Hydrodynamical Simulations of Laser Interaction with Targets Research and International Cooperation

Richard Liska

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Břehová 7, 115 19 Prague 1, Czech Republic liska@siduri.fjfi.cvut.cz

Athens course CTU18, Prague

November 13, 2017

International Cooperation

- Los Alamos National Laboratory, USA numerical methods for Lagrangian and ALE hydrodynamics
- CELIA (Centre Lasers Intenses et Applications), University Bordeaux, France – numerical methods for Lagrangian and ALE hydrodynamics; modelling of laser interaction with targets
- IPPLM (Institute of Plasma Physics and Laser Microfusion), Warsaw, Poland – modelling of laser interaction with targets
- Utsunomia University, Japan
- CEA (Commissariat a l'energie atomique et aux energies alternatives), Saclay, France
- LULI (Laboratoire d'Utilisation des Lasers Intenses), Ecole Polytechnique, Polaiseau, France
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea

Overview

- numerical treatment of advection equation and conservation laws
- Euler equations
- motivation example for Lagrangian formulation
- hydrodynamical model with heat conductivity and laser absorption
- numerical methods used in our PALE (Prague ALE) code
 - hyperbolic part Arbitrary Lagrangian Eulerian (ALE) method
 - parabolic part heat conductivity
 - laser absorption source term in internal energy equation

- laser plasma application, which cannot be treated by pure Lagrangian method
 - high velocity impact problem
 - double foil target
 - foam target
 - jet formation by annular laser profile

Advection Equation

• advection (one-side wave) equation u(x, t)

$$\frac{\partial u}{\partial t} + a\frac{\partial u}{\partial x} = 0, \quad u_t + au_x = 0$$

with initial condition $u(x,0) = u_0(x)$ has solution

$$u(x,t) = u_0(x-at)$$

- continuum area of independent variables $(x,t) \in R \times (0,\infty)$ is replaced by computational grid $(x_j,t_n) = (j\Delta x, n\Delta t), j \in Z, n \in N_0$
- continuum function u(x,t) is replaced by discrete grid function $u_j^n \approx u(x_j,t_n)$
- simple difference scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_j^n - u_{j-1}^n}{\Delta x} = 0$$

• from time level n we compute new time level n+1

$$u_j^{n+1} = u_j^n - \frac{a\Delta t}{\Delta x}(u_j^n - u_{j-1}^n)$$

Advection equation – numerical solution

• advection equation with initial condition and with a = 1

$$u_t + au_x = 0, \quad u(x,0) = u_0(x) = \begin{cases} \frac{1 + \cos(x/2)}{2} & \text{pro} \ |x| < 2\pi \\ 0 & \text{jinak} \end{cases}$$

Burgers equation

• Burgers equation with initial condition

$$u_t + uu_x = 0, \quad u(x,0) = u_0(x) = \begin{cases} \frac{1 + \cos(x/2)}{2} & \text{pro} \ |x| < 2\pi \\ 0 & \text{jinak} \end{cases}$$

Conservation Laws

• Burgers equation

$$u_t + uu_x = 0, \quad u_t + \left(\frac{u^2}{2}\right)_x = 0$$

can have discontinuous solution

- discontinuity shock wave special numerical methods
- general conservation law system $U_t + (f(U))_x = 0$
- three types of simple waves
 - shock wave
 - contact discontinuity
 - rarefaction wave

Composite Schemes for Conservation Laws

- conservation law $U_t + f(U)_x = 0$
- Lax-Friedrichs scheme, diffusive, two step variant

$$U_{i+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}(U_i^n + U_{i+1}^n) - \frac{\Delta t}{2\Delta x} \Big(f(U_{i+1}^n) - f(U_i^n) \Big)$$

• Lax-Wendroff scheme, simple fluxes, dispersive

Euler Equations

• Euler equations in 3D

$$\begin{pmatrix} \rho \\ \rho u \\ \rho u \\ \rho v \\ \rho w \\ E \end{pmatrix}_{t} + \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho u v \\ \rho u v \\ \rho u w \\ u (E + p) \end{pmatrix}_{x} + \begin{pmatrix} \rho v \\ \rho u v \\ \rho v v \\ \rho v w \\ v (E + p) \end{pmatrix}_{y} + \begin{pmatrix} \rho w \\ \rho u w \\ \rho v w \\ \rho w^{2} + p \\ w (E + p) \end{pmatrix}_{z} = 0$$

equation of state for ideal gas

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \left(u^2 + v^2 + w^2 \right)$$

