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To the memory of Anders Bondeson



Foreword

The material in this book was developed for an undergraduate course in com-
putational electromagnetics, initially given by Professor Anders Bondeson at
Chalmers University of Technology, Göteborg, Sweden. It has been used in
various forms for almost a decade and it has fostered a number of engineers
who today work in academia and industry with computational electromagnet-
ics as a main tool. During this time, we never managed to find any textbooks
suitable for an introductory course on the subject matter, so we eventually
decided on compiling our material into a book.

On the 20th of March 2004, before the book was completed, Professor
Anders Bondeson passed away, suddenly and unexpectedly. This caused shock
and deep sorrow to all of us who worked with him, and naturally interrupted
the creation of the book. Nevertheless, we felt we should complete the book,
and we would like to thank the publisher Springer for all the understanding,
support, and encouragement during the difficult time after the passing of our
coauthor, colleague, friend and former advisor. In particular, we would like
to thank Achi Dosanjh, Jamie Ehrlich, Yana Mermel, Brian Halm, and Frank
McGuckin at Springer. We are also grateful to the anonymous reviewers who
contributed with valuable comments on the manuscript.

We dedicate this book to the memory of Anders Bondeson.

Göteborg, Thomas Rylander
May 2005 Pär Ingelström



Preface

The aim of this book is to provide an introduction to computational electro-
magnetics (CEM) with a focus on the most popular techniques used in con-
temporary research and development projects. The focus is on the solution
of Maxwell’s equations by means of finite difference methods, the finite ele-
ment method (FEM), and the method of moments (MoM). The book treats
the solution of both static and dynamic problems, where also quasi-static
problems are discussed to some extent. Both time-harmonic and transient
formulations are employed for the dynamic problems. We feature convergence
characteristics, error analysis (through extrapolation), and stability analysis
of the computational techniques. Some versions of FEM are directly related to
the corresponding finite difference schemes, which provides useful insight into
some of the underlying aspects of the discretization of Maxwell’s equations. A
collection of MATLAB programs is included to demonstrate the implementa-
tion and performance of the numerical methods. The MATLAB programming
language is chosen, since it offers succinct code, easy-to-use linear algebra rou-
tines, and good visualization tools.

The introductory character of the text makes it useful as a textbook in an
undergraduate course on computational electromagnetics. In fact, this book
is based on the material developed for and used in an undergraduate CEM
course at Chalmers University of Technology, Göteborg, Sweden. The prereq-
uisites for a course based on this book are basic electromagnetic field theory,
numerical analysis, and programming typically included in the first year’s
training in, for example, engineering physics and electrical engineering. The
book also works well for an introduction to CEM at an early graduate level.
The use of computer projects can easily be used to adjust the length of a
course that employs this book. An electrical engineer can use this book to
achieve a sufficiently good understanding of CEM to exploit commercial soft-
ware for reliable and efficient design of real-world electromagnetic devices.
Since CEM is a multidisciplinary topic, this book may also interest applied
mathematicians, theoretical electromagnetics researchers, and others who are
working in areas related to CEM.



xii Preface

The book starts with a brief introduction to CEM and Maxwell’s equations
in Chapter 1. The concepts of numerical error, resolution, convergence, and
extrapolation are presented in Chapter 2 by means of an electrostatic exam-
ple. Chapter 3 introduces some basic finite difference approximations that are
often used in CEM. Again, an electrostatic example is exploited to demon-
strate the use of finite differences, and the convergence of the capacitance for
a problem with sharp corners is studied. This chapter also treats some charac-
teristics of finite differences applied to complex exponentials, which provides
the foundation for subsequent discussions on numerical dispersion, spurious
modes, and staggered grids. Chapter 4 develops some different views on eigen-
value problems for Maxwell’s equations. After a short introduction with some
background theory, a one-dimensional eigenvalue problem is studied when
discretized by finite differences. In the corresponding time-domain eigenvalue
calculation that follows, we exploit these results for a stability analysis, and
the findings are also related to numerical dispersion. The theoretical treatment
is supported by MATLAB examples. The output from the time-domain com-
putations is analyzed by means of its Fourier transform, and a complementing
technique based on the Padé approximation is also discussed.

At this point, we are well equipped for the introduction of the finite-
difference time-domain (FDTD) scheme, which is the topic of Chapter 5.
A review of the one-dimensional wave equation discretized by finite differ-
ences demonstrates the effects of numerical dispersion and stability in the
time domain. This is followed by the corresponding FDTD scheme and its
three-dimensional counterpart. The eigenfrequencies of a brick-shaped three-
dimensional cavity resonator are computed by an example implementation in
MATLAB. Next, the FDTD scheme is interpreted in terms of the Maxwell’s
equations on an integral form and it is shown that the FDTD scheme pre-
serves the condition of solenoidal magnetic flux density in the time-stepping
procedure. Also, a dispersion analysis is provided, and based on these re-
sults, necessary resolutions are indicated by rules of thumb. The chapter on
the FDTD scheme ends with brief discussions on common techniques used in
real-world FDTD computations such as the perfectly matched layers (PML)
for open region problems and the near-to-far-field transformation for the com-
putation of scattering and radiation properties.

In Chapter 6, the FEM is introduced by means of a recipe for Galerkin’s
method. Then, Galerkin’s method is used for the Helmholtz equation in one
and two dimensions, and the treatment includes a discussion on the Dirichlet,
Neumann, and Robin boundary conditions. Next, a detailed description of the
procedures normally used in the implementation of FEM is presented: elemen-
twise integration of basis functions, assembling procedure, and management
of unstructured meshes in practice. The account is supported by MATLAB
programs, and the capacitance problem from Chapter 3 is revisited by means
of both uniform grid refinement and adaptive techniques. The concept of the
FEM for the first-order system of Maxwell’s equations is developed for one-
dimensional problems, and the resulting discrete representation is compared to
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the corresponding finite difference scheme. These discussions naturally lead to
the use of edge elements for the curl-curl equation for the electric field, which
is the next topic in the FEM chapter. First, rectangular edge elements are
discussed, and then, their relations to the finite differences are provided. A
resonator discretized by a 2×2-element grid is used as a detailed example to
illustrate some of the characteristic properties of edge elements, which is fol-
lowed by a similar and well-resolved eigenvalue problem. Next, edge elements
on triangles are introduced and supplemented by a discussion on and imple-
mentation for their use in practice. Also, time-dependent problems treated by
FEM are discussed, and the reader is confronted with the Newmark scheme
for unconditionally stable time stepping. At this point, we use the FEM for
the treatment of magnetostatics and eddy current problems in 2D, which is
followed by an outline on techniques for the corresponding 3D problems. The
chapter ends with variational techniques, their relation to Galerkin’s method,
and, finally, a variational method for Maxwell’s equations.

The third and last technique is the MoM, and it is presented in Chapter 7.
The description of the MoM begins with electrostatics: the integral equation
formulation (with the Green’s function) and its solution by means of FEM
techniques. This presentation is complemented with a capacitance problem
in an unbounded two-dimensional region, and a MATLAB implementation
is used for a convergence study by means of uniform and adaptive grids.
Next, the MoM is applied to electromagnetic scattering problems, and again,
the Green’s function and its related electric field integral equation (EFIE)
is derived. The choice of test and basis functions is discussed before a brief
presentation of the magnetic field integral equation (MFIE) and the combined
field integral equations (CFIE). The chapter on MoM is ended by scattering
from thin wires, which is treated by means of the EFIE. Hallén’s equation
is derived, and the valid approximation of its kernel is discussed before a
MATLAB implementation and some numerical results are presented.

Finally, Chapter 8 provides a summary and overview of the material in
the book. A system of fixed spatial extent is used to study how the computa-
tional requirements scale with the frequency. The FDTD, FEM, MoM, and a
number of similar techniques are compared in this sense. The other differen-
tial equation solvers mentioned are the finite-volume time-domain scheme, the
transmission line method, and the finite integration technique. The additional
aspects of integral equation solvers involves the fast multipole methods, some
other fast methods, and a brief discussion on schemes for time-domain inte-
gral equations. Finally, a short note on hybrid methods ends the chapter. This
chapter also includes a number of references to the literature, which provides
the reader with some additional starting points for further studies of CEM.
Other powerful tools in CEM are included in appendices, where information
on iterative solvers and multigrid methods can be found.

To our knowledge, the open literature is scarce on books that present
contemporary CEM in an introductory manner that is appropriate for use in
undergraduate education. This book is intended to provide such material and
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prepare the reader for the more advanced literature on CEM. Apart from this
text, the book by Davidson [21] and the book by Sadiku [65] are some of the
very few other examples with such an aim. For more experienced readers, there
is a number of good monographs that treat one or a few techniques. However,
these may not be appropriate for classroom use. The books by Taflove et
al. [75, 77, 76] on the FDTD scheme are indeed excellent and good accounts
on the FEM are given by Jin [38, 39] and Silvester and Ferrari [70]. Peterson’s
book [51] on the MoM and FEM (and some FDTD) is also well worth reading.
We would also like to mention the FEM book by Monk [46], which gives a
more mathematical account of the FEM for Maxwell’s equations. Chew et
al. [19] published a book on fast and efficient algorithms in computational
electromagnetics, which deals with a variety of methods in CEM.

The MATLAB implementations listed in this book are available for down-
load from the URL

http://ct.am.chalmers.se/edu/books/cem/

We would appreciate it if errors found are brought to our attention. These
will be posted on the website above.
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Introduction

Our modern society relies on electromagnetic devices and systems: television,
radio, internet, microwave ovens, mobile telephones, satellite communication
systems, radar systems, electrical motors, electrical generators, computers,
microwave filters, lasers, industrial heating devices, medical imaging systems,
electrical power networks, transformers and many more. Each of these exam-
ples is used in a broad range of situations. Radar, for example, is employed for
fire-control, weather detection, airport traffic-control, missile tracking, missile
guidance, speed control/enforcement, and traffic safety. Undoubtedly, electro-
magnetic phenomena have a profound impact on contemporary society.

The understanding of electromagnetic phenomena is treated by electro-
magnetic field theory: the study of interactions between electric charges at
rest and in motion. (Electric charges in motion are often referred to as elec-
tric currents.) Electromagnetic field theory, or electromagnetics for short, de-
scribes the interactions between electric charges by Maxwell’s equations: a
system of coupled partial differential equations that relate sources (charges
and currents) to the electromagnetic fields and fluxes. Analytical solutions in
closed form are known for only a very limited number of special cases, which
hardly ever are directly applicable to real-world applications. Instead, more or
less crude approximations have been employed in various attempts to bridge
the gap between theory and advanced applications.

The advent of computers has changed our ability to solve Maxwell’s equa-
tions in a profound way. Ahead of the computer’s time, it was advantageous
to use considerable effort to avoid computations, often at the price of lengthy
analytical manipulations and severely reduced applicability. With powerful
computers at hand, however, it is more attractive to use analytically simple
methods that may require large amounts of computation. Such computational
methods can treat large classes of problems without modifications of the com-
puter algorithms or programs. The part of electromagnetics that deals with
computational methods is known as computational electromagnetics (CEM).

It is of significant importance for modern engineers and scientists who work
in the area of electromagnetics to have a good command of the computational



2 1 Introduction

tools developed for electromagnetics problems. CEM allows for a faster and
cheaper design process, where the use of expensive and time-consuming pro-
totypes is minimized. These tools can also provide crucial information and
understanding of a device’s electromagnetic operation, which may be difficult
or even impossible to achieve by means of experiments or analytical calcu-
lations. Automation of computations allows for extensive parametric studies.
It is only relatively recently that optimization by computation has been used
for electromagnetic design problems. In times of a rapid pace of development,
analysis and optimization of electromagnetic devices by CEM tools may be
crucial for maintaining competitiveness.

Today, there is a broad selection of commercially available computer pro-
grams that provide implementations of popular and powerful CEM algorithms.
These programs can handle many engineering and research problems. How-
ever, a well-informed choice and correct use of software for reliable results
and conclusions require good knowledge of CEM. Furthermore, problems that
extend beyond the applicability of commercially available software packages
demand modifications or additions that again rely on a good command of
CEM.

1.1 Computational Electromagnetics

CEM is a young discipline. It is still growing, in response to the steadily
increasing demand for software for the design and analysis of electrical devices.
Ten years ago, most electrical devices were designed by building and testing
prototypes, a process that is both costly and slow. Today the design can
be made faster and cheaper by means of numerical computation. CEM has
become a main design tool in both industrial and academic research.

There are numerous application areas for CEM, and here we mention a few.
In electric power engineering, computation is well established for the analysis
and design of electrical machines, generators, transformers, and shields. In
applications to microwaves, CEM is a more recent tool, but it is now used for
designing microwave networks and antennas, and even microwave ovens. The
analysis and optimization of radar cross sections (RCS) for stealth devices
has been the driving force for the development of many new techniques in
CEM. The clock frequencies of modern microprocessors are approaching the
region where circuits occupy a large fraction of a wavelength. Then ordinary
circuit theory no longer applies and it may be necessary to solve Maxwell’s
equations to design smaller and faster processors. The increased demand for
electromagnetic compatibility (EMC) also poses new computational problems.

The performance of CEM tools is increasing rapidly. One reason for this is
the steady growth of computer capacity over half a century. Another equally
important reason is improvements in algorithms. The purpose of this book
is to give an introduction to the most frequently used algorithms in CEM.
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These are finite differences (FD) (usually in the time domain), the finite el-
ement method (FEM), and the boundary element method (BEM), which is
usually referred to, for historical reasons, as the method of moments (MoM).
Finite difference methods are more or less straightforward discretizations of
Maxwell’s equations in differential form, using the field components, or the
potentials, on a structured grid of points as unknowns. Finite differences in
general, and the finite-difference time-domain (FDTD) method in particular,
are very efficient and require few operations per grid point. The FDTD is one
of the most widespread methods in CEM, and it can be applied to a large vari-
ety of microwave problems. One drawback of finite difference methods is that
they work well only on uniform Cartesian (structured) grids, and typically
use the so-called staircase approximation of boundaries not aligned with a the
grid. Finite element methods in which the computational region is divided
into unstructured grids (typically triangles in two dimensions and tetrahedra
in three dimensions) can approximate complex boundaries much better, but
are considerably slower in time-domain calculations. The FEM is mainly used
for time-harmonic problems, and it is the standard method for eddy current
calculations. The MoM discretizes Maxwell’s equations in integral form, and
the unknowns are sources such as currents or charges on the surfaces of con-
ductors and dielectrics. This method is advantageous for problems involving
open regions, and when the current-carrying surfaces are small. The MoM is
often applied to scattering problems. We will discuss how the three types of
methods, FD, FEM, and MoM, can be applied to different electromagnetics
problems, in both the time domain and the frequency domain (time-harmonic
fields and currents). Some other methods will be mentioned in Chapter 8.

1.2 Maxwell’s Equations

Before discussing how to solve electromagnetics problems, we will first write
down Maxwell’s equations in the form in which they can be found in most
textbooks on electromagnetics, see e.g. [18, 30, 4]. They are usually stated as
Ampère’s law

∇ × H = J +
∂D

∂t
, (1.1)

Faraday’s law

∇ × E = −∂B

∂t
, (1.2)

Poisson’s equation
∇ · D = ρ, (1.3)

and the condition of solenoidal magnetic flux density

∇ · B = 0. (1.4)
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Here H is the magnetic field, J is the current density, D is the electric
displacement, E is the electric field, B is the magnetic flux density, ρ is the
electric charge density, and t denotes the time variable. Moreover, we have

H =
B

µ0
− M , D = ε0E + P ,

where µ0 = 4π · 10−7 Vs/Am is the free-space magnetic permeability, ε0 =
1/(c2

0µ0) ≈ 8.854 · 10−12 As/Vm is the free-space electric permittivity, M is
the magnetization and P is the polarization. In vacuum, the speed of light is
c0 = 299 792 458 m/s.

In this book, we will restrict attention to linear, isotropic and nondispersive
materials for which the constitutive relations

B = µH, D = εE

hold with frequency-independent electric permittivity ε and magnetic perme-
ability µ. The permittivity is often written as ε = ε0εr, where εr is called the
relative permittivity. Similarly, the permeability is often written µ = µ0µr

where µr is called the relative permeability.
For electrically conductive materials, an electric field causes a current den-

sity
J = σE

where σ is the electric conductivity.

1.2.1 Boundary Conditions

Consider the situation in which one medium, characterized by ε1 and µ1,
shares an interface with another medium, characterized by ε2 and µ2. We use
the subindices 1 and 2 to denote quantities that are associated with media
1 and 2, respectively. At the interface, the tangential and normal fields must
satisfy so-called boundary conditions, which are consequences of Maxwell’s
equations. For example, (1.4) states the condition of solenoidal magnetic flux
density, and Gauss’s theorem

∫
V

∇ · B dV =
∮

∂V

B · n̂ dS, (1.5)

where ∂V is the surface enclosing the volume V , applied to this conservation
law yields the boundary condition

n̂ · (B2 − B1) = 0,

where n̂ is a unit normal to the interface that points into medium 2. Similarly,
Poisson’s equation (1.3) gives

n̂ · (D2 − D1) = ρs,
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where ρs is the surface charge density on the interface. Stokes’s theorem
∫

S

(∇ × E) · dS =
∮

∂S

E · dl, (1.6)

where ∂S is the curve enclosing the surface S, applied to Faraday’s law (1.2)
yields

n̂ × (E2 − E1) = 0

and, analogously, Ampère’s law (1.1) gives

n̂ × (H2 − H1) = Js,

where Js is the surface current on the interface between the two media.
The electric field inside a perfect electric conductor (PEC) is zero and,

consequently, also the electric displacement. We get the boundary conditions
n̂ · D2 = ρs and n̂ × E2 = 0 when medium 1 is a PEC. At finite frequencies,
Faraday’s law yields that the magnetic flux density is zero inside a PEC
(which also applies to the magnetic field) and we get the boundary conditions
n̂ · B2 = 0 and n̂ × H2 = Js when medium 1 is a PEC.

Another kind of boundary conditions, which do not correspond to any
physical boundary, are absorbing boundary conditions (ABC). These are used
to truncate the computational domain in case of open region problems and
can be implemented using a variety of techniques. The most popular ABC is
the perfectly matched layer (PML), which will be described in Section 5.3.1.

For a more detailed discussion on boundary conditions, the reader is re-
ferred to a textbook on electromagnetics; see, e.g., [18, 30, 4].

1.2.2 Energy Relations

For Maxwell’s equations, it is useful (and in some cases essential) to regard
the energy as being stored in the fields. For electrostatics, we have the energy
density we = ε|E|2/2 and the work to assemble a static charge distribution is

W =
1
2

∫
ε|E|2dV. (1.7)

There are alternative expressions for the evaluation of W in terms of the
charge distribution and the electrostatic potential. In magnetostatics, the
corresponding energy density is wm = |B|2/(2µ). For a time-varying electro-
magnetic field, we have the energy density we +wm and this quantity is often
used to form energy conservation expressions that involve the electromagnetic
phenomena.
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1.2.3 Time Evolution

Before discussing schemes for evolving Maxwell’s equations (1.1)–(1.4) in time,
we must note that they are not all independent. For example, Poisson’s equa-
tion (1.3) is best viewed as an initial condition for the charge density. To see
this, take the divergence of Ampère’s law, which gives

∂

∂t
∇ · D + ∇ · J = 0. (1.8)

Replacing ∇ · J from the equation of continuity for electric charge

∂ρ

∂t
+ ∇ · J = 0,

we see that the divergence of Ampère’s law (1.8) is the time derivative of
Poisson’s equation ∇ · D = ρ. Therefore, if the initial fields satisfy Poisson’s
equation, time advancement of Ampère’s law together with the conservation of
charge will ensure that Poisson’s equation holds at later times. Similarly, the
divergence of Faraday’s law shows that the time derivative of ∇ · B vanishes,
so ∇ · B = 0 need only be given as an initial condition. Thus, ∇ · B = 0 can
be seen as a restriction on valid initial conditions for Faraday’s law.

We conclude that the time evolution of the fields is completely specified
by

ε
∂E

∂t
= ∇ × H − J , (1.9)

µ
∂H

∂t
= −∇ × E. (1.10)

This form is used in the FDTD method to advance E and H in time, as will
be described in Chapter 5. The initial conditions for this set of equations are
the electric and magnetic fields E and H, and they must satisfy (1.3) and
(1.4).

The system of two first-order equations can be combined to a single second-
order equation for E:

ε
∂2E

∂t2
+ ∇ × 1

µ
∇ × E = −∂J

∂t
, (1.11)

which is often referred to as the curl-curl equation or the vector wave equation.
We will use Maxwell’s equations in this form in Chapter 6 on the FEM. The
initial conditions that need to be specified for (1.11) are the electric field and
its time derivative. In particular, FEM is generally used to solve the frequency
domain form of the curl-curl equation, sometimes referred to as the vector
Helmholtz equation, where exp(jωt) time dependence is assumed, so that the
time derivative ∂/∂t is replaced by jω, where j is the imaginary unit and ω
is the angular frequency.
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The full Maxwell equations (1.9)–(1.10) or (1.11) are commonly used for
microwave problems, such as antennas and microwave circuits. One of the dif-
ficulties one has to face in solving these equations is that the computational
domain may extend over many wavelengths in all three coordinate directions,
and that consequently the required number of unknowns needed for an accu-
rate computation may be very large. To complicate matters, one may have to
deal with complex three-dimensional (3D) geometry, including details, such as
wires, that are much smaller than a wavelength. Moreover, microwave prob-
lems often involve open regions, and to model this, the computational domain
has to be truncated by means of absorbing boundary conditions.

1.2.4 Dispersion Relation and Wave Velocities

The propagation of electromagnetic waves is often characterized in terms
of the dispersion relation, which relates spatial and temporal variation of
a monochromatic solution by means of its wavevector k and frequency ω, re-
spectively. Often, we deal with nondispersive situations where the frequency
is directly proportional to the wavenumber k. When the frequency is not pro-
portional to the wavenumber, we have dispersion and this occurs physically
for wave propagation in some media and waveguides. However, the discretiza-
tion process may also cause dispersion, which is often referred to as numerical
dispersion. In general, dispersion implies that a wave packet containing sev-
eral different spatial frequencies will change shape as it propagates. Naturally,
it is important that the numerical dispersion is small in comparison to the
physical dispersion of interest.

To provide a brief introduction to dispersion and related issues, we use
(1.11) to deduce the corresponding 1D wave equation:

∂2

∂t2
E(z, t) = c2 ∂2

∂z2 E(z, t), (1.12)

where the transverse electric field is denoted E(z, t). Here, the speed of light c
in the medium is constant. The exact solutions of (1.12) on an infinite interval
have the form

E(z, t) = E+(z − c t) + E−(z + c t), (1.13)

where E+ and E− represent waves traveling in the positive and negative z-
directions, respectively. This solution typically involves a range of frequencies
and, next, we consider one of these, i.e. the monochromatic case.

To obtain the dispersion relation for the 1D wave equation, we substitute
E = exp(jωt − jkz) in (1.12), and then divide both sides by exp(jωt − jkz),
which gives ω2 = c2k2. Consequently, the dispersion relation for the 1D wave
equation is

ω = ck. (1.14)

The angular frequency ω is a linear function of the wavenumber k and this
implies that all frequency components of a transient wave propagate with the
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same velocity. The phase velocity vp, defined as the velocity of a constant
phase surface, satisfies (d/dt)(ωt − kz) = ω − kvp = 0, which gives

vp = ω/k. (1.15)

Next, we consider the superposition of the two signals EA = exp[j(ω−∆ω)t−
j(k −∆k)z] and EB = exp[j(ω +∆ω)t− j(k +∆k)z]. The sum wave EA +EB
can be written as a carrier wave exp(jωt−jkz) times a slowly varying envelope
which is 2 cos(t∆ω−z∆k). We see that the propagation speed of the envelope
is ∆ω/∆k and, in the limit where ∆ω and ∆k become small, this is called the
group velocity

vg =
∂ω

∂k
. (1.16)

The envelope can be identified with a wave-packet and, if an energy density
is associated with the magnitude of the wave, the transportation of energy
occurs with the group velocity.

For the wave equation (1.12), both the phase and group velocities are
constant and equal to the speed of light vp = vg = c. This is also evident
from the explicit solution (1.13). Given this analytical treatment, all waves
propagate with the same speed, independent of their wavenumber k. Therefore
we say that there is no dispersion. However, a numerical treatment of (1.12)
will, in almost all cases, suffer from numerical dispersion and this is discussed
in Chapter 3, 4, and 5.

1.2.5 Low-Frequency Approximation

A special case of (1.11) is the “low-frequency approximation,” used for in-
stance for electrical machines, generators, and transformers. The low-frequency
approximation consists in setting ε0 = 0, that is, one neglects the displacement
current in (1.11):

∇ × 1
µ

∇ × E + σ
∂E

∂t
= −∂Jexternal

∂t
, (1.17)

where the electrical current density was taken as J = σE + Jexternal, and
σ is the electrical conductivity. The low-frequency approximation gets rid of
the electromagnetic waves present in the full Maxwell equations (1.9)–(1.10)
and makes it possible to take time steps on the much longer time scale as-
sociated with the penetration of eddy currents in conductors. However, the
low-frequency approximation is mathematically more complicated, because in
regions where σ = 0, the time derivative of E drops out of (1.17). As a conse-
quence, (1.17) gives no information about ∇·E in the nonconducting regions,
so that E itself is not actually known. Since the low-frequency equations are
important in the area of both electric power engineering and electromagnetic
compatibility, we will discuss, briefly, some methods used to solve these equa-
tions in Section 6.6. Some challenges that frequently occur in eddy current
problems come from extremely complicated 3D geometry and thin layers of
currents caused by the skin effect.
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1.2.6 Integral Formulation

A simple special case is electrostatics, where there is no time-dependence. For
static conditions, Faraday’s law implies ∇ × E = 0, so that E = −∇φ, where
φ is the electrostatic potential. Poisson’s equation then becomes

∇ · (ε∇φ) = −ρ. (1.18)

The formulations mentioned so far are all differential equations. However,
sometimes integral equations are useful. In three dimensions, the “solution”
to Poisson’s equation in free space is

φ(r ) =
∫

ρ(r′)dV ′

4πε0|r − r′| . (1.19)

This formulation is used in the MoM to solve for the charges on conductors
needed to produce specified potential distributions, as discussed in Chapter 7.

Similar reformulations in terms of surface integrals exist also for the time-
dependent Maxwell system. The integral equations are called the electric field
integral equation (EFIE), the magnetic field integral equation (MFIE), and
the combined field integral equation (CFIE). We will derive and employ the
EFIE for a scattering problem in Chapter 7, which also contain discussions
on the MFIE and CFIE.
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Convergence

When using numerical tools, one must keep in mind that they never give the
exact answer. The accuracy of the numerical result depends on the resolution.
Resolution may mean the number of grid points per wavelength in microwave
problems, or how well the geometry of an electrical motor is represented by
a finite element mesh. If the method works correctly, the computed answer
will converge to the exact result as the resolution increases. However, with
finite resolution, the error is nonzero, and one must estimate it to ensure that
its magnitude is acceptable. This is particularly true for large systems, where
it may be hard to resolve details of the geometry or to afford a sufficient
number of points per wavelength. Examples of this state of affairs are found
in 3D-modeling of electrical motors and generators, large array antennas, and
computation of the radar cross sections of aircrafts.

Applied mathematicians have derived a posteriori error estimates, which
can be evaluated after an approximate numerical solution has been com-
puted. However, such error estimates are only beginning to be established
for Maxwell’s equations, and discussion of these would take us far beyond an
introductory course. For further information on this topic, see, e.g., [66, 45].
Nevertheless, error estimates are useful because they can be exploited for
adaptive mesh refinement in regions that give large contributions to the error.
A simpler method to estimate the error of a given computation is to do a
convergence test by increasing the resolution uniformly, finding out the or-
der of convergence, and then extrapolating the computed results to infinite
resolution. That is the approach we will follow.

In general, one does not know the order of convergence of a computational
method for a given problem a priori. Even though standard centered finite
differences or linear finite elements converge with an error of order h2 (where
h is the grid spacing or the cell size) for regular problems, singular behavior of
the solution decreases the order of convergence in most application problems.
Singularities are introduced by sharp edges and tips of objects such as metallic
conductors, dielectrics, and magnetic materials.
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2.1 Extrapolation to Zero Cell Size

We will use a very simple problem, namely to calculate the electrostatic po-
tential on the symmetry axis of a uniformly charged square, to illustrate how
computed results can be extrapolated to zero cell size. The square is the region
−a < x < a, −a < y < a, z = 0, the surface charge density ρs(x, y) = ρs0
is constant, and we seek the potential φ at two points on the symmetry axis:
(0, 0, a) and (0, 0, 0). Using the symmetry, we can write the potential from
this charge distribution as

φ(0, 0, z) =
ρs0

4πε0

∫ a

x′=−a

dx′
∫ a

y′=−a

dy′

(x′2 + y′2 + z2)1/2
=

ρs0

πε0
I(z, a),

with

I(z, a) ≡
∫ a

x′=0
dx′

∫ a

y′=0

dy′

(x′2 + y′2 + z2)1/2
. (2.1)

To do the integral I(z, a) numerically, we split the square into n2 smaller
squares of side h = a/n, and on each square, apply a simple integration rule
such as midpoint integration

∫ x+h

x

f(x)dx ≈ hf

(
x +

h

2

)
(2.2)

or Simpson’s rule
∫ x+h

x

f(x)dx ≈ h

6

[
f(x) + 4f

(
x +

h

2

)
+ f(x + h)

]
(2.3)

in two dimensions. The integration can be written as a MATLAB function.

% --------------------------------------------------------------
% Compute potential on symmetry axis of square plate
% --------------------------------------------------------------
function pot = integr(z, a, n, rule)

% Arguments:
% z = the height over the plate
% a = the side of the square
% n = the number of elements along each side of the plate
% rule = a string ’midpoint’ or ’simpson’ that specifies
% the integration rule
% Returns:
% pot = the potential at the point (0,0,z)

x = linspace(0, a, n+1);
y = linspace(0, a, n+1);
h = a/n;
zs = zˆ2;
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if (strcmp(rule, ’midpoint’))

% Midpoint integration
xs(1:n) = (x(1:n) + h/2).ˆ2;
ys(1:n) = (y(1:n) + h/2).ˆ2;
[xxs, yys] = meshgrid(xs,ys);

int = sum(sum(1./sqrt(xxs + yys + zs)));

elseif (strcmp(rule, ’simpson’))

% Simpson’s rule
int = 0;
for i = 1:n
x1 = x(i)ˆ2; x2 = (x(i) + h/2)ˆ2; x3 = (x(i) + h)ˆ2;
y1(1:n) = y(1:n).ˆ2;
y2(1:n) = (y(1:n) + h/2).ˆ2;
y3(1:n) = (y(1:n) + h).ˆ2;
int = int + sum( 1./sqrt(x1+y1+zs) + 1./sqrt(x1+y3+zs) ...

+ 1./sqrt(x3+y1+zs) + 1./sqrt(x3+y3+zs)...
+ 4./sqrt(x2+y1+zs) + 4./sqrt(x2+y3+zs)...
+ 4./sqrt(x1+y2+zs) + 4./sqrt(x3+y2+zs)...
+ 16./sqrt(x2+y2+zs))/36;

end

else

error([’Only midpoint integration and Simpson’’s rule are ’ ...
’implemented’])

end

pot = int*hˆ2;

We call this function with z = a = 1 [integr(1,1,n,rule)] and different
numbers of grid points n for rule = ’simpson’ and ’midpoint’, and then
extrapolate the results to zero cell size to get as accurate an answer as possible.
The first step is to establish the order of convergence. Table 2.1 shows some
results of calling the function for different cell sizes h = 1/n.

We can carry out the extrapolation using MATLAB routines, by collecting
the values of h, Imidp, and ISimpson in vectors. Plotting Imidp versus h to
some power p, we find an almost straight line for p = 2, as shown in Figure
2.1. This indicates that the midpoint rule gives quadratic convergence, i.e.,
Imidp(h) = I0 + I2h

2 + · · · where I0 is the extrapolated result. The term I2h
2

in the Taylor expansion of Imidp is the dominant contribution to the error
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n [-] h [m] Imidp(1, 1) [m] ISimpson(1, 1) [m]
5 0.20000 0.79432 30171 0.79335 94378
7 0.14286 0.79385 04952 0.79335 92042
10 0.10000 0.79359 97873 0.79335 91413
15 0.06667 0.79346 60584 0.79335 91252
20 0.05000 0.79341 92684 0.79335 91225

Table 2.1. Integral I(1, 1) from numerical integration with different cell sizes.

when h is sufficiently small, and for such resolutions the higher-order terms
in the Taylor expansion can be neglected.

0 0.01 0.02 0.03 0.04
0.793

0.7935

0.794

0.7945

h2 [m2]

I m
id

p [m
]

Fig. 2.1. Values of the integral I(1, 1) computed by the midpoint rule, plotted
versus h2.

We extrapolate the computed results as a polynomial fit in h2 using the
MATLAB command

pfit = polyfit(h.ˆ2,I,m)

Here, m is the order of the polynomial, and the extrapolated value of the
integral is the coefficient for h0. [With the MATLAB convention for storing
polynomials, this is the (m+1)th component of pfit]. A first-order fit (m = 1)
gives the extrapolation I(1, 1) � 0.79335 88818, second-order (m = 2) gives
0.79335 91208, and a third-order fit gives 0.79335 91213.

The results from the Simpson integration fall on an almost straight line
when plotted against h4, and we conclude that the dominant error scales as
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h4. A fit of ISimpson(1, 1) to a linear polynomial in h4 gives the extrapolation
0.79335 91207, and quadratic and cubic fits give 0.79335 91202.

The correct answer to eight digits is 0.79335 912. Extrapolation allows us to
establish this degree of accuracy with a rather moderate effort: a second-order
fit of the low-order midpoint rule versus h2, using data computed for rather
coarse grids h ≥ 0.05. This gives eight-digit accuracy of the extrapolation
even though the computed data has only three to four correct digits. Thus,
extrapolation can bring very significant improvements of accuracy. Another
advantage of extrapolation is that it makes us aware of how good the accuracy
is. The example shows that good accuracy can also be obtained by using the
higher-order Simpson integration, even without extrapolation, on a grid of
moderate size.

A simple way to estimate the order of convergence is to carry out compu-
tations for a geometric sequence of cell sizes such that hi/hi+1 = hi+1/hi+2.
Assuming that the lowest-order term in the expansion of the error is sufficient,
i.e. I(h) = I0 + Iph

p, and that the cell sizes form a geometric series, one can
then estimate the order of convergence as

p = ln
[

I(hi) − I(hi+1)
I(hi+1) − I(hi+2)

]/
ln

[
hi

hi+1

]
. (2.4)

When applied to the computed results for h = 0.2, 0.1 and 0.05, this formula
gives p = 2.002 for the midpoint rule and p = 3.985 for Simpson, indicat-
ing that the convergence is quadratic and quartic, respectively, for the two
methods.

2.1.1 A Singular Problem

It is instructive to consider a more singular problem, such as the potential on
the midpoint of the plate, z = 0. Now, the integrand is singular, but the inte-
gral is nevertheless convergent. For this problem, Simpson integration gives a
divergent result and cannot be used. (This illustrates the fact that high-order
methods often experience difficulties in the presence of singularities.) How-
ever, the midpoint integration still works, and for the cell sizes above we find
the following values for Imidp(0, 1): 1.684320, 1.706250, 1.722947, 1.736083,
1.742700. Plots of Imidp versus hp reveal that the order of convergence is now
lower, p = 1. Nevertheless, we can still extrapolate using fits to polynomials
in h. The results are linear, 1.762015; quadratic, 1.762745; cubic, 1.762748.
This integral can be done analytically: I(0, 1) = 2 ln(1 +

√
2) ≈ 1.762747.

Thus, despite the singularity, the midpoint rule gives six-figure accuracy with
h ≥ 0.05 and quadratic extrapolation.

Review Questions

2.1-1 What is meant by resolution in the context of numerical computations?
Give some examples.
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2.1-2 How can the error in a computation be estimated?
2.1-3 What influences the error and the order of convergence?
2.1-4 Give a couple of examples of numerical integration rules and provide

a simple comparison. Especially consider the differences for smooth and
singular integrands.

2.2 Practical Procedures

The example we have just studied is very simple. Real application problems
have more complex geometry than a square, but on the other hand, six-digit
accuracy is very rarely needed, or even possible to achieve. Furthermore, nu-
merical results converge in the very regular way we found here only if the grid
can be refined uniformly over the whole computational region. When this is
not possible, the convergence may be oscillatory, and the extrapolation to
zero cell size becomes more difficult. In practice, it is often possible to extract
a main power of convergence with the number of grid cells, but the remain-
der is too oscillatory to be convincingly fit by higher-order polynomials. A
more robust and practical procedure for such cases is to use a linear fit of
the computed results to hp, where p is the estimated order of convergence.
When the converged answer is not known, but the convergence is sufficiently
regular, the order of convergence can be estimated from results for three dif-
ferent resolutions. To ascertain that the estimated order of convergence is not
accidental, at least four different resolutions should be used. Once the order
of convergence is established, extrapolation to zero cell size can be made by
fitting a lowest-order expansion

I(h) = I0 + Iph
p (2.5)

to the computed results.

Review Question

2.2-1 Why can extrapolation to zero cell size be difficult for nonuniformly
refined grids?

Summary

• The accuracy of a numerical result depends on resolution. For example,
a domain of integration can be divided into segments of size h, and a
numerical evaluation of the integral I is then expressed as I(h) = I0 +
Iph

p + · · · , where I0 is the exact result, Iph
p is the dominant error term

(provided that h is sufficiently small), and p is the order of convergence.
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• The order of convergence p can be estimated from

p = ln
[

I(hi) − I(hi+1)
I(hi+1) − I(hi+2)

]/
ln

[
hi

hi+1

]
,

which requires at least three computations and where hi/hi+1 = hi+1/hi+2.
The result should preferably be verified for at least four resolutions to as-
certain that the estimated p is not accidental.

• A simple method to estimate the error of a given computation is to (i)
do a convergence test by uniform grid refinement, (ii) find the order of
convergence, and (iii) extrapolate the computed results to zero cell size.

• The order of convergence depend on the method and the regularity of the
solution. Singular behavior of the solution decreases the order of conver-
gence p in many real-world problems.

Problems

P.2-1 Derive the order of convergence for midpoint integration (2.2) and Simp-
son’s rule (2.3) under the assumption that the integrand is regular. How
does a singular integrand influence your derivation?

P.2-2 Show that (2.4) gives an estimate for p. Under what conditions is this
estimate accurate?

Computer Projects

C.2-1 Repeat the calculations of I(1, 1) and I(0, 1), where I(z, a) is defined
in (2.1), using two-point Gaussian integration

∫ x+h

x

f(x)dx =
h

2

[
f

(
x +

h

2

(
1 − 1√

3

))
+ f

(
x +

h

2

(
1 +

1√
3

))]

and find the order of convergence.
C.2-2 Calculate the integral

∫ 1
0 x−αdx, with a singular integrand, numerically

by dividing the interval into equal elements and applying midpoint inte-
gration on each. Investigate the cases α = 0.5 and 0.8, find the order
of convergence, and extrapolate to zero cell size. The exact integral is
1/(1 − α).
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Finite Differences

Maxwell’s equations are usually formulated as differential equations. There-
fore, it is quite natural to solve them by finite difference methods, where the
derivatives are approximated by differences between neighboring points on
a grid. In a one-dimensional (1D) problem on the x-axis, a finite difference
method introduces a set of grid points x1, x2, . . . , xN where a sought function
f(x) takes the values f(x1), f(x2), . . . , f(xN ).

We will first recapitulate expressions for first- and second-order differences
on a uniform grid with grid points xn+i = xn + ih, where i is an integer and
h is the distance between the grid points (often referred to as cell size). The
basis for this is the Taylor expansion

f(x + δ) = f(x) + δf ′(x) +
δ2

2
f ′′(x) +

δ3

6
f ′′′(x) + · · · (3.1)

To get the first derivative on a grid point x, we could use the noncentered
difference [f(x + h) − f(x)]/h = f ′(x) + O(h), but the error here is of first
order in h. One way to increase the order of approximation is to take the
difference across two cells, which gives

f(x + h) − f(x − h)
2h

= f ′(x) + O(h2). (3.2)

As we shall see shortly, this becomes very inaccurate for short wavelengths, in
particular, when the wavelength is less than four grid cells. A better alternative
is to use “staggered grids” and compute the first-order derivative on the “half-
grid” xi+ 1

2
= xi + h/2:

f(x + h) − f(x)
h

= f ′
(

x +
h

2

)
+ O(h2). (3.3)

A difference formula for the second derivative on an equidistant grid can be
developed by applying (3.3) repeatedly, which gives
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f(x + h) − 2f(x) + f(x − h)
h2 = f ′′(x) + O(h2). (3.4)

We note that the O(h2) errors in (3.2)–(3.3) are achieved only if the solution
is sufficiently regular (for example, if f ′′(x), f ′′′(x), etc are bounded).

3.1 A 2D Capacitance Problem

As an application of finite differences to an electrostatic potential problem,
we will compute the capacitance of a coaxial transmission line. The two-
dimensional (2D) geometry shown in Figure 3.1 consists of an inner conductor
of rectangular cross section a × b, placed coaxially with an outer waveguide
of rectangular cross section c × d.

b d

a

c

Fig. 3.1. Geometry of the coaxial transmission line.

In the vacuum region between the inner and outer conductors, the elec-
trostatic potential φ satisfies Laplace’s equation

∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 = 0, (3.5)

where the potential is constant on the conductors. We let φ1 denote the value
for the potential on the inner conductor, and correspondingly, the potential
on the outer conductor is denoted by φ2.

We assume that the geometry can be fitted on a grid of squares. (It is pos-
sible to use nonsquare, and even nonuniform, finite difference grids. However,
finite difference grids are often uniform and square, and we will not go beyond
that. Nonuniformities are better treated by finite elements.)

We use the square grid
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xi = ih, i = . . . ,−1, 0, 1, 2, . . . ,

yj = jh, j = . . . ,−1, 0, 1, 2, . . . ,

illustrated in Figure 3.2, and introduce the potential at the grid points

fi,j = φ(ih, jh)

as unknowns.

y

x

(i, j)

(i, j+1)

(i+1, j)(i-1, j)

(i, j-1)

Fig. 3.2. 2D finite difference grid.

Then the discretized Laplace’s equation becomes

∂2φ

∂x2 +
∂2φ

∂y2 ≈ fi−1,j + fi+1,j + fi,j−1 + fi,j+1 − 4fi,j

h2 = 0. (3.6)

Equation (3.6) applies for all internal points (xi, yj) on the grid. As boundary
conditions, we let φ take the value φ2 = 0 V on the outer conductor (fi,j = 0
for all the points that fall on the outer conductor) and φ1 = 1 V on the inner
conductor (fi,j = 1 for all the points that fall on the inner conductor). We will
compute the charge per unit length Q from the solution. Then the capacitance
per unit length is C = Q/V = Q, since the voltage across the capacitor is
V = 1 V.

3.1.1 Iterative Solution of Laplace’s Equation

Here, we introduce some straightforward (but rather old) methods, known as
Jacobi and Gauss–Seidel iteration, to solve the discretized Laplace’s equation
(3.6). These methods do not require that the system of linear equations be
formed and stored explicitly. Thus, only the solution itself must be stored
in the computer memory, which allows us to solve larger problems given the
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amount of memory available on the computer at hand. An iterative method
starts with an initial guess for the solution fi,j at all internal grid points, e.g.,
fi,j = 0 or some other arbitrarily chosen numbers. The iterative method then
updates these values until we reach a converged solution that satisfies the
finite difference approximation (3.6) at all internal grid points. Obviously, fi,j

is set to its prescribed values on the boundaries, where the solution is known
from the boundary conditions, and these values are kept fixed.

The Jacobi iteration can be motivated by rewriting (3.6) as

fi,j =
1
4

(fi−1,j + fi+1,j + fi,j−1 + fi,j+1) ,

which states that at every grid point, the potential is the average of the
potential at the four nearest neighbors. The Jacobi scheme uses this as the
prescription for assigning new values

f
(n+1)
i,j =

1
4

(
f

(n)
i−1,j + f

(n)
i+1,j + f

(n)
i,j−1 + f

(n)
i,j+1

)
,

where superscripts denote the iteration count. This scheme gives very slow
convergence, but one can do better by simple modifications. One modifica-
tion is the so-called Gauss–Seidel iteration, where the “old” values of f are
immediately overwritten by new ones, as soon as they are computed. If f is
updated in the order of increasing i and j, the Gauss–Seidel scheme is

f
(n+1)
i,j =

1
4

(
f

(n+1)
i−1,j + f

(n)
i+1,j + f

(n+1)
i,j−1 + f

(n)
i,j+1

)
.

The other improvement is “overrelaxation,” which means that the correction
in going from iteration level n to n+1 is multiplied by a relaxation parameter
R:

f
(n+1)
i,j = f

(n)
i,j + R

(
f

(n+1)
i−1,j + f

(n)
i+1,j + f

(n+1)
i,j−1 + f

(n)
i,j+1

4
− f

(n)
i,j

)
; (3.7)

R > 1 greatly improves the convergence, but for stability reasons R must be
less than 2. For the Laplace’s equation, a heuristic estimate for the optimal
value of R varies with the number of grid points in one direction, N , as

Ropt = 2 − c/N,

where c is an N -independent number that depends on the geometry [6].

3.1.2 Computing the Capacitance

We now have all the elements needed to compute the capacitance between
the two conductors. The computation can be broken down into the following
parts:
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1. Generate a grid such that the conducting boundaries fall on the grid
points. For the particular problem here, we can exploit the symmetry
and compute only on the upper right quarter, to reduce the number of
unknowns. (Around a line of symmetry with a constant i, we enforce the
symmetry by fi+n,j = fi−n,j , where n is a positive integer. Symmetry
lines with a constant j are treated analogously)

2. Introduce the boundary conditions by setting f = 0 on the outer conduc-
tor and f = V = 1 on the inner conductor.

3. Set up an array to identify whether a grid point is inside the region where
the potential is computed from Laplace’s equation.

4. Iterate with the Gauss–Seidel scheme over the internal points to solve for
the potential.

5. The capacitance per unit length is C = Q/V = Q. The charge on the
inner conductor Q can be computed from Gauss’s law

Q = ε0

∮
E · n̂ dl = −ε0

∮
∂φ

∂n
dl, (3.8)

where the closed integration contour encircles the inner conductor.
6. If the change of the capacitance in the last iteration is small enough, stop

iterating.
7. Once the calculation is finished, refine the grid several times and extrap-

olate the result to zero cell size.

3.1.3 MATLAB: Capacitance of Coaxial Cable

We will compute the capacitance for the geometry shown in Figure 3.1 with
a = b = 1 cm and c = d = 2 cm. Here, the capacitance is expressed in
terms of the charge on the inner conductor. As an alternative to the Gauss–
Seidel iteration, we could use MATLAB routines for solving linear systems of
equations. However, we take this opportunity to introduce a simple, yet quite
efficient, iterative method. More advanced iterative methods are discussed in
Appendices A and B.

The following MATLAB function computes the capacitance following the
outline in Section 3.1.2.

