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International Cooperation

e Los Alamos National Laboratory, USA — numerical methods for
Lagrangian and ALE hydrodynamics

e CELIA (Centre Lasers Intenses et Applications), University
Bordeaux, France — nhumerical methods for Lagrangian and ALE
hydrodynamics; modelling of laser interaction with targets

e IPPLM (Institute of Plasma Physics and Laser Microfusion),
Warsaw, Poland — modelling of laser interaction with targets

e Utsunomia University, Japan

e CEA (Commissariat a I’energie atomique et aux energies
alternatives), Saclay, France

e LULI (Laboratoire d’Utilisation des Lasers Intenses), Ecole
Polytechnique, Polaiseau, France

e Advanced Photonics Research Institute, Gwangju Institute of
Science and Technology (GIST), Gwangju, Korea



Overview

e numerical treatment of advection equation and conservation laws

e Euler equations

e motivation example for Lagrangian formulation

e hydrodynamical model with heat conductivity and laser
absorption

e humerical methods used in our PALE (Prague ALE) code

— hyperbolic part — Arbitrary Lagrangian Eulerian (ALE) method
— parabolic part — heat conductivity
— laser absorption — source term in internal energy equation



e laser plasma application, which cannot be treated by pure
Lagrangian method

— high velocity impact problem

— double foil target

— foam target

— jet formation by annular laser profile



Advection Equation

e advection (one-side wave) equationu(x,t)
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with initial condition u(z,0) = ug(x) has solution

u(x,t) = ug(x — at)

e continuum area of independent variables (x,t) € R x (0,00) is
replaced by computational grid (z;,t,) = (jAx,nAt),j5 € Z,n € Ny

e continuum function u(z,t) is replaced by discrete grid function
u? & u(zj,ty)

e simple difference scheme
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Advection equation — numerical solution

e advection equation with initial condition and with a =1

5 pro |x| < 2w

1+4cos(x/2)
Ut + AUy = 07 ’U,(Zlf, 0) — ’U,()(CU) — { 0 jinak
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Burgers equation

e Burgers equation with initial condition
{ 1+cos(x/2)

5 pro |x| <2

Ut + Uy = 07 ’U,(LC, O) — ’U,()(ZC) — 0 jinak
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Conservation Laws

e Burgers equation

02
ur +uu, =0, up+ <?> =0

can have discontinuous solution
e discontinuity - shock wave - special numerical methods
e general conservation law — system U, + (f(U)), =0

e three types of simple waves

— shock wave
— contact discontinuity
— rarefaction wave



Composite Schemes for Conservation Laws

e conservationlaw U; + f(U), =0
e Lax-Friedrichs scheme, diffusive, two step variant

U = U+ UL — s (FU7) - )

o Lax-Wendroff scheme, simple fluxes, dispersive

Ut = yr - g(f(U“%) B f(U."ﬁ%))
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Euler Equations

e Euler equations in
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3D
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e basic equations for hydrodynamical modelling of plasma



Motivation for Lagrangian Formulation

laser plasma is created by laser interaction with targets

target is 0.8m thin Aluminum foil; Prague Asterix Laser System
(PALS) laser at 3-rd harmonics )\ = 438 nm, pulse duration 250ps,
focus 40um, energy 200.J; animation

computational mesh is fixed to the fluid and moves with the fluid
no mass flux between cells through edges

computation domain changes with time

problems with large changes of computational domain volume
and/or shape (compression or expansion

)

naturally treated moving boundaries

typically used in laser plasma simulations


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/1foil/ALE_.html
http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/flyer_acceleration/index.html

Euler Equations in Lagrangian Coordinates

e Lagrangian coordinates move together with the fluid

alu

P = div F(U)

e d/dt=0/0t+ u-grad with velocity u = (u, v, w) is the total
Lagrangian time derivative including convective terms

