn);

g3 [KE-k-1] = (1.-xn)/(1.+xn);
xxn = (npml-k-.5)/npml;

xn = .33*pow(xxn,3.);

f2(k] = 1./(1.4xn);
f2[KE-k-2] = 1./(1.+4xn);
£f3[k] = (1.-xn)/(1.+xn);
f3[KE-k-2] = (1.-xn)/(1.+xn);

printf("f & g \n");
for (k=0; k < KE; k++) {
printf("%2d %6.4f %6.4f \n",k,g2[k]l,g3[k]);
printf(" %6.4f %6.4f \n",f2[k],£f3(k]);}

142 Chapter 6 ® Using FDTD for Other Types of Simulation

kc KE/2;
to 150.0;
spread = 50;
T = 0;
NSTEPS = 1;

while (NSTEPS > 0) {
printf("NSTEPS --> ");
scanf ("%$d", &NSTEPS) ;
printf ("%d \n", NSTEPS);
n= 0;

for (n=1; n <=NSTEPS ; n++)

{

T =T+ 1;
/* Main FDTD Loop */

/* Calculate the Pressure */
for (k=1; k < KE; k++)
{ plkl = g3[kl*plk] + g2[kl*(2.25e5)*(ulk-1] - u(k]) ; }

/* Put a Gaussian pulse in the middle */

pulse = exp(-.5*(pow((t0-T)/spread,2.0)));
pln pml+5] = pulse;
printf("%5.1f %6.2f\n",t0-T,p[n_pml+5]);

/* Calculate the velocity */
for (k=0; k < KE-1; k++)
{ ulk] = f£3[kl*ulk] + f2[k]*(6.67e-8)*(plk]l - plk+1]) ; }

/* End of the Main FDTD Loop */

/* At the end of the calculation, print out
the pressure and velocity fields */
for (k=1; k <= KE; k++)
{ printf("3$3d %6.2f %6.2f\n",k,plk]l,ulkl); }

/* Write the P field out to a file "Pres" */
fp = fopen("Pres", "w");

for (k=1; k <= KE; k++)

{ fprintf(fp," %6.2f \n",plkl); }
fclose(fp) ;

/* Write the U field out to a file "vel" */
fp = fopen("Vel","w");
for (k=1; k <= KE; k++)

C Programs 143

{ fprintf(fp," %6.2f \n",ulk]); }
fclose(fp) ;

printf("T = %5.0f\n",T);

144

Chapter 6 m Using FDTD for Other Types of Simulation

/* se.c. 1D FDTD Schroedinger simulation */

include <math.h>
include <stdlib.h>
include <stdio.h>

#define KE 400

main ()

{

float psi rl([KE],psi im[KE];

float Vpot,vp [KE];

int n,k,kc, ke, kstart,kcenter, NSTEPS,n_pml;
float pi,melec,hbar;

float lambda,sigma,ptot;

float ddx,dt,ra,T;

float pulse,xn,xxn,npml;

FILE *fp, *fopen();

float lap_rl,lap_im,ke_rl,ke im, kine, PE;

/* Initialize */
for (k=0; k <« KE; k++)
{ psi_rl([k] = 0.;
psi_im[k] = 0.;
vplk]l = 0.;

}

pi = 3.14159;
melec = 9.2e-31; /* Mass of an electron */
hbar = 1.055e-34; /* Plank’s constant */

ddx = .le-10; /* Cell size */
ra =1./8.;

printf("ra = %e \n",ra);
dt = .25* (melec/hbar) *pow(ddx,2.);

printf(" dt = %e \n",dt);

printf("kstart,Vpot (in eV) --> ");

scanf ("%d ", &kstart);

scanf ("$f", &Vpot);

for (k=kstart; k < KE; k++)

{ vplk] = Vpot*1.602e-19 ; } /* Convert eV to Joules */

/* Write the Potential to a file "Vpot" */

fp = fopen("Vpot","w") ;

for (k=0; k < KE; k++)

{ fprintf(fp," $6.2f \n",vplk]l*6.2415e18); /* Write in eV*/
printf (" $6.2f \n", (dt/hbar) *vp(kl); }

fclose(fp);

C Programs 145

/* Initialize the pulse */
printf("lambda,sigma --> ");
scanf ("$f ", &lambda) ;

scanf ("$f", &sigma);

kcenter = kstart/2;

printf ("kcenter = %3d \n", kcenter) ;
ptot 0.;

for (k=1; k < kstart; k++)
{ psi_rl(k] = cos(2*pi*(k-kcenter)/lambda)
* exp(-.5*pow((k-kcenter)/sigma,2.));
psi_im[k] = sin(2*pi* (k-kcenter)/lambda)
* exp(~.5*pow((k-kcenter)/sigma,2.));
ptot = ptot + pow(psi rllkl,2.) + pow(psi im[k],2.); }

printf(" ptot= %f \n",ptot);

/* Normalize the waveform */

for (k=1; k < kstart; k++)

{ psi rl[k] = psi rl[k]/sgrt(ptot);
psi_im([k] = psi_im[k]/sgrt(ptot); }

ke = KE/2;
T = 0;
NSTEPS = 1;

while (NSTEPS > 0) {
printf("NSTEPS --> ");
scanf ("%d", &NSTEPS) ;
printf ("%d \n", NSTEPS);
n= 0;

for (n=1; n <=NSTEPS ; n++)

