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We can use our knowledge of atoms, Quantum Mechanics and Statistical physics to 
explain what we call condensed matter physics. Condensed matter physics splits up into 
three branches; crystalline solids, amorphous materials and liquids. Whilst solid state 
physics is the study of crystalline solids and amorphous materials, this course will only 
be looking into the physics of crystalline solids. 
 
So what is a crystal? What are we interested in? The easiest way to answer these 
questions at the moment is with an example; iron is as good as any, 
 
[Iron is an interesting example as there are two possible crystal structures that iron can 
make; face centred cubic (fcc) and body centred cubic (bcc).] 
 
Properties that we’re interested in Iron 
Transition temperature – melting point KTM 1808=  (solid at room temperature 
Mechanical     - strength 
  - elasticity 

Pretty strong stuff – used for buildings and 
ships like the titanic. 

Electrical - conductivity Resistivity cmΩ−510  
Magnetic - susceptibility Ferromagnetic for cTT <  
Thermal - heat capacity 

32
3

TTTC βεγ ++=  
Optical  - reflectivity 
  -colour 

Iron reflects visible light 
Irons coloured! 

 
 

Aim of course 
 
We have a problem; in any simple sample of material we have about 2310  atoms. 
Therefore if we try to solve a problem for this sample, we’ll have a many body problem 
which has no exact solution. So we must develop approximation schemes and associated 
physical pictures (models). That is the point to this course. 
 
We’ll start with a structure of perfect infinite crystal at 0=T . 
 
The specific heat is given by; 3TC β=  - this is due to lattice vibrations (see the Debye 
model). 
 
If the electrons are free to travel the there is a second contribution; TC γ=  
 
If we consider spin waves (which are the magnetic equivalent of lattice vibrations) we 

find 2
3

TC ε= . 
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We now assume that the heat capacity is the sum of these three contributions which 

gives; 32
3

TTTC βεγ ++= . This assumption is not entirely correct, there should be some 
small corrections which we won’t worry about right now. 
 
 
Contents of this course; 
 
Section Reference in Hook and Hall 

1. Crystal Structures 1.1-1.3 
2. Diffraction and Reciprocal Lattice 11.1, 11.2, 12.1 – 12.3 
3. Lattice Dynamics 2.1 – 2.6, 12.4 
4. Metals Chapters 3 and 4 
5. Semiconductors Chapter 5 

 
 
Texts 
 
1. Hook and Hall, Solid State Physics, Wiley, 2nd Edition, 1991 
2. Kittel, Introduction to Solid State Physics, Wiley, 8th Edition, 2004 
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1. Crystal Structure 
 

1.1. Translation Symmetry And Bravais Lattices 
 
At the heart of solid state (crystal) physics is the assumption of translation symmetry. A 
non-trivial translation will leave any structure (a 2D object) or any pattern (a 3D object) 
and leave it unchanged. 
 
For example, let’s consider an infinite lattice; 
 

 
 
 
We need to ask which points are equivalent. The vector between any two equivalent 
points leaves the lattice unchanged under translations. These vectors characterise the 
symmetry of the pattern. Equivalent points have the same environment in the same 
orientation. 
 
Translation symmetry: 2D can be characterised by a two dimensional lattice or net and in 
three dimensions by a Bravais Lattice. 
 
Definitions 
 

1. A Bravais Lattice is an infinite array of points which appears exactly the same 
when viewed from any one of the points. 

2. A Bravais Lattice consists of all points with position vector R  of the form 
cnbnanR 321 ++=  where cba ,,  are any three non-coplanar vectors and 

321 ,, nnn  range through all integer values (positive, negative and zero). 
 
 

2
1  

Any combination of these two vectors 
will leave the lattice unchanged under 
translations 



Page 8 of 78 

1.2. Basis and unit cell 
 
What is it that repeats to give the whole pattern/ structure? 
 

 
 
There are two blue blobs in each parallelogram. The corners of each parallelogram (the 
red dots) are equivalent points. 
 
“The lattice plus the basis equals the structure”. 
 
We start with a parallelogram (or a parallelepiped in three dimensions) whose edges are 
the lattice vectors. We associate the contents (AKA the basis) with all the lattice points. 
The choice is not unique, just like the choice of the lattice vectors. 
 
Sometimes the basis is defined within a shape other than a parallelogram or a 
parallelepiped which tessellates the plane (or equivalent in three dimensions) i.e. it fills 
up all of space without overlapping or leaving gaps. 
 
A crystalline structure consists of identical copies o the basis located at all the points of 
the Bravais lattice. 
 
A primitive unit cell is the box which contains the basis. A unit cell may be chosen to 
contain more then one copy of the basis, this is known as a non – primitive unit cell. 
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The area of the unit cell made using 'a  and 'b  is four times greater than that of the unit 
cell constructed with a  and b ; baba ×=× 4''  

 
Lattice vectors a  and b  are primitive and define a primitive unit cell. Lattice vectors 

'a and 'b  are non - primitive. 
 
The non – primitive unit cell contains four copies of the basis. 
 
The choice of unit cell and lattice vectors is inseparable. A non – primitive choice is 
usually made to reflect some symmetry in the structure which may not be apparent in the 
primitive unit cell. 
 
A unit cell is a region that fills all of space, without either overlapping or leaving voids, 
when translated through some subset of the vectors of a Bravais lattice. A unit cell is 
primitive if the same is true for all the vectors of a Bravais Lattice. 
 
 
A conventional unit cell may be chosen which is non – primitive, usually to preserve 
some symmetry (or Orthogonality) of the lattice vectors. 
 

b  a  

'b  

'a  

Unit cell made of a  and b  Unit cell made of 'a  and 'b  
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1.3. Classifying lattices: symmetry in 2D 
 
 

 
Square Lattice: �90: == γba  

 
This square lattice has rotational symmetry. We 
say that this lattice has “four fold  rotational 
symmetry”. 
 
 

 
 

Symmetry operations 
 
Operations which map the pattern into itself include translation, rotation, reflection, 
inversion ( )rr −→  and various combinations of these. 
 

A 
n
π2

 rotation is called an n -fold rotation. (For a Bravais lattice 6,4,3,2=n ) 

 
 

Two Dimensional Lattice Types 
 
All of the possible two dimensional lattices fall into one of these 5 categories; 
 

• Square;    �90: == γba  4 fold - 4 mirror planes 

• Hexagonal   �120: == γba  6 fold - 6 mirror planes 

• Rectangular  �90: =≠ γba  2 fold - 2 mirror planes 

• Centred Rectangular �90: =≠ γba  

• Oblique   none of the above 
 
 
 
 
 
 
 
 

γ  

a  

b  
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1.4. Classifying lattices: Symmetry in 3D 
 
There are 14 Bravais Lattices (see Kittel p. 9) 
 

 
 
Simple Cubic 
Body – Centred Cubic 
Face – Centred Cubic 

 
�90; ===== γβαcba  

Hexagonal �� 120;90; ===≠= γβαcba  

 
 
 

Projected Crystal Structures 
 
We have a method for representing 2D unit cells: we project down the c  axis and label 
sites with fractional c - coordinates. 
 
This is best explained through example; 
 

Polonium, Po  

 
 
This is a monoatomic simple cubic structure. It’s not worth knowing that polonium takes 
this structure for temperatures upto about C�38  and has a half life of about 140 days. 

a  

a  

1,0  
czbyaxr ++=  

The lattice is a simple cubic. 
The basis is one Po  atom 
( ) ( )[ ]0,0,0,, =zyx  

This means it has an atom hidden behind it (a cubic 
structure), if an atom has an unlabelled c  

coordinate then it is assumed to be )1,0(  

γ  

α  

β  

a  

b  

c  
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Chromium, Cr  

 
 
This is a monoatomic body centred cubic structure.  
 
 

Nickel, Ni  

 
 
This is a monoatomic face centred cubic structure. 
 
 
 

Cobalt, Co  
 

 
 
This structure is called hexagonal close packed (h.c.p) and the lattice is hexagonal. 
 
 
 
 

The lattice is hexagonal.  
The basis is two Co  atoms, one at 

( )0,0,0  and one at �
�

�
�
�

�

2
1

,
3
1

,
2
3

 
2
1  

The lattice is a face centred cubic.  
The basis is one Ni  atom. 

2
1  

2
1  

2
1  

2
1  

= Cr  atom 

The lattice is a body centred cubic.  
The basis is one Cr  atom. 2

1
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Note on “close packing” 
 
The stacking of close packed layers for the hexagonal close packed (h.c.p) structure is 
[ ]nAB  
 

ba =  and aac 63.1
3
8 ≈=  

 
 
However in practise this value varies as this is not a perfect model of lattice structure; 
 
 
Metal 

a
c

 

Co  1.62 
Be  1.56 
Zn  1.86 
Gd  1.59 
 
 
If we change the sequence to [ ]nABCABCABC  then we find that this structure is the face 
centred cubic structure. 
 
There are other sequences; 
 
Sm: [ ]nABABCBCAC  
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1.5. More Crystal Structures 
 

Silicon 
 

 
This structure is called the diamond structure and is also present for Ge  and C  (in it’s 
diamonised form obviously!) 
 
 

CsCl 
 

 
 
 
The number of nearest neighbours of the opposite sort is called the co-ordination number 
and is eight in this case. 
 