(2] ()

e 1 = 1/pis the specific volume and [ is the unit matrix
o ideal gas equation of state

u’ P
p:(fy—l)pg’ E:ZE__, CS: e
2 p

e eigenvalues of flux Jacobian matrix are 0, +c*

e Lagrangian particle movement by dX /dt = u



Staggered Lagrangian method in 1D

e scalars p,c,pin cells i + 1/2; vectors u, x in hodes i
e equations for velocity and internal energy

du de
_— = — y — = — DU
e scheme for velocity and internal energy
up ™t — B _p?+1/2 T QG2 —Pisie — Gl e
At m;
1
Sity2 ~ iy . o sl ) — g )
At = _(Pi+1/2 T qi+1/2)

mi41/2

e artificial viscosity ¢ added to p in compressed cells

0 Ui — Ug 2> 0
_%Pﬁyz(uﬁl — ug') \/(7 - 1)’75?+1/2 Uiy — U <0
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e mesh, density
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Cell-centered Lagrangian method in 1D
¢ all quantities in cells [Despres et al. 2005][Maire et al. 2007]

e conservative equations p4- = F(U), for U = (n, u, E) with fluxes

F = (u, —pl, —pu)
e the simplest scheme

n+1 n * *
Uiti2 = Uil _ Fi\ — F;

1 1

At Mi11/2

o fluxes given by the approximate acoustic Riemann solver
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the impedance -7 = p;c; with the speed of sound c;
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Moving Lagrangian Mesh

e high velocity impact

e computational mesh is fixed to
the fluid and moves with the

fluid
initial
e moving mesh can degenerate
= o degenerate typically for shear
Lagrangian flow like high velocity impact, or

vortex flow

e can be treated by ALE method

ALE



Euler Equations in Lagrangian Coordinates

e density p, velocity U, pressure p, internal energy ¢ = ¢ — U?/2,
temperature 7', heat conductivity «, laser intensity /

ldp d x

S T ’ di

dU
pﬂ—i—gradp = O

d

'Odz +pdivU = —div(I)+ div(k grad T

o total Lagrangian time derivatives include convective terms

d 0

1i 93 + U - grad
e equation of state — ideal gas and QEOS for plasma
e splitting — hyperbolic and parabolic part

e heat conductivity essential as it contributes to energy flux — faster
shock waves



ALE Method for Hydrodynamics

o direct ALE - Arbitrary Lagrangian Eulerian method; Euler
equations written in coordinates moving with speed U. including
convective terms (with factor U — U, ; mesh movement is
prescribed

e indirect ALE — combination of Lagrangian and Eulerian methods
[Hirt, Amsden, Cook (JCP 1974, 1997)]

— |. Lagrangian computation several time steps

— ll. Rezoning — mesh untangling and smoothing

— lll. Remapping — conservative interpolation of the conservative
quantities from old to new, better quality mesh; then, back to
Lagrangian computation.

e remapping (advection) corresponds to Eulerian part of ALE
method, allows mass flux between cells

e ALE method combines positives of both approaches — grid moves
with fluid (as Lagrangian), but Eulerian part keeps it smooth



|. Lagrangian Step / Staggered Discretization

e PALE is 2D code on quadrilateral, logically rectangular mesh

e cell (zone), node, sub-
zone

e mass of sub-zone m,,,
mass of cell m., mass of
node m,,

e staggered discretization
— scalar quantities (den-
sity p, pressure p, inter-
nal energy ¢, temperature
T) defined in grid cells,
vector quantities (posi-
tions x, velocities U) de-
fined on grid nodes; den-
sity and pressure defined
also in sub-zones




|. Lagrangian Step / Energy Conservation

¢ mMomentum equation

mnd;i“ ~F, = Z F.,.

e compatible formulation conserves total energy [Caramana,
Burton, Shashkov, Whalen (JCP, 1998)]

mec€Ec — mecec + lmn(Un)2,
> 2omeeet D

d de. dU,
a <chec> — ch 1t +Zmn dt Un7

C n HH
—Fp,

= Z(mcdt_l_ ZFcnUn>:O7

¢ internal energy equation

de.

777'cdt — = Z FcnUn




Lagrangian Step / Forces 7
sub-zonal force F .,
pressure artif. viscosity anti-hourglass
Fcn — F}gn + Fm’sco i Fgg

cn

pressure force in sub-zone ()., with boundary 05},

an:—/ gradpdV:—/ pNdl.
cn 8an

artificial viscosity ¢ = c;p.a.|AU| + cop.(AU)?, where AU ~ div U [,
is velocity difference with /. being characteristics length; added to
pressure in compression regions; adds dissipation on shocks

edge [Caramana, Shashkov, Whalen (JCP, 1998)] or tensor
[Campbell, Shashkov (2000)] artificial viscosity

sub-zonal pressure force prevents hourglass movement of cells —
depends on difference between pressure in cell, and the pressure
in sub-zones

density in cell and sub-zone computed from mesh movement and
Lagrangian assumption of constant sub-zonal mass