{

T=T+ 1;

/* Main FDID Loop */

/* Calculate the Real part */

for (k=1; k < KE-1; k++)

{ psi_rl[k] = psi_rll[k]
- ra*{ psi_im[k+1] - 2.*psi im[k] + psi_im[k-1])
+ (dt/hbar)*vp [kl *psi_im[k] ; }

/* Calculate the imaginary part */
for (k=1; k < KE-1; k++)

{ psi_im([k] = psi im[k]
+ ra*(psi_rlfk+1] - 2.*psi_rl(k] + psi rlfk-1])

146

Chapter 6 ® Using FDTD for Other Types of Simulation

- (dt/hbar)*vp (k] *psi_rl[k] ; }

/* End of the Main FDTD Loop */

/* Print out the real and imaginary parts */
for (k=0; k < KE; k++)
{ printf("$3d %6.2f %6.2f\n",k,psi_rl[k],psi_im([k]); }

/* Write the real part to a file "prl" */
fp = fopen("prl","w");

for (k=0; k < KE; k++)

{ fprintf(fp," %6.2f \n",psi rllk]); }
fclose (fp) ;

/* Write the imaginary part to a file "pim" */
fp = fopen("pim","w");

for (k=0; k < KE; k++)

{ fprintf(fp," %6.2f \n",psi_im[k]); }
fclose (fp);

/* Calculate the KE and PE */

ke rl = 0.;
ke_im = 0.;
PE = 0.;

for (k=0; k < KE; k++) {
lap_rl = psi_rl[k+1] - 2.*psi_rl(k] + psi rl[k-1] ; /* Laplacian */
lap_im = psi_im[k+1] - 2.*psi_im[k] + psi_im[k-1] ;
ke_rl = ke_rl + psi_rl[kl*lap_rl + psi_im[k]*lap_im;
ke_im = ke_im + psi_rl[kl*lap_im - psi_im[k]l*lap_rl;
PE = PE + vp[k]l*(pow(psi rl[k],2.) + pow(psi im[k],2.));

kine = .5* (hbar/melec) * (hbar/pow(ddx,2.))
*sqrt (pow(ke_rl,2.) + pow(ke_im,2.));
printf(" ke = %6.3f eV \n",6.23el8*kine); /* convert J to eV */

printf(" pe = %6.3f eV \n",6.23el8*PE) ;

printf("T = %5.0f\n",T);

The Z Transform

One of the most useful techniques in engineering analysis is transforming a problem from the
time domain to the frequency domain. Using a Fourier transform, differential equations are
changed to algebraic equations, often substantially simplifying the analysis. When dealing
with linear systems, the relationship between the input and output is a convolution integral.
However, this reduces to simple multiplication in the frequency domain. When dealing with
transient signals, it is often more convenient to use the Laplace transform, but the principle is
the same.

The Laplace and Fourier transforms are appropriate for analog signals. When dealing
with digital signals, the Z transform is used. The reasons for using it are analogous: (1) com-
plicated difference equations in the time domain become algebraic equations in the Z domain,
and (2) the relationship between the input and output of a linear system is a multiplication in
the Z domain instead of a convolution in the sampled time domain.

A.1 DEFINITION OF THE Z TRANSFORM

The Z transform is extremely useful when dealing with functions in the sampled time domain;
i.e., instead of the function x(7), we have a function of the type

o0

xm)y= Y x(0)8¢ —n- A,

n=—00
where At is a uniform time interval, and § is the Dirac delta function:
s(y=1 ifr=0
=0 elsewhere.
The Z transform is defined by

o0

Zlx(m)] = X(z) = Z x(mz™". (A.1)

n=—00

147

148 Appendix A B The Z Transform

A power of z7! is associated with each delay interval Ar. Suppose we have a function
x(n),

x(n) =8()+.5-8(t — At) +.25-8(t —2 - Ar). (A2)
In the Z domain, this is written
X(z)=1+.527"1+4.25z72 (A.3)

Note that the first term is simply |, because z 0 = 1.
In its simplest form, the z=* operator associated with the Z transform can be thought of
as a delay operator. So if

y(n) =x(n—1),
then the Z transform of this equation would be written
Y(2) =z'X(z).

And if
w(n) = y(n — 1),
then the Z transform of w(n) is
W) =z"Y@@=z"("'X@)=2"X@). (A.4)
If W(z) is defined as above, and X (z) as defined in Eq. (A.3), then
W) =z 21+.5277 +.2527%,
which, in turn, going back to the sampled time domain, means that
whn) =56t —2-At)+.5-8(t—3-Ar)+.25-8(t — 4. At).

We can add two Z transforms by making sure like powers of z~! are lumped together.
For instance, adding X (z) of Eq. (A.3) and W (z) of Eq. (A.4) gives

X@+ W@ =[1+.57" 425+ 1272 + 527 + .25777]
= 145" +125:72 4 527 4 .25:74
Going back to the sampled time domain,
x(M)+wr) =86)+.5-5(c—A)+1.25-8(t —2-At)+.5-8(t —3-At)+.25.-6(t —4- At),

which could have been obtained by adding x(n) and w(n), being sure to keep like delta (8)
terms together.