 

Cs 
Cl 

This lattices is a simple cubic lattice. The 
basis is one Cs  atom located at ( )0,0,0  and 

one Cl  atom located at �
�

�
�
�

�

2
1

,
2
1

,
2
1

 

The lattice is a face centred cubic 
lattice and the basis is two Si  atoms 
i.e. one located at [ ]0,0,0  and one at 

��

	

�

�

4
1

,
4
1

,
4
1

 
2
1  

2
1  

2
1  

2
1  

4
3  

4
3  

4
1  

4
1  
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NaCl 
 
This is quite a complicated structure and so it’s easiest if we first break it down; 
 

 
Combining these two gives the full structure; 
 

 
The lattice is a face centred cubic lattice. The basis is a Na  atom at ( )0,0,0  and a Cl  

atom at �
�

�
�
�

�

2
1

,
2
1

,
2
1

. This structure is called the rocksalt structure and has a co-ordinate 

number of 6. 
 
 

2
1  

2
1  

supCl  

subNa  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

supCl  

subNa  
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Zinc Blende 
 

 
 
 
 
 
 
 
 
 
 
 

This lattice is a face centred cubic lattice. 
The basis is a Zn  atom at ( )0,0,0  and a 

S  atom at �
�

�
�
�

�

4
1

,
4
1

,
4
1

. The co-ordination 

number of this structure is 4. 

2
1  

2
1  

2
1  

2
1  

4
3  

4
3  

4
1  

4
1  

Zn  

S  
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2. Diffraction and the reciprocal lattice 

2.1. Scattering of a plane wave by a crystal 
 

 
 
For scattering off an individual atom, the final wavefunction is  
 

( )
( )

1

.
1.

1

rR
eb

ea
d

rRki
trki

IF

dF
I

−
=Φ

−
−ω  

 
For scattering off a number of atoms, j ; 
 

( )
( )


 −
=Φ

−
−

j jd

rRki
jtrki

IF rR

eb
ea

jdF

I

.
. ω  

 
 
For a detector which is a very long way away from the atoms (i.e. a large dR ) then; 
 

jRrR djd ∀≈−  

 

So; 
( ) ( )


 −
−

=Φ
j

rkki
j

d

trki
I

F
jFI

I

eb
R

ea .
. ω

 

 
This is a wave travelling in the direction of Fk  whose amplitude is determined by the 
sum over atoms, j . 
 
We define the wavevector transfer as FI kkQ −= . 
 

1r  Ik  
( )trki

II
Iea ω−=Φ .  

O 

Fk  Final (scattered) 
wave from one atom 

Detector, position dR  
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Note that the momentum transfer is Q� . 
 
For each atom, jr  is the position of the associated lattice point, dR , plus the position 

within the basis bjr ;    bjdj rRr += . 
 
 
If we split the interference term into two, one over the lattice points and the other over 
atoms in the basis; 
 

( )




−

=Φ
basis

rQi
j

lattice

RQi

d

trki
I

F
bjd

I

ebe
R

ea ..
. ω

 

 
Now lattice vectors may be written as integer sums over lattice vectors cba ,,  so; 
 

( )
 ++

lattice

cnbnanQie 321.
 

 
Constructive interference occurs when all of the terms add; 
 

321

3

2

1

,,

2.

2.

2.

mmm

mcQ

mbQ

maQ

�
�

�
�

�

=
=
=

π
π
π

 are integers; exponential is unity. 

 
 
N.B. cb ×  is orthogonal to both b  and c . 
 

If we write;  321 .
2

.
2

.
2

m
cba
ba

m
cba
ac

m
cba
cb

Q
×
×+

×
×+

×
×= πππ

 

 
Then the above conditions are satisfied for all lattice points. 
 
 



Page 19 of 78 

2.2. Sum over lattice points 
 

As found in the last section, we can write 321 .
2

.
2

.
2

m
cba
ba

m
cba
ac

m
cba
cb

Q
×
×+

×
×+

×
×= πππ

. 

 

If we write 
cba
ba

c
cba
ac

b
cba
cb

a
×
×=

×
×=

×
×=

.
2

.
2

.
2 *** πππ

 

 
Then diffraction happens when GcmbmamQ =++= *

3
*

2
*

1  
 

321 ,, mmm  are often labelled as lkh ,, . 
 
Since ba ,  and c  are non-coplanar vectors, so are **,ba  and *c , therefore these Q  
values also represent a Bravais lattice (but in the space where the wavevectors exist). 
 
We now have a Bravais lattice in wavevector space which tells us in which directions 
diffraction happens from a crystal. This space is called reciprocal space or k-space (or q-
space) since the dimensions of k  are 1−L . The lattice is called the reciprocal lattice. 
Diffraction occurs when GQ = , where G  is any reciprocal lattice vector. 
 
 

2.3. Reciprocal Lattice Vectors 
 
Note that π2* =aa  and that 0** == caba  
 
So a  is orthogonal to b  and c , but  this does not imply that *a  is parallel to a . 
 
For cnbnanR 321 ++=  and *

3
*

2
*

1 cmbmamG ++= ; 
 

( )3322112. mnmnmnRG ++= π  with n ’s and m ’s integer. 
 
So that Re RGi ∀= 1.  of the lattice 
 
This satisfies the constructive interference condition. If ba ,  and c  are chosen as non-
primitive, then this construction for the reciprocal lattice vectors is not correct since the 
condition needs to be satisfied for all lattice vectors, not just the ones which can be made 
up using the non-primitive lattice vectors. The effect of this is to generate points which 
are not really reciprocal lattice vectors. 
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Example: Non-primitive lattice vectors in the body centred cubic 
lattice 

 
 

Thus;  ( ) ( ) ( )1,0,0
2

0,1,0
2

0,0,1
2 ***

a
a

a
b

a
a

πππ ===  

 
 
Let’s choose a conventional primitive choice; 
 

�
�

�
�
�

� −=

�
�

�
�
�

� −=

=×�
�

�
�
�

� −=

2
1

,
2
1

,
2
1

'

2
1

,
2
1

,
2
1

'

2
'''.

2
1

,
2
1

,
2
1

'
3

ac

ab

a
cbaaa

 

 
These vectors give; 
 

�
�

�
�
�

�=×
2
1

,0,
2
1

'' 2acb  

�
�

�
�
�

�=×

�
�

�
�
�

�=×

2
1

,
2
1

,0''

0,
2
1

,
2
1

''

2

2

aba

aac
 

 
And so we find that the primitive reciprocal lattice vectors are; 
 

( )

( )

( )1,1,0
2

'

0,1,1
2

'

1,0,1
2

'

*

*

*

a
c

a
b

a
a

π

π

π

=

=

=

 

b  
c  

a  

Conventional vectors are: 
( )
( )
( )1,0,0

0,1,0

0,0,1

ac

ab

aa

=
=
=

 

 
3. acba =×�  
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Any integer sum of these primitive reciprocal lattice vectors is a reciprocal lattice vector 
e.g; 
 

( )

( ) 1',0',1'2,1,1
2

''

0',0',2'2,0,2
2

'2

321
**

321
*

====+

====

mmm
a

ca

mmm
a

a

π

π

 

 
 
However, there are vectors which can be constructed from the conventional (non-
primitive) reciprocal lattice vectors which cannot be constructed from the primitive 
vectors e.g; 
 

( )

( )1,1,1
2

0,0,10,0,1
2

***

321
*

a
cba

mmm
a

a

π

π

=++

====

 

 
This is true for all 321 ,, mmm  where 12321 +=++ nmmm . These are not reciprocal lattice 
points and no diffraction occurs. When using conventional non-primitive lattice vectors, 
these are referred to as systematic absences. They are an artefact of the choice of a non-
primitive cell. 
 
 

2.4. Magnitude of lkhG ,,  in cubic systems 
 
If we consider the following vectors;  
 

( ) ( )

( ) ( )

( ) ( )1,0,0
2

1,0,0

0,1,0
2

0,1,0

0,0,1
2

0,0,1

*

*

*

a
cac

a
bab

a
aaa

π

π

π

==

==

==
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Then we find that  
 

( )lkh
a

clbkahGhkl

,,
2

***

π=

++=
    [ ]integers,, lkh  

 

And so the magnitude is; ( )2
1

222
,,

2
lkh

a
G lkh ++= π

 

 
Diffraction occurs when GQ = ; 
 

( )

( )

( )1,1,0
2

'
2
1

,
2
1

,
2
1

'

0,1,1
2

'
2
1

,
2
1

,
2
1

'

1,0,1
2

'
2
1

,
2
1

,
2
1

'

*

*

*

a
cac

a
bab

a
aaa

π

π

π

=�
�

�
�
�

� −=

=�
�

�
�
�

� −=

=�
�

�
�
�

� −=

 

 
 

2.5. Lattice planes and indices 
 

 
 
Consider lattice points as belonging to planes, separated by a distance ‘ d ’. Now consider 
these planes as wavefronts of some wave characterised by a wavevector k  perpendicular 

to the wavefront. 
d

k
π2=  

 

For a simple cubic lattice; ad = ; ( )0,0,1
2
a

k
π=  or *ak =  

a  

b  

d  

k  

Lattice planes separated by distance d  
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Let’s consider a different set of planes: 

 
 
 
The wavevectors of the waves whose wavefronts are lattice planes are the position 
vectors in reciprocal space of reciprocal lattice points. 
 
But do all lattice points represent planes? 
 

