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Electromagnetic Properties
of Materials — Part |

Lorentz and Drude Models

Lecture Outline S=0

* High level picture of dielectric response
* Resonance

* Lorentz model for dielectrics

* Lorentz model for permeability

* Drude model for metals

* Generalizations

e Other materials models
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High Level Picture
of Dielectric
Response

Dielectric Slab S=0

We wish to understand why a dielectric exhibits an electromagnetic

response.




Atoms at Rest S=0

Without an applied electric field, the electron “clouds” around the
nuclei are symmetric and at rest.
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Applied Wave S0

The electric field of a electromagnetic wave pushes the electrons
away from the nuclei producing “clouds” that are offset.

(%)

&

G

®

@D &

o
O

. (-} L‘) (o) .) ®
&) @ @ 9 [ e

Lecture 2 6

9/19/2016



9/19/2016

Secondary Waves S0

The motion of the charges emits secondary waves that interfere with
the applied wave to produce an overall slowing effect on the wave.

Lecture 2 7

Resonance
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Visualizing Resonance — =0
Low Frequency

* Can push object to
modulate amplitude

* Displacement is in phase
with driving force

* DC offset

Lecture 2

Visualizing Resonance — o=
on Resonance

* Can push object to large
amplitude
* Displacement and drivin
(7 P g

force are 90° out of phase
* Peaks of push correspond to
nulls of displacement

[

Lecture 2
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Visualizing Resonance — High &=

Frequency

[
* Vanishing amplitude
* Displacement is 180°
(( )) out of phase

Amplitude
3eq aseyd

12




Impulse Response of a

Harmonic Oscillator

Excitation Ball Displacement
(] I k/\\‘ ‘ ‘ I ‘ I I I I ]
= Damping loss ]
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Time, t
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Moving Charges Radiate Waves

outward
travelling

wave .
X4
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Lorentz Model
for Dielectrics

Lorentz Oscillator Model

EQUILIBRIUM STATE

9/19/2016



9/19/2016

Maxwell’'s Equations with

Material Polarization

Material polarization is incorporated into the constitutive relations.
D=gE+P
Q’Response of material
Response of free space
Constitutive relation in terms of relative permittivity and susceptibility.
D=¢e E=¢,E+¢e,yE
Comparing the above equations, we see that
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Equation of Motion

2 —
m8—1;+mr8—r+ma)§17’ =—qE
ot \51 \

electric force

frictional force restoring force
damping rate
i r K natural
acceleration force (loss/sec) 0, = |~ atura
¢ m frequency
n1:>m0 mass or an
electron

EQUILIBRIUM STATE POLARIZED STATE

electric field

electron “cloud”

Lecture 2 e 18




Fourier Transform S0=0

827_; 8]7 27— -
m—+ml —+mayr =—qE
ot ot
I Fourier transform

—

m(—ja))2 F(o)+ml(—jo)F(o)+mae,F(0)=—-qgE (o)
lSimplify

(—ma)2 — joml + ma)g)?(a)) =—qE (o)

Displacement S0

—

(—ma)2 — jomI + mwé)?(a)) = —qE(a))

I

(a)):_q E(a))
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Dipole Moment S0

Definition of Dipole Moment: ﬁ (a)) = —q? (0))
/
charge

distance from center

** Sorry for the confusing notation, but x here is NOT permeability.
—_

2
o q E(o)
,u(a))— m, @, — @ — jol

@ =

-
r

Lecture 2 21

Lorentz Polarizability, o S=0

Definition of Polarizability: [l (0)) = |:0{ (a))] E (CO)

** Sorry for the confusing notation, but o here is NOT absorption.

a(w) is a tensor quantity for anisotropic materials.
For simplicity, we will use the scalar form.
This is the Lorentz polarizability for a single atom.

2
_4 I
a(a))— m, @, —@ — jol
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Polarization per Unit Volume

!

~~ \ Average dipole moment over all

Definition: P(w):%; fi(@)  tomsnamaeral

All billions and trillions of them!!!

Unpolarized Polarized with some randomness Equivalent uniform polarization

5, of Applied ;
0,0 E-Field ©

There is some randomness to the polarized atoms so a statistical approach is taken to
compute the average.
—_

P( a)) - N < Il ( a))> <NENumber of atoms per unit volume

> = Statistical average

Lecture 2 23

Susceptibility (1 of 2)

Recall the following:

This leads to an expression for the susceptibility:

Na(w Ng* 1
x(@)= 5( ): 531 > —w* — jol’
0 oM, ) Wy J@.