A.2 CONVOLUTION USING THE Z TRANSFORM

Figure A.1 illustrates a simple linear system. In this example, suppose h(n) is a system that
adds the present value of x(n) to its previous value x (n — 1) and outputs it as the new value of

y(n):
y(n) =x(r)+x(n—1). (A.5)

This function h(n) is referred to as the “impulse response” for the following reason: if the
input x(n) is an impulse §(rn) then the output is 2(n). (See Ziemer, et al. [1], or Phillips and
Parr [2].) Therefore,

h(n) =48(n) + 8(n — Ar). (A.6)

Section A.2 ® Convolution Using the Z Transform 149

x(n) ¥n)
Figure A.1 A simple system diagram. The out- —————9 hin) —————
put y(n) and the input x(n) are related by the
impulse response hin).

A more mathematically concise expression of Eq. (A.5) is

1
y() =Y " x(n—i)-h(). (A7)

Equation A.7 is a discrete convolution. Notice that the index i ranges only between 0 and 1
because h(n) in Eq. (A.6) has only these two terms. This could be generalized for any upper
limit to infinity.

If, instead of an impulse, we use the values of x(n) from Eq. (A.2), y(n) is calculated
from Eq. (A.7):

yn)y=8(t)+1.5-86¢ —At)+.75-6(t —2-At)+.25.8(t — 3 Ar). (A.8)

This process was made tractable only by the small number of terms used in this example.
As an alternative approach, take the Z transforms of x(n) and A (n):

X(@=1+.5.z"+.25z7
Hz=1+z7"
Multiplying the two together gives
H@) - X@=(1+.5-27"+25-27%) - (1+z7")=1+415-27"+.75. 277 +.25- 27~

Going back to the time domain gives the y(n) of Eq. (A.8). This illustrates the powerful
convolution thearem: convolution in the discrete time domain becomes multiplication in the
Z domain. The H(z), which is the Z transform of the impulse response, is referred to as the
“transfer function.”

A.2.1 Proof of the Convolution Theorem

Starting with the definition of convolution in the discrete time domain,

ym)y =y h(n—i)-x(i), (A9)
i=0
we take the Z transform of both sides
o0 o0 o0
dYoymz =3y ke —i) - x(Dz"
n=0 n=0 i=0

and then interchange the summation signs

Y@ =) x()) h(n—i)-z"
i=0 n=0

Multiplying by z =/ - ' gives

e ¢}

Y(Z) = Zx(i)z‘i Zh(n . l) . an+i

i=0 n=0

150

Appendix A ® The Z Transform

and using the parameter m = n — i results in

oo

Y(z) = Zx(i) e Z h(m) -z~ ™.
i=0

m=—i

However, as long as k(n) is a causal function, it is zero for values of m less than zero, so we
can write

Y(@) = x@)-z7" Y h(m)-z",
i=0 m=0

which gives
Y(z) = H(2) - Y(2). (A.10)
Note that Eq. (A.1) is usually referred to as the bilateral Z Transform because it is defined
for both positive and negative n. However, we will almost always use causal functions, so the
summation will be over the positive n’s.

A.2.2 Example: A Low-Pass Filter

Suppose the impulse response in Fig. A.1 is an exponentially decaying function

h(n) = Ae "2/ p=0,1,2,3,.... (A.11)
and the input 1s the discretized unit step function
uny=1. n=0,1,2,3.... (A.12)
Since
> 1
Za—” = when a <1,
l1—a"!
n=0
H(z) can be calculated
> A
Ziho)=H@ =AY [e¥e]™ = -—— (A-13)
n=0

and similarly

Zu(m)) =U(2) =

1—z !
Or we could simply refer to a table of Z transforms, such as Table A.1. The desired convolution
is

A 1 A
Y(z2) =H(2)-U(z) = gy e S B BT Sraparv TS e prperv T

(A.14)

To get a solution in the time domain, we take the partial fraction expansion of Y (z) [3]
Y(z) = A ! =A B ¢ A.l15
(z) = | — e~ At/tag—1 ’ 1 —z-1 -4 1 — e Ot/0g—1 +] —z! ’ (A.15)

where
e~ At 1
B = ‘] — e Ot/ and C = 1 — e—A:/r,,'

The two terms in Eq. (A.15) can be taken back into the sampled time domain by finding the

Section A.2 ® Convolution Using the Z Transform 151

TABLE A.1 Transforms among the Time, Frequency, Sampled-Time, and Z Domains

Time Domain Frequency Domain Sampled-Time Domain

Z Domain
5 1 o(n) 1
ut)]—‘w u(n) 1 ‘Z,l
] -1
tut) — n-u(n) TR
(jw)~ (1-z71?
_ar, 1 ~an-Ar, 1
€ ut) o +ja) ¢ ll(ﬂ) 1- Z»le~a'At
—aAr - -1
cUsin(But) B andigygnan OOsin(B- A1)z ’
Bo-u) (o> + B2) +j2a0 - 0 ¢ sin(Bn-Aty-u(n) 1-2¢%cos(B-Ar) 77 + e . 72
_ j 1—e % cos(f-Ar)-z7!
e Ycos(Br)-u(t) ot e %A cos(Br-At)-u(n)
(o + B2) +j200 - &’ 126" cos(B-At)-z7 + 2381 . 72

time domain terms corresponding to the two Z domain terms in Table A.1, giving

A
Yo =T

[1 —e /0] 5 =0,1,2,3.... (A.16)