% --------------------------------------------------------------
% Compute capacitance per unit length of
% a coaxial pair of rectangles
% --------------------------------------------------------------
function cap = capacitor(a, b, c, d, n, tol, rel)

% Arguments:
% a = width of inner conductor
% b = height of inner conductor
% c = width of outer conductor
% d = height of outer conductor
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% n = number of points in the x-direction (horizontal)
% tol = relative tolerance for capacitance
% rel = relaxation parameter
% (a good choice is 2-c/n, where c is about pi)
% Returns:
% cap = capacitance per unit length [pF/m]

% Make grids
h = 0.5*c/n; % Grid size
na = round(0.5*a/h); % Number of segments on ’a’
x = linspace(0,0.5*c,n+1); % Grid points along x-axis
m = round(0.5*d/h); % Number of segments on ’d’
mb = round(0.5*b/h); % Number of segments on ’b’
y = linspace(0,0.5*d,m+1); % Grid points along y-axis

% Initialize potential and mask array
f = zeros(n+1,m+1); % 2D-array with solution
mask = ones(n+1,m+1)*rel; % 2D-array with relaxation

% [mask(i,j) = 0 implies
% unchanged f(i,j)]

for i = 1:na+1
for j = 1:mb+1
mask(i,j) = 0;
f(i,j) = 1;

end
end

% Gauss Seidel iteration
oldcap = 0;
for iter = 1:1000 % Maximum number of iterations
f = seidel(f,mask,n,m); % Perform Gauss-Seidel iteration
cap = gauss(n,m,h,f); % Compute the capacitance
if (abs(cap-oldcap)/cap<tol)
break % Stop if change in capacitance

% is sufficiently small
else
oldcap = cap; % Contiue until converged

end
end
str = sprintf(’Number of iterations = %4i’,iter); disp(str)

% --------------------------------------------------------------
% Make one Seidel iteration
% --------------------------------------------------------------
function f = seidel(f, mask, n, m)

% Arguments:
% f = 2D-array with solution
% mask = 2D-array with relaxation
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% n = number of points in the x-direction (horizontal)
% m = number of points in the y-direction (vertical)
% Returns:
% f = 2D-array with solution after Gauss-Seidel iteration

% Gauss seidel iteration
for i = 2:n
for j = 2:m
f(i,j) = f(i,j) + mask(i,j)* ...

(0.25*( f(i-1,j) + f(i+1,j) ...
+ f(i,j-1) + f(i,j+1)) - f(i,j));

end
end

% Symmetry on left boundary i-1 -> i+1
i = 1;
for j = 2:m
f(i,j) = f(i,j) + mask(i,j)* ...

(0.25*( f(i+1,j) + f(i+1,j) ...
+ f(i,j-1) + f(i,j+1)) - f(i,j));

end

% Symmetry on lower boundary j-1 -> j+1
j = 1;
for i = 2:n
f(i,j) = f(i,j) + mask(i,j)* ...

(0.25*( f(i-1,j) + f(i+1,j) ...
+ f(i,j+1) + f(i,j+1)) - f(i,j));

end

% --------------------------------------------------------------
% Compute capacitance from the potential
% --------------------------------------------------------------
function cap = gauss(n, m, h, f)

% Arguments:
% n = number of points in the x-direction (horizontal)
% m = number of points in the y-direction (vertical)
% h = cell size
% f = 2D-array with solution
% Returns:
% cap = capacitance per unit length [pF/m]

q = 0;

for i = 1:n
q = q + (f(i,m)+f(i+1,m))*0.5; % integrate along upper boundary

end
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for j = 1:m
q = q + (f(n,j)+f(n,j+1))*0.5; % integrate along right boundary

end

cap = q*4; % 4 quadrants
cap = cap*8.854187; % epsilon0*1e12 gives answer in pF/m

Table 3.1 shows some results of calling the function with different grid
sizes and a = b = 1 cm, c = d = 2 cm, the tolerance 10−9, and the relaxation
paramter 1.9. When the results are plotted against hp, they appear to fall
on a straight line for p ≈ 1.5. If we had the patience to wait for longer
runs, write more efficient MATLAB code, or program the calculation in a
language such as Fortran or C, the resolution could be improved, and we
would find that the asymptotic order of convergence is 4/3. An important
thing to learn from this example is that the convergence is slower than the
normal O(h2) convergence for the difference formula (3.4). In fact, the O(h2)
convergence occurs only when the solution is sufficiently regular, and the
decreased order of convergence in this example is the result of the singular
behavior of the solution at the corners of the inner conductor. As will be
shown in Chapter 7, the potential at such a “reentrant” corner, where the
angle in the solution region is 270o, varies as the distance r to the corner to
the power 2/3. This implies that the electric field is singular, E ∝ r−1/3. With
the computed results in Table 3.1, and assuming that the order of convergence
is 1.5, a second- or higher-order polynomial fit of the data versus h1.5 gives
an extrapolated answer for the capacitance as C = 90.6 pF/m.

n [-] h [m] C [pF/m]
10 0.1000 92.09715
20 0.0500 91.18849
30 0.0333 90.94575
40 0.0250 90.83912
50 0.0200 90.78080

Table 3.1. Capacitance vs. cell size for finite difference solution.

Appendix A contains some information on more efficient algorithms for
the solution of linear systems. Many of these algorithms are also available in
MATLAB. Thus, we could use some of these routines to solve larger problems
and get better resolution. Another way to improve the convergence when the
solution is singular is adaptive grid refinement. However, this is more easily
done with finite elements than with finite differences.

Review Questions

3.1-1 What are the constituents of a finite-difference method?
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3.1-2 Derive (3.2)–(3.4) given (3.1). When are O(h2) errors achieved?
3.1-3 Use (3.4) to deduce (3.6). What will the corresponding discrete Laplace

operator look like in three dimensions?
3.1-4 How can a known potential distribution be used to compute the capac-

itance of a coaxial cable?
3.1-5 What is the order of convergence for the problem shown in Figure 3.1?

3.2 Finite Difference Derivatives of Complex
Exponentials

For Laplace’s equation, straightforward application of finite differences works
well. However, when derivatives of odd order are involved, a different technique
is required to get good results. To get some insight into this, it is instructive
to consider how the difference approximations (3.2)–(3.4) act on complex ex-
ponentials. Two reasons for studying complex exponentials are these:

• All functions can be decomposed as sums over complex exponentials (the
Fourier transform).

• The complex exponentials exp(jkx), where j is the imaginary unit and k is
the wavenumber (k = 2π/λ, where λ is the wavelength) are eigenfunctions
of the derivative operator, (∂/∂x) exp(jkx) = jk exp(jkx).

We consider a uniform 1D grid with grid points

xi = ih, i = . . . ,−2,−1, 0, 1, 2, . . . ,

and we will examine the difference approximations by evaluating them for
complex exponentials, f = exp(jkx). The wavenumbers can be restricted so
that |kh| ≤ π. This is because, when any harmonic function is represented
on a grid of points with spacing h, one can always shift kh by any integer
multiple of 2π so that kh ∈ [−π, π], without changing the value of f at any
grid point.

Derivative operators can be defined as

Dx = f ′/f, Dxx = f ′′/f, (3.9)

and for f = exp(jkx), the exact analytical results are

Dx = jk , Dxx = D2
x = −k2. (3.10)

3.2.1 First-Order Derivative

For the first derivative, the numerical difference formulas applied to f(x) =
ejkx give the results shown as functions of kh in Figure 3.3:
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• Equation (3.2), derivative across two cells, f ′ on the “integer grid”:

Dx =
f ′(xi)
f(xi)

=
f(xi + h) − f(xi − h)

2h f(xi)
=

ejkh − e−jkh

2h
=

j

h
sin kh. (3.11)

This gives an effective numerical wavenumber

ktwo-cell
num =

sin kh

h
= k

(
1 − k2h2

6
+ · · ·

)
. (3.12)

The leading term in the expansion is correct, and the relative error is
−k2h2/6, so the error increases with decreasing wavelength.

• Equation (3.3), derivative across one cell, f ′ on the half-grid:

Dx =
f ′(xi+ 1

2
)

f(xi+ 1
2
)

=
f(xi + h) − f(xi)

hf(xi + h/2)
=

ejkh/2 − e−jkh/2

h
=

2j

h
sin

kh

2
(3.13)

This gives an approximation with a smaller error

kstaggered
num =

2
h

sin
kh

2
= k

(
1 − k2h2

24
+ · · ·

)
. (3.14)

Such an arrangement, where the first derivative is computed on the half-
grid, is called staggered grids.

The difference formula across two cells gives very poor results when kh >
π/2. In particular, for kh = π, it gives the rather strange result f ′ = 0 and
ktwo-cell
num = 0. Figure 3.4 illustrates how this comes about: when kh = π, f(xi)

jumps between plus and minus the same value between neighboring points.
Points at the distance of 2h have the same value of f , and therefore f ′ = 0 at
every point on the integer grid. Thus, the most rapidly oscillating function has
the derivative equal to zero everywhere on the integer grid. Notice also that
the two-cell difference formula gives ∂ktwo-cell

num /∂k < 0 for π/2 < kh < π. In a
wave-propagation problem, this would have the consequence that the group
velocity (vg = ∂ω/∂k) changes sign, and signals propagate in the wrong
direction.

The expression (3.14) for the more compact derivative on the staggered
grid is clearly better at the shortest wavelength kh = π. Although the result
kstaggered
num h = 2 for kh = π is not very accurate, it is at least nonzero and this

arrangement gives no negative group velocity.

3.2.2 Spurious Solutions and Staggered Grids

The inability of the difference formula across two cells to see rapid oscillations
can cause difficulties known as “spurious modes.” By spurious modes we mean
solutions of a discretized equation that do not correspond to an analytic (or
“physical”) solution.



3.2 Finite Difference Derivatives of Complex Exponentials 29

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

kh/π [−]

k nu
m

h/
π 

[−
]

analytic

staggered

non−staggered

Fig. 3.3. Finite difference approximation of wavenumber from first derivative k =
−jf ′/f , with f = exp(jkx) for staggered and nonstaggered grids. Note the bad
approximation of the nonstaggered form when kh → π.

As an example to illustrate how spurious solutions can appear, we take
the first-order equation

f ′ = jλf, x > 0, f(0) = 1

If this is discretized on a uniform grid of step length h, the nonstaggered
approximation using (3.2) is

f(xi+1) − f(xi−1)
2h

= jλf(xi). (3.15)

This will have solutions of the form exp(jkx), and the wavenumber can be de-
termined from (3.12): ktwo-cell

num = λ. Evidently, this gives two solutions, because
ktwo−cell
num (kh) is nonmonotonic as shown by Figure 3.3. One is an acceptable

approximation k1h = arcsin(λh), but the other is a bad approximation, or
“spurious mode,” having kspurioush = π − arcsin(λh) = π − k1h. If λh is
small, this branch for kh approaches π, so that the solution resembles the
most rapidly oscillating function shown in Figure 3.4, even though the correct
solution varies slowly on the scale of the grid. If we use the approximation on
a staggered grid, with the stencil

f(xi+1) − f(xi)
h

=
jλ

2
[f(xi+1) + f(xi)] , (3.16)

such spurious solutions do not occur (however, the behavior is not entirely
physical for this representation either when kh → π).
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Fig. 3.4. Fastest oscillating function on a finite difference grid with kh = π has the
derivative equal to zero at all integer points on the grid.

The more compact formula (3.3) for the first derivative gives an approxima-
tion with acceptable behavior even when kh = π. The derivative is computed
on the half-grid, and the grids are staggered. A 3D generalization of this is
used in the FDTD method for Maxwell’s equations, as will be described in
Chapter 5. Equations (3.11) and (3.13) show that the relative error of the
discretized derivatives is proportional to k2h2.

3.2.3 Second-Order Derivative

For the second derivative, the standard difference formula (3.4) applied to
f(x) = ejkx gives

Dxx =
ejkh − 2 + e−jkh

h2 = − 4
h2 sin2 kh

2
. (3.17)

Therefore,

k2
num = (kstaggered

num )2 =
4
h2 sin2 kh

2
= k2

(
1 − k2h2

12
+ · · ·

)
, (3.18)

which is illustrated in Figure 3.5.
The result is only moderately accurate at the shortest wavelength (−Dxx =

4/h2, when kh = π, to be compared with the analytic result π2/h2). But
at least −Dxx grows monotonically with k, so this approximation does not
introduce spurious solutions. To achieve 1% accuracy in computed frequencies
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Fig. 3.5. Finite difference approximation of k2 = −f ′′/f , with f = exp(jkx) ana-
lytically and with standard three-point difference formula.

(which means 2% accuracy in Dxx), one needs k2h2 < 0.24, or 13 grid points
per wavelength. If we consider the problem of calculating the fields from a
mobile telephone, at 900 MHz with λ = 33 cm, in a car of length 5 m, we
see that the number of cells in one direction required to get 1% phase (or
frequency) error is at least 13 × 5/0.33 ≈ 200. Evidently, a 3D computation
for mobile phones in cars requires several million cells. We emphasize the
absolute error will accumulate as the wave propagates. When the wave has
propagated 15 wavelengths with 1% relative phase error, the absolute phase
error is 15 · 360/100 = 54 degrees.

Review Questions

3.2-1 Why is it useful to study finite difference derivatives of complex expo-
nentials?

3.2-2 Why is the wavenumber restricted by |kh| ≤ π on a grid with cell size
h?

3.2-3 Derive the results in (3.12) and (3.14). Establish a value for kh when
the first two terms in the expansions give 0.5% error of the numerical
wavenumber. Repeat this analysis for (3.18).

3.2-4 What is a staggered grid and why is it useful?
3.2-5 What is a spurious solution? Can such solutions be avoided? Give an

example of a situation where spurious solutions occur and explain why
they exist under the given circumstances.
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3.2-6 Can the finite difference approximation of Dxx be expressed in terms
of a finite difference approximation of Dx? Which approximation do you
choose for the first-order derivative?

Summary

• Derivatives can be approximated by differences between neighboring points
on a grid. A so-called uniform grid uses a constant grid point spacing h;
i.e., the grid points are given by xn+i = xn + ih, where i is an integer.

• The first-order derivative of a function f on a staggered grid (evaluated
at the midpoint (xi+1 + xi)/2) is

f ′
i+1/2 ≈ fi+1 − fi

h
,

and that across two cells (evaluated at the center grid point xi) is

f ′
i ≈ fi+1 − fi−1

2h
.

The second-order derivative (evaluated at the center grid point xi) is

f ′′
i ≈ fi+1 − 2fi + fi−1

h2 .

• The discretized Laplacian operator is

∇2f =
∂2f

∂x2 +
∂2f

∂y2 ≈ fi−1,j + fi+1,j + fi,j−1 + fi,j+1 − 4fi,j

h2 .

Two iterative procedures for solving Laplace’s equation are Jacobi and
Gauss–Seidel iteration. These can be accelerated with so-called overrelax-
ation.

• Numerical derivatives acting on complex exponentials f(x) = exp(jkx) are
useful when analyzing finite difference schemes. The first-order derivative
on a staggered grid gives

f ′
i+1

2

f
i+1

2

=
1

f
i+1

2

fi+1 − fi

h
=

2j

h
sin

(
kh

2

)
.

First-order derivatives across two cells with no staggering should be
avoided, since

f ′
i

fi
=

1
fi

fi+1 − fi−1

2h
=

j

h
sin (kh) ,

which is nonmonotonic and gives a zero derivative for solutions that vary
on the scale of the grid, i.e., kh → π.
The second-order derivative gives

f ′′
i

fi
=

1
fi

fi+1 − 2fi + fi−1

h2 = − 4
h2 sin2

(
kh

2

)
.
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Problems

P.3-1 Use the technique in Section 3.1.1 to solve the Laplace’s equation at
the midpoint of a square 3 × 3 grid where the potential is known on the
boundary. How does the solution depend on the cell size?

P.3-2 Show that if the grid is nonuniform, the finite difference approximation
of the second-order derivative is

f ′′(xi) ≈ 2
xi+1 − xi−1

(
fi+1 − fi

xi+1 − xi
− fi − fi−1

xi − xi−1

)
.

Derive the leading error term for this finite difference approximation. A
nonuniform grid implies that xi+1 − xi does not have to be equal to xi −
xi−1. Discuss when nonuniform grids can be useful for computations.

P.3-3 Derive a finite difference expression for f ′(0) in terms of f(0), f(h), and
f(2h) that has an O(h2) error.

P.3-4 For a problem with the grid points xi = ih, where i = 0, 1, 2, . . ., de-
rive a finite difference approximation of the Neumann boundary condition
f ′(0) = 0 by the use of a “ghost” grid point x−1 = −h (outside the com-
putational domain) such that the error is O(h2).

P.3-5 The capacitance can also be computed from C = 2W/V 2, where W is
the electrostatic energy and V the potential difference between the two
conductors of the capacitor. Write down an expression for W in terms of
the electrostatic potential distribution and suggest a method for comput-
ing W given the finite difference solution to an electrostatic problem.

P.3-6 Discuss how the derivative operators in (3.9) and (3.10) can be related
to, and useful in the context of, the one-way wave equation ∂f/∂x ±
(jω/c)f = 0, where c is the speed of the wave.

P.3-7 Show that the Helmholtz equation, ∂2f/∂x2 + (ω/c)2f = 0, can be
factorized into (

∂

∂x
+

jω

c

) (
∂

∂x
− jω

c

)
f = 0

and interpret the two factors of the Helmholtz operator. Discretize the
above factorized operator by finite differences (on staggered grids) and
multiply the two factors to derive the corresponding Helmholtz operator.

P.3-8 Discuss how the derivative operators in (3.9) and (3.10) can be re-
lated to, and useful in the context of, the wave equation ∂2f/∂x2 −
c−2∂2f/∂t2 = 0, where c is the speed of the wave f = f(x, t). Here,
f(x+ ct) and f(x− ct) solve the wave equation, and the lines where x+ ct
and x − ct are constant are referred to as characteristics.

P.3-9 Demonstrate that the Helmholtz equation is equivalent to the two cou-
pled equations ∂f/∂x + (jω/c)g = 0 and ∂g/∂x + (jω/c)f = 0. What is
the meaning of the new function g? How should the first-order system of
coupled equations be discretized by finite differences?

P.3-10 Show that the analysis with complex exponentials applied to (3.16)
gives λ = (2/h) tan(kh/2), so that λ → ∞ as kh → π.
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P.3-11 The 1D Helmholtz equation for a transversal wave Ez in a homoge-
neous medium with losses reads(

− ∂2

∂x2 + jωµσ − ω2µε

)
Ez = 0.

Use the finite difference approximation to discretize this equation. Calcu-
late and compare the dispersion relation of the continuous and the dis-
cretized problems. Does the discretized problem reproduce the physics for
well-resolved solutions? What happens for poorly resolved solutions? How
does the angular frequency ω and the material parameters µ, ε, and σ in-
fluence the accuracy of the dispersion relation of the discretized equation?

Computer Projects

C.3-1 Write down the system of linear equations that results from the dis-
cretization of the capacitance problem shown in Figure 3.1. Let c = d =
3a = 3b and use a square grid with one grid point between the inner and
outer conductors. Let the potential be φ1 on the inner conductor and φ2
on the outer conductor. How are these boundary conditions incorporated
into the system of linear equations? Is it possible to use symmetries in the
solution of this problem?
Generalize the result so that it is possible to specify the number of points
between the inner and outer conductors. Write a computer program that
generates the system of linear equations Af = b in terms of a matrix A
and a vector b, where the solution vector f stores the potential values at
grid points between the inner and outer conductors.

C.3-2 Write a computer program that uses Jacobi and Gauss–Seidel itera-
tion to solve for the electrostatic potential on a square domain of side a.
Use the boundary conditions φ(x, 0) = φ(0, y) = 0, φ(x, a) = φ0 · (x/a)
and φ(a, y) = φ0 · (y/a), where φ0 is a constant. Study and compare the
convergence of the iterative methods in Section 3.1.1. Implement the over-
relaxation method and investigate how the value of R influences the con-
vergence. The analytical solution to this problem is φ(x, y) = φ0 · (xy/a2).

C.3-3 Use the finite difference scheme to compute the capacitance for a coaxial
cable of two concentric circular cylinders with inner radius a and outer
radius b. For this case, the capacitance per unit length can be calculated
analytically, and it is 2πε/ ln(b/a). The circular boundaries do not fall on
grid points in a natural way, and one way to proceed is to approximate
these boundaries in some sense given the structured Cartesian grid. This
type of approximation is often referred to as the staircase approximation.
How does the error depend on the cell size h? Can you extrapolate the
results to zero cell size?

C.3-4 Try to reformulate the previous problem using polar coordinates (it can
be reduced to a 1D problem) to avoid the staircase approximation and
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use the finite difference scheme to solve for the capacitance. Determine
the order of convergence. Is it possible to extrapolate the capacitance to
zero cell size?



4

Eigenvalues

4.1 Maxwell’s Equations

Maxwell’s equations can be solved either in the time domain, by evolving
an initial condition in time, or in the frequency domain, assuming harmonic
exp(jωt) time dependence. In both cases, the application can be either a driven
system, where one seeks the response to a source, for instance an antenna, or
an eigenvalue calculation, where one seeks the natural oscillation frequencies
of the system.

In a linear, dispersion-free medium (i.e., ε and µ depend only on the coor-
dinate vector), Maxwell’s equations can be written as the single second-order
curl-curl equation (1.11) for the electric field

−ε
∂2E

∂t2
= ∇ × 1

µ
∇ × E +

∂J

∂t
. (4.1)

In the absence of sources, J = 0, and with harmonic time dependence
exp(jωt), the curl-curl equation gives the following eigenvalue problem:

ω2
mεEm = ∇ × 1

µ
∇ × Em. (4.2)

For nontrivial solutions (Em �= 0), ω2
m plays the role of an eigenvalue, and Em

is the corresponding eigenfunction, or eigenmode. (Sometimes the subindex
m is omitted in order to simplify the notation.) If the region Ω, where (4.2)
applies, is a closed cavity with a perfectly conducting boundary ∂Ω (i.e.,
n̂ × E = 0), the operator on the right-hand side, L ≡ ∇ × µ−1∇×, is self-
adjoint, that is, ∫

Ω

E1 · L[E2]dV =
∫

Ω

E2 · L[E1]dV (4.3)

for all vector fields E1 and E2 that satisfy the boundary conditions. This can
be shown using the vector identity
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∇ ·
[
A × 1

µ
(∇ × B)

]
=

1
µ

(∇ × A) · (∇ × B) − A · ∇ × 1
µ

∇ × B. (4.4)

For all electric fields E1 and E2 satisfying the boundary condition, n̂×E = 0,
(4.4) gives

∫
Ω

E1 · ∇ × 1
µ

∇ × E2dV =
∫

Ω

1
µ

∇ × E1 · ∇ × E2dV

=
∫

Ω

E2 · ∇ × 1
µ

∇ × E1dV, (4.5)

where we have applied integration by parts twice. Integrating (4.2), multiplied
by the complex conjugate of E over Ω, and integrating by parts once, we
obtain ω2

∫
Ω

ε|E|2dV =
∫

Ω
µ−1|∇×E|2dV . This gives the following expression

for the eigenvalue:

ω2 =

∫
Ω

µ−1|∇ × E|2dV∫
Ω

ε|E|2dV
, (4.6)

which is manifestly real and nonnegative. Thus, the eigenfrequencies ω are real
for any lossless region bounded by perfect conductors. Damping can appear
if there is dissipation of energy, for example from regions with finite electrical
conductivity, or if the region is not completely enclosed by a perfect conductor.

Review Questions

4.1-1 What is an eigenvalue problem? What does the solution consist of and
physically correspond to? To what extent is the solution uniquely defined?

4.1-2 What is required for an operator to be self-adjoint?
4.1-3 Show that (4.5) is valid.
4.1-4 Show that the eigenfrequencies ω are real for any lossless region bounded

by perfect conductors. What are the physical implications of this result?

4.2 Model Problems

In the previous section we showed that Maxwell’s equations are self-adjoint in
the absence of losses, and that this leads to real eigenfrequencies. Self-adjoint
equations occur in many branches of science and technology. One example is
the Schrödinger equation, where real eigenvalues describe well-defined energy
levels of states with infinite lifetime. Another example is provided by the
equations of linear elasticity, which have many properties in common with
Maxwell’s equations. This similarity comes from the fact that both can be
written as a vector equation with second-order derivatives in time and space.
The only difference is that the curl-curl operator of the Maxwell equations is
replaced by another second-order vector operator, involving the modulus of
elasticity for bulk compression and shearing. Because of the many similarities



4.3 Frequency-Domain Eigenvalue Calculation 39

between the two fields, it has been possible to carry over techniques originally
developed in computational mechanics (see, e.g., [36]) to CEM.

The self-adjoint curl-curl equation (4.2) leads us to consider eigenvalue
problems of the type

L[f ] = −ω2f in Ω (4.7)

together with a suitable boundary condition on ∂Ω. We will assume that L is a
linear self-adjoint operator with nonpositive eigenvalues. As a simple example
to illustrate general principles, we will study the 1D Helmholtz equation:

d2f

dx2 = −k2f, 0 < x < a, f(0) = f(a) = 0. (4.8)

This equation models many 1D wave phenomena, not only in electromagnet-
ics. We will use it to introduce both frequency- and time-domain techniques
that will be used later to determine eigenfrequencies of more complex electro-
magnetic systems in two and three dimensions.

The eigenvalue problem (4.8) is easy to solve analytically. The solutions of
the differential equation are of the form f = A cos kx+B sin kx. The boundary
condition f(0) = 0 gives A = 0, and then f(a) = 0 gives sin ka = 0. Therefore,
the wavenumber k can take the following values:

km =
mπ

a
, m an integer,

so the eigenvalues −k2
m = −m2π2/a2 are all real and negative. The three

lowest eigenfunctions, or eigenmodes, are shown in Figure 4.1.

Review Question

4.2-1 Calculate analytical eigenvalues and eigenfunctions to the eigenvalue
problem d2f/dx2 = −k2f with f(0) = f(a) = 0.

4.3 Frequency-Domain Eigenvalue Calculation

Frequency-domain eigenvalue problems of the form L[f ] = λf are generally
transformed into corresponding algebraic eigenvalue problems of the form
Af = λf by, for example, a finite difference approximation. Therefore, the
numerical solution of a frequency-domain eigenvalue problem involves the so-
lution of an algebraic eigenvalue problem.

4.3.1 MATLAB: The 1D Helmholtz Equation

To discretize the 1D Helmholtz equation (4.8) by finite differences, we divide
the interval [0, a] into N subintervals of equal length h = a/N . The simplest
finite difference approximation of (4.8) is



40 4 Eigenvalues

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x/a [−]

A
m

pl
itu

de
 [−

]
m = 1

m = 2

m = 3

Fig. 4.1. The three lowest eigenmodes of the 1D Helmholtz equation with f = 0
on the boundaries.

fi−1 − 2fi + fi+1

h2 = −k2fi, i = 1, 2, . . . , N − 1. (4.9)

The boundary conditions are f0 = fN = 0, so there is no reason to include f0
and fN as unknowns. Equation (4.9) can be written as a linear system with
an (N − 1) × (N − 1) matrix A:

Af = λf .

Note that the matrix A is tridiagonal, with nonzero elements on the main
diagonal and one lower and one upper subdiagonal; for six interior points, it
is

A =
1
h2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

When n is large, A consists mostly of zeros, and this can be exploited by sav-
ing the matrix in sparse form (see MATLAB example below). Note that when
the right-hand side is as simple as in (4.9), the physical eigenvalues −k2 are
simply the eigenvalues of the matrix A. These eigenvalues can be computed
with the MATLAB routine eig, which computes all eigenvalues and corre-
sponding eigenvectors of an algebraic eigenvalue problem. We will use this
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routine without discussing how it finds the eigenvalues. The following MAT-
LAB program computes the eigenvalues, that correspond to wavenumbers, for
the discretized 1D Helmholtz equation.

% --------------------------------------------------------------
% Compute eigenvalues of 1D Helmholtz equation using FD
% --------------------------------------------------------------
function k = HFD1D(a, N)

% Arguments:
% a = length of interval
% N = number of subintervals (equal length)
% Returns:
% k = eigenvalues

h = a/N; % Grid size
A = spalloc(N-1, ... % Allocate sparse matrix

N-1, ... % with 3*(N-1) nonzeros
3*(N-1));

d = -2/hˆ2; % Value of diagonal entries
s = 1/hˆ2; % Value of upper and lower

% diagonal entries

% Initialize the diagonal entries
for i = 1:N-1
A(i,i) = d; % Diagonal entries

end

% Initialize the upper and lower diagonal entries
for i = 1:N-2
A(i,i+1) = s; % Upper diagonal entries
A(i+1,i) = s; % Lower diagonal entries

end

% Computing the eigenvalues
lambda = eig(A);
k = sqrt(sort(-lambda));

For this small example, we can rely on the MATLAB routine eig. It should be
noted that eig is limited to systems with at most a few thousand unknowns.
This means it is very useful in one dimension, and works for moderate-sized 2D
problems. In three dimensions, more powerful routines, such as the MATLAB
routine eigs, are generally needed.

We calculate the first two numerical wavenumbers k on the interval [0, π]
for four different resolutions. The analytical results are k = 1, 2, 3, . . ., and the
numerical results are shown in Table 4.1.

Plots of km versus hp show a straight line when p = 2, which means that
the convergence is quadratic. Extrapolation of the first eigenvalue to zero
cell size using polyfit gives the following values for k1: linear extrapolation
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N [-] h [m] k1 [1/m] k2 [1/m]
10 0.1000 0.99589 27352 4357 1.96726 32861 6693
20 0.0500 0.99897 22332 4854 1.99178 54704 8714
30 0.0333 0.99954 31365 0068 1.99634 65947 4160
40 0.0250 0.99974 29988 6918 1.99794 44664 9703

Table 4.1. The two lowest wavenumbers from FD discretizations with different
resolutions.

0.99999 93697 896, quadratic 0.99999 99999 437, and cubic 0.99999 99999 997,
which is very close to the exact value 1. For the second eigenvalue, linear
extrapolation gives 1.99997 98747 162, quadratic 1.99999 99928 090, and cubic
1.99999 99999 989. Thus, the two lowest eigenvalues could be computed with
12-digit accuracy using the cubic fit for extrapolation, even though the com-
putations have only about 4-digit accuracy. The accuracy of the extrapolated
values may at first be surprising, but it is typical for problems where the so-
lution is completely regular, i.e., has bounded derivatives of arbitrarily high
order. However, if the problem contains some singular behavior, caused for
instance by a reentrant 270o-degree corner, as in Figure 3.1, or a tip in three
dimensions, the derivatives of the solution will diverge at the corner, the order
of convergence decreases, and extrapolation becomes more difficult.

The error is larger for the second eigenmode. The second eigenmode os-
cillates twice as fast and needs twice the resolution to be computed with the
same accuracy as the first, as is confirmed by Table 4.1.

Review Questions

4.3-1 Use finite differences to discretize the eigenvalue problem d2f/dx2 =
−k2f with f(0) = f(a) = 0. Write down the corresponding matrix eigen-
value problem.

4.3-2 What is the order of convergence for k in (4.9)?
4.3-3 Why is the error, in general, larger for higher eigenmodes? What situ-

ations could change this?

4.4 Time-Domain Eigenvalue Calculation

One common way of determining eigenfrequencies in CEM is to time-step a
solution, using for example a finite difference program, record the field at some
location, and then Fourier transform this signal to locate its main frequency
components. This technique can be used for more general methods than the
finite differences. It can be used to find the eigenvalues of any spatial operator
L with real and negative eigenvalues,

L[f ] = −ω2f. (4.10)
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Equation (4.10) is written in such a form that it is the frequency-domain form
of the time-domain equation

∂2f

∂t2
= L[f ], (4.11)

which is, most likely, what the eigenvalue problem (4.10) was derived from.
The simplest time-discretization of (4.11) is

f (n+1) − 2f (n) + f (n−1)

(∆t)2
= L[f (n)], (4.12)

where ∆t is the time step. An important advantage of this formulation is that
the time-stepping is explicit, that is, no matrix inversion is needed to compute
f (n+1):

f (n+1) = 2f (n) − f (n−1) + (∆t)2L[f (n)]. (4.13)

Such time-stepping schemes, often referred to as “leap-frog,” are very efficient,
and allow determination of the complete eigenvalue spectrum of (4.10). An
important issue for explicit time-stepping schemes is how to choose the time-
step ∆t. This is mainly determined by stability.

4.4.1 Stability Analysis

Before working out a specific example, we discuss how one can analyze the
stability of a time-stepping algorithm such as (4.13). The following technique
is known as von Neumann stability analysis.

The analysis is based on the fact that any discrete time equation, which has
no explicit time dependence, has solutions of the form f (n) = fωρn, that is, ge-
ometrical sequences in discrete time. This is true even if the equation involves
space-dependent coefficients, as long as it has no explicit time-dependence.
Here, ρ is called the amplification factor of the eigenmode fω, and stability
requires |ρ| ≤ 1 for all eigenmodes. Substituting f (n) = fωρn into (4.13), and
using L[fω] = −ω2fω, we obtain a quadratic equation for the amplification
factor

ρ2 − [2 − (ω∆t)2]ρ + 1 = 0 (4.14)

with the solutions

ρ = 1 − 1
2
(ω∆t)2 ± jω∆t

√
1 − 1

4
(ω∆t)2. (4.15)

If (ω∆t)2 ≤ 4, there are two complex conjugate solutions such that

|ρ|2 = (Reρ)2 + (Imρ)2 = 1.

On the other hand, if (ω∆t)2 > 4, there are two real solutions, whose product
is unity, so one of them has modulus larger than 1. Figure 4.2 shows how the
roots move in the complex plane as ω∆t varies.
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Fig. 4.2. Trajectories in the complex plane of the two roots for the amplification
factor ρ in (4.15).

The roots stay on the unit circle |ρ| = 1 as long as |ω∆t| ≤ 2, but when
|ω∆t| > 2, one root has modulus larger than unity. Therefore, if |ω∆t| > 2, the
solution will grow exponentially in time, and the scheme for time-stepping is
unstable. Thus, the explicit time-stepping scheme in (4.13) has a stability limit
for the time-step: ∆t ≤ 2/|ω|. Since this has to hold for all the eigenmodes of
(4.10), the condition on the time-step for the explicit scheme is

∆t ≤ 2
|ωmax| . (4.16)

This means that the time-step times the highest eigenfrequency fmax =
ωmax/2π should be at most 1/π.

If we apply this stability limit to the operator L = d2/dx2 discretized on a
uniform grid with cell size h, the largest numerical eigenvalue is ω2

max = 4/h2

[see (3.17)]. Thus, ωmax = 2/h, and stability requires ∆t ≤ 2/ωmax = h.
We conclude that the time-step for our simple explicit scheme for the wave
equation ∂2f/∂t2 = ∂2f/∂x2 should not be larger than the space step, for
stability reasons.

We can also see how well the time-stepping reproduces the true oscillation
frequency. The amplification factor per time-step ought to be

exp(±jωt) = 1 ± jωt − 1
2
(ω∆t)2 ∓ j

6
(ω∆t)3 + · · · ,

whereas (4.15) gives
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ρ = 1 ± jωt − 1
2
(ω∆t)2 ∓ j

8
(ω∆t)3 + · · · .

The difference between ρ and exp(jωt) is ±j(ω∆t)3/24, which corresponds to
a relative frequency error of (ω∆t)2/24.

The von Neumann stability analysis is closely related to the analysis in
Section 3.2.3. To see the connection, assume that the solution f of the time-
discretized problem varies harmonically in time, f ∝ exp(jΩt), i.e., f (n) ∝
exp(jnΩ∆t). We will examine how the frequency Ω of the time-discretized
solution is related to ω of the frequency-domain eigenvalue problem L[f ] =
−ω2f . [Of course, this is just redoing the analysis leading to (4.15), replacing
the amplification factor ρ by exp(jΩt).] Using the same rewrite for the second
derivative as in (3.17), we obtain

4
(∆t)2

sin2 Ω∆t

2
= ω2 (4.17)

for the frequencies Ω generated by the leap-frog time-stepping. [This is also
the same as the numerical second-order derivative in (3.18).] In order for (4.17)
to have real solutions for Ω, ω∆t must not exceed 2 for any ω.

In the FEM chapter, we will also study implicit time-stepping schemes,
which make it possible to remove the limit on the time-step. The price to pay
for this is that one has to solve a system of equations to update the solution
at each time step. Also, the accuracy may be poor if the time-step becomes
too large.

4.4.2 MATLAB: The 1D Wave Equation

As a simple illustration of how to extract spectral information by explicit
time-stepping, we seek the spectrum −ω2 of the operator L = ∂2/∂x2 on the
interval 0 < x < a with the boundary conditions f(0, t) = f(a, t) = 0. The
true eigenfrequencies are

ωm =
mπ

a
, m = 1, 2, . . . .

The spectrum of L can be found by solving the wave equation

∂2f

∂t2
=

∂2f

∂x2 , 0 < x < a, f(0, t) = f(a, t) = 0. (4.18)

We use the simplest finite difference scheme:

f
(n+1)
i = 2f

(n)
i − f

(n−1)
i +

(
∆t

∆x

)2 (
f

(n)
i+1 + f

(n)
i−1 − 2f

(n)
i

)
. (4.19)

We will write this as a MATLAB function that records two signals [f(t) at
two locations, the midpoint and a point close to the left boundary] and stores
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them in arrays to be analyzed afterwards. More than one signal is recorded
because some eigenmodes can be undetected if the eigenfunction f has a node
(i.e., zero amplitude) at the “detector” location. An eigenmode may also be
undetected if the initial condition does not excite it at sufficient amplitude.

% --------------------------------------------------------------
% Time step 1D wave equation using two time-levels f0 & f1
% --------------------------------------------------------------
function [omega, s1, s2] = Wave1D(a, time, nx)

% Arguments:
% a = the length of the interval
% time = the total time interval for the simulation
% nx = the number of subintervals in the domain (0,a)
% Returns:
% omega = the angular frequencies
% s1 = the complex Fourier transform of data at x = a/5
% s2 = the complex Fourier transform of data at x = a/2

f0 = randn(nx+1, 1); % Initialize with random numbers
f0(1,1) = 0; % Boundary condition at x = 0
f0(nx+1,1) = 0; % Boundary condition at x = a

f1 = randn(nx+1, 1); % Initialize with random numbers
f1(1,1) = 0; % Boundary condition at x = 0
f1(nx+1,1) = 0; % Boundary condition at x = a

dx = a/nx; % The cell size
d2tmax = 1.9*dx; % The time step must satisfy

% 2*dt < 2*dx for stability

ntime = round(time/d2tmax + 1); % The number of time steps
dt = time/(2*ntime); % The time step

% Initialize the coefficient matrix for updating the solution f
A = spalloc(nx+1,nx+1,3*(nx+1)); % Sparse empty matrix with

% 3*(nx+1) nonzero entries
for i = 2:nx
A(i,i) = 2*(1-(dt/dx)ˆ2); % Diagonal entries
A(i,i+1) = (dt/dx)ˆ2; % Upper diagonal entries
A(i,i-1) = (dt/dx)ˆ2; % Lower diagonal entries

end

% Time step and sample the solution
% Sample location #1 is close to the left boundary
% Sample location #2 is at the midpoint of the domain
for itime = 1:ntime % Every ’itime’ means two time steps ’dt’

f0 = A*f1 - f0; % Update
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sign1(2*itime-1) = f0(round(1+nx/5)); % Sample at location #1
sign2(2*itime-1) = f0(round(1+nx/2)); % Sample at location #2

f1 = A*f0 - f1; % Update
sign1(2*itime) = f1(round(1+nx/5)); % Sample at location #1
sign2(2*itime) = f1(round(1+nx/2)); % Sample at location #2

end

% Compute the discrete Fourier transform of
% the time-domain signals
spectr1 = fft(sign1);
spectr2 = fft(sign2);

% In the MATLAB implementation of the function fft(),
% the first half of the output corresponds to positive frequency
s1(1:ntime) = spectr1(1:ntime);
s2(1:ntime) = spectr2(1:ntime);

% Frequency vector for use with ’s1’ and ’s2’
omega = (2*pi/time)*linspace(0, ntime-1, ntime);

We call the routine by

[omega,s1,s2] = Wave1D(pi,200,30);

to compute the spectrum of the second derivative on the interval [0, π]. Figures
4.3 and 4.4 show the absolute values of s1 and s2 versus angular frequency.
The spectral peaks fall very close to integers, as they should. Because of the
spatial locations of the observation points, the even peaks are absent in s2 and
those divisible by 5 in s1. These are the eigenmodes that have zero amplitudes
(nodes) at the respective observation points.

A significant advantage of such a time-domain calculation is that we can
find the whole spectrum (except the few peaks that are accidentally missed)
from a single simulation.

4.4.3 Extracting the Eigenfrequencies

Let us briefly consider how to extract the eigenfrequencies from a time-domain
simulation. We first run the simulation and record the signals. The longer the
simulation is run, the sharper the spectral peaks become, and the better the
eigenfrequencies are determined, but the convergence of the estimated fre-
quencies is slow. One can see that when there is no damping, the estimates
are sensitive to how close the various frequency components are to making
an integer number of oscillations during the simulation. This is because the
fast Fourier transform (FFT), which is used to transform the recorded sig-
nal into the frequency domain, treats the signal as if it were periodic with
a period equal to the simulated time. If the time interval is not an integer
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Fig. 4.3. Amplitude of Fourier coefficient s1 (measured at one-fifth from the left
boundary) versus angular frequency for the 1D wave equation. Every fifth mode is
undetected because the detector is located at a node for the eigenfunction.
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Fig. 4.4. Amplitude of Fourier coefficient s2 (measured at the midpoint of the
interval) versus angular frequency for the 1D wave equation. All modes with even
number are undetected because the detector is at a node for those modes.
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number of wave periods, either the signal or its time derivative will have a
jump at the end of the time window, and this broadens the Fourier spectrum
of a sinusoidal signal. As an example, compare the spectrum obtained by
calling the time-stepping routine by Wave1D(pi,20*pi,30), which gives 10
(analytical) oscillation periods for the first mode, and where all the low-order
modes make approximately an integer number of oscillations, with that ob-
tained from Wave1D(pi,21*pi,30), where the first mode has 10.5 oscillation
periods and all the odd modes will be strongly broadened by the FFT. In the
first case, where the low-order modes make an integer number of oscillations,
the FFT finds very sharp peaks for these modes, despite the rather short time
interval; see Figure 4.5. In the second case, see Figure 4.6, the odd modes,
with half-integer number of periods, are broad.
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Fig. 4.5. FFT spectrum for the 1D wave equation when the time interval is 10
periods for the lowest mode (and an integer number of modes for all the lowest
modes).

One way to avoid the dependence on how the time sequence is terminated
is to multiply the time signal by an exponential damping factor exp(−γt),
and choose γ such that γtmax is large enough, say in the range of 3 to 5.
(This makes the FFT an approximation of the Laplace transform.) Now the
FFT produces a cleaner spectrum. The frequencies can be extracted almost
automatically by fitting the output from the FFT (Laplace transform) to a
so-called Padé approximation. This consists in fitting the frequency response
by a ratio of polynomials
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Fig. 4.6. FFT spectrum for the 1D wave equation when the time interval is 10.5
periods for the lowest mode (and a half-integer number of modes for all the odd
modes).

s(ω) =
P (ω)
Q(ω)

. (4.20)

The idea behind this (which is correct only when the signal decays to zero at
the end of the recorded interval) is that we expect the Laplace transform to
consist of simple poles

s(ω) ≈
∑

n

cn

ω − ωn
, (4.21)

and this pole expansion is a rational function of the same type as the Padé
approximation (4.20).

4.4.4 MATLAB: Padé Approximation

The following MATLAB function computes the coefficients of P and Q and
then uses MATLAB’s residue function to find the poles ωn and residues cn

in (4.21).

% --------------------------------------------------------------
% Pade approximation for s(omega)
% --------------------------------------------------------------
function [poles, res] = Pade(omega, s, l, n)

% Arguments:
% omega = the array of the independent frequency
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% s = the function of omega to be Pade approximated as
% the ratio of polynomials P(omega)/Q(omega)
% l = discrete index of center frequency
% n = degree of polynomials P and Q
% Returns:
% poles = the poles of the Pade approximation
% res = the residues of the Pade approximation

% Setup the matrix for computing coefficients of P and Q
A = zeros(2*n+1);
for i = 1:2*n+1
% Shift frequencies
oshift(i) = omega(l-1-n+i)-omega(l);

% P entries
for k = 1:n+1
A(i,k) = oshift(i)ˆ(k-1);

end

% Q entries
for k = 1:n
A(i,n+1+k) = -s(l-1-n+i)*oshift(i)ˆk;

end

% Q_0 set to 1
x(i) = s(l-1-n+i);

end

% Compute the coefficients
coef = (A\(x.’)).’;

for k = 1:n+1
P(k) = coef(n+2-k);

end

for k = 1:n
Q(k) = coef(2*n+2-k);

end
Q(n+1) = 1;

% Find the poles and the residues
[res, poles] = residue(P, Q);
poles = poles + omega(l); % Restore the frequency shift

Applying this routine to an approximate Laplace transform, one can make
the frequencies converge very well with about 10 periods of oscillation. A
standard method used for frequency determination in the literature is Prony’s
method; see for instance [75]. However, more modern techniques of signal
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processing can be used to give much more efficient extraction of frequencies,
in particular when the frequency spectrum is dense [62].

Review Questions

4.4-1 How are the eigenvalues extracted from a time-domain eigenvalue calcu-
lation? Can the corresponding eigenmodes be extracted in a simple way?

4.4-2 What considerations should be taken into account in selecting the time-
step ∆t?

4.4-3 What is an explicit time-stepping method?
4.4-4 Describe the meaning and the use of the amplification factor in words.
4.4-5 How does the highest eigenfrequency relate to the maximal stable time-

step for (4.13)?
4.4-6 How well is the true oscillation frequency reproduced by (4.15)? Quan-

tify your answer.
4.4-7 How do the excitation and detector positions influence the frequency

spectrum computed from a time-domain method?
4.4-8 Why are the frequency estimates of the FFT sensitive to how close

the various undamped resonances are to making an integer number of
oscillations during the simulation?

Summary

• The solution of the eigenvalue problem L[fm] = λmfm consists of pairs of
eigenvalues λm and eigenvectors fm, where the pairs typically are indexed
by an integer m. (Sometimes the subindex m is omitted in order to simplify
the notation.) Here, the operator L and boundary conditions are given. For
Maxwell’s equations, we have

∇ × µ−1∇ × Em = ω2
mεEm,

where the eigenfunction is Em and the eigenvalue is ω2
m.

• For the 1D Helmholtz equation d2f/dx2 = −k2f on the interval 0 < x < a
with the boundary conditions f(0) = f(a) = 0, the eigenvalues are k2 =
(πm/a)2 with integer m = 1, 2, . . . for the continuous problem, and the
discretized problem has

k2 =
4
h2 sin2

(
πmh

2a

)

for the cell size h and m = 1, 2, . . . , N , where N is the number of internal
nodes in the grid.

• A time-domain computation of eigenvalues is based on the inverse Fourier
transform of L[f ] = −ω2f , i.e., L[f ] = ∂2f/∂t2, and a finite difference
discretization with respect to time gives
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L[f (n)] =
f (n+1) − 2f (n) + f (n−1)

(∆t)2
.

The substitution f (n) = fωρn, where ρ is an amplification factor and
L[fω] = −ω2fω, gives

ρ = 1 − 1
2
(ω∆t)2 ± jω∆t

√
1 − 1

4
(ω∆t)2.

We have |ρ| = 1 for ω∆t ≤ 2. If ∆t < 2/|ωmax|, no mode will grow, and
every mode is multiplied by a phase-factor in each time-step. Thus, stable
time-stepping is achieved for ∆t < 2/|ωmax|, where ωmax is the highest
eigenfrequency.

• The output s(t) from a time-domain simulation can be represented by its
Fourier transform:

s(ω) ≈ P (ω)
Q(ω)

=
∑

n

cn

ω − ωn
.

Peaks in the spectrum of s(ω) fall close to the resonance frequencies ωn.

Problems

P.4-1 Calculate the eigenvalues k2 of the vector wave equation ∇ × ∇ × E =
k2E for a 2D rectangular cavity with PEC boundaries. Consider the two
cases with E = ẑEz(x, y) and E = x̂Ex(x, y) + ŷEy(x, y), where the
second case is easier to treat if it is reformulated in terms of the magnetic
field.