 
 

a  

b  

k  

( )?0,0,2  

Spatial harmonics. The same planes 
with extra wavefronts. The real space 

separation is 
2
a

d = . Similarly ( )0,6,6  

is a harmonic of ( )0,1,1  etc. 

a  

b  

d  

k  

( ) **or0,1,1
2

2
1

bak
a

k

d

−=−=

=

π
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2.5.1. Indices: Part 1 
 
The convention for representing lattice planes is to take the integers 321 ,, mmm  (the 

coefficients of *** ,, cba ) and write the negative u  as uu =−  
 
e.g. ( ) ( ) ( )2,15,7,0,1,3,0,0,1    In general ( )lkh ,,  
 
If the unit cell has sides cba ,,  then adjacent planes intersect the axes at ( )0,0,0  then at 

�
�

�
�
�

�

l
c

k
b

h
a

,,  

 

 
 
 
Sets of lattice planes ( )lkh ,,  are elated by symmetry written as { }lkh  
 
e.g. In cubic { } ( ) ( ) ( ) ( ) ( ) ( )200,020,002,200,020,002002 =  
 
 

2.5.2. Indices: Part 2 
 
When we are interested in lattice planes only (and not harmonics), we use Miller Indices 
where lkh ,,  have any common factors removed.  
 
e.g. ( ) ( ) ( )007002001  are all represented by Miller Indices ( )001  
 
 

a  

b  
( )0,0,2  planes intersect axis at origin 

then 
2
a

, a  and not at all on cb , . 
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Directions in real space 
 
For direction: cwbrau ++  we write [ ]wvu  (with common factors removed). Sets of 
directions related by symmetry are written wvu  e.g. In a cubic crystal 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]111,111,111,111,111,1,1,1,1111,1,1 =  
 
 

2.6. Bragg’s Law 
 

We have diffraction when hklGQ = . The separation of lattice planes is 
hkl

hkl G
d

π2= . 

 

The Bragg angle, θ , is half the angle between Ik  and Fk  �
�

�
�
�

� ==
λ
π2

FI kk  

 

 
 

hkld
kQ

π
λ

θπθ 2sin4
sin2 ===  

 
So θλ sin2 hkld=  
 

N.B. For a integer hklGn  has spacing 
n

dhkl  (i.e. harmonics) 

 
For cubic axes: 
 

( )

( )2
1

222

2
1

2222

lkh

a
d

lkh
n

G

hkl

hkl

++
=

++= π

 

Ik  
Fk  

d  

θ  

θ  
Fk  

Ik  

Q  
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2.7. Structure Factor 

As we found earlier on 
( )




−

=Φ
basis

rQi
j

lattice

RQi

d

tRki
I

F
bjd

dI

ebe
R

ea ..
. ω

 

 
The lattice sum tells us where diffraction happens (Bragg scattering) in reciprocal space. 
This enables us to determine the properties of the lattice (symmetry of lattice vectors). 
 
The sum over the basis (called the lattice factor) determines the relative strengths of the 
Bragg peaks, so it is this information which enables us to determine the basis. Note that 
the measured intensity is proportional to the square of the structure factor. 
 
Since Bragg is restricted to reciprocal lattice points, hklG , we need to calculate 

2



basis

rGi
j

bjhkleb  

 
 

2.7.1. Structure factor for a monoatomic structure 
 
Where there is only one atom in the basis, we can chose it’s position to be at lattice points 
( )0=bjr  so the structure factor for all Bragg peaks is 2

jb , such that all Bragg peaks have 
the same intensity. 
 

2.7.2. Structure factor for a non-monoatomic structure 
 
For a non-monoatomic structure, we evaluate the structure factor as a sum over each 
atom in the basis. 
 

Example 1: CsCl 
 

Simple cubic lattice: ( )lkh
a

Ghkl ,,
2π=  

 

Basis is +Cs  ion at ( )0,0,0  and a 1−Cl  ion at �
�

�
�
�

�

2
1

,
2
1

,
2
1

 

 
For X-rays, the scattering power is proportional to the number of electrons 
( )18,54 −+ ClCs  so; 
 



Page 27 of 78 

( ) ( )( ) ( )

( )

( ) 22

2

2
1

,
2
1

,
2
1

,,
2

2

2

2
1

,
2
1

,
2
1

,,
2

0,0,0,,
2

2

18318

18318

1854.

lkhi

alkh
a

i

alkh
a

i
alkh

a
i

e

e

eeFS

++

�
�

�
�
�

�

�
�

�
�
�

�

+=

+=

+=

π

π

ππ

 

 
There are now two possible cases; where ( )lkh ++  is even or odd: 
 
( )

�
�
�

++
++

=
oddlkh

evenlkhFS
4
16

18
.

2

2

 

 
 
 
 
A measurement of the Bragg scattering from a crystal of CoCl  gives peaks which 
correspond to a simple cubic reciprocal lattice, with relative intensities as given here. IT 
is this information which enables us to say what the structure is. 
 

Example 2: Silicon 
 
Take the conventional, non-primitive, lattice vectors and remember that some points are 
systematic absences (see example sheet). The rule for face centred cubic lattices is that 

lkh  are either all or all even, for the reciprocal lattice points. All other cases (mixed odd/ 
even) are systematically absent. 
 

The basis is two silicon atoms ( )0,0,01 =r  and �
�

�
�
�

�=
4
1

,
4
1

,
4
1

2 ar  

( )lkh
a

Ghkl ,,
2π=  each Si  atom has 14 electrons so; 

 

( )( ) ( )

( ) 2

2

2

2

4
1

,
4
1

,
4
1

,,2
0,0,0,,22

1
14

1414

lkh
i

lkhi
lkhi

e
SF

eeSF

++

�
�

�
�
�

�

+=�
�

�
�
�

�

+=

π

π
π
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Consider:  
1. lkh ,,  all odd; in this case lkh ++  is also odd 
2. nlkh 4=++  
3. 24 +=++ nlkh  

 

�
�

�
�

�

=
3caseIn0
2caseIn4

1caseIn2

14

2
SF

 

 
Not all peaks which are present have the same structure factor. 
 

2.7.3. Accidental Absence 
 
There are reciprocal lattice points where the structure factor is zero. These are called 
accidental absences. 
 
Accidental absences arise as a result of cancellation within the basis and not as a result of 
the symmetry of the lattice. In silicon, the ( )100  is systematically absent whilst the ( )222  
is accidentally absent. 
 
Distortions of the electron states can result in a lack of exact cancellation of the structure 
factor. (We have assumed in calculating the structure factor that both atoms in the basis 
have the same shape, in the same orientation, which is not required by the lattice 
symmetry). Careful experiments reveal some diffraction at accidental absences. 
 
 

2.8. Diffraction Experiments 
 
Any particle beam can be used provided: 
 

• Particles interact with the crystal, but not too strongly. 
• There is an available intense bean 
• There is an efficient method to detect the scattered beam 
• The wavelength of the beam is less or equal to the lattice spacings. 

 

For most simple crystal structures, lattice spacings are around 
�

A52 −  ( )m1010− . The ideal 

radiation/ particle wavelength is about 
�

A25.0 − . The moist commonly used particles are 
X-rays (photons), electrons (at keV  energies) and neutrons (Thermal). 
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2.8.1. X-Ray Diffraction 
 

Production of X-rays 
 
We produce X-rays in one of two ways; 
 

• With an X-ray tube (tricky to remember eh?) 
 

This is a cheap easy method – we use a rotating anode tube to produce intense 
beams. 

 
• Synchrotron radiation (www.srs.ac.uk/ www.esrf.fr/ www.diamond.ac.uk) 

 
This is the “bending radiation” – when highly relativistic particle (usually 
electrons) are accelerated in a magnetic field. e.g. Daresbury, RSRF, Diamond. 
This method produces intense, highly collimated, white beams, but is expensive 
and inconvenient. 

 
 

Detection of X-rays 
 
We have a number of ways of detecting X-rays; 
 

• Photographic plates 
• Ionisation chambers – the movie famous clicking Geiger-Muller tube 
• Scintillation detector 
• Solid State detectors 

 
 

Interaction of X-rays with crystals 
 
Incident X-rays have oscillating electric fields. As electrons are accelerated they emit 
radiation. The emitted X-rays have the same wavelength as the incident X-rays and so 
they are coherent. We find that there is stronger scattering from heavy elements.  
 
It may be difficult to distinguish atoms of similar Z  and it is difficult to detect scattering 
from light (low Z ) elements, especially in the presence of heavier ones. 
 
Hydrogen ( )+H  is especially difficult to ‘see’ with X-rays. 
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Resonance Scattering 
 
When the energy of the incident X-ray: nmI εεε −=  in an atom, we can enhance the 
scattering power by many orders of magnitude. This requires a tuneabl;e source of X-rays 
i.e. a synchrotron. 
 

Form Factor 

 
 
The effect of extended electron states is to provide some degree of destructive 
interference between scattering from electrons in the same atom. The effect increases for 
increasing scattering angle or increasing Q  and reduces scattered intensities at higher 

Q  values. 

 
 

2.8.2. Neutron Diffraction 

Production of suitable neutrons 
 

We need the wavelengths of our neutrons to be about an angstrom; 
�

A1=λ . This means 

that the energy of our neutrons should be; k480
2
3

22 2

22

=→=== TTk
m
h

m
p

Bλ
ε  

 
1. Thermalise neutrons from fission in the core of a thermal reactor. A tube through 

the biological shielding gives a white beam (large spread of wavelengths), 
characterised by k300~T  

 

In
te

ns
ity

 

λ  

Small phase difference 

Large phase difference 
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e.g. Institut Lave Langerian, Grenoble, France. (UK, France, Germany 
collaboration) 

 
2. Spallation: If you accelerate charged particles (usually protons) and aim the beam 

at a heavy metal target ( HgUTa ,, ) then neutrons get spat out. We moderate the 
fast neutrons which “spall” off  the target. 

 

 
 
 e.g. ISIS (Rutherford lab, Oxford, UK) 
 
 

Detection of neutrons 
 
We use an ionisation chamber containing He3  has; pHnHe +→+ 33  
 
There are alternative methods, but they don’t work as well, one example if Li  glass 
scintillators. 
 
