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Chapter 1

Crystal Structures

1.1 Preliminaries 1.2 What is special about crystals?

1.1.1 Required Knowledge

» Vectors (including scalar and vector products)
» Simple transformations (rotations and translations)
» Equation of a plane

» Volumes of cubes and spheres

1.1.2 Reading

» Hook and Hall 1.1-1.3

12



CHAPTER 1. CRYSTAL STRUCTURES

Crystals of native copper.

Crystals of quartz (SiOs) - the original kpvoTaios.

13

Snow crystals.

» precise symmetries
» flat surfaces
» straight edges

» Hatly’s “Tout est trouvé!” on dropping iceland spar

1.3 What does this suggest about their
structure?

Regular pattern of simple building blocks (Kepler, Robert Hooke,
Huygens, Descartes).
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Christiaan Huygens’s picture of a calcite (CaCO3) crystal made
from spherical particles (Traité de la Lumiére, Leiden 1690).

A crystal made from spherical particles, according to Robert
Hooke (Micrographia Restaurata, London 1745).
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A crystal structure as depicted by René Hatiy (Traité de Cristal-  » motifs are assembled periodically
lographie, Paris 1822).
» the motifs are all in the same orientation

1.4 Artistic Example » note that the motif contains two knights

The plane is completely filled.

Figure shows engravings by M.C. Escher

The key points about building this pattern are that We can pick a unit cell: but note
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» the unit cell is not unique. For example, we could pick a cell  » It is convenient to define a set of primitive lattice vectors: this
with a white knight in the middle is the set of the shortest linearly independent lattice vectors.

» or we could pick a larger cell which could be a bigger square
or a rectangle or other shape

» Linear independence ensures that they can span all dimen-

1.5 Formal deSCl’lptlon sions of the space - for example, in 2D they must not be par-
allel, and in 3D in addition they must not lie in the same
Separate the motif from the repetition pattern. plane.

1.5.1 The Lattice

» A lattice is an arrangement of points in space such that the en-

vironment of any point is identical to that of any other point. » These vectors, conventionally referred to as a, b and c, allow
us to start from any point on the lattice and generate the rest
» Note: points, space — this is now a mathematical problem. of the lattice points at n;a + nsb + nzc where n, n, and n3 are

» The mathematicians tell us how many different lattice types integers, running in principle from —oo to +oc.

there are in spaces of 2, 3,... dimensions. These are the Bra-
vais lattices.

» Lattices have symmetries, more fully point group symmetries,
described in terms of rotations and reflections.

» Remember: the lattice is not the crystal - it’s the collection of 1.5.3 The Unit Cell
points in space on which the crystal is hung (but people often
use the word lattice when they mean crystal).

A unit cell is a volume (area in 2D) which, when repeated by being
1.5.2 Lattice vectors translated by the lattice vectors, will fill all space.

» A lattice vector is any vector joining two lattice points. N.B. translated, without rotation or change of shape.
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- o )

The triangular lattice - the dots represent points, not atoms.

The triangle is not a suitable unit cell,

17
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o o [~ o o [~

" - @ o o @

The rhombus is a suitable unit cell, the triangle is not.

1.5.4 Number of lattice points in cell
Two approaches:
» Count points, sharing face, edge and corner points

» Shift the cell so that all points are internal, then count

because we cannot fill space just by replicating it — we have to Rectangular lattice (points have been given size to allow us to sub-

invert it. divide them)
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© 066
@606
©6066

©e 6
€66 ¢
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@ O O

each corner point is shared

©66 ¢

19

©Ceo
©66 6

@
@ 9

» Here, each point is shared with four neighbouring cells, so the
cell contains 4 x 1 =1 point.

» We'll see later how to apply the same idea in three dimensions.

» Alternatively, we can take advantage of the fact that the unit
cell is not uniquely defined, so we can shift it:
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There is only one lattice point in the unit cell. This is a primitive
unit cell.

1.5.5 Wigner-Seitz cell

Construction
» select a lattice point
» draw lines joining it to its neighbours

» draw perpendicular bisectors (planes in 3D, lines in 2D) of
those lines

» the Wigner-Seitz cell is the volume (area in 2D) is the area
within the bisectors.

) 2

The triangular lattice.

o

*

20
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Join points to neighbours 4

) “

Draw perpendicular bisectors. The Wigner-Seitz cell tends to show the symmetry of the lattice.
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1.5.6 Five Lattices in Two Dimensions 1.5.7 Fourteen Lattices in Three Dimensions
H'——Q L] ) [ ] Manaclinic
| 2 | / Triclinic . |
° ° 1 -
« ) H | \ ; \ | .
xagon e =
Square exagona J , ,
. . °
) ° )
Square
b ° a - a
] e
) ) .
. °
Rectangular Centred
rectangular
Lattice Unit Cell Restrictions Symmetry
Oblique Parallelogram a #b, ¢ # 90° 2
Square Square a=b, ¢=90° 4mm
Hexagonal 60° Rhombus a=0, ¢=120° 6mm
Primitive Rectangular Rectangle a#b, ¢=090° 2mm

Centred Rectangular  Rectangle a#b, ¢=090° 2mm
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System Type Restrictions

Triclinic P aFb#c, a#fF#y

Monoclinic P,C a#b#c, a=v=90°#g
Orthorhmobic P,C,LF a#b#¢, a=F=~=90°
Tetragonal P a=b#c, a=pF=vy=090°

Cubic PLF! a=b=c¢, a=p=7y=90°
Trigonal P a=b=c, a=p0=vy<120°#90°
Hexagonal P a=b#c, a=pF=90° ~v=120°

No need to learn details except for cubic, basic ideas of hexago-
nal.

1.5.8 Cubic Unit Cells

Simple cubic: cube containing one lattice point (or 8 corner
points each shared among 8 cubes: 8 x % =1).

Body centred cubic: 2 points in cubic cell

23
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Face centred cubic: 4 points in cubic cell (8 corner points
Rhombohedral primitive cell of body centred cubic system. shared 8 ways, 6 face points shared 2 ways: 8 x % +6 x % =4.
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1.5.11 The basis

r » So far we have been in the realm of abstract mathematics —
o now we need to attach the motif, the pattern itself, the atoms,
,/ to the lattice.

o - » The basis is the arrangement of atoms associated with each
lattice point.

» Sometimes there is only one atom per lattice point - a
/ monatomic lattice — but often there are more.

’#‘ /o » Mathematically, this association of one copy of something

with every point is a convolution.

1.5.12 Monatomic crystals

Rhombohedral primitive cell of face centred cubic system. We
will work with non-primitive, conventional cubic cells. Some elements crystallize in forms with only one atom per unit
cell:

1.5.9 Length Scale

. » copper — face-centred cubic
Typical interatomic distance: a few Angstroms, say 0.25 nm.

» iron (at low temperatures) — body-centred cubic
1.5.10 Cell Volume » polonium - simple cubic

» If the primitive lattice vectors are a, b and ¢, the cell volume is

lab x ¢ Face-centered cubic (FCC) and hexagonal close packed (HCP)

crystals can be constructed by stacking cannon balls.

» The lengths of the lattice vectors, a = |a| etc., are called the
lattice parameters. » FCC corresponds to ... ABCABCABC ...

» For cubic crystals, a = b = ¢, so cell volume is a®. » HCP corresponds to ... ABABABABA. ..
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1.6 Planar Hexagonal

six neighbours at

(

rdinated

Each lattice point is hexagonally coo

equal distances)
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) “

No atom forms bonds in quite that way. Add another atom in
each cell (at 1(a+b)).

) <2 o .

Each atom is now three-fold coordinated

T T
Ne

|
AN

27
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as in one of the planes of graphite. This is a diatomic unit cell.

1.7 Cubic crystals

1.7.1 Sodium Chloride

28
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» focus on one atom in the repeat unit

» the lattice is revealed by the pattern of that atom

1.7.2 Caesium Chloride

NaCl is a face-centred cubic structure. That is:

» look at the structure

» identify the repeat unit
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CsCl is a simple cubic structure.

1.8 Planes, Lines etc

1.8.1 Miller Indices
To index a plane
» find where the plane cuts the axes (at A, B, C)

» express the intercepts as u a, v b, w ¢ (a,b, c are the lengths of
the primitive lattice vectors)

» reduce the reciprocals of u, v and w to a set of integers A, k, [
which have the same ratio
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» the plane is then the (hkl) plane.

» conventionally, choose h, k£ and | with common factors re-
moved

» note if intercept is at infinity, corresponding index is O.

» note convention: round brackets

» note convention: negative values are quoted with a bar over. In‘tercep‘[g: 3{-_1? lb’ 2C
Reciprocals 1/3, 1, 1/2
Miller Indices (2.6.3)

Example:
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Families of planes:

» The indices (hkl) may refer to a single plane, or to a set of
parallel planes.

» The (100) planes are a set of planes perpendicular to the z-
axis, a distance a apart.

» The (200) planes are a set of planes perpendicular to the z-
axis, a distance a/2 apart.

1.8.2 Directions

Square bracket notation [hkl]. For cubic systems only, [hkl] direc-
tion is perpendicular to (hkl) plane.

1.8.3 Symmetry-related sets
Of directions: (hkl) Of planes: {hki}.

1.8.4 Spacing between planes

In a cubic system with lattice parameter (unit cell side) a, the (hkl)
planes are separated by
a

RV Yyl

Proof:

» We know (from first year Maths) that we can write the equation
of a plane as
nr=d

32

where 1 is a unit vector perpendicular to the plane and r is
the vector position of a point in the plane, r = 2% + yy + 22.

Basically, i defines the orientation, d tells us how far the
plane is from the origin: for a family of planes hkl there will
be a plane through the origin too, and so d is the interplanar
spacing.

For the (hkl) planes in a lattice with lattice parameter a, we
know that the intercepts of the planes on the axes are a/h, a/k
and a/l.

So the equation of the plane is

hx + ky + 1z = a. (1.1)

But the unit vector normal to the plane is
hx+ky + 1z
VhE+ k2412

ﬁ:

and thus
hx + ky + 1z

whence, using equation 1.1,

nr—

d - a
R/ ey ey P

Check: Consider the (110) planes: there is one through the
origin, one diagonally across the middle of the cube, and so
on. The perpendicular spacing is one half the diagonal of the
cube face, v2/2 =1/v2=1/V12 +12 +02.
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1.8.5 Angles between planes

For cubic crystals only. The unit vector normal to (hkl) is

hk + ky + 12
VhE+ k2412

ﬁ:

and if we want to find the angle 6 between this plane and the plane
(W'E'l) we use

SO

hh' + kK +1U
NN EN vy

cosf =

1.8.6 More Examples

Lattices with a non-monatomic basis.

FCC, with basis of Ga at (000), As at (

,11)-

33
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Hexagonal close packing: basis of one atom at (0,0,0) and one
at 1(a+b) + ic. For perfect packing, ¢ = \/8/3a.

Hexagonal close packing and face-centred cubic (cubic close-

‘ N ‘ ‘ _ ‘ L1s packing) are similar — in each case we stack up planes of closely-

Diamond or Silicon: FCC, with basis of Si at (000), Si at (4, 33) - packed atoms, but the sequence is different. In cubic, the close-
inequivalent atoms (look at bonding). packed planes are (111).
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Buckminsterfullerine: FCC, with basis of one Cgy molecule at
(000) - really orientations of molecules will differ.

1.9 Packing Fractions

For monatomic cubic crystals, it is easy to work out the pack-
ing fraction, that is, the fraction of space that is filled if we place
a sphere on each lattice site and expand the spheres until they
touch.

35

1.9.1 Simple cubic

The spheres touch along the [100] directions, so if the lattice para-
meter is a the sphere radius is a/2 so the packing fraction is

4 2)3
- 37T<§3/> —0.52

sphere volume

cell volume

1.9.2 Body-centred cubic

The spheres touch along the [111] directions, so if the lattice pa-
rameter is a the sphere radius is av/3/4 so the packing fraction
is

twice sphere wvolume

B 2§7T(a\/§/4)3 068
cell volume o a3 e

1.9.3 Face-centred cubic

The spheres touch along (110) directions, so if the lattice constant
is a, then the sphere radius is a/ 22

ti h l
four times sphere volume o074

4%77(@/2\/5)3
cell volume a3

1.9.4 Hexagonal close-packed

Packing fraction is 0.74.
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1.10 Defects » In ionic crystals, to keep the crystal neutral we form positive
and negative defects in charge-compensating pairs.

Nothing in Nature is perfect, and crystals are no exception. Any

real crystal contains defects, and these affect its properties in var-

ious ways.

» Frenkel defect: an atom is moved from a normal atomic posi-
tion to an interstitial position. Solid-state diffusion is affected
by defects.

» Defects in diamond alter the colour;
1.10.2 Dislocations

» defects in semiconductors (of the right kind) allow them to be
used to make devices: Dislocations are line defects. Simplest to visualize is an edge dis-

location — think of an extra half-plane of atoms.
» defects in metals alter their mechanical properties;

» defects affect thermal and electrical conductivity.

1.10.1 Point defects

» Missing atoms, atoms in positions where an atom would not
normally be (interstitials), impurities.

» Schottky defect: an atom is transferred from a site in the crys-
tal to a site on the surface. If this costs energy E,, the number
of vacancies in equilibrium is

n= N exp(—E,/kpT),

where N is the total number of atoms in the crystal (see 2B28
notes).

» Remember that crystals are often formed by cooling quite
quickly from the melt, and atoms move quite slowly in solids,
so a high-temperature number of defects can be 'frozen in’.
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Affects deformation properties — to slide upper block over lower
now only requires a line of bonds to break at a time, not a whole
plane — process of slip. Explains low yield strength of solids. Screw
dislocations give a helical structure to the planes.

A growth spiral on a silicon carbide crystal, originating from the point of emergence of
a screw dislocation (courtesy Prof. S. Amelinckx).

>

/Dlslqcatlon
line
Dislocations are characterised by their Burgers vectors — the
mismatch in position between going round a path in the perfect

Screw dislocations often show up in crystal growth crystal or round the dislocation.
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P - JM Q
Burgers
0 - N

vectfor

38

Edge: b perpendicular to line of dislocation. Screw: b parallel
to line of dislocation.

1.10.3 Planar defects

In a sense, the surface of a crystal is a planar defect! If two crys-
tals grow together with a mismatch in orientation, we have a grain
boundary.




CHAPTER 1. CRYSTAL STRUCTURES

Can sometimes represent a grain boundary as a line of edge
dislocations.

1.10.4 Amorphous Solids

Not all solids are crystalline: if a crystalline material is repre-
sented by:

then an amorphous structure would be

39
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The local structure is similar to that in the crystal, but long-
range order is lost.

40



Chapter 2

Crystal Diffraction

2.1 Preliminaries

2.1.1 Required Knowledge

» Wave motion

» Complex exponentials

2.1.2 Reading

» Hook and Hall 1.4, 11.2, 12.2, 12.3, 12.6

2.2 Bragg’'s Law
Any plane of regularly spaced atoms will act as a mirror:

41

faN o\ faN
O Y N\
\\ (010)
/A /AR /A
— N /

(210)
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The reflectivity will depend on the number of atoms per unit
area in the plane.

QO

D

B
S S o A B

» The extra path travelled by the left-hand ray on the way out > QC;r}sterlicti)\\/e interference if the extra path ABC' = nA, or
(AB) must equal the extra path travelled by the right-hand ray ST =mna,
on the way in (CD) » This is Bragg’s law.

» Thus 6 = ¢, producing a reflection » NOTE: the angle is between the ray and the plane - not the

t ; i
» This corresponds to zeroth order from diffraction grating Same convention as i opties

. . ) . » If the Bragg angle is ¢, the beam is deflected through 26.
» Now consider interference between reflections from successive

planes Notation:
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» We refer to (hkl) reflections, according to the plane which is
reflecting.

» The n in 2dsin@ = n)\ is called the order of the reflection or of
the diffraction.

» The terms “nth order (hkl) reflection” and “(nh nk nl) reflec-
tion” are equivalent.

2.3 Wavelengths and Energies

» From Bragg’s law (2dsinf = n)\) we must have A < 2d, that is
A~1 or 0.1 nm.

» We can use x-rays, neutrons (or electrons — but mainly for
surfaces).

» )\ = h/p (his Planck’s constant)

> For electrons and neutrons F = p?/2m

> For x-rays E = pc

Beam | Scattered | Energy General
from for \=1 | (\in Aand F in €V)

12399
x-ray electrons 12 keV A= ?
neutron nuclei 0.08 eV A= 026862
15

electron | electrons 150 eV A==
VE

43

2.3.1 X-ray sources

Evacuated glass envelope Filament

C___\ . Inlet
Socket for H.T — 1 Cv?;)J;r:g
connector
Outlet

Cathode

Anode Be window

Kilovolt electrons impinge on target.

Ko

&
g
Z Kp
= |
? A min
" |

f -

0 0.4 0.8 1.2 1.6
Wavelength (A)
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» Continuum background from deflection of electrons.

» Sharp lines from intra-atomic transitions.

2.3.2 Electron sources

Fluorescent screen or
photographic plate
Alternative

Specimen position specimen position \\

Anode section

5,0

| To vacuum '
Magnecic Pumps
lens

/
Filament C\a(hode hood 7
Diffraction To vacuum
chamber pumps Photographic
chamber

Schematic diagram of an electron diffraction apparatus.

» Hot cathode - electrons accelerated by electric field, focussed
with magnetic field.

» Low penetration — study thin films or surfaces.

2.3.3 Neutron sources

Reactor:

» Thermal neutrons (energy about kp7) — need moderator to
slow neutrons

» Boltzmann velocity distribution

» Collimate beam

44

Use broad range of wavelengths, or put through monochromator

» Mechanical chopper - time taken to traverse known distance
gives velocity

» Bragg’s law ‘in reverse’ — use crystal of known plane spacing,
so know wavelength if know 6

Spallation source:

» Accelerate protons (800MeV) and fire at heavy nuclei (e.g. ura-
nium)

» Neutrons thrown off

» Intense, usually pulsed (10us), source.

2.4 Elastic Scattering

Energy of waves is conserved , thus the exit wavelength is equal
to the incident wavelength.

Ak:kf—kir ek
|
|
|




CHAPTER 2. CRYSTAL DIFFRACTION 45

» If we vary the reflection plane, but work at fixed order (n)

Ai = Ap,
a nA
dnpr = = —
SO Vh2 + k2 + 12 2sinf
kil = [kl ' 2
i sin 6
:(, ) = R+ +1P=N
sin 0,,in

2T

2
|Ak| = 2[k;|sinf = 2; sing = n=—,

2.5 Experimental Methods
from Bragg’s law.

Special relationship between Ak and the planes: Notes:

» Ak is perpendicular to the scattering planes, » Examples show photographic film, for x-rays.

» length of Ak is integer multiple of 27 divided by the plane ) Can also use electronic detection for x-rays.
spacing.
» Need counters (e.g. BF;) for neutrons.

2.4.1 Example » Information:

» X-ray scattering from NaClO3. Cu K, radiation, A = 1.54 . > Positions of lines (geometry)

9° | sinf sinZ 6 N (hkl) a >> Intensities of lines (electronics, or photogrammetry to
9.544 0.1658 0.0275 2 (110) 6.568 measure darkness of lines on films)
11.720 | 0.2031 0.0413 3 (111) 6.567
13.561 | 0.2345 0.0550 4 (200) 6.567
15.201 | 0.2622 | 0.0688 5| (2100 |6.567 2.5.1 Laue Method
16.701 | 0.2874 0.0826 6 (211) 6.563 » 1912: Max von Laue (assisted by Paul Knipping and Walter
19.374 | 0.3317 0.1100 8 (220) 6.566 Friedrich). CuSO, and ZnS.
20.597 | 0.3518 0.1238 9 | (221)(300) | 6.566
21.771 | 0.3709 0.1376 10 (310) 6.565 » Uses a broad x-ray spectrum and a single crystal
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X-ray beam
Specimen
N

X-ray beam

Photographic plate:« Photogr;phi: plate
Forward reflection Backward reflection

X-ray beam

Specimen-—

Cylindrical Film

46

Forward scattering Laue image of hexagonal crystal.

Shows crystal symmetry, when the crystal is appropriately
oriented.

Used for aligning crystal for other methods.

Because a range of A is used, it cannot be used to determine
a from photographic image

However, if the outgoing wavelengths can be measured, then
it can be used to find lattice parameters.
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» Uses a single x-ray wavelength and a single crystal is rotated
in the beam.

X-ray powder diffraction pattern of NaClO3 taken with CuK«
radiation.

X-ray powder diffraction pattern of SiO, taken with CuK«
radiation.

» Either full 360° rotation (as below) or small (5 to 15°) oscilla-
tions.

» Powder diffraction patterns are often used for identifying ma-
terials.

2.6 Mathematics of Diffraction

2.6.1 Monatomic Structure

2.5.3 Powder Methods

» Uses a single x-ray wavelength and finely powdered sample.

» Effect is similar to rotating crystal, but rotated about all pos-
sible axes.

X-ray _beam X-ray beam Film X-ray beam Film
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» Incoming plane wave » and as the amplitude of the outgoing wave exp[i(k;.r — wt)] is
1,
i = Aexpli(kir —wi)] Total Amplitude o< S Z exp[—iAk.ry].
1

» Scattered by the atom in unit cell I at r;.
» Assume scattered amplitude is S A - all the unit cells are the 2.6.2 The Reciprocal Lattice

same, so independent of 1. » Define a new set of vectors (A, B, C) with which to define Ak.
» When incident wave hits atom, it is Require
aA=2r, aB=0, aC=0
Aexpli(ks.ry — wt)]. b.A=0, bB=2r, bC=0
c.A =0, cB=0, cC=27
» It is scattered with a different wave-vector, ky, so from the

atom to a point r its phase changes by ky.(r —ry). » In general,

» The scattered wave is thus A - 2rb x ¢
. . abxc
S A expli(k;.r; — wt)] expliky.(r —ry)] 5 ore X a
» or ~ abxc
2ra x b

i(kyr — i(k; —ky).ryl. C =
S A expli(ky.r — wt)] expli(k; — ky).ry] b X c

» So if a plane wave with wavevector k; is scattered from the

crystal, it is the sum of the waves scattered by all the atoms, > The vectors (A, B, C) define the reciprocal lattice.

or » For simple cubic system, reciprocal lattice vectors are just
Total Wave =S A expli(ky.r — wt)] Zexp[i(ki —ky).rg. 27/a along the . y and z axes.
I

Lattice Reciprocal Lattice
» Write Ak — ks — k;. hence Simple cubic Simple cubic
o FCC BCC

Total Wave =S A expli(ky.r — wt)] Zexp[—iAk.rI], BCC FCC
7 Hexagonal Hexagonal
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2.6.3 The Scattered Amplitude

>

Let
Ak = hA + kB +1C,

and remember that our structure is periodic:
r; = nia—+ nsb + ngc.
Immediately we have (because A.a = 27 etc.)

Ak.r; = 27(hny + kng + Ing).