P.4-2 Show that the eigenvalues of the discretized 1D Helmholtz equation
(4.9), for a = π, are

−k2 = − 4
h2 sin2 mh

2
, m = 1, 2, 3, . . . ,

and find how the error in k depends on the mode number and resolution.
P.4-3 Let the electric field be E = ẑEz(x) for a 1D cavity with PEC walls

and constant µ and ε. Use the finite difference scheme and show that (4.6)
can be rewritten as

ω2 =
1
µε

eTAe
eTe

,

where e is a vector with the electric field at the interior grid points. Deter-
mine A and interpret the products eTAe and eTe in terms of a numerical
integration scheme.

P.4-4 In one dimension, Helmholtz equation gives L = d2/dx2. Find a nonzero
solution f that yields L[f ] = 0 and solve (4.10) and (4.11) for that par-
ticular solution. Can this solution exist in a region of finite size, and if so,
what boundary conditions are satisfied by this solution?
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P.4-5 Consider the questions in the previous exercise when the operator
L = d2/dx2 is discretized by finite differences. How do you treat the
boundary conditions so that the order of convergence associated with the
finite difference stencils of the interior grid points is preserved? How does
the discretized problem compare to its continuous counterpart? Does the
discretized problem have a nonzero solution f with L[f ] = 0?

P.4-6 Discretize L = ∂2/∂x2 with finite differences so that the dominant term
in the error is O(h4) (more than three points are needed) and derive the
stability limit on ∆t for (4.13). Compare the stability limit with the case
in which the error is O(h2).

P.4-7 Compute the discrete Fourier transform of the signal sin(ωt) sampled
at t = n∆t, where n = 0, 1, . . . , N − 1. Compare some arbitrarily chosen
value of ω with the special case ω = 2πq/(N∆t) for some integer q =
0, 1, . . . , N − 1. How and why do these cases differ?

P.4-8 For three resonances, rewrite (4.21) as a ratio of polynomials s(ω) =
P (ω)/Q(ω). Consider the output signal y(ω) = s(ω)x(ω), where x(ω)
is the input signal to the system. Use the inverse Fourier transform to
derive the time-domain expression for Q(ω)y(ω) = P (ω)x(ω). Interpret
your findings.

Computer Projects

C.4-1 The transverse electric (TE) modes and the corresponding eigenvalues
k2

t for a closed metal waveguide satisfy

−∇2Hz = k2
t Hz in S,

n̂ · ∇Hz = 0 on L.

Similarly, the transverse magnetic (TM) modes and their eigenvalues k2
t

fulfill

−∇2Ez = k2
t Ez in S,

Ez = 0 on L.

Here, the metal boundary of the waveguide cross section is denoted by
L, and it encloses the interior S of the waveguide. Write a program that
solves for the eigenmodes and the eigenvalues based on a finite difference
discretization of the TE and TM problem for a waveguide with rectangular
cross section. The analytical eigenvalues are k2

t = (mπ/a)2 + (nπ/b)2 for
integers m and n excluding the combination m = n = 0 for the TE case
and mn = 0 for the TM case. Here, the rectangular cross section has
width a and height b.

C.4-2 Equation (4.2) with losses and constant permeability is given by ∇ ×
∇ × E = µ(ω2ε − jωσ)E, and for a problem with E = ẑEz(x, y), we get
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−∇2Ez = µ(ω2ε − jωσ)Ez,

which is a nonlinear eigenvalue problem in ω. Rewrite this problem to a
linear eigenvalue problem in terms of Ez and ωEz. Implement a finite-
difference algorithm and solve for the resonance frequencies and quality
factors of a square cavity with a boundary of a PEC. For constant ma-
terial parameters, derive the analytical eigenfrequencies and compare the
numerical and analytical results. How is the spectrum influenced by losses?
Explore the case in which σ > 0 in a part of the domain and study the
dependence of the lowest eigenmodes as a function of σ. Try to explain
your findings.
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The Finite-Difference Time-Domain Method

The finite-difference time-domain method, or FDTD for short, is one of the
most popular computational methods for microwave problems; it is simple to
program, highly efficient, and easily adapted to deal with a variety of prob-
lems. A major weakness of the method lies in the way it deals with boundaries
that are not aligned with the Cartesian grid: for oblique boundaries, FDTD
programs typically resort to the “staircase approximation.” The error due to
the staircase approximation can be difficult to assess, but some examples can
be found in the literature [13, 60]. The finite element method (FEM), which
will be discussed in Chapter 6, is better suited for problems with oblique and
curved boundaries and fine structures that may need higher resolution locally.
However, the FDTD allows for explicit time-stepping, and this makes it much
more efficient than time-domain FEM, which in general is implicit (i.e., a
system of equations must be solved at each time step). Another advantage
of the FDTD is that no matrix has to be stored. This reduces memory con-
sumption and makes it possible to solve problems with a very large number
of unknowns.

The FDTD has a time-step limit ∆t < h/c
√

3 in three dimensions, where
∆t is the time-step, h is the cell size, and c is the speed of light (in vacuum,
the speed of light is c0 = 299 792 458 m/s). This is a serious limitation in
problems involving time scales much longer than it takes a light wave to cross
the simulation region. An important example of this is eddy current problems,
in which the FDTD cannot be used because of its short limit to the time-step.

The type of problems for which the FDTD is particularly suited involves
the propagation of electromagnetic waves and geometries where characteristic
lengths are comparable to a wavelength. This typically includes microwave
problems. Similar conditions also apply for optical devices whose dimensions
are comparable to the wavelength.

A powerful way to find several resonant frequencies of a microwave cavity
is to perform an FDTD simulation and then Fourier transform selected signals
in time. This is the same procedure that we discussed for finding the eigen-
values of the 1D Helmholtz equation in Chapter 4. For many applications,
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for instance scattering problems, selected time signals from an FDTD simu-
lation can be Fourier transformed while the simulation proceeds, and a single
FDTD run can produce frequency-domain results at any desired number of
frequencies. This is a major advantage of time-domain methods.

The FDTD algorithm was originally proposed by K.S. Yee in 1966 [87].
Since then, it has been used for a variety of applications, and many extensions
of the basic algorithm have been developed. The literature on the FDTD is
vast, and over the period 1975–1995 the number of research papers in which
the FDTD method was used grew exponentially in time. By now, the FDTD
is considered a basic tool in CEM, and research articles now tend to be on
more complicated methods. The books by Taflove et al. [75, 77, 76] give a
good overview and describe many important extensions of the FDTD. Much
information on the FDTD method can also be found at www.fdtd.org [68].

5.1 The 1D Wave Equation

To solve the wave equation (1.12) numerically, we divide the z-axis into inter-
vals of length ∆z and the time axis into intervals of length ∆t (see Figure 5.1).

∆z ∆z ∆z

∆tn

∆t

0
0

t

z2 r

Fig. 5.1. The grid used to numerically solve the 1D wave equation.

Let |r be an index that refers to the z-coordinate and let |n refer to the
time coordinate such that E|nr = E(r∆z, n∆t). We get the discrete equation
by using standard difference approximations for the derivatives:

E|n+1
r − 2 E|nr + E|n−1

r

(∆t)2
= c2 E|nr+1 − 2 E|nr + E|nr−1

(∆z)2
. (5.1)
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Equation (5.1) gives an explicit expression for E at the next time level n + 1
in terms of E at the previous levels:

E|n+1
r = 2E|nr − E|n−1

r +
(

c∆t

∆z

)2

(E|nr+1 − 2 E|nr + E|nr−1), (5.2)

which is identical to (4.19) when the speed of the wave c is set to unity. Two
time levels of E must be given as initial conditions. For the analytical wave
equation one needs E and ∂E/∂t as functions of z at t = 0.

The dispersion relation for the finite difference approximation in (5.1) can
be found by substituting E|nr with exp(jω n∆t − jk r∆z) and dividing the
equation by exp(jω n∆t − jk r∆z):

ejω∆t − 2 + e−jω∆t

(∆t)2
= c2 e−jk∆z − 2 + ejk∆z

(∆z)2
.

This can be rewritten as
(

ejω∆t/2 − e−jω∆t/2

2j

)2

=
(

c∆t

∆z

)2 (
ejk∆z/2 − e−jk∆z/2

2j

)2

.

Taking the square root, we get the dispersion relation for the numerical
scheme:

sin
ω∆t

2
= ±c∆t

∆z
sin

k∆z

2
. (5.3)

For the numerical solutions, the angular frequency ω is only approximately
a linear function of the wavenumber k, unless ∆z = c∆t. Consequently,
waves with different wavenumbers will propagate with different velocities.
This means that a wave package containing several different spatial frequen-
cies will change shapes as it propagates. This is referred to as the dispersion
of the numerical scheme, or numerical dispersion for short.

5.1.1 Dispersion and Stability

How does the choice of ∆t and ∆z affect the dispersion? Equation (5.3) shows
that the important parameter is R = c∆t/∆z, that is, how many grid cells the
exact solution propagates in one time-step. Dispersion relations for different
values of R ≤ 1 are shown in Figure 5.2.

We have the following distinct situations:

R = 1: If ∆t = ∆z/c, then R = 1 and (5.3) simplifies to ω = ±ck, which is
exactly the analytical dispersion relation (1.14). This choice of ∆t is called
the magic time step. The errors of the spatial and temporal difference
approximations cancel, and the signals propagate exactly one cell per time-
step, in either direction.
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Fig. 5.2. Numerical dispersion relations for different values of R = c∆t/∆z.

R < 1: If ∆t < ∆z/c, the numerical dispersion relation differs from the an-
alytical. The smaller R is, the stronger is the numerical dispersion (see
Figure 5.2). The dispersion properties improve as ∆t approaches the magic
time-step.

R > 1: If ∆t > ∆z/c, then R > 1 and (5.3) yields complex angular fre-
quencies for wavenumbers such that | sin k∆z/2| > ∆z/c∆t = 1/R. As a
consequence, some waves will be exponentially growing in time, i.e., the
algorithm is unstable. This exemplifies the type of instability discussed in
Section 4.4.1. When c∆t > ∆z, the signal of the true solution propagates
more than one cell per time-step, and that is not possible with the explicit
scheme in (5.2), which involves only nearest neighbors. The stability con-
dition c∆t ≤ ∆z is often called the Courant (or Courant–Friedrichs–Levy,
CFL) condition. Similar conditions, implying that the signal can propa-
gate at most one grid cell per time-step, hold for practically all explicit
schemes for any differential equation.

Example: A Square Wave

A square wave can be represented as an infinite sum of harmonic components
with different frequencies, and it is rich in high-frequency components. When
such a wave propagates in a dispersive medium, the different sine waves prop-
agate with different velocities, and the shape of the wave will change as it
propagates. The 1D wave equation can be time-stepped using selected parts
of the MATLAB function Wave1D given in Section 4.4.2. Figures 5.3–5.5 show
the propagation of a square wave for three different values of R.
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Fig. 5.3. Propagation of a square wave when ∆t is equal to the magic time-step,
R = c∆t/∆z = 1. There is no dispersion: the shape of the pulse stays the same as
it propagates.
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Fig. 5.4. Propagation of a square wave when ∆t is smaller than the magic time-step,
R = c∆t/∆z = 1/

√
3 ≈ 0.58. In this case, there is significant numerical dispersion:

the shape of the pulse changes as it propagates.
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Fig. 5.5. Propagation of a square wave when ∆t is slightly greater than the magic
time-step, R = c∆t/∆z = 1.01. The scheme is unstable and the wave amplitude
increases rapidly in an unphysical way.

Example: A Smooth Wave

An initial condition in the form of a square wave highlights the dispersion
of the numerical scheme. As a second example, we take as initial condition a
Gaussian pulse that is well resolved on the grid, with 12 points across the 1/e
width; see Figure 5.6. This pulse can propagate many pulse widths before the
dispersion becomes apparent to the eye, even when R = 1/

√
3. This illustrates

an important point: numerical results are accurate only when the solution is
well resolved by the grid. Of course, a square wave is not well resolved on any
grid.

Similarly, if we compute a Gaussian pulse with insufficient resolution, the
dispersion will be strong. Figure 5.7 shows a case in which the 1/e width of the
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Fig. 5.6. Propagation of a Gaussian pulse with 12 points across the 1/e width when
∆t is smaller than the magic time-step, R = c∆t/∆z = 1/

√
3. Although the scheme

has some dispersion, it is hard to see with the naked eye when the pulse is well
resolved.

Gaussian is 6 points. Here, the dispersion manifests itself as short-wavelength
oscillations trailing behind the main pulse. The oscillations are behind the
main pulse because the phase velocity is smaller for short wavelengths.
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Fig. 5.7. Propagation of a Gaussian pulse with 6 points across the 1/e width when
∆t is smaller than the magic time-step, R = c∆t/∆z = 1/

√
3. Here the resolution

is not very good, and the effect of the dispersion is clearly visible to the eye.

Review Questions

5.1-1 List some pros and cons of the FDTD scheme.
5.1-2 What is a dispersion relation? Derive the dispersion relation for the 1D

wave equation discretized by the standard finite difference approximation.
Compare the numerical dispersion relation with its analytical counterpart.

5.1-3 Under what conditions will E(z, t) = E+(z − c t) + E−(z + c t) satisfy
the discretized 1D wave equation?

5.1-4 Generally, higher resolutions lead to more accurate results, but in some
cases this is not true. Give an example of this and explain why.

5.1-5 Explain how and why a pulse is distorted when propagated by the wave
equation discretized by finite differences.
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5.2 The FDTD Method: Staggered Grids

The wave equation is a second-order differential equation for the electric field
only. It can also be stated as a system of coupled first-order differential equa-
tions for both E and H. In three dimensions, Maxwell’s equations (1.9)–(1.10)
in a source-free region give six scalar equations, three for Ampère’s law,

ε
∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
, (5.4)

ε
∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
, (5.5)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
, (5.6)

and three for Faraday’s law,

µ
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
, (5.7)

µ
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
, (5.8)

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
. (5.9)

The FDTD is a finite difference scheme particularly suited to the structure of
these six first-order equations. In particular, it uses difference formulas that
are as local as possible and centered.

5.2.1 One Space Dimension

To illustrate the use of staggered grids, which is central to the FDTD, we
will start with a 1D problem. Consider a plane wave propagating in the z-
direction through a medium such that all quantities are constant in planes
perpendicular to the z-axis. We assume that the electric field is oriented in
the x-direction, and the magnetic field in the y-direction. Then, (5.4)–(5.9)
reduce to

ε
∂Ex

∂t
= −∂Hy

∂z
, (5.10)

µ
∂Hy

∂t
= −∂Ex

∂z
. (5.11)

The “trick” used to get a good algorithm is to put the different E- and H-
components at different positions on the grid, and also to evaluate the equa-
tions at different positions. As we saw in Section 3.2, first-order derivatives
are much more accurately evaluated on staggered grids, such that if a vari-
able is located on the integer grid, its first derivative is best evaluated on
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the half-grid, and vice versa. This holds with respect to both space and time.
Therefore, if we choose to place Ex on the integer points both in space and
in time, Hy should be on the half-grids in both variables, as illustrated in
Figure 5.8. This arrangement is called “staggered grids.”

Let |r be an index that refers to the z-coordinate and let |n refer to the time
coordinate such that f |nr ≡ f(r∆z, n∆t). Then, (5.10) is applied at integer
space points (indexed by r) and half-integer time points (indexed by n+1/2)
using centered and local finite differences in both z and t. Similarly, (5.11)
is applied at half-integer space points (indexed by r + 1/2) and integer time
points (indexed by n) points, also using centered and local finite differences
in both z and t. The finite difference approximation of (5.10)–(5.11) on the
staggered grids reads

Ex|n+1
r − Ex|nr

∆t
= −1

ε

Hy|n+ 1
2

r+ 1
2

− Hy|n+ 1
2

r− 1
2

∆z
, (5.12)

Hy|n+ 1
2

r+ 1
2

− Hy|n− 1
2

r+ 1
2

∆t
= − 1

µ

Ex|nr+1 − Ex|nr
∆z

. (5.13)

As initial conditions we need one time level for Ex and one for Hy.
For problems with variable permittivity and permeability, it is important

to keep in mind that (5.12) is evaluated on the integer grid and (5.13) is evalu-
ated on the half-grid. Consequently, it is natural to sample the permittivity on
the integer grid that gives ε = ε(zr) with z = r∆z. Similarly, the permeability
is evaluated on the half-grid which gives that µ = µ(zr+ 1

2
).

Interfaces between regions with homogeneous but different material pa-
rameters can be treated in the following way: we place a grid point zr (where
the electric field is defined) at the interface and choose the permittivity at this
grid point to be the average of the permittivities in the two media sharing
the interface, i.e., ε = (εA + εB)/2 at zr, where εA and εB denote the permit-
tivities in the two media. The permeability is then unproblematic, since it is
evaluated at least half a cell from the interface. This approach maintains the
order of convergence for the FDTD scheme, whereas other approaches may
yield deteriorated convergence properties.

It is instructive to eliminate Hy from (5.12)–(5.13):

Ex|n+1
r − 2Ex|nr + Ex|n−1

r

(∆t)2
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{rearrange} =
1

∆t

(
Ex|n+1

r − Ex|nr
∆t

− Ex|nr − Ex|n−1
r

∆t

)

{(5.12)} = − 1
ε∆t

⎛
⎝Hy|n+ 1

2
r+ 1

2
− Hy|n+ 1

2
r− 1

2

∆z
−

Hy|n− 1
2

r+ 1
2

− Hy|n− 1
2

r− 1
2

∆z

⎞
⎠

{rearrange} = − 1
ε∆z

⎛
⎝Hy|n+ 1

2
r+ 1

2
− Hy|n− 1

2
r+ 1

2

∆t
−

Hy|n+ 1
2

r− 1
2

− Hy|n− 1
2

r− 1
2

∆t

⎞
⎠

{(5.13)} =
1

εµ∆z

(
Ex|nr+1 − Ex|nr

∆z
− Ex|nr − Ex|nr−1

∆z

)

{rearrange} = c2 Ex|nr+1 − 2Ex|nr + Ex|nr−1

(∆z)2
. (5.14)

Thus, Ex evolved according to the coupled first-order equations (5.12)–(5.13)
on the staggered grid satisfies the 1D wave equation on standard integer grids,
which we studied in Section 5.1. Therefore, the dispersion properties and the
stability condition of the coupled first-order system are the same as for the
wave equation; for instance, ∆t ≤ ∆z/c is necessary for stability.

If we had not used staggered grids for Ex and Hy, but taken the first
derivative in z across two cells, then the resulting difference approximation
for the second-order z-derivative in (5.14) would involve Ex|nr+2 and Ex|nr−2.
This is less accurate and makes the grids with r even and odd decouple. Ex

components with r odd would evolve completely independently of those with
r even. We conclude that in order to get the same accuracy and robustness
as the 1D wave equation for Ex, it is necessary to place one of Ex and Hy on
a half-grid; that is, we must use a staggered grid for the coupled first-order
equations.

5.2.2 Three Space Dimensions

The Yee scheme extends the staggering to three dimensions with a special
arrangement of all the components of E and H. The electric field components
are computed at “integer” time-steps and the magnetic field at “half-integer”
time-steps. Space is divided into bricks with sides ∆x, ∆y, and ∆z (usually
one uses cubes with ∆x = ∆y = ∆z = h). The different field components are
placed in the grid according to the unit cell shown in Figure 5.9.

The electric field components are placed at the midpoints of the corre-
sponding edges; Ex is placed at the midpoints of edges oriented in the x-
direction, Ey at the midpoints of edges oriented in the y-direction, and Ez at
the midpoints of edges oriented in the z-direction. Thus, Ex is on the half-grid
in x and on the integer grids in y and z, etc. The magnetic field components
are placed at the centers of the faces of the cubes and oriented normal to the
faces. Hx components are placed at the centers of faces in the yz-plane, Hy

components are centered on faces in the xz-plane, and Hz components are
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Fig. 5.8. Staggered grid used in the 1D leap-frog algorithm. The two “stencils”
show which values of Ex and Hy are used in solving (5.13) with (r = 1, n = 3) and
in solving (5.12) with (r = 4, n = 1).
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Fig. 5.9. Unit cell in the 3D FDTD algorithm.

centered on faces in the xy-plane. Thus, Hx is on the integer grid in x and on
the half-grids in y and z, etc. This arrangement was introduced by Yee [87],
and the unit cell in Figure 5.9 is also known as the Yee cell. We will see in
Chapter 6 that the same spatial arrangement for E and H is natural also
for the finite element representation on hexahedral grids. Such FEM arrange-
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ments are used both for frequency-domain microwave calculations and eddy
current calculations.

Let |p,q,r be indices that refer to the x, y, and z coordinates and let |n refer
to the time coordinate such that f |np,q,r ≡ f(p∆x, q∆y, r∆z, n∆t). With the
Yee arrangement for the field components, the finite difference approximation
of Maxwell’s equations (5.4)–(5.9) reads

ε

Ex|n+1

p+1
2 ,q,r

− Ex|n
p+1

2 ,q,r

∆t

=
Hz|n+ 1

2

p+1
2 ,q+ 1

2 ,r
− Hz|n+ 1

2

p+1
2 ,q− 1

2 ,r

∆y
−

Hy|n+ 1
2

p+1
2 ,q,r+ 1

2

− Hy|n+ 1
2

p+1
2 ,q,r− 1

2

∆z
, (5.15)

ε
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2 ,r
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2 ,r+ 1
2
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2

p+ 1
2 ,q+ 1

2 ,r
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2
p− 1

2 ,q+ 1
2 ,r

∆x
, (5.16)

ε
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p,q,r+ 1
2
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2 ,q,r+ 1

2
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2 ,r+ 1

2
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2 ,r+ 1
2

∆y
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and

µ
Hx|n+ 1

2
p,q+ 1

2 ,r+ 1
2

− Hx|n− 1
2

p,q+ 1
2 ,r+ 1

2
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µ
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, (5.19)
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µ
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−
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2 ,r
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2 ,r
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. (5.20)

The Yee scheme, or FDTD, has proven very successful for microwave problems.
All derivatives are centered and as compact as possible, that is, they are taken
across a single cell.

5.2.3 MATLAB: Cubical Cavity

In this example we will use the FDTD to compute the resonant frequencies
of an air-filled, cubical cavity with metal walls. By evolving the electric field
in time and sampling it at some locations in the cavity, we get the electric
fields at these locations as functions of time. We then use a discrete Fourier
transform to find the resonant frequencies of the cavity.

Discretization

First the cavity must be discretized. Let us divide the cavity into Nx×Ny×Nz

cells. A cavity divided into 3 × 4 × 2 cells is shown in Figure 5.10. To store
the fields both inside the cavity and on the cavity wall, we need to store the
values of

Ex at 3 × 5 × 3 = Nx × (Ny + 1) × (Nz + 1) positions,
Ey at 4 × 4 × 3 = (Nx + 1) × Ny × (Nz + 1) positions,
Ez at 4 × 5 × 2 = (Nx + 1) × (Ny + 1) × Nz positions,

Hx at 4 × 4 × 2 = (Nx + 1) × Ny × Nz positions,
Hy at 3 × 5 × 2 = Nx × (Ny + 1) × Nz positions, and
Hz at 3 × 4 × 3 = Nx × Ny × (Nz + 1) positions.

Boundary Conditions

At microwave frequencies, metal surfaces behave, to a good approximation, as
perfect electric conductors (PEC). Therefore, we set the tangential component
of the electric field to zero on the metal boundaries.

Taking into account the arrangement of E and H, with the PEC boundary
condition, we can write FORTRAN-styled loops over indices, for updating Hx

as follows:

% Update Hx
for i = 1:Nx+1

for j = 1:Ny
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Fig. 5.10. An illustration of how the different field components are placed on a grid
with 3 × 4 × 2 cells. The dotted lines indicate the number of unknowns (cells) that
have to be stored.

for k = 1:Nz
Hx(i,j,k) = Hx(i,j,k) + (Dt/mu0)* ...
((Ey(i,j,k+1)-Ey(i,j,k))/Dz - (Ez(i,j+1,k)-Ez(i,j,k))/Dy);

end
end

end

Hy and Hz are updated in corresponding ways. For Ex the scheme becomes

% Update Ex everywhere except on boundary
for i = 1:Nx

for j = 2:Ny
for k = 2:Nz

Ex(i,j,k) = Ex(i,j,k) + (Dt /eps0) * ...
((Hz(i,j,k)-Hz(i,j-1,k))/Dy-(Hy(i,j,k)-Hy(i,j,k-1))/Dz);

end
end

end
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Note that only the most recent values of the field components have to be
stored. Therefore, we store the updated values at the same location in memory
as the old values in order to reduce memory requirements.

Although this will produce the correct result, it may execute rather slowly
in MATLAB. To improve on efficiency, operations should be done on entire
arrays or matrices. This is accomplished by rewriting the three nested for
loops as single statements:

% Update Hx everywhere
Hx = Hx + (Dt/mu0)*((Ey(:,:,2:Nz+1)-Ey(:,:,1:Nz))/Dz ...

- (Ez(:,2:Ny+1,:)-Ez(:,1:Ny,:))/Dy);
...
% Update Ex everywhere except on boundary
Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ...

((Hz(:,2:Ny,2:Nz)-Hz(:,1:Ny-1,2:Nz))/Dy ...
- (Hy(:,2:Ny,2:Nz)-Hy(:,2:Ny,1:Nz-1))/Dz);

Finally, the differences in the discretized curl operator can be written even
more compactly by using the diff function, as will be shown in the complete
program that follows.

Initial Conditions

In order to observe an eigenfrequency in the resulting frequency spectrum,
the corresponding eigenmode must be excited. An initial condition for E in
the form of a random field ensures that most modes are excited. [This leads to
∇·E �= 0 in the initial condition. Since there is no electric current, the resulting
electrical charge density ρ = ε0∇·E should be time-independent. Fortunately,
one of the good properties of the FDTD scheme is that it preserves this
property of Maxwell’s equations exactly.]

Sampling

It is important to sample the fields in such a way that all desired frequencies
(modes) are detected. With only a bit of bad luck, some modes will have a
node (zero) at the chosen detector location. To avoid this problem, it is a good
idea to record several field components at several detector locations.

Choice of Time Step

The larger the time step, the smaller the dispersion and the faster the simu-
lation. Therefore, we choose ∆t as big as possible, i.e., at the stability limit
(5.33).
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A MATLAB program that simulates the field inside a brick-shaped cavity
with PEC walls is listed below. In the time-stepping part, (5.15)–(5.20) are
evaluated using the MATLAB function diff. For a vector X, of length N ,
diff(X) is the vector [X(2)-X(1) X(3)-X(2) ... X(N)-X(N-1)] of length
N − 1. The second argument of diff is the order of the difference, in this
case 1, for the first derivative. The third argument specifies the dimension in
which differences are taken (x → 1, y → 2, z → 3).

% Physical constants
eps0 = 8.8541878e-12; % Permittivity of vacuum
mu0 = 4e-7 * pi; % Permeability of vacuum
c0 = 299792458; % Speed of light in vacuum

% Parameter initiation
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters
Nx = 25; Ny = 20; Nz = 15; % Number of cells along each axis
Cx = Nx / Lx; % Inverse cell dimensions
Cy = Ny / Ly;
Cz = Nz / Lz;
Nt = 8192; % Number of time steps
Dt = 1/(c0*norm([Cx Cy Cz])); % Time step

% Allocate field matrices
Ex = zeros(Nx , Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny , Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz );
Hx = zeros(Nx+1, Ny , Nz );
Hy = zeros(Nx , Ny+1, Nz );
Hz = zeros(Nx , Ny , Nz+1);

% Allocate time signals
Et = zeros(Nt,3);

% Initiate fields with noise (except on the boundary)
Ex( : , 2:Ny, 2:Nz) = rand(Nx , Ny-1, Nz-1) - 0.5;
Ey(2:Nx, : , 2:Nz) = rand(Nx-1, Ny , Nz-1) - 0.5;
Ez(2:Nx, 2:Ny, : ) = rand(Nx-1, Ny-1, Nz ) - 0.5;

% Time stepping
for n = 1:Nt;

% Update H everywhere
Hx = Hx + (Dt/mu0)*(diff(Ey,1,3)*Cz - diff(Ez,1,2)*Cy);
Hy = Hy + (Dt/mu0)*(diff(Ez,1,1)*Cx - diff(Ex,1,3)*Cz);
Hz = Hz + (Dt/mu0)*(diff(Ex,1,2)*Cy - diff(Ey,1,1)*Cx);

% Update E everywhere except on boundary
Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ...

(diff(Hz(:,:,2:Nz),1,2)*Cy - diff(Hy(:,2:Ny,:),1,3)*Cz);
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Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ...
(diff(Hx(2:Nx,:,:),1,3)*Cz - diff(Hz(:,:,2:Nz),1,1)*Cx);

Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ...
(diff(Hy(:,2:Ny,:),1,1)*Cx - diff(Hx(2:Nx,:,:),1,2)*Cy);

% Sample the electric field at chosen points
Et(n,:) = [Ex(4,4,4) Ey(4,4,4) Ez(4,4,4)];

end

The frequency spectrum we get from the Fourier transform of the columns
of Et is plotted in Figure 5.11 together with the analytical resonant frequen-
cies:

fmnp =
c

2
[
(m/Lx)2 + (n/Ly)2 + (p/Lz)2

]1/2
. (5.21)

In this case there are two kinds of modes, referred to as TMmnp and TEmnp

modes (see, e.g., [18]). For TMmnp modes, m �= 0, n �= 0. For TEmnp modes,
p �= 0, m or n is nonzero.

0 2 4 6 8 10
0

5

10

15

20

25

f [GHz]

E
 [V

/m
]

Fig. 5.11. Frequency spectrum obtained from an FDTD simulation of an air-filled
brick-shaped cavity. The solid curve shows the frequency spectrum of the sum of
the sampled Ex, Ey, and Ez components. The dotted lines show the exact eigenfre-
quencies.

5.2.4 Integral Interpretation of the FDTD Method

The Yee-scheme, (5.15)–(5.20), can also be derived using the integral repre-
sentation of Maxwell’s equations:
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∫

S

∂(εE)
∂t

· dS =
∮

∂S

H · dl, (5.22)
∫

S

∂(µH)
∂t

· dS = −
∮

∂S

E · dl. (5.23)

To obtain the equation for ∂Hz/∂t we first compute the surface integral over
a face on the grid cells z = r∆z, p∆x < x < (p+1)∆x, q∆y < y < (q +1)∆y:

∫
S

∂(µH)
∂t

· dS ≈ µ
Hz|n+ 1

2
p+ 1

2 ,q+ 1
2 ,r

− Hz|n− 1
2

p+ 1
2 ,q+ 1

2 ,r

∆t
∆x∆y. (5.24)

The corresponding line integral of E along the line circulating Hz|p+ 1
2 ,q+ 1

2 ,r

according to the right-hand rule, shown in Figure 5.12, is calculated as
∮

∂S

E · dl ≈ Ex|np+ 1
2 ,q,r∆x + Ey|np+1,q+ 1

2 ,r∆y

− Ex|np+ 1
2 ,q+1,r∆x − Ey|np,q+ 1

2 ,r∆y. (5.25)

Here, the Yee arrangement has the nice property that the components of E
that are needed for this integral appear exactly at the midpoint of the edges
along which they are to be integrated.

Combining (5.23)–(5.25) we obtain

µ
Hz|n+ 1

2
p+ 1

2 ,q+ 1
2 ,r

− Hz|n− 1
2

p+ 1
2 ,q+ 1

2 ,r

∆t

= −
Ey|n

p+1,q+ 1
2 ,r

− Ey|n
p,q+ 1

2 ,r

∆x
+

Ex|n
p+ 1

2 ,q+1,r
− Ex|n

p+ 1
2 ,q,r

∆y
(5.26)

which is exactly the same as the previously derived (5.20).
Another interesting property of the Yee scheme is that the condition of

solenoidal magnetic flux density (1.4) is implicitly enforced for all times, pro-
vided that the initial conditions are correct. To demonstrate this, we ap-
ply Gauss’s theorem to (1.4), and this gives

∮
S

B · n̂dS = 0, where the
closed surface S is taken as the surface of the unit cell shown in Figure 5.9.
This integral is divided into three Cartesian components:

∮
S

B · n̂ dS =∫
Sp

B · n̂ dS +
∫

Sq
B · n̂ dS +

∫
Sr

B · n̂ dS. For example, Sp is the two surfaces
in the yz-plane that are defined by constant index p and p + 1. It is instruc-
tive to study the time derivative of

∫
Sp

B · n̂dS in the discrete setting. The
integrals over the surfaces p and p + 1 are evaluated as in (5.24), and given
this result, we form the time derivative (in the leap-frog sense) centered at
n. Next, we change the order of the (numerical) time derivative and surface
integral, which yields an expression that features the time derivative of the
normal component of the magnetic field for the two surfaces. These are shown
in (5.18), which is the x-component of Faraday’s law, and we use this relation
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Fig. 5.12. An illustration showing how Hz and Ez are “circulated” by four electric
and magnetic components respectively in the Yee grid.

to replace the time derivative of the magnetic field with the curl of the electric
field, still working only with the x-component. The last step is to rewrite the
x-components of the curl into the circulation of the electric field along the
contour of the surfaces p and p + 1. Here are the detailed calculations:

∂

∂t

∫
Sp

B · n̂ dS ≈ µ0

∆t

[(
Hx|n+ 1

2
p+1,q+ 1

2 ,r+ 1
2

− Hx|n+ 1
2

p,q+ 1
2 ,r+ 1

2

)
∆y∆z

−
(

Hx|n− 1
2

p+1,q+ 1
2 ,r+ 1

2
− Hx|n− 1

2
p,q+ 1

2 ,r+ 1
2

)
∆y∆z

]

= µ0

[
Hx|n+ 1

2
p+1,q+ 1

2 ,r+ 1
2

− Hx|n− 1
2

p+1,q+ 1
2 ,r+ 1

2

∆t

−
Hx|n+ 1

2
p,q+ 1

2 ,r+ 1
2

− Hx|n− 1
2

p,q+ 1
2 ,r+ 1

2

∆t

]
∆y∆z

=

[(
Ey|n

p+1,q+ 1
2 ,r+1 − Ey|n

p+1,q+ 1
2 ,r

∆z
−

Ez|np+1,q+1,r+ 1
2

− Ez|np+1,q,r+ 1
2

∆y

)

−
(

Ey|n
p,q+ 1

2 ,r+1 − Ey|n
p,q+ 1

2 ,r

∆z
−

Ez|np,q+1,r+ 1
2

− Ez|np,q,r+ 1
2

∆y

)]
∆y∆z
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=

[
Ey|np+1,q+ 1

2 ,r+1∆y − Ez|np+1,q+1,r+ 1
2
∆z − Ey|np+1,q+ 1

2 ,r∆y

+Ez|np+1,q,r+ 1
2
∆z − Ey|np,q+ 1

2 ,r+1∆y − Ez|np,q,r+ 1
2
∆z

+Ey|np,q+ 1
2 ,r∆y + Ez|np,q+1,r+ 1

2
∆z

]
.

The corresponding results for the other two surface integrals, evaluated over
Sq and Sr, are given by cyclic permutations of the final result for Sp. When
these three expressions are added, we find that the circulations on the six
faces of the cube give, in total, two contributions to each edge of the unit cell
that cancel each other. Consequently, the condition of solenoidal magnetic flux
density (1.4) is preserved numerically at all times, given appropriate initial
conditions. A similar analysis can be applied to Gauss’s law (1.3).

5.2.5 Dispersion Analysis in Three Dimensions

To simplify the dispersion analysis (and also to allow later comparison with
the finite element approach in Chapter 6), we note that one can eliminate H
by forming the second-order time derivative for E, in the same way as we did
for the 1D case in (5.14). Starting from (5.15)–(5.20), a somewhat lengthy
calculation (assuming that ε and µ are constant) gives

1
c2

Ex|n+1
p+ 1

2 ,q,r
− 2Ex|n

p+ 1
2 ,q,r

+ Ex|n−1
p+ 1

2 ,q,r

(∆t)2
(5.27)

=
Ex|n

p+ 1
2 ,q+1,r

− 2Ex|n
p+ 1

2 ,q,r
+ Ex|n

p+ 1
2 ,q−1,r

(∆y)2

+
Ex|n

p+ 1
2 ,q,r+1 − 2Ex|n

p+ 1
2 ,q,r

+ Ex|n
p+ 1

2 ,q,r−1

(∆z)2

−
Ey|n

p+1,q+ 1
2 ,r

− Ey|n
p,q+ 1

2 ,r
− Ey|n

p+1,q− 1
2 ,r

+ Ey|n
p,q− 1

2 ,r

∆x∆y

−
Ez|np+1,q,r+ 1

2
− Ez|np,q,r+ 1

2
− Ez|np+1,q,r− 1

2
+ Ez|np,q,r− 1

2

∆x∆z
.

This is the finite difference form of

1
c2

∂2Ex

∂t2
=

(
∂2

∂y2 +
∂2

∂z2

)
Ex − ∂

∂x

(
∂Ey

∂y
+

∂Ez

∂z

)
,

which, in turn, is the x-component of the curl-curl equation for E:

1
c2

∂2E

∂t2
= ∇2E − ∇(∇ · E) = −∇ × ∇ × E. (5.28)
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The dispersion relation for FDTD in three dimensions can be found in
several different ways. For instance, one can start from the electric field for-
mulation (5.28) for all three components and plug in a plane wave solution
E = (ex, ey, ez) exp[j(ωt−kxx−kyy−kzz)]. From the analysis in Section 3.2,
we know that on staggered grids, where first-order derivatives are taken across
one cell and second-order derivatives across two cells, numerical derivatives
acting on such exponentials simply multiply the function by the following
imaginary factors:

∂

∂t
→ Dt =

2j

∆t
sin

ω∆t

2
,

∂

∂x
→ Dx =

−2j

∆x
sin

kx∆x

2
,

∂

∂y
→ Dy =

−2j

∆y
sin

ky∆y

2
, (5.29)

∂

∂z
→ Dz =

−2j

∆x
sin

kz∆z

2
.

Thus, for complex exponentials, the matrix equation corresponding to the
three vector components of (5.28) is
⎛
⎝D2

y + D2
z − D2

t /c2 −DxDy −DxDz

−DxDy D2
x + D2

z − D2
t /c2 −DyDz

−DxDz −DyDz D2
x + D2

y − D2
t /c2

⎞
⎠

⎛
⎝ex

ey

ez

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ ,

(5.30)
where Dt = jω for the continuous case and Dt = (2j/∆t) sin(ω∆t/2) for the
discretized system, etc. By setting the determinant of the matrix to zero, we
find two roots,

D2
t = c2(D2

x + D2
y + D2

z), (5.31)

representing transverse electromagnetic waves with two polarizations e ⊥ k.
We get the usual (and exact) dispersion relation for light waves ω2 = c2(k2

x +
k2

y +k2
z) by replacing Dt → jω and Dx,y,z → −jkx,y,z, where the polarizations

of the two solutions are completely orthogonal as expected. In addition, there
is one root D2

t = 0 of (5.30), which translates into ω = 0. This represents
an “electrostatic” solution with e ‖ k, i.e., a longitudinal, time-independent
solution. Note that this solution does not propagate. It gives a purely static
response of the electric field to space charge.

It is interesting to see how the electrostatic solutions are treated by the
FDTD. Clearly, any electrostatic field E = −∇φ, with φ constant in time, and
an arbitrary function of space, is a solution of the curl-curl equation (5.28).
One can verify that a solution E = −∇φ does not evolve in time with the
FDTD algorithm. This time-independent solution corresponds to the root
D2

t = 0 of (5.30). Thus, the Yee scheme preserves the null-space of the curl-
curl operator, and this is one of its many good properties.
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The numerical dispersion relation for the electromagnetic waves is obtained
by substituting the discrete derivative operators (5.29) into the general dis-
persion relation (5.31):

sin2 ω∆t/2
(c∆t)2

=
sin2 kx∆x/2

(∆x)2
+

sin2 ky∆y/2
(∆y)2

+
sin2 kz∆z/2

(∆z)2
. (5.32)

This is a natural generalization of the result in one dimension (5.3). Taylor
expansion of the sine functions shows that ω2 = c2(k2

x +k2
y +k2

z)[1+O(k2h2)],
so that the deviation from the correct dispersion relation for electromagnetic
waves is O(k2h2) for a cubic grid with ∆x = ∆y = ∆z = h. Note that
the dispersion is anisotropic. The wave propagation is the slowest along the
coordinate directions, and faster (and closer to the correct result) in oblique
directions.

The maximum time-step for stability follows from the requirement

sin2(ω∆t/2) ≤ 1 for all k,

just as in one dimension, and this gives

c∆t ≤
[

1
(∆x)2

+
1

(∆y)2
+

1
(∆z)2

]−1/2

. (5.33)

For a cubic grid with ∆x = ∆y = ∆z = h, the stability condition simplifies
to

∆t ≤ h

c
√

3
. (5.34)

In comparison with the 1D case, the maximum time-step has been reduced by
a factor

√
3. Because of this stability requirement, the spatial discretization

error is generally larger than the temporal discretization error for the FDTD
scheme in three dimensions, but they cancel each other to some extent. This
means, for example, that there is no magic time-step in this case. (Actually, for
fields varying equally fast in all directions, |kxh| = |kyh| = |kzh|, the stability
limit (5.34) is the magic time-step, but this works only for propagation in
those particular directions.)

Waves propagating along the coordinate axes suffer most from numerical
dispersion. To quantify the effects of the numerical disperions, we consider a
wave propagating in the x-direction, i.e., kx = k and ky = kz = 0. Further,
we assume that ∆x = ∆y = ∆z = h and c∆t/h = 1/

√
3. In this case (5.32)

simplifies to

sin(ω∆t/2) =
1√
3

sin(kh/2). (5.35)

An expression for the phase velocity vp = ω/k of this wave can be derived
from a series expansion of (5.35):

vp =
ω

k
= c

(
1 − k2h2

36
+ O(k4h4)

)
. (5.36)
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If we demand the relative error in phase velocity to be less than 1%, we require
(kh)2 < 36/100, which, since k ≡ 2π/λ, leads to λ/h < π/

√
0.09 ≈ 10.5,

that is, at least 10.5 cells per wavelength. This takes account of the partial
cancellation of the spatial and temporal errors in (5.32).

The same assumptions as in the preceding paragraph yield the following
expression for the group velocity:

vg =
∂ω

∂k
= c

(
1 − k2h2

12
+ O(k4h4)

)
. (5.37)

From this we find that a resolution of about 18 cells per wavelength is required
to reduce the relative error of the group velocity to 1%. This is a stricter
requirement on the resolution as compared to the result derived from (5.36).
Typically, about 18 cells per wavelength is used as a rule of thumb for problems
that involve only a few wavelengths and engineering accuracy requirements.

The FDTD often requires even higher resolutions if one asks for a fixed
absolute phase error across the whole computational domain, in particular
for problems that are large in terms of wavelengths, since the phase errors
accumulate. The absolute phase error is

ephase = (k̃ − k)L =
(

ω

c(1 − (kh)2/36 + · · · ) − ω

c

)
L ≈ k3h2L

36
(5.38)

for a system with fixed size L. To keep ephase constant, the cell size must
scale with frequency as ω−3/2, and consequently, the computational time is
proportional to 1/(h3∆t) ∝ ω6.

The error associated with the numerical dispersion relation provides im-
portant understanding for one of the contributions to the total error. It must
be emphasized that convergence studies or other means of estimating the ac-
tual error are, in general, necessary to achieve reliable results for real-world
problems.

Review Questions

5.2-1 Draw the unit cell for the FDTD scheme in three space dimensions and
add all the field components for both the electric field and the magnetic
field.

5.2-2 Reduce the FDTD scheme for the full Maxwell’s equations to one and
two dimensions. Derive the corresponding wave equations by eliminating
the magnetic (or the electric) field.

5.2-3 How many time-levels of the electric and magnetic fields must be stored
in the computer’s memory for the FDTD scheme?

5.2-4 Derive the Yee scheme from the integral representation of Maxwell’s
equations.

5.2-5 Show that (5.27) can be derived from (5.15)–(5.20).
5.2-6 Derive the stability condition given the numerical dispersion relation.

Motivate the steps in your derivation.
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5.3 Boundary Conditions for Open Regions

The FDTD is often applied to microwave problems such as calculation of:

• Radiation patterns from antennas
• Radar cross sections (RCS) for different targets, e.g., aircraft

These problems involve open regions, and in principle, the computational
domain extends to infinity. Of course it is not practical to discretize an infinite
region, and instead, special boundary conditions can be applied to terminate
the computational region. Such boundary conditions serve to absorb outgoing
waves, and are called absorbing boundary conditions (ABC). Then, the fields in
the near zone can be transformed to the far zone, several wavelengths or more
from the antenna, by means of a so-called near-to-far-field transformation
(NTF). Figure 5.13 illustrates its use in an FDTD calculation of the radiation
pattern of an antenna.

Antenna

Near-to-far field transformation
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surface

Absorbing layer, e.g. PML

Perfect Electric Conductor

Fig. 5.13. Typical setup for computing the radiation pattern of an antenna with
the FDTD.

5.3.1 The Perfectly Matched Layer

A popular set of absorbing boundary conditions is the perfectly matched layer
(PML) invented by Bérenger [8]. The PML is a layer of artificial material
surrounding the computational region and designed to damp waves propagat-
ing in the normal direction. The region is then terminated by a PEC. If the
waves are sufficiently damped out in the absorbing layer, very little reflection
will occur at this PEC surface. The thicker the absorbing layer is, the more
efficient is the damping that can be achieved.



80 5 The Finite-Difference Time-Domain Method

Here, we indicate how Bérenger’s PML works. The basic idea behind the
method is to introduce both an electric conductivity σ and a magnetic con-
ductivity σ∗ in the absorbing layer:

ε0
∂E

∂t
+ σE = ∇ × H, (5.39)

µ0
∂H

∂t
+ σ∗H = −∇ × E. (5.40)

One can define a wave impedance as the ratio of the transversal electric and
magnetic fields, and for such an artificial material, it takes the value

ZPML =
(

µ0 + σ∗/jω

ε0 + σ/jω

)1/2

.

For a wave that is normally incident on such a layer, the wave reflection
coefficient is [4]

Γ0 =
Z0 − ZPML

Z0 + ZPML
,

where Z0 ≡ √
µ0/ε0 is the wave impedance in free space. Evidently, if the

magnetic and electric conductivities are related as

σ∗

µ0
=

σ

ε0
, (5.41)

we get ZPML = Z0, and there is no reflection at any frequency.
For oblique incidence, things become more complicated, and it is harder to

avoid reflection. However, Bérenger found a trick that achieves this. It consists
in splitting each component of E and H into two parts, for instance, Ex =
Exy + Exz, according to the direction of the curl operator that contributes
to ∂E/∂t. Then, one uses nonzero σ and σ∗ only for the derivative in the
direction normal to the absorbing layer.

As an example, let us assume that the PML has ẑ as the normal direction.
The two equations for Ex and Ey are split into four:

ε
∂Exy

∂t
=

∂(Hzx + Hzy)
∂y

, (5.42)

ε
∂Exz

∂t
= −∂(Hyz + Hyx)

∂z
− σzExz, (5.43)

ε
∂Eyz

∂t
=

∂(Hxy + Hxz)
∂z

− σzEyz, (5.44)

ε
∂Eyx

∂t
= −∂(Hzx + Hzy)

∂x
. (5.45)

The evolution equation for Ez is not modified for a layer with ẑ as normal.
The magnetic field is treated in a similar way. What is achieved with this
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trick is that the layer modifies the propagation only in the z-direction, which
is the normal direction of the PML, not in the tangential directions x and
y. Therefore, no reflection occurs even for waves obliquely incident on the
Bérenger PML.