 

Interaction of neutrons with crystals 
 

1. Strong nuclear force 
 
On the atomic scale, nuclei are effectively point potentials. Scattering length, b , may 
be of either sign. Typically a few fm . This is simpler than the X-ray case because 
there is no form factor. This method is sensitive to light atoms ( HH 21 ,  contrast for 
example) and so is very useful in biology, polymer manufacture etc. 
 
2. Magnetic dipole of neutron 

 
Interacts with magnetic (unpaired) electrons. We can measure magnetic structures 
directly e.g. anti-ferromagnets . Scattering lengths are similar to the strong nuclear 
force above. This has a for factor, depending on the extent of the magnetic electrons; 
for example d3  states are more extended than f5  states etc. 
www.ncnr.nist.gov/resources/n-lengths 
 

 

Particle 
accelerator 

Fast 
Neutrons 
(GeV) 

Moderator 
Thermal 
neutrons 

Heavy 
metal 
target 
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2.8.3. Electron Diffraction 
 
Electrons are easy to produce and detect (kV electrons have useful wavelengths). 
However whilst electrons look like the best horse so far, they find it difficult to penetrate 
solid materials because of their charge and so electron diffraction is mostly applicable to 
thin layers and surfaces. 
 
Electrons interact via the coulomb interaction (nuclei and electrons) and exchange 
interactions (electrons). 
 
It is difficult to extract quantative information than in X-ray or neutron diffraction but the 
symmetries seen can be useful. See Hooke and Hall Chapter 12. 

 

2.8.4. Experimental Arrangements for diffraction 
 
1. Simple Crystal 

 
We use a monochromatic incident beam, achieved by Bragg diffraction from a 
monochrometor crystal. 

 
 
We need to establish the diffraction condition; hklGQ =  
 
We consider a plane of reciprocal space including the origin, for a crystal with a 
simple cubic lattice. 

d  

θ2  

White beam 

Ik  
Monochromatic beam 

θ
π
θλ

sin

sin2

m
I

mI

d
k

d

=�

=
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This construction tells us the, for any given wavelength λ  (Which is equal to 
k
π2

) 

what orientation we need for the incident beam, Ik , and the final beam, Fk , to be 
with respect to the crystal axes ( )cba ,, . In general we need to calculate the relative 
orientations of cba ,,  with respect to *** ,, cba . 
 
 

2. Powder Diffraction 
 
IT is not always possible to obtain a single crystal sample. We can use a powdered (or 
polycrystalline) sample and a monochromatic beam; 
 

 
 

a  

b  Ik  

Fk  

( )000  

( )110  

( )100  

Q  

Ik  

Fk−  

( )010  

( )200  

( )210  

*a  

*b  

Detector 

θ2  
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All orientations of crystallite present may be equally distributed, or may be textured. 
Scalar form of Bragg’s law is most useful. This allows us to collect lots of different data 
at once. 
 

In cubic crystals; 
( )2

1
222 lkh

a
dhkl

++
=  

 
We take account of the number of equivalent planes;  
 

e.g. 
{ }
{ } 24is120

6is100
 

 
Note; we can’t distinguish peaks with the same d  spacing, ( )333  and ( )511 . 
 
 
 
 

θ2  θ
π
sinhkld

k =  
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3. Lattice Dynamics 
 
So far, we have assumed that the atoms are stationary. This is not true at kT 0=  (zero 
point motion) and is even less true at non-zero temperature (thermal motion). 
 

3.1. 1D chain of identical atoms 
 
We consider a chain of N  atoms (later on we’ll let ∞→N ). 
 
We treat interactions as springs (of spring constant k ) between the nearest neighbours. 
Motion is constrained to be parallel to the chain only. 
 

 
 
Applying Newton’s 2nd law to the jth atom; ( ) ( )11 −+ −−−= jjjjj uukuukum ��  
 
Applying periodic boundary conditions: Njj uu +=  
 
We look for wavelike solutions: ( )tQjai

j euu ω−= 0  
 

The boundary condition implies that 1=iQNae or  integer:
2

n
Na

n
Q

π=  

 
Put the trial solution into the equation of motion and divide by common factors: 
 

( )
( )1cos2

22

−=
−+=− −

Qak

eekm iQaiQuω
 

 

Taking the positive solution, with n  from 1 to N :  ( ) �
�

�
�
�

�=
2

sin2
Qa

m
k

Qω  

m  m  m  m  

1−j  j  1+j  2+j  

a  

ju  

k  k  k  
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We could also take n  from 
2
N−

 to 
2
N

, this is equivalent to translating part of the curve 

by 
a
π2

 (reciprocal lattice vector). 

 

 
Are these really the same? 

If we compare for example �
�

�
�
�

�

a
xπ8.1

sin  and �
�

�
�
�

� −
a

xπ2.0
sin ; 

 

 
 
 
 
 

( )Qω  

Q  0  
a
π

 
a
π−

 

( )Qω  

Q  0  
a
π

 
a
π2

 

x  

�
�

�
�
�

�

a
xπ8.1

sin  

�
�

�
�
�

� −
a

xπ2.0
sin
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• Brillouin zone  
 
The Brillouin zone is the primitive unit cell in the reciprocal lattice chosen in such 
a way that all points in the zone are closer to one reciprocal lattice point than to 
any other. We usually represent the lattice dynamics in one Brillouin zone. The 
wavenumber, Q , mapped into the Brillouin zone (reduced wavevector) is 
represented by q . 
 

• Dispersion relation 
 
The group velocity of a wave is ωqd . Usually, the group velocity is zero at the 

zone boundary. The phase velocity is 
q
ω

 and at small enough q  the relation is 

usually linear so that the group velocity equals the phase velocity. In general this 
is not true. 
 

 

3.2. Diatomic Linear Crystal 
 

This is a 1D chain with two types of atom. We consider the same forces (spring) 
constants between the nearest neighbours only. 
 

 
 
 
Applying Newton’s 2nd law to atoms in the jth cell; 
 

( ) ( )
( ) ( )jjjjji

jjjjji

uukuukum

uukuukum

,1,2,21,12

1,2,1,1,21

−−−=

−−−=

+

−

��

��

 

 
In a similar way to previously, the periodic boundary conditions are; 

NjjNjj uuuu ++ == ,2,2,1,1 ,  
 
 

1m  2m  1m  2m  

j  j  1+j  1+j  

a  

ju ,2  

k  k  k  

ju ,1  
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Again we look for wavelike solutions; 
 

( )

( )tqjai
j

tqjai
j

euu

euu
ω

ω

−

−

=

=

0,2,2

0,1,1
 

 

The boundary condition implies that integer:
2

n
Na

n
q

π=  

 

There are now N2  degrees of freedom. 
 
 
Substituting in these solutions and cancelling common factors gives; 
 

( ) ( ) [ ]
( ) ( ) [ ]2

1

0,10,20,20,10,2
2

2

0,20,10,10,20,1
2

1

uukueukum

euukuukum
iqa

iqa

−−−=−

−−−=− −

ω

ω
 

 
These equations can be written in matrix form; 
 

( )
( ) ��

�

�
��
�

�
=�

�

�

�

�
�

�

�
�
�
�

�
�
�
�

�

−+
+− −

0
0

21
12

0,2

0,1

2
2

2
1

u

u

kmek

ekkm
iqa

iqa

ω
ω

 

 
This is true for non-zero 0,20,1 , uu  (i.e. when determinant is zero). Let’s find the 
determinant; 
 
( )( ) ( )( )

( ) ( ) ( )( )

( ) ( )
0

2
sin

42

01cos22

01122

2

21

2
2

21

2122

22
21

22
21

22
2

2
1

=�
�

�
�
�

�−+−

=−−+−

=++−−− −

qa
mm
k

mm
mmk

qakmmkmm

eekkmkm iqaiqa

ωω

ωω

ωω

 

 
This is a quadratic expression in 2ω : 
 

( ) ( ) �
�

�
�
�

�−+±+=
2

sin4 2
21

2
21

2121

212 qa
mmmm

mm
k

mm
mmkω  
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Not that for each q  value there are two (positive) values of ω . This is consistent with 
their being N  values of q  which we allowed and N2  degrees of freedom. Thus there 
are two branches of vibrational excitation. 
 

If 
( )

21

212 2
or0;0

mm
mmk

q
+=== ωω  

 

If 
12

2 2
or

2
;

m
k

m
k

a
q == ωπ

 

 

 
 
Using Equations [1] and [2]: 
 
For 0=q , 0=ω : 
 
[1] gives; ( )0,10,220 uuk −=  

[2] gives; ( )0,20,120 uuk −=  
 
Therefore 0,20,1 uu =  
 
i.e. The atoms are vibrating in phase with the same amplitude. 
 
 

 

1m  2m  1m  2m  

j  j  1+j  1+j  

a  

ju ,2  

k  k  k  

ju ,1  1,2 +ju  1,1 +ju  

ω  

0  
q  

a
π−

 
a
π

 

( )
21

212
mm

mmk +
 

1

2
m
k

 

2

2
m

k
 

[1] 

[2] 

[3] 

[4] 
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This represents a long-wavelength all-in-phase sound wave. 
 

For 
( )

21

212 2
;0

mm
mmk

q
+== ω  

 

In [1]: 
( ) ( )0,10,20,1

21

21
1 2

2
uuku

mm
mmk

m −=+−  

                
( ) ( )

0,220,11

0,10,220,121

umum

uumumm

=−

−=+−�
 

 
i.e. The atoms are vibrating in antiphase with zero net momentum of the centre of mass 
for each pair. 
 