Equation (A.16) is an analytic solution. An alternative approach exists. Consider Eq. (A.14)
as a purely algebraic problem where we are solving for Y (z):

[1 _ (1 + e—Af/rg)Z-1 _ e—Ar/toz—Z] . Y(Z) —A

Y(2) = (14 e 270z 1Y () — e 2/0772Y (2) + A. (A.17)

Remember that the z~! is an operator that just means a delay of one. Therefore, we can take
(A.17) directly back to the sampled time domain

yn) = (14 e 270y — 1) —e 2"y —2) + A - 8(n). (A.18)

Note the following: the A term of Eq. (A.17) became A - §(n) because a constant in
the Z domain is a delta function in the time domain (Table A.1). To convince yourself this is
true, substitute §(n) for x(n) in Eq. (A.1), the definition of the Z transform. Only the n = 0
term survives, i.e., a constant. It is not obvious, but Eq. (A.18) is equivalent to Eq. (A.16).
Equation (A.16) is an analytic solution, while Eq. (A.18) is more appropriate when calculating
the solution iteratively. Here is a computer code to calculate Eq. (A.17):

delta = 1;
for (n=0; n < nmax; n++) {
y(n) = (1.+ exp(-dt/t0)*y[n-1] - exp(-dt/t0)*y[n-2] +
Axdelta;
delta = 0.;
}

There is yet another approach. In the example above, we specified the input x(n) as
u(n). This is the step function, sometimes referred to as the Heavyside function. Suppose
x(n) is left as an unspecified function. Then

Y()=H@)X (@) = 1

— e—Ar/roZ—l ’ X(Z)’

152 Appendix A ® The Z Transform

and following the same process
Y@ (1—e 2"z) = A - X(2)
Y(@)=e 207 'Y(@) + A X(2)
yn)=e "y(n— 1)+ A - x(n). (A.19)

Now the appropriate computer code is given by:

x = 1;
({ n=0; n < nmax; n++) {
y(n) = exp(-dt/t0)*y[n-1] + A*x;

}

The result is identical to that generated in the first code; however, this is the more general
form. The function x is just specified as 1, and assuming that n = O corresponds to ¢ = 0, x is
the step function. However, we could replace x with any function and it would be convolved
with the exponential. In fact, this is a simple one-pole digital filter.

A.3 CONVOLUTION OF SAMPLED SIGNALS

In dealing with discrete functions, there are actually two types of problems: (1) the discrete
functions are sequences of numbers, or (2) the discrete functions are sampled versions of
continuous functions. (Note: Electromagnetic simulation definitely uses the second kind!)
The key point separating the two is whether interval between samples is an issue. In the
previous section, we treated the first problem; now we will look at the second.

Suppose we had started with continuous functions x(¢), (#), and y(#) instead of x(n),
h(n), and y(n), respectively. The convolution in the time domain is

y() = / h(t) - x(t — 1) dr, (A.20)
0

where it has once again been assumed that the system response h(t) is causal. Suppose that in
order to simulate it on a computer, this problem had to be implemented in the discrete domain.
The finite difference approximation of the integral in Eq. (A.20) is

Y =D h(n—i)-x(i) - At (A.21)

i=0

= At Z h(n — i) - x(),

where At is the time interval between samples. Taking the Z transform of both sides

oo o0 n
Doy =AY Y hn—i)-x(iz
n=0 n=0 i=0
the development becomes identical to the previous section, except we obtain the extra At:

Y(z) = At - X(2) - H(2). (A22)

Some other important properties of the Z transform are given in Table A.2.

A.3.1 Simulation of a Two-Pole Digital Filter

In this section, we will design a digital filter equivalent to the RLC circuit in Fig. A.2a.
It will be convenient to start in the frequency domain (Fig. A.2b), from which we obtain the

Section A.3 m Convolution of Sampled Signals 153

TABLE A.2 Properties of the Z Transforms

Sampled-Time Domain Z Domain
Linearity f(n) F(2)
Time shift o-fin)+B-gm a-F(2)+ B-F(2)
Initial value fn—m) Z27"F(2)
Final value f(lim F(z)
-0
(=) }ijq(z— 1) -F(z)
2 fm —L ke
1 B n=0 1-z2 -1
ntegration
Convolution Ef(n)h(m —n) F(2)-H(z)
n=0
Complex convolution fn)-g(n) 217! §G(v)l~‘[éjv*I Sv
b
L=1mH JoOL

x(1) C=11F p— |y X

R=1kQ R
(a) (b)

Figure A.2 (a) An RLC circuit. (b) The RLC circuit with component values expressed in
the frequency domain.

following transfer function:
Y 1/jwC B 1/LC
" X(®w) joL+1/joC+ R~ 1/LC+ joR/L — w*