Il. Rezoning

rezoning — mesh untangling and smoothing

for accurate remapping we need to move only those vertexes
which are necessary and as little as possible; cell quality, node
quality

simple smoothing [Winslow (1963)]

1
k+1 k(o k k k(o k k
X — 2 (aF + k) (04 (Xz‘,j+1 +Xz’,j—1) + (Xi—l—l,j _l_Xz'—l,j)

1
k(o k k k k
—- 0 (X¢+1,j+1 — X141 TX 11 Xz’—l—l,j—l))’

where coefficients o = 27 + 2, 8" = z¢ x,) + ye yy, ¥ = 27 + 7, and
where (¢, 7)) are logical coordinates.

Reference Jacobian method [Knupp, Margolin, Shashkov (JCP,
2002)]

combination of feasible set method and numerical optimization
[Vachal, Garimella, Shashkov (JCP, 2004)].



lll. Remapping/1

e conservative interpolation of conservative quantities from the old
Lagrangian mesh to the new smoothed mesh

1. piecewise linear reconstruction with Barth-Jespersen limiter
[Barth, Jespersen (1989)]

o(e.9) =0+ (52) @=e0+(52) w-w

2. quadrature of reconstruction over cells of new mesh
— exact quadrature — intersection of new cell with all

neighboring old cells

+x old mesh dashed, nhew mesh solid

x Integration of linear function over

each intersection polygon — Green
theorem transforms into integration

over polygon edges




lll. Remapping/2

— approximate quadrature over regions swept by edges moving
form old to new position [Kucharik, Shashkov, Wendroff (JCP,
2003)]

-
\

— exact integration is very expen-
sive, requires finding intersec-
tions.

— integral over new cell can be de-
composed as sum of integrals
over swept regions.

v

3. repair — Barth-despersen limiter guarantees monotonicity in 1D;
in 2D new local local extrema might appear — repair [Shashkov,
Wendroff (JCP, 2004)]

e FCT remapping approach instead of repair, e.g. [Liska, Shashkov,
Vachal, Wendroff (JCP, 2010)]

e remapping of staggered quantities more complicated [Loubere,
Shashkov (JCP, 2005)]



Heat Conductivity / Formulation

e heat conductivity represented as parabolic term in the energy
equation; splitting parabolic part

aly +divw =0, w = —xkgrad T'= 0

e mimetic operators method [Shashkov, Steinberg (JCP, 1996)];
operators

— generalized gradient Gu = —rgradu

divw on V

— extended divergence Dw — { ~(w.n) on P

e divergence Green formula / divwd V — ]{ (w,n)d S =0
\%4 oV

is (Dw, 1)y =0where (u,v)g = [,uvdV+ ¢, ,uvdS



Heat Conductivity/ Divergence

o divergence Green formula / divwd V — j{ (w,n)d S =0
% oV

applied to one cell ;5 gives standard discretization

(divW);;VCij = W&it1,i58i41, —WEi S8 + Wi 115N j4+1—Wn::.5m;

¢ heat flux w represented at the center of each edge by the
projections W¢; ;, Wn; ; on normal to the edges




Heat Conductivity / Gradient

e Gauss theorem

/udivde—%u(w,n)dSnL/(w,ﬁ;_l/ﬁ;gradu)dV:O
1% 1%

is (Dw,u)y = (w, Gu)uy Where (A, B)y = [,,(x'A,B)dV

e G is adjoin operator of D G =D~

e mimetic discrete operators G, D have the same discrete integral
properties

e namely G is constructed as adjoin of divergence G = D* from D
using discrete inner products (u,v)y, (A, B)g

e gradient has a global stencil



Heat Conductivity / System

Tn—l—l_Tn
DW"™tl — ¢
“Ar T

wnrtt _grrtt = 0

implicit scheme iIn flux form
same time step as in hyperbolic Lagrangian/ALE step

temperature 7! is eliminated and the system is solved for heat
flux W t1; linear operator with local stencil

the sparse matrix of the system is symmetric and positive
definite; solved by conjugate gradient method preconditioned by
altered direction implicit (ADI) method; efficient solver

having fluxes W"*! temperature 77! given by
Tt =T" — At/aDW"™ !