 
 
 

For 
a

q
π=   (at the zone boundary); 1=iqae  

So [1] and [2] become; 
 

( ) ( )
( ) ( )0,10,20,20,10,2

2
2

0,20,10,10,20,1
2

1

uukuukum

uukuukum

−−−−=−

+−−=−

ω

ω
 

 

0,20,2
2

2

0,10,1
2

1

2

2

kuum

kuum

−=−

−=−

ω

ω
 

 

When 
2

2 2
m

k=ω  since 21 mm ≠ , 00,1 =u  so the 1m atoms are stationary. 

 

For 
a

q
π= , neighbouring 2m  atoms vibrate in antiphase; 

1m  2m  1m  2m  

j  j  1+j  1+j  

ju ,2  

k  k  k  

ju ,1  1,1 +ju  
1,2 +ju  
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When 
1

2 2
m
k=ω , 00,2 =u , so the 2m  atoms are stationary. For 

a
q

π= , the 1m  atoms are 

vibrating in antiphase; 
 

 
 
 

3.3. Linear Crystal – with one type of atom and two 
different springs 

 

 
Solutions also give two branches as there are two atoms in the basis. This generalises in 
1D 
 
Number of branches = number of atoms in basis 
 
One and only one mode is acoustic (frequency goes to zero as q  goes to zero). 
 

3.4. Vibrations in three dimensions 
 
In general, atoms are bound in a potential which provides restoring forces in three 
dimensions which are not necessarily the same. Each atom has three degrees of 
vibrational freedom; so the number of modes is 3 times the number of atoms in the basis. 
Three of there modes are acoustic modes; one represents oscillations parallel to the 
direction of propagation (known as longitudinal) and two are transverse with oscillations 
perpendicular to the direction of propagation. 
 

m  m  m  m  
1k  2k  1k  

1m  2m  1m  2m  

ju ,2  

k  k  k  

ju ,1  1,1 +ju  
1,2 +ju  

1m  2m  1m  2m  

ju ,2  

k  k  k  

ju ,1  1,1 +ju  
1,2 +ju  
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Speed of sound 
 
Velocities of longitudinal and transverse acoustic modes are, in general, all different. 
Where propagation is parallel to a 3 or 4 fold rotation axis, the two transverse waves are 
constrained to have the same frequency.  
 
The longitudinal acoustic speeds are usually about twice the transverse speed and typical 

speeds are 
�

ATHz10ms10 13 =− . 
 
 

3.5. Quantum Effects in Lattice Dynamics 
 
In the harmonic approximation, the Hamiltonian is the sum of N3  independent oscillator 
Hamiltonians, all of which commute. The frequencies are the same as those of classical 
normal modes. 
 
The energy in each mode is given by Bose-Einstein statistics with zero chemical 
potential; 
 

( ) ( ) :
2
1

nqnqE ω��
�

�
�
�

� += integer 

�
�

	


�

�
=

−
=

Tke
n

B

1
1

1 ββω�  

 
We can treat the occupied states as Bose particles, just like photon states which are 
occupied electromagnetic wave states in a box. By analogy, the vibrational states in a 
solid are called phonons (quantised sound waves). 
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3.6. Examples of phonon-dispersion relations 
 
Lead is a monoatomic f.c.c. (face centred cubic) lattice; 
 

 
 
 

3.7. Newton Inelastic Scattering 
 
Static (average position) lattice gives Bragg scattering. Phonons can scatter neutrons ( 
and X-rays), but the neutron energy changes on scattering. For neutrons, the energy 
change is a large fraction of the incident energy. For X rays, the change in energy is a 
very small fraction ( meV10  compared with keV10 ). Peaks in scattering arise when the 
energy change ( )νh  on scattering and the momentum change ( )Q�  lie on the phonon 
dispersion curve. 
 

FI
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22

2222

ν

 

 

000 

010 110 210 

100 200 

q  

Q  
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Fk  

A longitudinal phonon at [ ]001  is a 
transverse phonon at [ ]110  on the 
zone boundary; 
 

[ ] [ ]110001 TL =  
000 

002 222 

220 
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3.8. Specific Heat  
 

εTv V
c ∂= 1  

 
Classically, Equipartition says that the energy of each mode associated with a quadratic 

energy term is just TkB2
1

. 

 

If we have N  atoms then; energy3
2
1

6 ==× TNkTkN BB  

It follows from this that BV k
V
N

c �
�

�
�
�

�= 3  Dulong-Petit law 

 

In a quantum case, the high temperature limit of the energy is TkB2
1

, so we expect this to 

hold at T>>highest phonon energy. 
 

Specific heat (insulator) 

 
 
 

vc  

T  
3~ Tcv  

Bk
V
N
�
�

�
�
�

�3  
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Density of states 
 
The energy of a phonon defined it’s thermal effect. So we need the density of states; 
 

 
 
 
The density of states has a maximum energy, but the shape can be very complicated. The 
density of states is always quadratic for small energies. 
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( ) ωωρ d  

ω  

( ) 2ωωρ ∝  
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3.8.1. Einstein Model 
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( )2
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βω

βω

ωε

E

E

E

e

e
k

V
N

c

e
N

E
BV

E

�

�

�

�

�

 

 
This has the correct high temperature limit (Dulong – Petit law), but let’s see what 
happens at low temperatures; 
 

( ) βωβω Eek
V
N

c EBV
�

�
−≈ 23

 

 
This is broadly correct, but it does fall too fast as 0→T . The problem arises from 
ignoring acoustic phonons (phonons where 0→ω  as 0→q ). 
 

3.8.2. Debye Model 
 
Use qv=ω  all with same velocity, v . 
 

This gives; ( ) 3

2

22
3

r
dV

d
ωω

π
ωωρ =  

 

To energy, Dω , where �=
D

v
dV

N
ω ωω

π0
3

2

22
3

3  

 

This gives 323 6 v
V
N

S πω =  

 

Eω  ω  

( )ωρ  

Dω  

( )ωρ  

ω  
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It may be shown that: 

[ ]DB
D

B
B

B
VT

Tk
Tk

k
V
N

T
k

c ω
ω

π
π

π
�

��
<<��

�

�
��
�

�
�
�

�
�
�

�==
→

for
5

12
5
2

lim
3

43
33

42

0
 

 
 
The low temperature form of Vc  is correct for Some average speed of sound v . For the 
full version of Vc , we use the full density of states and do integrals numerically.  
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4. Metals 

4.1. The Free-Electron Model 
 
Charged particles at high densities must interact strongly with eachother. But we know 
that metals are good conductors of electricity and heat, so let’s suppose that there are free 
electrons and see how far we get. 
 
 

4.1.1. One electron states 
 

In a volume, V ,for a cube of side L , the states are ( ) rkieVr .2
1−

=ψ  
 

:,,,,,, zyxzyxzyx nn
L

k
π= integers 

 

We allow for two spins and the density of states is ( ) dk
V

dkk 2

2
π

ρ =  

 

For the non-relativistic case; 
m

k

2

22
�

=ε  

 

This gives ( ) εε
π

εερ d
mV

d 2
1

32

32
�

=  

 

The Fermi function is; ( ) ( ) 1
1

+
= − βµεε

e
f  

 
The total number of electrons, N , is found by integrating the product of the Fermi 

function and the density of states; ( ) ( )�
∞

=
0

εερε dfN  

 

At 
�
�
�

>
<

==
µε
µε

0
1

;0 fT  

 
 
 

This gives that ( ) ( )3
2

2
2

3
2

0 n
m

T πµ �==   
V
N

n =  
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A few definitions; 
 

• The Fermi energy;   ( )0== TF µε  

• The Fermi wavevector ( )3
1

23 nkF π=  

• The Fermi temperature FFBTk ε=  
• The Fermi velocity  FF kvm �=  

 

For Sodium (monoatomic b.c.c. (body centred cubic) ,A23.4
�

=a  valence 1); 
 

• 
1

A92.0
−

=
�

Fk  

• eVF 2.3=ε  
• kTF

4107.3 ×=  
• 16101.1 −×= msvF  

 
 
Note; kTm 371=   (1% of FT ) 

 cvF <<  (so non-relativistic ( )kε ) 
 
 
 

4.1.2. Results of the Free Electron Model 
 

1. Specific Heat 
 

FTV V
C ε∂= 1

 

 

( ) ( )�
∞

=
0

εεερεε dfF  

 
Since changes in ( )εf  are very close to Fε , we replace ( )ερ  by ( )Fερ , which 
gives; 
 

( ) ( )�
∞

∂=
0

εεεερ
df

V
C T

F
V  
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We can replace the lower limit with ∞−  without changing the integral at all – 
doing so makes it easier to evaluate the integral; 
 

( )
( )�

∞

∞− +
= dx

e

ex
V

Tk
C

x

x
BF

V 2

22

1

ερ
  Where ( )βµε −=x  

 

This is a well evaluated integral and is just 
3

2π
 

 
Note; this is more general that the free electron model as in the free electron 
model; 
 

( )

( )
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�

�
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�

�
=�

=

==

F
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B

F
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T
T

k
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C
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m

32
3

2

;3
2

2

2
1

32
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3
2

2
2

π

ε
π

ερ

επε

�

�

 

 
 

This is a classical result for free particles reduced by a term of order 
FT

T
. Only 

electrons within tkB  of Fε  contribute. 
 
For real metals, VC , also has a lattice term at low temperatures, T , so; 
 

3TTCV αγ +=  
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Let’s plot 
T
CV  against 2T ; 

 

 
 
Metal 21

.. / −− kmJmolEFγ  21
alexperiment / −− kmolJmγ  

Na 1.09 1.38 
Au 0.64 0.73 
Fe 0.64 5.02 
Bi 1.80 0.08 
 
There is enough agreement in the form of result (linear in T ) and in the 
approximate size of γ  to say that this idea is correct. 
 