To get this into a recognizable form, we will use the following change of parameters:

R 6 1 2 6
o=—=.5x10 B=,——a =.866 x10
2L LC
1

= = 1.155 x 105,
vB ic = v X

The Z transform can now be read from the frequency domain expression in Table A.1:

_ p
H@ =2 [" (@2 + B2) + 200 — w2]

H(w)

(A.23)

24
e Mgin(B- At) - 77! (A4.24)

1 —2e b .cos(B - At) - 27! 4 e-2 A1
Atfirst, we may be somewhat startled to see the magnitude of the multiplier resulting from

the y term. But remember, when it is convolved with another function, it will be multiplied
by At! Since B = .866 x 10°, we will want At to be much smaller, so choose At = 107",

= 1.155 x 10°

154

Appendix A B The Z Transform

Notice now that
et =05 = 951
e = 7! = 904,
sin{B - Ar) = sin(.086) = .086,
and
cos(B - At) = cos(.086) = .9963.
Now take the convolution of #(n) with an unknown function x (n):

1155 x 105 - (0.951) - (0.086) - 1077 _,
1—2.(0.951)-(0.9963) - z-' 4 (904)z 2°
0094

—1
T 1= 1.895:-1 + .904472° X(@) (A.25)

Y2) = H@)X () - At X(z)

from which we get
Y(z) = 1.895-27'Y(z) — .9044772Y (z) + .0094 - 7' X (2)
y(n) = 1.895 - y(n — 1) — 0.9044 - y(n — 2) + 0.0094 - x(n — 1). (A.26)

Note that the z7! in the numerator of H(z) in Eq. (A.25) resulted in the x(n — 1), i.e., a delay
in the input in Eq. (A.26). The following computer code implements Eq. (A.26):

dt = le-7;
gamma = 1.155e6;
for { n=0; n< nmax; n++) {
y[n] = 2*exp(-alpha*dt) *cos(beta*dt)*y[n-1]
- exp(-2*alpha*dt) *y[n-2] + dt*gamma*sin(beta*dt)*x([n-1];

1
A.3.2 Sum of Two Parallel Systems

The diagram of a system composed of two branches is given in Fig. A.3. Assume the
two transfer functions are

Hi(w) = (A27)

Jo + aq
and

Hy(w) =

. A.28
jo+ o ()

Suppose we want to design a digital simulation of this system. The overall transfer function
of the system is given by

Y(w) = [Hi(0) + H2(@)] - X (). (A.29)
Going to the Z domain gives

Y(@)=[H @+ H:(] - X()- At

[: + 1] - X(@) - At (A.30)

1 — e—a]'Arz—l 1 — eraz-Arz»l

_ 2 _ (e-ayAt + e—arAl) Z—l
- 1 — (eﬂx]-Ar + e——ayAt) Z—l + Z—2

jl-X(z)-At,

Section A.4 & Alternative Methods to Formulate the Z Transform 155

H (o)

X(w) Y(w)

Hy(w)

Figure A.3 A system diagram consisting of two separate branches.

from which we get
Y(Z) — (e~a1-At + e—azl.AtT) Z—IY(Z) B Z_2Y(Z)
+2- AL X(2) — At (e N e) 27 X (2).

Note that two terms of the input are used: X (z) corresponding to x (nn) , and z~' X (z) corre-
sponding to x (nn-1). This does not present any particular difficulty.
Going back to Eq. (A.30), instead of cross-multiplying, suppose we define two auxiliary

(A31)

functions
At
$10) = T ra o X @
$2(2) = [eomarg 1 X(2).
So instead of the results of Eq. (A.31), we get
$1(z) = e 47718 (z) + A1 - X(2) (A.32a)
Sy(z) = e %7718 (2) + Ar - X(2) (A.32b)
Y(2) = Si1(2) + 52(2). (A.320)

The results of Eq. (A.32) present a simpler formulation. If, for instance, H; and H, were
each second-order systems, the cross multiplication similar to Eq. (A.30) would produce a
fourth-order system. It would be far better to define two second-order auxiliary parameters
and make two second-order calculations similar to (A.32a) and (A.32b). The following is the
digital simulation of the transfer function:

for (n=0; n < nmax; n++) {
51[n] = exp(-alphal*dt)*sl[n-1]1 + dt*x([n]
52 [n] = exp(-alpha2*dt)*s2([n-1] + dt*x[n]
yI[n] = sl[n] + s2[n]

}

A.4 ALTERNATIVE METHODS TO FORMULATE THE Z
TRANSFORM

We have seen examples in which problems were stated in the frequency domain and we solved
them in the sampled time domain. Our approach has been to take the partial fraction expansion
of the frequency domain expression, find the corresponding Z transforms, and solve the problem
in the Z domain. Our success depended upon the ability to manipulate the frequency domain
expression in a form that could be found in a table like Table A.1. In this section, we present
some alternatives.

156

Appendix A ® The Z Transform
A.4.1 Backward Rectangular Approximation

Fourier transform theory tells us that a multiplication by jw in the frequency domain
becomes a derivative in the time domain [1, 2]. In going from the time domain to the sampled
time domain, the derivative may be approximated by

df() . fln-ar}— flln—1) - A1)

dt At
Taking the Z transform of the right side gives

7 [[T = fin = DTT| F@)—z'F(z) 1-z""
At N At At

F(z).