In practice, some reflection occurs if σ varies strongly on the scale of
the grid. Therefore, one often chooses profiles for the conductivity, such as
parabolic σ(z) = σ0[(z − z0)/Lz]2, for a layer that extends from z = z0 to
z = z0+Lz. Such layers are very good absorbers; 6–8 cells can give a reflection
coefficient of −60 to −80 dB.

The PML works well, even when placed very close to the radiating struc-
ture or scatterer. This means that it is effective in decreasing the number of
cells and consequently reducing the computational cost.

There are alternatives to Bérenger’s PML. One that gives the same dis-
persion properties, without splitting the field components, uses anisotropic,
tensorial

=
εr and

=
µr [52]:

=
εr=

=
µr=

⎛
⎝ 1 − jσ/ωε 0 0

0 1 − jσ/ωε 0
0 0 (1 − jσ/ωε)−1

⎞
⎠ . (5.46)

This involves modifications of the time-stepping.

5.3.2 Near-to-Far-Field Transformation

Figure 5.13 shows a typical setup for computing the radiation pattern of an
antenna. The result of main interest is the fields in the far zone, several wave-
lengths from the antenna. This can be computed without extending the com-
putational domain to the far zone by using a near-to-far-field transformation
(NTF) close to the antenna and adding an ABC just outside the NTF surface.
Formulas for the NTF can be found in the book on FDTD by Taflove [75].
Without going through the derivation, we state the formulas for the far field in
frequency domain based on the Fourier transform of the near field computed
by the FDTD scheme. (The Fourier transform can be computed as part of the
time-stepping procedure for selected frequencies.) The field can be expressed
in terms of the electric (A) and magnetic (F ) vector potentials as

E = −jω

k2 ∇ × ∇ × A − 1
ε0

∇ × F ,

H = −jω

k2 ∇ × ∇ × F +
1
µ0

∇ × A.

The potentials can be calculated from the equivalent electric current Js =
n̂ × H and magnetic current M s = −n̂ × E on the NTF surface (n̂ denotes
the outward normal of the NTF surface ∂Ω):
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A =
µ0

4π

∮
∂Ω

Js(r′)
exp(−jkR)

R
dS′,

F =
ε0
4π

∮
∂Ω

M s(r′)
exp(−jkR)

R
dS′. (5.47)

Here R denotes the distance between the source point, r′, and the point
where we observe the field, r. For large distances, one can approximate R
in the denominators of (5.47) as a constant, R0, and in the argument of the
exponential as R ≈ R0 − r′ cos ψ, where ψ is the angle between r and r′. The
fields in the radiation zone are

E ≈ jω(r̂ × r̂ × A + Z0r̂ × F ),

H ≈ jω

(
r̂ × r̂ × F − 1

Z0
r̂ × A

)
.

Review Questions

5.3-1 What is meant by an open-region problem and how are these problems
handled by FDTD programs?

5.3-2 Use the wave impedance to explain why a normally incident wave is not
reflected by the PML at any frequency.

5.3-3 How did Bérenger avoid reflections by the PML for oblique incidence?
5.3-4 How are the electric and magnetic conductivity profiles usually chosen

for the PML in an FDTD implementation? What reflection coefficients
can be achieved with a PML that is 6–8 cells thick?

5.3-5 Outline a technique for the computation of the fields in the far zone given
an FDTD solution in the near zone. Mention some practical situations in
which this technique can be used.

Summary

• The FDTD is a standard tool for microwave problems in which the geo-
metrical dimensions are comparable to the wavelength. Its main advantage
is that it is both efficient and simple to implement.

• Although the FDTD scheme is very popular, the method suffers from some
drawbacks:
– A main drawback of the FDTD is the way it deals with curved and

oblique boundaries, where the standard FDTD solution, known as
“staircasing,” does not give very accurate results. In this respect, finite
elements can do much better.

– Another disadvantage of the FDTD (in common with finite elements)
is that the phase error can become significant when the computational
domain is many wavelengths. In this respect, the method of moments
is better.
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– Furthermore, the time-step is limited by ∆t ≤ h/(c
√

3), which means
that the FDTD cannot be used for eddy current problems.

• The time-dependent system of two first-order equations (Faraday’s and
Ampère’s laws) allows for staggering in both space and time. The dis-
cretization of this system exploits centered differences and offers explicit
time-stepping. In 1D, we discretize

∂Ex

∂z
= −µ

∂Hy

∂t
, −∂Hy

∂z
= ε

∂Ex

∂t
,

with Ex = Ex(r, n) and Hy = Hy(r+ 1
2 , n+ 1

2 ), where r is an integer space
index and n is an integer time index. [The corresponding wave equation
∂2E/∂t2 = c2∂2E/∂x2 can be treated by centered second-order differences
and explicit time-stepping.]

• Staggering in three dimensions:

Ex|n
p+1

2 ,q,r
, Ey|n

p,q+1
2 ,r

, Ez|n
p,q,r+1

2
,

Hx|n+1
2

p,q+1
2 ,r+1

2
, Hy|n+1

2
p+1

2 ,q,r+1
2
, Hz|n+1

2
p+1

2 ,q+1
2 ,r

.

Electric field components are placed on the midpoint of the edges aligned
with the field components. Magnetic field components are centered on the
surfaces normal to the field components.

• Numerical dispersion relations (relations between ω and k for E ∝
exp[j(ωt−k ·r)]) are derived from the finite-difference equations. In three
dimensions, we get

sin2(ω∆t/2)
(c∆t)2

=
sin2(kx∆x/2)

(∆x)2
+

sin2(ky∆y/2)
(∆y)2

+
sin2(kz∆z/2)

(∆z)2
.

• The stability condition (Courant condition) c∆t/h < 1/
√

n in n dimen-
sions. This can be derived from the numerical dispersion relation.

• Several extensions of the FDTD, such as absorbing boundary conditions,
near-to-far-field transformation, and subgrid models for thin wires and
slots have been developed, and these allow the FDTD to be applied to a
wide range of problems.

Problems

P.5-1 For finite difference computations on unbounded domains, the finite
grid must be terminated by boundary conditions that mimic a free-space
problem. Use (1.13) to derive boundary conditions for (5.2) when R = 1.

P.5-2 Consider a specific point z0 at a specific time t0 in Figure 5.1. A pertur-
bation of the field at this point and time influences the field at later times
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t > t0 in the region z0−c(t−t0) < z < z0+c(t−t0). Similarly, the field val-
ues at earlier times t < t0 within the region z0−c(t0−t) < z < z0+c(t0−t)
will have an influence on the field at z = z0 and t = t0, and this region is
referred to as the light-collecting sector. Relate the stability condition for
the 1D FDTD scheme to the light-collecting sector. What happens when
the light-collecting sector covers a larger angle than the stencil in (5.2)?

P.5-3 Show that the dispersion relation of the 1D wave equation (5.1) can be
expanded as

ω = ck

[
1 − (k∆z)2

24
(1 − R2) + O((k∆z)4)

]
. (5.48)

How many points per wavelength are required to get the frequency correct
(a) to 1%, (b) to 0.1% if R = 1/

√
3?

P.5-4 Consider the case in which the coupled first-order system shown in
(5.12) and (5.13) is applied to solve a problem with continuously varying
material parameters. Where should ε(z) and µ(z) be evaluated on the
grid? How would the corresponding problem be treated when the wave
equation

∂

∂z

(
1

µ(z)
∂Ex

∂z

)
− ε(z)

∂2Ex

∂t2
= 0

is used instead? Where should ε(z) and µ(z) be evaluated in this case?
P.5-5 Consider the case in which the coupled first-order system shown in

(5.12) and (5.13) is applied to a problem with piecewise continuous mate-
rials; i.e., there are material discontinuities. Let the grid points associated
with an electric field tangential to the material interface be placed on
the material interface. How should ε(z) and µ(z) be evaluated in order
to maintain an O(h2) error? How would the corresponding problem be
treated when the wave equation

∂

∂z

(
1

µ(z)
∂Ex

∂z

)
− ε(z)

∂2Ex

∂t2
= 0

is used instead? Where are ε(z) and µ(z) evaluated in this case? Can
optimal convergence be maintained?

P.5-6 Suppose that a current-carrying and electrically perfectly conducting
wire with radius r0 � h, where h = ∆x = ∆y = ∆z denotes the grid spac-
ing, runs along the z-axis. Use the near-field approximations Hϕ ∝ 1/r
and Er ∝ 1/r (in cylindrical coordinates) to derive appropriate difference
approximations taking into account the wire.

P.5-7 Maxwell’s equations can be written in terms of the scalar potential φ
and the vector potential A:

E = −∇φ − ∂A

∂t
, B = µH = ∇ × A.

How should the potentials be placed on the grid in order to match Yee’s
locations for the fields?
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P.5-8 In two dimensions (say the solution is independent of z), one can sep-
arate electromagnetic fields into TE components, with Ez = 0, and TM,
with Hz = 0. The simplest way to compute these is to use the wave equa-
tions for Hz and Ez, respectively, in two dimensions. However, it is also
possible to describe TE polarization by a set of first-order equations for
Ex, Ey, and Hz, while TM polarization can be described by first-order
equations for Hx, Hy, and Ez. Write down the relevant sets of equations
and show how suitable staggered finite difference schemes can be found,
e.g., as subsets of the 3D Yee scheme.

P.5-9 Derive the finite difference equation for updating Ex|p+ 1
2 ,q,r starting

from the integral form of Ampère’s law (5.22).
P.5-10 Show that about 11 points per wavelength gives 1% error in the numer-

ical dispersion relation for a cubic grid by Taylor expanding the disper-
sion relation (5.32) for ω2(k) to order k4h4 and using the approximation
ω2 = c2(k2

x + k2
y + k2

z) in the term ∝ ω4. When the time-step is at the
stability limit of (5.34), the result can be written

ω2

c2 = k2
x + k2

y + k2
z − h2

72
[(k2

x − k2
y)2 + (k2

y − k2
z)2 + (k2

z − k2
x)2].

[Thus, when the time-step is at the stability limit, only solutions that
propagate maximally obliquely have zero dispersion. In all other direc-
tions, the spatial dispersion dominates, and the phase speed is below c.
For smaller time steps, the phase speed is less than c in all directions.]

P.5-11 The curl-curl equation (5.28) also has electrostatic solutions that are
linear functions of time, i.e. E(r, t) = t∇φ(r ). Can such a solution appear
in an FDTD simulation without sources?

P.5-12 Does the FDTD scheme preserve the electric charge if there are no
electric currents?

P.5-13 Carry out the derivation of the numerical dispersion relation for the
3D FDTD scheme by rewriting (5.28) in matrix form and setting the
determinant of this matrix to zero.

P.5-14 Derive the impedance ZPML from (5.39)–(5.40) by assuming that the
field components vary as exp(−jk·r) and that E and H are perpendicular
to k.

P.5-15 Consider the computation of an electrical motor at f = 50 Hz and a
spatial resolution of h = 5 mm. How many time-steps are needed if we
want to time-step 5 wave periods, or 0.1 s?

P.5-16 We note that 1% relative phase error is obtained with about 10 points
per wavelength. How much does the computation time for a 3D problem
increase if we want to reduce the relative phase error by a factor 10?
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Computer Projects

C.5-1 Propose some different ways of visualizing the numerical dispersion re-
lation (5.32). Write a program that given the different parameters needed
implements your ideas for the visualization. Experiment with different res-
olutions, spatial and temporal. It can be beneficial to use kx = k sin θ cos φ,
ky = k sin θ sin φ, and kz = k cos θ. How do the results depend on the di-
rection of propagation?

C.5-2 Implement the 1D FDTD scheme for 0 ≤ z ≤ a; see Section 5.2.1.
Extend your program to include the losses shown in (5.39)–(5.40). Let
ε = ε0, µ = µ0 and introduce a conductive region for a − w ≤ z ≤
a where the losses satisfy the condition shown in (5.41) and w is the
width of the conductive region. Where should σ(z) and σ∗(z) be evaluated
on the staggered grid? Set up a numerical experiment so that you can
study the reflection coefficient for the electric field Ex(z, t), which satisfies
the boundary conditions Ex(0, t) = g(t) and Ex(a, t) = 0. Let g(t) =
exp[−(t − t0)2/d2

0] sin[2πf0(t − t0)] and choose appropriate values for t0,
d0, and f0. Experiment with different conductivity profiles σ(z) and σ∗(z)
given by (5.41). Try a constant conductivity profile and optimize the value
σconst for the conductivity. A very common choice is the quadratic profile
σ(z) = σmax[(z − (a − w))/w]2, where σmax is a constant to be optimized.
Plot the reflection coefficient as a function of σconst and σmax. Explain
your findings. What happens if the condition (5.41) is violated? How does
the reflection coefficient depend on frequency?

C.5-3 Write a program that implements the 2D FDTD scheme. Use it to
compute the resonant frequencies of a circular cavity with metal bound-
aries. How do you represent the circular boundary on the Cartesian grid?
How do you excite the problem? Suggest and implement some different
excitations and compare the approaches.

C.5-4 Modify the program in Section 5.2.3 so that inhomogeneous materials
ε(r) and µ(r) can be considered. Extend the implementation so that also
a source current J(r) can be included. Let the electric and magnetic field
be identically zero as an initial condition. Is the condition of solenoidal
magnetic flux density (1.4) preserved numerically at all times? Does the
solution computed by your program satisfy the equation of continuity for
electric charge?
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The Finite Element Method

The finite element method (FEM) is a standard tool for solving differential
equations in many disciplines, e.g., electromagnetics, solid and structural me-
chanics, fluid dynamics, acoustics, and thermal conduction. Jin [38, 39] and
Peterson [51] give good accounts of the FEM for electromagnetics. More math-
ematical treatments of the same topic are given in [45, 11]. This chapter gives
an introduction to FEM in general and FEM for Maxwell’s equations in par-
ticular. Practical issues, such as how to handle unstructured grids and how to
write (simple) FEM programs, will be discussed in some detail.

A very strong point of the FEM, and the main reason why it is a favorite
method in many branches of engineering, is its ability to deal with complex ge-
ometries. Typically, this is done using unstructured grids, which are commonly
referred to as (unstructured) meshes. These meshes may consist of triangles
in two dimensions and tetrahedra in three dimensions. However, there are
several types of element shapes, as shown in Figure 6.1: triangles and quadri-
laterals in two dimensions, tetrahedra, prisms, pyramids, and hexahedra in
three dimensions.

Unstructured meshes with, for instance, tetrahedra allow good represen-
tations of curved objects, which are hard to represent on the Cartesian grids
used by finite difference methods. Moreover, unstructured meshes allow for
higher resolution locally in order to resolve fine structures of the geometry
and rapid variations of the solution. Another nice property of the FEM is
that the method provides a well-defined representation of the sought func-
tion everywhere in the solution domain. This makes it possible to apply many
mathematical tools and prove important properties concerning stability and
convergence.

A disadvantage of the FEM, compared to the FDTD, is that explicit for-
mulas for updating the fields in time-domain simulations cannot be derived in
the general case. Instead, a linear system of equations has to be solved in order
to update the fields. Consequently, provided that the same number of cells are
used for the two methods, the FEM requires more computer resources, both
in terms of CPU time and memory.
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Line

Triangle

Square

Tetrahedron

Pyramid

Prism

Cube

Fig. 6.1. Different element shapes: a line in one dimension, a triangle and square in
two dimensions, and a tetrahedron, prism, pyramid, and cube in three dimensions.

6.1 General Recipe

We start by giving the general recipe for how to solve a differential equation
by the FEM. The equation is written as L[f ] = s, where L is an operator, s
the source, and f the unknown function to be computed in the region Ω.

• Subdivide the solution domain Ω into cells, or elements. For example, a
2D domain can be subdivided into triangles or quadrilaterals.

• Approximate the solution by an expansion in a finite number of basis
functions, i.e., f(r ) ≈ ∑n

i=1 fiϕi(r ), where fi are (unknown) coefficients
multiplying the basis functions ϕi(r ). The basis functions are generally
low-order polynomials that are nonzero only in a few adjacent elements.

• Form the residual r = L[f ]−s, which we want to make as small as possible.
In general, it will not be zero pointwise, but we require it to be zero in the
so-called weak sense by setting a weighted average of it to zero.

• Choose test, or weighting, functions wi, i = 1, 2, . . . , n (as many as there
are unknown coefficients) for weighting the residual r. Often, the weighting
functions are the same as the basis functions, wi = ϕi, and this method is
then called Galerkin’s method.

• Set the weighted residuals to zero and solve for the unknowns fi; i.e., solve
the set of equations 〈wi, r〉 =

∫
Ω

wi r dΩ = 0, i = 1, 2, . . . , n.

In mathematical definitions, the term finite element usually refers to an
element (e.g., a triangle) together with a polynomial space defined in this
element (e.g., the space of linear functions) and a set of degrees of freedom
defined on this space (e.g., the values of the linear functions in the corners
(nodes) of the triangle). This definition is seldom used in electrical engineering,



6.2 1D Finite Element Analysis 89

where one tends to focus on the basis functions used to expand the solution
instead.

Review Questions

6.1-1 List some pros and cons of the finite element method.
6.1-2 Compare the steps of the general recipe for the FEM to the typical

discretization procedure employed for finite difference methods. Identify
similarities and differences.

6.1-3 What is a finite element?

6.2 1D Finite Element Analysis

As the first model problem we choose a second-order ordinary differential
equation, namely the 1D Helmholtz equation:

− d

dx

(
α

df

dx

)
+ βf = s, a < x < b, (6.1)

f(a) = fa, (6.2)
f(b) = fb. (6.3)

Here f = f(x) is the sought solution, and the material properties α = α(x)
and β = β(x) and the source s = s(x) are prescribed functions of x.

There are many physical systems that are modeled by (6.1), for example,
a transversal wave in a 1D medium, such as a light wave propagating and
being reflected in dielectric layers. In this case we have f(x) = Ez(x), and
the coefficients are α(x) = 1/µ(x), β(x) = jωσ(x) − ω2ε(x), where ω is the
angular frequency, and s(x) = −jωJz(x) (which vanishes, unless there are
current-carrying conductors).

We seek the function f(x) on the interval a < x < b. According to the
general recipe for the FEM, we first divide this interval into subintervals
(elements). Let us assume, for example, a = −2 and b = 5 and divide the
x-axis into 7 equally large elements. We call the endpoints of each element
nodes, and they have the coordinates xi = i − 3 where i = 1, 2, . . . , 8. We
introduce the nodal basis functions ϕi(x), which are linear on each interval,
one at node i and zero at all other nodes, as shown in Figure 6.2. These basis
functions are often called “tent functions.”

We seek approximate solutions that are expanded in the basis functions
(in the following, f will denote this approximate solution):

f(x) =
8∑

j=1

fjϕj(x). (6.4)



90 6 The Finite Element Method

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

x [m]

B
as

is
 fu

nc
tio

ns
 [−

]
ϕ

4

Fig. 6.2. 1D linear elements. In particular, the basis function ϕ4(x) is emphasized
by a thick line.

Note that f(xi) = fi, so that the expansion coefficients are the values of f
at the nodes. Since f(a) = fa and f(b) = fb are known, we set f1 = fa and
f8 = fb.

In the next step, we follow Galerkin’s method and choose the test functions
wi(x) = ϕi(x), where i = 2, 3, . . . , 7 (the endpoints are excluded because the
corresponding function values are known). We multiply the residual of (6.1) by
the test function wi(x) and integrate from x = a to x = b. To move one of the
derivatives from f to the test function wi, we use integration by parts. This
gives the weak form of the original problem, which is the weighted average of
the residual: ∫ b

a

(αw′
if

′ + βwif − wis) dx = 0. (6.5)

In this case, the boundary term [wiαf ′]ba vanishes, since wi(a) = wi(b) = 0.
By substituting (6.4) into the weak form (6.5) and choosing w2(x) = ϕ2(x),

we generate an equation involving six unknowns: the coefficients fj for the
interior nodes xj , where j = 2, 3, . . . , 7. Next, we pick w3(x) = ϕ3(x) to
generate a second equation, and so on. In the end, we have six equations and
six unknowns, and this is formulated as a system of linear equations Az = b
with

Aij =
∫ b

a

(
αϕ′

iϕ
′
j + βϕiϕj

)
dx, (6.6)

zj = fj , (6.7)

bi =
∫ b

a

ϕis dx. (6.8)
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Here, i = 2, 3, . . . , 7 (for the equations) and j = 1, 2, . . . , 8 (for the coeffi-
cients), so A has 8 columns and 6 rows, z has 8 rows, and b has 6 rows. The
coefficients f1 and f8 are known from the boundary conditions and can be
moved to the right-hand side:

⎛
⎜⎜⎜⎝

A22 A23 . . . A27
A32 A33 . . . A37
...

...
. . .

...
A72 A73 . . . A77

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

f2
f3
...
f7

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b2
b3
...
b7

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

A21f1 + A28f8
A31f1 + A38f8

...
A71f1 + A78f8

⎤
⎥⎥⎥⎦ .

The part of the system matrix A that remains on the left-hand side is square;
that is, we have as many unknowns as equations. In the present case, the func-
tion values at the endpoints are known, and we do not use the corresponding
weighting functions. The matrix A is sparse because the basis functions give
only nearest-neighbor coupling of the unknowns. Also note that A is sym-
metric, Aij = Aji. This is related to the fact that the Helmholtz operator is
self-adjoint and we used Galerkin’s method.

The boundary conditions (6.2) and (6.3) specify the value of the function
f(x) at the boundary. Other types of boundary conditions can specify the
derivative of f(x) or a linear combination of f(x) and its derivative. At either
boundary, for instance the left one x = a, we can apply conditions of the
following standard types:

f(a) = p (6.9)

or
f ′(a) + γf(a) = q. (6.10)

Equation (6.9) is called a Dirichlet boundary condition, and it eliminates
an unknown. Equation (6.10) is called a Neumann boundary condition when
γ = 0 and a Robin boundary condition when γ �= 0. For the Neumann and
Robin boundary conditions, f(a) must be introduced as an extra unknown.
We generate the extra equation by testing with w1(x) = ϕ1(x). Dirichlet
boundary conditions are referred to as essential, whereas Neumann and Robin
boundary conditions are called natural. Further, if q or p is zero, the boundary
conditions are called homogeneous.

Review Questions

6.2-1 Write down an explicit expression for the nodal basis function ϕi(x) and
its derivative for a nonuniform discretization in one space dimension.

6.2-2 Explain the terms Galerkin’s method and weak form.
6.2-3 How many test functions are needed for a 1D finite element problem?
6.2-4 Explain the difference between Dirichlet, Neumann, and Robin bound-

ary conditions.
6.2-5 Are the numbers of basis functions and test functions always the same?
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6.3 2D Finite Element Analysis

We extend the model problem (6.1) to two dimensions, but still f is a scalar-
valued function:

−∇ · (α∇f) + βf = s in S, (6.11)
f = p on L1, (6.12)

n̂ · (α∇f) + γf = q on L2. (6.13)

The boundary of the solution domain S has two parts, L1 and L2, with dif-
ferent types of boundary conditions.

Analogously to the 1D model problem, there are many physical situations
that can be modeled by (6.11). Let us consider a specific example where
we wish to compute the resistance between the left and bottom edges of
the conducting plate shown in Figure 6.3. In this case, f is the electrostatic
potential, α the conductivity, β = 0, and s = 0. The electric potential along
the thick solid line on the boundary is set to 10 V, i.e., a Dirichlet boundary
condition f = 10. Along the thick dashed line the potential is set to 0 V. The
remaining part of the boundary is an insulating material. On this part of the
boundary, we use a Neumann boundary condition, n̂·∇f = 0, which means no
flux of charge across the boundary. We now continue with the derivation based
on the general model problem, and at the end of this section, we will show
the solution for the specific example concerning the resistance computation.
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Fig. 6.3. A 2D conducting plate. The computational domain S, i.e., the plate, is
divided into triangular elements. Automatically, the boundary of S is discretized
into line segments. This boundary divides into the two parts, denoted by L1 and
L2, with different types of boundary condition according to (6.12) and (6.13).

We multiply (6.11) by a test function wi and integrate over S:
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∫
S

wi [−∇ · (α∇f) + βf ] dS =
∫

S

wis dS.

Next, integrate by parts using the identity

∇ · [wi(α∇f)] = α∇wi · ∇f + wi∇ · (α∇f) (6.14)

and Gauss’s theorem in 2D:∫
S

∇ · F dS =
∫

L1+L2

n̂ · F dl,

with F = wiα∇f . This gives the weak form of (6.11)–(6.13):
∫

S

(α∇wi · ∇f + βwif) dS −
∫

L2

wi(q − γf) dl =
∫

S

wis dS, (6.15)

where we have used the boundary condition (6.13). The boundary integral
over the part of the boundary where the solution is known (L1) vanishes
because the test functions vanish there. It should be noted that in addition to
the differential equation with the sources, the weak form (6.15) also contains
the boundary conditions.

The nodes are labeled by the integers i and they are located at ri, where
i = 1, 2, . . . , Nn. The elements are triangles, and again, we choose piecewise
linear, or nodal, basis functions ϕi(r ) where the subindex i refers to the node
associated with the basis function. The nodal basis functions are linear inside
each triangle, with ϕi(ri) = 1 and ϕi(rj) = 0 when i �= j. There is one
such basis function associated with each node, and two of them are shown in
Figure 6.4. The finite elements associated with the nodal basis functions are
called nodal elements.

Fig. 6.4. Illustration of two nodal basis functions, one on the boundary and one in
the interior of the solution domain.

We expand the, again approximate, solution f(r ) in terms of the basis
functions:

f(r ) =
Nn∑
j=1

fjϕj(r ). (6.16)
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Next, we substitute (6.16) into the weak form (6.15) and use Galerkin’s
method, i.e., choose wi(r ) = ϕi(r ) for all nodes where f is unknown. This
gives a linear system of equations Az = b, where the elements are given by

Aij =
∫

S

(α∇ϕi · ∇ϕj + βϕiϕj) dS +
∫

L2

γϕiϕj dl, (6.17)

zj = fj , (6.18)

bi =
∫

S

ϕis dS +
∫

L2

ϕiq dl. (6.19)

Here, the index j runs over all nodes, and i only over those nodes where f is
unknown (not those on the boundary L1 with the Dirichlet condition). The
variables are reordered to collect those where f is known in the vector ze,
while zn denotes the remaining unknowns,(

Ae

∣∣∣∣∣ An

)[
ze

zn

]
= Aeze + Anzn = b.

The matrix A is partitioned in the same way. This results in a square matrix
An and a rectangular part Ae accounting for the Dirichlet boundary condi-
tion. The final system of equations to be solved for zn is Anzn = b − Aeze,
where An and b − Aeze contain only known numbers. In Section 6.2, this
procedure is shown at a very detailed level. Here, it is expressed in terms of
matrices and vectors, which is more convenient for 2D and 3D problems.

Finally, we return to the specific example in which we wanted to compute
the resistance of the metal plate, where the thickness of the plate is denoted
by h. The numerical solution, i.e., the approximate electrostatic potential, is
shown in Figure 6.5. Based on the potential, the resistance can be computed
in two ways:

• Integrate the normal component of the current density J = −σ∇φ over
a cross-section of the plate to obtain the total current that flows through
the plate. For example,

I =
∫ h

z=0

∫ 0.5

x=0
σ

∂φ

∂y

∣∣∣∣∣
y=−0.5

dx. (6.20)

The resistance is then obtained from R = U/I, where U = ∆φ = 10 V.
• Compute the total power dissipation in the plate (see Section 6.3.3 for a

similar approach used for a capacitance computation);

P =
∫

V

J · E dV =
∫

V

σ|∇φ|2 dV = hzTAz = hzTb, (6.21)

and then calculate the resistance from P = U2/R, which gives R = U2/P .

The latter approach is generally preferred, since it is trivial to compute and
often leads to better accuracy.
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Fig. 6.5. The potential distribution in the conducting plate.

6.3.1 The Assembling Procedure

In practice, the matrix and vector components in (6.17)–(6.19) are computed
by assembling contributions from all elements. To illustrate the assembling
procedure, we consider the capacitance calculation in Section 3.1. The differ-
ential equation is again ∇2φ = 0, and only the boundary conditions differ
from the previous example.

The elements Aij of the system matrix are computed by evaluating the
integral

∫
S

∇ϕi ·∇ϕj dS over the domain S between the inner and outer con-
ductors. In the assembling procedure, we break up this integral into integrals
over each element Se, and sum the contributions from all the elements, i.e.,

Aij =
∫

S

∇ϕi · ∇ϕj dS =
Ne∑
e=1

∫
Se

∇ϕi · ∇ϕj dS, (6.22)

where Ne is the total number of elements.
Now we will concentrate on evaluating the integrals restricted to a single

element. We use a local numbering of the nodes for the element e, as shown
in Figure 6.6, and denote the coordinates of the nodes by r e

1 , r e
2 , and r e

3 ,
respectively.

The Nodal Basis Functions

The local basis functions (i.e., the basis functions restricted to one element) are
denoted by ϕe

i (x, y), where the superindex labels the element (e = 1, . . . , Ne)
and the subindex the local node number (i = 1, 2, 3). There is one local basis
function associated with each node of the element, and these are shown in
Figure 6.7. The global basis function associated with node i is built up by the
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Fig. 6.6. The numbering of local nodes for the element e.

local basis functions associated with that particular node in the surrounding
elements.

Fig. 6.7. The three basis functions for element e. The adjacent elements sharing an
edge with element e are also shown.

The basis functions have the following properties:

• Inside each element, they are linear in x and y, i.e.,

ϕe
i (x, y) = ae

i + be
i x + ce

i y. (6.23)

• They equal unity on one node and vanish on the others:

ϕe
i (x

e
i , y

e
i ) = 1, ϕe

i (x
e
j , y

e
j ) = 0,∀i �= j. (6.24)

We will now construct explicit expressions for ϕe
i (x, y) with these prop-

erties. To do this, we divide the element e into three triangles as shown in
Figure 6.8. Here, Ae

i is the area of subtriangle i, opposing vertex i of the
element, and Ae

tot = Ae
1 + Ae

2 + Ae
3. The point inside the element, where we

evaluate ϕe
i (x, y), has the position r = xx̂ + yŷ.
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Fig. 6.8. Partition used to construct ϕe
i (x, y).

The basis functions ϕe
i (x, y) can be constructed by means of the area

coordinates Ae
i as

ϕe
i (x, y) =

Ae
i

Ae
tot

. (6.25)

[We note that the functions ϕe
i also are called simplex coordinates and

barycentric coordinates.] It is easy to verify that these elements satisfy the
requirements (6.23)–(6.24). Ae

i can be written as

Ae
1 =

1
2
ẑ · (r e

3 − r e
2 ) × (r − r e

2 ) ,

Ae
2 =

1
2
ẑ · (r e

1 − r e
3 ) × (r − r e

3 ) ,

Ae
3 =

1
2
ẑ · (r e

2 − r e
1 ) × (r − r e

1 ) ,

or more compactly

Ae
i =

1
2
(r − r e

i+1) · ẑ × si, (6.26)

where
si = r e

i−1 − r e
i+1 (6.27)

is the edge in the counterclockwise direction opposing node i. The total area
of the element is

Ae
tot =

1
2
ẑ · s2 × s3. (6.28)

Now it is simple to find the gradients of the local basis functions,

∇ϕe
i =

ẑ × si

2Ae
tot

, (6.29)

and these are, of course, constant inside each element. Therefore, the integral
over one element e, contributing to the system matrix in (6.22), can be evalu-
ated by multiplying the scalar product of the local basis functions by the area
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of the element:
Ae

ij =
∫

Se

∇ϕe
i · ∇ϕe

j dS =
si · sj

4Ae
tot

. (6.30)

Notice that we need to relate the three local node numbers of element e
to their corresponding global node numbers before we add the element con-
tributions Ae

ij to the global system matrix A.

The Element Matrix

Here we give a MATLAB function that computes all the contributions to A
from a single finite element described by its coordinates given in the argument
xy. Since there are three basis functions in each element, we can store all its
contributions in a 3 × 3 matrix, which we will refer to as the element matrix.
We name the MATLAB function CmpElMtx, and for the element shown in
Figure 6.6, this should be called with the argument xy = [-0.5 0.0 0.6;
0.5 -0.2 0.4].

% --------------------------------------------------------------
% Compute element matrix for a triangle and its node basis
% --------------------------------------------------------------
function Ae = CmpElMtx(xy)

% Arguments:
% xy = the coordinates of the nodes of the triangle
% Returns:
% Ae = element matrix corresponding to the Laplace operator

% Edges
s1 = xy(:,3)-xy(:,2);
s2 = xy(:,1)-xy(:,3);
s3 = xy(:,2)-xy(:,1);

% Area of the triangle
Atot = 0.5*(s2(1)*s3(2)-s2(2)*s3(1));

% Check whether area is negative (nodes given counterclockwise)

if (Atot < 0)
error(’The nodes of the element given in wrong order’)

end

% Compute the gradient of the vectors.
grad_phi1e = [-s1(2);s1(1)]/(2*Atot);
grad_phi2e = [-s2(2);s2(1)]/(2*Atot);
grad_phi3e = [-s3(2);s3(1)]/(2*Atot);

grad_phi = [grad_phi1e grad_phi2e grad_phi3e];
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% Compute all the integrals for this particular element.
for iIdx = 1:3
for jIdx = 1:3
Ae(iIdx,jIdx) = grad_phi(:,iIdx)’ * grad_phi(:,jIdx) * Atot;

end
end

The right-hand side b is constructed following the same assembling pro-
cedure, i.e., by summing the contributions be

i from each element. Often, Ae
ij

and be
i are evaluated by numerical rather than analytical integration.

Now, we have one row in A and b for every node in the mesh, since we
have tested the differential equation at all the nodes, including those where
the solution is known from the Dirichlet boundary condition. This is not
exactly what we want, since the test function must be zero along the Dirichlet
boundary. We correct this by removing the rows in A and b corresponding to
nodes where the solution is known. A more efficient approach, in particular
for large problems, is to compute the local contribution for each element but
assemble only the rows that are not associated with a Dirichlet boundary.

6.3.2 Unstructured Meshes in Practice

When writing FEM programs it is important to treat unstructured meshes in
an efficient and well-organized way. The most common way is explained here
for the small mesh shown in Figure 6.9. The mesh consists of 6 nodes and 4
triangular elements.
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Fig. 6.9. A 2D mesh. The node numbers are shown next to the corresponding nodes
and the element numbers in the center of the corresponding triangles.

We will use the fact that a triangle is built up by three nodes. Therefore,
we store the coordinates of the nodes in a table no2xy; i.e., given a global
node number the table no2xy provides its coordinates. Next, we construct the
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triangles by listing the nodes that are the vertices of each triangle in another
table el2no; i.e., given an element number the table el2no provides its global
node numbers. For the mesh shown in Figure 6.9, the information in no2xy is
given in Table 6.1, and el2no in Table 6.2.

Node 1 2 3 4 5 6
x 0.0 -0.5 -0.8 0.6 0.0 1.0
y 1.0 0.5 0.0 0.4 -0.2 -0.1

Table 6.1. Given a global node number, this table (no2xy) provides its coordinates.

Element 1 2 3 4
Node 1 1 4 3 5
Node 2 2 2 5 6
Node 3 4 5 2 4

Table 6.2. Given an element number, this table (el2no) provides its global node
numbers.

This is how it looks in MATLAB:

>> no2xy

no2xy =

0 -0.5000 -0.8000 0.6000 0 1.0000
1.0000 0.5000 0 0.4000 -0.2000 -0.1000

>> el2no

el2no =

1 4 3 5
2 2 5 6
4 5 2 4

The same idea can be used to store other types of elements such as lines and
quadrilaterals.

6.3.3 MATLAB: 2D FEM Using Nodal Basis Functions

We will present a program showing the assembling procedure for the capac-
itance calculation in Section 3.1. However, first it is useful to show how the
mesh can be generated and used for computation in MATLAB.
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Generate a Mesh of Triangles

Mesh generation is a discipline in itself, and it is an active field of research. An
overview of both commercial and free mesh generators (a program that creates
a FEM mesh) is available at the Meshing Research Corner [50]. Many of these
programs use their own input and output format. However, most likely the
output is based on the ideas presented in Section 6.3.2. Thus, if we understand
the basic principles of how an unstructured mesh is organized, we can extract
the necessary information from most mesh generators. Of course, we will need
the documentation of the mesh generator and to work with simple examples
in the beginning.

Solving the Laplace Equation

Now we are ready to write the program solving for the potential φ(r ) =∑Nn

j=1 φjϕj(r ) at the nodes (vector z). Once the potential is known, the
capacitance per unit length C can be computed from the energy relation
C = 2W/U2, where W is the electrostatic energy per unit length and U is the
potential difference between the inner and outer conductors. The electrostatic
energy per unit length can be computed using the following quadratic form
(see Section 6.7):

W [φ] =
1
2

∫
S

E · DdS =
1
2

∫
S

ε0|∇φ|2dS

=
ε0
2

Nn∑
i=1

Nn∑
j=1

φi

[∫
S

∇ϕi · ∇ϕj dS

]
φj

=
ε0
2

zTAz.

The MATLAB calculation can be done as follows:

% Physical constants
mu0 = 4*pi*1e-7; % Permeability in vacuum
c0 = 299792456; % Speed of light in vacuum
eps0 = 1/(mu0*c0*c0); % Permittivity in vacuum

% Voltage between inner and outer conductor.
U = 1;

% Read the grid from the file ’unimesh0.mat’.
% This file contains the variables no2xy, el2no, noInt, noExt
load unimesh0
noNum = size(no2xy,2);
elNum = size(el2no,2);

% Scale the domain to measure 2cm x 2cm.
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% The initial mesh fitted the unit square:
% -1 < x < 1 and -1 < y < 1.
no2xy = 1e-2*no2xy;

% Assemble the matrix A and vector b.
A = zeros(noNum);
b = zeros(noNum,1);

for elIdx = 1:elNum
% Get the nodes and their coordinates
% for the element ’elIdx’.
no = el2no(:,elIdx);
xy = no2xy(:,no);

% Compute the element matrix and add
% the contribution to the global matrix.
A_el = CmpElMtx(xy);
A(no,no) = A(no,no) + A_el;

end

% Get the indices of the nodes.
no_ess = union(noInt, noExt);
no_all = 1:noNum;
no_nat = setdiff(no_all, no_ess);

% Pick out the parts of the matrix and the vectors
% needed to solve the problem.
A_ess = A(no_nat,no_ess);
A_nat = A(no_nat,no_nat);
b = b(no_nat);

z = zeros(length(no_all),1);
z(noInt) = U*ones(length(noInt),1);
z_ess = z(no_ess);

% Solve the system of linear equations.
z_nat = A_nat\(b - A_ess*z_ess);

% Build up the total solution.
z = zeros(length(no_all),1);
z(no_ess) = z_ess;
z(no_nat) = z_nat;

% Compute the capacitance.
W = 0.5*eps0*(z’*A*z);
C = 2*W/Uˆ2;

disp([’C per unit length [pF/m] = ’ num2str(C/1e-12)])
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The potential distribution computed by the MATLAB program is shown in
Figure 6.10, and the calculated value of the capacitance is 91.47360 pF/m. Not
all these digits are correct, and we will discuss how to improve the accuracy
in the next section. Note that there are large gradients near the reentrant
corners of the inner conductor where the electric field is singular, but these
gradients are not well resolved on the rather coarse mesh in Figure 6.10.
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Fig. 6.10. The potential distribution between the inner conductor (φ = 1 V) and
the outer conductor (φ = 0 V).

Review Questions

6.3-1 Explain how Dirichlet, Neumann, and Robin boundary conditions are
incorporated into the system of linear equations for a FEM.

6.3-2 Derive the weak forms of the 2D Helmholtz equation with homogeneous
Dirichlet and homogeneous Neumann boundary conditions. What are the
differences between the two weak forms?

6.3-3 What is done in the assembly procedure?
6.3-4 Explain the difference between local and global node numbers.
6.3-5 Is a solution expanded in nodal basis functions ϕi guaranteed to be

continuous?
6.3-6 How are unstructured finite element meshes constructed, represented,

and stored by computers?
6.3-7 List the steps involved in computing the capacitance for a coaxial cable

by the FEM.
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6.4 Adaptivity

Triangular elements allow for local refinement of the mesh. Hence high reso-
lution can be used where it is required, for example close to singularities and
fine geometrical features, whereas lower resolution can be used where that is
sufficient. This allows us to use the computational power where it contributes
the most to the overall accuracy.

In general, one does not know a priori how to refine the mesh in order
to get optimal efficiency. Therefore, adaptive schemes are usually based on a
posteriori error estimates or error indicators (see, e.g., [66, 45]). A typical
adaptive algorithm repeats the following steps until a satisfactory solution is
obtained:

1. Compute the numerical solution on the current mesh.
2. Compute a posteriori error indicators for all individual elements.
3. Refine the mesh by splitting the elements with largest errors into smaller

elements.

Algorithms for splitting selected elements into smaller elements may be quite
complicated (see, e.g., [9]). However, software for mesh generation often in-
cludes this functionality.

To illustrate the advantages of adaptivity, we return to the capacitance
calculation that we have already used as an illustration in Sections 3.1 and
6.3 (see also Appendix A.3). For uniform meshes, this singularity reduces the
convergence from O(h2) = O(1/Nn) to O(h4/3) = O(N−2/3

n ), where Nn is
the number of nodes in the mesh. By using FEM with adaptively generated
meshes it is possible to restore quadratic convergence so that the error scales
as O(1/Nn) despite the singularity. We use the code shown in Section 6.3.3 and
two sets of meshes. The first set of meshes is generated by uniform refinement
(all elements are split into smaller elements), and the second set is generated
by adaptive refinement (only selected elements are refined). A close-up of one
of the adaptively refined meshes is shown in Figure 6.11.

The relative error of the computed capacitance is shown in Figure 6.12
for both uniformly and adaptively refined meshes. The horizontal axis shows
the total number of nodes Nn in the mesh. The circles show the relative
error |C(Nn) − C0|/C0 of the computed capacitances for different Nn. The
exact value of C0 is unknown in this case, but a sufficiently accurate refer-
ence solution (C0 = 90.6145 pF with 6 correct digits) is obtained by careful
extrapolation of the computed values.

The solid curves in Figure 6.12 fit the error model e(Nn) = α/Np
n to

computed values of the capacitance C(Nn). With uniform mesh refinement we
find that the capacitance converges as N−0.7

n ∝ h1.4. This is quite close to the
theoretical asymptotic convergence rate h4/3. With adaptive mesh refinement
we find that the convergence rate is restored to N−1 ∝ h2, which is the rate
we get for uniformly refined meshes when the solution is smooth (sufficiently
regular).
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Fig. 6.11. The mesh after adaptive mesh refinement at one of the corners of the
inner conductor where the potential changes rapidly. The smallest triangles at the
corner measure approximately 40 µm.
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Fig. 6.12. The relative error in the capacitance as a function of the number of
nodes in the mesh.

Review Questions

6.4-1 Why and when is adaptivity useful? List advantages and disadvantages
of adaptivity. Write down a general formulation, in words, for the objective
of an adaptive computation. How could you achieve this objective?



106 6 The Finite Element Method

6.4-2 Can adaptivity restore the nominal order of convergence even if the
solution is singular? What implications does this have for the error as a
function of the number of degrees of freedom?

6.5 Vector Equations

In this section, we will discuss a vector equation: the curl-curl equation of elec-
tromagnetics. However, as an intermediate step, we will first see how to choose
elements for the 1D Maxwell equations written in terms of two variables, one
component each of E and H.

6.5.1 Mixed-Order FEM for Systems of First-Order Equations

In Section 6.2 we studied the model problem (6.1), i.e., the second-order equa-
tion for the electric field E in one dimension:

d

dx

(
1
µ

dE

dx

)
+ ω2εE = 0. (6.31)

The second-order equation can be split into two first-order equations involving
also the magnetic field H (a factor of j is removed in order to avoid complex
variables):

dE

dx
− ωµH = 0, (6.32)

dH

dx
+ ωεE = 0. (6.33)

To solve this pair of first-order equations, we first seek finite element represen-
tations for E and H that are suited for this. Somewhat arbitrarily, we choose
to expand E, as before, in piecewise linear functions li(x) (often referred to
as “tent functions”). This gives

E(x) =
N∑

i=0

Eili(x). (6.34)

Equation (6.32) then leads us to expand H in the same class of functions as
dE/dx, that is, in piecewise constants ci(x) (“top-hat functions”). This gives

H(x) =
N−1∑
i=0

Hi+ 1
2
ci+ 1

2
(x), (6.35)

where ci+ 1
2
(x) = 1 if xi < x < xi+1, and otherwise, ci+ 1

2
(x) = 0. Figure 6.13

shows the tent and top-hat functions together with their derivatives.
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Fig. 6.13. Basis functions for the electric and magnetic fields together with their
derivatives.

To solve the set of first-order equations (6.32)–(6.33), we try a form of
Galerkin’s method. Since (6.32) contains H and dE/dx, which are both piece-
wise constant, we multiply (6.32) by piecewise constant weighting functions
ci+ 1

2
(x) and integrate over x. After division by the step length h this gives

Ei+1 − Ei

h
− ωµHi+ 1

2
= 0, (6.36)

which is exactly the simplest finite difference approximation for (6.32) on a
staggered grid.

Equation (6.33), on the other hand, contains E. Therefore, we multiply it
by a piecewise linear weighting function and integrate over x:

∫ xi+1

xi−1

(
dH

dx
+ ωεE

)
li(x)dx = 0. (6.37)

We substitute the representations (6.34) and (6.35) into (6.37) and obtain

∫ xi+1

xi−1

(Hi+ 1
2

− Hi− 1
2
)δ(x − xi)li(x)dx + ωε

[∫ xi

xi−1

Ei−1li−1(x)li(x)dx

+
∫ xi+1

xi−1

Eil
2
i (x)dx +

∫ xi+1

xi

Ei+1li(x)li+1(x)dx

]
= 0. (6.38)

Evaluation of the integrals and division by h gives

Hi+ 1
2

− Hi− 1
2

h
+ ωε

[
2
3
Ei +

1
6
(Ei−1 + Ei+1)

]
= 0. (6.39)

Thus, the FEM equations corresponding to the coupled system (6.32)–
(6.33) of first-order equations are

Ei+1 − Ei

h
= ωµHi+ 1

2
, (6.40)
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Hi+ 1
2

− Hi− 1
2

h
= −ωε

[
2
3
Ei +

1
6
(Ei−1 + Ei+1)

]
. (6.41)

This FEM-discretized system looks almost the same as the finite difference
approximation of (6.32)–(6.33) with staggered meshes. It differs only in the
form for E on the right-hand side of (6.41). The similarity comes from the
choice of basis and test functions. E was expanded in piecewise linear func-
tions that are centered on the nodes: the integer mesh. H was expanded in
piecewise constant functions that are centered on the midpoints or the half-
mesh. Furthermore, (6.40) is centered on the half-grid. We constructed it this
way by multiplying (6.32) by the piecewise constants ci+ 1

2
(x) before integra-

tion. Similarly, (6.41) is centered on the integer grid, because we multiplied
(6.33) by the piecewise linear functions li(x).

This is a simple example of mixed elements. We can make the following
analogy with staggered meshes for finite differences:

• A variable expanded in piecewise linear functions (FEM) is placed on the
integer mesh (FD).

• A variable expanded in piecewise constant functions (FEM) is placed on
the half mesh (FD).

• An equation multiplied by piecewise linear functions (FEM) is evaluated
on the integer mesh (FD).

• An equation multiplied by piecewise constant functions (FEM) is evaluated
on the half mesh (FD).

To emphasize the similarity between finite element and finite difference meth-
ods, we mention that if the integration in (6.38) is made by the trapezoidal
rule,

∫ xi+1

xi
f(x)dx ≈ (h/2)[f(xi)+f(xi+1)], the ωεE term becomes “lumped”,

(4Ei + Ei−1 + Ei+1)/6 → Ei, and the FEM scheme becomes identical to the
finite difference scheme.