Lecture 2 24
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2
0)2 a)z :N—q

plasma
frequency

Z(a)) = 2 3 gOme

q=1.60217646x10"" C
&, =8.8541878176x10™"> F/m
m, =9.10938188x10~" kg

* Note this is the susceptibility of a dielectric which has only one resonance.

*The location of atoms is important because they can influence each other. We ignored
this.

* Real materials have many sources of resonance and all of these must be added together.

Lecture 2 25

The Dielectric Function

Recall that,
D=¢géE=gE+P=¢E+e,yE=¢,(1+y)E
Therefore,
g )= 1 + [0 The ~ symbol indicates the quantity is complex
(@)=1+ (o)
vacuum material

The dielectric function for a material with a single
resonance is then,

2 2
@ N
~ 2
£ (0)=1+—5—"— = ) = q
Wy, —W" — jo Eym,
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2 =

2. We performed a Fourier transform to solve this equation for r.

o)t

? — jor
3. We calculated the electric dipole moment of the charge displaced by r.
R -
o ¢ E(o)
ﬂ(a))_i 2

m, @, - - jol

4. We calculated the volume averaged dipole moment to derive the material polarization.
(o) =+3 £ (0) = N{a(w))

5. We calculated the material susceptibility.

2 2 2
1) Ng @,
7 2
I e & (0)=1+— 2
o, - — jol g,m r 2 2 .
o JOL ol @, — @ — joI
6. We calculated the dielectric function.
Lecture 2 27

SFHoi=0

Real and Imaginary Parts of ¢

2 2
~ w Ne
¢ (0)=1+—5—L— o) = g
wy —w" — joI' &,m,
Split into real and imaginary parts
@’ (a)[f —w2)+ja)1“
3 =& (w)+je(w)=1+ L
g'(w) K (a)) Jgr(a)) (a)g —a)z)—ja)F (a)[f —a)z)f/'a)l"

v ((02)5 —a)z)z)+ja2)l"2
o} -&") +o’T

2 2
2 wy — @ 2 ol

2 2
R e Lt i
-
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Complex Refractive Index 7

Refractive is like a “density” to an electromagnetic wave. It quantifies the speed of an
electromagnetic wave through a material. Waves travel slower through materials with
higher refractive index.

i=n+jx=t 0 =+ 1+ 2,)(1+2.)

For now, we will ignore the magnetic response.

- . — n = ordinary refractive index
n=n+ ] K= i\/ ‘C"r K = extinction coefficient
Converting between dielectric function and refractive index.
A€
n+ jk=xt/e + je! & =n? — i
. \2 At " !
(n+jx) =&+ je g"=2nk

n + jnk+ jnk—k* =& + je!

"

(n2 —K2)+j2}’lK =&+ je!
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Absorption Coefficient (1 of 2

From Maxwell’s equations, a plane wave in a linear, homogeneous, isotropic

(LHI) medium as...
The wave number is

E(z)=Ee” k= ki kozi—ﬂ

0

Substituting the complex refractive index into this equation leads to...

E (Z) _ Eoejko("+jK)Z — Eoe—ko’fzejko"z

\ Oscillatory term
envelope term

The absorption coefficient «is defined in terms of the field intensity.
-z
I(z)=1,e

30

Lecture 2
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Absorption Coefficient (2 of 2) =0

The field intensity is related to the field amplitude through

1(z)=|E()|

Substituting expressions from the previous slide, the absorption coefficient
can be calculated from x

2
1(z)=|E(2)
- . 2
I e—az — E e—kozczejkonz 2a)
’ ’ a=2kx=—x
-az = |2 —2kykz C
le ::E%‘e ° 0
efaz — 6_2k0KZ
a=2kx
Lecture 2 31
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Reflectance (normal incidence)

incident reflected
air

material
transmitted

The amplitude reflection coefficient » quantifies the amplitude and phase of reflected

= _1-n(0)- jx(o)
r(w)_1+n(w)+jk(w)

Loss contributes to reflections!

The power reflection coefficient (reflectance) is always positive and between 0 and 1

(for materials without gain). 5
D—n(mﬂ +ix’ (o)

R(w):’(aﬁr*av):[1+n(a0]2+Kg(w)

Lecture 2 32
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Kramers-Kroenig Relations (1 of 3)

The susceptibility is essentially the impulse response of a material to an applied electric
field.