Note: So far we’ve used assumptions 1,3,4 and we’ll now use assumption 2. 

 
 
2. Electrical Conductivity 

 
Assume that after a collision, the electrons travel in a random direction. Under the 
influence of an electric field, the electron will acquire and acquired velocity after 
a time t ; 
 

t
m

Ee
v

−=acquaired  

 

So the average velocity will be;  τ
m

Ee
v

−=drift  

 
The current density is therefore; nvej drift=  
 

So; E
m
en

j ��
�

�
��
�

�
= τ2

 

T
CV  

γ  

2T  

Slope α  
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Which can be written as Ej σ=  Where 
m
en τσ

2

=  

 
Metal Mean collision time/ s1510−  
Na 170 32 
Au 120 30 
Fe 32 2.4 
Bi 0.72 0.23 

 
 

 
3. Thermal Conductivity 
 

 
If Q  is the heat flow for a given temperature gradient in the z  direction, Td z , 
then the thermal conductivity, κ , is given by; TdQ zκ= . 
 
For any quantity, P , the flux of P  in the z  direction given a gradient Pd z  is 

given by kinetic theory;  flux of PdvP zλ
3
1=  

 

Where the factor of 
3
1

 arises from the angular averaging, λ  is the mean free path 

and v  is the mean speed. 
 

If P  is the energy density, 
V
ε

, the flux of P  is the heat flow; ελ
zd

V
v

Q
3
1=  

 
Now; Tddd zTz εε = ; 
 

εTV d
V

C
1=  so that TdCvQ zVλ

3
1=  

 

And therefore VCvλκ
3
1=  

 

Using VCvv τκτλ 2

3
1=�=  

 
At low temperatures, all of the relevant velocities are close to Fv  and therefore 

FBTkvm =2

2
1
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But ��

	

�

� =��
�

�
��
�

�
= n

V
N

T
T

k
V
N

C
F

BV 32
3 2π

 

 

Therefore ��
�

�
��
�

�
= T

m
kn B

3

22 πτκ  

 

If 
m
en τσ

2

= , the ratio 28
22

1044.2
3

−− Ω×=�
�

�
�
�

�= kN
e

k
T

B π
σ
κ

 

 
Comparing this with the classical calculation gives the same answer multiplied by 

�
�

�
�
�

�
22π

q
. This is called the Wiedmann – Franz Law. 

 
Metal k273  k373  
 1/ −kcmWκ  2/ −Ω kW

Tσ
κ

 
1/ −kcmWκ  2/ −Ω kW

Tσ
κ

 

Cu 3.85 8102.2 −×  3.82 2.29 
Au 3.1 2.32 3.1 2.36 
Fe 0.80 2.61 0.73 2.88 
Bi 0.09 3.53 0.08 3.35 
Na 1.38 2.12   

 
 
 
4. Hall Effect 

 
A current density, j , flowing in B  generates a transverse electric field, HE , and 
the Hall coefficient, HR ; jBRH H ×=  
 

 
 
 

j  B  
+ 

- 

−• e  x  

y  

z  
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Probability of a collision in time dt  is 
τ
dt

. In this time the change in momentum 

is; 
 

( ) driftdrift vm
dt

vmd
τ

−=  

 

( ) ( ) 0drift
drift =−+−=

τ
vm

BvEevm
dt
d

 

 

In the x  direction; 
τ

xdrift,
ydrift,0

vm
veBeEx −−−=  

In the y  direction; 
τ

ydrift,
drift,0

vm
veBeE xy −−−=  

 
 

Multiplying by
m
en τ

 and using 
m
en τσ

2

= ; 

 

In the x  direction; xdrift,ydrift,m
venvB

en
Ex −= τσ  

In the y  direction; yxy venvB
en

E drift,drift,m
−−= τσ  

 
Substituting nvej drift−=  
 

In the x  direction; xyx jjB
e

E +=
m
τσ  

In the y  direction; yxy jjB
e

E −−=
m

τσ  

 
Since 0=yj , we find; 
 
In the x  direction; xx jE =σ  

In the y  direction; xy jB
e

E
m

τσ −=  

 

From this we find that 
en

R
Bj

E
H

x

y 1−==  
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Experimentally we compare measurements to the theoretical result; 1
1 =−

enRH

 

 
Metal 

enRH

1−
 (measured at high B , low T ) 

Na 1.2 
Au 1.5 
Mg -0.4 
Al -0.3 

 
 

4.1.3. Review of the free electron model 
 
Successes 
 

• Good quantative agreement for Lorentz ratio at high temperatures for most 
metals. 

• Hall effect quantative agreement (50% or so) in some, but not all, metals. 
 
Failures 
 

• Does not explain the strong temperature dependence of conductivity. 
• Specific heat is not always correct 
• Wavefunction fails at intermediate temperatures 
• Does not explain the positive HR  in some metals. 

 
Unanswered Questions 
 

• What causes collisions? 
• Why are there no other interactions? 
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4.2. Wavefunction in a periodic potential 
 
A periodic potential might be provided by nuclei in crystal. We assume that the effect of 
all the other electrons is to provide an additional potential which is also periodic. 
Consider a wavefunction in a 1D periodic potential, with time dependence tie ω− ; 
 

( ) ( ) tiextx ωψ −=Ψ ,  
 
If the wavefunction varies by a factor A  when x  increases by a , the lattice parameter, 
then the magnitude of A must be 1 or else the wavefunction is not well defined. That is; 
 

θieA =  
 
For any θ , we find k  such that θ=ka . 
 

( ) ( )tklaietla ωψ −=Ψ 0,  
 
Where l  is an integer. 
 
Now the wavefunction at other positions in the unit cell will be different from 
wavefunctions at the origin, but the same relationship applies to all points related by a 
lattice vector. 
 
Therefore ( ) ( ) ( )tkxiexutx ω−=Ψ ,  
 
Where ( )xu  has the periodicity of the lattice. 
 
The total wavefunction is a periodic function, ( )xu , multiplied by a travelling 
wavefunction, characterised by wavenumber k . 
 

Applying boundary conditions gives that k  is an integer multiple of 
Na

π2
. k  can always 

be chosen in the Brillouin zone. 
 
This can be generalised to three dimensions; ( ) ( ) rkierur .=ψ  
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4.3. Free electron states in 1D k-space 
 
[See teachweb for pics] 

4.4. Bragg scattering of electron in 1D 
 
If we think of a “free electron” as interacting with the crystal, it might undergo Bragg 
diffraction. 
 

FI kkQ

GQ

−=
=

 

 
In 1D, this implies a reversal of k , so Gk =2 . 

 
For Bragg diffraction to occur, k  must be equal to a reciprocal lattice vector, which in 

1D is any integer multiple of 
a
π

. i.e. at any zone boundary or zone centre. 

 
These coincide with points of degeneracy; one state is incident and the other is a scattered 
wave. This leads to standing waves. There are two possible standing waves 

corresponding to �
�

�
�
�

�

a
xπ

sin  and �
�

�
�
�

�

a
xπ

cos . 

 
If the potential is zero on average, it is attractive near nuclei and repulsive in-between. 
 
[Diagram from powerpoint] 
 
The energy of the cosine state is therefore lower than that of the sin state. 
 

4.4.1. What is the meaning of k ? 
 
For a free electron pk =�  
Recall the momentum operator; ∇−= �ip . 
 
But the wavefunction, ( )rψ , is not an eigenstate of p ; 
 

( ) ( ) ( )rueirkrp rki ∇−= .
�� ψψ  

 
So k  is related to the momentum and reduces it when ( )ru  is constant (free electron 
limit). k  is called the crystal momentum. 
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4.4.2. What is the crystal velocity? 
 

ε

ωεω

k

k

dv

dv

�

�

1=

==
 

 

In three dimensions ( )kv kε∇=
�

1
 

 
The velocity of electrons affected by a periodic potential is similar to free-electron 
velocity for most states, but near the zone boundary (and the zone centre) the velocity is 
reduced to zero. This is consistent with the primitive of Bragg scattering causing standing 
waves. 
 
The main conclusion is that electrons are still free to travel with non-zero velocity 
through the crystal in the presence of a periodic potential. 
 
The nuclei and other electrons may affect the velocity, but they do not reduce it to zero. 
We say that we have “nearly-free” electrons. This is known as the nearly free electron 
model. (NFE) 
 
 

4.5. Effective mass 
 
Near the zone boundary and the zone centre, the change in the group velocity from the 
free electron value is equivalent to changing the way the electron responds to forces, and 
so is also equivalent to altering the electron’s mass. This new value is called the effective 
mass. Sometimes this effective mass may be negative. 
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4.6. What are the collisions and why does Wiedermann - 
Franz law fail? 

 
Low temperatures; scattering dominated by defects, elastic scattering – scattering 
through large angles. Scattering of some electrons is restricted because final states are 
occupied. The effective collision time is different for electric and thermal currents, but 
they are of a constant ratio. 
 
High Temperatures; ( )DTT >  dominated by phonon scattering with all phonon energies 
active and all angles possible. All collisions can degrade electrical and thermal currents, 
so collision times are the same. 
 
Intermediate Temperatures; Dominated by acoustic phonons, which can degrade the 
heat current, but cannot degrade the electrical current, as only small angle scattering is 
allowed. 
 

4.7. Nearly-Free Electron Model 
 
Will this solve the failures of the free electron model? Let’s look at the failures of the free 
electron model individually; 
 
Does not explain the temperature 
dependence of conductivity 

Collisions with phonons whose numbers 
are strongly dependent upon temperature 

Specific heat is not always correct Density of states at the Fermi energy, Fε , 
can change 

Wiedmann – Franz law fails at intermediate 
temperatures 

Complex interplay at collisions with 
defects and phonons. 