One can see that the discretization (6.40)–(6.41) is in fact a Galerkin
method, because the equation for ωE has been tested with the basis functions
for E and the equation for ωH has been tested with the basis functions for H.
It may also be noted that Faraday’s law is identically satisfied by the FEM
representation for E and H, while Ampère’s law (6.33) is satisfied only in the
weak sense, that is, as a weighted average.

6.5.2 The Curl-Curl Equation and Edge Elements

So far, we have discussed basis functions only for scalar equations, and used
piecewise linear (nodal) and piecewise constant basis functions. To deal with
vector quantities, such as the electric field, a first attempt might be to expand
each vector component separately in nodal basis functions. It turns out that
such an approach leads to nonphysical solutions, referred to as spurious modes.

This can be avoided by using edge elements [48], which are very well suited
for approximating electromagnetic fields. The (basis functions for) edge ele-
ments are constructed such that their tangential components are continuous
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across element borders, whereas their normal components are allowed to be
discontinuous. Edge elements are also called curl-conforming because the con-
tinuous tangential components imply that the curl of an edge element does
not contain delta functions at the element boundaries. Thus, an electric field
that is expanded in terms of edge elements has a curl that is square integrable.

In this section, we will show how edge elements can be applied to solve
the curl-curl equation for E:

∇ × (
µ−1∇ × E

) − (
ω2ε − jωσ

)
E = −jωJs in S, (6.42)

n̂ × E = P on L1, (6.43)
n̂ × (

µ−1∇ × E
)

+ γ n̂ × n̂ × E = Q on L2. (6.44)

Again, we have both Dirichlet and Robin boundary conditions, and Js is an
imposed source current.

We proceed along similar lines as in the scalar problem (6.11)–(6.13). Thus,
we take the scalar product of (6.42) and the test function W i and integrate
over the computational domain S using the vector identity (4.4):

∇ · [
W i × (

µ−1∇ × E
)]

= µ−1 (∇ × W i) · (∇ × E)

−W i · ∇ × (
µ−1∇ × E

)
. (6.45)

The divergence term in (6.45) is integrated using Gauss’s law in two dimen-
sions

∫
S

∇ · F dS =
∮

L1+L2
F · n̂ dl, which gives the weak form of the vector

Helmholtz equation
∫

S

[
µ−1 (∇ × W i) · (∇ × E) − (

ω2ε − jωσ
)
W i · E

]
dS

+
∫

L2

W i · (Q − γ n̂ × n̂ × E) dl = −jω

∫
S

W i · JsdS. (6.46)

The major difference from the scalar problem lies in the choice of basis func-
tions, where we use the edge element basis functions N i(r) instead of nodal
basis functions ϕi in this case.

Edge elements associate the degrees of freedom to the edges of the mesh
rather than the nodes (this is why they are usually referred to as edge elements
in the first place). Therefore, we have to number all the edges in the mesh
and also give them reference directions. We will discuss the basis functions in
more detail later. The edges are labeled by integers 1, 2, . . . , Ne. We expand
the solution E(r ) in terms of the basis functions:

E(r ) =
Ne∑
j=1

EjN j(r ), (6.47)

where Ej is the tangential electric field along the jth edge, in the direction of
its reference direction.
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We follow Galerkin’s method, choose the test functions W i(r ) = N i(r ),
and substitute (6.47) and the test functions into the weak form (6.46). This
gives a linear system of equations Az = b with

Aij =
∫

S

[
µ−1 (∇ × N i) · (∇ × N j) − (

ω2ε − jωσ
)
N i · N j

]
dS

+
∫

L2

γ (n̂ × N i) · (n̂ × N j) dl, (6.48)

zj = Ej , (6.49)

bi = −jω

∫
S

N i · Js dS −
∫

L2

N i · Q dl. (6.50)

The index j labels all edges and i all edges where E is unknown, i.e., all edges
excluding those on the boundary L1.

6.5.3 Edge Elements on Cartesian Grids

Here, we give explicit expressions for the edge basis functions N i. For sim-
plicity, we first study those on a rectangular element that occupies the region
defined by xe

a ≤ x ≤ xe
b and ye

a ≤ y ≤ ye
b . The local numbering of the nodes

and the edges is shown in Figure 6.14 together with the local reference direc-
tions of the edges.
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Fig. 6.14. Local numbering for the element e. The local reference directions for the
edges are indicated by arrows, and the corresponding local edge numbers are shown
inside the arrows.

The local basis functions N e
i for a rectangular finite element are shown in

Figure 6.15 and can be expressed explicitly as
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N e
1 = +

ye
b − y

ye
b − ye

a

x̂, N e
2 = +

x − xe
a

xe
b − xe

a

ŷ,

N e
3 = − y − ye

a

ye
b − ye

a

x̂, N e
4 = − xe

b − x

xe
b − xe

a

ŷ. (6.51)

Fig. 6.15. Local basis functions Ne
1, Ne

2, Ne
3, and Ne

4 on a rectangular element,
shown in this order from left to right.

The global basis functions must be chosen such that the tangential com-
ponents of E are continuous across element boundaries. However, the normal
component is allowed to be discontinuous [since ∇ · E does not appear in the
FEM matrix (6.48)]. Therefore, it is natural to associate the basis functions
with the value of the electric field along the edges. The required representation
is simply

Ex(x, y) =
∑
ij

Ex|i,j ci+ 1
2
(x)lj(y),

Ey(x, y) =
∑
ij

Ey|i,j li(x)cj+ 1
2
(y). (6.52)

Two such global basis functions are shown in Figure 6.16.
Note that the edge elements have a mixed order of representation. Within

each cell, Ex is constant in x and linear in y, and vice versa for Ey. The edge
elements are not complete to first order, but represent a subset that is suitable
for the curl-curl equation.

Edge Elements on Bricks and Hexahedra

We extend edge elements on rectangles to brick elements (hexahedra) in three
dimensions. The electric field is represented as
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Fig. 6.16. Two global basis functions for rectangular edge elements on a grid.

Ex(x, y, z) =
∑
ijk

Ex|i,j,k ci+ 1
2
(x)lj(y)lk(z),

Ey(x, y, z) =
∑
ijk

Ey|i,j,k li(x)cj+ 1
2
(y)lk(z), (6.53)

Ez(x, y, z) =
∑
ijk

Ez|i,j,k li(x)lj(y)ck+ 1
2
(z).

These edge elements are the FEM equivalent of the Yee cell. For instance,
Ex in the Yee cell is located at the midpoint of the element in the x-direction,
and the FEM basis function is the piecewise constant ci+ 1

2
(x), also associated

with the midpoint in x. In the y and z directions, the Yee cell puts Ex on
the integer grid, and the FEM representation is in terms of piecewise linears,
which are also associated with the integer grid.

For the magnetic field, we choose a representation that corresponds to the
curl of the electric field. For instance, from the x-component of Faraday’s law,
jωµHx = ∂Ey/∂z − ∂Ez/∂y, and the edge element representation (6.53) for
E, we see that the equation can be satisfied exactly if Hx is expanded with
piecewise linears in x, and piecewise constants in y and z. Thus, for H, we
choose the representation

Hx(x, y, z) =
∑
ijk

Hx|i,j,k li(x)cj+ 1
2
(y)ck+ 1

2
(z),

Hy(x, y, z) =
∑
ijk

Hy|i,j,k ci+ 1
2
(x)lj(y)ck+ 1

2
(z), (6.54)

Hz(x, y, z) =
∑
ijk

Hz|i,j,k ci+ 1
2
(x)cj+ 1

2
(y)lk(z).

This representation of H also conforms to the Yee arrangement. Each com-
ponent of H is associated with the midpoint of a face that has the same
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normal direction as the H component. For instance, Hx is associated with
the midpoints of the cell boundaries with x constant. The basis functions we
have chosen for H are referred to as face elements. These basis functions are
divergence-conforming, because the normal components are continuous at all
cell boundaries.

It should be pointed out that this representation of E and H gives exactly
the FDTD algorithm if matrices such as the one in (6.48) are assembled using
trapezoidal integration.

6.5.4 Eigenfrequencies of a Rectangular Cavity

Here, we use the edge elements to compute the eigenfrequencies and the eigen-
modes for a 2D rectangular cavity. First, we consider a 2×2-element resonator
to demonstrate the features of edge elements. Then, we increase the resolution
and study a more realistic case.

2 × 2-Element Resonator

We choose a square domain with width ax = 2 m and height ay = 2 m. The
cavity resonator is discretized by 2 × 2 square elements, which is the smallest
possible system that gives meaningful results. The mesh with numbering of
nodes, edges, and elements is shown in Figure 6.17. The positive reference
directions (in this case chosen arbitrarily) for the edges are indicated by the
arrows.
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Fig. 6.17. Grid for 2 × 2-element resonator. The nodes (with numbers) are shown
by black dots, and the edges (with numbers and positive directions) are indicated
by the arrows centered on the edges of the grid. The element numbers are shown in
the circles, centered in the corresponding elements.
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The numbering is systematically organized in Table 6.3 for the nodes,
Table 6.4 for the edges, and Table 6.5 for the elements.

Node 1 2 3 4 5 6 7 8 9
x −1.0 0.0 1.0 −1.0 0.0 1.0 −1.0 0.0 1.0
y −1.0 −1.0 −1.0 0.0 0.0 0.0 1.0 1.0 1.0

Table 6.3. Given a node number we get the coordinates of that node.

Edge 1 2 3 4 5 6 7 8 9 10 11 12
Node 1 1 5 9 5 8 7 4 1 6 2 4 5
Node 2 2 2 6 8 9 8 7 4 3 3 5 6

Table 6.4. Given an edge number we get the node numbers of that edge.

Element 1 2 3 4
Node 1 6 1 7 6
Node 2 5 2 4 9
Node 3 2 5 5 8
Node 4 3 4 8 5

Table 6.5. Given an element number we get the node numbers of that element.

The boundary of the computational domain is metal and the interior S is
air, i.e., σ = 0, µ = µ0 and ε = ε0. Thus, the eigenvalue problem is stated as

∇ × ∇ × E = ω2ε0µ0E in S, (6.55)
n̂ × E = 0 on L1. (6.56)

We use (6.45) to arrive at the weak form
∫

S

(∇ × W i) · (∇ × E) dS = k2
∫

S

W i · E dS, (6.57)

where k2 = ω2ε0µ0. We expand the electric field in terms of the basis functions,
i.e., approximate the electric field by (6.47), and test with W i = N i. Then,
we get a generalized eigenvalue problem Sz = k2Mz, from which we solve
for the eigenvalues k2 and the eigenvectors z = [z2, z4, z11, z12], where z2, z4,
z11, and z12 correspond to edges in the interior of the cavity. The remaining
coefficients in (6.47) are zero because of the PEC boundary. The elements in
S and M are given by
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Sij =
∫

S

(∇ × N i) · (∇ × N j) dS, (6.58)

Mij =
∫

S

N i · N j dS, (6.59)

where the indices i and j run over all edges except those on the metal bound-
ary, i.e., i = 2, 4, 11, 12 and j = 2, 4, 11, 12. By terminology borrowed from
mechanical engineering, S is called the stiffness matrix and M is called the
mass matrix.

For realistic cases, however, we do not evaluate Sij and Mij by (6.58) and
(6.59). It is more convenient to use the assembling procedure described in
Section 6.3.1. Consequently, we evaluate the element matrices Se

ij and Me
ij by

Se
ij =

∫ ye
b

ye
a

∫ xe
b

xe
a

(∇ × N e
i ) · (∇ × N e

j

)
dx dy, (6.60)

Me
ij =

∫ ye
b

ye
a

∫ xe
b

xe
a

N e
i · N e

j dx dy. (6.61)

Thus, we exploit the expressions for N e
i and the corresponding local num-

bering and reference directions of the edges given in Section 6.5.3 for an ar-
bitrary element e; see Figure 6.14. We evaluate (6.60) for the element e that
gives the element stiffness matrix

Se =

⎛
⎜⎜⎝

lex/ley 1 lex/ley 1
1 ley/lex 1 ley/lex

lex/ley 1 lex/ley 1
1 ley/lex 1 ley/lex

⎞
⎟⎟⎠ , (6.62)

where the edges of the rectangle have lengths lex = xe
b − xe

a and ley = ye
b − ye

a

along the x- and y-axes, respectively. Evaluation of (6.61) for the element e
gives the corresponding element mass matrix

Me =
lexley
6

⎛
⎜⎜⎝

2 0 −1 0
0 2 0 −1

−1 0 2 0
0 −1 0 2

⎞
⎟⎟⎠ , (6.63)

The assembling procedure gives the global matrices S and M shown be-
low, where the subindices in brackets show the index of the element that
contributed to the matrix element. For edge elements, the reference direction
of the edges must be compared for the local and global elements. If one of the
two edges is reversed between the local and global ordering, the sign of the
corresponding row and column in the element matrix must be changed before
it is added to the global matrix:
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S =

⎛
⎜⎜⎝

+1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 +1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 1

+

⎛
⎜⎜⎝

+1 0 +1 0
0 0 0 0

+1 0 +1 0
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 2

+

⎛
⎜⎜⎝

0 0 0 0
0 +1 +1 0
0 +1 +1 0
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 3

+

⎛
⎜⎜⎝

0 0 0 0
0 +1 0 −1
0 0 0 0
0 −1 0 +1

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 4

=

⎛
⎜⎜⎝

+1[1] + 1[2] 0 +1[2] −1[1]
0 +1[3] + 1[4] +1[3] −1[4]

+1[2] +1[3] +1[2] + 1[3] 0
−1[1] −1[4] 0 +1[1] + 1[4]

⎞
⎟⎟⎠

︸ ︷︷ ︸
Global matrix

M =
1
6

⎛
⎜⎜⎝

+2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 +2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 1

+
1
6

⎛
⎜⎜⎝

+2 0 0 0
0 0 0 0
0 0 +2 0
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 2

+
1
6

⎛
⎜⎜⎝

0 0 0 0
0 +2 0 0
0 0 +2 0
0 0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 3

+
1
6

⎛
⎜⎜⎝

0 0 0 0
0 +2 0 0
0 0 0 0
0 0 0 +2

⎞
⎟⎟⎠

︸ ︷︷ ︸
Element 4

=
1
6

⎛
⎜⎜⎝

+2[1] + 2[2] 0 0 0
0 +2[3] + 2[4] 0 0
0 0 +2[2] + 2[3] 0
0 0 0 +2[1] + 2[4]

⎞
⎟⎟⎠

︸ ︷︷ ︸
Global matrix

To summarize, we solve the eigenvalue problem
⎛
⎜⎜⎝

2 0 1 −1
0 2 1 −1
1 1 2 0

−1 −1 0 2

⎞
⎟⎟⎠

︸ ︷︷ ︸
= S

⎡
⎢⎢⎣

z2
z4
z11
z12

⎤
⎥⎥⎦

︸ ︷︷ ︸
= z

= k2

⎛
⎜⎜⎝

2/3 0 0 0
0 2/3 0 0
0 0 2/3 0
0 0 0 2/3

⎞
⎟⎟⎠

︸ ︷︷ ︸
= M

⎡
⎢⎢⎣

z2
z4
z11
z12

⎤
⎥⎥⎦

︸ ︷︷ ︸
= z

.

Table 6.6 shows the eigenvalues and eigenvectors for this particular set-
ting. Analytical treatment of this particular problem shows that there is
an infinitely degenerate eigenvalue k2 = 0 that corresponds to electrostatic
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modes E = −∇φ. The electromagnetic modes have k2 = (π/2)2(n2
x + n2

y)
for nx = 0, 1, . . . and ny = 0, 1, . . ., where the combination nx = ny = 0 is
excluded. The lowest nonzero eigenvalues are associated with the two (degen-
erate) modes with k2 = (π/2)2 ≈ 2.5 and one mode with k2 = 2(π/2)2 ≈ 5.0.

Mode k2 z2 z4 z11 z12

1 0 +1/2 +1/2 −1/2 +1/2
2 3 −1/

√
2 +1/

√
2 0 0

3 3 0 0 +1/
√

2 +1/
√

2
4 6 +1/2 +1/2 +1/2 −1/2

Table 6.6. Numerical eigenvalues and eigenvectors for the four-element cavity.

The figures below show the four numerical eigenmodes computed on the
2 × 2-element discretization. Figure 6.18 shows the electrostatic mode on this
mesh. It can be expressed in terms of a scalar potential, i.e., E = −∇φ,
where the electric potential φ is expanded in piecewise bilinear nodal based
finite elements, with φ = 0 on the metal boundary and φ �= 0 on the central
node. This static mode has the eigenvalue k2 = 0.
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Fig. 6.18. Electric field for mode 1 with k2 = 0. This is a static field that can be
expressed in terms of a scalar potential, i.e., E = −∇φ.

The next two modes are shown in Figure 6.19, and they correspond to the
physical modes with the lowest resonance frequency. The two modes of the
discretized system have the same eigenvalue k2 = 3 and are therefore said to
be degenerate. The corresponding analytical eigenvalue is k2 = (π/2)2 ≈ 2.5.
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Fig. 6.19. Electric field for mode 2 and 3. The two have the eigenvalue k2 = 3,
and thus, they are degenerate. They correspond to the two degenerate fundamental
resonances of the cavity.

Figure 6.20 shows the third resonance of the cavity. It has the eigenvalue
k2 = 6, and the corresponding analytical eigenvalue is k2 = 2(π/2)2 ≈ 5.0.

Observe that a linear combination of the four numerical eigenmodes can
represent any solution on the 2 × 2-element discretization that satisfies the
boundary condition.

Better-Resolved Resonator

Next, we study a rectangular domain with width ax = 1.3 m and height
ay = 0.9 m. We choose square cells of side 0.1 m, which gives a grid with
13×9 elements. We follow the approach outlined above, and the fundamental
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Fig. 6.20. Electric field for mode 4 with the eigenvalue k2 = 6. This mode corre-
sponds to the third resonance of the cavity.

eigenmode, which corresponds to the lowest resonance frequency, is shown in
Figure 6.21. The corresponding analytic eigenmode is E = E0 sin(πx/ax)ŷ.
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Fig. 6.21. The fundamental eigenmode on a rectangle with width ax = 1.3 m and
height ay = 0.9 m.

The numerical eigenvalues k2 are shown in Figure 6.22 by circles and the
analytical eigenvalues k2 = (πnx/ax)2 +(πny/ay)2 by crosses. Again, we have
nx = 0, 1, 2, . . . and ny = 0, 1, 2, . . ., where the combination nx = ny = 0 is
excluded.
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Fig. 6.22. Spectrum of eigenvalues for a rectangle with width ax = 1.3 m and
height ay = 0.9 m. The numerically computed eigenvalues are shown by circles and
their analytical counterparts by crosses.

An important and very good property of the edge elements is that there
is a one-to-one correspondence between the lowest nonzero numerical eigen-
modes and the lowest nonzero analytical eigenmodes. This can be seen in
Figure 6.22 for our particular problem. The nodal elements, which we do
not use for vector-valued electromagnetic fields, do not share this property,
and the drawbacks of nodal elements can be clearly seen by examining the
spectrum of the curl-curl operator. Instead of exact zero eigenvalues for the
∇ × ∇×-operator corresponding to electrostatic modes E = −∇φ, the nodal
elements produce many eigenvalues between 0 and the smallest physical one.
This is called spectral pollution, because it adds nonphysical eigenvalues in
between the correct eigenvalues shown in Figure 6.22. The eigenfunctions of
the spurious solutions have rapid space variation associated with nonzero di-
vergence. The nodal elements also cause much dispersion at short wavelengths
(similar to the 1D result for first-order derivatives on nonstaggered meshes,
discussed in Section 3.2), and this phenomenon also contributes to the spectral
pollution.

By contrast, the edge elements produce exactly one zero eigenvalue for
each interior node. Each such eigenvalue corresponds to a mode E = −∇φ,
which has a zero eigenvalue, since ∇×∇× (−∇φ) = 0 = k2(−∇φ) gives k2 =
0. With edge elements, this important property is preserved by the discrete
representation, because the modes E = −∇φ, where φ is piecewise bilinear,
belong to the set of edge elements. In our problem with the rectangular cavity,
there are 12 × 8 = 96 interior nodes and therefore 96 zero eigenvalues, and
these are given the mode number zero in Figure 6.22.
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It is in particular with respect to the electrostatic modes that the node-
based elements fail for electromagnetic problems. Node-based elements do
not contain the proper null-space for the curl-operator. The reason for this is
that the potential modes E = −∇φ for continuous, piecewise linear φ do not
have continuous normal components and therefore do not belong to the node-
based elements for E, which are divergence conforming. The edge elements
are not divergence conforming but allow jumps in the normal component at
cell boundaries.

6.5.5 Edge Elements on Triangles

Edge elements can also be formulated on triangles, tetrahedra, pyramids, and
prisms. Figure 6.23 shows the local numbering of the nodes and the edges of
a triangle.
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Fig. 6.23. Local numbering for the element e. The local reference directions for the
edges are chosen to be from lower to higher (local) node number and are indicated
by arrows. The corresponding local edge numbers are shown in the arrows.

The edge element basis functions on a triangle can be expressed in the
nodal basis functions ϕe

i :

N e
1 = ϕe

1∇ϕe
2 − ϕe

2∇ϕe
1,

N e
2 = ϕe

1∇ϕe
3 − ϕe

3∇ϕe
1, (6.64)

N e
3 = ϕe

2∇ϕe
3 − ϕe

3∇ϕe
2.

Figure 6.24 shows the local basis functions. These basis functions are propor-
tional to the vector field rφ̂, where r and φ are local polar coordinates around
the node opposite to the edge on which the basis function has a nonzero tan-
gential component. The magnitudes of the basis functions are made such that
the tangent line integral of the basis function along the edge it is associated
with is 1.



122 6 The Finite Element Method

Fig. 6.24. Ne
1(r ) is shown to the left, Ne

2(r ) in the middle, and Ne
3(r ) to the

right.

Some important properties of the edge elements on triangles are worth
pointing out. Just as for the rectangular edge elements, one constructs global
basis functions such that the tangential component of E is continuous over
element interfaces.

A global edge basis function is shown in Figure 6.25. Note that the normal
component is discontinuous at the edges. Similar to the edge elements on
rectangles, the tangential component is constant along one edge and zero
along all the other edges of the rectangle.

Fig. 6.25. Global edge basis function in 2D, spanning two triangles.

Also similar to their rectangular counterparts, the edge elements on tri-
angles have mixed order. One can add three more functions, constructed in a
similar way as those in (6.64), but with the minus signs replaced by plus, to
make the basis complete to first order. The “missing” first-order edge elements
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are gradients of scalar functions. Whether or not it is useful to include these
gradients depends on the problem. Since the gradients do not contribute to
∇ × E, it is often more efficient not to leave them out. The edge elements we
have discussed here are often referred to as order (0, 1), where 1 refers to those
components that contribute to the curl, and 0 to the gradient part. There are
also higher-order edge elements available [83, 37], which often can be more
economical to use. However, these are not considered in this book.

6.5.6 Edge Elements in Practice

In practice, the administration of edge elements requires certain special tech-
niques, which are nonstandard in the context of the conventional FEM with
node-based elements. These issues can to some extent be avoided on struc-
tured meshes of squares or cubes. For unstructured meshes, however, it is
necessary to have efficient and reliable techniques, to for example, number
the edges in the mesh and associate a reference direction with each edge. It
is useful to remember the field representation E(r ) =

∑Ne

j=1 EjN j(r ) when
such techniques are designed.

The reference direction is usually based on the global node numbers at the
endpoints of the edge under consideration; for example, the vector field of an
edge element basis function N i is directed from the lower to the higher global
node number when the coefficient for the basis function is positive. One or
several of the basis functions on the local elements that share an edge may
be defined in the reverse direction. One way to deal with this problem is to
multiply all local basis functions with reverse direction by −1; i.e., the local
basis function N e

i relates to the global basis function as N i = −N e
i . Another

way to deal with this problem is to sort the nodes of all individual element in
ascending order. Since the basis functions defined in (6.64) are directed from
lower to higher local node number; this implies that they are also directed from
lower to higher global node number. This is the approach we will take in the
next section, where a MATLAB program based on triangular edge elements
is presented.

Each unknown (or coefficient Ej and its basis function) must also be as-
sociated with an edge in the unstructured mesh. We assume that all edges in
the mesh are defined by its start and end nodes and that they also have been
assigned a global edge number. To simplify the assembly procedure, we want
to create a table el2ed that contains the global edge numbers for the three
edges of each element. This can be done rather efficiently based on sorting
techniques; see [39] for a more details. In MATLAB, this can be done by the
function unique.

6.5.7 MATLAB: FEM with Triangular Edge Elements

We will here present a MATLAB function that given a triangular mesh on
the form presented in Section 6.3.2, computes the mass and stiffness matrices
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M and S. A routine for plotting a field, given the vector with coefficients Ej

that corresponds to the field, is also provided.
We begin by sorting the nodes of the individual elements in ascending

order. Together with the definition of the basis functions in (6.64), this ensures
that the edges–and therefore the tangential components of the basis functions–
always are directed from lower to higher global and local node numbers.

Next we rewrite the basis functions in (6.64) using ϕ1 = 1−ϕ2−ϕ3. The ba-
sis function can then be expressed as N e

i = Ni2(ϕ2, ϕ3)∇ϕ2+Ni3(ϕ2, ϕ3)∇ϕ3.
Noting that ∇ϕi, i = 1, 2, 3, are constant within each element, we can write
the local mass matrix of element e as

Me
ij =

∫∫
e

N e
i · N e

j dx dy =
3∑

k=2

3∑
l=2

∇ϕk · ∇ϕl

∫∫
e

NikNjl dx dy. (6.65)

The integrals
∫∫

e
Ne

ikNe
jl dx dy are scalar and can be computed through a

mapping to a reference element with nodes (0, 0), (1, 0), and (0, 1). The de-
terminant of this mapping is

det(Je) = (le1 × le2) · ẑ, (6.66)

where lei refers to edge i of element e. Depending on the order of the nodes,
det(Je) is equal to plus or minus 2Ae, where Ae is the area of element e. We
then get the following expression for Me

ij :

Me
ij = | det(Je)| (∇ϕ2 · ∇ϕ2M

22
ij + ∇ϕ2 · ∇ϕ3M

23
ij + ∇ϕ3 · ∇ϕ3M

33
ij

)
,

(6.67)
where Mkl

ij are independent of the shape of the triangles and therefore can be
precomputed:

Mkk
ij =

∫ 1

ϕ2=0

∫ 1−ϕ2

ϕ3=0
NikNjk dϕ2 dϕ3, (6.68)

Mkl
ij =

∫ 1

ϕ2=0

∫ 1−ϕ2

ϕ3=0
[NikNjl + NilNjk] dϕ2 dϕ3, k �= l. (6.69)

Here δkl denotes the Kronecker delta. With the basis functions in (6.64) we
get the following matrices Mkl:

M22 =
1
12

⎡
⎣+3 +1 −1

+1 +1 −1
−1 −1 +1

⎤
⎦ , M23 =

1
12

⎡
⎣+3 +3 +1

+3 +3 −1
+1 −1 −1

⎤
⎦ , M33 =

1
12

⎡
⎣+1 +1 +1

+1 +3 +1
+1 +1 +1

⎤
⎦ .

(6.70)
The stiffness matrix is also computed using a mapping to the same refer-

ence element. First we use the chain rule:

∇ × N e
i = ∇ × (Ni2∇ϕ2 + Ni3∇ϕ3) = ∇Ni2 × ϕ2 + ∇Ni3 × ϕ3

=
∂Ni2

∂ϕ3
∇ϕ3 × ∇ϕ2 +

∂Ni3

∂ϕ2
∇ϕ2 × ∇ϕ3 =

ẑ

det(Je)

(
∂Ni2

∂ϕ3
− ∂Ni3

∂ϕ2

)
.
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Then we obtain

Se
ij =

∫∫
e

(∇ × N e
i ) · (∇ × N e

j) dx dy

=
1

| det(Je)|2
∫∫

e

(
∂Ni2

∂ϕ3
− ∂Ni3

∂ϕ2

) (
∂Nj2

∂ϕ3
− ∂Nj3

∂ϕ2

)
dx dy

=
1

| det(J2)|
∫ 1

ϕ2=0

∫ 1−ϕ2

ϕ3=0

(
∂Ni2

∂ϕ3
− ∂Ni3

∂ϕ2

) (
∂Nj2

∂ϕ3
− ∂Nj3

∂ϕ2

)
dϕ2 dϕ3

=
S00

ij

| det(J2)| ,

where S00 is independent of the shape of the element and can be precomputed:

S00 =

⎡
⎣+2 −2 +2

−2 +2 −2
+2 −2 +2

⎤
⎦ . (6.71)

% --------------------------------------------------------------
% Compute the stiffness and mass matrix for edge elements on
% a triangular grid
% --------------------------------------------------------------
function [M, S, el2ed] = edgeFEM2D(no2xy, el2no)

% Arguments:
% no2xy = x- and y-coordinates of the nodes
% el2no = node indices of the triangles
% Returns:
% M = Mass matrix
% S = Stiffness matrix
% el2ed = a table that contain the three edge numbers related
% to each element

% Sort the nodes of each element
el2no = sort(el2no);

% Assign a number to each edge in the grid and create el2ed
n1 = el2no([1 1 2],:);
n2 = el2no([2 3 3],:);
[ed2no,trash,el2ed] = unique([n1(:) n2(:)],’rows’);
el2ed = reshape(el2ed,3,size(el2no,2));

% Compute det(Jˆe), grad phi_2 and grad phi_3
e1 = no2xy(:,el2no(2,:)) - no2xy(:,el2no(1,:)); % 1st edge in

% all elements
e2 = no2xy(:,el2no(3,:)) - no2xy(:,el2no(1,:)); % 2nd edge in

% all elements
detJ = e1(1,:).*e2(2,:) - e1(2,:).*e2(1,:); % det(Jˆe) for

% all elements
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g2 = [+e2(2,:)./detJ; -e2(1,:)./detJ]; % grad phi_2
g3 = [-e1(2,:)./detJ; +e1(1,:)./detJ]; % grad phi_3

% Define element shape independent matrices
m22 = [+3 +1 -1; +1 +1 -1; -1 -1 +1] / 12;
m23 = [+3 +3 +1; +3 +3 -1; +1 -1 -1] / 12;
m33 = [+1 +1 +1; +1 +3 +1; +1 +1 +1] / 12;
s00 = [+2 -2 +2; -2 +2 -2; +2 -2 +2];

% Compute local matrices and indices for all elements
mloc = m22(:) * (abs(detJ).*sum(g2.*g2)) + ...

m23(:) * (abs(detJ).*sum(g2.*g3)) + ...
m33(:) * (abs(detJ).*sum(g3.*g3));

sloc = s00(:) * abs(1./detJ);
rows = el2ed([1 2 3 1 2 3 1 2 3],:);
cols = el2ed([1 1 1 2 2 2 3 3 3],:);

% Assemble.
S = sparse(rows,cols,sloc);
M = sparse(rows,cols,mloc);

The presented MATLAB function assumes that the material parameters
are constant in the entire mesh. It also assumes homogeneous Neumann
boundary conditions, i.e., n̂ × ∇ × E = 0, which corresponds to a perfectly
magnetic conducting (PMC) boundary. If we instead solved for the magnetic
field H, we would have n̂×∇×H = 0, which corresponds to a PEC boundary.
The function edgeFEM2D can easily be extended to treat problems where the
material parameters vary between elements, but are constant within each el-
ement, and problems with homogeneous Dirichlet boundary conditions. How-
ever, this is left as a computer exercise.

A function for plotting a solution, expressed as a (real) vector with coeffi-
cients, is given below. The field is plotted on a finer mesh than the mesh that
was used to compute the solution. The reason for this is to see how the field
varies within, and on the interface between, elements. Arrows and color are
used to visualize the field itself and its curl respectively.

% --------------------------------------------------------------
% Plot a 2D vector field described by edge elements
% --------------------------------------------------------------
function plotfield(no2xy, el2no, el2ed, sol)

% Arguments:
% no2xy = x- and y-coordinates of the nodes
% el2no = node indices for all triangles
% el2ed = edge indices for all elements
% sol = Coefficient vector (each entry in the vector
% corresponds to one edge in the mesh)
% Returns:
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% -

% Sort the nodes of each element
el2no = sort(el2no);

% Local coordinates for subgrid plotting
phi_1 = [4 3 2 1 0 3 2 1 0 2 1 0 1 0 0]’ / 4;
phi_2 = [0 1 2 3 4 0 1 2 3 0 1 2 0 1 0]’ / 4;
phi_3 = [0 0 0 0 0 1 1 1 1 2 2 2 3 3 4]’ / 4;

% Gradients of the simplex functions
% (constant within each element)
edge1 = no2xy(:,el2no(2,:)) - no2xy(:,el2no(1,:));
edge2 = no2xy(:,el2no(3,:)) - no2xy(:,el2no(1,:));
detJ = edge1(1,:).*edge2(2,:) - edge1(2,:).*edge2(1,:);
grad_phi_2x = edge2(2,:)./ detJ;
grad_phi_2y = -edge2(1,:)./ detJ;
grad_phi_3x = -edge1(2,:)./ detJ;
grad_phi_3y = edge1(1,:)./ detJ;
grad_phi_1x = 0 - grad_phi_2x - grad_phi_3x;
grad_phi_1y = 0 - grad_phi_2y - grad_phi_3y;

% Solution values associated to the 1st, 2nd, and
% 3rd edges in each element
sol1 = sol(el2ed(1,:)).’;
sol2 = sol(el2ed(2,:)).’;
sol3 = sol(el2ed(3,:)).’;

% Field values
Ex = phi_1 * ( grad_phi_2x.*sol1 + grad_phi_3x.*sol2) + ...

phi_2 * (-grad_phi_1x.*sol1 + grad_phi_3x.*sol3) + ...
phi_3 * (-grad_phi_1x.*sol2 - grad_phi_2x.*sol3);

Ey = phi_1 * ( grad_phi_2y.*sol1 + grad_phi_3y.*sol2) + ...
phi_2 * (-grad_phi_1y.*sol1 + grad_phi_3y.*sol3) + ...
phi_3 * (-grad_phi_1y.*sol2 - grad_phi_2y.*sol3);

Hz = (sol1 - sol2 + sol3)./detJ;

% Create subgrid
p1 = no2xy(:,el2no(1,:));
p2 = no2xy(:,el2no(2,:));
p3 = no2xy(:,el2no(3,:));
psub = kron(p1,phi_1’) + kron(p2,phi_2’) + kron(p3,phi_3’);

% Initiate plotting
ih = ishold;
ax = newplot;
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% Plot the curl of the field (constant within each element)
patch(’faces’,el2no’,’vertices’,no2xy’,’facevertexcdata’,Hz(:), ...

’facecolor’,get(ax,’defaultsurfacefacecolor’), ...
’edgecolor’,get(ax,’defaultsurfaceedgecolor’));

axis equal, hold on

% Plot the field itself as arrows
quiver(psub(1,:),psub(2,:),Ex(:)’,Ey(:)’,’k’);

% Plot the mesh
xy1 = no2xy(:,el2no(1,:));
xy2 = no2xy(:,el2no(2,:));
xy3 = no2xy(:,el2no(3,:));
xy = [xy1; xy2; xy3; xy1; NaN*xy1];
plot(xy(1:2:end),xy(2:2:end),’k’)

% Create a new colormap
mrz = max(abs(Hz(:)));
caxis([-mrz, mrz]);
c = (0:64)’/64; d = [c c ones(size(c))];
colormap([d ;1 1 1; d(end:-1:1,end:-1:1)]);

if ˜ih, hold off, end

We exploit this implementation to compute the eigenmodes H and eigen-
values k2 for a cavity resonator with a circular metal boundary of radius
a = 1 m. The solution satisfies the eigenvalue problem ∇ × ∇ × H = k2H
with boundary condition n̂×∇×H = 0, where H = x̂Hx(x, y)+ ŷHy(x, y).
A relatively coarse grid is used to compute the fundamental mode shown in
Figure 6.26. The numerical mode has ka = 2.4412, and this computed value
compares well with the analytical counterpart, i.e., the first zero ka = 2.4049
of the Bessel function J0(ka). The next mode is degenerated, and analytically
it has ka = 3.8318, which corresponds to the first zero of J1(ka). The two
numerically computed eigenmodes are shown in Figure 6.27, and they have
ka = 3.8831 and ka = 3.8846. The ten lowest eigenvalues are shown in Fig-
ure 6.28, where the crosses indicate the analytical solution and the circles the
numerical result. We note that there are no spurious modes, the multiplicity
of the lowest modes is correct, and the error for the higher-order modes is sur-
prisingly small. There are 48 zero eigenvalues and Nn = 49 nodes in the mesh,
which includes all the nodes on the boundary. The zero eigenvalues correspond
to modes H = ∇ψ, where the potentials ψ are different linear combinations
of nodal basis functions ϕi. However, while there are 49 linearly independent
potentials ψ, there are only 48 linearly independent modes H = ∇ψ, since a
constant (but nonzero) ψ corresponds to zero magnetic field.
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Fig. 6.26. The fundamental mode with ka = 2.4412, and this compares well with
the analytical counterpart ka = 2.4049.
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Fig. 6.27. Two degenerate modes associated with the second-smallest ka = 3.8831
and ka = 3.8846, which compares well with the analytical counterpart ka = 3.8318.
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Fig. 6.28. Nomalized eigenvalues ka for the lowest 10 eigenmodes: circles, numerical
result; and crosses, analytical values.
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6.5.8 Time-Dependent Problems

Now we consider a time evolution problem for the vector wave equation. Let
us choose a simple example with a lossless region (i.e., σ = 0) and metal
boundary conditions. There are no driving currents, and instead we excite the
problem with a nonzero initial field. The problem can be stated as

∇ ×
(

1
µ

∇ × E

)
+ ε

∂2E

∂t2
= 0 in S, (6.72)

n̂ × E = 0 on L1, (6.73)
E(r, t = 0) = E0(r ) in S, (6.74)

∂E(r, t)
∂t

∣∣∣
t=0

= 0 in S. (6.75)

Besides the boundary condition (6.73) we need two initial conditions (6.74)
and (6.75), because the equation is of second order in time. The electric field
is expanded in edge elements, and the coefficients Ej are now time dependent :

E(r, t) =
Ne∑
j=1

Ej(t)N j(r ). (6.76)

Equation (6.72) is tested by taking the scalar product with the weighting
function W i = N i(r ) and integrated (the ∇ × µ−1∇×-term by parts) over
the computational domain.

So far, we have discretized in space but not in time. The result is a system
of coupled ordinary differential equations (ODE) for the expansion coefficients

Sz(t) + c−2
0 M

∂2z(t)
∂t2

= 0,

where S and M are given by (6.58)–(6.59). To solve this system of ODEs, we
can use either finite differences or finite elements in time. A first attempt for
time-stepping might be the centered finite difference scheme

M
(
zn+1 − 2zn + zn−1) = − (c0∆t)2 Szn, (6.77)

where we need to specify z1 and z2 as initial conditions. This scheme is subject
to the time-step limitation discussed in Section 4.4.1, ∆t ≤ 2/ωmax. Yet it is
implicit, because the mass matrix M must be inverted at every time step.

zn+1 = 2zn − zn−1 − (c0∆t)2M−1Szn.

Thus, straightforward time-stepping for FEM has two drawbacks: it is
slow, because of the inversion, and the time-step is limited. There are two
ways to improve on this. One can be used if the mass matrix is sufficiently
close to diagonal that it can be approximated by a diagonal matrix. This is
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known as “mass lumping” in mechanics and leads to explicit time-stepping.
Mass lumping works well for the edge elements on quadrilaterals. In fact, with
some additional lumping of the stiffness matrix, time-stepped edge elements
on rectangles are equivalent to the FDTD scheme. This solution gives a low
number of operations per time-step, but still the time-step is limited by the
CFL condition.

Mass lumping does not work for edge elements on triangles or tetrahedra,
and for these elements, one must invert a system of equations on each time
step. A much better method in this case is to apply a scheme that is even more
implicit, so that it is stable for arbitrarily large time steps. This is achieved
by averaging the stiffness term in time:

M
(
zn+1 − 2zn + zn−1) = − (c0∆t)2 S

[
θzn+1 + (1 − 2θ)zn + θzn−1] .

(6.78)
This scheme is stable for any time-step if θ ≥ 1/4. However, the scheme
becomes inaccurate if the time-step is long compared with the characteristic
time on which the solution evolves.

The time-stepping scheme in (6.78) was introduced in 1959 by New-
mark [49], and it is often referred to as the Newmark scheme. One interest-
ing feature of the Newmark scheme is that it reduces to the finite difference
scheme (6.77) when the implicitness parameter θ is zero. In fact, the Newmark
scheme can be viewed as a strict FEM scheme based on Galerkin’s method and
a piecewise linear expansion of the electric field in time [61]. The implicitness
parameter enters through a linear combination of exact and trapezoidal inte-
gration applied to the weak form of the problem. Equation (6.78) is recovered
if we use the weights 1 − 6θ and 6θ for the exact and trapezoidal integration,
respectively. This makes it possible to combine [60] finite difference schemes
(with explicit time-stepping) with FEM (with implicit time-stepping), and
moreover, it is feasible to construct relatively simple proofs of stability based
on von Neumann analysis. Since the lowest term in the error expansion is of
second order in ∆t for the FEM with Galerkin’s method, this also applies to
both (6.77) and (6.78).

Review Questions

6.5-1 Derive the Helmholtz equation from the system of first-order equations,
i.e., dE/dx − ωµH = 0 and dH/dx + ωεE = 0.

6.5-2 Why is the electric field expanded in tent functions and the magnetic
field in top-hat functions for the mixed 1D problem in Section 6.5.1?

6.5-3 Relate the FEM expressions for the system of first-order equations
(dE/dx − ωµH = 0 and dH/dx + ωεE = 0) to the corresponding finite-
difference approximations. Do you need to apply special techniques for a
one-to-one correspondence?

6.5-4 How do tent and top-hat functions relate to the integer and half-mesh
used for finite difference approximations?
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6.5-5 Describe the differences and similarities between the FEM for scalar
and vector equations.

6.5-6 Why are edge elements needed? Why are they called edge elements?
Why are they referred to as curl-conforming elements? List some of the
characteristic properties of edge elements.

6.5-7 What is the physical meaning of the degrees of freedom for a vector
field expanded in terms of edge elements? How does this translate to an
electric field that can be represented as the gradient of a scalar potential?

6.5-8 Derive the weak form of the vector Helmholtz equation, ∇ × (µ−1∇ ×
E) − (ω2ε − jωσ)E = −jωJs, with some suitable boundary conditions.

6.5-9 Write down the explicit expressions for the edge elements on a rectangle.
6.5-10 Describe the functions (with respect to x, y, and z) that are used for

the x-components of the electric and magnetic fields, respectively, on a
grid of brick elements.

6.5-11 Derive explicit expressions for the matrix elements in (6.60) and (6.61)
by evaluating the integrals by hand. Use the expressions in (6.51) for the
basis and test functions.

6.5-12 How many static modes are supported by the mesh in Figure 6.21 and
why? How many static modes are supported by the mesh in Figure 6.26?

6.5-13 Write down explicit expressions for edge elements on triangles in terms
of (a) polar coordinates and (b) nodal basis functions.

6.5-14 Show that for triangles, the tangential component of a given basis
function is constant along one edge and zero along the other edges of the
element. Does this also hold for rectangular edge elements?

6.5-15 Are there any advantages of the implicit Newmark scheme compared
to explicit time-stepping schemes?

6.6 Magnetostatics and Eddy Current Problems

Two-dimensional scalar calculations can be applied to problems involving
magnetic materials and eddy currents. Eddy current calculations are gen-
erally made by applying the low-frequency approximation, which consists in
ignoring the displacement current and setting ε0 = 0. Roughly speaking, the
low-frequency approximation works when the geometrical dimensions of the
computational domain are much smaller than a wavelength λ = c/f .

The low-frequency equations are usually solved by introducing the mag-
netic vector potential A, such that B = ∇×A. The advantage of this is that
the condition of solenoidal magnetic field ∇ · B = 0 is automatically satis-
fied. Note, however, that although the magnetic field is uniquely determined,
the vector potential is not; any gradient of a scalar potential can be added
to A without changing the magnetic field B. The electric field is given by
E = −∂A/∂t − ∇φ. With this representation for B and E, Faraday’s law is
automatically satisfied. Ampère’s law gives
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∇ × 1
µ

∇ × A + σ

(
∂A

∂t
+ ∇φ

)
= Js, (6.79)

where Js is an imposed source current, usually representing currents in coils,
and σE = −σ(∂A/∂t + ∇φ) is the conduction current. As a consequence of
the low-frequency approximation ε0 = 0, both sides of Poisson’s equation, ∇ ·
(ε∇φ) = −ρ, vanish, and therefore, the electrostatic potential is undetermined
in the low-frequency approximation.

6.6.1 2D Formulation

For 2D problems with currents flowing in the z-direction and variations only
in the x- and y-directions, the potentials can be chosen in a simple way:

A = Az(x, y)ẑ, φ = 0. (6.80)

Then the magnetic field is B = ∇Az × ẑ and the current density is

∇ ×
(

1
µ

∇Az × ẑ

)
= −ẑ∇ · 1

µ
∇Az. (6.81)

If the time-dependence is harmonic ∝ exp(jωt), the z-component of Ampère’s
law gives

−∇ · 1
µ

∇Az + jωσAz = Js
z , (6.82)

which is a complex, scalar Helmholtz equation. The boundary condition of the
continuous normal component for B is fulfilled if Az is continuous. The bound-
ary condition of continuous n̂ × H = n̂ × µ−1(∇Az × ẑ) = −ẑµ−1∂Az/∂n
requires continuity of µ−1∂Az/∂n.

In microwave terminology, the 2D formulation in (6.80) and (6.82) cor-
responds to TM polarization. This 2D problem is readily solved using nodal
elements for the vector potential Az, and we have discussed the techniques
for this in Section 6.3.

6.6.2 A 2D Application Problem

As a practical application, we consider the 2D electromagnet shown in Fig-
ure 6.29. The magnetic circuit consists of an iron core (µr = 4000) shaped
like the letter C and two rectangular copper conductors. The left and right
copper conductors carry source currents +Js

z and −Js
z , respectively.

First we solve the static problem −∇ · (µ−1
r ∇Az) = µ0J

s
z . We have dis-

cussed all the techniques necessary for this in Section 6.3, and they have been
implemented in a user-friendly way in the MATLAB toolbox pdetool. The
computed magnetic flux lines (equipotential lines for Az) are shown in Fig-
ure 6.29. Note the almost uniform distribution of magnetic flux lines in the
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Fig. 6.29. Magnetic flux density lines in the static case are shown by thin lines,
and the geometry is shown by thick lines.

core. There is also some leakage of flux, especially in the vicinity of the air
gap where significant fringing occurs.

For finite frequencies, we solve (6.82). The resulting magnetic flux lines for
the frequencies f = 1.0 Hz and f = 10 Hz are shown in Figure 6.30. We have
used the conductivities σFe = 107 S/m for the iron core and σCu = 5.8·107 S/m
for the copper conductors. The electrical conductivity reduces the penetration
of the magnetic field into the iron (and to a lesser extent, into the copper)
as the frequency increases. This is called the skin effect. The skin depth,
over which the magnetic field decays by 1/e, can be found from (6.82) as
δ = 1/

√
πfµσ. At f = 1.0 Hz the skin depths are 2.5 mm and 66 mm for iron

and copper, respectively. For f = 10 Hz the skin depths are 0.8 mm (rather
thin!) in iron and 21 mm in copper.