0

E(t) = &x(t) = P(t) 13(’)=50J.E(T))(e(t—r)dr

13(50) = 80;((60)57(0))

Causality requires that y(¢=0)=P(¢=0)=0

From linear system theory, if (¢) is a causal, than the real and imaginary parts of its
Fourier transform are Hilbert transform pairs.

A . -Q
1(0)=7 (0)+jx"(0) —— e
1 o0 ! Q
¥(@)=—[% ie

This means that y’ and " are not independent. 7, 0=Q

If we can measure one, we can calculate the other.

But how do we measure at negative frequencies?

Lecture 2 33
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Kramers-Kroenig Relations (2 of 3)

From Fourier theory, if y(¢) is purely real then

7' (@) is an even function

2" (®) is an odd function

Applying this symmetry principle to the relations on the previous page leads to

These equations can be applied to measurements taken over just positive frequencies.

Lecture 2 34
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Kramers-Kroenig Relations (3 of 3)

For dilute media with weak susceptibility ( and /’ are small), the complex refractive
index can be approximated from the susceptibility as...

4

ﬁ=\/1+;(=\/1+;('+j;(” zl+%+j)(7

Comparing the real and imaginary components of 77 and y leads to the Kramers-Kroenig
relations for the refractive index and absorption coefficient.

n(w)= 1+C—OT%dQ

For dilute media

Lecture 2 35

Dielectric Function

* The dielectric function is most fundamental to Maxwell’s equations.

* Imaginary part only exists if there is loss. When there is loss, the real part contributes.
* Perhaps more difficult to extract physical meaning from the real and imaginary parts.

2 2
g (0)=1+w, T &(0)=w, @l

7

Refractive Index

* The refractive index is more closely related to wave propagation. It quantifies both
velocity and loss.

* Real part is solely related to phase velocity.

* Imaginary part is solely related to loss.

* In many ways, refractive index is a more physically meaningful parameter.

n=n+jk =ML, :i\/(lﬂfm)(l”(@)

Lecture 2 36
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Typical Lorentz Model for

Dielectrics

17 K

Lecture 2
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Lecture 2

NaCl IN WATER
1

EXTINCTION
COEFFICIENT

LIS S B B B B BN B

INDEX OF
REFRACTION

WAVELENGTH  (microns)

T1c. 4. The optical constants in the infrared for IM——

3M—-—, and 5M

— — — aqueous solutions of NaCl. The KK

analysis and algorithm for computing these quantities are pre-
sented in the text along with estimates of the uncertainties of the

optical constants.

M. R. Querry, R. C. Waring, W. E. Holland, M. Hale, W. Nijm, “Optical Constants in the Infrared for Aqueous Solutions of
NaCl,” J. Opt. Soc. Am. 62(7), 849-855 (1972)

38
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TART Sr=
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Lecture 2 The TART regions are most distinct for small I" and large w, 39

T T T

— Re[g]

- = =Ime]

Anomalous and negative dispersion

ve dispersio?

poS'\ﬂ

Complex dielectric function &

Frequency @ 20

Lecture 2
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Observation #1 o=y

Loss is very high near resonance.

o

Lecture 2 41

Observation #2 o=y

Damping rate determines width of resonance.

Lecture 2 42
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Observation #3

N B O ®

(=]

Lecture 2 43

Observation #4

Material has no response at frequencies far above
resonance.

100 T L T T T T 10t
"
\
14 & ”
0 M50
g e ]
] . N\
! OOO 1 2 3 4 5 6;)

Materials, including metals, tend to become transparent at very high frequencies (e.g. x-rays).

Lecture 2 44
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Observation #5

100, T T T T T 10t
_g'
:

c N
0 — ")
& °f 0 &,

_1 1 1 L 1 1
000 1 2 3 4 5 6
@

At frequencies well below the resonance, we can replace the Lorentz equation with
just a simple constant.

Lecture 2
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Observation #6

Dielectric constant can be negative
and/or less than one.

100, T T T T T 10¢
&
r
/ A €' n
E o — — Us0 &
7 \ r
-1 L L 1 L i 0
000 1 2 3 4 5 6
[

Lecture 2
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Observation #7 o=y

Refractive index can be less than one.