• basic equations for hydrodynamical modelling of plasma

Motivation for Lagrangian Formulation

- laser plasma is created by laser interaction with targets
- target is $0.8\mu m$ thin Aluminum foil; Prague Asterix Laser System (PALS) laser at 3-rd harmonics $\lambda = 438 \text{ nm}$, pulse duration 250 ps, focus $40\mu m$, energy 200J; animation
- computational mesh is fixed to the fluid and moves with the fluid
- no mass flux between cells through edges
- computation domain changes with time
- problems with large changes of computational domain volume and/or shape (compression or expansion
)
- naturally treated moving boundaries
- typically used in laser plasma simulations

Euler Equations in Lagrangian Coordinates

Lagrangian coordinates move together with the fluid

$$\rho \frac{dU}{dt} = \operatorname{div} \mathbf{F}(U)$$

• $d/d t = \partial/\partial t + \mathbf{u} \cdot \text{grad}$ with velocity u = (u, v, w) is the total Lagrangian time derivative including convective terms

$$U = \begin{pmatrix} \eta \\ \mathbf{u} \\ E \end{pmatrix}, \mathbf{F} = \begin{pmatrix} \mathbf{u} \\ -pI \\ -p\mathbf{u} \end{pmatrix}$$

- $\eta = 1/\rho$ is the specific volume and *I* is the unit matrix
- ideal gas equation of state

$$p = (\gamma - 1)\rho\varepsilon, \quad \varepsilon = E - \frac{\mathbf{u}^2}{2}, \quad c^s = \sqrt{\frac{\gamma p}{\rho}}$$

- eigenvalues of flux Jacobian matrix are $0,\pm c^s$
- Lagrangian particle movement by $d\mathbf{X}/dt = \mathbf{u}$

Staggered Lagrangian method in 1D

- scalars ρ, ε, p in cells i + 1/2; vectors u, x in nodes i
- equations for velocity and internal energy

$$\rho \frac{du}{dt} = -p_x, \quad \rho \frac{d\varepsilon}{dt} = -pu_x$$

• scheme for velocity and internal energy

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = -\frac{p_{i+1/2}^n + q_{i+1/2}^n - p_{i-1/2}^n}{m_i}$$

$$\frac{\varepsilon_{i+1/2}^{n+1} - \varepsilon_{i+1/2}^n}{\Delta t} = -(p_{i+1/2}^n + q_{i+1/2}^n)\frac{\frac{1}{2}(u_{i+1}^{n+1} + u_{i+1}^n) - \frac{1}{2}(u_i^{n+1} + u_i^n)}{m_{i+1/2}}$$

• artificial viscosity q added to p in compressed cells

$$q_{i+1/2}^{n} = \begin{cases} 0 & , u_{i+1}^{n} - u_{i}^{n} \ge 0 \\ -\frac{3}{2}\rho_{i+1/2}^{n}(u_{i+1}^{n} - u_{i}^{n}) \sqrt{(\gamma - 1)\gamma\varepsilon_{i+1/2}^{n}} & , u_{i+1}^{n} - u_{i}^{n} < 0 \end{cases}$$

• mesh, density

$$\frac{x_i^{n+1} - x_i^n}{\Delta t} = \frac{u_i^{n+1} + u_i^n}{2}, \quad \varrho_{i+1/2}^{n+1} = \frac{m_{i+1/2}}{x_{i+1}^{n+1} - x_i^{n+1}}$$

Cell-centered Lagrangian method in 1D

- all quantities in cells [Despres et al. 2005][Maire et al. 2007]
- conservative equations $\rho \frac{dU}{dt} = \mathbf{F}(U)_x$ for $U = (\eta, u, E)$ with fluxes $\mathbf{F} = (u, -pI, -pu)$
- the simplest scheme

$$\frac{U_{i+1/2}^{n+1} - U_{i+1/2}^n}{\Delta t} = \frac{F_{i+1}^* - F_i^*}{m_{i+1/2}}$$