So
Z exp[—iAk.r;] = Z Z Z exp[—2mi(hny + kna + Ing)]
I niy mna ns3
— {Z 6—2771'}7,111} {Ze—Qﬂian} {Ze—2ﬂiln3} )
n1 n2 ng
Sums, in principle, go over —co < n; < oo, or at least over a

very large range 1 <n; < N,.

Phases lead to cancellation unless h, k£ and [ are integers,
when each term is 1 and total amplitude is SN; Ny N3.

So we see

> we have a strong reflection when Ak is a reciprocal lattice
vector;

> remembering that Ak is perpendicular to the reflecting
plane, an (hkl) reflection has Ak = hA + kB + [C.
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2.7 The Laue Construction

The Laue Construction is a diagram in the reciprocal lattice.

Just as the lattice is an abstract mathematical object, so is
the reciprocal lattice.

Neither k; nor k; need to be reciprocal lattice vectors, but
k F— kl is.

Note that only certain special incident directions of k; will give
a diffracted signal.
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2.8 Non-Monatomic Structures

2.8.1 Simple Treatment

» Example: an FCC structure (thought of as simple cubic with
a basis of two atoms, one at (0,0,0), three more at (1, 3,0),
(5,0,5). 0,3, 3).

» For simple cubic, there is a strong reflection from (110) planes:

1
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» But face-centred cubic has extra atoms in the orginal planes » If the atoms are all the same, the (110) reflection will be miss-
and between them: ing.

» If the atoms are different, the amplitude of the (110) reflection
will be reduced.

» These missing orders tell us something about the structures:
» Simple cubic has no missing orders;

0\‘<£\Q\ » fcc: only see (hkl) where h, k and [ are all even OR all odd.

» bcc: only see (hkl) where h + k + [ is even.

2.8.2 Detailed Treatment

b Y » Unit cell 7 has atoms of type j at positions r;; = r; +r; each
with scattering amplitude f;

» So total amplitude of the scattered wave is

)
<‘H\ ?,/’ Total Amplitude oc Y Y fjexp[—iAk.(r; +1;)]
. I
\ EXtra' planes — {Z exp[—iAk.I‘]]} {Z fi exp[—iAk.rj] }
1 j

» These extra planes have the same number of atoms as the
original (110) planes.

» That is, we have the usual Bragg condition, but it is multiplied
by the structure factor

» But if the original planes correspond to a path length differ- _
ence of \, these have path length difference of \/2 — their sig- S(Ak) = Z fjexp[—iAk.r;].
nals will be out of phase. J
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» We know that Ak is a reciprocal lattice vector, so if atom j is
at z;a+y;b + z;c

S(AK) = S(hkl) = f; exp[—2mi(hx; + ky; + 1z;)].
J

2.8.2.1 Example - bcc structure

» Identical atoms at (0,0,0) and (3, 3, 3).
S(hkl) = f {€2wi(0+0+0> i ezm(g%%)}

f {1 + em’(h+k-+l)}

» Clearly, S(hkl) =0if h + k + 1 is odd (missing orders again).

2.9 Other Information

Strictly, S(hkl) involves an integral of the scattering over the unit
cell:

» x-rays can give electron density maps, which tell us about
binding

» neutrons interact with nuclei

» neutrons have spin and magnetic moment, so can give infor-
mation about magnetic structure.
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Bonding in Crystals

3.1 Preliminaries

3.1.1 Required Knowledge

4
>
>
>
>
>
>
>
>

Structure of the atom
Potential energy

Coulomb’s law

Electric field

Electric dipole

Wavefunctions

Integration and differentiation
Pauli exclusion principle

Free energy

3.1.2 Reading

53

» Hook and Hall 1.6
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3.2 Types of Bond

(c) Covalent (d) Metallic

Type of Bond Characteristics
Molecular or van der Waals closed shell atoms or molecules
Ionic closed shell ions
Covalent directed bonds between atoms
Metallic delocalised electrons with ion cores embedded
Hydrogen bond specific to H atom between electronegative species

» Examples of hydrogen bonding: H-F—--H—-F—--H-F or
H-O-H--H-O-H- -

» Real materials involve bonds of mixed character.
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3.3 Interatomic Potential Curves

U(r)

Repulsive potential o 1/r™
lu/_ cpulsive poten /r

Total potential
p— 1 2 Temeemees T
i " Attractive Coulomb
Equﬂﬂgglut,m potential o= 1 /r
I

[
L4
!
I

» Often thought of as sum of long-range attraction and short-
range repulsion.

» Really a complex quantum-mechanical problem.

» The shape of the curve is similar, whatever the bonding (re-
pulsive core, attractive tail).

55

» Assume for the moment only nearest-neighbour interactions.

> Well depth gives binding energy.
> Position of minimum gives interatomic spacing.

> Curvature at minimum determines bulk modulus.

_ _0E
p v

B op 0%E
B = Var=Vonm

» Departure from symmetric shape determines thermal expan-
sion.

» Few experiments (high-pressure shocks; high temperatures)
explore potential curve far from minimum.
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3.4 van der Waals Interaction > isotropic

Time (£

Time ¢,

Classical picture: interaction between instantaneous dipoles.
» atom acquires dipole moment p
» this gives electric field £ « % at r

» an atom at r with polarisability « acquires a dipole moment
p' = of parallel to &

» this give a field back at the original atom &’ « f—; o F
» the energy of the original dipole in this field is £ = —p.&’ «
» van der Waals interaction

1
> X %

> always attractive

>> quite weak — about 0.01 to 0.1 eV/atom pair

3.4.1 Short-range repulsion

Valence electrons

Core electrons
Nucleus

Physical origin is the Pauli exclusion principle.

» Inside the electrons which form chemical bonds there are
closed shells (except for H — hence special H bond)

» Try to overlap these cores, electrons from one atom try to oc-
cupy ground state orbitals of the other

» But these states are already occupied

» Electrons must move to higher-energy states
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» Extent to which this happens depends on overlap of wave- 3.5 van der Waals Solids
functions
Examples:
» Energy Increases rapidly with decreasing separation
» rare gas solids (spherical atoms)

» Often taken as
» molecular crystals (e.g. Cl,, CgHg, polymers). More complex

> high power of r: Eye; o T}Z or because of molecular shapes

> exponential: Fy., o< e~"/®, » graphite (covalently bonded planes of carbon, but planes held
° together by van der Waals forces).
> These are approximations to the true form
We consider only rare gas solids.
Another way of thinking about the repulsive terms:
» Write pair interaction as Lennard-Jones potential:
» Wavefunctions for different states must be orthogonal (think A B
back to atomic physics). U(r)=

rl2 r6’

» For atoms that are far apart, this is true, as their wavefunc-
tions do not overlap: S;3 = =0. 12 6
p: S12 = [ 102 U(r) = e [(Z) _(%) }
» When they overlap, we can make new functions that are or-
thogonal by defining ¢ = ¢ — S12¢2 and 92 = ¢> (one can Typically o is a few A, say 0.3 nm.
make this more symmetrical, but it’s messier)

» Then [y = [(¢1 — Sia¢ha)da =0 3.5.1 Energy of van der Waals Solid

» But the price we pay is to introduce more structure into ¢, Obtain from pair-wise interactions by summing over all pairs.
anq more structure means more curvature means more Kki- » pick an atom, label it 0,

netic energy,

» let energy of interaction of this atom with neighbour i at a
» So the overlap pushes up the energy. distance r; be U(r;)
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» total potential energy of the atom is

U():ZU(T’Z')

» if there are N atoms altogether, each will have this same en-
ergy, but interaction 0 — ¢ is the same as i — 0

» so total energy is

U= %Z U(ry).

We can separate structure (spatial arrangement) from length scale
(interatomic separation).

» write r;, = p;ro, where ry is nearest neighbour distance, p; is
dimensionless

» then

» sumining,

where

» these lattice sums can be done for any structure.

Structure Aio Ag

FCC 12.12188 14.45392
HCP 12.13229 14.45489
BCC 9.11418 12.25330

Note:

» expect sum of 1/r" to converge rapidly for large n

58

» A;; is dominated by the nearest neighbours (10 in FCC and

HCP, 8 in BCC), but more distant neighbours affect Ag

3.5.2 Equilibrium Separation

» The equilibrium structure minimises the total energy:

8U/8r0 =0.
oU ol2 o
—— = —2Ne |12A419—= — 64—
Org ¢ [ 12 réB 64 ’I‘g

» which is zero when

ﬁ)_ 2A12 1/6
g o Aﬁ

» ™ =1.09 for FCC.

A2

U= —2A?26 per atom.

» Typically about 0.01 to 0.1 eV per atom.

|
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3.5.3 Choice of Structure

» Expect structure to form crystals which have lowest energy,
i.e. largest cohesive energy.

» Strictly, Gibbs free energy, G = U —T'S + pV, but assume 7' = 0
and p = 0.

» Neglect kinetic energy of atomic motion in U.

SC BCC HCP FCC

A, 8.4 1225 14.45 14.45
A, 62 911 12.13 12.12
U/Ne -5.69 -824 -861 -8.62

» Note how close FCC and HCP are in energy (both have 12
nearest neighbours), but FCC is favoured.

3.5.4 Bulk Modulus

» We know energy as a function of separation: need to express
as function of volume.

» For FCC structure, cubic lattice parameter a, nearest-
neighbour separation ry = a/v/2.

3

» Cubic unit cell, volume a°, contains 4 atoms, so

Volume per atom =

E‘C?oa ’J;‘ @w

Now we could use

8’/‘0 0

vV AV oo

but it’s easier to substitute

in

to get

and hence

SO

ro = 21/6vl/3N—1/3

o 12 o 6
A12 <> - A6 <> ] )
To To

0.12N4 U6N2
U =2Ne |:A12 4V4 —AG 2V2 :|

U =2Ne

0?U 20012 N4 608 N?
—— =2Ne |A —
ov? ‘ { 2Ty oy }
10012 N4 605 N2
B = Ne |:A12 V5 7A6 V3 :|

But in equilibrium

SO

59
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» and
1 [ Ag\*?
— 12 774 6
B = Ne 10A120’ N Xm(@)
1 A 3/2
— 6AoSN2w —— [ £8
6 60 X N3g9 (A12 5
» which simplifies to
4A5/2
B= 3/2
A12

» Check: units are Energy/Length® = Force/Area = Stress.

3.6 Ionic Crystals

» The picture of an assembly of spherical ions is a good one:

(100) plane (110) plane

(Theoretical calculations by Harker, checked against experiment)
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3.6.1 Ionic Radii and Packing

» In general, cation M and anion X~ have different radii.

» We expect lowest energy if we have as many cations as possi-
ble around each anion, and we avoid anions touching anions.

» We know that for equal-sized spheres FCC gives high packing.

» If we shrink the smaller ions, but keep the geometrical
arrangement, eventually the larger ions will touch.

NaCl(001)

CsCI(110)

» NaCl: X atoms touch if

TMX = TM+Tx
rxx = V2rux
rxx <2rx = V2ray+rx) <2rx
rTXx 1
v V/2-1
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» CsCl: X atoms touch if 3.6.3 Linear Chain
TMX = TM*+Tx 1
2
rxx = ﬁTMX —
2, ) O ¢ o o 9O o°o o o
rxx <2rx = —=(rm+7rx)<2rx
V3 = = + m f = o =
rXx 1
Mo W/3—1
» Given a table of ionic radii, we can guess structures of com- _ r 1 1
pounds. M =177 3573

Note:
3.6.2 Ionic Lattice Sums
» very slowly convergent
» For a pair of ions,
» only converges because it is an alternating series — try to sum
only effect of, say, positive ions and get infinity

2
U — 4i95¢
* 47’(607’1']'

+ Urep(ij),
» Result: ay =21In(2) ~ 1.386.

» and summing as before gives

3.6.4 Three dimensions

U:E

N e?
{_ My reoro + Urep} : Special mathematical tricks used to calculate Madelung constant.

» Evjen method: sum neutral regions, using increasingly large
cubes and only counting half of charges on face centres, quar-
ter of cube edges, eighth of cube corners

» aj is the Madelung constant, obtained by a lattice sum:

- q0q;
=T
1

» Ewald method: trick involving real space and reciprocal space
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Structure coordination o
number

CsCl 8 1.7627

NacCl 6 1.7476

Zinc blende (like GaAs) 4 1.6381

Wurtzite (hexagonal ZnS) 4 1.641

» Higher coordination gives larger Madelung constant.

3.6.5 Ionic Structures

» Structure will be that which minimises energy.

| oo g /
g v
[34]
NaCl / /
ZnS /
0 0.2 0.4 0.6 0.8 1.0
rs/r/

» Energy increasingly negative as ions get closer — until like ions
touch.
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» Radius ratios (smaller rg,,q over larger ri.,q.) give good guid-
ance.

» Similar radii favour close packed structures

» Very different radii give more open, lower-coordinated (and
more covalent) structures.

3.7 Metallic Bonding

» This can be thought of as an extreme case of ionic bonding in
which the negative ions are just electrons.

» Because of their small mass, these valence have a large zero
point energy that prevents them from being localised about
one site.

» The valence electrons can be thought of as moving freely
throughout the crystal.

» The core electrons remain bound to the nuclei. Thus we have
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Vilence . . .
® & ©

® & o ¢
® o ¢

® & & ¢
@ ©

Core

» The core electrons prevents the valence electrons from getting
close to the nuclei (Pauli exclusion principle).

» The cores have a radius r..
» We assume that the valence electrons have a uniform density
outside the cores with value
1 4

3
1o
p 3"
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For the alkali metals (Li, Na, K) we have one valence electrons
per atom.

The energy per atom is approximately given by

v
Ry

%

Kinetic + Electrostatic + Exchange

2.212 (( 1.8 3(7’C/a0)2) - (0.919

(rs/ao)? - 7s/ao) - (rs/ao)? 7s/ao)

Ry = Rydberg = Energy of hydrogen atom in its ground state

ap = Bohr radius = radius of the 1s atomic orbital in hydrogen

We shall discover where the kinetic energy term comes from
later in this lecture course

The electrostatic energy includes both the interaction between
electrons, and the Coulomb interaction between an electron
and the nucleus. The 1/r, dependence follows from Coulomb’s
law.

The core electrons push the valence electrons away from the
core and so reduce the strength of the interaction between the
electrons and the nucleus.

The exchange interaction is a result of the Pauli exclusion
principle.

>> Electrons with the same spin cannot occupy the same
orbital.

> Thus electrons with the same spin are kept away from
each other
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>> So their electrostatic repulsion is reduced and hence the
energy is reduced.

» Note that the energy depends only on the density of the va-
lence electrons.

» The crystal lattice parameter is determined by the equilibrium
electron density.

>> For the alkali metals (which are body centred cubic crys-
tals) they are related by

> The equilibrium lattice constant can thus be found from

oU

ors =0

> Let us define the following

u=U/Ry T =rs/ag
c1=2719 ¢y =2212 c3=3(rc/ap)?

> cycorresponds to the electrostatic plus exchange terms,
co corresponds to the kinetic energy, and c3 is the core
correction term.
C1 C2 C3
x  x? 23
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> At equilibrium x = z(, hence

C1 C2o C3

0 = &L 02 3%

T I

=0 = clmg — 2c019 — 3¢3
=z = (62> {1+ 1+361§3}
C1 (&)
— 0814 [1 /1t 5(rc/a0)2}

Metal | rs/ag | rc/ag
Li 3.25 | 1.26
Na 3.93 | 1.65
K 4.86 | 2.18
Rb 5.20 | 2.37
Cs 5.62 | 2.60

» Note that the ion cores increase in size as we go down the
periodic table.

» In reality the electron density is not completely uniform, and
this leads to a second term in the energy which is a pair in-
teraction similar to the ones seen above.

3.8 Covalent Bonding

» Covalent bonds form between atoms with partially filled outer
electron shells.

» If one atom bonds to two others, then the energy of the system
depends strongly on the angle between the two bonds (the
bonds are directed).
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» A covalent bond involves the pairing up of two electrons, one
from each atom per bond. Since there are a small number of
unpaired electrons in the outer shell, one atom can only be
involved in a few covalent bonds (the bonds are saturable).
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Dynamics of Crystals

4.1 Preliminaries 4.1.2 Reading

4.1.1 Required Knowledge > Hook and Hall 2.1-2.8

» Newton’s second law

4.2 Introduction

» Hook’s law
» Even in their ground states, the atoms have some kinetic en-
» Harmonic oscillator (classical and quantum) ergy (zero-point motion)

» Determinants » Changes in temperature change the occupancy of the energy
levels — heat capacity

» Complex exponentials
» Motion affects the entropy, and hence the free energy — can
» Photon affect the equilibrium structure
» Calculus » Atomic motion affects the strength of diffraction patterns
» Statistical mechanics » Vibrational energy can move through the structure

66
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> sound waves 4.3.1 Longitudinal Waves on Linear Chain
I | l«—>l I
> heat transport a

§m+ms:)mémé

» Atoms away from regular sites alter the way electrons move > I > - — |
through solids — electrical resistance Un2 Un-1 Un U

n

4.3 Chains of Atoms

» We shall start by assuming that every atom’s interactions with ~ » #tom 7 should be at a position na, but is displaced by an
its neighbours may be represented by a spring, so that the amount uy,.
force in each ‘spring’ is proportional to the change in length

The ‘unstretched string’ corresponds to an interatomic spac-
of the spring.

ing a.

» So the force on atom n is

» This is called the harmonic approximation. We'll talk about it B = altnsr — un) — alup — tn—1),

more later. where « is the spring constant.

» Thus the equation of motion is

» Also assume that only forces between nearest neighbours are Milin = 0(Un41 + Un—1 = 2un),

significant for atoms of mass m.
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» Now look for wave-like solutions,
un(t) = Aexp(ikna — iwt),
and substitute to find

_mw2 - (eika + efika _ 2)

%(2 —2cos(ka))

da |
= —sin“(ka/2).
msm(a/)

» This gives us the dispersion relation

sin @
2

with a maximum cut-off frequency

w = Wy

b

4o
wo = —.

68

Dispersion relation in extended zone

@,

—2m/on Om/ox 2n/o. 4no 6m/o 8m/o

Group Velocity

» Group velocity v, = “8% cos (£2)

» Limit of long wavelength k& — 0,

woka

and so in this limit

This is the normal sound velocity.
» Knowing v, ~ 10> m s~! and a ~ 107° m, we find
wo ~ 10* rad s~ 1,

so that maximum frequencies of lattice vibrations are THz
(10'2 Hz). In the infrared range.
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4.3.2 The Brillouin Zone

» The dispersion is periodic in k. The frequency at k is the same

as at k+2n/a.

Dispersion relation in extended zone

@,

—2mfo Om/ox 2n/o. 4m/o 6m/o.

Group Velocity

8n/ow

» We only sample the wave at the atomic positions, so we cannot

tell the waves k and k + 27 /a apart.
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Conventionally, we only consider the wavevectors between
—7/a and 7/a.

This region corresponds to a unit cell in reciprocal space.

Symmetrical treatment of waves travelling to right or left.

Just as the physics is determined by the contents of a unit
cell in real space, it is also determined by the behaviour of a
unit cell in reciprocal space.
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4.3.3 More than one atom per cell
I d 1<—3mat— |
<«
| & * | I
| | | 1 |

SV e T o VR T

n-1

» Assume atoms of mass m are at u,,, atoms of mass M at v,,.

» Let the atoms be d = a/2 apart, with the unit cell side still a.

» If the force constant is again o we get coupled equations:

mi, = a(vy+v,_1— 2uy,)

Mv, = a(un + Un41 — 2Un)~
» Again look for travelling waves,

Up(t) = Aexp(ikna — iwt)

v (t) = Bexp(ik(n + %)a — iwt).
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» Substitute

mw?A = 2a(A— Bcos(ka/2))
Mw*B 20(B — Acos(ka/2))

or

= (20 —mw*)A — 2acos(ka/2)B
—2acos(ka/2) + (2o — Mw?)B

» This is a pair of linear homogeneous equations in A and B,
which only has a non-trivial solution if the determinant of the
coefficients is zero, that is

200 — mw? —2acos(ka/2)| 0
—2acos(ka/2) 20— Mw? o
= (2a — mw?)(2a — Mw?) — (2acos(ka/2))* = 0

which has two solutions

_ 11 1 1\ 4sin’(ka/2)
YT a<m+M ta m mM
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A
@><Q = Oni
ptic branch
 2a/m)!/?
|
I
M>
" | (2a/M)!/2
> @
|
|
Acoustic branch !
D> d—> LI
7/a

» Notes on diatomic linear chain:

> Acoustic branch has w =0 at k = 0.
>> Optic branch has w # 0 at k = 0.
> Atk=0

> on acoustic branch, atoms move in phase
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4.3.4 Degenerate case of diatomic chain

-n/d -w/2d 0 vr/l2d 7/d -w/d -w/2d O 7/2d w/d -w/2d 0 w/2d
(a) (b) (c)

Diagrams showing the folding back of a Brillouin zone. (a) w vs. k in the
first Brillouin zone k between +w/d. (b) The primitive unit cell has become twice as
large so the Brillouin zone is twice as small. (c) The same as (b) but the pieces of the
w vs. k curve are translated into the first Brillouin zone.

» If the masses become equal, the diatomic chain is identical
with the monatomic chain except that the unit cell is larger
than it need be.

» Larger unit cell in real space = smaller unit cell in reciprocal
space (—7/a < k < 7/a)

» Same physics from monatomic cell (one branch of spectrum),
or diatomic cell (two branches).

> on optic branch, atoms move in antiphase, keeping 4.3.5 Three dimensions

centre of mass of cell static.

> if atoms have different charges, optic mode gives os-
cillating electric dipole moment to unit cell

> dipole moment couples to electromagnetic field -
hence optic mode

> At k = 7/a only one atomic species moves in each mode.

» Atoms can move in three directions (for chain, parallel + 2
transverse).

» Transverse force constants weaker, so transverse frequencies
usually less than longitudinal

» Similarly, transverse wave speeds less than longitudinal
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» 3-D monatomic crystal: 3 acoustic branches (L + 2T)

r A X ) I r A L
L ! 1
60F ® 3 [
i L
. S 50+ H
» Transverse branches degenerate along some symmetry direc- 2 :
. > 401
tions. 5 a
° 301 i
§ L L
2 = e
10 T ! T
() :
r A— X K =3 r A L 0 (10,0) (1,0 0 (V2,%2,V2)
o LT og) | [ %] N

Measured phonon dispersion in Si (after Dolling (1963)

Phonon energy (mev)

» In general: N atoms in the unit cell — 3 acoustic branches
and 3(N — 1) optical branches.

v e oL e 4.3.6 Measuring Phonon Spectra
g q-— —q
Figure (a) Measured phonon dispersion in Ne (after Leake et al (1969); » Phonon energy FE = ho ~ 10—34 1013 — 10—21 J~0.01eV
reproduced from Elli(?tt and Gibson (1982)).

» Comparable with neutron energies

» 3-D diatomic crystal: 3 acoustic branches (L + 2T) and 3 opti-

cal. » Inelastic neutron scattering: measure Ak and AE.
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Moderator Monochromating » Note that the linear term is zero. This is the definition of the

Reactor __ Channel @-ny_s_'f'_ﬂ Wﬂ“"" equilibrium structure.