Time variation, i.e., nonzero frequency, introduces eddy currents in the
conducting regions. One can see in Figure 6.30 that the eddy currents in the
iron core squeeze the magnetic flux to the inner surface of the iron core. This
is where the circumference traversed by the field lines is the smallest. Note
that despite the localization of the flux to one side of the iron, the field lines
spread out evenly in the air gap. Here, the flux density (density of contours)
is almost uniform. The reason for this is that the air gap gives the dominant
contribution to the magnetic reluctance.

Contour lines for the total power dissipation density Pt = σ|J t
z|2 at f = 1.0

Hz and f = 10 Hz are shown in Figure 6.31. The total current J t
z is the sum of

the source current Js
z and the eddy current Je

z . The source current is prescribed
as a constant value in the copper region. In practice, the copper region would
most likely consist of a single thin wire wound many turns around the core.
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Fig. 6.30. Magnetic flux density lines at f = 1.0 Hz and f = 10 Hz are shown to
the left and the right, respectively.

This can be modeled as a uniform current distribution. The eddy currents are
computed from the vector potential, Je

z = σEz = −jωσAz.
At power frequencies, eddy currents reduce the regions where the mag-

netic field penetrates the iron to very thin layers. To avoid this one can use
laminations that prevent eddy currents from flowing in certain directions. For
the 2D electromagnet shown here, laminations in the xy-plane will inhibit the
eddy currents completely. We reiterate that the 2D eddy current problem is
well handled by nodal elements. This technique is extensively described in the
textbook of Silvester and Ferrari [70].
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Fig. 6.31. Contour lines for the power dissipation density at f = 1.0 Hz (left) and
f = 10.0 Hz (right).
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6.6.3 3D Eddy Current Calculations

Here, we will give a brief introduction to eddy current calculations in three
dimensions. This is a complex subject, so the discussion will be kept general,
and leave out many details. Several different formulations are used for solving
the low-frequency equation (6.79). Before proceeding to discuss two of these
formulations, we note that the divergence of Ampère’s law with ε0 = 0 shows
that the current density has zero divergence. This must hold, both for the
coil current Js and the conduction currents −σ(jωA + ∇φ). Therefore, the
low-frequency problem can be stated as

∇ × 1
µ

∇ × A + σ

(
∂A

∂t
+ ∇φ

)
= Js, (6.83)

∇ · σ

(
∂A

∂t
+ ∇φ

)
= 0,

∇ · Js = 0,

We outline how this set of equations can be solved using nodal and edge
elements.

Solution by Nodal Elements for the Components of A

The method based on nodal elements for the components of the vector po-
tential is still used in commercial codes, despite some known difficulties. The
first difficulty comes from the fact that the null-space solutions for the curl-
curl operator cannot be represented by divergence-conforming elements. This
problem can be cured by removing the null-space (which does not contribute
to the magnetic field anyway) by adding a so-called penalty term −∇µ−1∇·A
to Ampère’s law, so that the set of equations becomes

∇ × 1
µ

∇ × A − ∇ 1
µ

∇ · A + σ

(
∂A

∂t
+ ∇φ

)
= Js, (6.84)

∇ · σ

(
∂A

∂t
+ ∇φ

)
= 0. (6.85)

This procedure makes the differential operator in (6.84) similar to a Laplacian
and removes highly oscillatory, spurious solutions. The system (6.84)–(6.85)
can be solved using Galerkin’s method, where (6.84) is tested with the basis
functions for A (vectorial nodal elements) and (6.85) is tested with the basis
functions for φ (scalar nodal elements).

Taking the divergence of (6.84) and using (6.85), we get

∇2 1
µ

∇ · A = 0. (6.86)

Thus, µ−1∇ · A satisfies the Laplace equation, and if ∇ · A vanishes on the
boundaries, this implies ∇·A = 0 everywhere. Therefore, the penalty term in
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(6.84) is numerically zero, so that it does not change Ampère’s law. (Actually,
it is nonzero for the spurious solutions, which are removed by adding the
penalty term.) One of the advantages of the penalty term is that it changes the
conditioning of the matrix by removing small eigenvalues, and therefore makes
the system easier to solve by an iterative solver. Note that for this formulation,
the condition of zero divergence for the conduction currents (6.85) is essential
and cannot be left out. This condition is not a gauge condition, but it indirectly
enforces ∇ · A = 0, which is called the Coulomb gauge.

It turns out that this method works well, except at edges and corners
where the magnetic permeability µ changes. At such edges, the magnetic
field is unbounded, and the penalty formulation is not accurate. Recent work
suggests that this problem can be overcome by removing the penalty term
locally around such singularities.

Solution by Edge Elements for A

Edge elements work better for low-frequency problems, but the procedures
for an efficient implementation are not simple [43]. As a first attempt, one
can set the scalar potential to zero and expand the solution of (6.83) in edge
elements. If the frequency is zero, one must note that the curl-curl operator
has a large null-space. For the lowest-order edge elements, this null-space
consists of A = ∇U , where U is a piecewise linear scalar variable. Therefore,
(6.83) can be solved only if Js has no projection on this null-space. One can
ensure this, either by representing Js as the curl of a current potential, or by
subtracting the gradient of a scalar U from Js and imposing the condition
〈∇Ū ,Js − ∇U〉 = 0 for all piecewise linear test functions Ū . This procedure
works excellently for static problems. It does not suffer from the accuracy
problems that occur for the nodal representation at edges where µ has jumps.

If one straightforwardly extends this procedure to finite frequency, the
matrix becomes ill-conditioned, and iterative solvers converge very slowly. The
cure for this is a somewhat surprising procedure, which consists in introducing
a scalar potential φ and not prescribing a gauge condition. Instead of a gauge
condition, one requires the divergence of the conduction current to be zero,
so that the system of equations is

∇ × 1
µ

∇ × A + σ (jωA + ∇φ) = Js, (6.87)

∇ · σ (jωA + ∇φ) = 0. (6.88)

Note that this system of equations is degenerate, because the second equation
is the divergence of the first (assuming ∇ · Js = 0). Moreover, φ occurs only
in the combination jωA + ∇φ = −E, so that any change of A and φ that
leaves this combination unchanged is permitted. This is precisely a gauge
transformation, which does not change the physical fields. Thus, the system
(6.87)–(6.88) permits any gauge, and the method is referred to as the ungauged
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formulation. Of course, the indeterminacy of the solutions implied by gauge
transformations means that the matrix is singular. However, iterative methods
work also for singular matrices, provided that the right-hand side is consistent,
that is, has no projection on the null-space.

The ungauged formulation greatly reduces the number of iterations for
Krylov solvers (to which an introduction is given in Appendices A and B).
The ungauged formulation can be viewed as a form of preconditioner for the
curl-curl equation, and it improves the complex eigenvalue spectrum of the
operator. The advantage of the edge elements over the nodal element formula-
tion with a penalty term is that the edge elements give good approximations
also at corners of magnetic materials.

Eddy current calculations are more frequently carried out on hexahedral
meshes than on tetrahedral ones. One reason for this is that eddy current
problems often involve currents in thin layers, within the skin depth δ =
(2/ωµσ)1/2 of conductor surfaces. The skin depth is typically in the millimeter
to centimeter range, which is small compared to the global dimensions of a
motor, generator, or transformer. Therefore, high resolution is required in
the direction normal to the surface of a conductor, whereas the resolution
requirements in the perpendicular direction can be much less demanding.
This anisotropy is easier to achieve on a hexahedral mesh than a tetrahedral
one. Another anisotropy can be introduced by laminations, and these are
much easier to treat on a hexahedral mesh, which can be aligned with the
laminations.

Review Questions

6.6-1 What is the low-frequency approximation and when is it applicable?
6.6-2 Consider a 2D low-frequency problem in the xy-plane. Use Maxwell’s

equations to derive a partial differential equation for the z-component
of the vector potential. How can boundary conditions for the fields be
formulated in terms of the vector potential?

6.6-3 Is the vector potential uniquely defined? If not, what conditions do you
need to uniquely determine the vector potential?

6.6-4 Why is the electrostatic potential undetermined in the low-frequency
approximation?

6.6-5 What is the difference between the magnetostatic problem and the low-
frequency eddy current problem? Give examples of how the characteristic
features of the solution change. Does this influence the choice of numerical
algorithms and discretizations?

6.6-6 What is a penalty term and why is it used?
6.6-7 Mention some drawbacks associated with representing the components

of the vector potential in a 3D eddy current problem by nodal elements.
6.6-8 Explain what a gauge transformation is.
6.6-9 Under what conditions is it possible to solve a system of linear equations

where the system matrix is singular?
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6.7 Variational Methods

The FEM can also be introduced as a variational method. Variational methods
are intimately related with essential conservation laws of the system, and can
give valuable insights into the application problem.

As an illustration, we study an example of electrostatics in a source free
region. Here D = εE and E = −∇φ, where φ is the electric potential. The
natural choice of a variational quantity is the electrostatic field energy:

W [φ] =
1
2

∫
V

E · DdV =
1
2

∫
V

ε|∇φ|2dV. (6.89)

The potential for which (6.89) gives the energy does not have to be the true
solution, but it must fulfill the boundary conditions. The remarkable thing is
that the true potential distribution, satisfying the boundary conditions and
Poisson’s equation −∇ · (ε∇φ) = 0, is exactly the function that minimizes
(6.89); i.e., it gives the smallest electrostatic energy of all allowed φ.

To show this, let φ0 be the potential that minimizes (6.89). Then, change
the potential slightly by adding a perturbation δφ, and compute the electro-
static energy for the perturbed potential φ = φ0 + δφ:

W [φ0 + δφ] = W [φ0] +
∫

V

ε∇δφ · ∇φ0dV + O
(
(δφ)2

)
. (6.90)

When δφ is small, the higher-order terms O((δφ)2) can be dropped. When the
electrostatic energy W has a minimum, the first variation δW = W [φ0 +δφ]−
W [φ0] must be zero. After an integration by parts, (6.90) gives the following
condition for the energy to be stationary:

δW =
∫

V

δφ [−∇ · (ε∇φ0)] dV = 0. (6.91)

If this is to hold for all perturbations δφ, the potential φ0 must satisfy −∇ ·
(ε∇φ0) = 0 everywhere in V ; i.e., the differential equation of electrostatics in
a source-free region is satisfied.

6.7.1 Relation Between Linear Differential Equations and
Quadratic Forms

In more general terms, the solution f of a self-adjoint linear differential equa-
tion L[f ] = s in a domain Ω corresponds to a stationary point for the quadratic
form

I[f ] =
1
2
〈f, L[f ]〉 − 〈f, s〉. (6.92)

We use the scalar product 〈f, g〉 =
∫

Ω
fg dΩ, where f and g are real functions.

An operator L is self-adjoint if 〈g, L[f ]〉 = 〈f, L[g]〉 for all f and g. The factor 1
2
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in the first term of (6.92) is needed in order to produce the correct differential
equation, because the first term in I is quadratic, while the second is linear.

Now let δf be a small variation of f . We will consider variations only up
to linear order in δf . We let δI denote the first-order variation of I[f ] when
f → f + δf and say that I[f ] is stationary if

δI = 0, ∀δf. (6.93)

Since f represents a minimum, the rate of change of I at f must be zero. Let
us expand I[f + δf ] in powers of δf :

I[f + δf ] =
1
2
〈f + δf, L[f + δf ]〉 − 〈f + δf, s〉

=
1
2
〈f, L[f ]〉 − 〈f, s〉

+
1
2
〈δf, L[f ]〉 +

1
2
〈f, L[δf ]〉 − 〈δf, s〉

+
1
2
〈δf, L[δf ]〉

= I[f ] + δI + O((δf)2). (6.94)

The first variation is the part that is linear in δf , that is,

δI =
1
2
〈δf, L[f ]〉 +

1
2
〈f, L[δf ]〉 − 〈δf, s〉.

In order for I[f ] to be stationary, the first variation must vanish:

δI =
1
2
(〈δf, L[f ]〉 + 〈f, L[δf ]〉) − 〈δf, s〉 = 0, ∀δf. (6.95)

Now L is self-adjoint, i.e., 〈f, L[δf ]〉 = 〈L[f ], δf〉, so the condition for I sta-
tionary becomes 〈δf, L[f ]〉 − 〈δf, s〉 = 〈δf, L[f ] − s〉 = 0. Thus, for every
admissible variation δf we have

〈δf, L[f ] − s〉 =
∫

Ω

δf(L[f ] − s)dΩ = 0. (6.96)

Since δf is an arbitrary function, this requires that the residual r = L[f ] − s
vanish everywhere in Ω; that is, that the differential equation L[f ] = s be
satisfied.

The discussion above shows that we can solve the differential equation
L[f ] = s by finding the function f that makes I[f ] stationary. Often, I rep-
resents the energy, and the solution of the differential equation is the one
that minimizes the energy. The electrostatics problem we just discussed is an
example of this.
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A 1D Example

To illustrate some features of the variational method, we study a simple ex-
ample in one dimension. Let L[f ] = −f ′′ and s = x2 with the boundary
conditions f(0) = f(1) = 0. We make a guess for the solution f containing
only two parameters a and b. The function f(x) = ax(1−x)3 +bx2(1−x) sat-
isfies the boundary conditions for arbitrary a and b. We seek the combination
of a and b such that the differential equation is satisfied as well as possible. If
it is not possible to find an exact solution, we want the “best” combination
of a and b.

This can be done by computing the quadratic form I and finding its
stationary point. Since the operator L[f ] is self-adjoint, it corresponds to
a quadratic form given by I[f ] = 1

2 〈f, L[f ]〉 − 〈f, s〉, that is,

I[f ] = − a

140
− b

30
+

1
2

(
3a2

35
+

2b2

15

)
, (6.97)

I is a quadratic function in the parameters a and b, and Figure 6.32 shows
level contours for the quadratic form I with respect to these parameters.
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Fig. 6.32. Level contours for the quadratic form I. The stationary point is shown
by the dot labeled A, and this combination of a and b solves −f ′′ = x2. B and C are
not stationary points, and they do not solve the differential equation.

There is a global minimum for I indicated by the dot labeled A in Fig-
ure 6.32. To find the values of a and b for this minimum we set the gradient
of I equal to zero:
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∂I

∂a
= − 1

140
+

3 a

35
= 0 (6.98)

∂I

∂b
= − 1

30
+

2 b

15
= 0 (6.99)

which gives the solution a = 1/12 and b = 1/4. The corresponding solution
f(x) = x(1 − x3)/12 indeed solves −f ′′ = x2, and it is shown in Figure 6.33
by the solid curve labeled A. If the basis functions had been chosen in a less
clever way, so that the true solution could not be constructed, the variational
approach would have given the “best” approximation of f(x).
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Fig. 6.33. The function solving −f ′′ = x2 is shown by the solid curve labeled A.
The two other functions labeled B and C do not satisfy the differential equation.

Let us see what happens if we change the values of a and b away from the
minimum A in Figure 6.32, e.g., to the points B and C. The new combinations
of a and b and their values of I are shown in Table 6.7 together with the
correct solution. The functions f corresponding to B and C are also shown in
Figure 6.33.

Label a b I[f ]
A 1/12 1/4 -4.46
B 1/7 1/5 -4.15
C -1/7 3/8 -1.23

Table 6.7. Three different combinations of the parameters. The true solution is
labeled A.
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6.7.2 Rayleigh–Ritz Method

The variational formulation gives a procedure, the Rayleigh–Ritz method, for
finding approximate solutions of self-adjoint linear equations. It consists of
the following steps:

• Approximate f by an expansion in a finite set of basis (or trial) functions
ϕi, i = 1, 2, . . . , N :

f(r ) =
N∑

i=1

fiϕi(r ). (6.100)

• Evaluate the quadratic variational form I as a function of the expansion
coefficients

I(f1, f2, . . . , fN ) = I[f ] =
1
2
〈f, L[f ]〉 − 〈f, s〉

=
1
2

∑
i

∑
j

fifj〈ϕi, L[ϕj ]〉 −
∑

i

fi〈ϕi, s〉

=
1
2

∑
i

∑
j

Lijfifj −
∑

i

sifi, (6.101)

where Lij = 〈ϕi, L[ϕj ]〉 and si = 〈ϕi, s〉. Note that the “matrix” L is
symmetric, Lij = Lji, because the operator L is self-adjoint.

• Determine the expansion coefficients fi by demanding that I be stationary
with respect to all the coefficients:

0 =
∂I

∂fk
=

1
2

∑
j

Lkjfj +
1
2

∑
i

Likfi − sk =
∑

i

Lkifi − sk. (6.102)

Equation (6.102) is a linear symmetric N ×N system Lf = s for the expansion
coefficients.

6.7.3 Galerkin’s Method

Galerkin’s method is intimately connected to the variational formulation. In
fact, the Rayleigh–Ritz formulation (6.102) leads to Galerkin’s method for
self-adjoint systems. Using the definitions of the matrix elements Lki and sk,
we have from (6.102)

∑
i

Lkifi − sk =
∑

i

〈ϕk, L[fiϕi]〉 − 〈ϕk, s〉

= 〈ϕk, L[
∑

i

fiϕi] − s〉 = 〈ϕk, L[f ] − s〉

=⇒
∫

Ω

ϕk(L[f ] − s) dΩ = 0. (6.103)
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This is Galerkin’s method for solving L[f ] = s, since the weighting functions
are equal to the basis functions. It is also the same as the variational condition
(6.96), but the previously arbitrary weighting function δf for the residual
r = L[f ] − s is now restricted to lie in the space of the basis functions. This
shows that Galerkin’s method can be derived from variational calculus.

We stress some important facts:

• For self-adjoint differential equations, the Rayleigh–Ritz and Galerkin
methods are equivalent.

• The Galerkin method can be used also for non-self-adjoint problems where
no variational principle can be found.

• In the more general Petrov–Galerkin method, the weighting functions wi

are different from the basis functions ϕi.

6.7.4 A Variational Method for Maxwell’s Equations

Maxwell’s equations can be put in variational form in a few different ways.
One way is to apply the general prescription (6.92) to the lossless self-adjoint
curl-curl equation

∇ × µ−1∇ × E + ε∂2E/∂t2 = −∂J/∂t, (6.104)

integrate both in space and time, and ignore the boundary terms. This gives
the quadratic form

L =
∫∫ ⎛

⎝ 1
2µ

|∇ × E|2 − ε

2

∣∣∣∣∣
∂E

∂t

∣∣∣∣∣
2

+ E · ∂J

∂t

⎞
⎠ dV dt. (6.105)

For a small variation of the electric field E → E + δE, the first-order change
of L is

δL =
∫∫ (

1
µ

∇ × E · ∇ × δE − ε
∂E

∂t
· ∂δE

∂t
+

∂J

∂t
· δE

)
dV dt,

and an integration by parts (ignoring boundary terms) gives

δL =
∫∫ (

∇ × 1
µ

∇ × E + ε
∂2E

∂t2
+

∂J

∂t

)
· δE dV dt.

Thus, if E is a solution of Maxwell’s equations, then δL = 0 for any δE, which
means that L[E] is stationary. Conversely, to make L stationary, i.e., δL = 0
for an arbitrary δE, the curl-curl equation (6.104) must be satisfied.

A slight reformulation of the variational principle that is more directly
related to physical quantities uses the vector and scalar potentials as inde-
pendent variables. The fields are represented as
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B = ∇ × A, E = −∇φ − ∂A

∂t
. (6.106)

The quadratic form is the magnetic minus the electric energy, plus terms
involving the sources, integrated in space and time:

L =
∫∫ (

B2

2µ
− A · J − εE2

2
+ ρφ

)
dV dt. (6.107)

We get Maxwell’s equations by setting the first variation of L with respect to
φ and A to zero. For φ → φ+ δφ, integration by parts gives the first variation

δL =
∫∫

(ε∇δφ · E + ρδφ) dV dt

=
∫∫

(ρ − ∇ · εE) δφ dV dt = 0. (6.108)

Therefore, δL = 0 for all δφ if and only if Poisson’s equation ∇ · εE = ρ is
satisfied.

For A → A + δA the same procedure gives

δL =
∫∫ (

1
µ

∇ × δA · B +
∂δA

∂t
· εE − δA · J

)
dV dt

=
∫∫ (

∇ × B

µ
− ∂

∂t
εE − J

)
· δA dV dt = 0. (6.109)

Therefore, δL = 0 for all δA if and only if Ampère’s law ∇ × (B/µ) =
∂(εE)/∂t+J holds everywhere. Faraday’s law and ∇·B = 0 are automatically
satisfied because of the potential representation (6.106).

Review Questions

6.7-1 Motivate why variational methods are useful.
6.7-2 What are a quadratic form, functional, variation, and stationary point?
6.7-3 List and describe the steps involved in the Rayleigh–Ritz method.
6.7-4 What conditions must be fulfilled for the Rayleigh–Ritz formulation and

Galerkin’s method to be equivalent? Given such conditions, show that they
are equivalent.

6.7-5 For Maxwell’s equations, write down the quadratic form in terms of
the electric field and show that a solution that makes the quadratic form
stationary satisfies Maxwell’s equations.

6.7-6 Repeat the previous problem when the quadratic form is expressed
in terms of the potentials. Provide a physical interpretation of the con-
stituents of the quadratic form.
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Summary

• The FEM is in short:
– To solve L[f ] = s, divide the solution region into elements and expand

the sought solution f in local basis functions f(r ) =
∑N

i=1 fiφi(r ).
– Make the residual r = L[f ] − s orthogonal to N weighting functions

wi, i = 1, 2, . . . , N (the method of weighted residuals).
Galerkin’s method wi = φi is a popular choice for the weighting functions.
Other choices, i.e., wi �= φi, are referred to as Petrov–Galerkin, and some
possibilities are collocation wi = δ(r − ri), least squares wi = L[φi], and
least square stabilized Galerkin wi = φi + cL[φi], where the parameter c
is optimized.

• In one dimension with uniform meshes and f in piecewise linear elements,
Galerkin’s method gives

d2f

dx2 → fi+1 − 2fi + fi−1

h2 ,

f → fi+1 + 4fi + fi−1

6
,

where lumping (which in this case is obtained by trapezoidal integration)
gives f → fi; i.e., the finite difference approximation is recovered for the
Helmholtz equation in one dimension.

• For the Helmholtz scalar equation in 2D, we can use a continuous linear
approximation of the solution f on a mesh of triangles. The expansion
f(r) ≈ ∑

i fiϕi(r) is then used to represent the solution, where ϕi is a
piecewise linear basis function with ϕi(ri) = 1 and ϕi(rj) = 0 when i �= j.
The FEM formulation typically involves matrix entries of the type

−∇2 → Sij =
∫

S

∇ϕi · ∇ϕj dS,

1 → Mij =
∫

S

ϕiϕj dS.

By terminology borrowed from mechanics, S is referred to as the stiffness
matrix and M as the mass matrix.

• Adaptivity can often restore nominal convergence for singular problems.
• Mixed elements for a system of coupled first-order differential equations

∂E

∂x
= ωµH,

∂H

∂x
= −ωεE,

are treated with E expanded in piecewise linear functions (connected with
integer mesh) and H expanded in piecewise constants (connected with half
mesh). This gives

Ei+1 − Ei

h
= ωµHi+ 1

2
,

Hi+ 1
2

− Hi− 1
2

h
= −ωε

[
2
3
Ei +

1
6
(Ei−1 + Ei+1)

]
,
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where the term ωεE can be lumped by the trapezoidal rule
∫ xi+1

xi
f(x)dx ≈

(h/2)[f(xi) + f(xi+1)]; i.e., we have (4Ei + Ei−1 + Ei+1)/6 → Ei.
• Edge elements N i have continuous tangential components, which makes

the curl of the solution square integrable. They are often referred to as
curl-conforming elements, and some distinguishing features are:
– the basis functions N i have unit tangential components along one edge

and zero along all the other edges,
– spurious solutions and spectral contamination are avoided,
– the null-space of the curl operator is correctly represented.
The formulation for the vector Helmholtz equation involves terms of the
type

∇ × ∇× → Sij =
∫

S

(∇ × N i) · (∇ × N j) dS,

1 → Mij =
∫

S

N i · N j dS.

• Time-dependent problems use time-dependent coefficients for the spatial
expansion of the field. The wave equation Sz(t) + c−2

0 M ∂2z(t)/∂t2 = 0
can be time-stepped with the finite difference scheme

M
(
zn+1 − 2zn + zn−1) = − (c0∆t)2 Szn,

which requires a sufficiently small time-step ∆t for stability. An even more
implicit scheme, derived by averaging the stiffness term in time, gives un-
conditional stability (provided that the implicitness parameter θ is greater
than or equal to 1/4):

M
(
zn+1 − 2zn + zn−1) = − (c0∆t)2 S

[
θzn+1 + (1 − 2θ)zn + θzn−1] .

• The solution f of a self-adjoint linear differential equation L[f ] = s is a
stationary point of the quadratic form

I[f ] =
1
2
〈f, L[f ]〉 − 〈f, s〉.

A self-adjoint operator L satisfies 〈f, L[g]〉 = 〈g, L[f ]〉 for all f and g.
• The Rayleigh–Ritz method solves L[f ] = s by expanding f in global ba-

sis functions f(r ) ≈ ∑N
i=1 fiφi(r ) and evaluating the quadratic form

I(f1, f2, . . . , fN ). Coefficients are determined by ∂I/∂fi = 0 for all i =
1, 2, . . . , N . For self-adjoint problems, the equivalent Galerkin formulation
is to make the residual r = L[f ] − s orthogonal to all the basis functions,
i.e.,

∫
(L[f ] − s)ϕidΩ = 0 for all i.

Problems

P.6-1 Derive the finite element approximation of the 1D Helmholtz equation
−(d2/dx2 + k2)f = 0 for piecewise linear elements on a nonequidistant
mesh and show for the system matrix
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Aij = Sij − k2Mij

that the elements are

Si,i−1 = − 1
xi − xi−1

, Mi,i−1 =
xi − xi−1

6
,

Si,i =
1

xi+1 − xi
+

1
xi − xi−1

, Mi,i =
xi+1 − xi−1

3
,

Si,i+1 = − 1
xi+1 − xi

, Mi,i+1 =
xi+1 − xi

6
.

Show that for a uniform mesh with cell size h this gives a discretiza-
tion that is similar to the finite difference approximation, except that
the mass term is weighted between adjacent nodes. Substitute a complex
exponential f = exp(jkx) and show that the FEM approximation gives
k2
FEM = 24 sin2(kh/2)/[2 + 4 cos2(kh/2)] ≈ k2(1 + k2h2/12), so that the

FEM eigenvalue converges from above. Note that the error has the same
magnitude, but the opposite sign, as the FD approximation (3.18). Based
on this, can you find a three-point discretized operator that gives an error
O(k4h4)?

P.6-2 Consider a scattering problem where both the geometry and the sources
are independent of the z-coordinate. Derive the weak formulation for the
Helmholtz equation

−∇ ·
(

1
µ

∇Esc
z

)
− ω2εEsc

z = 0,

where Esc
z is the scattered electric field from a metal cylinder. Impose

the boundary condition Esc
z = −Einc

z on the surface of the scatterer,
where Einc

z is the incident wave. The finite element mesh discretizes the
region around the metal cylinder and extends some distance from the
scatterer. At the exterior boundary of the mesh we apply the absorbing
boundary condition n̂ · ∇Esc

z = −jkEsc
z to mimic an open region prob-

lem. What criteria must be fulfilled for this boundary condition to be
accurate? To answer this question, it is useful to consider a plane wave
Esc

z = E0 exp(−jk · r) that is incident on such an absorbing boundary.
P.6-3 A rectangular finite element occupies the region defined by xa ≤ x ≤ xb

and ya ≤ y ≤ yb. This element has four nodes and, also, four nodal basis
functions:

ϕe
1 =

xb − x

xb − xa
· yb − y

yb − ya
, ϕe

2 =
x − xa

xb − xa
· yb − y

yb − ya
,

ϕe
3 =

x − xa

xb − xa
· y − ya

yb − ya
, ϕe

4 =
xb − x

xb − xa
· y − ya

yb − ya
.

Is it feasible to apply the FEM to a mesh where such a rectangular finite
element is connected to a triangular finite element so that the two share
one edge? Suggest a situation in which it can be useful to discretize the
solution domain with both triangles and rectangles.
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P.6-4 In addition to the organization of nodes and elements, it is often nec-
essary to include various materials and boundary conditions in the dis-
crete representation of a FEM problem. The data structures discussed
in Section 6.3.2 can also be extended to deal with postprocessing steps,
e.g., integration along a contour. Discuss how the representation of the
geometrical information relating to materials, boundary conditions, and
postprocessed quantities could be implemented in a FEM computer pro-
gram.

P.6-5 Consider the electrostatic problem −∇ · (ε0∇φ) = 0. For a solution
computed by the FEM with linear triangles, the potential is piecewise
linear, and the corresponding electric field is piecewise constant. Given
such a FEM solution, evaluate Qt =

∮
Lt

D · n̂ dl applied to a single
triangle, where Lt is the boundary of the triangle. Evaluate also Qe =∮

Le
D ·n̂ dl applied to a single edge shared by two triangles, where Le is an

integration contour enclosing the edge. Interpret the derived expressions
for Qt and Qe. How do these quantities depend on the variation in the
solution as compared to the cell size? Since the charge density is supposed
to be zero, the dissatisfaction of Gauss’s law could be used as a physics
based indication of inaccuracy. Note that Qt and Qe do not give a bound
on the actual error in the solution φ. Bounds on the error in the solution
can be derived mathematically [27], but such a derivation is beyond the
scope of this book.

P.6-6 In Section 6.6, we computed the vector potential A = Az(x, y)ẑ on
an unstructured mesh of triangles. Given this solution, we used a routine
that plots equipotential lines of the vector potential to visualize the flux
lines of the magnetic flux density. Show that a contour where Az(x, y) is
constant is also a flux line for the magnetic flux density B.

P.6-7 Eliminate the magnetic field from (6.40) and (6.41). Compare this result
with the FEM applied to the Helmholtz equation in one dimension,

d

dx

(
1
µ

dEz

dx

)
+ ω2εEz = 0,

where the element matrices have been evaluated with either exact or trape-
zoidal integration. How do these methods relate to finite differences ap-
plied to the 1D Helmholtz equation?

P.6-8 Consider a scattering problem where both the geometry and the sources
are independent of the z-coordinate. Here, we solve for the electric field
E(x, y) = x̂ Ex(x, y) + ŷ Ey(x, y), and the computational mesh is trun-
cated at a constant radius R from the origin. The scatterer is located at
the origin. Modify the matrix entries (6.48) and the vector entries (6.50)
to impose the Sommerfeld radiation condition

r̂ × (∇ × E) + jkr̂ × (r̂ × E) = r̂ × (∇ × Einc) + jkr̂ × (r̂ × Einc)

combined with an external source that produces the prespecified inci-
dent field Einc. What boundary condition should be imposed on a metal
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scatterer? Which criteria must be fulfilled for the Sommerfeld radiation
condition to be accurate?

P.6-9 A rectangular finite element occupies the region defined by xe
a ≤ x ≤ xe

b

and ye
a ≤ y ≤ ye

b . This element has four nodes and also four nodal basis
functions:

ϕe
1 =

xe
b − x

xe
b − xe

a

· ye
b − y

ye
b − ye

a

, ϕe
2 =

x − xe
a

xe
b − xe

a

· ye
b − y

ye
b − ye

a

,

ϕe
3 =

x − xe
a

xe
b − xe

a

· y − ye
a

ye
b − ye

a

, ϕe
4 =

xe
b − x

xe
b − xe

a

· y − ye
a

ye
b − ye

a

.

Consider an electric potential φ =
∑4

j=1 φjϕ
e
j on this rectangle. Show that

the gradient of this potential falls into the space of the edge elements;
i.e., the equality E = −∇φ is satisfied pointwise. In other words, given
arbitrary values for φj , show that there exist values for Ej such that∑4

j=1 EjN
e
j = −∑4

j=1 φj∇ϕe
j for every point inside the rectangle.

P.6-10 Prove that (6.78) is stable for an arbitrary time-step when θ ≥ 1/4
by carrying out a von Neumann stability analysis for eigenmodes of Sz =
λMz, where λ = ω2/c2.

P.6-11 How are solutions of the type E = −∇φ treated by (6.72), (6.77), and
(6.78)?

P.6-12 What is the natural choice of a variational quantity for the steady elec-
tric current problem −∇·(σ∇φ) = 0 that was treated in Section 6.3? How
are boundary conditions treated in this case? Give a physical interpreta-
tion of the minimization of this functional and derive its first variation.

Computer Projects

C.6-1 Write a program that automatically generates a triangulation for a
rectangular domain. You can use a structured mesh of rectangles and
divide the rectangular elements on the diagonal to create the triangles.

C.6-2 Modify the program in Section 6.3.3 so that you can compute the ca-
pacitance of a capacitor with an inhomogeneous dielectric. Let the spatial
dependence of the permittivity be a prespecified function of your own
choice. Note that if the triangles are small compared to the variations
in the permittivity, you can sample ε at the center of each element and
assume it to be constant inside that element. How does the error scale
with the cell size given such an assumption? Will this have any impact
on the order of convergence for the final algorithm? Can you improve the
performance of such a method?

C.6-3 Rewrite (6.55)–(6.56) in terms of the z-component of the magnetic field.
Use the program in Section 6.3.3 as a starting point for an implementation
that solves this eigenvalue problem on a mesh of triangles. Will the static
eigenvalue(s) ω = 0 be reproduced by this formulation? Explain your
findings.
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C.6-4 Implement a FEM that solves ∇×∇×E = k2E by means of rectangular
finite elements. Apply your program to a 2D cavity with metal boundary
and compute the eigenfrequencies. Find a test case for which the analytical
result is known and perform a convergence study of the lowest eigenvalues.
What order of convergence do you expect? Is this order of convergence
reproduced by your program?

C.6-5 Modify the FEM function edgeFEM2D (in Section 6.5.7) so that it can
treat problems where the material parameters are different in different
cells. Add two extra input arguments, which are vectors with relative elec-
tric permittivity and magnetic permeability for all elements. Also modify
the function such that homogeneous Dirichlet boundary conditions can be
used. Can the same plot routine be used after these changes?
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The Method of Moments

In this chapter we introduce the integral formulation of both electrostatics
and the complete Maxwell system. In general, the electromagnetics commu-
nity refers to the integral formulation as the method of moments (MoM),
for reasons that will be explained later. In mathematics, the MoM is often
referred to as the boundary element method (BEM).

We will reformulate electrostatics, for which we have previously used Pois-
son’s and Laplace’s equations, as an integral equation. In the following sec-
tions on scattering problems, we will rewrite the full Maxwell equations as
an integral equation for currents on the surfaces of conductors, and apply
this formulation to a scattering problem. The scattered electric field can be
expressed in terms of surface currents on conductors. The condition that the
tangential electric field vanishes on conductor surfaces then gives an integral
equation from which we can compute the surface currents. For the interested
reader, more information on the MoM can be found in, e.g., [51, 82, 19].

7.1 Integral Formulation of Electrostatics

In electrostatics, the electric potential φ is determined from the sources ac-
cording to Poisson’s equation

∇2φ = − ρ

ε0
. (7.1)

This is the differential equation formulation. The solution of Poisson’s equa-
tion in free space can be constructed by superposing the contributions φ(r) =
q/4πε0|r − r′| from point charges q = ρvdV at locations r′:

φ(r) =
∫

V

ρ(r′)dV ′

4πε0|r − r′| . (7.2)

If the potential φ is known, (7.2) can be seen as an integral equation for
the charge density ρ. The integral formulation is suited for problems such
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as the capacitance calculation in Chapter 3, where the potential is known on
conducting boundaries and charges occur only on these boundaries. Then, the
potential φ was given on the boundaries, φ = φspec = 0 on the outer conductor
and φ = φspec = 1 on the inner one. As an alternative to solving Laplace’s
equation for the potential in the vacuum region, we can calculate the charges
ρs on the conducting walls S by solving the integral equation

∫
S

ρs(r′)
4πε0|r − r′|dS′ = φspec(r). (7.3)

In the 2D capacitor problem, the surface integral reduces to a line integral,
and we instead use the potential from a line charge −(ρl/2πε0) ln |r − r′| as
weighting, that is,

− 1
2πε0

∫
S

ρl(r′) ln |r − r′|dl′ = φspec(r). (7.4)

Here, we “derived” the integral equations by referring to well-known expres-
sions from electrostatics. However, it is useful to derive them in a more math-
ematical fashion, and also introduce the concept of a Green’s function. The
same procedures will be used to derive the electric field integral equation for
the complete Maxwell system.

A characteristic property of the integral formulation is that it deals readily
with open geometries. Consider the parallel plate capacitors illustrated in
Figure 7.1. In Figure 7.1(a), the capacitor is enclosed in a conducting box,
and in this case, differential equation solvers such as finite differences or finite
elements work well. However, if there is no surrounding box, these methods
have difficulties with truncating the open computational region, whereas the
MoM works very well and has no difficulties with the open geometry; see
Figure 7.1(b). (In fact, the open geometry simplifies the MoM calculation,
because it reduces the number of surfaces on which charges can reside.)

7.1.1 Green’s Function

Here, we introduce the concept of a Green’s function G(r, r′), which represents
the “field” at r produced by a point source at r′. In electrostatics, the Green’s
function represents the electric potential at r produced by a unit charge at
r′. In three dimensions, this is

G(r, r′) =
1

4πε0|r − r′| . (7.5)

We will show how the Green’s function for electrostatics can be found by
solving Poisson’s equation. This also serves as a preparation for the more
complicated time-harmonic case, treated in Section 7.3.

The potential from a point charge in three dimensions satisfies Poisson’s
equation,
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Fig. 7.1. Parallel plate capacitor in (a) closed geometry and (b) open geometry.
Differential equation solvers can easily deal with the closed geometry (a), but the
MoM is better adapted to deal with the open geometry (b).

−ε0∇2φ(r) = δ3(r − r′). (7.6)

Here, δ3(r − r′) is the 3D Dirac delta function, which represents a unit point
charge. It vanishes at all r �= r′, and at r = r′ it is infinitely large, in such a
way that the total charge

∫
V

δ3(r − r′)dV = 1 for all volumes V where r′ is
an interior point. The solution φ(r) to (7.6) is the Green’s function G(r, r′).
Thus, for electrostatics,

−ε0∇2
rG(r, r′) = δ3(r − r′), (7.7)

where the subscript r indicates that the differential operator acts on the r
argument, the field point. By symmetry, the electrostatic potential that solves
(7.7) can depend only on the distance R = |r − r′| between the source and
observation point. Therefore, except at the singularity R = 0, G satisfies

− ε0
R2

d

dR
R2 dG

dR
= 0, R > 0. (7.8)

This equation has two types of solutions, G1 = a1 and G2 = a2/R, where a1
and a2 are constants. The solution G1 = a1 is not of interest, since it produces
no electric field. Therefore, the relevant solution of (7.7) is

G = G2 =
a2

R

The coefficient a2 can be determined by integrating (7.7) over a sphere with
(the arbitrary) radius R0 around the source point. In physical terms, this
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means that we equate the flux of electric displacement D = ε0E through the
surface of the sphere to the enclosed charge. By means of Gauss’s theorem,
the integral of the left-hand side of (7.7) is

−ε0

∫
R<R0

∇ · ∇GdV = −ε0

∮
R=R0

∇G · n̂dS

= −ε0

(
− a2

R2
0

)
· 4πR2

0 = 4πε0a2 (7.9)

This must be equal to the integral of the right-hand side (the enclosed charge),
which is unity by definition. Therefore, a2 = 1/4πε0, so the Green’s function
for 3D electrostatics is

G(r, r′) =
1

4πε0|r − r′| . (7.10)

To be precise, we add that the Green’s function derived here is the one valid
for free space, with no boundaries. The Green’s function can also be defined
for cases with conductors and dielectrics, but then one needs more elaborate
methods to calculate it.

Assuming that all the charges reside on the surfaces of conductors, the
potential can be written as

φ(r) =
∫

Conductors
G(r, r′)ρs(r′)dS′. (7.11)

The two formulations, Poisson (7.1) and Coulomb (7.2) or (7.11), are
equivalent. To see that, we apply the Laplace operator to (7.11), and use
∇2

rG(r, r′) = −δ3(r − r′)/ε0 to verify that the potential satisfies Poisson’s
equation (7.1)

∇2
r

∫
G(r, r′)ρ(r′)dV ′ =

∫
[∇2

rG(r, r′)]ρ(r′)dV ′

= − 1
ε0

∫
δ3(r − r′)ρ(r′)dV ′ = −ρ(r)

ε0
.

Therefore, the integral formulation (7.11) is equivalent to Poisson’s equation.

7.1.2 General Formulation

After having formulated the electrostatic potential problem as an integral
equation, we can formalize the idea to a more general problem.

Consider a differential equation

Df = s, (7.12)
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where D is a differential operator, f is a field, and s is the source distribution.
Let G(r, r′) be the field at r produced by a point source at r′, that is, G
satisfies

DrG(r, r′) = δ3(r − r′). (7.13)

By the principle of superposition, which holds for linear systems, the differ-
ential equation (7.12) can be rewritten as the integral equation

f(r) =
∫

G(r, r′)s(r′)dV ′. (7.14)

Direct substitution shows that (7.14) is a solution to (7.12).
The integral formulation is efficient when the sources reside on small sur-

faces, and it deals very easily with problems in “open” geometry, where dif-
ferential equation solvers have difficulties.

7.1.3 FEM Solution

Usually some parts of finite element methodology are used for solving the
integral equation. The procedures will be outlined in this section.

Basis Functions

The charge distribution is expanded in, say, N basis functions sk(r):

ρs(r) =
N∑

k=1

aksk(r). (7.15)

In early applications of the MoM, the basis functions were often chosen as
global functions, and one tried to use as much knowledge of the solution as
possible to find expansions that gave accurate results with a small number of
basis functions (sometimes only 1!). Nowadays, it is more common to divide
the surfaces with sources into small elements and use local basis functions.
This requires less knowledge and works for much more general problems.

For convenience of notation, we introduce the potential generated by a
basis function:

φk(r) =
∫

G(r, r′)sk(r′)dS′. (7.16)

Then, the approximate potential becomes

φ̄(r) =
N∑

k=1

akφk(r). (7.17)
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Fig. 7.2. Suitable 2D grid for MoM solution of an electrostatics problem. The charge
density can be expanded in piecewise constants, and the matching points (o) can be
placed at the center of each element.

Testing Procedures

We want to enforce the condition φ̄ = φspec on the conducting surfaces where
the potential is known; that is, minimize the residual r =

∑
k akφk − φspec on

the conductors. Two methods are commonly used for minimizing the residual.

• Point matching, also known as collocation and the Nystrom method.
Choose testing points rj , j = 1, 2, . . . , N (as many as the basis func-
tions), and impose

φ̄(rj) = φspec(rj), j = 1, 2, . . . , N. (7.18)

To get a well-behaved scheme, the testing points should be chosen so that
each feels mainly the effects of one particular basis function. If this criterion
is not fulfilled, the computed charge distribution may show a spurious os-
cillatory behavior, simply because the oscillating components of the charge
distribution are not detected at the observation points. A good recipe for
electrostatics is to choose piecewise constant basis functions and place the
collocation points in the middle of each element, as shown in Figure 7.2.

• Weighted residuals. Choose weighting functions wj , j = 1, 2, . . . , N (as
many as the basis functions), and impose

∫
Conductor

wj(r)[φ̄(r) − φspec(r)]dS = 0. (7.19)

Here Galerkin’s method uses wj(r) = sj(r). If we use global basis func-
tions, as was common practice in the early applications of the boundary
element method, Galerkin’s weighting procedure (7.19) can be seen as a
way of taking moments of the mismatch in the potential. This is why
the electromagnetics community usually refers to the boundary element
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method as the MoM. Point matching corresponds to taking the test func-
tions as delta functions wj(r) = δ(r − rj).

The integrations required for (7.18) and (7.19) are generally done numer-
ically, and the singularity of the Green’s function at r = r′ needs particular
attention.

Both collocation and the method of weighted residuals lead to an N × N
system of equations

N∑
k=1

Ajkak = bj , j = 1, 2, . . . , N,

Ajk =
∫

wj(r)φk(r)dS =
∫

dS wj(r)
∫

dS′ G(r, r′)sk(r′),

bj =
∫

wj(r)φspec(r)dS. (7.20)

For the self-adjoint Poisson’s equation, the Green’s function is symmetric,
G(r, r′) = G(r′, r), which is referred to as reciprocity . If one uses Galerkin’s
method to construct the MoM equations in (7.20), the matrix also becomes
symmetric, i.e., Ajk = Akj .

Review Questions

7.1-1 Compare integral formulations with differential equation formulations.
Mention some pros and cons of integral formulations.

7.1-2 Give an example of suitable weighting and basis functions for (7.3).
7.1-3 What is a Green’s function?
7.1-4 Derive the Green’s function for Poisson’s equation in 3D free space.
7.1-5 Why does the electromagnetics community refer to boundary element

methods as method of moments?
7.1-6 Generalize the technique for square elements, demonstrated in Sec-

tion 7.1.3, to a discretization that consists of triangles. Is it possible to
combine squares and triangles? Could such a combination be useful?

7.1-7 What is the difference between point matching and weighted residuals?

7.2 Capacitance Problem in an Unbounded 2D Region

We will illustrate the MoM by solving a simple problem: calculate the ca-
pacitance per unit length of two equal and parallel conducting strips in free
space, as illustrated in Figure 7.3. The MoM is particularly useful for this
open geometry.

To set up the equations for a 2D geometry, we note that the poten-
tial from a line charge at r′ = (x′, y′), with line charge density density ρl

(Coulomb/meter), is
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Fig. 7.3. Cross section of the capacitor.

φ = − ρl

2πε0
ln

|r − r′|
r0

,

where r0 is an arbitrary constant. For the parallel plate capacitor, this gives

φ(x, y) = − 1
2πε0

∫ w/2

−w/2
ρs

(
x′,

a

2

)
ln

√
(x − x′)2 +

(
y − a

2

)2
dx′

− 1
2πε0

∫ w/2

−w/2
ρs

(
x′,−a

2

)
ln

√
(x − x′)2 +

(
y +

a

2

)2
dx′(7.21)

This particular problem has two symmetries, both left–right symmetry,

ρs(−x′, a/2) = ρs(x′, a/2),

and up–down antisymmetry

ρs(x′,−a/2) = −ρs(x′, a/2).

7.2.1 Integration

We divide each capacitor plate into elements x′ ∈ [xi, xi+1] and use piecewise
constant basis functions to represent the charge density. The testing will be
done as point matching at the midpoints of each element xtest,i = xi+ 1

2
=

1
2 (xi + xi+1). This gives a good coupling between each basis function, which
is constant on an element, and the corresponding testing point. If we chose
the testing points as the nodes, they would not be able to detect the potential
resulting from a charge distribution where neighboring elements have opposite
charges, because contributions from two adjacent elements cancel at a node
on the element boundary.

To get the potential from a piecewise constant charge distribution, we need
to integrate. The singular kernel complicates the integration over the element
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on which the observation point is located, but the piecewise constant elements
in 2D allow an exact analytical integration

I(xs, xe, d) = − 1
2πε0

∫ xe

xs

ln
√

x2 + d2 dx

= − 1
2πε0

[
1
2
x ln(x2 + d2) − x + d arctan(x/d)

]xe

xs

. (7.22)

This simplification is helpful, and we will use it. If we take into account the
left–right symmetry and up–down antisymmetry, it is enough to discretize
only the right half of the upper plate. We divide this into N elements with
endpoints xi, i = 0, 1, 2, . . . , N . Then the potential at the point (x, y) from
the assumed charge distribution can be written as

φ(x, y) =
N−1∑
i=0

ρi+ 1
2
[ I(xi − x, xi+1 − x, y − a/2)

+I(−xi+1 − x,−xi − x, y − a/2)
−I(xi − x, xi+1 − x, y + a/2)
−I(−xi−1 − x,−xi − x, y + a/2)]. (7.23)

By choosing the testing points as xi+ 1
2

for i = 0, 1, . . . , N − 1, on the upper
plate we get the system of equations

Ar = v,

where

Aij = I(xj − xi+ 1
2
, xj+1 − xi+ 1

2
, 0) + I(−xj+1 − xi+ 1

2
,−xj − xi+ 1

2
, 0)

−I(xj − xi+ 1
2
, xj+1 − xi+ 1

2
, a) − I(−xj+1 − xi+ 1

2
,−xj − xi+ 1

2
, a),

and v is a column vector where all the elements are set to the potential on
the upper plate V/2, where V is the voltage across the capacitor. Solution of
this system will give the charge density on each element in the vector r.