• fluxes given by the approximate acoustic Riemann solver

$$u_{i}^{*} = \frac{z_{i+1/2}^{n}u_{i+1/2}^{n} + z_{i-1/2}^{n}u_{i-1/2}^{n}}{z_{i+1/2}^{n} + z_{i-1/2}^{n}} - \frac{p_{i+1/2}^{n} - p_{i-1/2}^{n}}{z_{i+1/2}^{n} + z_{i-1/2}^{n}},$$

$$p_{i}^{*} = \frac{z_{i+1/2}^{n}p_{i-1/2}^{n} + z_{i-1/2}^{n}p_{i+1/2}^{n}}{z_{i+1/2}^{n} + z_{i-1/2}^{n}} - \frac{z_{i+1/2}^{n}z_{i-1/2}^{n}}{z_{i+1/2}^{n} + z_{i-1/2}^{n}}(u_{i+1/2}^{n} - u_{i-1/2}^{n}),$$

the impedance $z_j^n =
ho_j c_j^s$ with the speed of sound c_j^s

Moving Lagrangian Mesh

• high velocity impact

- computational mesh is fixed to the fluid and moves with the fluid
- moving mesh can degenerate
- degenerate typically for shear flow like high velocity impact, or vortex flow
- can be treated by ALE method

Euler Equations in Lagrangian Coordinates

• density ρ , velocity U, pressure p, internal energy $\epsilon = e - U^2/2$, temperature T, heat conductivity κ , laser intensity I

$$\frac{1}{\rho} \frac{\mathrm{d} \rho}{\mathrm{d} t} + \operatorname{div} \mathbf{U} = 0, \qquad \qquad \frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} = \mathbf{U}$$

$$\rho \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} t} + \mathbf{grad} p = 0$$

$$\rho \frac{\mathrm{d} \epsilon}{\mathrm{d} t} + p \operatorname{div} \mathbf{U} = -\operatorname{div}(\mathbf{I}) + \operatorname{div}(\kappa \operatorname{\mathbf{grad}} T)$$

• total Lagrangian time derivatives include convective terms

$$\frac{\mathrm{d}}{\mathrm{d}\,t} = \frac{\partial}{\partial\,t} + \mathbf{U} \cdot \mathbf{grad}$$

- equation of state ideal gas and QEOS for plasma
- splitting hyperbolic and parabolic part
- heat conductivity essential as it contributes to energy flux faster shock waves

ALE Method for Hydrodynamics

- direct ALE Arbitrary Lagrangian Eulerian method; Euler equations written in coordinates moving with speed U_c including convective terms (with factor $U-U_c$; mesh movement is prescribed
- indirect ALE combination of Lagrangian and Eulerian methods [Hirt, Amsden, Cook (JCP 1974, 1997)]
 - I. Lagrangian computation several time steps
 - II. Rezoning mesh untangling and smoothing
 - III. Remapping conservative interpolation of the conservative quantities from old to new, better quality mesh; then, back to Lagrangian computation.
- remapping (advection) corresponds to Eulerian part of ALE method, allows mass flux between cells
- ALE method combines positives of both approaches grid moves with fluid (as Lagrangian), but Eulerian part keeps it smooth

I. Lagrangian Step / Staggered Discretization

- PALE is 2D code on quadrilateral, logically rectangular mesh
- cell (zone), node, subzone
- mass of sub-zone m_{nc} , mass of cell m_c , mass of node m_n
- staggered discretization

 scalar quantities (density ρ, pressure p, internal energy ε, temperature T) defined in grid cells, vector quantities (positions x, velocities U) defined on grid nodes; density and pressure defined also in sub-zones

I. Lagrangian Step / Energy Conservation

momentum equation

$$m_n \frac{\mathrm{d}\mathbf{U}_n}{\mathrm{d}\mathbf{t}} = \mathbf{F}_n = \sum_{c \in \mathcal{C}(n)} \mathbf{F}_{cn}.$$