» In the harmonic approximation

Collimator 1
L U(Un) = U()+ iann’unun’

A schematic dia- n,n’

gram of a neutron triple-axis SN Analyzing

spectrometer. sample &5 T——=T, S crystal add the kinetic ener
pectromet p { / v . i gy ,
N Py
Goniometer —_—
~ 2my,’
» Know input k and E and then change variables, forming linear combinations of the
» Scatter output beam from analyser crystal of known struc- form o
ture. u(k) = Zune "
» From Bragg angles out of analyser, know wavelength of origi- These are the normal modes, in terms of which the Hamil-
nal scattered beam tonian is diagonal.
» hence scattered energy, hence Ak » We find we can rewrite the Hamiltonian of the system in the
form )
H = nE + = ) hwy.
4.4 Normal Modes Zk;( 2

» In formal terms, the energy of the crystal is a function of the > In the harmonic approximation, the lattice vibrations are the
displacements of all the atoms from their equilibrium posi- same as a collection of harmonic oscillators, with frequencies
tions: W

U(un) = UO +

1 82U > These normal modes do not interact: put energy into one
5 Z UnUp < )0 mode k by altering n; and it will stay in that mode.

~ Ou,, Oy,
,

>> The normal modes are called phonons.

3
+ l E Uy Uy Uy 67(] + ... > The allowed values of k£ will be determined by the bound-
3! OUp Oy Oyt ‘s .
ary conditions at the edges of the material.

n,n’,n'
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4.5 Phonon Density of States » The number of allowed states in the Brillouin zone is equal to
the number of unit cells in the system.

4.5.1 One Dimension - g(k)

» Take crystal of length L, and impose periodic boundary condi-

. » N.B. unit cells, not atoms. More atoms — more degrees of
tions, so that for a wave

freedom — more branches of the spectrum.

exp(ikx) = exp(ik(z + L)),

SO

exp(ikL) =1, 4.5.2 Assumption of Continuous Energy
or
k=n— » How closely spaced are the energy levels?

where n is an integer.

» Suppose the crystal is 0.01 m long. Then the spacing between

» The allowed states are uniformly distributed in reciprocal . 1
k values is Ak = 27/L = 2007 m™".

space (k-space) with spacing 27 /L.

» The density of states is the inverse of the spacing,
I » If the sound wave speed is v = 5000 m s~! then on the acoustic
branch the minimum angular frequency is O and the next is

g(k) = o
m Aw = vAk = 5000 x 2007 = 10%7 rad s~ !.

» The number of allowed states with wavevectors between k£ and

kot dk is g(k) d. » This is small enough compared with the maximum frequency

» Note that if there are N unit cells so that I = Na the total (about 10'3 rad s~!) that replacing a sum over discrete frequen-
number of allowed states in the Brillouin zone is cies with an integral is a good approximation.

m/a L .7 L
/ g)dk = -~ x 2T =2 .
—r/a 2 a  a » The energy spacing is AE = hAw ~3 x 10722 J =2 x 1077 eV.
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4.5.3 One Dimension: ¢(F) or g(w)
Dispersion relation in extended zone

®,

—2m/o Om/cx 2o 4m/o 6m/o 8m/o

Group Velocity

» Go from evenly spaced allowed values of & to, in general, un-
evenly spaced values of energy.

» Note that positive and negative k£ have same E.

» Define the density of states in frequency: number of allowed
states between w and w + dw is g(w) dw.

» This must be the same as the number in the region of k-space
containing states in that frequency interval, soin 0 < k < 7/a

or

75

» Allowing also for the states with negative k (w(k) = w(—k)) we
get in one dimension

L dk
= 2 _—
g(w) 21 dw
do
kY

where v, is the group velocity of the wave.

» Non-dispersive system

> vy is constant, so

» Monatomic chain

and then

L
g(w) = — = constant.
Vg

= wpsin(ka/2)
= %cos(kaﬂ)

= % 1 — sin®(ka/2)
= % 1—w?/wk

a
= —y/wd —w
2

2L

W)= ————,
9(w) ﬂ'a\/wgfcﬂ
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» One-dimensional density of states for real monatomic struc-

ture, non-dispersive system (Debye model), and real diatomic
structure.

glw)
g (W)

» Note that in one dimension we have singularities in the den-
sity of states whenever the w(k) curve is flat.

4.6 Three dimensions - g(F) or g(w)

» Apply periodic boundary conditions along z, y and z.

» The number of states in the reciprocal space volume dk,dk,dk.
is then

L,L,L. 1%
o dadhydk: = 2

83
for crystal volume V.

dk,dk,dk.,

» Now assume that the crystal is isotropic — w depends only on
magnitude of £, not its direction. Then

dk,dk,dk, = drk2dk

76

and the number of states with modulus of wavevector between
k and k + dk is

_ 14 2 _ 14 2
g(k)dk = 5 Ank*dk = 5 K>dk

» Here we’ve accounted for all directions, so no extra factor of 2
as in one dimension when going to g(w).

» But we do have to include all the modes (acoustic, optic, lon-

gitudinal, transverse), each with its own dispersion relation,
SO

o) = 55 D kw0,

where s denotes the mode.
» Non-dispersive system

> If we assume that

ws(k) = vsk,
i.e. the sound speed does not depend on frequency, we
have w
k(ws) = 1)757
and
dt 1
dws v
S0
(w) = V
At 272 v3
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> If we define an average sound speed v by

1 /1
v \w3/’

where (...) denotes an average. e.g.

L_1[1 2
v 3 |vi o vl

vr
then

o VS

I\ =5m 5

Here S is the number of branches in the phonon spec-

trum - 3 for a monatomic 3-D solid.

4.6.1 Special case - single frequency

» If we assume (the Einstein model)

All atoms except one fixed - Einstein model

» we get a delta-function density of states.

77

Density of states

Waves - linear dispersion Local oscillators

A g0) A g(o)

> >
W
Debye model Einstein model

» N.B. Einstein model can be used as model of narrow optical
branch of phonon spectrum.

la) g (b) e
=
5 .
<
8 2
3
= 0
WUmax @ L 1 10
w (THz)
Figure

The density of normal modes in a three-dimensional crystal. (a)
The Debye model, (b) The density of states for Ge, as calculated with the adiabatic
bond charge model (Weber 1977).

» Real density of states: complicated structure — no singulari-
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ties (contrast 1-D), but discontinuities in slope.

4.6.2 Quantised Simple Harmonic Oscillator

» For an oscillator of frequency w in its nth energy level the
partition function is
En
kgT

L S ()

n=0
_ 1
B 251nh( )
_ 1
- 281nh(6m")
() = ~T5 = (ln)+

» The crucial result is the mean occupation number of the nth
level:
1

exp(hw/kgT) — 1’

(n) =
for Bose-Einstein statistics.

» Higher frequency = lower occupancy at given temperature.

Increasi

B 4

» Free energy

F = —kgln(2)

. hw
= kgTln (smh <2kBT>>

78
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F/(ho) 1 Sk,
2 —
0 —m\\ 2 3 4
| | | ] l ] , ]
j ke T/hoo 197
-2 — T
1-
4 — 0.5 -
d - ks T/ho
6 — 0 — T T T T >
0 1 2 3 4
» Entropy > Increase T, increase S

> More displacement from equilibrium position means

. . . . more disorder.
> The decrease in free energy with 7' is due to an increase

in entropy. Atp =0
» Specific heat:
E-F )
T - or
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Saturates about
A B T =holk,
Specific
Heat

creasing

>

Rises about T
T =ho/l3k;

> low T exponential dependence C « T2 exp(—hw/kgT)
>> intermediate T' ~ fw/3kp: steep rise in C

> high T > hw/kp: C saturates to classical result, C = kg
per oscillator.

> C universal function of 7'/0, where © = hw/kg

4.7 Experimental Specific Heats

80

Element Z A Cp Element Z A Cp

J K~ 'mol ! J K~ 'mol~!
Lithium 3 6.94 24.77 | Rhenium 75 186.2 25.48
Beryllium 4 9.01 16.44 | Osmium 76 190.2 24.70
Boron 5 10.81 11.06 | Iridium 77 192.2 25.10
Carbon 6 12.01 8.53 | Platinum 78 195.1 25.86
Sodium 11 22.99 28.24 | Gold 79 197.0 25.42
Magnesium 12 24.31 24.89 | Mercury 80 200.6 27.98
Aluminium 13 26.98 24.35 | Thallium 81 204.4 26.32
Silicon 14 28.09 20.00 | Lead 82 207.2 26.44
Phosphorus 15 30.97 23.84 | Bismuth 83 209.0 25.52
Sulphur 16 32.06 22.64 | Polonium 84 209.0 25.75




CHAPTER 4. DYNAMICS OF CRYSTALS

50 [ . T T

c ® L
£ ‘ i
S 2 40 ‘| el
i = Prediction of
- -g Dulong and Petit ]
’é o 30 - -]
e C, = 24.94JK 'mol”
E'.o 20 - ]

5 ]
(7] [
s £ ]
sx 0Fr .
o 7 L ]
= 0 R v al g 14 —'_H_h ]

© 10 20 30 40

Heat capacity, C, (JK'mol™)

» Classical equipartition of energy gives specific heat of 3pR per

mole, where p is the number of atoms in the chemical formula
unit.

» For elements, 3R = 24.94 J K=! mol—1.

» Experiments by James Dewar showed that specific heat
tended to decrease with temperature.

4.8 Einstein’'s model

Al

Albert Einstein 1879-1955

81
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» Einstein (1907): “If Planck’s theory of radiation has hit upon » When T — 0, then ek% >> 1 and
the heart of the matter, then we must also expect to find con- 9
tradictions between the present kinetic molecular theory and Cv — Nkg ( hw ) et T—20" FeT
practical experience in other areas of heat theory, contradic- kgT ( 6%—“})2

tions which can be removed in the same way.”
Convenient to define Einstein temperature, O = hw/kg.

» If there are N atoms in the solid, assume that each vibrates
with frequency w in a potential well. Then

Nhw
E = N <n>hw = e 5 ° e — ——
eFsT — 1 =T
OE g T
o = (&£ §e '
v = 9 @ L~
T v © .;
£3 e
E o
» Hence < /
D& 2 v
o\ hw  hw X 5
oT ) keT ~  kpT® S
-
0 -
K o hw S 0 0l 02 03 04 05 06 07 08 09 10
ar kT2 170
., Comparison of experimental values of the heat capacity of
B 2 B k?wT diamond with values calculated on the Einstein model, using the char-
CV — kg 5 acteristic temperature Oy = hw/kg = 1320°K. [After A. Einstein,
kgT (6 kf;;uT B 1) Ann. Physik 22, 180 (1907).]
hw hw
I TnT hy . . :
» When 7" — oo, then 2% — 0, so e*s” — 1 and e*s” —1 — 7=,  p Einstein theory shows correct trends with temperature.
and
ho \2 1 » For simple harmonic oscillator, spring constant «, mass m,
Cv — Nkg (kBT> w:NkB~ w=/a/m.
P » So light, tightly-bonded materials (e.g. diamond) have high

This is the expected classical limit. frequencies.
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» But higher w — lower specific heat.

Walther Nernst (1864-1941)

» Hence Einstein theory explains low specific heats of some el- » Walther Nernst, working towards the Third Law of Thermo-
ements. dynamics (as we approach absolute zero the entropy change
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in any process tends to zero), measured specific heats at very 4.9 Debye Theory
low temperature.

6 r
1 ya
%,
T
2
Q
=}
= 2
<
[-™
@)
0
0 50 100 150 200 250

Temperature (°K)

Specific heat data (points) for silver. The lines are the fits from the
Einstein and Debye results. The Debye curve goes through the data points.

» Systematic deviations from Einstein model at low T.

» Nernst and Lindemann fitted data with two Einstein-like
terms.

» Einstein realised that the oscillations of a solid were complex,
far from single-frequency.

» Key point is that however low the temperature there are al-
ways some modes with low enough frequencies to be excited.

Peter Debye, 1884-1966.

84
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» Based on classical elasticity theory (pre-dated the detailed
theory of lattice dynamics).

» The assumptions of Debye theory are

>> the crystal is harmonic
>> elastic waves in the crystal are non-dispersive
> the crystal is isotropic (no directional dependence)

> there is a high-frequency cut-off wp determined by the
number of degrees of freedom

4.9.1 The Debye Frequency
» The cut-off wp is, frankly, a fudge factor.

» If we use the correct dispersion relation, we get g(w) by inte-
grating over the Brillouin zone, and we know the number of
allowed values of & in the Brillouin zone is the number of unit
cells in the crystal, so we automatically have the right number
of degrees of freedom.

» In the Debye model, define a cutoff wp by

N = /OwD g(w)dw

where N is the number of unit cells in the crystal, and g(w) is
the density of states in one phonon branch.

» Taking an average sound speed v we have for each mode

vV w?

9) = 5 3

85
SO
wo Y w?
N = — —d
/0 on2 v3
_ Vv
To6mw2 08
6N 72
3 _ 3
wy = 7Y

Equivalent to Debye frequency wp is ©p = fwp/kp, the Debye
temperature.

4.9.2 Debye specific heat

» Combine the Debye density of states with the Bose-Einstein
distribution, and account for the number of branches S of the
phonon spectrum, to obtain

wp 2 hw 2 kT
ov =5 [ 3 Sk ( ) e
212w kT (e"’%T _

» Simplify this by writing

and

CV = dx

S/“”D V. kg’T%a? o2 keT
272 p2y3 (ew—1)2 h

LkBSTg /JJD 1‘461

om2 h3vd (61—1)2

SkB dx
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» Remember that

SO

and

» As with the Einstein model, there is only one parameter — in

Cy

w

v

3:
b 1%

2293

6N 72

3N

v®,

3NR?

3 ~ 7.30 3
wp  kp"©p

3NKE kg3T3

Sk

3NSkg

T3

B /€B39D3 B3

zte”

D

@S/OID(

er — 1)

this case ©p. Improvement over Einstein model.

C,(Jmol™'K™")

1
T/6,

86

Debye and Einstein models compared with experimental data for

Silver. Inset shows details of behaviour at low temperature.

4.9.3 Debye model: high T

T3 D 4 x
Cv = 3N Skp— / .
Op 0 (ex — 1)

» At high T, zp = hwp/kgT is small. Thus we can expand the

integrand for small x:

and
(e"—1) =~z

D 4 x D 3
/ Lgdﬂj ~ / 22de = 2D
0 (e —1) 0 3

SO

» The specific heat, then, is

T3 23
Cy m3NSkB®—DS?D,
but
_hwp  ©p
T eT T T
SO
CV %NS](JB

» This is just the classical limit, 3R = 3Nskp per mole.

» We should have expected this: as T — oo, Cy — kp for each

mode, and the Debye frequency was chosen to give the right
total number of oscillators.
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4.9.4 Debye model: low T

T3 D x4€m 17.78 /
Cy = 3N Skp — /
(C] o (e /

D

-
w
w
W

» At low, zp = hwp/ksT is large. Thus we may let the upper
limit of the integral tend to infinity.

v
I

ad
1Y
©

Heat capacity, in mJ mol ™ K~!

»
®

it &

/°° zte® 4 47t -
T dr=
0 (ex _ 1)2 15 M
0

[} 133 2.66 3.99 5.32 6.65 7.98
SO T3, kelvind
3 4 The low-temperature heat capacity of solid argon compared with
Cv ~ 3N Sk T Am the Debye T® prediction with ©p = 92 K (solid line).
v~ B

op® 15

» For a monatomic crystal in three dimensions S = 3, and N,
the number of unit cells, is equal to the number of atoms.

» We can rewrite this as

7\3 4.9.5 Successes and shortcomings
D

which is accurate for 7' < ©p/10. » Debye theory works well for a wide range of materials.
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~
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Heat capacity vs. reduced temperature for a number of materials.

» But we know it can’t be perfect.

5 /
o
— 3
@
8
=
=
=
2
=N
w
1
I
\
L L L
0 4 8 2 16

Fuw (meV)

Density of modes in Na (after A, E. Dixon et al.,
Proc. Phys. Soc. 81, 973 (1963)).

» Roughly: only excite oscillators at T for which iw < kgT.

» So we expect:

> Very low T: OK

88
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> Low T: real DOS has more low-frequency oscillators than 4.10 Lattice Thermal Conductivity
Debye, so Cy higher than Debye approximation.

> High T: real DOS extends to higher w than Debye, so
reaches classical limit more slowly.

» Use Debye temperature ©p, as a fitting parameter. Expect:

> Very low T: good result with ©p from classical sound 4.10.1 Experimental values
speed;
> Low T: rather lower Op;

>> High T: need higher Op.

T T L T AN T ,)rr T T T T
19 | e ]
| Nal i
. 500 —————
180 } 1 s [
! 4 E [ Ag | ]
; T 400 Cu S
" i ¥ [ "-\ \\._
1 \
{ 1 2 [ ]
: > ! Metals .
1 £ 300
2 3
4 +~ s
| é 1 Al o
c 200
4 o L
© Rhet o o1
4 = L — e d
1 L "‘ 1 Al AJ: L 1 1 1 i E 100 I Ru g = ® A
el In —
0 10 20 30 50 10 200 300 o I Sn ::\. o
Temperature ('K) |'E [
The temperature dependence of 8, metalic sodium [1.D. 0 bt = = = AL bt
Filby and D. L. Martin, Proc. Roy. Soc. (London) 276A, 187 (1963).] 0 200 400 600 800 1000

Nal [W.T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) 2424, 467 (19571 Temperature (K)
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500 —

bl g g

- ]

§ 400 L Insulators and Semiconductors ]

s I & ]
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c i

[4) L

€ 100 [
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= [ .<B \Q 1
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Temperature (K)

» Different behaviours of metals compared with insulators and
semiconductors;

» Very large range of values: for elements at room T

> diamond: up to 2600 W K~tm™1
> copper: 400 W K~ 1m~!
> sulphur: 0.3 W K~'m~!

» In the following sections we look at thermal conduction by
lattice vibrations.

90

4.10.2 Phonons as particles

» If mode £ is in its n;th excited state, as the energy levels are
equally spaced, we can regard this as a state with n; identical
excitations in mode k, each with energy fwy.

» We say there are n; phonons in mode k (exact analogy with
photons).

» The phonon has energy iw;, and momentum #k.

» We can think of the phonon as a particle (quasiparticle).

4.10.3 Phonon momentum

» The momentum of phonons is rather different to normal mo-
mentum.

» Conservation of momentum is a fundamental property of most
systems: it is a result of the fact that the Hamiltonian of a free
particle is invariant under translation (p commutes with H).

» In a crystal, the Hamiltonian is only invariant under transla-
tion through a lattice vector R.

» As a result, momentum in the crystal in only conserved to
within an additive constant 4G, where G is a reciprocal lattice
vector.

» 7k is not a true momentum of the whole crystal, except at
k = 0 when it corresponds to uniform motion of the whole
crystal.

» fik is called quasimomentum.
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4.10.4 Phonon interactions

» In the harmonic approximation we ignored terms in the
Hamiltonian like ko

E unun’un”D’rm/n” ’
Py " "
nn'n
K" @

and got normal modes which did not interact.

» When we look for wave-like solutions, we have terms of the
form

Z Z Ak‘k’k‘” eXp(Y/(k + k/ + k”)-R’rL)7

kE'E" n

» As in our discussion of diffraction, the sum will be zero be-
cause of phase cancellation unless 4.10.5 Heat Transport

(k + k' +k").R; = 2mm » Treat phonons as a classical gas of particles, transporting en-

where m is an integer. ergy hw at velocity v, the group velocity of the waves.

» Hot regions have a higher density of phonons than cool re-

» But if G is a reciprocal lattice vector, G.R,, is a multiple of 27, gions

so all we can say is that

kik +kK' +G=0. » Heat flux (energy/area/time) Q:

Q= —kVT,
» As aresult of the anharmonic terms, we have phonon-phonon

interactions. » ~ depends on

» Physical explanation: a phonon alters the local atomic spac-
ing, so that another phonon sees a difference in the crystal
structure and is scattered by it. >> specific heat per carrier cy

> number of particles/volume carrying energy n
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D> carrier velocity v

> how far carrier travels before being scattered (mean free
path A)

» From kinetic theory of gases

1
K= gnchA.

» Note that ncy is the specific heat per volume, as opposed to
the specific heat per mole calculated earlier.

» Unless the phonons interact with something (are scattered)
the thermal conductivity will be infinite.
4.10.6 Boundary scattering
» Clearly A is limited by the size of the specimen.
» Generally, the specimen is polycrystalline. in which caseA is
limited by the crystallite size.
4.10.7 Point defect scattering
» Any irregularity in the crystal will scatter a wave.

» An impurity, or even a different isotope, creates an irregular-

ity.
» The defect size is about that of an atom.

» But at low temperatures only low-energy, long-wavelength
phonons are excited.

92

» Scatterer size << A is the condition for Rayleigh scattering
— Ao A4

» Dominant phonons at temperature 7 have k < T, A o T71,
and at low T the number of phonons x T? suggesting x o
T3 x T4 =T""1.

» More exact treatment

_3
Ko™ 2,

4.10.8 Phonon-phonon scattering

» At first glance, expect phonon scattering to preserve thermal
current, as energy and momentum are both conserved:

ki+ke = ks

W] +w2 = w3

so even if phonons interact, they continue to carry the energy
in the same direction.

» But remember that the dispersion relation is periodic - this
makes a difference.
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» If the two initial wavevectors add to a new wavevector which is
outside the Brillouin zone, they give a new wave with a group
velocity in the opposite direction.

» Usually, subtract G, a reciprocal lattice vector, to get back
into the Brillouin zone:

ki + ko — G =ks.

» Such a process is called an Umklapp process (German: flip-
over) or U-process.

» Processes in which G = 0 are called N-processes.
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» Note that for a U-process at least one of the phonons must
have |k| > 7/(2a), so very rare at low T.

» At low 7, assume number of phonons with large enough |k
is o exp(—0/T), where 6 is a temperature comparable with the
Debye temperature.

» At high T, most of the phonons will have large enough |k| to
give U-processes, and number of phonons « 7.

4.10.9 Combined processes

» Assume all the scattering processed are independent.
» Each process acts independently to reduce the conductivity.

» Analogous to resistances in series, so
total resistance = E resistance;
processes 1

or
1

Xiw

» Look at temperature dependence of terms in

R =

1
= - A'
K 3TLUCV ;

» Note that v has negligible T dependence.