Lorentz Model
for Permeability

24



Magnetic Response of Ordinary SEmi=o

\EICRELS

Magnetic Dipole

Electron @

Equilibrium State Polarized State _
B
Q o ¥,
° ° o o o
- Q
[+ [+ ] : -
Lecture 2 Slide 49

SFHoi=0

> ®,,, = magnetic plasma frequency
~ =1 mp ]
H, (a)) =1+ 2 _ il o,,, = magnetic resonant frequency
a)mO -0 = .] @ m

I',, = magnetic damping rate

Boardman, Allan D., and Kiril Marinov, "Electromagnetic energy in a dispersive metamaterial," Phys. Rev. B, Vol. 73, No.16, pp. 165110,
2006.

Re[x,]<0

Relative permeability, «,

20 30 40
Frequency (THz)
Lecture 2 50
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Drude Model
for Metals

Drude Model for Metals

In metals, most electrons are free because they are not bound to a nucleus.
For this reason, the restoring force is negligible and there is no natural

frequency.

We derive the Drude model for metals by assuming ®,=0.

2

~

@
%(w)zy+><—a;—jwf Cr e.m
0" %e

2
0

@ + jol

& (0)=1-— 20

Lecture 2

2:Nq2

Note, N is now interpreted as
electron density N,.

m, is the effective mass of the
electron.

52
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Conductivity (1 of 2)

When describing metals, it is often more meaningful to put the equation in
terms of the “mean collision rate” 7. This is also called the momentum
scattering time.

@° 1
&, (a)) P +ja)r_1 T r

This can be written in terms of the real and imaginary components.

2 2 2
. i ,T . a)pr/a)
& =|1-—2— |+ j| 24—
’ 1+ w’t’ 1+ w’t’
Lecture 2 53

Conductivity (2 of 2)

In practice, metals are usually described in terms of a real-valued permittivity
and a conductivity. These can be defined from above using Ampere’s circuit
law.

Ampere's Law with & Ampere's Law with &, and o

VxH = jwe,é E VxH =0k + joe,e E
Comparing the two sets of Maxwell’s equations leads to

_ I ~ ) -
VxH = joe,é E=0E+ jog,s, E =g —j—
we,

Substituting the Drude equation into this result leads to expressions for the
conductivity and the real-valued permittivity.

2.2
1 a)pr o, )
g, = oc=—-—— 0, = &§0,T

1+ 0’7’

o, = DC conductivity

Lecture 2 54
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Lecture 2

Complex dielectric function

- Re[c

2
()P

e(w)=1-

@ + jol'| 1

Rc[s(oo)} = 1\

(02
1
(0)]=1+ o

V /

Im [k (ooﬂ e 0/‘

Re[e] T
1 1 1 1 | 1 1 1

S o~ !

S BT ;
) %\ 32 o,
2l § (n+]K) =l-—" 4
= K((u) ®° + joI’

> AN
= 3,
(S} N
® bk
=
o

x
oL
S
£
S
O

0

Frequency o

55

Observation #1

Lecture 2

At very high frequencies above the plasma frequency,

loss vanishes and metals become transparent!
Note: more accurately stated as weakly absorbing

Complex refractive index n
T T T

N !
\\ x(O):so ' . >
\ () =12 |
‘1‘”(“) o+ joI'
n(oo):l
7;(30):0\/

Frequency o

This is why we use x-rays to image through things.

56
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Observation #2

The plasma frequency for typical metals lies in the
ultra-violet.
Metal Symbol Plasma Wavelength Plasma Frequency
Aluminum Al 82.78 nm 3624 THz
Chromium Cr 115.35 nm 2601 THz
Copper Cu 114.50 nm 2620 THz
Gold Au 137.32 nm 2185 THz
Nickel Ni 77.89 nm 3852 THz
Silver Ag 137.62 nm 2180 THz
Lecture 2 57

Observation #3

Below the plasma frequency, the dielectric constant is
mostly imaginary and metals behave like good
conductors.

Complex dielectric function &

Lecture 2 58
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Observation #4

!

Near the plasma frequency, both the real and
imaginary parts of permittivity are significant and
metals are very lossy.

w T

g :‘\\Im[g(()ﬂ = ] o

S AN i g((u):l— —=

§ \\\ E o + jol' | 1
g 2 \\\l-rzl._&:] ] Re[c(co)] B 1\
| T S ——— : =
o 0 ]

k=] / 1 Im [F(Cﬁ)} =0
é | [ ] Re[x((ooﬂ =1 ]

S Re|e ' 4
=4 1

g :

&) 1 1 1 1 i 1 1 1 1

This is a big problem for optics and currently the #1 limitation for optical metamaterials.
Lecture 2 59

Low Frequency Properties of SEoi=0

Metals

Most applications use frequencies well below ultraviolet so
the behavior in this region is of particular interest.

