
29. Diffraction of waves

Light bends!

Diffraction assumptions

The Kirchhoff diffraction 
integral

Fresnel Diffraction
diffraction from a slit



Diffraction
Light does not 
always travel in 
a straight line.

It tends to bend
around objects.  
This tendency is
called "diffraction.“

Shadow of a 
razor blade
illuminated by 
a laser

This means that radio communications 
does not necessarily require a line of sight.



Diffraction of a 
wave by a slit

Passing light through a small 
slit yields a diffraction pattern 
that depends on the size of 
the slit and the wavelength of 
the wave.

This phenomenon is general, 
and can be observed using 
waves of any kind.

Large slit

Smaller slit

Very small slit



C. J. Davisson and 
L. H. Germer, 1927 

Diffraction of particles

This experiment was only a few years 
after Louis de Broglie had described the 
wavelength of a particle in terms of its 
momentum,  = h/p.
(h = Planck’s constant)

Electrons do this too.  The observation of 
this fact was one of the first important 
confirmations of quantum physics.



What is E(x0,y0) at a distance z from the plane of the aperture?

This region is assumed to be 
much smaller than this one.

We wish to find the light electric field after a screen with a hole in it.
This is a very general problem with far-reaching implications.

The Diffraction Problem

(x1, y1)

incident 
plane wave

plane of the 
aperture

z

observation
plane
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Diffraction Assumptions

This set of assumptions actually over-determines the problem, and 
it can be shown that the diffracted field is zero everywhere.  But 
even so, this is a useful starting point.  A more accurate treatment is 
very complicated!

The first thorough treatment of this 
problem was due to Kirchhoff.  He 
made a few assumptions:

Gustav R. Kirchhoff
(1824 - 1887)

1)  Maxwell's equations

2)  Inside the aperture, the field and its spatial derivative are the 
same as if the screen were not present.

3)  Outside the aperture (in the shadow of the screen), the field 
and its spatial derivative are zero.



Incident field

A solution based on Huygen’s principle

(x1, y1)

Huygen’s wavelet

z

(x0, y0)r01
   2 22

01 0 1 0 1    r z x x y y

Each point (x1, y1) in the aperture emits a 
spherical wave, with amplitude determined by 
the wave incident on the aperture.

The net field at the point (x0, y0) is therefore given by a superposition:

     
1 1

0 0 01 1 1
all points (x ,y )
 in the aperture

, spherical wave propagating a distance r incident field at x ,y E x y

Of course, the sum becomes an integral…



The Solution: Kirchhoff Diffraction Integral

The field in the observation plane, E(x0,y0), at a distance z from the 
aperture plane is given by a convolution:
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Aperture( , )
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x y

E x y h x x y y E x y dx dy

A very complicated result!  In order to use this, we must make some 
approximations…
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where :
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Paraxial approximation

In the spirit of the paraxial approximation, we will assume that the aperture 
is small compared to the distance z, so that z >> x0  x1 and y0  y1.
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First, we note that we can factor z out of the square root in the 
expresson for r01:

   2 22 2
0 1 0 10 1 0 1

01
1 11 small corrections
2 2 2 2

                  
     

x x y yx x y yr z z z
z z z z

Make use of the Taylor expansion: 11 1
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Replace r01 in both the exponent and the denominator of h(x0x1, y0y1):

We will neglect 
this term.
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Multiplying out the squares, and factoring out the constants:

Thus, we have:

Paraxial approximation: Fresnel diffraction

If the incident wave is a plane wave, as is typically assumed, then:

1 1( , ) constantE x y

(constant with respect to x1 and y1)



The Fresnel Diffraction Integral

And we’ll usually neglect the factors in front of the integral, to obtain:
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This is the Fresnel Diffraction integral. Even with all the approximations 
we’ve made, it is usually difficult to evaluate.

Usually, instead of writing an integral over an aperture, we will 
explicitly write the aperture function in the integral:
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Consider a uniform plane wave incident 
on a metal screen with a slit of width 2b 
in the x1-direction.  A one-dimensional 
problem, this may be the simplest of all 
possible diffraction problems.

It’s still not easy.

2b
Before solving it, let’s first try to anticipate 
what we might expect the answer to look like.

light path from the upper edge of the slit

light path from the middle of the slit

observation screen

Destructive 
interference when 
the path length 
difference is /2, 
3/2, 5/2, etc.

Fresnel diffraction example: a slit



At a certain angle T, the path difference 
between two waves (from the top of the 
slit and the mid-point) equals half of a 
wavelength.  This leads to destructive 
interference, and therefore a dip in the 
intensity at that angle.

Diffraction causes fringes

More generally, we can imagine 
dividing the slit into an even number of 
zones.  At certain angles, the light from 
each zone can destructively interfere 
with the light from the neighboring 
zone, leading to dark regions in the 
diffraction pattern.

These alternating light and dark 
regions are known as “fringes”.



Write the Fresnel integral for this one-dimensional problem:

Next step: define new variables             and1
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Fresnel integral for a slit

The aperture function is given by:   1
1

1
0 otherwise
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Fresnel diffraction example: a slit
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As a shorthand, we define a dimensionless quantity 
known as the “Fresnel number”: 2
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This is not an integral that can be solved in closed form.  
It must be computed numerically.

and, of course, we are really interested in the intensity     2
0 0I E 



Fresnel Diffraction through a slit: 
numerical results for I(0)

Far from the slit:

Closer to the slit:

Fresnel number N

0.5
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2


bN

z
Fresnel number:

Example: green light ( = 0.5 m)

a) slit width b = 1 millimeter = 2000

N = 1 at a distance of 2 meters

b) slit width b = 10 microns = 20

N = 1 at a distance of 200 m

# of ripples = Fresnel number!

-2b 2b

Recall: this Fresnel calculation is only 
valid for z >> b, which is the paraxial 
approximation.



Fresnel Diffraction through a slit: far field
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In the limit that N << 1  (very far from the aperture), the integral can 
be performed analytically.  The math is a bit tedious, so we just 
quote the result here:
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2sin
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bE x Nx

b


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Our old friend 
the sinc function!

In this regime (the “far field”), the 
diffraction pattern no longer changes 
shape as z increases, but merely 
expands in size uniformly.

Fresnel number

0.03

0.02

0.01

-100b 100b



Fresnel Diffraction through a slit: isn’t 
there an awesome java applet that 
illustrates all this?

http://www.falstad.com/ripple/

More than one, actually

http://www.falstad.com/diffraction/