» High T: can always have enough phonons for U-processes to
dominate,
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> ncy independent of T (classical limit)

> Ao T71

> ko T71

» Very low T: U-processes are frozen out, and only have very

long-A phonons so defect scattering small. Boundary scatter-
ing dominates:

> ney oc T3

> A independent of T’ (geometry)

> ko T3
» Low-intermediate T, isotopically pure :U-processes dominate:

> ncy only weakly dependent on 7' compared with
> A o exp(8/T)
> ko exp(0/T)

» Low T, impure: defect scattering dominates:

> ney o« T8
> AocT79/2
> ko T3/2

» Schematic variation of x with T for isotopically pure (left) or
impure (right) material.
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"lr A
isotope or
umklapp impurity
scattering scattering
K/~exp 6/ 1) Koms TH2

boundary scattering boundary scatterin
&k ~T3 L' K ~T3 7
—> 3

T T
(a) (6)

» Note steeper rise to higher peak value for pure material. Ther-
mal conductivity of LiF as function of temperature for varying
content of °Li isotope.
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» Defect content can be increased by irradiation (e.g. neutron 0‘021 > 5 10 20 50 100
damage in nuclear reactor). T (K)

» Thermal conductivity of LiF as function of specimen size at  p Thermal conductivity of LiF plotted as x/T* as function of tem-
low temperature, showing effect of boundary scattering. perature for low temperature.
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Chapter 5
Electrons in Solids - Overview

5.1 Experimental values > insulators resistivities above 10 Qm;

5.1.1 Electrical Resistivity

Element Resistivity (2m) | Element Resistivity (2m)

Lithium 8.9 x 10~% | Germanium 0.46 > superconductors have unmeasurably small resistivities
Sodium 4.2 x 1078 | Selenium 1072

Sodium 4.2 x 1078 | Silicon 1073

Copper 1.7 x 1078 | Tellurium 4.4 %1073

Silver 1.6 x 1078

Tin 1.1 x 10~7 | Boron 1.8 x 10*

Barium 5.0 x 107 | Phosphorus 10°

Manganese 1.9 x 10~% | C (diamond) 101!

» Divide materials into:

> metals resistivities between 10~ and 10° Qm; » Note the enormous range of values. The temperature varia-
> semiconductors resistivities between 10~° and 10 Qm; tions are also very different:
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» Semiconductors (and insulators) have much stronger temper -
ature dependence of p — and in the opposite direction with 7.

» We might expect some sort of law of mixtures’ for alloys, but

Resistivities at room 7 in Qm x 108

Componentl Alloy Component2
Cu Cu(Zn) Zn
1.55 6.3 5.5
Pt Pt(10% Ir) Ir
9.8 25 4.7
bt Pt(10% Rh) Rh

» For most metals, p o T'. 9.8 19 4.3
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» Adding a trace of low-resistivity Ir to Pt has increased the Pt’s
resistivity.

5.1.2 Magnetic properties

2x10°°

5 : ¢ D

£ 1.5x10°

E [

= 1><10‘6_

32 L

2 5x107 |

o L

1]

O [

a [

0 0 pao—ano-o —00®

5 i ]

2 o] |
Sx107 L . VB L L,

0 20 40 60 80 100

Atomic number

1.6x10"

1x107®

5x107° |

Molar susceptibility, x,.,. (m°mol™)

-5x107 L , L Hgss o
0 20 40 60 80 100

Atomic number

» Yellow regions are ferromagnetic

> (A) Fe, Co, Ni

> (B) First transition series

> (C) Second transition series
> (D) Lanthanides

» All elements with part-filled inner electron shells.
» We need to explain

> diamagnetism which is always present;
> paramagnetism seen in metals and other materials

> ferromagnetism
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> magnetic effects on resistivity 5.2 Theory
> special magnetic properties (perfect diamagnetism) of su-
perconductors . . .
» We are going to introduce the band theory of electrons in
solids.

5.1.3 Miscellaneous properties

» Work function and contact potentials of metals
» Electrons in atoms occupy certain allowed levels:

» Extra specific heat above 3R per mole

» Optical properties

A gE)

> transparent — clear and coloured
> opaque

>> metallic — silvery or coloured

» thermionic emission (electrons "boil off’)

» field emission

» high thermal conductivity of metals »

» plasma frequency of metals
» x-ray spectra of solids

» thermoelectricity » Electrons in solids occupy bands of allowed states:
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A gE)

» In a metal there is no gap between the occupied and unoccu-
pied states:

Fermi energy

>
E

» In an insulator or semiconductor there is a gap.

A g(B)

Fermi energy

101



CHAPTER 5. ELECTRONS IN SOLIDS - OVERVIEW

» Note that the distinction between metals and insula-
tors/semiconductors is definite:

> in metals there is no gap in the density of states at the
Fermi energy at 7' =0

> in the others there is

» The difference between semiconductors and insulators is
quantitative, and depends on the size of the gap.

» Semiconductors have band gaps ranging up to 2 eV or less —
insulators have larger gaps.

» Intuitively, it is obvious that we can ’do things to’ the elec-
trons, such as accelerate them, with little difficulty in a metal,
but in semiconductors and insulators we have to promote
them across the gap first.
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Chapter 6

The Free Electron Model

6.1 Preliminaries 6.2 Basic Features

6.1.1 Required Knowledge » In the free electron model, we assume that the valence elec-
trons can be treated as free, or at least moving in a region of

> Quantum mechanics constant potential, and non-interacting.

» Thermodynamics

» We'll examine the assumption of a constant potential first,

» Fermi-Dirac distribution and try to justify the neglect of interactions later.

» Newton’s laws

» Force on charge due to electric and magnetic fields 6.2.1 Constant Potential
6.1.2 Reading > Imagiqe stripping thf: Vglence electrons from tI'le ato'rr}s, ar}d
arranging the resulting ion cores on the atomic positions in
» Hook and Hall 3.1-3.3 the crystal.
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Blue: electrostatic

NANNAN

» Resulting potential — periodic array of Coulombic attractions.

» From atomic theory, we are used to the idea that different
electronic functions must be orthogonal to each other (re-
member we used this idea in discussing the short-range re-
pulsive part of interatomic potentials, and metallic bonding.)

» If ¢.(r) is a core function and v,(r) is a valence function

/ el (x)dr = 0.

104

» Let’s see how orthogonality might be achieved for a slowly-
varying wave.

» We need high spatial frequency (large k) components in the
wave. Large k — large energy. So the extra energy caused by
the orthogonality partly cancels the Coulomb potential.

» This can be formalised in pseudopotential theory in which the
potential is weakened and the constant potential assumption
is a reasonable one.
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Red: orthogonalisation

. Nett potential
Blue: electrostatic P

» The net result is that the effective potential seen by the elec- » So finally we assume that the attractive potential of the ion
trons does not have very strong dependence on position. cores can be represented by a flat-bottomed potential.
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Nett potential
Model potential

NN\ NN
NS NS NS KT N

» We go further, and assume that the potential is deep enough
that we can use a simple ‘particle-in-a-box’ model — the free
electron model.

6.2.2 Free Electron Fermi Gas

» For the particle in a box with potential V, Schroedinger’s equa-
tion gives
h2
—— V2 + VY = E'y,
2m
or, with a shift of origin for energy, £’ —V — E,

h2
—5 -V’ = By,
2m

106
so that the wavefunctions have the form

dalx) = %expuk.r»

where V is the volume of the material.

These are travelling waves, with energies

h2k?
By =

om’

dependent only on k£ = |k|. That is, Ex depends only on the
magnitude of k, not its direction.

We can use the result (obtained in our discussion of the den-
sity of states of phonons) that the number of states with mod-
ulus of wavevector between k& and k + dk is

g(k)dk = Vo prrzan =

2
8o 3.2 k=dk.

For electrons

dk — m

dFE 2k K2 2mE h
_Mr_ v eme N AE.
m h2 m

We also need to include a factor of 2 for spin up and spin
down.
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29(k) I

dF
v
272 dE
,V mE
22 K2
Vm
m2h3

g(E) =

» Note that as V increases, so does the density of states.

6.2.3 The Fermi Energy
» At absolute zero the Fermi distribution function n(E)

1

"E) = (B = Er) i) +1

is 1 up to the Fermi energy Er, and O above that.

» Suppose the volume V contains N, electrons. Then we know

N, = /0 g(E)n(E)AE

= /OEF g(E)dE

\/2m3 Er
= Vemt [ R ap
s h 0
VV2m3 2Ep3/?

m2h3 3

107

SO

2 2 2/3
Be= 22 (3TN
2m \%4

» We can define two related quantities:
> Fermi temperature, T,
TF = EF / kB-

> Fermi wavevector, kr, the magnitude of the wavevector
corresponding to,

_ h%kp®

- 2m

2 1/3
fp = (37r Ne> .
\%4

6.2.4 Orders of magnitude

Ep

SO

» For a typical solid, the interatomic spacing is about 2.5 x
10710 m.

» Assume each atom is in a cube with that dimension, and that
it releases one valence electron, giving an electron density
N,V ~ 6 x 1028 m~3.

» Putting in the numbers, we find

> Ep~9x1071° J=6eV
> Ty ~ 70,000 K
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> kp ~ 1.2 x 101 m~!, comparable with the reciprocal lattice as
spacing 0.4 x 101 m~!
K. = ng
3 (37r2Ne)2/ ’
» We can also estimate the electron velocity at the Fermi energy: 10m v
_ 3n? (37T2)2/3 2/3
- N 10m
vp = o~ 1.4 % 10°m s 3h? (37r2)2/3 1 \*3
m =
10m %mﬂ'g
. . _m 3t
which is fast, but not relativistic. = omag 5 (rs/a0)?
h2
1Ry = —
Y 2ma(2)
» The total energy of the electrons is given by = K. ~ 2_210;
Ry ({’ns/aO)2
total energy of electrons = E ¢g(F) dE = gNeEF,
0

6.2.5 The Fermi surface

so that the average energy per electron is 2 Er. Note that this  » In later sections we shall talk a good deal about the Fermi
consists entirely of kinetic energy. surface. This is a constant-energy surface in reciprocal space
(k-space) with energy corresponding to the Fermi energy.

» We can therefore write the average kinetic energy per electron ~ » For the free electron gas, this is a sphere of radius kr.
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f(E)
<

» The current is given by
_ T2 9
J =BT exp( kBT> ,
6.3 Some simple properties of the free with a theoretical value
electron gas

2
B =" 9108 Am K2
wh?
6.3.1 Thermionic emission Experimentally the exponential dependence is confirmed,

with similar values for B.

» If the work function ¢ is small enough, then when the material
is heated the electrons may acquire enough thermal energy to
escape the metal. A small electric field is used to draw them p A large applied field alters the potential outside the metal
away. enough to allow electrons to tunnel out.

6.3.2 Field emission
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E

f(E)

» Very large fields are needed, but a sharp metal tip can give an
image which shows where the atoms are. Fields vary across » More detail is possible from newer scanning probe micro-
the atoms. Scopes.
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6.3.3 Photoemission

» A photon with energy greater than the work function can eject
an electron from the metal.

f(E)

6.3.4 X-ray emission (Auger spectroscopy)

» A high-energy electron incident on a metal may knock out an
electron from a core state (almost unchanged from the atomic

state).

» An electron from the band can fall into the empty state, emit-
ting an x-ray.

f(E)g(®)

> > > >

>

Al LI spectrum ;": '

Intensity

65 75

Energy (eV)

A typical soft X-ray spectrum for a simple metal.
(After Aita and Sagawa (1969).)
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6.3.5 Contact potential 6.4 Thermal Behaviour of free electron
gas

» If two metals with different Fermi energies are brought into

contact, electrons will move so as to equalize the Fermi levels. 6.4.1 Review of Fermi function

» The key point about electrons in a metal is that the Fermi
temperature Tr is high — about 10° K.

1

» As aresult, one becomes positively charged and the other neg- frp =
atively charged, creating a potential difference which prevents exp((e — p)/kpT) + 1
further electron flow.

A Temperatures 1, 10, 100, 1000 K

1

0.6

0.4

0.z

| A

- Ve I Ve

20000 40000 0000 80000 1o0ooo lzooog )

» Even if we zoom in, we can only just see the change from the
step function at normal temperatures.
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Temperatures 1, 10, 100, 1000 K

9

Temperature 100 K

0.8

0.g

0.4

0.2

249800

100000 1ln0z00

48000 100000 102000 104000

» Thus the effect of increasing temperature changes the energy
of the number of electrons in a triangular region of height

» This means that temperature has very little effect on the en-
P v 9(Er)/2 and width 2ksT, that is, 1g(Ep)ksT.

ergy distribution of the electrons.

» These have their energy increased by about kT (%kBT if we
keep to the triangular model), so that

1
. . Frotal ~ Eo + = g(Ep)kpT x kgT,
6.4.2 Electronic specific heat totat & o 5.9 (B )k T s

so that the electronic specific heat is
» To a good approximation, we can include the effect of temper-
ature by drawing a straight line passing through fep(Er) = 1, dE 5
falling from frp (B — 2kpT) = 1 to fen (Er + 2ksT) = 0. Co = qp ~ 9(Ep)ks"T.
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114
» Note that » If we take a typical Er ~ 5 eV then at 300 K C, =
Vi 0.2 J K~'mol~!. This is less than one percent of the specific
9(EF) 25V 2mEF heat from vibrations (= 25 J K~ 'mol™1).
V2m3
= Vo am VEr 6.4.3 Experimental results
Er = ’i 32N 2° » At low temperatures, though, the vibrational contribution falls
T oom % off as T3, so the vibrational and electronic parts become com-
1 /302H3N,\ 2 /3 parable.
T ( Vv ) » Conventionally write
Vv
7'('2h3 = (2mEF)3/2 Cv = ﬂ)/T —+ AT3
3N,
3N, 1 3/2 3 at low 7T, and so a plot of C,/T against T? should give a
9(Er) =V % (zm EF) 2m*y/ Ep straight line.
3N
2ER -
SO ) y B C/1‘=2.08+2.57T‘\(/“/7/
3N kg“T kT 3 T Potassium e
Cv = 2EF = ( E'F > X §NekB =§‘ zs»— ""f;,; :/{:,:/
Thus quantum mechanics reduces the electronic heat capac- E :/A
ity by a factor of kgT/Er. 20 or 57 5
T2, in K®

» A more accurate eValuatiOn giVeS Experimental heat capacity values for potassium, plotted as C/T versus T2

7T2 2
O’U = EQ(EF)kB Ta
or ) » Key point: treating the electrons as quantum mechanical par-
c -7 *Nekg™T' _ n* (kT S ticles has shown their specific heat is reduced by a factor of
v 2Er 3 \ Ep g ek about kg7 /Er from the classical result.
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6.5 Electrical Conductivity D> grain boundaries

>> phonons, locally altering the atomic spacings

6.5.1 Classical treatment

>> in addition, there may be electron-electron interactions
» A particle acted on by a force F experiences a change in mo-

mentum dp 6.5.2 Relaxation time
f —_ =

oA’ » Introduce a scattering time or relaxation time 7:

and for a classical particle . . . .
> the probability of an electron being scattered in the time

F dv interval d¢ is dt/7
=m—.
de >> at each scattering event the velocity is randomised — the
We know that the electrons in a metal have speeds ranging up drift velocity is reset to zero
to ~ 10° m s71, in random directions, so that there is no nett >> so the rate at which vq returns to zero is
movement of electrons in a particular direction. dug v
» We assume that the force adds a general tendency for the elec- (dt) scatter T

trons to move in the direction of the force. This is a property

of all the electrons together. » We may have different scattering times 7 for different types of
scattering - the different processes are assumed to be inde-
» We call the associated velocity a drift velocity, vq, and write pendent ( Matthiessen’s rule)
dvy » Aside: We can introduce a mean free pathA. This is the dis-
F=m—-. ‘s

dt tance one electron travels on average between collisions. The
important electrons travel with the Fermi velocity vr between

» The electrons will move freely through a perfect crystal — but collisions, so the distance travelled in the time 7 is

the perfection is disturbed by defects
A= TUF.
> impurities (not different isotopes — these affect phonons
as they have different masses but not electrons as they =~ » So the evolution of v4 with time is
are electrically identical) { dvg Vd:|
m|— +—| =F.

>> dislocations dt T
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There are two important cases:

» Steady state: the time derivative is zero, so
mE =F,

T

_Fr

m

Vd

» Zero force: then
dva , va
dt T
va(t) = va(0)e /7

207

116

» Now the electrical current density J is

J = (electron charge) x (number of electrons/volume) x (drift velocity)

» This gives us Ohm’s law, current proportional to field. If we
write n = N./V, we have

J = o€
ne3r
o =
m
= ney.

showing a relaxation of the drift velocity back to zero with a 6.5.4 Experimental results

time constant 7.

6.5.3 Electrical conductivity
» If the force arises from an electric field £ then
F = —e&

(note that e is the magnitude of the charge on the electron —
hence the minus sign). So the steady-state drift velocity is

eET
Vg = ———

7

m
which is often expressed in terms of a mobility p,

drift speed in unit field
|va/E|

€T

m

JT—

» For our typical metal, with n ~ 6 x 10?*m™ and o ~ 6 x
107 Q7 1m~! this gives 7~ 3 x 10714 s.

» Putting this together with the Fermi velocity vp ~ 10° m s™*
gives A ~ 3 x 1078 m or about 100 interatomic distances.

» Historical note: Drude’s theory of metals used a classical free
electron model.

> This had electron speeds which were classically thermal
(3mv? = 3kgT), i.e. much slower than the vr of the Fermi
gas.

> Drude also assumed that the electrons would be scat-
tered by every atom (i.e. his A was about 100 times too
small).

>> As a result of these cancelling errors, his estimate of the
electrical conductivity was not too bad.
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6.6 Electronic Thermal Conductivity

» We can use exactly the same expression as we used for

phonons:
1
= —cyvA
K 3cvv ,
only now cy is the electronic specific heat per unit volume, v
is the electron velocity, which we take as the Fermi velocity

vp, and A is the electronic mean free path, A = vp7.

» We know that
w2nkg?T
2Bk
(Note that we have converted from N, to n = N./V to get spe-
cific heat per volume) and so

Cy =

1 7T2nk}32T y
R = 3 2EF VR VFT
But )
EF = vaF27
hence
_ 7T2’I’L]{7]32TT
o 3m

» Ifwe take n = 6x 102 m—2 and 7 = 3 x 10714 s we have at 300 K
that kK =370 W m— 1K1,

» The measured thermal conductivity of Copper is
400 W m~ 1K1
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» In pure metals, most of the thermal conductivity arises from

the electrons.

» In impure metals (or random alloys, which amounts to the

same thing) the vibrational contribution can be similar.

6.6.1 The Wiedemann-Franz law

» For metals at temperatures that are not very low, the ratio
of thermal to electrical conductivity is directly proportional to

temperature.

K mnkg®TT/3m w2

o ner/m 3

(=) »

» The constant of proportionality is called the Lorenz number:

L

_ ks _7 (ks
T ol 3 e

2
) =245 x 1078 W Q K2

» Experimental Lorenz numbers:

L x108W Q K2

L x108W Q K2

Element L at273K L at373K | Element L at273K L at373K
Ag 2.31 2.37 Pb 2.47 2.56
Au 2.35 2.40 Pt 2.51 2.60
Cd 2.42 2.43 Sn 2.52 2.40
Cu 2.23 2.33 W 3.04 3.20
Mo 2.61 2.79 Zn 2.31 2.33

» A temperature-independent Lorenz number depends on the
relaxation processes for electrical and thermal conductivity

being the same — which is not true at all temperatures.
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6.7 Conductivity — the view from recipro- » If the field acts for a time 7
cal space Fr _ eér

6.7.1 Electrical conductivity > IFE — 1000 V - and » — 10~ s then

» The effect of a force F is to alter the momentum, hk. We can 1.6 % 10-19 % 1000 x 10—14
ask what this will do to the Fermi sphere. ok = = 105 < 10-3 ~10*m™' =~ 107° kp,
» For every electron and the alteration in the Fermi surface is small.
dk 7
¢t A’ 6.7.2 Thermal conductivity

so the Fermi sphere is displaced sideways. » There is no nett electric current — but electrons travelling in

one direction have on average higher energy than those trav-
elling in the opposite direction.

—

» Note that there is a nett flow of electrons.

Lower E Higher E
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Thermal current

Electrical current

» The scattering processes are different:

>> to reduce electric current requires large change in
wavevector — phonon contribution falls off quickly at low
T.

>> to reduce thermal current requires change in thermal en-
ergy — by definition, energy ~ kgT

6.7.3 Contributions to scattering
» Impurities contribution independent of temperature.

» Electron-phonon scattering is temperature dependent

> High T: plenty of large-k phonons, so effect on ¢ and «
similar
> number of phonons E/E,nonon = 3NkgT /kg®p x T so
Ax1/T

119

> cy x T

> o x 1/T, k independent of T’

> Low T few large-k phonons, so phonons less effective at
limiting ¢ than «

> number of phonons E/Epponen = const x T*/kgT o« T3
so A x 1/T3 for x

> number of large-k phonons « exp(—60/T) so A «
exp(0/T) for o

> cy x T

> oo exp(8/T), koc T2
>> Very low T': very few phonons, so impurities dominate

> cy x T

> o independent of T', k x T’

» As we saw before, different processes give resistances in se-
ries:

ﬂZZPi-
%

» Resistivity of potassium - different purities.
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Resistivity of Potassium x High purity
6.0?— w
W=W,+ W
W
5 0 constant
u
§ (SW'n ing b
cattering by .
E‘ o ] phonons) Low purity
% 4.0 S pute W,~T "1 Scattering
— by impurities
-~ m ,.Tl
8
= T T
£ () (b)
8 3.0
L
2
= » Note that this means the Lorenz number L = x/(¢T) is not
= g0l more pure constant with temperature.
l 0 | | | J—) 1 ———————————————————

Temperature, K

\Ideall
[gadlly

» Schematic variation of thermal resistance (a), thermal con- @)
ductivity (b) with T" at low T Temperature
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6.8 Plasma Oscillations which tries to restore the electrons to their equilibrium posi-

tion by exerting a force
» The picture of a free electron gas and a positive charge back- 5

ground offers the possibility of plasma oscillations — a collec- F=—ef = _ne T
tive motion of all the electrons relative to the background. €0

on each electron.

» So
. ne
mr = ——X
€0
is a simple harmonic oscillator with angular frequency wp

— 5 mne?
wp = ——.

€Egm

» For example, if n = 6 x 10?8 m~—3

+F . 6 x 1028 x (1.6 x 10—19)2
~ . 16 —1
Surface charge density \/ \/8 So4 X 10-12 x 9 11 x [0—31 — 410" rads™.

This corresponds to an energy hwp = 8.9 eV.

» If high energy (1 to 10 keV) electrons are fired through a metal

» If electron gas, n electrons per volume, moves a distance z film, they can lose energy by exciting plasma oscillations, or

relative to the positive background, this gives a surface charge plasmons.
density i
o= —ena Volume plasmon energies, eV
Metal Measured Calculated
on the positive x side. Li 712 8.02
N 5.71 5.95
» But this gives an electric field Ka 379 4.99
o Mg 10.6 10.9

E=—o Al 15.3 15.8
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» Another success for free electron theory!

6.9 The Hall Effect

» In a Hall experiment a magnetic field applied perpendicular to
an electric current flowing along a bar.

B ZT<‘:

X

—

» We need to extend our previous equation by including the
Lorentz force gqv x B.

» Note: Signs always cause problems in the Hall effect: avoid
some confusion by writing ¢ for the charge on the particles
carrying the current - ¢ includes the sign.

122

» The new transport equation is
m dﬂ—&-ﬁ =q(€+va xB)
dt 7)1 d '

» Asssume that B=(0,0,8;) and £ = (&;,&,,&.) so

dva, Vdzx
dt m? = qu, + qusza
d?]dy Vdy
m dt + mT = qu - qusza
dv v
dz dz _ qu.

m m
de T

» Now we know that current can only flow in the z direction, so
v4y = V4, = 0, and so in a steady state

Ydz = &,
-
0 = qu - qul’827
0 = ¢&..