works well on bad quality Lagrangian meshes; allows
discontinuous heat conductivity; non-linear substitution for
non-linear (power) heat conductivity



Heat Conductivity / Heat Flux Limiting

e computed fluxes have to be smaller than physical heat flux limit
W < Wi

e direct heat flux limiting W = sign W™ min(|[W" Y, Wisnat)
leads to temperature oscillations and checkerboard patterns

e in regions where physical heat flux limit is violated heat
conductivity ~ is replaced by

and limited heat fluxes are recomputed with new heat
conductivity =



Cylindrical Geometry

e generalized to cylindrical r, - geometry [Kucharik, Liska, Loubere,
Shashkov (HYP2006)] necessary for laser applications

e additional factor » in finite volumes integrals

/f(ﬂfay)d$dy—> /f(?“, z)rdrdz

e Lagrangian step

— control volume method
— cell center moved to center of cell mass — so that ALE
remapping can be conservative

e rezoning — mesh nodes move on the z axis
e remapping — additional factor r in integrals

e generalization of mimetic heat conductivity method to cylindrical
geometry



Laser Absorption on Critical Surface

2

e critical electron density ng = “575-; critical surface is the
isosurface with n, = n¢

e simplest model — laser penetrates till critical surface and is
absorbed on the critical surface

e laser beam with parallel rays or Gaussian beam with angular
divergence; laser beam split into set of rays

Laser ray

Ty
>
> ~— d, —
n; ]
%ﬁ v [
( o
/% — Subcritical cells
Ve
‘» Supercritical cell

e source in internal energy equation p% + pdivu = —div(I)



Laser Absorption by Ray Tracing

o laser beam split into rays; propagation of each ray through the
computational mesh is simulated; rays are traced

e ray is refracted (Snell’s law) when it passes through the edge from
one cell to another; refraction line is orthogonal to Vn,.

LoldJold

e ray looses its energy by inverse bremsstrahlung by passing
trough the cells

e ray is gradually reflected close to the critical surface, where
resonance absorption occurs



Single Foil Target

30° oblique incidence of laser on
0.8 um thin Al foil; Cartesian geom- AR
etry BEAM

laser energy 36J, 3-rd harmon-
ics, pulse length 250ps, focus
rr =40 pm
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confirmed — plasma plumes propagate in direction orthogonal to
the foil, animation

from pure Lagrangian simulation

preliminary study for double foil target; results for oblique and
orthogonal laser incidence are very close


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/1f_rot/ALE_.html

Double Foil Target

e upper Al and lower Mg foil
e foils thickness d,, = 0.8um, d; = 2um reen
BEAM UPPER FOIL
e foils distance L = 600um + /
--d,
e Gaussian laser beam with energy
115J, 3-rd harmonics, pulse length LOWER FOIL
250 ps, focus r; = 40 um, angular beam _;d.
divergence 15°, focused on the lower
foil

e almost vacuum between foils; mass of neighboring vacuum and
foils cells should not differ much; vacuum cells are big while foils
cells small

e initially e.g. one foil rectangular cell has /- edges lengths aspect
ratio 10* and neighbors the vacuum cell with /2 ratio 0.2

e pure Lagrangian simulation fails due to mesh degeneration soon
after laser burns through the upper foil



Double Foil Target Results

e laser absorption by ray tracing

e density with selected rays, pressure with mesh at time 600 ps
animation

p [Pa]
‘ le-1 ‘ ‘ lel?2
1 I 600 1 I
1 1le-2 400¢ 1
200t
‘e
- 11e-3 = O {Frrrria - 1lell
-200
le-4 -400
U
-600
le-5 : ; 1el0
-500 0 500
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e laser-produced plasma wall interaction [Renner, Liska, Rosmej
(LPB 2009)]


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/2f_rt/ALEm_.html

Obliqgue Incidence on Double Foil Target

e upper Al and lower Mg foil

e foils thickness d, = 0.8um,d; = 2um;
foils distance L = 600um

e Gaussian laser beam with energy
100J, 3-rd harmonics, pulse length
250 ps, focus ¢ = 40 pm

e after burning through the Al foil laser N
does not hit the Mg foil

e Al plasma plume propagates in direction orthogonal to foils

e oblique and orthogonal incidence produces very similar results

e simulation preformed in cylindrical geometry with symmetry axis
being orthogonal to foils

e beam in simulation orthogonal to the foils; beam artificially
stopped between the foils