Suppose this is taken one step further and the transition from the frequency domain to the Z

domain is made by simply making the replacement
1—z71!

At

As an example, the transition from the frequency domain to the Z domain for the one-pole
filter becomes

jo = (A.33)

I B At
a+jo a.|_1:AZ_”'l_a~At-|-1—z_"

(A.34)

At first glance, this does not seem in any way to represent the Z transform in Table A.1. An
approximation that is useful here and elsewhere is

1
m%e“s if 6<<l.

Utilizing this approximation Eq. (A.34) becomes

At A/ +e-A At - e @ A (A.35)
a~At+1—z*1—l—z“/(l—}—a-AI)_l—e“"A’z—l' .

There are two points worth noting. First, the factor Ar that we usually add in the convolu-
tion theorem is already there because the substitution of Eq. (A.35) is essentially “Riemann
integration,” i.e., approximating an integral by a summation at specific intervals of size Ar.
Furthermore, the amplitude has been changed by a factor of

1
14+ a- At

~ e*dvAt
Once again, if At is small, this term will be very close to 1. This means that more accuracy
can be obtained by making At smaller.

The practical reasoning for this approach is a little clearer if we go back to the RLC
circuit of Fig. A.2, which had the transfer function

2
@y

H = ,
() wg + jw2dgwy — @?

where

wy=1/LC 8o = R/2Lwy.

Section A4 ® Alternative Methods to Formulate the Z Transform 157

Instead of having to transform this to the form in Table A.1, replace each jw with (1—z7'/At):

g

1—z! 11—z ?
wé + <—-At) 280w + (w—_—At)

WAL
WA+ (1= z7Y) 280wp - At + (1 — 2771 4+ 272)

H(z) =

Wi AL?
(W2 A2+ 280wg - At 4+ 1) — 2(1 +8wp - Aty z7 + 272

The resemblance to the Z transform of Table A.1 is not as obvious, but it is there.
Figure A.4 shows the impulse response using Eq. (A.36) compared to the results obtained
from Eq. (A.26). These plots were made using a time step of 0.1 microseconds. If the time
step is reduced to .01 microseconds, the results correspond almost exactly.

0.06 T T T T T
0.04 Analytic]
X % Direct Z
0.02 .,' O O lstorder J
0%
1 1 1 J— L
-0.02 0 I 5 3 3 < p

Microseconds

Figure A.4 Impulse response of the second-order RLC circuit as calculated analytically
(-), by the direct Z transform formulation (x), and by the first-order backward
rectangular approximation (0).

A.4.2 Trapezoidal Approximation (Bilinear Transform)

Equation (A.33) can be improved upon by the following transformation:

, 21—z
Jo => —

. A37
At l+z7! ()

This is referred to as the “bilinear transform.” While the use of Eq. (A.33) can be thought of as
approximating the time domain convolution integral with rectangular step Reimann integration,
Eq. (A.37) represents trapezoidal integration. Equation (A.37) is preferred by theoreticians in
the signal processing field because it is unconditionally stable, whereas (A.33) is not [3]. From
a somewhat more intuitive view, it is more accurate because trapezoidal integration is more
accurate than rectangular integration. The disadvantage is obvious: the order of the system in
the Z domain is doubled!

158 Appendix A B The Z Transform

As a simple example, take the Z transform of the one-pole function using the bilateral
transform [4]:

1 1 _ (14+z7")-Ar
a+jo L2 1—z7" (I+z) a-Ar4+2-(1-271)
a —_—————
Arl+zt (A.38)

1 -l)._L

3 (1+z7") - Ar _(t+z Yt A

T (@ A+ D+ (- Ar—2)z 2= A
24+ a- At

Figure A.5 compares the first-order formulation of Eq. (A.35) with the new bilateral formulation
from Eq. (A.38) and with the analytic formulation of Eq. (A.11). Clearly Eq. (A.38) is more
accurate, after the first pulse. (Notice that 1 + z~! in the numerator of Eq. (A.38) means that
the impulse response is calculated by averaging the impulse over the first two time steps.)

T T 3 T

08 Analytic .
x x st order

06 |- X O Bilinear

04 +
02 F
7
O 1 1 H |
0 0.5 1 1.5 2 2.5

Microseconds

Figure A.5 Impulse response of the single pole filter as calculated analytically (-), by the
first-order backward rectangular approximation (x), and by the second-order
bilateral approximation (0).

The different approaches used to change from the Fourier domain to the Z domain can
be summarized as follows: the direct transform, i.e., converting from terms in the frequency
domain to those in the Z domain by looking them up in a table, is the most accurate and also
gives the lowest-order expression in the Z domain. The disadvantage of the direct transform is
that it often requires a partial fraction expansion and other mathematical manipulations to put
it into terms that can be found in a table. For third- and higher-order systems, this is not trivial.
Using direct substitution via either the backward approximation or the bilateral transform is
usually easier; however, these are approximations. The bilateral transform is better than the
backward approximation, at the cost of increased complexity.