• compatible formulation conserves total energy [Caramana, Burton, Shashkov, Whalen (JCP, 1998)]

$$\sum_{c} m_{c} e_{c} = \sum_{c} m_{c} \epsilon_{c} + \sum_{n} \frac{1}{2} m_{n} (\mathbf{U}_{n})^{2},$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\sum_{c} m_{c} e_{c} \right) = \sum_{c} m_{c} \frac{\mathrm{d} \epsilon_{c}}{\mathrm{dt}} + \sum_{n} \underbrace{m_{n} \frac{\mathrm{d} \mathbf{U}_{n}}{\mathrm{dt}}}_{=\mathbf{F}_{n}} \mathbf{U}_{n},$$

$$= \sum_{c} \left(m_{c} \frac{\mathrm{d} \epsilon_{c}}{\mathrm{dt}} + \sum_{n \in \mathcal{N}(c)} \mathbf{F}_{cn} \cdot \mathbf{U}_{n} \right) = 0,$$

• internal energy equation

$$m_c \frac{\mathrm{d}\epsilon_c}{\mathrm{dt}} = -\sum_{n \in \mathcal{N}(c)} \mathbf{F}_{cn} \cdot \mathbf{U}_n$$

I. Lagrangian Step / Forces

- sub-zonal force F_{cn} pressure artif. viscosity anti-hourglass $F_{cn} = F_{cn}^{p} + F_{cn}^{visco} + F_{cn}^{\delta p}$
- pressure force in sub-zone Ω_{cn} with boundary $\partial \Omega_{cn}$

$$\mathbf{F}_{cn}^{p} = -\int_{\Omega_{cn}} \operatorname{\mathbf{grad}} p \, \mathrm{d}V = -\int_{\partial\Omega_{cn}} p \, \mathbf{N} \, \mathrm{d}l.$$

- artificial viscosity $q = c_1 \rho_c a_c |\Delta \mathbf{U}| + c_2 \rho_c (\Delta \mathbf{U})^2$, where $\Delta \mathbf{U} \approx \operatorname{div} \mathbf{U} l_c$ is velocity difference with l_c being characteristics length; added to pressure in compression regions; adds dissipation on shocks
- edge [Caramana, Shashkov, Whalen (JCP, 1998)] or tensor [Campbell, Shashkov (2000)] artificial viscosity
- sub-zonal pressure force prevents hourglass movement of cells depends on difference between pressure in cell, and the pressure in sub-zones
- density in cell and sub-zone computed from mesh movement and Lagrangian assumption of constant sub-zonal mass

II. Rezoning

- rezoning mesh untangling and smoothing
- for accurate remapping we need to move only those vertexes which are necessary and as little as possible; cell quality, node quality
- simple smoothing [Winslow (1963)]

$$\begin{aligned} \mathbf{x}_{i,j}^{k+1} &= \frac{1}{2\left(\alpha^{k}+\gamma^{k}\right)} \left(\alpha^{k} \left(\mathbf{x}_{i,j+1}^{k}+\mathbf{x}_{i,j-1}^{k} \right) + \gamma^{k} \left(\mathbf{x}_{i+1,j}^{k}+\mathbf{x}_{i-1,j}^{k} \right) \right. \\ &\left. -\frac{1}{2} \beta^{k} \left(\mathbf{x}_{i+1,j+1}^{k}-\mathbf{x}_{i-1,j+1}^{k}+\mathbf{x}_{i-1,j-1}^{k}-\mathbf{x}_{i+1,j-1}^{k} \right) \right) , \end{aligned}$$

where coefficients $\alpha^k = x_{\xi}^2 + y_{\xi}^2$, $\beta^k = x_{\xi} x_{\eta} + y_{\xi} y_{\eta}$, $\gamma^k = x_{\eta}^2 + y_{\eta}^2$, and where (ξ, η) are logical coordinates.

- Reference Jacobian method [Knupp, Margolin, Shashkov (JCP, 2002)]
- combination of feasible set method and numerical optimization [Váchal, Garimella, Shashkov (JCP, 2004)].