» The first equation is one we have seen before:

qT
Vdz = ~—&x,

giving the current along the bar.

» The second equation states that an electric field is set up in
the y direction:
Sy = UdIBz.
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» The third equation states that there is no electric field in the Metal Valence R{T/Ry;?
z direction. Li 1 0.8
Na 1 1.2
» Physically what happens is that the charges are accelerated K 1 1.1
in the y direction by the magnetic field, and pile up on the Rb 1 1.0
edges of the bar until they produge enough of an electric field Cs 1 0.9
to oppose the effect of the magnetic field. Cu 1 1.5
» We know that the current density J, in the z direction is f:g } }g

u .
Jr = nquag, Be 2 -0.2
Cd 2 -1.2
SO Zn 3 -0.8
J2 B
&y = , Al 3 -0.3
ngq

» Alkali metals OK.

» Noble metals numerically incorrect

J.B. » Higher-valent metals wrong sign. Major problem for free-
electron theory!
> For.a free §lectron metal with n electrons per volume, then, » In addition, Ry depends on B and T.
Ry is negative,

1
Ry =——.

ne 6.10 Free electron approximation - final
» Note that measuring Hall effects in metals is difficult: even
with high current density (105 Am~2) and magnetic fields of comments

order 1 T we have to measure fields » We have still not explained how we can justify the assump-

108 x 1 1 tion that electrons, charged particles, do not interact with one
&y = — =0.0001 Vm™ ", th
Y 6x10% x 1.6 x 10719 another.

or a potential difference of less than 1 xV on a typically-sized » There are two effects: electrostatic screening and the exclu-
sample. sion principle.
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6.10.1 Screening

» If the electrons are free to move, they arrange themselves so
as to make the metal locally neutral

» But if they try to pack together more densely this will increase
their energy because Er, the energy relative to the local poten-
tial, increases with n = N, /V.

» As a result, the electrostatic potential round a point charge ¢
in a free electron gas is not

_q
Volr) = dregr’
but 2
ge "
V(r) = ,
(r) 4megr

a screened Coulomb potential, with

A=/ 260 b ~6x107" m
3e2n

for our usual set of parameters, so that electric fields inside a
metal are screened out within a few interatomic spacings.

6.10.2 Electron-electron scattering

» At absolute zero, scattering cannot occur, because of the ex-
clusion principle:

> The two electrons are initially both in occupied states in-
side the Fermi surface.
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>> To conserve energy and momentum, either both final
states lie inside the Fermi surface — but those states are
all occupied - or one lies outside — but then the other lies
inside.

» At finite T there is a layer of partly occupied states near FE,
amounting to a fraction about kg7 /Er of the electrons, giving
weak scattering with probability o« 72

» See contribution to electrical resistivity oc 72 in very pure met-
als at very low T'.

6.10.3 Binding energy of metals

» The terms in the energy are:

>> Electronic kinetic energy (reduced by allowing them to be
delocalised)

> Attraction of electrons to ion cores (less than in free
atoms as electrons are further from nuclei)

> Mutual repulsion of ion cores (screened by the free elec-
tron gas)

>> Electron-electron repulsion (reduced by spreading out
electrons)

> Quantum mechanical exchange potential between elec-
trons

> Correlation
functions)

energy (beyond single-electron wave-

» Balance of effects — typically a few eV per atom.
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Electrons in Periodic Structures

7.1 Preliminaries

7.1.1 Required Knowledge
» Quantum mechanics Nett potentlal
> Fourier series Model potential
. £ N NN
7.1.2 Reading e T e e
» Hook and Hall 4.1-4.2, 13.1-13.2

7.2 Introduction

» So far we have completely ignored the details of the potential p The key point is that this is a periodic potential. Two conse-
seen by the electrons. quences:
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> restricts the form of the wavefunction;

> suggests Fourier analysis might be useful.

7.3 Bloch’s theorem

» The Schroédinger equation is

_%vz¢(r) +V(@)p(r) = By(r),

with
V(ir+R)=V(r)

where R is a lattice vector.

» Also, the probability density for the electrons must be a peri-

odic function, so that it is the same in every unit cell, so

[P+ R)|* = [(r)]”

from which it follows that ¢ only varies by a phase factor from

cell to cell:

P(r +R) = e (r).
» Take a one-dimensional example: if the lattice spacing is a
Bla +a) = (),

SO
Y(x 4+ Na) = eiN¢1/)(x).
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» But if we impose periodic boundary conditions for a system

with N unit cells

U(@+ Na) = eNY(z) = y(2),

SO 5
nm

¢ - Tv
where n is an integer. This corresponds to

¢ = ka,
where

b 2nm

- Na

is one of the allowed wavevectors in the system of length Na.

Now write the wavefunction in the form
Vi (z) = ug (alc)eik‘c7

which satisfies ‘
Yp(z+a) = e’¢1/)k(x)
if
u(z + a) = u(x).

In other words, we have Bloch’s theorem: the wavefunction for
an electron in a periodic potential can be written as a phase
factor ¢”** times a function with the same periodicity as the
potential.

» In 3D:

P (r) = e T U (r).
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» This gives the sort of wave we sketched before:

» A periodic function modulated by a travelling wave.

» The wave-vector, k, is significant whether we have free elec-

trons (uk(r) = constant) or not.

7.4 The Nearly Free Electron model

7.4.1 Basic ideas

» In one dimension, consider the two free electron wavefunc-

tions

Yy(x) =L~
where the L~'/? normalizes over the length of the crystal, L.

1/26171'1;/(1

and ’(ﬂ,(l') — L—I/Qe—iﬂz/a

These both give constant electron densities 1/L.

» But consider the combinations:

L 0s(0) + 0 (0) = || 2 costrr/a)

Ye(z) =

bo(w) =

Sl 5l

(1/)+( ) -

¥ (z))

\/E sin(rz/a)).
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The new states are standing waves, not travelling waves.

» See what the corresponding charge densities are like:

LY = -~
ara z"‘& g”"‘% ™ M
r }’t r \gl-e. A NS »%gj e.ﬂ},s; A

e w

AANAN

» Itis clear that the even function has more charge density near
the nuclei than the odd function, so we expect it to have lower
energy.

» The crystal potential has split the degeneracy of the states
with £k = —7/a and k = 7/a — there is an energy gap between
them.

» As (r/a) — (-7/a) = 2r/a = G, a reciprocal lattice vector, we
can imagine a wave with & = 7/a being Bragg reflected by
interacting with the potential to give a wave with k = —n/a.

7.4.2 Perturbation theory

» The idea of perturbation theory is to start with the solution
to a problem, such as the free electron model, and assume
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that the difference between that model and the real problem » But

(in our case, the periodic potential) is in some sense small. H OO = E(0)y)0)
» That is, given a solution () to the free electron Hamiltonian means that (because the Hamiltonian is Hermitian) the first
H©) with energy E(®), assume that the real hamiltonian is term

H = H© + XH', for some small parameter \, and that the

O£ 5Dy = (4D 170 (O yx — F(0) 1415(0) [45(1)
energy and the wavefunction may be written (R T = R = BT (TR )

LA ” O = O ju©),
and E—EO £ BV £ \2E® 4 assuming normalised wavefunctions ((¢)(D(®)) = 1),
so that » This is first order perturbation theory.
(HO A @ + XM 4229 ) = (BE@ £ AED 4 N\2EC

)+ ...
+7”.4.3 Fourier Analysis

» The one-dimensional periodic potential V (z) may be expanded
as a Fourier series.

(qp(o) + MM 4 A2y

X

» Expanding, and collecting the powers of A\, we find the -
independent term
HO O = F0)0) » As usual, for a function with period a we expand in exponen-
’ tials of 2nmz/a.

our original equation. . L . . .
» But 27/a is a primitive reciprocal lattice vector. Generalizing

» The terms linear in A give to three dimensions:
H(O)lb(l) + le(o) _ E(O)w(l) + E(l)w(o)_ V(r) = Z VGeiG.r
» If we multiply through by () and integrate, using the nota- ¢
tion

7.4.4 The Energy Gap

» In one dimension, the periodic potential is

/ o) HE(x)dx = (S[HE),
we find

(WO HO [ DY 4 (O K (5@ = (5O |EO D) 4 (O ED @)y, V(z) = (Vae?™ /o 4 V_em2mine/a),

n
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and if we assume V' is symmetrical about z = 0 this is » The Kronig-Penney model is based on this.

Viz)=2 Z Vi cos(2mnz/a).

» Now, using perturbation theory, the energy difference between
the sin and cos functions will be

o 2
E,—E. = /0 2 zn: Va cos(27mx/a)z(sin2(7m/a) — cos?(mx/a))dx
L
= i;vn/o cos(2mnx/a) cos(2nx/a)dx

» For details of the calculation, see for example Kittel Introduc-

and we know that only the n = 1 term in the integral will tion to Solid State Physics.

survive, integrating up to L/2, so

E,—E., = -2V;.
Ax
» The states at k = w/a are separated by an amount equal to
twice the lowest Fourier component of the potential. \ /
» Note: strictly speaking, we should be using degenerate per-
turbation theory, but we have side-stepped this by ’spotting’

the correct combinations of degenerate states (the cos and sin ’\ ] /

functions). k
ﬂ_ f

7.5 An exactly-soluble model

» We know from second-year quantum mechanics that square  » We can see the gaps in the energy spectrum - regions of energy
well potentials are quite easy to deal with. in which there are no allowed states.
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AE

>

T/a

» The free electron approximation remains a good approxima-
tion well away from the edges of the Brillouin zone — only
wave-vectors close to a multiple of 7/a are mixed together and
have their energies altered by the periodic potential.

» Translational symmetry is not essential for producing a band
gap — amorphous solids also have band gaps.

7.6 Sketching energy bands

7.6.1 The empty lattice

» Imagine first that the periodic crystal potential is vanishingly
small.

» Then we want to impose periodic structure without distorting
the free electron dispersion curves. We now have

E(k) = E(k + G),

where G is a reciprocal lattice vector.
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» We can use the extended zone scheme (left) or displace all the
segments of the dispersion curve back into the first Brillouin
zone (right).

7.6.2 The nearly free electron

» Modify the free electron picture by opening up small gaps near
the zone boundaries.

7.7 Consequences of the energy gap

7.7.1 Density of states

» The number of allowed % values in a Brillouin zone is equal to
the number of unit cells in the crystal.
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» Proof: in one dimension, with periodic boundary conditions, » In the insulator, there is an energy gap between the occupied
I and unoccupied states.
s

where L is the length of the crystal,
» For a metal, there may be overlap (b) but not (c).

» The number of states in a Brillouin zone is
w/a L T/a L
N = g(k)dk dk = —
a

—7/a

’ » Draw the dispersion relation with slight distortions near the
zone boundary in either the extended zone scheme (left) or the
» But a was the size of the real space unit cell, so N is the reduced zone scheme (right).
number of unit cells in the crystal.

B 2 —7/a

» The same argument holds in two or three dimensions.

» Note that we get the number of unit cells — only for a
monatomic unit cell is this the same as the number of atoms.

» So, taking spin degeneracy into account, a Brillouin zone con-
tains 2N allowed electron states.

7.7.2 States in one dimension

Insulator Metal Metal
: » Note that states further from the origin in the extended zone

\/ ‘ 9 scheme can also be represented as higher bands in the re-
! duced zone scheme.

(a) ®) © » For free electrons, the constant energy surfaces are circular.

Energy
Energy

Energy
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» With the crystal potential, the energy inside the first Brillouin
zone is lower close to the zone boundary.

» For a monovalent element, the volume of the Fermi surface is
half that of the Brillouin zone so that it is free to be displaced  » So the Fermi surface is extended towards the zone boundary
by an electric field - a free-electron-like metallic system. as it gets close.
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(100)

(110)

» Consider a divalent metal in two dimensions.

» The area of k-space needed to accommodate all the electrons
is equal to the area of the first Brillouin zone.

» Depending on the direction in the Brillouin zone, we may g0  p We can see that the red states in the second band will start to
to larger k (larger FE) before the states are perturbed. be filled.
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\_ \ 7 A

» If the gap is small, the filled states will be in both the first and
second zones. This will be a metal.

/&

» Superpose the curves

/\x
| M i
AN A

» For a large gap, the whole of the first zone will be filled.

"

» This gives an insulator because if we apply a field to increase
» Take a larger energy gap an electron’s k vector, electrons at the zone boundary will be
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Bragg reflected back to the other side of the zone — there will
be no nett drift velocity. AE

Change in sign of slope
change in direction of v

» We only get current if we can excite some electrons into a
higher energy band. It is an insulator. \\

» On crossing the zone boundary, the phase velocity changes
direction: the electron is reflected.

» Bragg reflection is a natural consequence of the periodic na- 7,7.3 Sketching a nearly free electron Fermi sur-

ture of the energy in k-space, and the fact that face
ity _ o 1dE
group velocity = - = 5o » Start with the sphere, and distort it near the edges of the zone.
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7.7.4 Typical Fermi surfaces in 3D

» The Brillouin zone is taken as the reciprocal space Wigner-
Seitz cell. » FCC lattice, BCC reciprocal lattice
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Sodium Potassium

» BCC lattice, FCC reciprocal lattice. The alkali metals are only
slightly distorted from spheres. » The noble metals are connected in k-space.
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7.7.5 Effects of fields on electrons in bands

» For polyvalent materials, the Fermi surfaces get more compli- » Electric field: a simple picture will show how the Fermi surface
cated. in a partly-filled zone will be shifted:
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I

<=0 <k> —>

» A nett current flow (really arising from (v), not (k), so a con-
ductor.
» The change in k is perpendicular to both v and B - the electron
stays on the constant energy surface.

» Magnetic field:

dk

ha = —evxB. » Near the top of a band:
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v <
®

I3
-evx B

)

Bragg
reflection

» The electrons are Bragg reflected at the edges of the Brillouin
zone. » The electrons orbit, in k-space, the opposite way round occu-
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pied or unoccupied states.

» The behaviour looks like that of an oppositely charged particle
— a hole.

» What about the electrons in the second zone in a metallic
system?

A ®

T %

Y

A

N

-

» Redrawing, using the periodic nature of the system:
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A ®
o 3

» This is electron-like behaviour.

» There can be a balance between electron-like and hole-like be-
haviour - hence the strange Hall coefficients of the polyvalent
metals.

7.8 The tight-binding model

THIS TOPIC IS NOT TAUGHT THIS YEAR, AND WILL NOT APPEAR
IN YOUR EXAM. HOWEVER, THE FOLLOWING NOTES FROM PREVI-
OUS YEARS HAVE BEEN RETAINED FOR THOSE WHO ARE CURIOUS
ABOUT THIS VERY POWERFUL APPROACH.
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7.8.1 Overview

» For materials which are formed from closed-shell atoms or
ions, or even covalent solids, the free electron model seems
inappropriate.

» In the tight-binding model, we imagine how the wavefunctions
of atoms or ions will interact as we bring them together.

» For example, take two hydrogen atoms, A and B, and consider
the states ¢4 + ¢p.

» The symmetric (+) form has more screening charge between
the nuclei, and has lower energy.
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<

A

>
distance A=—B

» When more atoms are brought together, the degeneracies are
further split - to form bands ranging from fully bonding to
fully antibonding.

» Different orbitals can lead to band overlap.
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A'E ) 7.8.2 Tight-binding theory

» Consider an element with one atom per unit cell, and suppose
that each atom has only one valence orbital, ¢(r).

» Then we can make a wavefunction of Bloch form by forming

Yic(r) = N2> " exp(ik.- R )(r — Ryp).
» Confirm that this is a Bloch function. If T is a translation
vector:
Uit +T) = N2 exp(ik Rm)é(r — Ry, + T)
= N1/2 exi)(ik.T) > exp(ik. (R — T)o(r — (R, — T))
= exp(ik.T)yk(r) "
because if R,, is a lattice vector, sois R,, — T.

» Find the expectation energy of the Hamiltonian:

(k|H|k) = N7 > " exp(ik.(Ry = Ron)) (b |H|60)

where ¢, = ¢(r — R,,,).

» Now (¢,,|H|¢,) Will be large if n and m are the same atomic
site, or nearest neighbours, but will decrease rapidly with sep-
aration.
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» Write
<¢W|H|¢71> = G,
(dm|H|pn) = —v if n and m are nearest neighbours,
Then

Eyx = (k|H|k) = —a — Vz:exp(ik.Rn)7

where the sum is over nearest neighbours only, and R, is a
vector joining an atom to its nearest neighbours.

» For example, in two-dimensional square lattice we have
{Rn} = {(a,0),(=a,0),(0,a), (0, —a)}
so that if k = (kg, ky)

Eyx = —a — 27y(cos(kza) + cos(kya)).

» Clearly, as cos ranges between —1 and 1 Fyx ranges between
—a — 4 and —« + 47, giving a band width of 8.

» Near k = 0 we can expand the cos functions as
1
O~1—-62
cos 575
SO
1 2 2 1 2 2
= —a—4y+ ’y(kf + ]{15)&2

which is free-electron-like, giving circular constant-energy
surfaces near the centre of the Brillouin zone.
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» If both £, and k, are close to 7/a, write

k=2 =8, k===,
so that, remembering
cos(a — b) = cos(a) cos(b) + sin(a) sin(b),
we have
Ex = —a—2y(cos(m— dya)+ cos(m — dya))

= —a — 2y(cos(m) cos(d,a) — sin(w) sin(d,a)

—a+ 27y(cos(dza) + cos(dya))
= —a+4y—v 5§+55)a2

(
(
+ cos(m) cos(dya) — sin(n) sin(dya))
(
(

giving circular constant-energy surfaces near the zone cor-
ners too.

Finally, in the middle of the band
cos(kza) + cos(kya) =0,
the solutions to which are of the form
kza =m — kya,
or straight lines.

Overall, then, we have the constant energy surfaces for this
tight-binding model.
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/

N

N

[

7.8.3 Comments on tight binding theory

» Note that band width depends on two-centre integrals (v): for
transition metals, this leads to narrow d-bands and wide s-

bands.

» Near the top and bottom of bands, we have quadratic depen-

dence on k.

» A real band structure.

T

/

)
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Chapter 8
Electrons and Holes

8.1 Preliminaries

8.1.1 Required Knowledge

» Quantum mechanics
» Newton’s laws

» Force on charge due to electric and magnetic fields

8.1.2 Reading

» Hook and Hall 5.1-5.2

8.2 Equations of motion

» In one dimension, an electron with wave-vector k£ has group

velocity
dw 1dF
» If an electric field € acts on the electron, then in time §t it will
do work
OF = force times distance = —e&v dt. (8.2)
» But
dFE
0F = @ 5]’(} = hv 5]4;, (8.3)

» so, comparing eq 8.2 with 8.3 we have

146
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or
h% = —ef.
» In terms of force, F, "
ha =F.

» Generalising to three dimensions:

v = %VkE,
where
V=i g+ g
and "
T F.

» Similarly, if there is a magnetic field acting,

dk

ha = —ev X B,
or
dk e

147
8.3 Effective mass
» The energy near the bottom of a band can be written as
(8.4)

E(k) ~ Ey + A(k — kpin)|?,

knin being the k value where the energy was a minimum

» Near the top of the band (the corner of the Brillouin zone in
our two-dimensional example) it can be writtne as

E(k) ~ E; — B(k — kpax)|%,

kmax being the k value where the energy was a maximum.

» Remember that as k moves in a direction perpendicular to the
gradient of energy with respect to k, the electron stays on a

surface of constant energy in k-space.

» For example, Germanium:
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lence band, and the upper set, empty at 7' = 0, the conduction
band.

ggments

k=0
{111 ———————— 1100]

» In a region close to the maxima and minima, a parabolic ap-
proximation can be accurate.

» From equation 8.1
_dw  1dE
YT dk T hdk
» Differentiating with respect to time
dv 1d°E  1d*Edk
dt — hdkdt  hdk? dt’

_21(1 1) k=0
a\222 [111] ——————— 1001

» But from equation 8.4

dk
» We call the lower set of states, fully occupied at 7' = 0, the va- @ =F,
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SO
dv 1 d2E
dt 2 dk? 7

» But from Newton’s equation we expect

dv 1
at = m

which leads us to define an effective mass

1 1dE
m* h2 dk?

» That is

> the dynamics of electrons is modified by the crystal po-
tential;

> the effective mass depends on the curvature of the bands;
> flat bands have large effective masses;

> near the bottom of a band, m* is positive, near the top of
a band, m* is negative.

» In three dimensions, constant energy surfaces are not neces-
sarily spherical, and the effective mass is a tensor:

1\ 1 d&E
m* ij N h2 dkzdk‘] ’
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8.3.1 Typical effective masses for semiconductors

\ Electrons
E

\\ Heavy holes
-A

n

k

Light holes

Split-off holes

» Note that the top of the valence band is often degenerate, with
heavy and light holes and a split-off hole band arising from
spin-orbit coupling.
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Mass relative to free electron
Electron Heavy hole Light hole Split-off hole A/eV

Si 0.19-0.92 0.52 0.16

Ge 0.082-1.59 0.34 0.043 - 0.29
InSb  0.015 0.39 0.021 0.11 0.82
InAs 0.026 0.41 0.025 0.08 0.43
InP 0.073 0.4 0.078 0.15 0.11
GaSb 0.047 0.3 0.06 0.14 0.80
GaAs 0.066 0.5 0.082 0.17 0.34

» Important message: effective masses in semiconductors are
often one tenth of the free electron mass or less.

8.4 Electrons and holes

» We have discussed a full band (a full Brillouin zone) in terms
of Bragg reflection, and shown that it does not respond to

electric fields to produce an electric current.

» For a simple model in one dimension

Ex = —a — 2vycos(ka),

so the electron velocity is

2va

v = —— sin(ka).

h

and the effective mass is

h2

*

"= 2va? cos(ka)’
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which is negative near the top of the band, k = +7/a. » But bands are usually symmetric,

» It is clear that if we integrate v over a Brillouin zone (—7/a < Ek) = E(-k)
k < mw/a) we are integrating sin over a period, and we get zero.
SO
» Even if the electrons drift under the influence of an electric En(kp) = En(—kp) = —Eeo(ke).

field, there as many electrons at the top of the band moving

against the field as there are at the top of the band moving .
with the field. 8.4.3 Hole velocity

» But if the band is not full, we can have a nett current. > In three dimensions

1
» If we have somehow managed to excite a few electrons from Uh = ﬁvkh Eh,
the valence bands into the conduction bands, leaving a few
holes in the valence bands, it may be easier to focus on the p put

behaviour of the holes. k, = -k,
» SO
8.4.1 Hole wavevector _
Vk, = —Vk,
» The total k of a full band is zero: if we remove an electron with d
wavevector k. the total k of the band is > and so 1
o = =3 Vie, (<E.) = v..

» The group velocity of the hole is the same as that of the elec-
tron.