Most authors describe these transforms starting from the Laplace domain [3, 4]. The
concepts are the same.

A.5 SUMMARY

The Z transform plays the same role in discrete time that the Laplace and Fourier transforms
play in continuous time. As shown earlier in this appendix, it can be used to analyze discrete
time equations or develop iterative solutions to discrete time equations. It has even found
application in electromagnetic simulation when modeling complicated media [5-8].

References 159

(1]

(2]

(31
(4]

(3]

{6]

(7]

(8]

REFERENCES

R. E. Ziemer, W. H. Tranter, and D. R. Fannin, Signals and Systems: Continuous and Discrete. New
York: Macmillan, 1983.

C. L. Phillips and J. M. Parr, Signals, Systems, and Transforms. Englewood Cliffs, NJ: Prentice-Hall,
1995.

E. P. Cunningham, Digital Filtering: An Introduction. Princeton, NJ: Houghton Mifflin, 1992.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,
1975.

D. M. Sullivan, A frequency-dependent FDTD method using Z transforms, /EEE Trans. on Antennas
and Propagat. vol. AP-40, Oct. 1992, pp. 1223-1230.

D. M. Sullivan, Z transform theory and the FDTD method, JEEE Trans. on Antennas and Propagat.
vol. AP-44, Jan. 1996, pp. 28-34.

D. M. Sullivan, Digital filtering techniques for use with the FDTD method, Int. J. Numer. Model.,
vol. 12, 1999, pp. 93~-106.

D. M. Sullivan, Nonlinear FDTD formulations using Z tranforms, IEEE Trans. Microwave Theory
and Tech., vol. MTT-43, March 1995, pp. 676-682.

A

Absorbing boundary conditions (ABCs), viii
one-dimensional simulation, 4-5
perfectly matched layer, viii, 51-57, 83-85
Acoustic FDTD formulation, 133-136
Antennas
aperture antenna, calculating far field of,
118-121
microstrip antenna, simulation, 109-113
Aperture antenna, calculating far field of,
118-121
Auxiliary differential equation method, 26-27

B
Backward rectangular approximation, Z
transform, 156-157
Bilinear transform, 157-158
Boundary conditions. See also Absorbing
boundary conditions
microstrip antenna, simulation, 111-112

c

Cell size, one-dimensional simulation, 8-9
Convolution

of sampled signals, 152155

using Z transform, 148-152
Convolution theorem, proof of, 149-150
Courant condition, 4

D

Debye formulation, 23

Dielectric cylinder, plane wave impinging on,
59-61

Index

Dielectric medium, propagation in, 56
Dielectric sphere, plane wave impinging on,
85-89

F

Far field, of aperture antenna, calculating,
118-121
Finite-difference time-domain (FDTD) method,
vii
absorbing boundary conditions, viii, 45,
51-57, 83-85
acoustic formulation, 133-136
aperture antenna, calculating far field of,
118-121
auxiliary differential equation method, 26-27
frequency-dependent media, 23-26
frequency domain output, 21-23
Lorentz medium, 31-34
microstrip antenna, simulation, 109-113
one-dimensional simulation, 1-18, 1947
perfectly matched layer (PML), viii, 51-57,
83-85
of Schroedinger equation, 136-140
stability and, 4
three-dimensional simulation, 79-108
two-dimensional simulation, 49-78
unmagnetized plasma, 28-30
Flux density, one-dimensional simulation, 19-21
Free space formulation
one-dimensional simulation, 14
three-dimensional simulation, 79-82

161

162

Frequency-dependent media, 23-26
Frequency domain output, one-dimensional
simulation, 21-23

H

Heavyside function, 151

Incident array, 58

K
Kinetic energy, 138

L

Lorentz formulation, one-dimensional
simulation, 31-34
Low-pass filter, 150-152

Microstrip antenna, simulation of, 109-113

0

One-dimensional simulation, 1-18, 19-47
absorbing boundary condition, 4-5
auxiliary differential equation method, 26-27
cell size, 8-9
free space formulation, 14
frequency-dependent media, 23-26
frequency domain output, 21-23
Lorentz medium, 31-34
propagation in dielectric medium, 5-6
propagation in a lossy dielectric medium, 8-9
reformulation using flux density, 19-21
simulating different sources, 7-8
unmagnetized plasma, 28-30
using Z transforms, 27-30

P
Perfectly matched layer (PML), viii
three-dimensional simulation, 83-85
two-dimensional simulation, 51-57
Plane wave
on dielectric cylinder, 59-61
on dielectric sphere, 85-89
Potential energy, 139

Index

Propagation
in dielectric medium, 5-6
in lossy dielectric medium, 8-9

S
Scattered field, 58
Simulation
FDTD. See Finite-difference time-domain
(FDTD) method
of Schroedinger equation, 136-140
of two-pole digital filter, 152-154

T

Three-dimensional simulation, 79-108
free space formulation, 79-82
perfectly matched layer, 83-85
total/scattered field formulation, 85-89

Total field, 58

Total/scattered field formulation
three-dimensional simulation, 85-89
two-dimensional simulation, 58—63

Trapezoidal approximation, Z transform,

157-158

Two-dimensional simulation, 49-78
perfectly matched layer (PML), 51-57
total/scattered field formulation, 58-63