III. Remapping/1

- conservative interpolation of conservative quantities from the old Lagrangian mesh to the new smoothed mesh
 - 1. piecewise linear reconstruction with Barth-Jespersen limiter [Barth, Jespersen (1989)]

$$g(x,y) = g_c + \left(\frac{\partial g}{\partial x}\right)_c (x - x_c) + \left(\frac{\partial g}{\partial y}\right)_c (y - y_c)$$

2. quadrature of reconstruction over cells of new mesh
 – exact quadrature – intersection of new cell with all neighboring old cells

- * old mesh dashed, new mesh solid
- integration of linear function over each intersection polygon – Green theorem transforms into integration over polygon edges

III. Remapping/2

 approximate quadrature over regions swept by edges moving form old to new position [Kuchařík, Shashkov, Wendroff (JCP,

- exact integration is very expensive, requires finding intersections.
- integral over new cell can be decomposed as sum of integrals over swept regions.
- repair Barth-Jespersen limiter guarantees monotonicity in 1D; in 2D new local local extrema might appear – repair [Shashkov, Wendroff (JCP, 2004)]
- FCT remapping approach instead of repair, e.g. [Liska, Shashkov, Váchal, Wendroff (JCP, 2010)]
- remapping of staggered quantities more complicated [Loubere, Shashkov (JCP, 2005)]

Heat Conductivity / Formulation

 heat conductivity represented as parabolic term in the energy equation; splitting parabolic part

$$aT_t + \operatorname{div} \mathbf{w} = 0, \mathbf{w} = -\kappa \operatorname{\mathbf{grad}} T = 0$$

- mimetic operators method [Shashkov, Steinberg (JCP, 1996)]; operators
 - generalized gradient $\mathbf{G}u = -\kappa \operatorname{\mathbf{grad}} u$
 - extended divergence $\mathbf{D} \mathbf{w} = \begin{cases} \operatorname{div} \mathbf{w} & \text{on} & V \\ -(\mathbf{w}, \mathbf{n}) & \text{on} & \partial V \end{cases}$
- divergence Green formula $\int_V \operatorname{div} \mathbf{w} \, d \, V \oint_{\partial V} (\mathbf{w}, \mathbf{n}) \, d \, S = 0$

is $(\mathbf{D} \mathbf{w}, 1)_H = 0$ where $(u, v)_H = \int_V u v \, d \, V + \oint_{\partial V} u v \, d \, S$

Heat Conductivity/ Divergence

• divergence Green formula $\int_{V} \operatorname{div} \mathbf{w} \, d \, V - \oint_{\partial V} (\mathbf{w}, \mathbf{n}) \, d \, S = 0$

applied to one cell *ij* gives standard discretization

 $(\text{div}\mathbf{W})_{ij}VC_{ij} = W\xi_{i+1,j}S\xi_{i+1,j} - W\xi_{ij}S\xi_{ij} + W\eta_{i,j+1}S\eta_{i,j+1} - W\eta_{ij}S\eta_{ij}$

• heat flux w represented at the center of each edge by the projections $W\xi_{i,j}, W\eta_{i,j}$ on normal to the edges

Heat Conductivity / Gradient

Gauss theorem

$$\int_{V} u \operatorname{div} \mathbf{w} \, d \, V - \oint u(\mathbf{w}, \mathbf{n}) \, d \, S + \int_{V} (\mathbf{w}, \kappa^{-1} \kappa \operatorname{\mathbf{grad}} u) d \, V = 0$$

is $(\mathbf{Dw}, u)_H = (\mathbf{w}, \mathbf{G}u)_{\mathbf{H}}$ where $(\mathbf{A}, \mathbf{B})_{\mathbf{H}} = \int_V (\kappa^{-1}\mathbf{A}, \mathbf{B}) d V$

• G is adjoin operator of D

$$\mathbf{G} = \mathbf{D}^*$$

- mimetic discrete operators *G*, *D* have the same discrete integral properties
- namely G is constructed as adjoin of divergence $G = D^*$ from D using discrete inner products $(u, v)_H, (\mathbf{A}, \mathbf{B})_{\mathbf{H}}$
- gradient has a global stencil