Obliqgue Incidence on Double Foil Target
Results

e 3 materials, Aluminum, Magnesium and vacuum
e Mg foil heated by Al plasma plume; real plasma wall interaction

e density and pressure at time 500 ps animation

log(p)[g/cm?] at t= 200 ps |09()[P§1] at tf 200‘ps
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http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/2f_rot/ALE_.html

Foam Target

e 4001 m thick TAC foam with density 9.1mg/cm® with 2,m pores

e Gaussian laser pulse on the third harmonics with wavelength

0.438 um, total energy 170 J, the radius of laser spot on target
300 pm and FWHM length 320 ps

e foam modeled by uniform density 9.1mg/cm3 material
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evolution of temperature; timing relates to the laser pulse
maximum at 0 ps



Foam Target - Structured Model

o foam modeled by the sequence of d, = 0.018um thick dense slabs
with density p, =1 g/cm3 separated by d, = 1.982um thick voids
with density p, = 1 mg/cm®

¢ thickness of a slab and void is d, + d, = 2um, i.e. we have 200
slabs for 4004 m thick foam .

\ ‘ ‘ ‘ ‘
VOID BEAM SLABS 50} ]
N _% el 7
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.
o

.
structured foam model burning of laser through the target
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< < < < <

5 —OA —d3 —Oé —Oﬁ 0
time [ns]

o experimental speed of laser penetration into the foam is about
600 ~ 700 um/ns, speed from structured simulation is about
500 um /ns and from uniform simulation about 1600 ym /ns

e structured model approximates experimental data much better
[Kapin, Kucharik, Limpouch, Liska, (2006)]
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Foam Target - Structured Model Results

e evolution of density and temperature

-200 ps
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-200 ps
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e density animation
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http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/foam_tac9.1_rho/ALE_.html
http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/foam_tac9.1_rho_zoom/ALE_.html

High Velocity Impact

e disc flyer impact problem

e high power laser-irradiated Aluminum SEAM DISCFLYER
disc ablatively accelerates up to -
very high velocity (40-190 km/s) and o
strikes to massive Aluminum target ]

MASSIVE TARGET

e d = 6;11um,r = 150um,L = 200um,
laser energy 120 — 390J, 1-st or 3-rd
harmonics, pulse length 400 ps, focus
ry = 125 pm.

e problem split into two parts for simulations:
— ablative disc flyer acceleration by laser beam; animation
— impact of disc flyer into massive target

e problem parameters similar to the experiment performed on the
PALS laser facility in Prague


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/flyer_acceleration/index.html

Crater Creation

o after impact — increase of temperature, melting and evaporating
material, circular shock wave

e crater (gas - liquid interface) formed inside the target
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e temperature animation

e simulated craters size and shape correspond reasonably well to
experimental data [Kucharik, Liska, Limpouch (2006)]


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/impact_T_big/_.html

Jets Formation

z [um]

e laser on 3-rd harmonics, total energy 10J,
FWHM 400ps, heat flux limiter 5 %

e annular laser profile having 10% at » = 0,
smooth maximum at » = 600um and propor-
tional to 2 for small r

2)(

157

1t

| Wiem?]

0.5¢

0
r [um]

e plasma plume develops faster on circle of laser maximum

e inner part of plume moves inwards towards > axis; pressure

gradient towards - axis
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e conical profile in density collides on the 2 axis creating a jet



Jets Evolution
e density evolution, animation
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e pure hydrodynamics process of jet formation from annular laser
profile [Kmetik, Limpouch, Liska, Vachal (2011)]

e role of other physical processes as radiation transport


http://kfe.fjfi.cvut.cz/~liska/tyuiop/FVCA6-anim/anim_jet_600mum_10J_2nd/ALE_.html

Conclusion

ALE method for hydrodynamics in Cartesian and cylindrical
geometry using staggered Lagrangian scheme

heat conductivity, laser absorption

applications — simulations of single foil, double foil, foam, disc
flyer targets and jets formation

often pure Lagrangian simulation fails while ALE gives reasonable
results

simulations serve for interpretation of experimental results
obtained on PALS laser facility
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