Two-pole digital filter, simulation, 152-154

U
Unmagnetized plasma, 28-30

Y
Yee cell, 79

z

Z transform, viii-ix, 158
alternative methods of formulation, 155-158
backward rectangular approximation,
156-157
bilinear transform, 157158
convolution using, 148-152
definition of, 147-148
one-dimensional simulation, 27-30
trapezoidal approximation, 157-158

FDID_l.l.c
FDID_I.2.c
FDID_l.3¢
FDID_l.4.c
FDID_1.5.c

FDID_2.1.c
FDID_2.2.c
FDID_23.c

FD2D_3.1.c
FD2D 3.2.c
FD2D_3.3.c
FD2D_3.4.c

FD3D_4.1.c
FD3D 4.2.c

FD3D_patch.c
FD3D_far field.c

USl.c
SE.c

List of C Programs

One-dimensional free space 13
Boundary conditions added 15
Dielectric medium added 16
Sinusoidal source 17

Lossy dielectric medium 18

Flux density formulation 36
Fourier Transform added 39
Frequency dependent material ~ 43

Two-dimensional free space 64
PML added 67

Plane wave source 72
Scattering from a cylinder 75

Three-dimensional free space 90
Plane wave and PML 94

Patch antenna simulation 122
Aperture antenna simulation 131

One-dimensional acoustic 141
One-dimensional Schroedinger 144

163

About the Author

Dennis M. Sullivan graduated from Marmion Military Academy in Aurora, Illinois, in 1966
with the distinction of being the only cadet private in the graduating class. He spent the
next three years in the army, including a year as an artillery forward observer with the 173rd
Airborne Brigade in Vietnam. He graduated from the University of Illinois with a B.S. in
electrical engineering in 1973, and in 1974 entered the University of Utah as a double major
in electrical engineering and ballet. After two years, the Ballet Department encouraged him
to vigorously pursue his engineering studies. Over the next ten years, he worked and studied
in the Salt Lake City area, at one time supporting his engineering studies by working as a
professional actor. In 1987 he finished his doctorate in electrical engineering.

From 1987 to 1993, he was a research engineer with the Department of Radiation On-
cology at Stanford Medical School, where he developed a treatment planning system for
hyperthermia cancer therapy. Since 1993 he has been on the electrical engineering faculty at
the University of Idaho. His main interests are electromagnetic and quantum simulation. In
1997 his paper, “Z Transform Theory and the FDTD Method,” won the R. P. W. King Award
from the IEEE Antennas and Propagation Society for the “‘Best Paper by a Young Investigator”
(at age 48).

Mr. Sullivan’s outside interests include street hockey, water polo, and scuba. But above
all, he is still trying to get his ballet career going.

165

ELECTRICAL ENGINEERING

ELECTROMAGNETIC SIMULATION
USING THE FDTD METHOD

A volume in the IEEE Press Series on RF and Microwave Technology
Roger D. Pollard and Richard Booton, Series Editors

You can immediately have the power to perform electromagnetic simulation. If you have a
fundamental understanding of electromagnetic theory and the knowledge of at least one high-
level computer language, you can begin writing simple electromagnetic simulation programs
after reading the first chapter of this book.

Electromagnetic Simulation Using the FDTD Method describes the power and flexibility of the
finite-difference time-domain method as a direct simulation of Maxwell's equations. The FDTD
method takes advantage of today's advanced computing power because its computational
requirements increase linearly with the size of the simulation problem.

This book begins with a simple one-dimensional simulation, and progresses to a three-dimensional
simulation. Each chapter contains a concise explanation of an essential concept and instruction
on its implementation into computer code. Projects that increase in complexity are included,
ranging from simulations in free space to propagation in dispersive media. Peripheral topics that
are pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform,
are also covered.

Electromagnetic Simulation Using the FDTD Method is written for anyone who would like to
learn electromagnetic simulation using the finite-difference time-domain method. Appropriate
as both a textbook and for self-study, this tutorial-style book will provide all the background vou
will need to begin research or other practical work in electromagnetic simulation.

About the Author

Dennis M. Sullivan, award-winning author and researcher, has done extensive work in several
areas of simulation, including EM dosimetry, hyperthermia cancer treatment, nonlinear optics,
and quantum semiconductors. Dr. Sullivan has developed classes in electromagnetic simulation,
nonlinear optics, and wavelets. He has taught undergraduate and graduate courses in several
areas, such as system theory and electromagnetics. Presently, he is an associate professor of
electrical engineering at the University of Idaho, Moscow.

In 1997 Dr. Sullivan won the R. P. W. King Award from the IEEE Antennas and Propagation
Society for the “Best Paper by a Young Investigator” for his paper “Z Transform Theory and FDTD
Method”. He is a senior member of the IEEE (Institute of Electrical and Electronics Engineers),

IEEE Press
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331 U.S.A. ISBN 0-7803-4747-1

+1 800 678 IEEE (Toll-free in U.S. and Canada)

or +1 732 981 0060 an0og

Shop at the IEEE store! Visit http://www.ieee.org/ieeestore. “
9 "780780"347472

IEEE Order No. PC5400