Heat Conductivity / System

• implicit scheme in flux form

$$a\frac{T^{n+1} - T^n}{\Delta t} + D\mathbf{W}^{n+1} = 0$$
$$\mathbf{W}^{n+1} - GT^{n+1} = 0$$

- same time step as in hyperbolic Lagrangian/ALE step
- temperature T^{n+1} is eliminated and the system is solved for heat flux W^{n+1} ; linear operator with local stencil
- the sparse matrix of the system is symmetric and positive definite; solved by conjugate gradient method preconditioned by altered direction implicit (ADI) method; efficient solver
- having fluxes \mathbf{W}^{n+1} temperature T^{n+1} given by

 $T^{n+1} = T^n - \Delta t / a D \mathbf{W}^{n+1}$

 works well on bad quality Lagrangian meshes; allows discontinuous heat conductivity; non-linear substitution for non-linear (power) heat conductivity

Heat Conductivity / Heat Flux Limiting

• computed fluxes have to be smaller than physical heat flux limit $|\mathbf{W}^{n+1}| < W_{limit}$

• direct heat flux limiting $\mathbf{W}^{n+1} = \operatorname{sign} \mathbf{W}^{n+1} \min(|\mathbf{W}^{n+1}|, W_{limit})$ leads to temperature oscillations and checkerboard patterns

• in regions where physical heat flux limit is violated heat conductivity κ is replaced by

$$\tilde{\kappa} = \kappa \frac{W_{limit}}{|\mathbf{W}^{n+1}|}$$

and limited heat fluxes are recomputed with new heat conductivity $\tilde{\kappa}$

Cylindrical Geometry

- generalized to cylindrical *r*, *z* geometry [Kuchařík, Liska, Loubere, Shashkov (HYP2006)] necessary for laser applications
- additional factor r in finite volumes integrals

$$\int f(x,y)dxdy \to \int f(r,z)rdrdz$$

- Lagrangian step
 - control volume method
 - cell center moved to center of cell mass so that ALE remapping can be conservative
- rezoning mesh nodes move on the *z* axis
- remapping additional factor r in integrals
- generalization of mimetic heat conductivity method to cylindrical geometry

Laser Absorption on Critical Surface

- critical electron density $n_e^c = \frac{m_e \pi c^2}{e^2 \lambda^2}$; critical surface is the isosurface with $n_e = n_e^c$
- simplest model laser penetrates till critical surface and is absorbed on the critical surface
- laser beam with parallel rays or Gaussian beam with angular divergence; laser beam split into set of rays

• source in internal energy equation $\rho \frac{d \epsilon}{d t} + p \operatorname{div} \mathbf{u} = -\operatorname{div}(\mathbf{I})$

Laser Absorption by Ray Tracing

- laser beam split into rays; propagation of each ray through the computational mesh is simulated; rays are traced
- ray is refracted (Snell's law) when it passes through the edge from one cell to another; refraction line is orthogonal to ∇n_e

- ray looses its energy by inverse bremsstrahlung by passing trough the cells
- ray is gradually reflected close to the critical surface, where resonance absorption occurs

Single Foil Target

- 30° oblique incidence of laser on $0.8 \ \mu m$ thin Al foil; Cartesian geometry
- laser energy 36 J, 3-rd harmonics, pulse length $250 \,\mathrm{ps}$, focus $r_f = 40 \,\mu\mathrm{m}$

 confirmed – plasma plumes propagate in direction orthogonal to the foil, animation

from pure Lagrangian simulation

 preliminary study for double foil target; results for oblique and orthogonal laser incidence are very close

Double Foil Target

- upper AI and lower Mg foil
- foils thickness $d_u = 0.8 \mu m, d_l = 2 \mu m$
- foils distance $L = 600 \mu m$
- Gaussian laser beam with energy $115\,{\rm J}$, 3-rd harmonics, pulse length $250\,{\rm ps}$, focus $r_f=40\,\mu{\rm m}$, angular beam divergence 15° , focused on the lower foil

- almost vacuum between foils; mass of neighboring vacuum and foils cells should not differ much; vacuum cells are big while foils cells small
- initially e.g. one foil rectangular cell has r/z edges lengths aspect ratio 10^4 and neighbors the vacuum cell with r/z ratio 0.2
- pure Lagrangian simulation fails due to mesh degeneration soon after laser burns through the upper foil