8.4.2 Hole energy

» Take the energy zero to be the top of the valence band. 8.4.4 Hole effective mass

» The lower the electron energy, the more energy it takes to  » The curvature of E is just the negative of the curvature of —F,
remove it: thus SO

Eh(ke) = _Ee(ke)7 mz = —m]

e
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» Note that this has the pleasant effect that if the electron ef-
fective mass is negative, as it is at the top of the band, the
equivalent hole has a positive effective mass.

8.4.5 Hole dynamics

» We know that
dk,

h el —e(E+ve x B),
» Substituting k;, = —k. and v;, = v, gives
dk
hd—th’ =e(€ + v x B),

» Exactly the equation of motion for a particle of positive charge.

» Under an electric field, electrons and holes acquire drift ve-
locities in opposite directions, but both give electric current
in the direction of the field.

8.4.6 Experimental

» Under a magnetic field B, electrons move in helical paths (or-
bits around the field direction, uniform motion parallel to B),
with angular frequency

el
We = m*’

which is called the cyclotron frequency.

» Electrons can absorb energy from an electromagnetic field of
the appropriate frequency — cyclotron resonance — this is how
effective masses can be measured.
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8.4.7 Mobility and conductivity

» We define mobilities for electrons and holes in the relaxation
time approximation as

eT eT

He = Hh =

* 7 *
mg my,

» Then the total current is the sum of electron and hole cur-
rents,
J = —eneve + enpup,

and the conductivity is
0 = Nellle + Npelip,

or

» Note that we have assumed equal relaxation times, 7, for elec-
trons and holes - this is not necessarily true.
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Physics of Semiconductors

9.1 Preliminaries
9.1.1 Required Knowledge
» Fermi-Dirac distribution
» Hydrogen atom

» Force on electron in electric and magnetic fields

v

Differential equations

» Poisson’s equation

9.1.2 Reading
» Hook and Hall 5.3-5.6, 6.1-6.5

9.2 Creating free carriers

» At absolute zero, a pure semiconductor has a full valence
band and an empty conduction band - there are no free carri-
ers.

» Create free carriers by:

>> absorbing photons
>> thermal excitation
>> doping with impurities

9.3 Photon absorption
» Photons with energy greater than the band gap E, can ex-
cite an electron, creating a hole in the valence band and an

electron in the conduction band.

153



CHAPTER 9. PHYSICS OF SEMICONDUCTORS 154

Direct transition Indirect transition 9.4 Thermal excitation

AE AE

» We can find the number of electrons in the conduction band

S | o N, N
/

k)

» Note that energy and crystal momentum must be conserved,

and a phonon may be emitted or absorbed. In terms of ini-
tial electron energy and momentum FE and %k, final electron
state (E’, k'), photon energy and momentum /A2 and hQ, and
phonon energy and momentum 7w and hq:

E' = F + hQ £ hw,

and
EF=k+Q=+q.

Note that if the photon energy is about 1 eV its wavelength is
about 1.2 um, so its wavevector is 5.1 x 106 m~!. The side of the
Brillouin zone is 27 /a, which is typically of order 10! m~!. On
the scale of the reciprocal lattice, then, the photon wavevector
is essentially zero — a photon transition is vertical.

by taking the density of states in the conduction band, g¢.(F),
multiplying it by the probability that the state is occupied (the
Fermi function), and integrating. If the energy of the bottom
of the conduction band is E. the number of electrons is

_ o0 gC(E)dE
A@“““ﬂ;<mp«E/n/@BT»+r ©-D

Note that

> N, will depend on the temperature

> we need to know the chemical potential, u.

The number of holes depends on the probability that an elec-
tron state is unoccupied, but

1 __ep((E — w)/(ksT))

L (BT T1 — exp((E — )/ (keT)) + 1
1

exp((u — E)/(ksT)) +1°

So the number of holes is

_ By gv(E)dE
Ny(T) = /_Oo exp((i— B)/(kT)) + 1

where E, is the energy of the top of the valence band and g, (F)
is the density of states in the valence band.

(9.2)
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» Equations 9.1 and 9.2 can be simplified if the numbers of 9.4.1 Law of mass action

electrons and holes are small. If
L <<
exp((E — p)/(ksT)) +1

it follows that the exponential is large, so that

1

)

1 ~ =B/ (knT)
exp((E — p)/(ksT)) + 1

which is true if

E—pu>>kgT.
» In the conduction band, F > E., so the condition is

E.—p>> kpT. (9.3)

» Similarly, provided

w—FE, >> kpT. (9.4)

we can write in the valence band

1 ~ (B=n)/(knT)
exp((p — E)/(ksT)) +1

» This low carrier density is the nondegenerate case.

» The other extreme, in which the probability of occupation of
a level is close to 1, is the degenerate case, typified by the
occupied states in a metal.

» Note that in the nondegenrate case we have been able to re-
place the Fermi (exact) distribution function with the classical
Boltzmann form.

» In the nondegenerate limit,

Ne(T)

Q

/00 gC(E)e(#—E)/(kBT) dE
E.

_ (u—B)/(knT) /Oogc(E)e—(E—Ea/(kBT) dE
E.

_ e(“*Ec)/(kBT)NC(T). (9.5)
» Similarly,

Nu(T)

Q

E,
/ go(B)eE-m/(5T) 4p

— 00

E,
- e(Ev—m/(kBT)/ go(B)e=Ev=B)/(kaT) g5
— e(Ev—/t)/(kBT)NV(T)_

» N.(T) and N, (T) are only slowly-varying functions of 7.

» We still cannot determine the individual carrier concentra-
tions without knowing p, but if we take the product

Ne(T)Ny(T) = e(/t—Ec)/(kBT)NC(T)e(Ev—/L)/(kBT)Nv(T)
— e(Ev—Ec)/(kBT)NC(T)NV(T)
= e B/ N (T)N,(T).
the result is independent of .

» This is the law of mass action: if we know the number of one
of the carriers, we can find that of the other.
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9.5 Parabolic bands

» We saw that, near the top and bottom of bands, a parabolic
approximation was appropriate, and we can combine this with
the effective mass to write, for conduction electrons,

h%|k — kol?
Ek)=F _
(k) = Ec + omr
and in the valence band
B2k — ko|?
E(k):Ev—|7*0‘.
2my;

» Using, as usual,

and

dE Wk

Ak m*
and noting that the same result is valid whether we expand
about k = 0 or k = kg, for the conduction band

L3 mrk
9:(B) = 5 Tz
V m: [2me(E — E.)
2 A2 h2
V21/2(m;)3/2
= e VETEe
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Similarly, for the valence band,
V21/2 m* 3/2
gv(E) = % V Ev - E.

Now we can evaluate the integrals

NA(T) = / ge(B)e (E-E)/(ksT)
E

1/2(12)3/2
_ P my)Y / VE — Eem(F-E)/(kaT) g,
71-2
Substitute « = (E — E.)/(ksT), to obtain

V21/2 *]43 T 3/2 "
N(T) = e / Ve~

L, <2mekBT)3/27

1 s (9.6)

using the standard integral
/ Vrze ™ dox = ﬁ
O 2

If we set V = 1, we can work with concentrations of carriers
nen and corresponding values nc .

If we put in numbers, we find

3/2
ne(T) = 5 x 10%! (m ) T3/,
e
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» The expression for the valence band is quite similar: » Knowing the relationship between n., and m;,, we also have
1 (2m;ksT\*? 1 3 my
= —= . =FE.— -E;,+ -kpT1 .
ny(T) 1 ( e ) H 5t + 4k13 n me
9.6 Intrinsic behaviour » At T =0, u lies half-way between the valence and conduction
' bands

» If all (or almost all) the electrons in the conduction band have

As Ti , ill t ds the band with th all
been excited from the valence band, we have > As 1 Increases, j will move towards the band wi ¢ smatier

effective mass (smaller density of states at the band edge)
ne(T) = nn(T) = m(T), » As the effective masses are generally of similar magnitude,
does not move far from mid-gap

with
n(T) = o~ Be/(2knT) e(T)ne (1) » Note that
3/2
o Ee /2Ty L (21{3T> / (m:mﬁ)3/4 9.7) > Eg is typicglly about 1 eV, which is large compared with
4\ 7h? kgT which is 1/40 eV at room temperature
s x \ 3/4 .
— 5x102! (memh) T3/2 o= Fg/(2ksT) > In (Z*) is of order 1
2 ‘ :
‘ > So E, — i is large compared with kT
» Now we can find the Fermi energy: if we equate the value for > So we are in the nondegenerate regime

ne(T) from equations 9.5 and 9.6 with that from 9.7 we find

3/2 3/2 » Note that the number of carriers varies as e~ F=/(2k87) not as
o~ Bs/(2knT) 1 (Qk‘BT> (mimi )2/t = 1 <2m§kBT> o(1=Fo)/ (ks T) e~ Ps/(ksT) (think of carriers being excited from the chemical
' A\ 2 h =\ )

4 \ wh? ¢ 4 wh? potential, not from valence to conduction band)
then » The exponential form holds irrespective of the details of the
w=FE;— 1Eg + 1kBTln (nv> ) band shapes (i.e. we do not need to assume they are par-
2 2 e abolic).



CHAPTER 9. PHYSICS OF SEMICONDUCTORS 158

9.7 Doping - donors and acceptors > Its mass is the electronic effective mass m}

> Also it sees the nucleus through the crystal, screened by

» Consider doping a 4-valent semiconductor (Si, Ge) with a 5- the dielectric constant ¢,

valent impurity (P, As, Sb).

» The impurity will substitute for a host atom, so that 4 of its 5
valence electrons are involved in bonds to its neighbours.

9.7.1 Impurity states

» The Hamiltonian for the extra electron of a 5-valent impurity
is
R _, e?

2m} 4dmereor

H:

which is just like the Hydrogen atom Hamiltonian

He -l g €
» This leaves one electron unaccounted for, but the impurity 2me dmeor

nucleus has one extra positive charge to attract it. . .
except with a scaled mass and with ¢, replaced by ege,.

» If we take over the Hydrogen atom energies and wavefunc-
tions,
e*me 1 13.6

En: _— =

- — -2y
32m2egh? n? n? °

and for the ground state
» Assume (r) = Ne—T/an

> The extra electron is quite loosely bound to the impurity where ay is the Bohr radius,

>> To a first approximation it is an electron in the conduc- )
tion band with energy E. and is spread out over the crys- ag = dmeoh

5 = 0.053 nm.
tal e2me
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» Putting in the scaling factors, the impurity binding energy in  » Far-infrared absorption of P in Si showing hydrogen-like tran-

its ground state is sitions between n=1 ground state and higher levels.
E = —13.66VM, Absorption
€ A .
with a radius . 3
ap = aH*ir
(me / me)

» If we take m} = 0.2m, and ¢, = 11.7 for Si we find

|

which is many interatomic spacings — consistent with our ini-

0.039 0.041

tial assumption that the electron samples a large region of the Energy (eV)
crystal. ‘
» The binding energy in Si is then » We ignore this level structure from now on, and concentrate

on the impurity ground state and the nearest band.
E =-0.02eV,

which, remember, is the lowering of energy relative to the bot- 9.7.2 Typical binding energies

tom of the conduction band,
» From experiment:

Es=E.+E.
Donor ionization energies, meV

» As it is easy to excite electrons from these loosely-bound . P As Sb

states into the conduction band, 5-valent impurities are called Si 450 490 39.0

d Ge 12.0 12.7 9.6

onors.
Acceptor ionization energies, meV

» Similarly, for 3-valent impurities we have a loosely-bound B Al Ga

hole, in energy levels just above the valence band. These are Si 45.0 57.0 65.0

called acceptor levels. Ge 104 10.2 10.8
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» Note that there is a small chemical effect.

™

Conduction

» Donor and acceptor states are usually localised, but if the band

defects get close enough for their wavefunctions to overlap E, E, —
appreciably, we may get impurity bands.

LE, il

9.7.3 Deep traps

» Impurities with larger differences in valence from the host typ-
ically produce states which are much further from the band
edges — called deep levels.

» These take more thermal energy to release carriers, so are less T-0K
important in determining carrier concentrations.
» However, they can trap free carriers and allow them to interact
with carriers of the opposite type, allowing recombination. » As we increase the temperature, it only moves slightly — at the
same time the step in the Fermi function broadens out, and in
» The maintenance of the carrier density is a dynamic process, the bands the function is well approximated by a Boltzmann
with a balance between thermal excitation and recombina- form.
tion. The recombination time 7 is an important parameter of
semiconductor devices, as we shall see later.
9.7.4 Locating the chemical potential » If we dope with donors only (n-type doping), then at absolute
zero the highest occupied levels will be the donor levels, the
» In an undoped material, we have seen that at absolute zero, lowest empty levels will be at the bottom of the conduction
where the Fermi function is a step function, the chemical po- band, so the chemical potential will lie between the donor lev-

tential is in the middle of the band gap. els and the bottom of the conduction band (left picture).
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Ey 2 Ey H /
Donor Donor
Igeetl Igeetl

p

» If we raise the temperature slightly, we excite electrons from » We are then back in the intrinsic regime.
the donor levels into the conduction band (centre picture).

» Note that no matter how hard we try, we can never have only
donors in the system - there are bound to be some acceptors.

I mn m A » The electronic energies for the acceptors are lower than those

2 7 1 s
M Donor / for the donors, so the few acceptors will ionize a few donors
Idwebl p so the boundary between occupied and unoccupied levels lies

somewhere amongst the donor levels. At very low 7' the chem-
ical potential is ‘pinned’ at the donor levels in this case.

) fro
T>0K T>0K

9.8 Carrier concentrations

» As we raise the temperature more, we will exhaust the donor 9.8.1 Overview
levels. Any further electrons must come from the valence

band (right-hand picture) » Consider the electron density in an n-type semiconductor:
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log(ne)

-(Ec-Ed)/2

. _-(Ec-Ed)

~
A} ~
~

“\\—Eg/Z o

1/kT

» Atvery low T, n. oc e~ (Fe=Fa)/(ksT) (pinned p);

» At low T (kg1 comparable with impurity binding energy)

ne ox e~ (Fe=Ea)/(2ksT) (1, between donor level and the conduc-
tion band).

» At intermediate 7' we exhaust all the impurities, but have not

enough thermal energy to excite from the valence band - sat-
uration

» At higher T we have n, oc e~ Fs/(2ksT)

ik ik
xR D

Electron density (m'3)
[,
S,
)
T

[,
S
[—}

1019

162
TX)

[ B ] [enl f=J wy <
S O (w3 (=} ~ vy
vioon o™ —

T T | |

Intrinsic regime

Silicon
21 3

10 donors/m

Saturation regime

Freeze-out
regime

» Note that n.(T)nn(T) =

doping.

4 8 12
1000/T (1/K)

e~ Fe/(ksT)p (T)n(T) irrespective of

» At room temperatures, n.,n, ~ 103 m=% for Ge and 1033 m~°
for Si, so if there is no doping, n., = ny, ~ 3 x 10*® m~2 for Si.

» So to observe intrinsic behaviour at room temperature, need
fewer carriers than this from impurities, a concentration of
less than one part in 10'? of 10'3, which is unachievable.
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9.8.2 Detailed results » In a doped material, one carrier type will be present in larger

. . . number at room temperatures — the majority carrier.
» At low temperatures, in an n-type material, if there are np

donors per volume, we know that the number of ionized » The other is the minority carrier.

donors will be » At high T, the material behaves intrinsically, with roughly

B 1 equal concentrations of electrons and holes.
exp((Ep — )/ (ksT)) + 1]’

+
ny =np |1
» The main factors affecting the mobilities are scattering by

i.e. we compute the probability that the donor states will be charged impurities and phonon scattering. The real temper-
empty. ature dependences are complicated, but one can make rough
estimates.

» If we can assume that both
4 — Ep >> kT 9.9.1 Scattering by charged impurities

» Assume that a carrier is scattered when its potential energy

and in the field of the scatterer is similar to its kinetic energy.

E.—pu>>kgT

we can again use the Boltzmann expressions. » The potential energy, Coulombic, at a distance r

1
» But these require that i lies between the donor levels and the Vo —.
conduction band, and these are only a few tens of meV apart, "
so this is only applicable at low 7. Then » The kinetic energy is thermal energy,

Ne = \/npne(T)e” Fe=Fp)/(2keT) ExT

» So we can define an effective radius of the scatterer as

9.9 Mobility and conductivity 1
Ts X —.
ST
» If both electrons and holes are present, both contribute to the
electrical conductivity: » Hence we get a scattering cross-section, and a scattering
probability,

2 -2
0 = Ne€lle + NpeL. Pscatt X Trg o< T~
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» The rate at which the carrier encounters scatterers is propor-
tional to the carrier velocity

v VT,

» So overall
Pscatt X T_3/2-

9.9.2 Scattering by phonons

» As in metals, the probability of interacting with a phonon is
proportional to the number of phonons, which is proportional
to T' at room temperature.

» But the rate at which the carriers pass through the crystal is
determined by their thermal velocity,

’UO(\/T,

SO
3/2
Dscatt X T / .

» Note the difference from metals — there the velocity of the car-
riers being scattered was the Fermi velocity, essentially inde-
pendent of 7.

9.9.3 Overall effect

» The graph shows the variation of the two contributions to 1/7,

and as usual

1 1 1
= +
T Tdef

Tphon

164

Impurity t' 2y

ht! P

Temperature

» So the mobility peaks at intermediate temperatures — typically
100 to 200 K.

» Then, to find the conductivity, we need to factor in the number
of carriers, giving the result in the following graph.
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Conductivity
(arbit‘ary units)
105 Intrinsic regime
10°F
Extrinsic regime

10°

10° |-

10 |

1 | [ | ! | ! 1
2 4 6 8 >

1000/T

9.9.4 Hall effect in semiconductors
» With more than one carrier type, the Hall coefficient is

1 Nhfth? — N fle’

lel (nnpun + nepie)”

H =

» For a doped semiconductor, it is possible for the sign of the
Hall coefficient to vary with T for example, consider a p-type
material with pe > py

> atlow T, Ry >0

165

> at high T, intrinsic behaviour gives n. = ny,, but g > un
so Ry <0

>> temperature dependence of carrier concentration gives
exponential dependence of Ry at high T

» Example: Hall coefficient in InSb.
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9.9.5 Cyclotron resonance

» In stronger magnetic fields B, the carriers move in spirals
about the field lines. For holes for example,

IIRLER

2

.
mpv

= Bev,
r

so that the angular frequency w, = v/r is

I IIIIIII

Sign change oo

» This is the cyclotron frequency: electromagnetic radiation of
that frequency can be absorbed, giving a measurement of m;..

I TTTTT

1

» We do not expect to be able to detect this cyclotron resonance
unless the carrier completes most of an orbit before being
scattered,

T

10° =/ 4 I 1
0.001 0.003 0.005
YT (K™

WeT ~ 1.

I
0.007

» This dictates the range of frequency, and hence field, to use.
Typically at room 7' use infrared, at liquid helium 7' use mi-
crowaves.

» Cyclotron resonance in Si at 24 GHz at 4 K.
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N Absorption N
| 3
e
« lu}
$ \
&
O 3
1 g N g
0.1T 02T 03T 0.4T B

» Note that we have heavy holes and light holes, but for elec-
trons the constant energy surfaces are ellipsods, so the effec-
tive mass is different for different directions.

» There is a vast array of beautiful experiments which explore
details of Fermi surfaces, which we have no time to explore in
this course.

9.10 Carrier diffusion and recombination
» Suppose we have a p-type semiconductor, i.e.

Np >> Ne. (9.8)

» Create a local excess of minority carriers (electrons)

>> with radiation, when An, = An;, automatically, or

167

>> by using a contact, when electrical neutrality will ensure

Ane = Any.
» But because of equation 9.8
Ang Any
>> ;
N0 1ho

so the change from equilibrium concentration (n.y or nyg) is
much greater for the minority carriers.

9.10.1 Recombination

» Electrons and holes annihilate, mainly at deep traps or sur-
faces.

» The recombination (annihilation) rate is proportional to the
product of the concentrations:

R' = cneny = c(neo + Ane)(nno + Any,).

» But we know that in equilibrium we have dynamic equilibrium
with thermal generation equal to recombination cneonng, SO
the recombination caused by the excess carriers is

R c(neo + Ane)(nno + Any) — cneonno

Ane Any  Anp Ane
= CNeoNho + +
Te0 Tho nho 7Teo

Aneg
N CNeNho )
Neo

keeping only the largest term. Thus
R = npoAn,
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and the recombination rate is proportional to the concentra-
tion of excess minority carriers.

» If we write

R _dAne _ An,

de¢ Te

then
Ane(t) = Ang(0)e™t/™.

9.10.2 Diffusion

» Suppose we inject excess minority carriers at some point: this
will set up a carrier concentration gradient, and carriers will
diffuse. As they carry charge, this will give an electric current
density. For holes

J = —|e|DyVny,

the negative sign accounting for diffusion down the gradient.
Dy, is the diffusion constant.

» The rate of increase of hole density in a slice at = in one di-
mension is 5 B o2
Th h
— (D, =2 ) = _p, 2
oz < ey ) " 0a?

which in a steady state is balanced by recombination loss so

Oy nu — nno
D = .
b 81‘2 Th
» This is equivalent to
82Anh _ Anh
8@2 - DhTh
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or
Any(z) = Any (0)e /I,

lw = v/ Dym

is called the hole diffusion length.

where

» Of course, for electrons there are exactly similar expressions.

» Note that the diffusion constant and the mobility are related
by the Einstein relations

o eDh

 kgT

_eDe
fe = ol

Hn

9.10.3 Electric current

» In general, there can be four contributions to electric current
in a semiconductor:

1. electron drift: Je ariee = Nepte|e|E

2. hole drift: Jy, gritt = nnpnle|E

3. electron diffusion: Je qig = |e|DeVne
4. hole diffusion: Jy, qix = —|e|DnVnn

Carrier mobilities, m*V~—Is~! at room T

Electrons Holes Electrons Holes
Diamond 0.018 0.012 | GaAs 0.080 0.003
Si 0.014 0.005 | GaSb 0.050 0.010
Ge 0.036 0.018 | PbS 0.006 0.006
InSb 0.300 0.005 | PbSe 0.010 0.009
InP 0.045 0.001 | AlSb  0.009 0.004
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9.11 Heterojunctions

» Most important semiconductor devices depend on having
differently-doped materials in contact.

» In practice, these are made by ion implantation or diffusion,
giving relatively smooth dopant concentration variations — but
we assume sharp boundaries.

» Consider an n-type and a p-type material.

ntype p type

— — — — -]

R

» When they are separated, their chemical potentials are
roughly E, apart. When they are in contact and in equilib-
rium the chemical potential must be constant throughout.

169

p type

n type

» This can happen if the p-type region becomes negative, raising
the potential for electrons, and the n-type becomes positive.
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n type

We assume this happens by ionising the impurities: the elec-
trons released from donors in a region near the interface go to
acceptors near the interface.

Suppose a region of thickness zp with donor density np and
a region of thickness z, with acceptor density n, are ionised.

The ionisation is assumed to be total within this depletion
zone, where there are practically no free carriers.