7.2.2 MATLAB: MoM for General, 2D Geometries

In the introductory example, we treated a very simple geometry, with a high
degree of symmetry and plane plates. However, it is easy to generalize this to
a completely general 2D geometry with no symmetry and curved conductors.
Figure 7.4 shows one element and the observation point, which is assumed to
lie at the normal distance d from a straight-line extension of the element. The
contribution from this element to the potential at the observation point is

− ρs

2πε0

∫ ξe

ξs

ln
√

x2 + d2 dx = − ρs

2πε0

[
1
2
x ln(x2 + d2) − x + d arctan(x/d)

]ξe

ξs

.

(7.24)



162 7 The Method of Moments

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

d

ξ ξ

ξ

s e

element
charge

observation point

Fig. 7.4. Coordinates aligned with an element.

In the following routine, we use the exact integration to generate the sys-
tem matrix for point matching and general 2D geometry. Each charge-carrying
element is specified by the arrays xs and ys for the starting coordinates, xe
and ye for the endpoints, and phi for the potential. No assumption about the
geometry of the plates is used.

% --------------------------------------------------------------
% Compute charge distribution for 2D electrostatics by MoM
% --------------------------------------------------------------
function [charge, sigma] = MoM2D(xs, ys, xe, ye, phi)

% Arguments:
% xs = x-coordinate for starting points
% ys = y-coordinate for starting points
% xe = x-coordinate for ending points
% ye = y-coordinate for ending points
% phi = the potential
% Returns:
% sigma = charge density for each element
% charge = total charge on each element

xobs = 0.5*(xs + xe); % Observation points
yobs = 0.5*(ys + ye);
h = sqrt((xe-xs).ˆ2 + (ye-ys).ˆ2); % Length of elements

% Loop over elements
for k = 1:length(xs)
s = ( (xobs-xs(k))*(xe(k)-xs(k)) ...

+ (yobs-ys(k))*(ye(k)-ys(k)))/h(k)ˆ2;
d = sqrt( (xobs-xs(k)).ˆ2 ...

+ (yobs-ys(k)).ˆ2 ...
- s.ˆ2*h(k)ˆ2 + 1e-24);

xis = -s*h(k);
xie = (1-s)*h(k);
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temp = 0.5*xie.*log(xie.ˆ2+d.ˆ2) ...
- xie + d.*atan(xie./d) ...

-(0.5*xis.*log(xis.ˆ2+d.ˆ2) ...
- xis + d.*atan(xis./d));

A(:,k) = - temp(:)/(2*pi*8.854187);
end

sigma = (A\phi’)’; % Charge density
charge = h.*sigma; % Charge per element

[The theory behind the geometrical transformations is that a point on
the straight line through rs = (xs, ys) and re = (xe, ye) is r = rs + s(re −
rs), −∞ < s < ∞. The minimum distance d on this line to the observation
point at ro occurs for s = (ro − rs) · (re − rs)/|re − rs|2 and it is given by
d2 = |ro − rs|2 − [(ro − rs) · (re − rs)]2/|re − rs|2.]

The routine gives the charge on the elements, and this can be summed to
compute the capacitance per meter. For this example, we initiate the potential
to 0.5 V on the top plate and −0.5 V on the bottom one. Then the capacitance
is the sum of the charges on the top plate. The computation can be called as
follows (where n must be an even integer):

a = 1; % Separation distance between capacitor plates
w = 1; % Width of capacitor plates
n = 10; % Number of unknowns
nh = round(n/2); % Number of elements on each plate
h = a/nh; % Length of the elements

% X-coordinates for starting and ending points
xs = zeros(1,n);
xe = zeros(1,n);
xs(1:nh) = linspace(0,a-h,nh);
xs(nh+1:2*nh) = linspace(0,a-h,nh);
xe = xs + h;

% Y-coordinates for starting and ending points
ys = zeros(1,n);
ye = zeros(1,n);
ys(1:nh) = 0.5*w;
ys(nh+1:2*nh) = -0.5*w;
ye = ys;

% Potential for the elements
V = zeros(1,n);
V(1:nh) = 0.5;
V(nh+1:2*nh) = -0.5;

% Solve the electrostatic problem
[charge, sigma] = MoM2D(xs, ys, xe, ye, V);
C = sum(charge(1:nh))
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The results from runs with varying numbers of points are shown in Ta-
ble 7.1. Figure 7.5 shows that the convergence is linear in h.

n [-] h [m] C [pF/m]
10 0.20000 18.03138 50
20 0.10000 18.37294 02
30 0.06666 18.49101 21
50 0.04000 18.58699 26
70 0.02857 18.62854 17
100 0.02000 18.65986 68
140 0.01428 18.68082 79
200 0.01000 18.69658 95

Table 7.1. Capacitance for a = w = 1, uniform grid and analytic integration.
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Fig. 7.5. Capacitance for a = w = 1, uniform grid and analytic integration, plotted
versus h.

Accurate values can be obtained from extrapolation using polynomial
fits. A linear fit gives C = 18.72858 78 (pF/m), quadratic 18.73349 99, cu-
bic 18.73350 34, quartic 18.73350 27, and quintic 18.73350 27. The answer to
nine digits is 18.73350 27 pF/m. For a single computation to get to within 1%
of the correct answer, about 50 elements are needed.
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7.2.3 Charge Distribution

The charge distribution on the top plate, resolved with 15 elements, is shown
in Figure 7.6.

0 0.2 0.4 0.6 0.8 1
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50
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ρ s [C
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2 ]

Fig. 7.6. Charge distribution on the top plate, resolved by 15 elements in a uniform
grid. The relative error of the computed capacitance is 1.3%.

The charge distribution for the parallel plate capacitor is singular. In this
respect it is similar to the capacitance problem in Chapter 3. The nature
of such singularities can be determined analytically. As an analytically solv-
able illustration, we consider the behavior of the electrostatic potential in the
vicinity of a conductor edge in vacuum, that is, a 2D corner.

α

Fig. 7.7. Conducting edge.

Suppose the conductor subtends an angle β < 180o, and the vacuum
region, where the potential satisfies Laplace’s equation, subtends the angle
α = 360o −β > 180o; see Figure 7.7. In cylindrical coordinates, with the edge
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oriented along the z-axis, the potential φ satisfies

1
r

∂

∂r
r
∂φ

∂r
+

1
r2

∂2φ

∂θ2 = 0, 0 < θ < α, (7.25)

and φ = 0 for θ = 0, α. Relevant solutions can be found by the method
of separation of variables φ(r, θ) = f(r)g(θ). Substituting this ansatz into
Laplace’s equation (7.25) and multiplying by r2/(f(r)g(θ)), we obtain

r(rf ′(r))′

f(r)
= −g′′(θ)

g(θ)
.

Since the left-hand side depends only on r and the right-hand side only on
θ, both must be constant, say p2. This gives g(θ) = a sin pθ + b cos pθ and
f(r) = crp + dr−p. If p > 0 we must choose d = 0 to keep the potential
bounded. Thus, the acceptable solutions of separable form are

φ = (a sin pθ + b cos pθ)rp.

Next, we want to determine the power p. The boundary condition φ = 0 at
θ = 0 gives b = 0, and φ = 0 at θ = α then gives pα = nπ, n = integer.
Thus, the lowest-order solution is φ = rp sin pθ with p = π/α. For a general
opening angle α, the power p is noninteger and the smallest p is less than
one if α > π. For this solution, both Er and Eθ vary as r(−1+π/α). Thus, the
field components tend to infinity at the corner if α > π. For the edge of the
capacitor plate we have α = 2π, so that Eθ ∝ r−1/2. This implies that the
charge density on the plate varies as r−1/2 near the edge.

7.2.4 Adaptivity

We will use the parallel plate capacitor to illustrate the benefits of adaptive
grid refinement. The elements in the middle of the strips, where the charge
density is small, give small contributions to the total charge and capacitance.
Some of these elements would be more efficiently used near the edges, where
the charge density is high. A simple rule of thumb, which works well for
adjusting the length of an element in an adaptive grid, is that the total charge
on each element should be the same.

We initialize the computation with a grid where the elements have equal
length to compute a first approximation. Then, the computed charge distri-
bution can be used to generate a new grid where one seeks to distribute the
charge uniformly on the elements. Such a routine is easy to implement, how-
ever, the procedure needs to be iterated several times to equalize the charge
on the elements enough for a careful convergence study. The adaptively com-
puted capacitance values are given in Table 7.2.

A plot versus h2 shows that the adaptivity has restored the O(h2) [i.e.,
O(N−2)] convergence that one expects for a smooth charge distribution. Now



7.2 Capacitance Problem in an Unbounded 2D Region 167

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

x [m]

ρ s [C
/m

2 ]

Fig. 7.8. Charge distribution on the top plate, resolved by 15 elements in an adap-
tive grid (equal charge). The relative error of the computed capacitance is 0.28%.
The areas of the bars correspond to the charges on the corresponding elements.

n [-] h [m] C [pF/m]
10 0.20000 18.32465 80
20 0.10000 18.61846 85
30 0.06666 18.68061 49
50 0.04000 18.71396 25
70 0.02857 18.72342 35
100 0.02000 18.72852 34
140 0.01428 18.73094 84
200 0.01000 18.73224 60

Table 7.2. Capacitance for a = w = 1 and adaptive mesh.

we get 1% accuracy with fewer than 20 elements, compared to about 50 for a
uniform grid. On the other hand, the calculation for each cell size had to be
repeated several times to adapt the grid, so we have not really won in terms
of computing time. The main use of adaptivity is in large 3D problems, where
sufficient accuracy cannot be obtained without adaptivity. Another approach,
which may minimize the computing time, is handmade adaptivity, where one
uses knowledge about the geometry and the singularities to construct meshes
that resolve the solution as well as possible with the available number of
elements.

Even though the lowest order error for the adaptive grid is proportional to
h2, the extrapolations based on fitting the computed results to polynomials
in h2 are not very accurate. The reason for this is that the power series
for the adaptive results also contains odd powers of h, such as h3 and h5.
If we fit the results versus polynomials in h, quadratic extrapolation gives
18.73732 85, quartic 18.73351 51, and sixth-order 18.73350 26. The adaptive
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grid strongly improves the accuracy for a given number of elements, but in
fact, the extrapolated results are somewhat less accurate than for a uniform
grid.

7.2.5 Numerical Integration

As an alternative to exact analytical integration, one can use numerical in-
tegration. Then, the logarithmic singularity causes difficulties, and there are
several possibilities to deal with this. Letting x represent points at the middle
of an element, we could choose:

• Midpoint integration:
∫ x+h/2

x−h/2 f(x′)dx′ ≈ hf(x). This diverges for the “self
contribution” where the observation point is the midpoint of the element
xobs = x.

• Trapezoidal rule:
∫ x+h/2

x−h/2 f(x′)dx′ ≈ 1
2h[f(x − h/2) + f(x + h/2)] (relative

error O(h2) for regular functions). However, this gives a large error for
f(x) = lnx.

• Gaussian integration:
∫ x+h/2

x−h/2 f(x′)dx′ ≈ 1
2h[f(x1) + f(x2)], where x1,2 =

x ± (h/2)/
√

3, error O(h4) for regular functions. This, too, gives a large
error if f(x) = lnx.

• Special integration for a logarithmic singularity

∫ x+h/2

x−h/2
f(x′)dx′ ≈ 1

2
h[f(x1) + f(x2)], x1,2 = x ± (h/2)/e.

The error is O(h2) for regular functions, and the formula is exact for
f(x) = lnx.

To test these integration schemes, we compare results for the approxima-
tions ∫ x+h/2

x−h/2
f(x)dx ≈ h

2
[f(x − ηh/2) + f(x + ηh/2)] (7.26)

with different values of the parameter η. Tests show that η ≈ 1/e gives the
most accurate results. Results for numerical integration and the two-strip
capacitor, with η = 1/e with and without adaptivity, are shown in Table 7.3.

For η = 1/e, the convergence on a uniform grid is close to linear in h.
Polynomial fits to the results for a uniform grid in Table 7.3 gives the fol-
lowing extrapolations: for a linear fit 18.781, a quadratic fit 18.757, and a
cubic fit 18.747. This is less accurate than for the exact integration because
the integration scheme does not properly account for the contributions from
neighboring cells, which are also affected by the singularity of the Green’s
function.

Figure 7.9 shows the results for the analytic and numerical integration with
adaptive grid refinement. Evidently, errors can come from the integration as
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n [-] h [m] C [pF/m] C [pF/m]
uniform adaptive

10 0.20000 18.14722 18.48546 67
20 0.10000 18.44493 18.71508 74
30 0.06666 18.54435 18.74847 85
50 0.04000 18.62297 18.75628 29
70 0.02857 18.65609 18.75413 22
100 0.02000 18.68052 18.75026 85
140 0.01428 18.69650 18.74659 82
200 0.01000 18.70824 18.74326 22

Table 7.3. Capacitance for a = w = 1 with numerical integration (7.26), η = 1/e,
and with uniform and adaptive mesh.
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Fig. 7.9. Results for numerical and analytic integration and adaptive mesh versus
h2.

well as from the expansion in finite elements, but the difference between the
exact and numerical integration is rather small, about 1% on the coarsest
grid.

Review Questions

7.2-1 Why is point-matching attractive for a charge distribution that is ex-
panded in piecewise constant basis functions?
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7.2-2 Derive, in two dimensions, the asymptotic behavior for the electrostatic
potential and field in the vicinity of a metal corner with an opening angle
α.

7.2-3 Adaptivity typically involves solving the same problem several times,
which implies some additional work. Still, adaptivity is often very useful.
Why?

7.2-4 Describe a simple adaptive scheme for a parallel plate capacitor prob-
lem.

7.2-5 List some integration rules that can be used for (7.21).
7.2-6 Mention an example in which numerical integration can be useful.

7.3 Electromagnetic Scattering

The MoM is frequently applied to scattering problems in the frequency do-
main. Electromagnetic scattering can be used for many detection applications,
such as detecting aircraft by radar. A more demanding goal is to determine
the properties of the scattering object from the scattered field. This is called
inverse scattering, which is an important method for nondestructive testing.
The MoM is also used for magnetostatics [70] and eddy current problems,
for example to handle currents induced on thin conducting shells. The book
of Peterson [51] gives a good account of how the MoM can be applied to
electromagnetic scattering problems.

Consider a plane wave Ei incident on a perfectly conducting object. The
incident wave produces surface currents Js on the conductor, which generate
a scattered electric field Es. The scattered field is determined by the boundary
condition

n̂ × (Ei + Es) = 0, r ∈ ∂Ωc, (7.27)

which states that the total tangential electric field vanishes on the conductor
surface ∂Ωc. This is used for the electric field integral equation.

7.3.1 Representation by Potentials and a Lorentz Gauge

To determine the surface currents, we express the scattered field Es in terms
of Js, which means that we must find the appropriate Green’s function. (Note
that the incident wave has sources far away from the scatterer, “at infinity.”)
For this purpose, it is convenient to introduce scalar and vector potentials
such that

E = −∇φ − ∂A

∂t
, B = ∇ × A. (7.28)

With this representation, Faraday’s law ∂B/∂t = −∇ × E is automatically
satisfied. We substitute the potential representation (7.28) into Ampère’s law

∇ × B = µ0J + ε0µ0
∂E

∂t
. (7.29)
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Using ∇ × B = ∇ × ∇ × A = ∇(∇ · A) − ∇2A (and assuming exp(jωt) time
dependence), this gives

∇(∇ · A) − ∇2A = µ0J − jωε0µ0(∇φ + jωA). (7.30)

As pointed out previously for eddy current problems, the potentials A and φ
are not uniquely determined; one can always make a “gauge transformation”
A′ = A + ∇U and φ′ = φ − ∂U/∂t without changing the physical fields E
and B. To solve for the potentials uniquely, we have to specify a condition
that determines the gauging potential U . This is called the gauge condition.
One choice that makes (7.30) particularly easy to solve is the Lorentz gauge,
which makes the two gradient terms in (7.30) cancel:

∇ · A = −jωε0µ0φ. (7.31)

Equation (7.30) with the Lorentz gauge condition (7.31) reduces to the vector
Helmholtz equation

−
(

∇2 +
ω2

c2

)
A = µ0J .

7.3.2 Green’s Function for the Vector Potential

The Cartesian components of A satisfy scalar Helmholtz equations

−(∇2 + k2)Ai = µ0Ji, k = ω/c, (7.32)

which can be solved component by component. Here, the subindex i is x, y, or
z. The Helmholtz equation (7.32) is similar to Poisson’s equation, for which
we derived the integral representation in Section 7.1. We proceed in similar
ways here.

We define the Green’s function for the vector potential G(r, r′) as the ith
component of the vector potential produced by a “point current” in the ith
direction J = x̂iδ

3(r − r′). Then, G satisfies

− 1
µ0

(∇2
r + k2) G(r, r′) = δ3(r − r′). (7.33)

The vector potential constructed by superposition

Ai(r) =
∫

G(r, r′)Ji(r′)dV ′ (7.34)

then satisfies the Helmholtz equation (7.32).
The derivation of the Green’s function closely parallels that in electrostat-

ics. We start by noting that G(r, r′) can depend only on the distance between
the source and observation points R = |r−r′|. Therefore, in three dimensions,
(7.33) gives
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− 1
µ0

(
1

R2

d

dR
R2 dG

dR
+ k2G

)
= 0, R > 0.

It is easy to verify that two independent solutions of this equation are G1 =
exp(jkR)/R and G2 = exp(−jkR)/R. When these are combined with the
assumed exp(jωt) time dependence, G1 produces constant phase surfaces such
that kR+ωt is constant, or dR/dt = −ω/k = −c. That is, the constant phase
surfaces move towards the source with the speed of light. Thus G1 represents
incoming waves, which are absorbed by the “source” currents, and these waves
are called advanced solutions. Although they are indeed solutions of Maxwell’s
equations, they do not respect the principle of causality, and are not of physical
interest. For G2 ∝ exp(−jkR)/R, on the other hand, the constant phase
surfaces satisfy dR/dt = ω/k = c, so G2 represents waves radiated away from
the source. These solutions respect causality and are called retarded. They
are the relevant solutions to (7.33). Thus, we pick G(r, r′) = a exp(−jkR)/R.
To determine the normalization constant a, we proceed as in Section 7.1.1.
Integrate (7.33) over a sphere of radius R0, and to simplify the evaluation, we
let R0 tend to zero. The integral of the left-hand side becomes

− 1
µ0

∫
R<R0

(∇2
r + k2) G dV = − 1

µ0

[∫
R<R0

∇r · ∇rG dV + O(k2R2
0)

]
.

Only the first term remains nonzero in the limit R0 → 0. By Gauss’s theorem,
this piece can be rewritten as a surface integral

− 1
µ0

∮
R=R0

∇G · n̂ dS = − 1
µ0

dG

dR

∣∣∣∣∣
R=R0

4πR2
0

= − a

µ0

(
− 1

R2
0

− jk

R0

)
exp(−jkR0)4πR2

0

→ 4πa

µ0
, as R0 → 0.

This must be equal to the integral over the right-hand side in (7.33), which is
1 by definition. Therefore, the normalizing coefficient is a = µ0/4π, and the
Green’s function for the vector potential is

G =
µ0

4π

exp(−jkR)
R

, R = |r − r′|. (7.35)

Using superposition and the fact that all currents occur on the surfaces
of conductors, we can write the solution of (7.32) for each component of the
vector potential as

Ai(r) =
∫

∂Ωc

G(r, r′) x̂i · Js(r′) dS′

with the Green’s function (7.35), where x̂i · Js is component i of the surface
current Js. Therefore, the full vector potential is
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A(r) =
µ0

4π

∫
∂Ωc

exp(−jkR)
R

Js(r′)dS′. (7.36)

We can find an equation for the scalar potential φ by taking the divergence
of Ampère’s law (7.29), substituting the potential representation for E, and
using the Lorentz gauge condition

−(∇2 + k2)φ =
j

ωε0
∇ · J =

ρ

ε0
. (7.37)

Here, we used the equation of continuity for charge

jωρ + ∇ · J = 0.

Equation (7.37) is again a scalar Helmholtz equation with the solution

φ(r) =
1

4πε0

∫
∂Ωc

exp(−jkR)
R

ρ(r′)dS′. (7.38)

7.3.3 The Electric Field Integral Equation

We now have expressions for the potentials in terms of the surface currents.
The scattered electric field is given by

Es = −jωA − ∇φ

= −jωµ0

4π

∫
∂Ωc

exp(−jkR)
R

Js(r′)dS′

− j

4πε0ω
∇

∫
∂Ωc

exp(−jkR)
R

∇′ · Js(r′)dS′. (7.39)

The condition the surface currents have to satisfy is that the tangential compo-
nent of the total field, which is the sum of the incident field and the scattered
field generated by the surface currents, vanish on the surface of the conductor:

Es
tan + Ei

tan = 0. (7.40)

Combining this with (7.39), we obtain the electric field integral equation
(EFIE)

Ei
tan =

jωµ0

4π

∫
∂Ωc

exp(−jkR)
R

Js(r′)dS′
∣∣∣∣∣
tan

+
j

4πε0ω
∇

∫
∂Ωc

exp(−jkR)
R

∇′ · Js(r′)dS′
∣∣∣∣∣
tan

. (7.41)

Unfortunately, integral equations such as the EFIE are somewhat difficult
to solve numerically. First of all, as will be discussed in Section 7.4, it is neces-
sary to take proper account of the singularity in the Green’s function to get a
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scheme that converges to the correct answer when the resolution is increased.
The presence of this singularity causes difficulties for the integration. Numer-
ical integration schemes that work well for smooth integrands can give very
inaccurate results, and in practice, the singularity needs special treatment.
One successful approach is to pull out some simplified part of the Green’s
function that contains the singularity and use an analytic integration for this
part. The remaining, nonsingular, part of the Green’s function can then be
integrated by a standard numerical integration formula.

A more physics-related difficulty with the EFIE is the presence of “internal
resonances.” Consider a scattering problem in which the scatterer consists of
a closed PEC surface, e.g., a conducting sphere. If we solve this problem using
the EFIE, the integral equation has no information to tell it that the interior
of the sphere is conducting. Therefore, the EFIE allows cavity eigenmodes
that are internal to the sphere. At the resonance frequencies for these modes,
they can be part of the solution without excitation by external sources, and
the system matrix becomes singular. There is a cure for the problem of inter-
nal resonances, which consists in adding the magnetic field integral equation
(MFIE) to the EFIE. The MFIE has different internal resonances than the
EFIE, and with a suitable weighting of the two integral equations, all internal
resonances are eliminated [51]. The summed equation is called the combined
field integral equation (CFIE).

FEM Solution

To solve the EFIE (7.41) for a 3D problem using finite elements and Galerkin’s
method, we first need a suitable base for expanding Js:

Js(r) =
N∑

i=1

aisi(r). (7.42)

To see what kind of elements are required, we work out the form of the matrix
elements, which are obtained by multiplying the EFIE by a test (= basis)
function si(r) and integrating over the PEC surfaces. We integrate the second
term in (7.41) by parts and assume that no current can leave or enter the
conductor, so that the edge term vanishes:

∫
∂Ωc

si · ∇φ dS =
∫

∂Ωc

[∇ · (siφ) − φ∇ · si] dS

=
∮

∂∂Ωc

n̂ · siφ dl −
∫

∂Ωc

φ∇ · si dS = −
∫

∂Ωc

φ∇ · si dS.

This then gives the system of equations

−
∫

∂Ωc

si · Ei
tan dS =

N∑
j=1

Aijaj , (7.43)
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where the matrix elements are given by

Aij = − jωµ0

4π

∫
∂Ωc

si(r) ·
∫

∂Ωc

sj(r′)
exp(−jkR)

R
dS′dS

+
j

4πε0ω

∫
∂Ωc

∇ · si(r)
∫

∂Ωc

∇′ · sj(r′)
exp(−jkR)

R
dS′dS. (7.44)

Choice of Elements

Equation (7.44) indicates that we need basis functions for which ∇ · s is
nonsingular. This requirement is different from that for the differential form
of Maxwell’s equations, where ∇ × E has to be square integrable. For the
differential formulation of Maxwell’s equations, the successful choice is curl-
conforming edge elements, whose tangential component is continuous at cell
interfaces. The integral formulation requires divergence-conforming elements,
whose normal component is continuous across cell boundaries. For a 2D prob-
lem with a 1D boundary, say J = Jz(z)ẑ, this can be achieved using piecewise
linear elements. In 3D domains, with 2D boundaries, divergence-conforming
elements can be constructed as the cross product of the edge elements on a
surface and the surface normal n̂:

sRWG(r) = n̂ × N(r). (7.45)

These are called Rao–Wilton–Glisson (RWG) elements after their inven-
tors [55]. In polar coordinates with respect to the corner opposing the edge
with which each basis function is associated, sRWG(r) ∝ rr̂. A complete basis
function extending over two triangles is shown in Figure 7.10.

Fig. 7.10. Rao–Wilton–Glisson basis function extending over two triangular ele-
ments.
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Integration

To carry out the integration in (7.44) we must decide how to deal with the sin-
gularity of the integrand. The most successful approach [29] exploits the fact
that the 3D singularity 1/R can be integrated exactly on triangles. Therefore,
this piece can be pulled out and done exactly, while the remaining, bounded
terms can be integrated by standard numerical integration schemes. We will
use these considerations to derive and solve a 1D problem for a thin conduct-
ing wire in Section 7.4.

7.3.4 The Magnetic Field Integral Equation

The technical details of the derivation of the MFIE are somewhat subtle and
lengthy as compared to the EFIE. For a complete derivation of the MFIE,
the reader is referred to the literature [53, 82]. Here, we settle for stating the
result for smooth PEC scatterers (that do not have sharp corners or edges)

−Hi
tan =

1
2
n̂ × Js(r) +

1
4π

−
∫

∂Ωc

∇
(

exp(−jkR)
R

)
× Js(r ′)dS ′

∣∣∣∣∣
tan

. (7.46)

Here, the integral (with the bar) is evaluated in the principal-value sense [53],
and it is interpreted in the following way. The domain of integration excludes
an infinitesimal area around the observation point, and the contribution from
the excluded area is accounted for by the term 1

2 n̂ × Js(r). As previously
mentioned, the MFIE also allows cavity eigenmodes that are internal to a
conducting body. However, the MFIE has different internal resonances than
the EFIE. It should be noted that the MFIE is valid only for closed surfaces,
while the EFIE can be applied to both closed and open surfaces.

FEM Solution, Choice of Elements, and Integration

A FEM solution that parallels the one for the EFIE would use triangular
elements. It is then useful to consider the current that flows on a single flat
triangle K. We note that for the case when both the observation point r
and the source point r′ are located on K, both the gradient of the Green’s
function and the surface current density are in the plane of K, and therefore,
their cross product is perpendicular to K. Since only the tangential component
is included in the MFIE, the contribution from element K to the integral in
(7.46) is zero when the observation point r is located on K. This is the case
when the MFIE is tested, and therefore, the singularity of the integrand in
the MFIE does not feature in the same way as for the EFIE. In fact, it has
already been integrated analytically during the derivation of the MFIE, and
it is included in the term 1

2 n̂ × Js(r).
To solve the MFIE for a 3D problem using finite elements and Galerkin’s

method, we use the same basis for the current as we employed for the EFIE;
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i.e., the current is expanded in the RWG basis functions as shown in (7.42),
and we test with n̂ × si. This gives the system of linear equations

−
∫

∂Ωc

(n̂ × si) · Hi
tandS =

N∑
j=1

Bijaj , (7.47)

where the matrix elements are given by

Bij =
1
2

∫
∂Ωc

(n̂ × si) · (n̂ × sj)dS

+
1
4π

∫
∂Ωc

(n̂ × si) · −
∫

∂Ωc

∇
(

exp(−jkR)
R

)
× sj dS ′dS. (7.48)

7.3.5 The Combined Field Integral Equation

With a suitable linear combination of (7.43) and (7.47), often referred to as the
combined field integral equation (CFIE), the problems associated with internal
resonances can be avoided [51]. This gives the system of linear equations

−α

∫
∂Ωc

si · Ei
tandS + (1 − α)Z0

∫
∂Ωc

(n̂ × si) · Hi
tandS =

N∑
j=1

Cijaj , (7.49)

where the matrix elements are given by Cij = αAij − (1 − α)Z0Bij , and
0 < α < 1 is a weighting parameter.

Review Questions

7.3-1 What boundary conditions are used in the derivation of the EFIE?
7.3-2 What relation between the scalar and vector potential is used to define

the Lorentz gauge? What are the consequences of this particular gauge?
7.3-3 Derive the Green’s function for the scalar and vector potential for the

3D free-space case combined with the Lorentz gauge.
7.3-4 List some difficulties and useful techniques concerning the evaluation of

the integrals that occur in the EFIE.
7.3-5 Describe, in words, the problems with internal resonance and mention

a remedy.
7.3-6 Use the FEM to write down a system of linear equations that correspond

to the EFIE. List the steps of the assembling procedure needed for this
problem.

7.3-7 What basis function should be used for a PEC body treated with the
EFIE and why? How does this relate to the MFIE and the CFIE?

7.3-8 What boundary conditions are satisfied by (7.36) and (7.38)?
7.3-9 Show that the matrix associated with the EFIE derived by FEM tech-

niques and Galerkin’s method is symmetric.
7.3-10 Relate the divergence-conforming and curl-conforming basis functions

on triangles.
7.3-11 Why is the CFIE useful?
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7.4 Scattering on Thin Wires

Here we consider scattering of electromagnetic waves by thin conducting wires.
The analysis can be extended to study dipole antennas of finite length and
thickness. We consider a plane wave incident on a wire of length L and radius
a, aligned with the z-axis; see Figure 7.11.

L

E i

z

θ

a

Fig. 7.11. Electromagnetic wave incident on thin wire.

For simplicity we assume normal incidence

Ei
z = E0 exp(−jkx), k = ω/c.

If the wire is very thin compared with a wavelength, ka � 1, the incident wave
is nearly constant, Ei

z ≈ E0, on the surface of the wire, and the surface current
must be approximately Js ≈ Jz(z)ẑ. Then, (7.41) gives for the z-component
of the scattered field

E0 = −Es
z =

jωµ0

4π

∫ L/2

−L/2

∫ 2π

0

exp(−jkR)
R

Jz(z′) a dθ′dz′

+
jωµ0

4πk2

∂

∂z

∫ L/2

−L/2

∫ 2π

0

exp(−jkR)
R

∂Jz(z′)
∂z′ a dθ′dz′. (7.50)

In the integration over the wire surface, Jz is independent of θ′, so the only
θ′-dependence comes from R. According to the cosine theorem, the distance
between two points on the wire surface satisfies
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R2 = (z − z′)2 + a2 + a2 − 2a2 cos(θ − θ′) = (z − z′)2 + 4a2 sin2 θ − θ′

2
.

Carrying out the θ′-integration in (7.50), we obtain, for |z| ≤ L/2,

4πE0

jωµ0
=

∫ L/2

−L/2
G(z − z′)I(z′)dz′ +

1
k2

d

dz

∫ L/2

−L/2
G(z − z′)

dI

dz′ (z
′)dz′. (7.51)

Here I = 2πaJz is the total current on the surface of the wire, and the kernel
of the resulting 1D integral equation is

G(z − z′) =
1
2π

∫ 2π

0

exp(−jkR)
R

dθ′. (7.52)

7.4.1 Hallén’s Equation

The 1D version of the EFIE in (7.51) can be simplified by means of a refor-
mulation found by Hallén. Integrating the second term in (7.51) by parts and
using I(±L/2) = 0 and (d/dz′)G(z − z′) = −(d/dz)G(z − z′), the equation
can be written as

4πE0

jωµ0
=

(
1 +

1
k2

d2

dz2

)
H, (7.53)

H(z) =
∫ L/2

−L/2
G(z − z′)I(z′)dz′. (7.54)

Equation (7.53) can be regarded as a differential equation for H, and this equa-
tion is easy to solve. Its general solution is an arbitrary homogeneous solution,
for instance 4πE0/jωµ0, added to the general solution of the homogeneous
equation C cos kz + D sin kz. When the incident wave has no z-dependence,
the solution must be symmetric with respect to the midpoint of the wire.
Therefore, D = 0, and the solution is

H(z) + C cos kz =
4πE0

jωµ0
, |z| ≤ L/2.

Combining this with (7.54), we obtain

∫ L/2

−L/2
G(z − z′)I(z′)dz′ + C cos kz =

4πE0

jωµ0
, (7.55)

which is known as Hallén’s equation. The differential order of the integral
equation (7.51) has been reduced at the expense of introducing an extra con-
stant of integration.
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7.4.2 Valid Approximation for the 1D Kernel

As mentioned earlier, it is important to evaluate the 1/R singularity of the
EFIE correctly, and this should be respected when we seek an expression for
the 1D Green’s function G. We isolate the singularity by writing

exp(−jkR)
R

=
1
R

+
exp(−jkR) − 1

R
,

where only the first part is singular. This gives

G = G0 + G1,

G0 =
1
2π

∫ 2π

0

dθ′

R
, G1 =

1
2π

∫ 2π

0

exp(−jkR) − 1
R

dθ′. (7.56)

The advantage of the splitting is that the singular part G0 can be evaluated
exactly:

G0(ζ) =
2

π
√

ζ2 + 4a2
K

(
4a2

ζ2 + 4a2

)
, ζ = z − z′,

where

K(m) =
∫ π/2

0

dφ√
1 − m sin2 φ

is the complete elliptic integral of the first kind. The function G0(ζ), which
contains the singular part of the 3D Green’s function, is logarithmically sin-
gular when ζ → 0.

For the nonsingular part G1, we can use less accurate approximations suit-
able for thin wires, such as replacing the current on the wire surface with the
total current placed at the center of the wire. This means that we approximate
R ≈ √

(z − z′)2 + a2 in G1, which is then straightforward to calculate. Thus,
the total kernel is approximated as

G(ζ) ≈ 2

π
√

ζ2 + 4a2
K

(
4a2

ζ2 + 4a2

)
+

exp(−jk
√

ζ2 + a2) − 1√
ζ2 + a2

, ζ = z − z′.

(7.57)

Nonsingular Kernel Gives Spurious Solutions

If we used the approximation R ≈ √
(z − z′)2 + a2 also in G0 (that is, ap-

proximate the current on the wire surface by the same total current on its
axis), the 1D kernel would lose its singularity. It can be shown that Hallén’s
equation (7.55) with such a smoothed kernel does not have regular solutions.
If one tries to solve Hallén’s equation with a nonsingular approximation for
G(z), the solution does not converge, but instead develops more and more
short-wavelength oscillations when the resolution is increased. The reason for
this is that a smooth Green’s function G(z) underestimates the fields created
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by short-wavelength currents. To create the short-wavelength components of
the electric field that occur near the endpoints of the wire (for |z| > L/2), the
smooth approximation of G requires too strong short-wavelength components
in the current. As a consequence, the current density does not converge as the
resolution increases.

Nevertheless, such approximations of the Green’s function have been used
in the past, for instance, in old versions of the NEC code, which is popular for
work on thin wires. It produces acceptable results as long as the resolution
in the z-direction is coarse compared to the radius of the wire, ∆z � a.
However, when the resolution is increased so that ∆z < a, the current develops
oscillations and the computation diverges rather than converge as the mesh
is refined. This is yet another example of spurious solutions.

7.4.3 Numerical Solution

To evaluate the integrals in (7.54), we can either do numerical integration
adapted to a logarithmic singularity, as discussed in Section 7.2.5, or attempt
a more rigorous treatment, where the logarithmic singularity is separated out
and integrated exactly. To avoid excessive work on a problem that is already
an approximation, we settle for numerical integration. The elliptic integral
can be accurately evaluated by using a series expansion such as given by
Abramowitz and Stegun [2].

We divide the wire into elements, and expand the current in piecewise
linear functions and use point matching. For piecewise linear current, the
point matching of Ez should be made at the nodes, since this is where the
piecewise linear basis function has its main influence. The boundary condition
I(±L/2) = 0 eliminates the unknowns for I on the endpoints. To determine
the constant C in (7.55) we use the condition that the equation is satisfied
also at the endpoint z = L/2. This gives us as many conditions as we have
unknowns.

7.4.4 MATLAB: Hallén’s Equation

In the following routine, we use the techniques described above to solve
Hallén’s equation. Each current-carrying element is specified by the arrays
zs for the starting coordinates, ze for the endpoints, and E0 for the electric
field.

% --------------------------------------------------------------
% Compute current distribution for Hallen’s equation by MoM
% --------------------------------------------------------------
function [Iz, C, Imi] = EFIE(zs, ze, E0, a, k0)

% Arguments:
% zs = z-coordinate for starting points
% ze = z-coordinate for ending points
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% E0 = the incoming Ez and Iz the total current on
% each element
% a = the radius of the wire
% k0 = the wavenumber
% Returns:
% Iz = the current density along the wire
% C = the constant for the homogeneous solution ’cos(k0*z)’
% Imi = the current density on the midpoint of the wire

xi = 0.5 - sqrt(0.25-exp(-2)); % an integration parameter
n = length(zs) - 1; % number of unknowns equals

% the number of interior nodes

zobs = ze;
z1 = zs + xi*(ze-zs); % Integration points
z2 = ze + xi*(zs-ze); % Integration points
hh = (zs-ze)/2;

as4 = 4*aˆ2; % Precomputation of constant
A = zeros(n+1); % System matrix

% Loop over elements
for idx = 1:n+1

z = zobs - z1(idx);
zsq = z.ˆ2;
za = sqrt(zsq+aˆ2);
EIK = eval_EIK(as4./(as4 + zsq));
temp1 = 2*EIK./(pi*sqrt(as4 + zsq)) + (exp(j*k0*za)-1)./za;

z = zobs - z2(idx);
zsq = z.ˆ2;
za = sqrt(zsq+aˆ2);
EIK = eval_EIK(as4./(as4 + zsq));
temp2 = 2*EIK./(pi*sqrt(as4 + zsq)) + (exp(j*k0*za)-1)./za;

if (idx > 1)
A(:,idx-1) = A(:,idx-1) ...

+ hh(idx)*((1-xi)*temp1(:) + xi*temp2(:));
end

if (idx < n+1)
A(:,idx) = A(:,idx) ...

+ hh(idx)*(xi*temp1(:) + (1-xi)*temp2(:));
end

end

lastrow = A(n+1,1:n);
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for i = 1:n
A(n+1,i) = 0.5*(lastrow(i)+lastrow(n+1-i));

end

A(n+1,n+1) = cos(k0*zs(1));

for i = 1:n
A(i,n+1) = cos(k0*ze(i));

end

I = (A\E0’)’;
Iz = I(1:n);
Imi = I(round((n+1)/2));
C = I(n+1);

% --------------------------------------------------------------
% Evaluate the complete elliptic integral of the first kind
% by means of a polynomial approximation [M Abramowitz and
% I A Stegun, Handbook of Mathematical Functions, National
% Bureau of Standards, 1965]
% --------------------------------------------------------------
function EIK = eval_EIK(x)

% Arguments:
% x = argument for K(x) in the interval 0 <= x < 1
% Returns:
% EIK = the value of the complete elliptic integral of
% the first kind (with an error less than 2e-8)

a = [0.01451196212; 0.03742563713; 0.03590092383; ...
0.09666344259; 1.38629436112];

b = [0.00441787012; 0.03328355346; 0.06880248576; ...
0.12498593597; 0.50000000000];

m1 = 1 - x;
EIK = polyval(a,m1) - polyval(b,m1).*log(m1);

The routine computes the current distribution I(z) and the constant C in
Hallén’s equation (7.55). Next, we present some numerical results, where, for
example, Figure 7.12 can be generated by the following script.

n = 200; % Number of cells
k0 = 1; % Wavenumber
a = 0.02; % Radius
L = 3.0; % Length
h = L/n; % Cell size
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% Z-coordinate for starting and ending points of the segments
zs = zeros(1,n);
ze = zeros(1,n);
zs(1:n) = linspace(-L/2, L/2-h, n);
ze = zs + h;
E0 = ones(1,n);

% Solve Hallen’s equation
[Iz, C, Imi] = EFIE(zs, ze, E0, a, k0);

% Plot the results
figure(1), clf
plot([zs(1) zs(1:end-1)+h/2 ze(end)], ...

[0 real(Iz) 0], ’k-’), hold on
plot([zs(1) zs(1:end-1)+h/2 ze(end)], ...

[0 imag(Iz) 0], ’k--’)
xlabel(’z [m]’), ylabel(’I [A]’)

7.4.5 Numerical Results

Figure 7.12 shows the current distribution on a dipole with kL = 3 and
ka = 0.02 when the dipole is resonantly excited. The calculation used the
approximation (7.57) for G, which has the correct singularity. The current
has steep gradients near the endpoints of the dipole, and here the charge
density ∝ dI/dz is singular. This is similar to the singular charge distribution
we found for electrostatics near the edge of the parallel plate capacitor.

Figure 7.13 shows the induced current at the midpoint of the wire as a
function of L for k = 1 and a = 0.02. Note the resonances around kL = nπ,
where n is an odd integer.

One may wonder why there are no resonances when kL/π is an even inte-
ger. Figure 7.14 shows the current distribution on a dipole with kL = 5.9 and
ka = 0.02 when the dipole is not strongly excited. Nevertheless, the dipole
has a natural oscillation mode near this frequency. However, this mode has a
full wavelength oscillation over the wire and is odd around the center point.
Therefore, it does not get excited by the incident plane wave. The current
induced on the wire for kL = 5.9 is even around the midpoint of the wire, and
this is not a resonant mode of the wire at this frequency.

Figure 7.15 shows the current distribution on a dipole with kL = 9.2 and
ka = 0.02 when the dipole is resonant. The natural oscillation mode of the
dipole at this frequency has a 1.5 wavelength, and this mode has a net coupling
to the incident plane wave.
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Fig. 7.12. Induced current on a wire with kL = 3, ka = 0.02: solid curve - real part
and dashed curve - imaginary part.
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Fig. 7.13. Induced current at the midpoint of a wire as a function of L for k = 1,
and a = 0.02: solid curve - real part and dashed curve - imaginary part.
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Fig. 7.14. Induced current on a wire with kL = 5.9, ka = 0.02: solid curve - real
part and dashed curve - imaginary part.
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Fig. 7.15. Induced current on a wire with kL = 9.2, ka = 0.02: solid curve - real
part and dashed curve - imaginary part.
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Review Questions

7.4-1 Derive (7.50) from (7.41). What assumptions did you use?
7.4-2 Perform the derivations required to arrive at Hallén’s equation.
7.4-3 Write the Green’s function for 3D free space as a sum of a singular part

and a regular part. Show that the regular part is bounded as R → 0.
7.4-4 Describe the steps and assumptions required to arrive at (7.57).
7.4-5 What can happen if the Green’s function is too smooth; i.e., its singu-

larity is neglected?
7.4-6 Give an example of weighting and basis functions that can be used for

Hallén’s equation. Write down the corresponding system of linear equa-
tions.

7.4-7 Why does Figure 7.13 show resonances at kL = nπ only for odd integers
n and not even integers?

Summary

• Consider a problem modeled by the differential equation Df = s, where D
is a differential operator, f is a field and s is the source. The Green’s func-
tion G(r, r ′) satisfies DrG(r, r ′) = δ(r − r ′), where Dr takes derivatives
with respect to the unprimed coordinates. Given the Green’s function, the
differential equation can be written as an integral equation

f(r) =
∫

G(r, r ′)s(r ′)dV ′.

For Poisson’s equation −ε0∇2φ = ρ, we have
– the 3D Green’s function G(r, r ′) = |r − r ′|/(4πε0) and
– the 2D Green’s function G(r, r ′) = −1/(2πε0) ln |r − r ′|.

• The method of moments (MoM) solves an integral equation by a finite
element expansion; i.e., the sources s(r) ≈ ∑

k αksk(r) are expanded in
terms of basis functions sk(r). Choose as many weighting functions wk(r)
as there are basis functions. Determine the coefficients αk by multiplying
the Green’s function expression for f −fprescribed and integrating in space.
Two usual choices for the weighting functions are
– collocation with wk(r) = δ3(r − rk), which evaluates the field at the

point r = rk, and
– Galerkin’s method wk(r) = sk(r).
The integrand of the integrals in a MoM formulation are often decomposed
into a singular part and a regular part. Preferably, the singular part is
treated analytically and the nonsingular part by numerical integration.

• Scattering from conducting bodies is often treated by MoM. In the Lorentz
gauge, the scattered electric field can be expressed as

Es =
1

jωε0µ0
[∇(∇ · A) + k2A],
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where A is expressed in the induced surface current as

A =
µ0

4π

∫
e−jkR

R
Js(r ′)dS′,

where R = |r − r ′|. Equivalently, Es = −jωA − ∇φ with A as above and

φ =
1

4πε0

∫
e−jkR

R
ρs(r ′)dS′,

where jωρs + ∇ · Js = 0. The equation n̂ × (Es + Einc) = 0 is solved by
the MoM on the surfaces of the conductors. The current Js should be ex-
panded in Rao–Wilton–Glisson basis functions, since they have continuous
normal components at cell edges.

• The EFIE suffers from “internal resonances”. At these resonance frequen-
cies, the solution is wrong and the system matrix may become singular.
The MFIE has different internal resonances than the EFIE, and with a
suitable linear combination of the two integral equations, the internal res-
onances (and the problems associated with them) can be avoided. The
summed equation is called the CFIE.

• Scattering from thin wires is often treated by the MoM combined with
certain approximations. If the surface current is replaced by a line current
I(z) on axis, the MoM does not converge as the resolution is increased,
but increasing wiggles appear. Short-wavelength oscillations are screened
by the distance from the center to the surface of the wire. Convergence
is achieved by using a more accurate Green’s function that keeps the cor-
rect singularity at r = r ′. Then, the electric field produced by fine-scale
variations in the current is better represented.

Problems

P.7-1 Green’s functions are normally constructed so that the boundary con-
ditions are accounted for. Given the free-space Green’s function in (7.10),
derive the corresponding Green’s function that can be used for a problem
with a PEC ground plane at z = 0. Such a Green’s function allows for an
algorithm that avoids an explicit discretization of the ground plane.

P.7-2 Show that the MoM matrix in (7.20) is symmetric and positive definite
if Galerkin’s method is used. How does this relate to the corresponding
matrices derived by the FEM?

P.7-3 In Section 7.2, compare the capacitor problem with and without the
exploitation of symmetries. How much computational resources, in terms
of memory requirements and floating point operations, can be saved by
the use of symmetry?

P.7-4 Can the algorithm in Section 7.2 be generalized to also include dielectric
materials? Discuss how the formulation would change.
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P.7-5 Apart from sharp metal corners, are there other situations in which a
reduced order of convergence can be expected?

P.7-6 Does the distance between two similar sharp metal corners influence
the order of convergence? What order of convergence do you expect from
a problem with two different sharp metal corners?

P.7-7 Use (7.36) to derive a Green’s function for the vector potential that
includes a PEC ground plane at z = 0. Perform the same derivation for
the scalar potential in (7.38). Given the fields

E = −∇φ − jωA, B = ∇ × A,

verify that the boundary conditions are satisfied at the ground plane.
P.7-8 Derive the EFIE directly from Maxwell’s equations.
P.7-9 For a 2D problem where a PEC cylinder is aligned with the z-axis,

choose basis functions for the current Js(x, y), and charge distributions
ρs(x, y). Does the choice depend on whether the TE or TM case is con-
sidered?