Double Foil Target Results

- laser absorption by ray tracing
- density with selected rays, pressure with mesh at time 600 ps animation

 laser-produced plasma wall interaction [Renner, Liska, Rosmej (LPB 2009)]

Oblique Incidence on Double Foil Target

- Al plasma plume propagates in direction orthogonal to foils
- oblique and orthogonal incidence produces very similar results
- simulation preformed in cylindrical geometry with symmetry axis being orthogonal to foils
- beam in simulation orthogonal to the foils; beam artificially stopped between the foils

Oblique Incidence on Double Foil Target Results

- 3 materials, Aluminum, Magnesium and vacuum
- Mg foil heated by Al plasma plume; real plasma wall interaction
- density and pressure at time 500 ps animation

Foam Target

- 400μ m thick TAC foam with density 9.1mg/cm³ with 2μ m pores
- Gaussian laser pulse on the third harmonics with wavelength $0.438 \,\mu m$, total energy $170 \, J$, the radius of laser spot on target $300 \,\mu m$ and FWHM length $320 \, ps$
- foam modeled by uniform density $9.1 \mathrm{mg/cm}^3$ material

evolution of temperature; timing relates to the laser pulse maximum at $0\ \mathrm{ps}$

Foam Target - Structured Model

- foam modeled by the sequence of $d_s = 0.018 \mu m$ thick dense slabs with density $\rho_s = 1 \text{ g/cm}^3$ separated by $d_v = 1.982 \mu m$ thick voids with density $\rho_v = 1 \text{ mg/cm}^3$
- thickness of a slab and void is $d_s + d_v = 2\mu m$, i.e. we have 200 clobe for $400 \mu m$ thick form

structured foam model

burning of laser through the target

- experimental speed of laser penetration into the foam is about $600 \sim 700 \,\mu m/ns$, speed from structured simulation is about $500 \,\mu m/ns$ and from uniform simulation about $1600 \,\mu m/ns$
- structured model approximates experimental data much better [Kapin, Kuchařík, Limpouch, Liska, (2006)]

Foam Target - Structured Model Results

• evolution of density and temperature

- density animation
 - , zoomed animation

High Velocity Impact

- disc flyer impact problem
- high power laser-irradiated Aluminum disc ablatively accelerates up to very high velocity (40-190 km/s) and strikes to massive Aluminum target
- $d = 6; 11 \mu m, r = 150 \mu m, L = 200 \mu m$, laser energy 120 - 390 J, 1-st or 3-rd harmonics, pulse length 400 ps, focus $r_f = 125 \mu m$.

- problem split into two parts for simulations:
 - ablative disc flyer acceleration by laser beam; animation
 - impact of disc flyer into massive target
- problem parameters similar to the experiment performed on the PALS laser facility in Prague

Crater Creation

- after impact increase of temperature, melting and evaporating material, circular shock wave
- crater (gas liquid interface) formed inside the target

- temperature animation
- simulated craters size and shape correspond reasonably well to experimental data [Kuchařík, Liska, Limpouch (2006)]

Jets Formation

- laser on 3-rd harmonics, total energy 10J, FWHM 400ps, heat flux limiter 5 %
- annular laser profile having 10% at r = 0, smooth maximum at $r = 600 \mu m$ and proportional to r^2 for small r

- plasma plume develops faster on circle of laser maximum
- inner part of plume moves inwards towards *z* axis; pressure gradient towards *z* axis

• conical profile in density collides on the z axis creating a jet

• density evolution, animation

 pure hydrodynamics process of jet formation from annular laser profile [Kmetík, Limpouch, Liska, Váchal (2011)]

• role of other physical processes as radiation transport

Conclusion

- ALE method for hydrodynamics in Cartesian and cylindrical geometry using staggered Lagrangian scheme
- heat conductivity, laser absorption
- applications simulations of single foil, double foil, foam, disc flyer targets and jets formation
- often pure Lagrangian simulation fails while ALE gives reasonable results
- simulations serve for interpretation of experimental results obtained on PALS laser facility