In a region with charge density p Poisson’s equation tells us
the electric field is given by

& p
dz ~ eer
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If the field is zero outside the depletion zone, £ = 0 at x = —zp,
and in the depletion zone in the n-type material p = |e|np, so

As the potential V is related to the field by £ = —dV/dz we
have

nple
V=V(-zp) — %6'(95 +ap)2.
T

Similarly in the p-type depletion zone

We have a total change in potential across the depletion region

le]
AV = Seoc (anQD + nAxi) .

» This must give a voltage equal to the band gap.

Putting npzp = naza (Which ensures continuity of V at the
interface) we find

op — 2€0€r AV ( na )a
nple na +np
With a band gap of 0.5 V and dopant concentrations of about
10%* m—3, the depletion layer width is about 1 pm.

The charge densities, fields, and potential are shown below.
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A AN

E p type
* A ntype

*‘U o Y e e e =

> — /

» In equilibrium, we can assume there are practically no elec-
trons on the p-type side.

» On the n-type side the fraction of the electrons with enough

energy to move to the p-type side will vary as exp(—FE,/kgT)

» Here is the relationship between the potential through the (those with energy FE, above the bottom of the conduction
junction and the band structure. band.)



CHAPTER 9. PHYSICS OF SEMICONDUCTORS

Qlttus n
Thermal | Recom-
excitation | bination

Thermal
excitation

» Once they are in the p-type material, these diffuse a distance
l. before they recombine.

» In equilibrium, these are balanced by a flow of thermally-
generated electrons in the p-type region, which roll down the
potential energy surface into the n-type region.

172

> o

Dittusion

Thermal “-\
excitation ) / Thermal M Recom-
/

excitation | bination

eV ¢

' Forward bias
n-type n-type negative
large diffusion current

» If you forward bias the junction, raising the energy of the elec-
trons in the n-type region by ¢V, and the number passing from
n to p is increased by a factor exp(eV/kgT).

» Under reverse bias, the number of electrons flowing from n
to p is reduced, and as there are hardly any electrons in the
p-type the reverse current is very low.
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> and for reverse bias
Diffusion
Thermal ; 7 _ eDeAneop [1 _ eeV/kBT}
excitation \ Thermal | Recom-
excitation | bination
» Of course, the electrons crossing the barrier will be supplied
& “ e A e B P by a drift current in the n-type material. There will be a hole
=== === ‘e_| V diffusion current in the n-type material too.
Reverse bias ) o )
i » The p-n junction is a rectifier.
n-type positive
n-type
Current 4
» Thus the number of electrons very close to the junction on the
p-type side will be Forward
Neop + ATegp [eekaT _ 1} : bias
where A is a diffusion parameter from p to n.
» The extra concentration of electrons on the p side varies as !
P Reverse bias
Ang(z) = Ane(0)e™"/te, o5
ne(@) = Ane(0)e Voltage

and the current is given by the product of the diffusion con-
stant and the concentration gradient, so for forward bias

In the diode, there is a change through the barrier region in

) what carriers dominate the current flow:

g eDeAneop {eekaT . 1]

le
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J
— Hole drlt‘[c\u:rent

Electron diffusion

current
b Extra hole current to give
diffusion current of holes
In n region
n type p type

Typical diffusion length, [ or ;,, is about 1 mm, much larger than
the width of the depletion zone (about 1 um.

9.11.1 Junction transistor

» The junction transistor is two diodes stuck back-to-back (ei-
ther npn or pnp).

emitter junction

collector junction

3,
B ———;——-Ijnitter n-type

base p-type

collector n-type

v,@ )

ri, = (1—a),

b
1

]l
1|1

emitter bias battery

collector bias battery
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» The signal voltage V, added to the emitter voltage alters the
current through the collector, giving an amplified voltage

across the load resistance R.

Conduction band

emitter n-type base p-type

g;pi&t,gr bias

collector bias

Valence band,

Emitter Base

collector n-type

Collector

» Any change in base-emitter voltage causes a large change in

the electron current injected into

the base.

» Most of these electrons flow on into the collector.
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9.11.2 Field effect transistor Gote
Source Drain
» We can influence carrier densities in a material by applying a Tnsulator (S10c]
potential: here is a Metal-Insulator-Semiconductor (or Metal- N tyhpe imliuced
Oxide-Semiconductor, MOS) system. crome
P type silicon
Conduction band
+ I
t e
T -
2 + !
Bl
£+ !
s+ |2 :
S + 53’_7_7_::_‘_4::
(gL,
2 I " Valence band » Altering the gate voltage alters the number of electrons in the
g+ induced inversion layer: current can flow between the heavily
M n-type doped regions.
+ .
ISP type semiconductor

Surface Distance into crystal —s=

» That is, with a voltage we can induce a density of free elec-
trons in p-type material, called an inversion region . The band
bending effects are from Poisson’s equation as before.

» This gives us a MOSFET, or Metal Oxide Semiconductor Field = » Current-voltage characteristics of MOSFET (Mullard type
Effect Transistor: BFW96)
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jp(mA)

» The layer of electrons under a charged plate is an example of
a two-dimensional electron gas.

» 2-D gases can also be formed in sandwich structures of ma-
terials with different band gaps.

» Narrow layers give free carrier motion in-plane, quantised
states in the perpendicular direction — quantum well devices.

176

9.11.3 Light-emitting diodes

» These exploit the recombination that occurs when electrons
in a forward-biased diode recombine with the holes.

» The trick is to alter the material to favour recombination
which gives out energy as light rather than heat.

» Also alter the composition (e.g. GaAs;_xPy) or add dopants
such as zinc or oxygen. Can get blue from InGaN.

contact contact —_y

«—
n+ g g nt nt
G
n-type
p-type o Pe
Pt (/comacl .Y{;-SJ LA
e

frce-emi hv ~
a surface-emitter LED b edge-emitter LED contact

» Given a population inversion (large populations of electrons in
the conduction band and holes in the valence band) we can
get lasing action.

» This can be achieved with degenerate doping — E — u compa-
rable with or less than kgT.

» Also need to set structure up in resonance - multiple reflec-
tions in wave-guide structure.
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metal

contact

active
region
—_—

metal

g

p-type GaAs

p-type AlGaAs

(L Gars L/

n-type AlGaAs

n-type GaAs

:

contact

9.11.4 Solar cells

» In a solar cell, a photon is absorbed to create an electron-hole
pair. These carriers move to produce a current proportional

to the photon flux.

» Characterised by the quantum efficiency, n, the number of
electrons generated per photon. Typically about 0.7 for a Sili-

con solar cell.

I = I() |:€Xp <I€613‘21> — 1:| — Ip,

where I, is the photo-generated current.

hv

177



Chapter 10

Magnetic Materials

10.1 Preliminaries 10.2 Introduction
10.1.1 Required Knowledge

» Magnetism

» Electron spin

» Atom

» Angular momentum (quantum)

» Statistical mechanics

10.1.2 Reading » Magnet technology has made enormous advances in recent
years — without the reductions in size that have come with
» Hook and Hall 7.1-7.3, 8.1-8.7 these advances many modern devices would be impracticable.
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Steel

Hexagonal .

ferrite -
Rare-earth

Same magnetic energy - fraction of a Joule.

» The important quantity for many purposes is the energy den-

sity of the magnet.
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10.3 Magnetic properties - reminder
» There are two fields to consider:

> The magnetic field H which is generated by currents ac-

cording to Ampere’s law. H is measured in A m~! (Oer-
steds in old units)

The magnetic induction, or magnetic flux density, B,
which gives the energy of a dipole in a field, £ = —m.B
and the torque experienced by a dipole moment m as
G = m x B. B is measured in Wbm~2 or T (Gauss in
old units).

» In free space, B = uoH.
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» In a material

B = po(H+M)
= pomH

where p, is the relative permeability, x is the magnetic sus-
ceptibility, which is a dimensionless quantity.

» Note, though, that y is sometimes tabulated as the molar sus-
ceptibility
Xm = VmX,

where V,, is the volume occupied by one mole, or as the mass
susceptibility

Xg =

X
t),
where p is the density.

» M, the magnetisation, is the dipole moment per unit volume.

M = xH.

» In general, u, (and hence y) will depend on position and will
be tensors (so that 5 is not necessarily parallel to H).

» Even worse, some materials are non-linear, so that u, and x
are field-dependent.
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A diamagnetic sample in a magnetic field A ic sample in a ic field

The lines of flux of the field due to the “bar
magnet” tend to decrease the field inside the material
and increase the field on either side of the material

| * The lines of flux of the field due to the “bar
magnet” tend to increase the field inside the material
and decrease the field on either side of the material

e —
7 : 7 as
> -
Y - 3
€ £ )
N — -
X -

.+ The flux density inside the material is /ess than the
flux density of the applied field, i.e. the sample has
“repelled” flux lines

The flux density inside the material is greater than
the flux density of the applied field, i.e. the sample
has “concentrated” flux lines.

e ]
e e
———eee 8

= =

e
e

| T
WK
A\AAAAAAAAAAAAS

AAAAAAAAAAAAAL

» The effects are highly exaggerated in these diagrams.

10.4 Measuring magnetic properties

10.4.1 Force method

» Uses energy of induced dipole

1 1
E=—-mB=—=uyyVH>
2m 2M0X H~,

so in an inhomogeneous field

dF 1 dH? dH
F==q = grVx g = mVxr g
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» Practically:

> set up large uniform H;
>> superpose linear gradient with additional coils

> vary second field sinusoidally and use lock-in amplifier to
measure varying force

10.4.2 Vibrating Sample magnetometer

\ / Reference
% magnet
3 D

Q
S5
.

q |q Close-up of
specimen
N \ @
~ N 4 '
e -~ - =
= =
e s

SE

>

O

8

- - — — — — — — t—

Z
~___(_A_______
Oj)\

Specimen
\ /y
\t\ _////
-

» oscillate sample up and down
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» measure emf induced in coils A and B
» compare with emf in C and D from known magnetic moment

» hence measured sample magnetic moment

10.5 Experimental data

+107 T

paramagnetic

diamagnetic

Mass susceptibility (m” kg ™)
+
S
T

10 20 30 40 50 60

Atomic number

» In the first 60 elements in the periodic table, the majority have
negative susceptibility — they are diamagnetic.

10.6 Diamagnetism
» Classically, we have Lenz’s law, which states that the action

of a magnetic field on the orbital motion of an electron causes
a back-emf which opposes the magnetic field which causes it.
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» Frankly, this is an unsatisfactory explanation, but we cannot

do better until we have studied the inclusion of magnetic fields
into quantum mechanics using magnetic vector potentials.

Imagine an electron in an atom as a charge e moving clockwise
in the x-y plane in a circle of radius «a, area A, with angular
velocity w.

This is equivalent to a current
I = charge/time = ew/(27),
so there is a magnetic moment

p=TA=ewa®/2.

The electron is kept in this orbit by a central force
F = mow2a.

Now if a flux density B is applied in the z direction there will
be a Lorentz force giving an additional force along a radius

AF = evB = ewalB

If we assume the charge keeps moving in a circle of the same
radius it will have a new angular velocity «’,

mew'?a = F — AF

SO

mew?a = mew?a — ewal3,

or 5
ew

w2t =— )
me
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If the change in frequency is small we have

w? —w? x wAw,

where Aw = ' — w. Thus

Aw = — B .
2me
where 26750 is called the Larmor frequency.
Substituting back into

p=TIA=ewa?/2,

we find a change in magnetic moment

e?a?

Ap=—

4me

Recall that a was the radius of a ring of current perpendicular
to the field: if we average over a spherical atom

@ =) + () = 2 (@) + () + ()] = 20,
SO 9 9
A= 662;: ’

If we have n atoms per volume, each with p electrons in the
outer shells, the magnetisation will be

M = npAp,

and
ponpe? (r?)

MM
X_H 6
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» Values of atomic radius are easily calculated: we can confirm
the p(r?) dependence.

10’ T ' i
4
L]
Cs#
7%.° Br
+Ba’"
"Cl . pt
k:. S
e oA
T .
° Ca’r .
g ook 7 B |
) B, o
£ 4 Na
S . £y
= Mg
.
K4
,
’
_l
rd
0" E ., L’ .
J‘ | 1 L
w3 -l -
107 , 10 ‘; 107"
Zr (m)

» Diamagnetic susceptibility:

> Negative
> Typically —1076 to —10~°
>> Independent of temperature

> Always present, even when there are no permanent dipole
moments on the atoms.
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10.7 Paramagnetism

» Paramagnetism occurs when the material contains perma-
nent magnetic moments.

» If the magnetic moments do not interact with each other, they
will be randomly arranged in the absence of a magnetic field.

» When a field is applied, there is a balance between the internal
energy trying to arrange the moments parallel to the field and
entropy trying to randomise them.

» The magnetic moments arise from electrons, but if we they are
localised at atomic sites we can regard them as distinguish-
able, and use Boltzmann statistics.

10.7.1 Paramagnetism of spin-; ions

» The spin is either up or down relative to the field, and so the
magnetic moment is either +up or —up, where

=90.274 x 10724 Am?.

__eh
UB = 2.

» The corresponding energies in a flux density B are —ugB8 and
upB, so the average magnetic moment per atom is

/JBB#BB/kBT _ IuBefﬂBB/kBT
eMBB/kBT + e—HBB/kBT

usB
up tanh <I€BT) .

(n) =
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» For small z, tanh z = z, so for small fields or high temperature

2
N psB

» If there are n atoms per volume, then,

_ Mok
kT

» Clearly, though, for low T or large B the magnetic moment per
atom saturates, as it must, as the largest magnetisation pos-
sible saturation magnetisation has all the spins aligned fully,

Mg = nug.

184

10.7.2 General J ionic paramagnetism

» An atomic angular momentum J, made of spin S and orbital
angular momentum quantum number L, will have a magnetic
moment g;ugJ, where g; is the Landé g-factor

3 S+ -LEL+Y)
97739 2J(J +1)

» If we write © = g;upB/ksT, the average atomic magnetic mo-
ment will be

mx

J
Zm:ﬂ] mgjuBe

Zr{ﬁb:fJ e

» If we assume that T is large and/or 5 is small, we can expand
the exponential, giving

(n) =

Z’I{L:*J m(1 +mazx) .
S (1+ma)

(1) =~ gsps

» We can evaluate this if we note that

J
2J+1

(]
3
I

%ﬂJ+D@J+U

(]
Slo
I
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then

2 J(J +1)(2J +1)

=
z

B30T + 1)

93HEBI(J + 1)
Skl

» This leads to a susceptibility

_ pongspJ (J + 1)
3kpT.

» This is Curie’s Law, often written

SIa

185

Pierre Curie

» Chromium potassium alum.
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10
8_ -~
2%
x .
=
x a
5 o :
2+ 7
p ol ] 1 |
100 TIK 200 300

» 1/x is proportional to 7', confirming Curie’s law.

» Of course, eventually M must saturate, as for the spin-1/2

system.
grJIB/(KT)
>

0 i 2 3 4

» The larger J the slower the saturation.

» A full treatment results in the Brillouin _function,
B;(9spsJB/ksT) giving the variation of M/Ms. » Experimental results confirm this.
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Plot of average magnetic moment per ion m against B/T
for (I) potassium chxomlum alum (J = § = 2), (IT) iron ammonium
alum (J = 8§ = $), and (III) gadolinium sulphate octahydrate

(J=58=3%.

» Ionic paramagnetic susceptibility:

> Positive

> Typically 10> to 1073

> Temperature-dependent

>> Arises from permanent dipole moments on the atoms

>> Saturates for large B or low T’
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10.7.3 States of ions in solids

» The ions which concern us here are those with part-filled

shells, giving a nett angular momentum.

Part-filled d shell gl

[H]na B IVB VB VIBVIB He

Li| Be| Part-filled f'shell J|__|_|JE|
M_IIIIA IVA VA VIAVIIA  VIIA IB IIB Al|Si| P
(K] o] ¢ 7] | x| i e o] i u] Zo] Ga] Gl 7] 5
] 2 T o 5 7] ]
o 1 17 e

HMJ@E@M@@@EMMEMEH
[T Pa] U | o] Pul ] o] B 1 5

Best studied are the first and second transition series, (Ti to
Cu and Zr to Hg) and the rare earths (La to Lu).

From atomic physics we know that a free atom or ion is char-
acterised by quantum numbers L, S and J, and for a given L
and S may take up J values between |L — S| and L + S.

Hund’s rules tell us that the ground state is that for which

>> S is as large as possible
> L is as large as possible for that S

5 J— L — S if the shell is less than half full
| L+ S ifthe shell is more than half full

These represent the effects of exchange, correlation, and spin-
orbit coupling respectively.
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» We can deduce the magnetic moment per atom pup from the Ion State Term g¢./J(J+1) Experimental p
susceptibility, and compare with what Hund'’s rules tell us. T3+, v+ 3dY ?Dg)o 1.55 1.8
V3t 3d? 3Fy 1.63 2.8
Cr3t, v2+ 3d®  *F3) 0.77 3.8
Mn3t, Cr?t  3d° °Do 0.00 4.9
Fe?t, Mn2*t  3d° 6S5/2 5.92 5.9
Ion State Term g./J(J+1) Experimental p Fe?™ 3d° °Dy 6.70 5.4
Ce®™  4f'ps?p®  ?F;)9 2.54 2.4 Co?* 3d"  *Fg)s 6.63 4.8
Pr3t  4f255%pS SHy 3.58 3.5 Ni2+ 3d8 3Fy 5.59 3.2
Nd3*t  4f355%pS Ty 2 3.62 3.5 Cu?t 3d° 2Dy 3.55 1.9
Pm3t  4f*552pS oy 2.68 -
Sm3+  4f55s2p®  OH; /2 0.84 1.5 » The agreement is very poor.
Eudt  4f655%pS Fo 0.00 3.4 o .
Gd3+  4f75s2pS 887/2 7.94 8.0 » The problem is crystal field splitting. Look at the electronic d
Th3*+  4f8552pS TR 9.79 9.5 states in a cubic crystal.
Dy3+ 4f9552p6 6H15/2 10.63 10.6 d function, Cos, m=0 dfunction, Cos, m=2
Ho3t  4f105s2p¢ °lg 10.60 10.4 — —
Er3t  4f'15s2pS 4115/2 9.59 9.5
Tm3+  4f12552pS 3Hg 7.57 7.3
Yb3t  4f135s2p6  2F; ), 4.54 4.5
» All look fine except for Sm and Eu, where higher J levels are d function, Cos, m=1 dfunction, Sin, m=1 dfunction, Sin, m=2

very close to the ground state which means they are partly
occupied above 0 K.

» Now look at the first transition series.
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» Two states point directly towards neighbouring ions, three 10.8 Interacting magnetic moments
states point between neighbours.

» These states have different electrostatic energies.

» So the d states are ‘locked’ to the crystal, and no longer behave
like an | = 2 state with 2/ + 1 degenerate m values. » So far we have no explanation for the existence of ferromag-
netism.
» This is called quenching of the orbital angular momentum.

» In the first transition series, the magnetic moments arise al-
most entirely from spin.

Ion State Term g¢./S(S+1) Experimental p
T3, Vit 3d! 2D3/2 1.73 1.8
V3t 3d?2 3F, 2.83 2.8
Crdt, V2t 343 1Fy, 3.87 3.8
Mn3*, Cr?2t  3d° °Do 4.90 4.9 » By measuring the magnetic moment of a specimen of a fer-
Fe™, Mn?t  3d° 9S50 5.92 5.9 romagnet, we can see that the magnetisation must be near
Fet 3d6 5Dy 4.90 5.4 saturation.
Co?* 3d” 4F9/2 3.87 4.8
Ni2+ 3d8 3F, 2.83 3.2
Cu?+ 3° 2Dy 1.73 1.9

» Magnetism in transition metal ions arises almost entirely from
spin.

» The rare earths behave differently because the 4f electrons
are in smaller orbits than the 3d ones, and because spin-orbit
coupling is larger in the 4f ions. » A quick look at the Brillouin function
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» shows that at room temperature this needs

gsipsB ]
kT ’

» At room temperature, taking g; ~ 2, B~ 200 T.

10.8.1 Direct magnetic interaction
» Where can such a large field come from?

» Can it be direct interactions between spins a lattice spacing
(say 0.25 nm) apart?

» The field from one Bohr magneton at a distance r is of order

_ HoHB
473

~0.06 T,

» So direct magnetic interations are irrelevant (though they are
significant in, for example, limiting the temperatures that can
be reached by adiabatic demagnetisation).

10.8.2 Exchange interaction

» The interaction is quantum mechanical, a form of exchange
interaction.

» Recall Hund’s rules: there exchange favoured parallel spins.

» We write the Hamiltonian for the interaction between two
spins on different sites ¢ and j as

HEP — _9.7,38,.8;,

ij
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where J;;, the exchange integral, depends on the overlap be-
tween wavefunctions on different sites.

» Positive J favours parallel spins, negative J favours antipar-
allel spins.

» For the whole crystal,
HP = =) " T3S,
2%

or
Hspin _

~2) " Ji;Si8;.

1<J
10.8.3 Effective field model
» For a particular spin, ¢, we can write the interaction term as

HP" = =23 3,88,
j#i
= — (2> JyS; | s
i#i
» Now note two points:

1. The form of the interaction, —(...).S, looks like the inter-
action of a spin with a magnetic field. Write

HP = — 2D (Jij/(9s18))S; | - (95uBS:)
J#i
—Begr.my,
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where m; is the magnetic moment on atom i.

2. The summation suggests that we should be able to do
some averaging over the spins.

10.8.4 The mean field approximation

» Assume that each spin interacts only with its z nearest neigh-
bours. Then

=1 9sHB

z
= 2

;QSMB gsuB
J  z(my)

gspB gsHB

J IIlj

» Now identify the average magnetic moment per volume with
the magnetisation:

n(m]> = Mv

for n spins per unit volume, giving

J M
Bt = 2
gspuB nNgspB
_ 2zJ
ngu3,
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» This gives the Weiss internal field model or molecular field
model (not originally derived in this way)

» The energy of a dipole in the ferromagnet is equivalent to an
effective field

Beg = AM.

» Note that this is NOT a real magnetic field. The origin is
quantum-mechanical exchange, not magnetism, and as the
interaction that underlies exchange is the Coulomb interac-
tion it can be much stronger.

10.8.5 Mean field theory of ferromagnetism

» Armed with the mean field picture, and a picture of the way
M depends on 5 through the Brillouin function, we have

(10.1)

ﬂ:B gspsd (B + AM)
M, 7 ksT '

» Assume for the moment that B = 0. Then we can plot the two
sides of equation as functions of M/T"

192

M/T>

» As T decreases the straight line M gets less steep. Thus for
lower T there is a solution to
M grpuJ AIM
= BJ —_—m
M kgT

for finite M.

» Furthermore the shape of B;, a convex curve, shows that
there is a critical temperature T above which the M line is
too steep to intersect the B; curve except at M = 0.