P.7-10 Show that (7.39) can also be written as Es = c2(∇∇ · A + k2A)/jω
with A given by (7.36).

P.7-11 Is the matrix (7.48) associated with the MFIE symmetric?
P.7-12 Write down the RWG basis functions for a rectangle.
P.7-13 Try to solve (7.55) with only one basis function. What type of basis

function do you choose?

Computer Projects

C.7-1 Use the algorithm in Section 7.2 to compute the capacitance for two
parallel circular cylinders of radius a and a separation distance d, which
also can be solved for analytically. What order of convergence do you
expect, and do your expectations agree with the numerical experiment?

C.7-2 Evaluate (7.56) by brute force and compare the result to the approxi-
mation in (7.57). Conclusions?

C.7-3 Use the approach described in Section 7.4 to implement the MoM for
scattering from thin wires. Reproduce some of the results presented in Sec-
tion 7.4 for validation. Can you generalize your formulation and program
so that you can solve problems where three wires or more are connected
at the same point? What type of basis function do you need at such a
junction and how do you test the integral equation?

C.7-4 Use the approach described in Section 7.3 to implement the MoM for
scattering from metal surfaces. Discretize a PEC sphere by triangles and
solve the scattering problem. How does the solution compare with analyt-
ical results [4]? Try to reproduce the problem with internal resonances.
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Summary and Overview

The goal of any analysis or optimization is to achieve sufficient accuracy with
minimum effort, where effort usually is interpreted as computational cost in
terms of computational time and memory requirements. However, there may
also be a considerable effort associated with other issues such as the program-
ming of the numerical algorithm or the construction of geometrical descrip-
tions suitable for the the computations at hand.

Faced with an electromagnetic problem, say an antenna in the vicinity
of a human body, we need to find a numerical algorithm that can yield suf-
ficiently accurate results without an excessive effort. Naturally, there are a
number of aspects that will guide the choice of computational method. For
example, the electromagnetic problem at hand may involve boundary condi-
tions that are necessary for a realistic model but difficult to treat for some
computational methods. Complex materials with nonlinearities, anisotropies,
or dispersive characteristics can also eliminate some numerical algorithms.
The typical length scales of the problem is another important aspect that
should be considered. In linear problems, the wavelengths present are deter-
mined by the frequency contents of the excitation and the materials. Other
length scales that should be considered are the skin-depth and the size of
the geometrical features present. Each of these length scales typically covers
a certain range, and the combination of them can yield a significant interval
(which can require certain approximations if a direct analysis is not feasible).
In a typical low-frequency application, for example, the wavelength is on the
order of thousands of kilometers, and the geometrical size on the order of me-
ters (possibly down to millimeters for laminations and thin wires) while the
skin-depth is typically in the range from millimeters to centimeters.

In some situations, one method is competitive for a part of the prob-
lem while another algorithm is better suited for the remaining parts. It is
then attractive to combine the different algorithms to form a so-called hybrid
method. Such methods can be challenging to construct, and many attempts
have failed to preserve important properties of Maxwell’s equations. However,
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successful hybrid methods offer possibilities to treat significantly larger classes
of problems.

One of the major challenges in CEM is to model systems that are elec-
trically large, that is, for which the spatial extent D is many wavelengths λ
in three dimensions. In this setting, it is useful to compare how the number
of floating-point operations and the memory requirements for the different
methods scale with the wave frequency f for a system of fixed spatial extent
(where we will consider objects with geometrical features that are on the order
of the wavelength or larger). Table 8.1 summarizes the scalings with frequency
for the methods treated in this book and the MLFMA extension of the MoM.

FEM/FDTD MoM-matrix MoM-MLFMA
2D f3 Nitf

2 Nitf log f
3D f4 Nitf

4 Nitf
2 log f

Table 8.1. Scalings for the number of operations with frequency f and the number
of iterations Nit.

It should be pointed out that there are multipliers in front of the scalings in
Table 8.1, and that these coefficients can be quite significant. For instance, the
multiplier is large for the MLFMA (which is a version of the MoM), so that the
application problems need to be quite large before this method is competitive.
However, the MLFMA is the most competitive full-wave method for very
large scale scattering problems, e.g., to compute the radar cross section for an
entire aircraft. In this chapter, we present a more detailed discussion of these
scalings. Also, we briefly discuss a selection of other methods. There is a large
number of numerical algorithms in CEM, and it is beyond the scope of this
book to give a complete account.

8.1 Differential Equation Solvers

Differential equation solvers are used for both frequency- and time-domain
computations. They can be applied to both driven problems and eigenvalue
problems.

For differential equation solvers in frequency domain, one often uses iter-
ative solvers (especially in three dimensions), and brief introductions to this
subject are given in Appendices A and B. Generally, the number of iterations
needed for convergence scales as the square root of the condition number κ
of the matrix, where the condition number is the ratio of largest to smallest
eigenvalues of the matrix. The smallest eigenvalues of the curl-curl or Laplace
operator are independent of the resolution. The largest eigenvalues of these
second-order operators scale as 1/h2; see, e.g., (3.17). Given that the frequency
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f dictates the cell size h ∝ 1/f , the largest eigenvalue of a second-order oper-
ator scales as f2. Therefore, the condition number κ = λmax/λmin ∝ f2, and
generally, the number of iterations scales as

√
κ = f . The matrix generated

by a differential equation formulation is sparse, so the number of operations
per iteration is proportional to the number of unknowns, i.e., ∝ f2 and ∝ f3

for 2D and 3D problems, respectively. Therefore, for frequency-domain FEM
(or finite difference methods) the total number of operations scales as f3 in
2D and f4 in 3D (for a single frequency).

For the differential equation solvers in time domain, the time-step varies
as h ∝ 1/f , and for a fixed time interval the number of time-steps scales
as 1/∆t ∝ f . Therefore, the number of operations for time-domain methods
(such as the FDTD) and the frequency-domain methods (e.g., FEM) scales as
f × f2 = f3 in 2D and f × f3 = f4 in 3D. But the time-domain method gives
a complete frequency spectrum, as compared to a standard frequency-domain
method that requires one computation for a single frequency.

In the following, unless stated otherwise, we focus on the scalings for 3D
methods.

8.1.1 Finite-Difference Time-Domain

To keep a certain relative phase error, the FDTD needs a certain number of
points per wavelength λ/h; 1% phase error requires about 18 cells per wave-
length. To keep this accuracy, the number of cells in any direction, D/h, scales
as f , while the maximum time-step scales as ∆t ∝ h ∝ f−1. Consequently, the
total number of operations scales as f4. If one asks for a fixed absolute phase
error across the whole system, the number space steps scales as f3/2, and the
number of operations becomes O(f6). In this case, higher-order methods are
more advantageous. So far, higher-order methods are not used very much for
electromagnetic problems, but work in this area is underway.

Time-domain methods generate time sequences that can be Fourier trans-
formed to give a full frequency spectrum in O(f4) operations. This, plus the
simplicity of the FDTD, are the main reasons for its popularity. The ma-
jor drawback of the FDTD is that it is tied to structured grids, which force
oblique boundaries to appear as “staircases.”

8.1.2 Finite-Volume Time-Domain

Finite volume time-domain (FVTD) methods generate discrete equations by
integrating the Ampère and Faraday laws over each grid cell [88, 57]:

∫
Ve

ε
En+1 − En

∆t
dV =

∮
Ae

n̂ × Hn+ 1
2 dS −

∫
Ve

Jn+ 1
2 dV,

∫
Vh

µ
Hn+ 1

2 − Hn− 1
2

∆t
dV = −

∮
Ah

n̂ × EndS,
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where superscripts indicate time. Two grids are used: the “primary” and
“dual” grids. The electric field is defined on the vertices of the primary grid
(cells Vh), and the magnetic field is defined on those of the dual grid (cells
Ve), the vertices of which are the centers of the primary cells. Unlike the
FDTD, the FVTD does not conserve electric and magnetic charges. Madsen
and Ziolkowski [44, 57] constructed an “FDTD correction” to accomplish this.

The FVTD is explicit and therefore efficient, as long as the cells are of
reasonably uniform size; otherwise, very small time-steps are required, and
they degrade the performance of the method. The primary grid can be made of
tetrahedra, which gives the method good ability to model complex geometry. A
drawback of the FVTD is the appearance of a weak “late time” instability [44,
57, 89]. This can be prevented by adding dissipation, which, however, may
decrease the accuracy of the algorithm. The operation count scales the same
way as for the FDTD.

8.1.3 Finite Element Method

The finite element method easily handles complex geometry, and FEM is
used both in frequency- and time-domain analyses. Together with standard
iterative solvers, a frequency-domain calculation requires O(f4) operations
per frequency. The scaling in time-domain calculations is the same as for the
FDTD, but time-domain FEM typically involves at least a factor of 10 more
operations.

A valuable property of the finite element method, in comparison to the
FVTD, is that both the mass matrix and the stiffness matrix are symmetric
and real, which guarantees that the eigenvalues ω2 of ∇ × µ−1∇ × E = ω2εE
are real. Combined with a suitable time-stepping scheme, this leads to a stable
algorithm. The symmetric, or reciprocal, property of the FEM appears not
to hold for finite volume discretizations. In fact, lack of symmetry is a likely
explanation of the late-time instability observed for many schemes.

8.1.4 Transmission Line Method

Transmission line methods (TLM) work with combinations of electric and
magnetic fields, represented as pulses propagating on a 3D grid of transmission
lines. At the intersections, the nodes, the pulses are scattered according to
scattering matrices S. By imposing the condition that S be unitary, energy
conservation can be enforced, and hence stability achieved.

TLM based on so-called expanded nodes was described by Hoefer [35].
An improved, symmetrical condensed node was introduced by Johns [40].
Celuch-Marcysiak and Gwarek [16] proved the equivalence of a transmission
line network with a circuit model for a nonuniform grid in 2D. An equivalence
with an FDTD formulation was established on a uniform 3D grid by Chen et
al. [17].
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8.1.5 Finite Integration Technique

The finite integration technique [84] (FIT) is based on the integral represen-
tation of Maxwell’s equations. The FIT reduces to the FDTD scheme on grids
consisting of cubes, and for that case, the derivation of the FIT is very similar
to the integral representation in Section 5.2.4. The fields are represented in
terms of electric and magnetic voltages (organized in the vectors ē and h̄,
respectively). These are related to the electric and magnetic fluxes (organized
in the vectors ¯̄d and ¯̄b, respectively) by the constitutive relations (expressed
as ¯̄d = Mεē and h̄ = Mµ−1

¯̄b). Maxwell’s equations (in source-free space) can
then be written in the form

Cē = − d

dt
¯̄b,

C̃h̄ =
d

dt
¯̄d.

For wave problems, the time derivatives are discretized in the leap-frog sense.
Here, C and C̃ are the curl operators (matrices with elements 0 or ±1) on the
primary and dual meshes, respectively. Similarly, Gauss’s law can be stated
D̃¯̄d = q, and the condition of solenoidal magnetic flux density as D¯̄b = 0,
where D and D̃ represent the divergence on the primary and dual meshes,
respectively. The matrix corresponding to the gradient operator is then the
transpose of the divergence matrix. The matrix operators correctly repro-
duce well-known properties; for example, the zero divergence of the curl is
DC = 0 and the zero curl of the gradient is CD̃T = 0. This allows for var-
ious manipulations; for example, the vector wave equation can be written as
C̃Mµ−1Cē + Mε∂

2ē/∂t2 = 0.
Weiland and coworkers [78, 69] have investigated stable local refinement

and nonorthogonal meshes for the FDTD scheme. The property C = C̃T is
important for stability, and the (typically) diagonal matrices Mε and Mµ−1

allow for explicit time-stepping. Thus, the FIT has the same scalings as the
FDTD, but it allows for curved meshes and local refinement combined with
stable time-stepping.

8.2 Integral Equation Solvers

For integral equations, the number of unknowns is much smaller than for
volume discretizations such as FDTD or FEM, but the matrix is dense. The
integral formulation is nevertheless superior for large problems because of
a rather recent development called the fast multipole method (FMM). The
hierarchical version of this method is called the MLFMA, multilevel fast mul-
tipole algorithm [19]. The operation count then becomes ∝ Nitf log f in 2D
and Nitf

2 log f in 3D. This is superior to the differential equation solvers if
Nit < O(f2), which is generally the case. The drawback of the MLFMA is
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that it is quite complicated to program, and in particular, to parallelize. In-
tegral equation methods, or the method of moments, solve either the EFIE,
MFIE, or the CFIE [51] on surfaces of conductors and dielectrics.

8.2.1 Frequency-Domain Integral Equations

In frequency-domain formulations, both the EFIE and the MFIE may suf-
fer from internal resonance; this can be avoided by using a suitable linear
combination of the two equations: the CFIE.

A main advantage of the MoM is the low number of unknowns, which scale
with frequency as O(f2). The drawback is that the matrix is dense. Therefore,
if one attempts direct solution by LU decomposition, the operation count
has a very unfavorable O(f6) scaling. In geometries that are only partly 3D,
this can be improved on by Fourier transformation in the main direction of
symmetry [42] or by using the Toepliz property of the MoM matrix to apply
CG-FFT techniques [51]. However, for truly 3D problems other methods for
solving the linear system are needed.

Iterative solvers, such as the conjugate gradient (CG) method or Krylov
methods, improve the scaling. The iterative algorithms are based on matrix–
vector multiplications, and with a dense matrix a conventional multiplication
takes O(f4) operations. The total operation count then becomes O(Nitf

4),
where the number of iterations Nit can be hard to predict. Song and Chew [72]
report Nit ∝ f1/2 for problems with only closed surfaces. Thus, the scaling
becomes f4.5 for each frequency, which is not competitive with differential
equation solvers. However, recently several methods have been developed to
reduce the number of operations for a matrix–vector multiplication, that is,
in computing the field from given sources.

Fast Multipole Methods

A very successful scheme to replace the matrix multiplication is the fast mul-
tipole method (FMM) introduced by Rokhlin [58, 59] and developed into the
multilevel fast multipole algorithm (MLFMA) by a group at the University
of Illinois [73].

The FMM is described in an accessible way in [20]. The first step is to
divide the simulation region into boxes, each containing a moderate number of
grid cells. Fields from grid cells in the same, or an adjacent, box are computed
in the standard way. The fields produced by sources farther away are computed
by first generating a multipole expansion for the sources, then projecting this
onto a set of plane waves in the observation box, from which one obtains the
fields at each observation point. The savings come from the fact that only a
moderate number L of terms are needed in the multipole expansion. A semi-
empirical formula for the number of terms needed to achieve double precision
accuracy is L = kD + 10 ln(π + kD), and the required number of plane waves
scales as L2. Minimizing the total number of operations, one finds that the
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optimum number of elements per box scales as the square root of the total
number of elements N and that the total operation count scales as N3/2.
The MLFMA repeats this algorithm in a hierarchical way on all scales and
achieves a scaling O(N log N). This algorithm has been implemented in the
FISC code [74].

A nice analogy of the FMM is a telephone network. If every one of N
customers is connected by a direct line to every other customer, the number
of connections scales as N2. However, by introducing “hubs,” the number of
connections can be reduced. To make a telephone call, a customer (the source
point) calls the local hub (the multipole expansion), which calls another hub
(the plane waves), which finally calls the recipient of the call (the observation
point).

We can conclude that for 3D problems the FMM gives an O(f3) and the
MLFMA an O(f2 log f) scaling for the operation count per iteration. These
represent significant reductions from the O(f4) scaling for straightforward
matrix–vector multiplication. If the number of iterations scales as f1/2, the
frequency-domain MoM is clearly competitive with time-domain differential
equation solvers for large problems. However, it takes a problem of significant
size for the FMM or MLFMA to be competitive, with at least several thousand
unknowns. The FMM and MLFMA also imply large savings in storage because
the full matrix is never stored.

Other Fast Methods

The impedance matrix localization technique (IML) [14, 15] is a matrix alge-
bra routine that transforms to a basis for the source distribution that radiates
into narrow beams. This makes the MoM matrix sparse. The method can be
incorporated in existing MoM programs to sparsify an already computed ma-
trix.

Also, wavelet transforms have been used in MoM calculations [81, 28].
Wavelet transforms work excellently in static problems where the integral ker-
nel is nonoscillatory, and reduce the operation count to O(N log N). For elec-
trically large systems (D � λ) with oscillatory kernels, Wagner and Chew [81]
found that the standard wavelet transform reduces the number of operations
only to βN2, with β ≈ 0.1. More recently, Golik [28] tested discrete wavelet
packet similarity transformations together with thresholding of the matrix el-
ements. As the system size was increased, with a fixed number of cells per
wavelength, the number of nonzero matrix elements scaled more slowly than
N2; the numerical results suggested an O(N4/3) scaling.

8.2.2 Time-Domain Integral Equations

Time-domain integral equations (TDIE) is a relatively new area of research.
The first approaches straightforwardly discretized the time-domain form of
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the EFIE [63, 54] and the MFIE [71] in space and time. The time-domain
MFIE can be written as

2πJ(r, t) = 2πn̂ × Hi(r, t) + n̂ ×
∫

S

(
J(r ′, τ) +

R

c

∂J(r ′, τ)
∂t

)
× R̂

R2 dS′,

(8.1)
where τ = t − R/c is the retarded time and R = |r − r ′|. In the discretized
version, the solution has to be saved over the time that it takes a light wave
to traverse the entire simulation region, so the storage requirement for the
solution scales as f3 (as for a volume discretization). The matrix storage scales
as f4, so that for very large problems the matrix may have to be recomputed,
or some fast scheme is needed for the field calculation. The operation count
scales as f5, which is worse than for differential equation solvers.

The early TDIE algorithms were unstable and required dissipation for
stability [71, 80]. This problem appears to have been overcome recently for
the EFIE by a variational formulation together with strict FEM techniques
both in space and time [1].

Another TDIE solver has been developed by Walker and coworkers [10,
24] for the MFIE. Applying finite element techniques to (8.1), Bluck and
Walker [10] derived an algorithm that is somewhat implicit. The algorithm
needs to be implicit, because on every new time-level, “new,” or unknown,
currents enter into the surface integral in (8.1) within regions of radius c∆t
around each observation point. The resulting implicit algorithm was found
to be stable if the time-step exceeds the time it takes a light wave to tra-
verse the largest spatial element. (The degree of implicitness increases with
the time-step.) This code has been used to compute scattering data when the
scatterer is illuminated by a short pulse of duration ∝ f−1; see [24]. In this
mode of operation, the operation count scales very favorably with frequency.
This is because the number of elements, both in the region where one needs
to integrate (illuminated source points) and in the region where the resulting
field is significant (illuminated observation points), scales only as f . It is su-
perfluous to calculate near-vanishing fields in the nonilluminated regions, and
this strongly reduces the operation count if the incoming pulse is short (and
the scattering surface is convex so that there are no multiple reflections).

8.3 Hybrid Methods

The different basic techniques used in CEM all have their strengths and lim-
itations. One way to achieve performance that is better than two individual
methods is to combine them into a so-called hybrid method. This can be dif-
ficult but very useful once a good and reliable formulation is found. There is
a vast number of hybrid methods, and here we mention only a few of them in
order to introduce the concept of hybridization.
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The FDTD is efficient, but has difficulties with complex geometry. There-
fore, hybrid methods have been formulated to combine efficiency with the abil-
ity to treat complex geometry. The hybrid schemes combine the FDTD with
either an FVTD [88, 57, 89] or time-domain FEM [86, 47]. These methods
typically experience late-time instabilities [89, 47]. Rylander and Bondeson
formulated a stable hybrid scheme [60] that combines the FDTD with FEM
on unstructured meshes. Where the structured and unstructured grids join,
the mass and stiffness matrices are constructed in a special way to preserve
symmetry. This makes it straightforward to achieve stability without dissipa-
tion. The scheme uses an implicit solver on the unstructured grid. It has been
verified that the algorithm is stable for time-steps up to the stability limit of
the FDTD. The advanced TLM, FIT, and hybrid FEM-FDTD are efficient
and stable solvers that can handle complex geometry. The FEM-FDTD com-
bination may have an advantage in being more easily coupled to standard grid
generators and is more adequate for adaptive mesh refinement.

When differential equation solvers are applied to problems in unbounded
geometries, the computational region must be truncated. Several methods for
radiative boundary conditions have been formulated for differential equations
solvers, where the perfectly matched layers [8, 52] is the preferred choice in
most cases. For electrically very large problems, the volume discretizing solvers
find competition from recently developed integral equation methods, which are
well suited to analyze objects in free-space. For open-region problems that in-
volve objects with complicated materials, it can be useful to use a FEM for
the object and its immediate surrounding, combined with a MoM for the re-
maining free-space environment. It is feasible to construct frequency-domain
formulations that combine the MoM and FEM. These are often referred to as
finite element–boundary integral formulations, or FE-BI for short. The FE-BI
formulation by Botha and Jin [12] is based on variational principles for the
continuous quantities, and it yields symmetric matrices that preserve reci-
procity explicitly, which reflects important properties of Maxwell’s equations.
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Large Linear Systems

A.1 Sparse Matrices

Many CEM problems require the solution of large linear systems of equa-
tions. This is generally the case for the finite element method (FEM), both
for frequency- and time-domain applications. In realistic 3D applications, the
number of unknowns can be in the range of tens of thousands to several
millions. For the largest systems, direct inversion is seldom possible, and it-
erative methods are needed. Here, we will introduce some routines for large
linear systems.

Below, we give a MATLAB function that assembles the sparse system
that we solved using Gauss–Seidel iterations in the capacitance calculation in
Chapter 3. The study was then limited to a 50 × 50 grid. With the assembled
system we can use more efficient methods and therefore use higher resolutions.
For this 2D problem, the direct solver invoked by “\” in MATLAB performs
very well.

We write the discretized problem as Af = s and use the MATLAB function
setAs listed below to set A and s. Note that this script was written so as to
make very few references to the sparse matrix. This is faster than referencing
the individual elements in the sparse matrix, because each reference requires
a function call, which is quite slow.

% --------------------------------------------------------------
% Set up matrix A and right-hand side s
% --------------------------------------------------------------
function [A, s] = setAs(a, b, c, d, n, m)

% Arguments:
% a = width of inner conductor
% b = height of inner conductor
% c = width of outer conductor
% d = height of outer conductor
% n = number of points in the x-direction (horizontal)
% m = number of points in the y-direction (vertical)
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% Returns:
% A = matrix on sparse storage format
% s = right-hand side on sparse storage format

hx = 0.5*c/n; % Grid size in x-direction
na = round(0.5*a/hx); % Number of cells for half width of

% inner conductor
hy = 0.5*d/m; % Grid size in y-direction
m = round(0.5*d/hy); % Number of cells for half height of

% outer conductor
mb = round(0.5*b/hy); % Number of cells for half height of

% inner conductor
p = 1; % Potential on inner conductor

% The upper right corner is discretized
%
% --------------------+
% c/2 |
% |
% ------------+ | d/2
% a/2 | |
% | b/2 |
% | |
%
% (Dimensions)
%
%
% The nodes are numbered like this
% y
% ˆ
% |
% (m-1)hy| (m-1)n+1 (m-1)n+2 (m-1)n+3 ... mn
% | : : : :
% 2hy | 2n+1 2n+2 2n+3 ... 3n
% hy | n+1 n+2 n+3 ... 2n
% 0 | 1 2 3 ... n
% --------------------------------------> x
% 0 hx 2 hx (n-1)hx
%
% (Discretization)

N = n * m; % Total number of unknowns.
cx = hxˆ-2;
cy = hyˆ-2;

% Generate a matrix with N = m*n rows (-> nodes on the grid),
% and five columns, one for each nonzero diagonal of A.
% The first column gives contribution from nodes beneath.
% The second column gives contribution from nodes to the left.
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% The third column gives self-contribution.
% The fourth column gives contribution from nodes to the right.
% The fifth column gives contribution from nodes above.

% The following lines assume some knowledge of MATLAB. If you
% feel uncertain, insert the ’keyboard’ command. This causes
% MATLAB to stop. Then execute lines by ’dbstep’ and examine
% the result.

C = repmat([cy cx -2*(cx+cy) cx cy], N, 1);

% Find indices of nodes that are not surrounded by four interior
% nodes.
idx0R = n:n:N-n; % Nodes with V = 0 to the right
idxNB = na+2:n; % Nodes with dV/dy = 0 beneath
idxNL = 1+n*(mb+1):n:N; % Nodes with dV/dx = 0 to the left

idx1C = repmat((1:na+1)’, 1, mb+1) + repmat((0:n:n*mb),na+1,1);
% ’x-index + n*(y-index-1)’ for all

idx1C = idx1C(:)’; % nodes on (or inside) the inner
% conductor where V = 1
% and convert to row vector

C(idx1C,[1 2 4 5]) = 0;
C(idx1C, 3) = 1;
C(idx0R, 4) = 0;
C(idxNB, 5) = 2*cy;
C(idxNL, 4) = 2*cx;
C(idxNL, 2) = 0;

% Find the nonzero elements (si) of each column and the
% corresponding row indices (ii). Do not include elements
% corresponding to nodes outside the grid.
[i1,j,s1] = find(C(n+1:end, 1)); % The first ’nc’ nodes have no

% neighbors beneath
[i2,j,s2] = find(C(1+1:end, 2)); % The first node has no

% neighbor to the left
[i3,j,s3] = find(C( 1:end, 3));
[i4,j,s4] = find(C( 1:end-1, 4)); % The last node has no

% neighbor to the right
[i5,j,s5] = find(C( 1:end-n, 5)); % The last ’nc’ nodes have no

% neighbors above

% Put the elements (si) into a sparse matrix. The first input
% are row indices, the second is column indices and the third
% is the elements.
A = sparse([i1+n; i2+1; i3; i4; i5], ...

[i1; i2; i3; i4+1; i5+n], ...
[s1; s2; s3; s4; s5], N, N);
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s = sparse(idx1C’, 1, p, N, 1);

A.2 Solvers for Large Sparse Systems of Equations

As we already mentioned, the 2D discretized Laplace equation can be solved
in MATLAB by direct inversion f = A\s. For 2D problems, direct methods
are generally very competitive, unless the problems are very large. However,
for 3D problems, iterative solvers are often more efficient. We will here give a
brief overview of solvers for sparse linear systems of equations that are used
in CEM.

A.2.1 Direct Solvers

In direct methods, a complete factorization (e.g., an LU decomposition) of
the matrix A is done. Clever reordering of the rows and the columns of A
plays an important role; a good reordering scheme can reduce the operation
count and the memory requirements for the factorization by more than an
order of magnitude. In MATLAB, one can, for example, use column approxi-
mate minimum degree permutation, colamd (for nonsymmetric matrices), or
symmetric approximate minimum degree permutation, symamd (for symmet-
ric matrices), to reorder matrices. However, when the backslash operator “\”
is invoked, this is done automatically.

A major advantage of direct methods compared to iterative methods is
that since a complete factorization is done, additional right-hand sides can be
solved for with low additional cost. Another advantage is that direct methods
generally are less sensitive to ill conditioning and can be used where many
iterative methods fail to converge.

However, both time and memory requirements scale unfavorably with
problem size; hence direct methods become prohibitively expensive for very
large problems. Often the memory requirements are the limiting factor.

Efficient, freely available algorithms for direct factorization and reordering
of sparse matrices include UMFPACK [22], SuperLU [23], TAUCS [79], and
METIS [41].

A.2.2 Iterative Solvers

The matrices that result from finite element discretizations of Poisson’s equa-
tion (1.3) or the time-domain version of the curl-curl equation (6.72) are
symmetric and positive definite. For such systems, iterative so-called Krylov
methods (see Appendix B) generally work very well.

However, to speed up the convergence of the iterative algorithm, it is very
useful to precondition the matrix. The idea of preconditioning is to find an
approximate inverse of A, say M−1, and multiply Af = s by the approximate
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inverse from the left. If M−1A ≈ I, the iterative solver will converge much
faster. The choice of preconditioner generally has a much stronger effect on
the speed of convergence than the choice of Krylov method. A choice that
often works well is the so-called incomplete LU decomposition, in which M =
LU ≈ A, with L a lower triangular and U an upper triangular matrix. Then
M−1 = U−1L−1, which is inexpensive to apply if L and U are sparse. When
A is symmetric, the factorization can be made such that U = LT , and this is
called incomplete Cholesky decomposition. The degree of incompleteness can
be specified by how much fill-in is allowed in L and U, that is, how many
extra nonzero elements L and U have in comparison with A. In MATLAB,
this is controlled by setting a relative tolerance below which elements in L
and U are dropped. This tolerance is chosen as a compromise between good
accuracy of the decomposition (favored by a small tolerance) and minimizing
memory and CPU time for a matrix multiplication (which is favored by a high
tolerance).

Also in the case with incomplete factorizations, it is strongly recommended
to reorder the rows and columns of A before the incomplete factorization is
computed.

Another, less complicated, preconditioner is symmetric successive overre-
laxation (SSOR) [6], in which the preconditioning matrix M never is stored
explicitly. Hence the memory requirements are smaller when SSOR is used as
a preconditioner instead of some incomplete factorization of A.

An important note is that for the time-harmonic version of the curl-curl
equation, and for low-frequency eddy current computations (Section 6.6.3),
the null-space of the curl operator causes problems for the Krylov methods,
and therefore more advanced preconditioners [43, 25, 26] are required.

Reliable implementations of Krylov methods and preconditioners are avail-
able, e.g., in the PETSc library [5]. Also MATLAB provides implementations
of many popular Krylov methods.

A.2.3 Multigrid Methods

The multigrid (MG) method [31, 85] was introduced about four decades ago,
but has only very recently been applied to Maxwell’s equations [34]. The MG
method can be used either as an iterative solver on its own, or as a very
efficient preconditioner for iterative Krylov methods. It greatly improves the
convergence rate of iterative solvers for large sparse matrices that occur in
differential equation formulations. In fact, the convergence rate can be made
independent of the cell size h, rather than to scale as some power of h.

The underlying principle is the observation that for the Laplace equation,
the “short-wavelength error” (which varies on the scale of the grid) is re-
duced quickly by local operations (known as smoothers) such as Jacobi or
Gauss–Seidel iterations; see Section 3.1.1. However, the long-wavelength error
is reduced much more slowly by the smoothers. Since such error has short
wavelength with respect to a coarser grid, one expects that this error can be
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reduced more rapidly on a coarse grid. Therefore, the basic idea of MG is to
introduce a hierarchy of grids, starting from the finest one, and try to improve
the solution on the finer grid by looking for a correction from the coarser grid.
Optimally, the coarsest grid has only a small number of cells, and a direct
solver can be used at a low computational cost.

So far, MG is used mostly for electrostatic and magnetostatic problems [67,
56] and transient eddy current problems. Generally, MG is among the most
efficient solvers [31, 56] for Laplace-type equations. However, little research
on MG has been devoted to fully electromagnetic problems, such as time-
harmonic problems for eddy current computations [7, 33]. Certain difficulties
(due to the null-space of the curl-curl operator) are encountered when this
method is applied to the full Maxwell’s equations. For wave problems, another
complicating aspect is that the coarsest grid must resolve the wavelength
λ ∝ 1/f , which limits the hierarchy of grids and therefore the recursive MG
algorithm.

A.3 Capacitance Calculation on Larger Grids

With the more efficient solvers we can extend the capacitance calculation of
Section 3.1 to much larger grids. Results for grids up to 400 by 400 are shown
in Table A.1.

n h × 102 C [pF/m]
50 2.000 90.78080 583
100 1.000 90.68006 976
200 0.500 90.64044 979
300 0.333 90.62961 567
400 0.250 90.62481 230

Table A.1. Capacitance vs. cell size for finite difference solution on larger grids.

One can estimate the order of convergence from formula (2.4) for 100, 200,
and 400 points, and the order of convergence in h comes out as 1.341. This
is close to the asymptotic result 4/3, which occurs for the 270o corners. If we
do polynomial fits to h4/3, the extrapolated value is 90.6145 pF/m. It should
be pointed out that a higher-order fit to noninteger powers of h, such as h4/3,
is not an optimal representation, because the regular parts of the solution
contribute errors that scale as h2. Nevertheless, the extrapolation has added
three figures of accuracy. If we tried to achieve this accuracy by a single
calculation with uniform refinement of the grid, we would have to decrease h
by more than a factor of 100, and the execution time would increase by at
least 1003, that is, one million times. Evidently, extrapolation can be a very
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efficient way of increasing the accuracy. In the chapter on finite elements, we
show that the accuracy can also be improved by adaptive grid refinement,
which aims at increasing the resolution in regions where the solution varies
rapidly.



B

Krylov Methods

Here, we will discuss some iterative methods for solving large linear systems
of equations

Ax = b. (B.1)

For large 3D problems, it is generally too demanding to use a direct solver.
Iterative, so-called Krylov methods are often a much better choice for these
problems. Multigrid methods, which we discussed very briefly in Section A.2.3,
have proven even more efficient for many problems but will not be discussed
here.

B.1 Projection Methods

In projection methods, one minimizes the residual

r = b − Ax (B.2)

by an approach similar to the Galerkin and Petrov–Galerkin methods for
finite elements. The vector x will be constructed as a sum of basis vectors
v; x = x0 +

∑m
i=1 viyi, and y is an array of coefficients. This can be written

compactly by introducing the matrix V = (v1,v2, . . . ,vm) and the column
vector y = (y1, y2, . . . , ym)T :

x = x0 + Vy. (B.3)

The vectors v1,v2, . . . ,vm span a space Km of “basis” vectors. Similarly, one
chooses a space Lm of “test” vectors w1,w2, . . . ,wm and demands that on
the mth step of the iteration the residual rm be orthogonal to all vectors in
Lm. If Km = Lm, this is Galerkin’s method; otherwise, it is a Petrov–Galerkin
method.

The most important part of the iteration is the choice of the search direc-
tions v1,v2, . . . ,vm. The simplest case is that in which A is real and symmet-
ric. The old-fashioned “steepest descent” method chooses the increment di-
rections vi in the gradient direction of the error functional (x−xexact)T A(x−
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xexact), on every step of the iteration. It turns out that this is a bad strategy.
When the matrix A is positive definite and symmetric, the number of iter-
ations for the steepest descent method scales as the condition number of A,
that is, the ratio of largest to smallest eigenvalues, κ = λmax/λmin.

B.2 Krylov Methods

A better strategy is to generate the increment directions as r0, Ar0, A2r0,
. . . , Am−1r0, where r0 is the first residual. Then K is called a Krylov space.
The Arnoldi algorithm does exactly this and projects out components of the
new v’s to keep them orthonormal.

1. Choose a vector v1 of norm 1
2. For j = 1, 2, . . . , m, Do:
3. hij = (Avj ,vi) for i = 1, 2, . . . , j

4. wj = Avj − ∑j
i=1 hijvi

5. hj+1,j = (wj ,wj)1/2

6. If hj+1,j = 0 then Stop
7. vj+1 = wj/hj+1,j

8. EndDo

GMRES is Arnoldi’s method followed by a minimization of (r, r). This is a
reliable method, and it has the nice property that the error decreases mono-
tonically with the iteration number. The disadvantage of GMRES is that one
needs to store all the incremental directions v1, . . . ,vm to do the minimiza-
tions. Therefore, it can become very memory-demanding if the number of
iterations is large. To circumvent the memory problem, one can restart GM-
RES after a certain number of iterations (typically 5 to 50). However, at the
restart, orthogonality is lost.

There are cleverer ways of generating the incremental directions v. The
standard method, which assumes that A is symmetric, is the Lanczos method.
Here it suffices to save three increment directions.

1. Choose a start vector v1 of norm 1.
2. Set β1 = 0, v0 = 0
3. For j = 1, 2, . . . , m, Do:
4. wj = Avj − βjvj−1
5. αj = (wj ,vj)
6. wj = wj − αjvj

7. βj+1 = (wj ,wj)1/2. If βj+1 = 0 then Stop
8. vj+1 = wj/βj+1
9. EndDo

This makes all the vectors vi, i = 1, 2, . . . , orthogonal (in infinite-precision
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arithmetic). With finite precision, orthogonality may be lost if the iteration
runs many steps. Consequently, the iteration may have to be restarted.

A method that is related to the Lanczos method is the conjugate gradient
(CG) method, where one keeps going in orthogonal directions. At least with
infinite-precision arithmetic, this method can guarantee convergence when
the number of steps equals the number of unknowns. The CG method for a
symmetric A can be written as follows:

1. Compute r0 = b − Ax0, p0 = r0
2. For j = 0, 1, . . . , until convergence, Do:
3. αj = (rj , rj)/(Apj ,pj)
4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. βj = (rj+1, rj+1)/(rj , rj)
7. pj+1 = rj+1 + βjpj

8. EndDo

An advantage of the CG method is that one does not store the whole history of
incremental directions. For positive definite symmetric matrices, the required
number of iterations for CG is proportional to the square root of the condition
number of the matrix.

B.3 Nonsymmetric A

Lanczos Biorthogonalization
The symmetric Lanczos algorithm can be extended to nonsymmetric matrices.
The biorthogonal Lanczos algorithm constructs a pair of biorthogonal bases

v1,Av1, . . . ,Am−1v1,

w1,AT w1, . . . , (AT )m−1w1,

with the orthogonality property (vi,wj) = δij . The procedure can be written
as follows:

1. Choose two vectors v1,w1 such that (v1,w1) = 1.
2. Set β1 = δ1 = 0, v0 = w0 = 0
3. For j = 1, 2, . . . , m, Do:
4. αj = (Avj ,wj)
5. v̂j+1 = Avj − αjvj − βjvj−1
6. ŵj+1 = AT vj − αjwj − δjwj−1
7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1
9. wj+1 = ŵj+1/βj+1, vj+1 = v̂j+1/δj+1
10. EndDo
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BICG and QMR
Relatively new methods are the biconjugate gradient (BICG) and quasi-
minimal residual (QMR) algorithms. BICG is a generalization of CG to non-
symmetric matrices. BICG generates the space of test vectors from powers of
AT rather than of A, so this is a Petrov–Galerkin method. The BICG method
works as follows (x∗ denotes the complex conjugate of x):

1. Set r0 = b − Ax0. Choose r∗
0 so that (r0, r∗

0) �= 0
2. Set p0 = r0, p∗

0 = r∗
0

3. For j = 0, 1, . . . , until convergence, Do:
4. αj = (rj , r∗

j )/(Apj ,p
∗
j )

5. xj+1 = xj + αjpj

6. rj+1 = rj − αjApj, r∗
j+1 = r∗

j − αjAp∗
j

7. βj = (rj+1, r∗
j+1)/(rj , r∗

j )
8. pj+1 = rj+1 + βjpj, p∗

j+1 = r∗
j+1 + βjp∗

j

9. EndDo

QMR uses the Lanczos procedure to generate the incremental directions
but still manages to avoid saving the v’s. Finally, QMR minimizes a quantity
that is related to (but not quite the same as) the residual. Hence the name
“quasi.” QMR does not require storage of the v vectors. As long as it does
not lose orthogonality, it is probably the most useful of the iterative schemes
for nonsymmetric matrices. In case the method loses orthogonality, QMR can
be restarted using the last x as a starting point.

A disadvantage of both BICG and QMR is that they also use the trans-
pose of the matrix A. Improvements in which AT is eliminated are called
BICGSTAB and TFQMR (transpose-free QMR).

B.4 Preconditioning

For good efficiency, the iterative solver must in general be combined with
a preconditioner; i.e., (B.1) is multiplied by some approximate inverse of A
from the left. This can strongly improve the convergence. A preconditioner
that often works, and is commonly used for eddy current calculations, is the
incomplete LU decomposition; see Appendix A.2.2. Iterative methods are de-
scribed in [64, 3, 32, 5, 6].
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Index

A (vector potential), 132
ABC, see absorbing boundary

conditions
absorbing boundary conditions, 5, 79
adaptivity, 104

MoM, 166
Ampère’s law, 3, 63
amplification factor, 43
assembling, 95

B (magnetic flux), 4
barycentric coordinates, 97
basis functions

for edge elements, 121
nodal, 89

boundary conditions, 4
absorbing, 79
Dirichlet, 91, 109
essential, 91
FDTD, PEC, 68
homogeneous, 91
natural, 91
Neumann, 91
perfectly matched layer, 79
Robin, 91, 109
Sommerfeld, 149

c (speed of light), 4, 57
capacitance

computing, 22
definition, 23

CEM, see computational electromag-
netics

CFIE, see combined field integral
equation

CFL condition, see Courant–Friedrichs–
Levy condition

CG, see conjugate gradient method
collocation, 158
combined field integral equation, 177
computational electromagnetics, 1, 2
conjugate gradient method, 211
convergence, 11
Coulomb gauge, 137
Courant condition, 60
Courant–Friedrichs–Levy condition, 60
curl-curl equation, 6, 37, 108

weak form, 109

D (electric displacement), 4
Derivative operators

Dx and Dxx, 27
differential equations solvers, 192
Dirac delta function, 155
Dirichlet boundary condition, see

boundary conditions
dispersion relation, 7, 34

exact, 7
FDTD, 3D, 75–78
numerical, 59

dissipation, 38, 94
divergence conforming elements, 175

E (electric field), 4
eddy current calculations, 132

3D, 136
edge elements, 108
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on bricks and tetrahedra, 111
on rectangles, 110
on triangles, 121

EFIE, see electric field integral equation
eigenmode, 37
eigenvalue problems, 37
eigenvalues

frequency-domain calculation of, 39
time-domain calculation of, 42

electric field integral equation, 173
element matrix, 98, 115
energy, 5

density, 5
electrostatic, 5, 101
magnetostatic, 5

ε (electric permittivity), 4
variable, 64

ε0 (free-space electric permittivity), 4
εr (relative electric permittivity), 4
error estimation, 17

a posteriori, 11, 104
error indicator, 104
explicit time-stepping, see time-

stepping, explicit
extrapolation, 12

Faraday’s law, 3, 63
fast Fourier transform, 47
fast multipole method, 196
FDTD, see finite-difference time-domain
FEM, see finite element method
FFT, see fast Fourier transform
finite difference derivatives of complex

exponentials, 27
across two cells, 28
on staggered grids, 28
second-order, 30

finite differences, 19
across two cells, 19
noncentered, 19
on staggered grids, 19
second-order, 19

finite element
definition, 88

finite element method, 87, 194
mixed-order, 106
relation to FDTD, 108, 112–113
time-dependent problems, 130

finite integration technique, 195

finite volume method, 193
finite-difference time-domain method,

57, 193
3D, 65
integral interpretation, 72
solenoidal magnetic flux density, 73
unit cell, 65

FIT, see finite integration technique
FMM, see fast multipole method
FVTD, see finite volume method

Galerkin’s method, 88, 143, 158
gauge condition, 171
gauge transformation, 137, 171
Gauss’s theorem, 4
Gauss–Seidel iteration, 22
Gaussian integration, see numerical

integration
Green’s function, 154

3D electrostatics, 155
for the vector potential, 171

grid
square, 20
staggered, 19, 28, 63, 64
unstructured, see mesh

group velocity, 8, 28

H (magnetic field), 4
Halléns equation, 179
Helmholtz equation

1D, 33, 39, 89
1D, discretized, 39
2D, 92
2D weak form, 93

hybrid methods, 198

initial conditions
discretized wave equation, 59
eigenfrequency calculation, 70
for Ampère’s law, 6
for Faraday’s law, 6
for FDTD, 64
for the vector wave equation, 6

integral equation solvers, 195
integral equations, 9

charge density, 153
integration by parts, 38
internal resonances, 174

J (electric current density), 4
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j (imaginary unit), 6
Js (surface current), 5
Jacobi iteration, 22

k (wavenumber), 7, 27

λ (wavelength), 27
Laplace transform, 49
Laplace’s equation

2D, 20
2D, discretized, 21
iterative solution of, 21
quadratic form, 101

leap-frog, see time-stepping
Lorentz gauge, 170
low-frequency approximation, 8, 132,

136
lumped, see mass lumping

magic time step, 59, 61, 77
magnetic field integral equation, 176
magnetostatics, 132
mass lumping, 108, 131
mass matrix, 115
MATLAB

2D FEM, edge elements, 123
2D FEM, nodal elements, 100
2D MoM, 161
capacitance of coaxial cable, 23
FDTD, 3D, 68
Helmholtz equation, 1D, 39
Padé approximation, 50
wave equation, 1D, 45

Maxwell’s equations, 3
1D, 106
frequency domain, 37

mesh, 87
computer representation, 99
generation of, 101

mesh refinement
adaptive, 104
uniform, 104

method of weighted residuals, 146
method of moments, 153
MFIE, see magnetic field integral

equation
midpoint integration, see numerical

integration
mixed elements, 108

MLFMA, see multilevel fast multipole
algorithm

MoM, see method of moments
µ (magnetic permeability), 4

variable, 64
µ0 (free-space magnetic permeability), 4
multigrid methods, 205
multilevel fast multipole algorithm, 196
µr (relative magnetic permeability), 4

N i, see basis functions for edge
elements

near-to-far-field transformation, 81
Neumann boundary condition, see

boundary conditions
Newmark scheme, 131
nodal basis functions, see basis

functions, 93
nodal basis funtions, 95
nodal elements, 93
numerical dispersion, 59, 77
numerical integration

for log-singularity, 168
Gaussian integration, 17, 168
midpoint integration, 12, 168
Simpson’s rule, 12
trapezoidal rule, 168

Nystrom method, 158

ω (angular frequency), 6
open region problems, 79
overrelaxation, 22, 205

Padé approximation, 49
PEC, see perfect electric conductor
penalty term, 136
perfect electric conductor, 5
perfectly matched layer, 5, 79
Petrov–Galerkin method, 144
phase velocity, 8
φ (electrostatic potential), 9
ϕi (nodal basis function), 93
PML, see perfectly matched layer
point matching, 158
Poisson’s equation, 3, 153
Prony’s method, 51

quadratic form, 139
for Laplace’s equation, 101
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Rao–Wilton–Glisson elements, 175
Rayleigh–Ritz method, 143
reciprocity, 159
resolution, 11
ρ (electric charge density), 4
ρs (surface charge density), 5
Robin boundary condition, see

boundary conditions

self-adjoint, 37, 38
σ (electric conductivity), 4
simplex coordinates, 97
Simpson’s rule, see numerical integra-

tion
skin effect, 134
solenoidal magnetic flux density,

condition of, 3
Sommerfeld boundary condition, 149
spurious modes, 28, 108
SSOR, see symmetric successive

overrelaxation
stability analysis, 43, 59

von Neumann, 43, 45
stability limit

FDTD, 3D, 77
general, 44
wave equation, 1D, 60

staggered grids, see grid
staircase approximation, 3, 57, 193
stationary point, 139
stiffness matrix, 115
Stokes’s theorem, 5
symmetric successive overrelaxation,

205

t (time), 4
Taylor expansion, 13, 19
TE modes, see transverse electric modes
tent functions, 89, 106

time-stepping
explicit, 43, 57
leap-frog, 43
Newmark, 131
stability limit, see stability limit

TLM, see transmission line method
TM modes, see transverse magnetic

modes
top-hat functions, 106
transmission line method, 194
transverse electric modes, 54
transverse magnetic modes, 54
trial functions, see basis functions

ungauged formulation, 138

variational methods, 139
vector Helmholtz equation, 6
vector wave equation, 6
von Neumann stability analysis, see

stability analysis

wave equation
1D, 7, 33, 45
1D, discretized, 45, 58
analytical solution,1D, 7

wavenumber, 7, 27
analytical, 1D, 39
numerical, 28

weak form
Helmholtz equation, 1D, 90
Helmholtz equation, 2D, 93
vector Helmholtz equation, 109

weighted residuals, 158

Yee cell, 66
Yee scheme, see finite-difference

time-domain
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