Does not explain the positive Hall 
coefficients 

Effective mass may be positive 
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4.8. Energy Bands 
 
Energies with states are known as bands and energies without states are known as band 
gaps. 

 
These are not quite continuous;  
 

E
Na

Na
k

k∂=∆

=∆

πε

π

2

2

 

 
 
 
 
 

 
These states are eigenstates and so small perturbations (e.g. applies electric field) can 
change the state to a neighbouring one. 
 
Band gaps prevent these changes. 

 

The fermi energy is defined by ( ) ( )�=
F

dfN F

ε

εεερ
0

 

 
The Fermi level either lies within a band or between bands. 
 

Fε  

ε  

( )ερ  

Energy 

k  

a
π−

 
a
π
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4.8.1. Full bands 
All states in a full band are occupied at 0=T . 
 

For any state; 
 

( )

( )

( ) ( )[ ]
0

1

1

1

=

−=

∂=

∂=

�
−

BB

Bz

Bz

x

x

Zz

k

k
xxkx

xkx

ikk

dkkv

kv

εε

ε

ε

�

�

�

 

 
Since 

BZk  and 
BZk−  are related by a reciprocal lattice vector, they represent the same k . 

Therefore, the mean velocity is always zero and this is the same in 3D. 
 

4.8.2. Metals, Insulators and Semiconductors 
 
Full bands do not contribute to conduction (either heat or electricity) as the average 
velocity is zero. Empty bands do not contribute; this is known as an insulator. 
 
If the Fermi levels lie within a band, then the small perturbations (e.g. an electric field) 
can cause an imbalance between the velocities and electrons may then contribute to 
conduction. This is known as a metal. 
 
If an insulator has the Fermi energy within a small band gap (small compared with a few 
times TkB ).Then at non-zero temperatures, electrons may be thermally excited from the 
full band to an empty band. Both bands may contribute to conductions, this is called a 
semi-conductor. 
 

Energy 

xk  
BZk−  

BZk  
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Bands in 2D overlapping bands 

 
 
 
[Can anyone tell me the point of the above diagram] 
 
Ok I’m guessing here; 
 
Deep inside the Brillouin zone, the bands would form circles (in 2D). But in the vicinity 
of the Brillouin zone (that’s the green square) these bands are deformed. 
 
 
The energies of bands may overlap and so the Fermi energy can lie in more than one 
band at once. 

Number of conduction electrons 
 
Each band has a  state corresponding to each k value in the Brillouin zone, of which there 
are N . So N2  electrons may be accommodated in each band. 
 
So for the Fermi level to lie between bands, the total number of electrons must be a 
multiple of N2  so that all bands lower in energy are full. Each copy of the basis must 
contribute an even number of electrons in order for a crystal to be an insulator. 
 
A primitive unit cell with an odd number of electrons must give rise to a metal. However, 
if there are overlapping bands, an even number of electrons in the basis may also give 
rise to a metal. 

Brillouin zone 

Bands 
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Material Structure Basis Number of 

electrons in 
basis 

Metal/ Insulator 

Sodium Monoatomic 
b.c.c 

Na  11 Metal 

Aluminium Monoatomic 
f.c.c 

Al 13 Metal 

Vanadium Monoatomic 
b.c.c 

V 23 Metal 

Sodium/ 
Chloride 

Rocksalt −+ClNa  28 Insulator 

Diamond Diamond 2 C  atoms 12 Metal 
Magnesium h.c.p 2 Mg  atoms 24 Metal 
Silicon Diamond 2 Si  atoms 28 Semiconductor 
Gallium 
Ascinide 

Zinc Blend GaAs  64 Semiconductor 

 
 

4.9. Application of NFE model to metals 
 
The existence of electron states which extend throughout the crystal, with non-zero 
velocity, arises from the effect of a periodic potential. The wavefunction can be 
characterised by a wavevector provided that the potential is periodic. 
 
What happens to the “core electrons”? 
 
e.g. s1  electrons in Na ; 1622 3221 spss  
 

The effect of the periodic potential 
tends to be larger than the free-
electrons. States  tend to be non-
dispersive with no curvature. 
 
The approximation of a weak potential 
breaks down and so the theory is not 
reliable. 
 

 
But for the core states, the energies are well below the Fermi level, so they do not 
contribute to conduction, or specific heat, since the Fermi function is 1. So the failure of 
the NFE model for there states does not matter. 
 
 

k  

Small U 

Larger U 

0=U  
ε  
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What about the “valence electrons”? 
 
e.g. 13s  in sodium? Can the potential be regarded as weak? 
 
There are two factors which conspire. Firstly the potential is strongest near the nuclei, but 
the Pauli Principle tends to exclude conduction electrons as there are core electrons here. 
Secondly, other electrons tend to ‘screen’ the potential, rather like the charges in a 
conductor screen electrostatic fields. The net effect is that, for s-electrons at least, the 
NFE theory works rather well but it is not particularly good for p and d-electrons. 
 
 

4.10. Fermi Surfaces 
 
Given the interplay between the periodic potential and the free electron dispersion 
relation, the final dispersion relations are potentially quite complicated.  
 
The Fermi surface is the set of wavevectors { }Fk  which describes the states whose energy 
is the Fermi energy. In general this is no longer a sphere with overlapping bands, it may 
be multiply connected. 
 

Alkali Metals 
 
With one electron per atom, the free-electron Fermi wavevector has magnitude of 

a
π2

62.0 × .  

 

The shortest zone boundary (b.c.c.) is 
a
π2

2
1

. 

 
The occupied states are affected very little by the potential and the Fermi surface is 
nearly spherical. We therefore expect alkali metals to behave like free-electron metals. 
For many properties, the agreement is good. 
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Nobel Metals (gold, Silver, Copper) 
 
Full d-shell and one S-electron. They adopt a monoatomic face centred cubic structure, so 

nearest zone boundary is in the [ ]1,1,1  direction with magnitude �
�

�
�
�

�=
aa
ππ 2

87.0
2

.
2
3

 

 

Free electron Fermi wavevector �
�

�
�
�

�=
a
π2

78.0  

 
For the most part, this still looks like a free Fermi Surface, but necks create new 
possibilities for the behaviour of electrons. 
 

4.11. Effective mass; holes 
 
For a free electron; 
 

( )

( )

dt
dk

m
a

m
k

k
E

kv

k
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k

�

�

�

�

=

=
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1
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Now, for a dispersion relation near a local maximum; ( ) ( )2

max kk ∆−= αεε . We can put 

*

2

2m
�=α ; 

 

( )

( )

k
dt
d

m
a

k
mk

kv

k
m

k

∆−=

∆−=
∂
∂=

∆−=

*

*

2
*

2

max

1
2

�

�

�

�

ε

εε

 

 

[001] 

[110] 

Section through the Brillouin Zone 

Energy changes are large enough to change the shape of the 
Fermi surface and to create a “neck” on the surface. 
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Therefore the response is as if it were a free electron, but with a negative mass. We could 
treat it as a free particle with positive mass and positive charge (+e). This is known as a 
hole. 
 

Near any turning point, we can write ( ) ( )2
2

2

.. 2
1

k
k
E

k pt ∆
∂
∂+= εε . 

 

And the general mass in general is then 2

2

2*

11
k
E

m ∂
∂=

�
 

 
Under certain circumstances, in particular when the second derivative of the dispersion 
relation is negative at the Fermi level, it may be advantageous to think of the charge 
carriers not as (negative) electrons with a negative mass, but as positive holes with a 
positive mass. 
 
 

Another picture for holes 
 
The current density is the mean velocity of all the electrons times the charge. Recall that 
the mean velocity of all states in a band is zero. 
 

( )

( ) ( )

( )�

� �

�

+=

�
�
�

�
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states
unoccupied

3

states
all

states
unoccupied

33

states
occupied

3

4
kv

4
kv

4
kv

4
tv

π

ππ

π

dk
e

dkdk
e

dk
ej

 

 
 
The current can be considered to be carried by positively charge particles, which are not 
in the states unoccupied by electrons. In general, they may have either positive or 
negative mass.  
 
Under certain circumstances, particularly when the second derivative of the dispersion 
relation is negative at the Fermi Level, it may be advantageous to think of the charge 
carriers as positive holes with a positive mass, occupying the states which are in fact 
unoccupied by electrons. 
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4.12. Metal Properties 

4.12.1. Specific Heat 
 

Analysis is exactly as before upto 
( )

T
v

k
c BF

v 3

22 ερπ= . 

 
We now have no simple expression for ( )Fερ . 
 
For example, in the d-band (transition metals) elements like iron, the d-band overlaps the 
s-p band (free electron like) and the d-band contribution can be large. 
 

 
 
In some materials (so called “heavy fermion” materials) γ  may be upto a thousand times 
the Free electron value. 
 
 

4.12.2. Electrical conductivity 
 

*

2

m
ne τσ =  

d-band 

s-p band 

( )Fερ  

ε  
Fε  

In iron, the coefficient of T  
in ( )γvc  is 8  times the free 
electron value. 
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4.12.3. Thermal Conductivity 
 

��
�

�
��
�

�
=

3

2

*

2 T
m

nk
k B πτ

 

 

Note that the Lorentz ratio remains the same; 28
22

1044.2
3

−− Ω×=�
�

�
�
�

�= k
e

k
T
k B ωπ

σ
 

 
Deviations arise because scattering (from defects and phonons) cannot be simply 
characterised by one mean collision time. 
 