» For small values of M /T we can use Curie’s law,

_ pong3ugJ(J 4+ 1)
3kpT

and
M ng;JusB,y

YT H
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to deduce

B gspsJBY\ _ gsps(J +1)B
T\ kT 3kgT

» In terms of x = M/T, the straight line is

M Tz
M, M,

and the approximation to the Brillouin function is (putting
AM for B)

grus(J +1) gsus(J +1)
By~ A\ = A
s~ AIM 3kpT 3kp

» Equating the gradients with respect to z,

Tc )\QJHB(J+ 1)

M 3kp ’
or
)\QJMB(J + 1) M
3kp

AngipgJ(J +1)
3kg '

Tc =

» The critical temperature 7¢ is the Curie temperature — often
denoted by 6.

» Some ferromagnetic materials
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Material 7¢ (K) pp per formula unit
Fe 1043 2.22
Co 1394 1.715
Ni 631 0.605
Gd 289 7.5
MnSb 587 3.5
EuO 70 6.9
EuS 16.6 6.9

» Below 7 the spontaneous magnetisation varies with temper-
ature.

(T)/M(0)
1.0

0.5

T/0

0.5 1.0>
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10.8.6 Paramagnetic regime

» Above the Curie temperature, if we apply a magnetic field, we

have
M
Bj = M. ~ (B4 M)

gsus(J +1)
3kgT

» This can be rearranged to give

MsBgs(J+1)ps
_ 3kp
M= IMsgs(J+Dps ’
T —
3kp

» With M; =ng;Jup

nBg3 J(J+D)pj
3k
T_ Ang? J(J+1)pd
3ks
nBg3J(J+1)pd
3kp

T —Tc

M =

» This gives a susceptibility

1
XX

which is the Curie-Weiss law.

» The Curie-Weiss law works quite well at high T

194
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» It breaks down near the Curie temperature 7¢ or 6, where the
mean field approximation fails.
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10.8.7 Effect of magnetic field on ferromagnet _ o
M MsB1  Just below Curie T

A

» At low temperatures, the magnetisation is nearly saturated, B=0
so a B field has little effect: o
B=>0
MIMsBs  LowT
A W >

(MABI)T

(anm)/T)

» As we increase the temperature, we reach a regime where the ), At high temperature we are in the Curie-Weiss regime than we
field has a large effect on the magnetisation: described above:
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BT

» Overall, then, the effect of a field is:

MIMs
1 B

1 T/Tc
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10.8.8 Anisotropy in magnetic systems

» The quenching of orbital angular momentum in a crystal is
one effect of the crystal field (the electrostatic potential varia-
tion in the solid).

» But as spin-orbit coupling links the spins to the spatial varia-
tion of the wavefunctions, the spins tend to align more readily
along certain directions in the crystal: the easy directions of
magnetisation.

/\mf ﬁexugonal axis
[100]

Basal plane

M Ms

1 1 - L -2
1 2 3x10 0 ¢ 4 6 80

B (Tesla)

10.9 Magnetic domains

» In general, a lump of ferromagnetic material will not have a
nett magnetic moment, despite the fact that internally the
spins tend to align parallel to one another.

10.9.1 Magnetic field energy

» The total energy of a ferromagnetic material has two compo-
nents:
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1. The internal energy (including the exchange energy) tend-
ing to align spins

2. The energy [ B.HdV in the field outside it.

» The external field energy can be decreased by dividing the
material into domains.

]

£

1y

CWMK) 2.

\/

Decreasing external field energy

» The internal energy is increased because not all the spins are
now aligned parallel to one another.

10.9.2 Domain walls

» What is the structure of the region between two domains
(called a domain wall or a Bloch wall)?
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» The spins do not suddenly flip: a gradual change of orien-
tation costs less energy because if successive spins are mis-
aligned by ¢6 the change in energy is only

SE = 2J52(1 — cos(40)),

where J is the exchange integral.

- E—
" Width of domain wall |

: !

» For small §6, expanding the cosine,
1
6F = 2JS%*(1 — cos(66)) ~ 2J5’2§(50)2

» If we extend the change in spin direction (total angle change
of 7) over N spins, §¢ = /N, and there are N such changes of
energy JE, the total energy change is

2
_ 72T
AE=JS N
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» This favours wide walls, but then there are more spins aligned ¥ Aoty 1
away from easy directions, providing a balance. Bloch walls erro-. L err_o- Ferrl'_
are typically about 100 atoms thick. magnetic magnetic magnetic

» In very small particles, the reduction in field energy is too ¢ ¢ T¢
small to balance the domain wall energy. Thus small particles

stay as single domains and form superparamagnets.

AAAA
» Small magnetic particles are found in some bacteria (mag- v v ¢ ¢

netotactic bacteria) which use the angle of dip of the Earth’s
magnetic field to direct them to food.

10.10 Other types of magnetic ordering

» The three easiest types of magnetic ordering to visualise are

1. ferromagnetic (all spins aligned parallel)
2. antiferromagnetic (alternating spins of equal size)

3. ferrimagnetic (alternating spins of different size, leading » As the exchange integral J can have complicated dependence
to nett magnetic moment) on direction, other orderings are possible, for example:
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....... No field With 33 field

Pt

.......... e o o / -
iR S 19

_____

- - - - st - e ————

Ca® S Car D < o -« - >
\/ \/ 24(E) g’l*(E? w@® Ve

_________________ . g
T pD T p> Qe . e >
g \\/ » The field B will shift the energy levels by +.upB.
HISHEr ol S » Thus the number of extra electrons per unit volume with spin
. . . s R up will be
» Helical ordering (spins parallel within planes, but direction 1
changing from plane to plane) — e.g. Dy between 90 and 180 K. Ang = 59 (Er)usB
Conical ordering — e.g. Eu below 50 K. Polarised neutron scat- and there is a corresponding change in the number with spin
tering reveals these structures. down,

1
Anl = _ig(EF)/iBB'
10.11 Magnetic properties of metals » The magnetisation is therefore

M = pp(ny —n)) = g(Br)upB,

» This gives a susceptibility of

10.11.1 Free electron paramagnetism

» In a metal, the free electrons have spins, which can align in
a field. As the electrons form a degenerate Fermi gas, the

3npuopd,
Boltzmann statistics we have used so far are inappropriate. '

M 9
= — = E =
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» This is a temperature-independent paramagnetism, typically
of order 107°.

» The free electrons also have a diamagnetic susceptibility,
about —1 of the paramagnetic x.
10.11.2 Ferromagnetic metals

» If we look at the periodic table we find that the ferromagnetic
elements are metals.

Antiferromagnetic Vil
[H]ma IIIB IV VB VIBVIIB He
EI EI Ferromagnetic E”T Nl O LI EI

[Na|Mg|ma va va viavia  viia 1B 1B Al Si|[P] 8] Cl]Ar]
L€ calSel ] ]l ol 0 2 ] o o
|Rb| 8r| ¥ | Zr|Nb| Mo] Tc|/Ru| Rh| Pd| Ag| Cd| In | Sn|/Sb] Te| I |Xe]
[Cs| Ba| La| Hf| Ta| W] Re|/0s| Ir | Pt| Au| Hg| T1| Pb]/Bi]Po| At]|Rn]|

[Fr] o] e
e e e i ) ] ] ] o] ] T ]
TP U | o] Pul o] ] 1 5

» This causes some complication in the magnetic properties.
» They can be treated in a simplified way by Stoner theory.

» The exchange interaction splits the narrow d bands: the wide
free-electron-like s bands are relatively unaffected.

200

AT

<
o(kE)

2.6

L7748

a(B)
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» The Fermi surface is determined by the total number of elec-
trons: this can lead to apparently non-integer values of the
magnetic moment per atom (e.g. 2.2 in Fe, 0.6 in Ni).



Chapter 11

Superconductivity

11.1 Preliminaries

11.1.1 Required Knowledge

» Maxwell’s equations

» Thermodynamics

11.1.2 Reading

» Hook and Hall 10.1-10.6

11.2 Basic experimental observations

11.2.1 Disappearance of resistance

202

» The phenomenon of superconductivity was first observed in
mercury by Kammerlingh Onnes in 1911.



CHAPTER 11. SUPERCONDUCTIVITY 203

Superconducting elements
O)‘]S ¥el 0%3 Superconducting under pressure
Al §Sij P
1.2F 7 D
/ Ti| V Zn | Ga [Ge ] As| Se
0125 0.3915.3 0.8611.1 | 5 J05( 7
2 / Zr |[Nb {Mo [ Tc |Ru Cd|In | Sn|Sb]Te
0.53{9.2 {0.92)7.9 |0.45 0.5213.4 (3.7 |35] 4
i Cs |Balla|Hf{Ta| W [Re |Os|Ir Hg | Tl | Pb | Bi
| 1.5] 5 [49]0.17/4.5]0.01]1.7 [0.66]0.14 42024172| 8
0,10 t Ce
| » HEREREREER
| 3¢ A E
R, 0075 4
I
| » New elements keep being added to the list: in 2002 lithium
| was shown to superconduct under pressures of 23 to 36 GPa
qov If with critical temperatures of 9 to 15 K!.
|
,l Element p(77K) mQm T¢
0,025 T Al 3 1.2
1070} Tl 37 2.4
| Sn 21 3.7
0,00 Pb 47 7.2
4°co  4°10 220 4°30  4°%40 .
N Sb 80 3.5
T (k) Bi 350 8
Nb 30 9.2
» There is a characteristic sharp drop in resistivity at a critical > For elements ‘1n ﬂ_le same gljo‘up, higher normal resistivity
temperature, Te. seems to go with higher transition temperature.
» For some compounds, much higher transition temperatures

» This effect has been observed in a wide range of elements and are found:

compounds.

1V.V. Struzhkin et al, 2002, Science 298 1213.
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0.010 Tc (K)
NbsSn 18
B NbgGe 23
SR | V3Si 17
°° X o€ od o Laj gSrg2CuOy4 35
0.008 |- x,(' Yo.6Bag.4CuOy 90
° . TIQBaQCaQCUQOlo 125
i " Bi; K, BiOs_, 27
. MgB, 40
0.006 |~ ’ N » There is also an isotope effect: for different isotopes of the
E . same element in many cases
(o]
& i o< TeM'/? = constant.
QU
0.004 | % » This is also found in some compounds:
Xe o 7.5 A/cm?
- X‘ x 25 A/cm?
x, e 05 A/cm?
Xe®
0.002 |-
- s
B ’ o.. -g
8 <l %
0 % | | | | £
0 10 20 30 40 50 60
T (K)
il
» High-temperature superconductivity found in an insulator by 38 4|0 4;
Bednorz and Miller in 1986. temperature (K)

» Note that the transition is not very sharp. » In MgB; only the B isotope affects 7T¢, Mg does not.
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11.2.2 Specific Heat

» The specific heats of normal and superconducting phases are
different:

; L
] = 0.01
Aluminium ;i: E
=
. 3F cg) o
& o
- o
- 8 . ﬂad’dl
g | AAA
~ 2 0 aﬂd& 0
3 oA
L= dﬁdﬁ
@]
1F Abﬁ
A-- Normal » This shows that the superconducting state is a more ordered
o-- Superconducting state.
e
O - 1 ORI R P
0 0.5 1 1.5 2

T (K)

11.2.3 Effect of magnetic field

» From the specific heats, we can infer a variation of entropy
with temperature?:

2Here for Sn, after Keesom and van Laer 1938) » An external magnetic field shifts T¢ to lower temperatures:
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800 [F

>
600 T >Tc
g J\_)/ T
S 400
200 V\/
T<Tec
0
» If the flux is sero, it follows from
B = po(H+ M)
that
M=—H,
that is,
11.2.4 Perfect diamagnetism X =-L
» We call this perfect diamagnetism.
» A superconductor expels magnetic flux (we will return to qual-  p Note that there is a difference here between the behavior of a

ify this later) when it is cooled below its critical temperature. superconductor and a perfect conductor.
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> From Maxwell’s equations we know

0B

VXS:_E

>> But a perfect conductor can support no electric field (even
with finite current density 7, if the resistivity is zero £ =
pJ is zero).

> If £ is zero, so is V x &: in other words, for a perfect con-
ductor the flux density B cannot change with time (any
flux present when the material becomes perfectly con-
ducting will be locked in).

» The magnetisation behaves in two different ways:

1. Type I reverts suddenly to a normal material at a critical
field H,

2. Type Il begins to revert at H.; and the change is complete
by ch
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A A

- —_—

/

/ /7
// /

rd
e—— S -

-~

N

\

» N.B think of rod, not sphere — field distortion effects (demag-
netisation).

11.3 Basic thermodynamics

» Consider the Gibbs free energy G(B,T). We know that
dG = —-SdT — M.dB,

so that the perfect diamagnetism in a field B increases the free
energy by

62

2410

Thus
2

B
Gs(B,T) = Gs(0,T) + —.
s(B,T) = Gs(0,T) o
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» In the normal state the magnetic field has negligible effect
(because the field energy with a susceptibility y ~ +1076 is
tiny compared with that of the perfect diamagnet with x = —1)

Gn(B,T) ~ Gx (0, T).

» At the critical field, B¢, the free energies of the superconduct-
ing and normal states are equal

BQ
Gs(Be,T) = Gs(0,7)+ <
2410

GN(BC7T)
= Gn(0,7),
SO
Gs(0.T) = Gn(0,T) — B¢
S\Y, N\Y, 2,LL07

» The critical field is a measure of the stability of the supercon-
ducting state.

» In an applied field B < B¢,

Bz — B

GS(Ba T) = GN(OaT) - 2”0

(11.1)

11.3.1 Specific heat
» At constant p and B the entropy is given by

oG

52—87,
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Using equation 11.1,

d (B - B
R dT( 240 )

Bc dBg
po dT

As the specific heat is
ds

= T*
© dT

we get

d Bc dBc

dT o dT

T | /dBc)? d2Bc
I (dT> +Be g

Cs—Cx =

When T = T¢, the critical field B¢ is zero, so

Cs(To) - Cx(To) = = ((f;) |

This gives an explanation of the observed specific heat discon-
tinuity.

Note that in an order-disorder transition such as this there is
no latent heat at the critical temperature.
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11.3.2 The shielding currents » Recall the identity

» The mechanism for excluding flux from the superconductor V x Vx =V(V.) - V2,
involves inducing currents in the surface.

and the Maxwell equations
» Of course, if the exclusion were perfect and occurred exactly d

at the surface this would imply infinite current density at the 0B
surface, which is unphysical. So we need to look rather more VxE= ot

closely at the electromagnetism.
and

» Suppose that n charge carriers per volume, each with charge V.B=0

g and mass m, are continuously accelerated by a field

» Thus
dv _ ¢€ dB m_ g2 dB

dat - m’ At npog? dt

but the current is » We can write this as

J =nqv,
dB 5 —odB
SO — = — 11.2
~om dJ dt ATV dt ( )
» Now A=
VxH=J, V ng?po
or » One solution of equation 11.2 is
V xB= /J,oj,
dB —z/A
SO 2 = Ae® ,
m dB de
E=—— Vx T
Mg » Thus we can see that there is an exponential decay of the
» Now take the curl of both sides magnetic field within the surface of the perfect conductor.
Vx&= V x V x %, » We call )\ the penetration depth, and find that it is typically

e t about 1078 m.
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11.4 Phenomenological theories » From equation 11.3 V x J = —(ng?/m)B,
» By showing that V2B — pong? B.
% = Ae~*/ "
dt » Then, with
we have still not established a difference between a perfect N m
conductor and a superconductor: it is only the rate of change Vo pong?’
of B that we have shown to decay within the material.
we have
o —x/\
» The brothers F. and H. London suggested, in 1935, that a B(z) = B(0)e /™.

superconductor should obey the equation » Similarly

J(z) = J(0)e /A,

2
VxJ=-Lp (11.3)
m » Now we have a decay of the static field.
in addition to the equation for non-scattered carriers » Note that the London equations do not allow a uniform non-
d ) zero field inside the material: if the field inside is constant it
a7 = %g, (11.4) must be zero.
dt m
» If we assume that all the electrons are involved in the un-
» Then, as before, take the curl of both sides of Maxwell’'s equa- scattered current, we find A ~ 107® to 1077 m, the London
tion (with no displacement currents) V x H = 7. penetration depth.
VxH=J 11.4.1 Measurement of penetration depth
gives » If all flux were excluded from a superconductor, there would
VxVxB=puVxJ be no flux linkage between two coils wound on a supercon-

ducting core.
whence, as V x Vx = V(V.) — V2, we have
» As there is flux throughout the penetration region, A can be

~V2B = oV x J measured by measuring the mutual inductance of the coils.
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300 — 11.5 Coherence
A (nm)
- » Unfortunately, experiment showed that the penetration depth
ol Tin (Schawlow and Devlin 1959) does not just depend on 7', but also on impurities.
» Penetration depth and normal electron mean free path are
- related.
100 A (nm)
100
e Tin with traces of Indium
T/Tc stk
» Many experiments show that A varies with temperature, to a
good approximation, as |
60|-
AT = — 2O
- (&)
fe 40|~
» Recalling that London value (7\')
A= %, 201 -
Hong ‘
this suggests that the number of non-scattering carriers !
varies as

| | 1 L
_ 0 200 400 600 800
1— ™ Normal state mean free path (nm)
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» Pippard suggested that the superconducting state was one of
long-range order over some coherence length, €.

» Evidence for this includes:

> The sharpness of the superconducting transition. If elec-
trons were individually going into some new state there
would be statistical fluctuations giving broader transi-
tions.

> The penetration depth dependence on mean free path.
Assume that we can only determine the average super-
conducting current over a volume ¢2. Then

> long mean free path and large ¢: averaging gives non-
local relationship between 5 and J.

> impure materials with £ ~ mean free path have greatly
increased A

> small ¢ recovers original local model for A.

11.6 Microscopic model

» In 1957 Bardeen, Cooper and Schrieffer put together the clues
to provide the BCS theory of superconductivity®.

3John Bardeen was the first person to receive two Nobel prizes in the same field.
He shared the 1956 prize for physics with William Shockley and Walter Brattain
for the discovery of the transistor effect, and the 1972 prize with Leon Cooper and
John Schrieffer for their theory of superconductivity

212

John Bardeen (b. 1908), Leon N. Cooper (b. 1930), and John Robert Schrieffer (b. 1931).
(AIP Niels Bohr Library)

Cooper took the first step in 1956 by showing that if two elec-
trons are added to the ground state of the free electron gas
(filled states up to Er they will form a bound state (E < 2Ep) if
there is an attractive potential however small between them.

If there is an attractive interaction of strength V between elec-
trons in an energy range fw above Ey, then their energy will

be reduced by
A = —2hwe= 2/ @(ER)V)

provided that g(Er)V is small.

» A is typically about 1 meV.

» The V in the denominator of the exponential shows that any

attempts to predict superconductivity using perturbation the-
ory were doomed to failure.
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» The bound pair (Cooper pair) has opposite values of k and
opposite spins.

» Cooper’s discovery could be linked with Froéhlich’s (1950) sug-
gestion that

> an electron moving through the positively charged ion
cores will displace them slightly from their normal po-
sitions

> this local increase in positive charge density attracts an-
other electron.

» Alternative explanation in terms of virtual phonons.

+
k'-q A =
k+q k'-q
. (@)
g ;
-q) =
K .
k. k'
(a) (b)

» An electron with wavevector k emits a phonon with wavevector
q

» If the phonon is rapidly absorbed by another electron in time
At the uncertainty relation AFAt > & lets us ‘borrow’ energy
AFE

213

» The phonon is absorbed by another electron

» This may change the energy of the electrons, if
k|* + K'* # [k +ql* + [k — q*.

» As phonon frequencies w « /x/M for force constant « and
mass M this is consistent with the isotope effect
11.6.1 The energy gap

» The effect of the interaction is to ensure that within A of the
Fermi surface there are no occupied states.

» The density of states immediately above and below the gap is

increased correspondingly.

A g(E)
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» The gap is 2A wide. The Fermi energy is in the middle of the
gap.

» An energy 2A will break up a pair and create two ‘normal’
electrons.

» The pairs have many of the properties of bosons.

11.6.2 The wavefunction

» The wavefunction for the paired electrons corresponds to elec-
trons with energies within A of Er. Now

21.2
A(;E(S(M) ~ (hkF) k.
2m m

» If we assume that the spread of the wavefunction is deter-
mined by the uncertainty relation,

2

¢€5(hk) ~ h,

we find

and putting in typical values of Er/A ~ 103, kp ~ 1019 m~1,
£~107" m.

» Note that ¢ can be large compared with the London penetra-
tion depth.

» Within the coherence length there are millions of Cooper
pairs, and the energy is minimized when they have the same
phase. (This is the ordering.)

214

» Often write the superconducting wavefunction as

Y(r) = /ns(r)e?® .

where n(r) is the density of pairs and 6(r) describes a spa-
tially varying phase.

» Minimising the free energy one finds the critical temperature
is given by

kBTC = 1.1477,1,,(16_2/(9(EF)V)7

SO

2A = 3.52kpTc.

» The BCS theory predicts temperature variations of the energy
gap near 1¢:
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11.7 Experimental evidence for energy 11.7.2 Infrared absorption

gap

11.7.1 Specific heat

Niobium (Brown, Zemansky & Boorse 1953)
32

2| Cv/100 J/mole/K

20 v T T
I P(sc) - P(norm)
P(norm)
l6f

12¢

» Number of electrons contributing to specific heat varies as N be o up
0 5 [0 15 20 25 30

35 40 45 50

e~/ (ksT) Wavenumber cm™!
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» These results are in reasonable agreement with 2A =
o N 3.52kpTC.

/6 11.8 Tunnelling currents
» Put two materials together with a very thin insulating layer
between (often just an oxide layer) through which normal elec-
trons can tunnel.

12

» Two normal metals - linear I — V relation.

<

=0 V>0

Ivs. V

N L ~ — i b el
o 5 10 15 20 25 30 35 40 45 50
1

Wavenumber cm”

» Values of energy gap deduced from infrared absorption
(Richards and Tinkham 1960).

Metal Threshold (cm™ 1) 7 2A /kgTc

Ta 10 4.482 3.0

Nb 20 9.5 2.9

\Y% 15 538 3.8

Pb 25 7.193 4.7

Sn 10 3.722 3.7

Hg 15 4.153 4.9 » With no bias, there are no empty states to which electrons in
In 11 3.404 4.4

the normal metal can pass.
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» Superconductor-superconductor

» Small initial current from small number of excited electrons
in material with smaller gap.

Al-ALOs-Al
a4l TK Langenberg et al 1966
a=1.3
b=12
—_ c=1.1
I3 d=09
= e=038
e f=03
32

0 1 2 .3 4 5
Voltage (mV)

» The threshold voltages allow us to measure A.
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11.8.1 Type I and type II behaviour

» When we apply a field, two effects compete: electron pairing
reduces the free energy, whilst field penetration increases it.

» Each effect has a characteristic length scale: A for flux pene-
tration and ¢ for pairing.

» At a phase boundary:

. s
/ /’
/ 4
/
/
P —— -
—
\
\ \
“\
\
\
& s £ 5.

> Type I: A < £ gives positive surface energy

> Type Il : A > £ gives negative surface energy

» In Type II material lines of flux can penetrate one by one:
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AN AN AN

11.9 High 7 materials
» [Chiranjib Mitra]
N

» At the centre of each vortex of current is a normal region con-
taining one quantum of magnetic flux, h/(2e).

» Vortex lines in Pbg gsIng g2 film in a magnetic field.