4.12.4. Hall Effect 
 
The electron orbit in the presence of a magnetic field may look a positive or negative 
charge depending on the details of the Fermi surface. 
 

( )

( )
�
�

�

�
�

�

�

+

−

=
holes

1

electrons
1

en

en
R

h

e
H  

 

en
RH

eff

1=  

 

4.13. Summary 
 
We can explain many properties of metals if we assume that the effect of nuclei and other 
electrons can be considered as a periodic potential. This effects the dispersion relation 
and may form complicated Fermi Surfaces which are far from the Free Electron Fermi 
sphere. The curvature of the bands near the Fermi level changes the effective mass. There 
are collisions with things which cause deviations from periodicity of the crystal structure 
(defects and phonons). 
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5. Semiconductors 
 
The Nearly Free electron model applies equally to the case where the Fermi level lies 
within a small bandgap (semiconductor) as to the case of a metal. 
 
By small, we mean there is a possibility of excitation of electrons from one band to the 
next below the melting point. In practice eVg 2≤ε . 
 

 
 
 
 

5.1. Semiconductor band structures 
 
There are two cases; 

• Direct gap; 
2
1

 conduction band 

• Indirect gap; 
2
1

 conduction band 

 
 
Direct gap; minimum energy of valence band is at the same wavevector as maximum 
energy of valence band. In this case an electron can be excited across the minimum 
bandgap energy by a photon. On the scale of the Brillouin Zone, the photon momentum is 
very small. 
 

If eVg 1~ε , the photon momentum is about 
1

4105
−

−×
�

A . Compared to a typical zone 

boundary wavevector; 
1

2~
−�

A . This reflects the fact that the photon speed is much larger 
than the electron speed. 

( )ερ  

ε  

Fε  

gε  

Valence 
band 

Conduction 
band 

( )ερ  

ε  

By convention, these 
diagrams are drawn as; 



Page 70 of 78 

 
Indirect gap; Maximum energy of the valence band is at a different wavevector from the 
minimum energy of the conduction band. Excitation across the gap by a photon requires 
also the creation of a phonon to take up the momentum difference. 
 
Note that, in general, the effective mass is not isotropic as it is a tensor. 
 

 
 
 
 
 

eVg 23.0=ε  

k  

ε  

emm 015.0* = , em2.0  

Indium Antimonide – direct gap 

Germanium – indirect gap 

emm
�
�
�

�

�

�
�
�

�

�

=
08.000
008.00

006.1
*  

ε  

eVg 75.0=ε  

k  
0  ( )1,1,1

4
π−

 ( )1,1,1
4
π

 

emm 015.0* =  

�
�
�

=
e

e

m

m
m

28.0

044.0*  
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5.2. Intrinsic Semiconductors 
 

Intrinsic behaviour is observed when 
2
1

 the conductor is sufficiently pure. We can take a 

single (scalar) average effective mass as far as thermal properties go. It is different, in 
general, for conduction ( )cm  and valence ( )vm  bands. The energy in conduction band, 
with respect to the minimum energy, Cε ; 
 

C
c m

k
2

22
�=−εε  

 

The density of states is given by; ( ) dkk
V

dkk 2
2π

ρ =  

 

Which gives; ( ) ( ) CCC dm
V

d εεεεε
π

εερ >−= For2 2
3

32
�

 

 

Correspondingly, for the valence bands; ( ) ( ) VVV dm
V

d εεεεε
π

εερ <−= For2 2
3

32
�

 

 
The number density of electrons in the conduction band, n , and holes in the valence 
band, p , are given by; 
 

( ) ( ) ( ) ( )( )�� −==

band
Valence

band
conduction

1
11 εεερεεερ df
V

pdf
V

n  

 
The Fermi function is small throughout the conduction band but well away from the band 
edge ( )Cε , so it can be ignored. 
 
We can replace limits; 
 

( ) ( ) ( ) ( )( )��
∞

∞

−==
V

C

df
V

pdf
V

n
ε

ε

εεερεεερ
-

1
11

 

 
IF the chemical potential is not too close to either band;  
 
( ) TkBC >>− µε ; ( ) TkBV >>−εµ  
 
Then; 
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( ) ( )
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This gives; 
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Using ( )ερ : 
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∞
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We can do this! Substitute Cx εε −=2 : 
 

( )
3

0

2

2
1

2
2

β
πεεε β

ε

βεε ==− ��
∞

−
∞

−− dxexde x
C

C

C  

 
So; 

( )

( )βεµ

βµε

βπ

βπ
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Multiplying these two gives; ( ) βε

βπ
gemmnp VC

−
��
�

�
��
�

�
= 2

3
3

2

2
16
1

�
 

 
In a pure semiconductor; ii pn =  
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( ) 2
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2

21 βε
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Putting this back into the expression for p , we deduce; 
 

��
�

�
��
�

�
++=

C

V
BgV m

m
Tk ln

4
3

2
1 εεµ  

 
So that µ  is the mid-point of the gap at 0=T  and lies within a fraction of TkB  or so of 
the mid point at finite temperatures in intrinsic semiconductors. 
 
 

5.3. Extrinsic Semiconductors 
 
What happens if we introduce impurities? 
 
Consider a simple arsenic (group 5) atom into Germanium (group 4) Each Ge  contributes 
four electrons to the valence band. The As  atom has five electrons; it donates one extra 
electron. The arsenic is therefore called a donor impurity. 
 
We assume that the extra electron is loosely bound and that it moves in the conduction 
band with effective mass *m . We treat it like a hydrogen atom. 
 

Force on an electron; 
εεπ
1

4
1

2

2

0 r
e

F =  

 
By analogy, the binding energy is; 
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m
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E
e

e
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4 2
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The Bohr radius is then; 
 

�

�

�

A

A

m
m

em
r e

e

36

8.153.453.0

..
4

*2

2
0

0

=

××=

= εεπ

 

 
We conclude that the extra electron is loosely bound and that the use of the bulk 
dielectric constant is reasonable. 
 
The energy to ionise the electron is only meV12 , so we can represent the donor bound 
state as a level meV12  below the conduction band. 

 
Usually, there are both donors and acceptors present. Suppose there are more donors than 
acceptors. 
 

:dn  number of donors 

an : number of acceptors 
 

 

an  
dn  

( )ερ  

ε  
At 0=T  

( )ερ  

ε  
Donor level – partly full 

0≠T  
0=T  

gε  
Vε  

Cε  

aε  

( )ερ  

ε  
Similarly, group three 
impurities (e.g. Gallium) 
provide a hole bound state just 
above the valence band. 
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At dT εµ == ;0 ; 

( )β
βπ

εε DCe
m

n C −−
��
�

�
��
�

�
=

2
3

2

2
4
1

�
 

 
When all of the donors are ionised, the number of carriers will plateau at ( )ad nn − . At 
higher temperatures, the number of intrinsic carriers becomes comparable to the number 
of impurities, the chemical potential ends up near the middle of the band gap and n  
reverts to in . 

 
 
Note: The number of electrons in the extrinsic regime is always greater than the intrinsic 
value at the same temperature. 
 
A semiconductor with more donors than acceptors is called n-type and one with more 
acceptors than donors is called p-type. 
 

( ) βε

βπ
gemmnp VC

−
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3
3

2

2
16
1

�
 

 
This can be used to calculate the number of minority carriers at any given temperature, 
once the number of majority carriers is known. 
 
 

( )nln  

( )ad nn −ln  

Intrinsic slope; 
B

g

k2

ε
 

“Plateau” 

Extrinsic regime slope; 
( )

B

dC

k
εε −−

 

T
1
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5.4. Intrinsic versus Extrinsic 
 
How pure do materials have to be to see intrinsic behaviour at room temperature? 
 
For Ge ; ( ) 318106.1~300 −×= mkTni  
 
Comparing this with atoms; 328104.4 −× m , so purity needs to be better than 1 in 1010 . 
 

Zone Refining 
 
This is a technique which enables purification to parts in 1210 . 
 

 
 
We move the molten zone back and forth; it turns out that the impurities remain in the 
molten zone. The result is that we have a very pure crystal with a bit of crap on the end. 
The pure part is then chopped up and sold on market day. 
 

5.5. Semiconductor Properties 
 
We continue to use the Nearly Free Electron model, bearing in mind that both electrons 
and holes may contribute. The main difference from metals is the temperature 
dependence of the number of carriers. 
 

Molten zone containing crap – moved 
back and forth along semiconductor 

Semiconductor 
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5.5.1. Electrical Conductivity 
 

HC m
pe

m
ne ττσ

22

+=  

 

It is interesting to separate mobility �
�

�
�
�

�

− fieldE
velocitydrift

 which shows the temperature 

dependence arising from collisions, as opposed to the effects of changing the number of 
carriers. 
 

*m
e

E

v
u

τ==  

 
Therefore; ( )he pne µµσ +=  
 
Mobility varies in a similar way to conductivity in metals. We can treat carriers as 
classical statistically, so; 
 

2
3

2

2*

2
3

2
1

−

∝=

=

T
v

Tkvm B

λτ
 

 

Since 
T
1∝λ  in the phonon regime. 

 

So mobility; 2
3−

∝∝ Tτµ  
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Conductivity increases as T  increases; 
 

 
 
 

5.5.2. Hall Effect 
 
 
Depending on whether conduction is dominated by electrons or holes; 
 

holes
pe

R
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ne
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H

1

1

+=
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If there are appreciable numbers of both types, then we get more complicated expressions 
– see Hook and Hall p153 – 154. 
 
Note that the Hall coefficient, together with the conductivity,σ , may be used to estimate 
the mobility, µ ; 
 

σστµ HR
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T
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