For very low frequencies, vl », the Drude model
T
reduces to...

12

1

g}"
w o =0,

12

The complex refractive index is then

i=(1+j) ;-—C‘z) —  a(o) 2

Lecture 2 60
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Skin Depth (at Low Frequencies

Now that we know the complex refractive index, we can see
how quickly a wave will attenuate due to the loss.

Skin depth is defined as the distance a wave travels where its
amplitude decays by 1/e from this starting amplitude. This is
simply the reciprocal of the absorption coefficient.

1 2¢;
d = =~ 0
(@) a(w) o

We see that higher frequencies experience greater loss and
decay faster. For this reason, metallic structures are perform
better at lower frequencies.

Lecture 2 61
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Real Atoms

Real atoms have up to tens of electron levels so there are
many possibilities for electron resonances.

In addition, there are many sources of resonances other
than electron transitions. (Spectrometry)

Jauin

Lecture 2 63

Accounting for Multiple

Resonances

At a macroscopic level, all resonance mechanisms can be characterized
using the Lorentz model. This allows any number of resonances to be
accounted for through a simple summation.

N = Number of resonators

N . . h
2 Z i f; = Oscillator strength of the i resonator
2 @, , = Natural frequency of the i ™ resonator

T', = Damping rate of the i" resonator

Dielectric constant
almost always increasing Overall trend of
with frequency. decreasing dielectric
constant.

Lecture 2 64
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Frequency

\ J
Y

Suppose we are only interested in obtaining
&) within this span of frequencies.

In this frequency range, the high frequency resonances only contribute a
combined DC offset that we write as ().

It is not necessary to resolve their Lorentz shape in this case and so we account
for them solely through &(0).

Lecture 2 65

Generalized Lorentz-Drude

Model of Arbitrary Order

A very general equation for modeling complicated dielectrics and metals is the

following:
S /,
~ _ = 2 m
i (0)=¢ (=) +a)y ——T2—0
\ mzla)O,m_a) +]0) m
This is used to account for the offset produced by resonances
at frequencies higher than where you care about.

LORENTZ-DRUDE PARAMETERS (eV)

Parameter  Ag Au Cu Al Be Cr Ni Pd Pt Ti W
wp 9.070]_9.030] 10.830] 14.980] 18.510] 10.750] 15.920] 9.720] 9.590] 7.290] 13.220
0 0.845 0.760] 0.575] 0.523| 0.084[ 0.168| 0.096]0.330]0.333[ 0.148[ 0.206]
GO 0.048| 0.053| 0.030| 0.047| 0.035 0.047| 0.048|0.008|0.080| 0.082| 0.064
w0 0 0 0 0 0 0 o o o 0 o < i i
i 0.065| 0.024] 0.061| 0.227| 0.031| 0.151| 0.100| 0.649]0.191| 0.899 0.054 The first resonance is
G1 3.886| 0.241 0.378| 0.333| 1.664| 3.175| 4.511|2.950|0.517| 2.276] 0.530
wi 0.816] 0.415| 0.291] 0.162| 0.100| 0.121] 0.174[0.336|0.780| 0.777| 1.004 not actually a
2 0.124 0.010[ 0.104] 0.050 0.140[ 0.150| 0.135[0.121]0.659] 0.393| 0.166| resonance. Setting
G2 0.452| 0.345 1.056| 0.312| 3.395 1.305| 1.334|0.555|1.838| 2.518 1.281
w2 4.481| 0.830] 2.957] 1.544| 1.032| 0.543| 0.582|0.501[1.314] 1.545 1.917| a)o:O defaults to the
3 0.071| 0.071[ 0.723[ 0.166] 0.530| 1.149| 0.106| 0.638[0.547[ 0.187 0.706
G3 0.065| 0.870| 3.213| 1.351| 4.454| 2.676| 2.178|4.621|3.668| 1.663| 3.332 Drude model.
w3 8.185| 2.969| 5300] 1.808| 3.183| 1.970| 1.597)1.659|3.141) 2.509| 3.580
Iz 0.840[ 0.601[ 0.638] 0.030] 0.130] 0.825] 0.729]0.453[3.576] 0.001[ 2.590]
G4 0.916| 2.494[ 4.305| 3.382| 1.802| 1.335| 6.292|3.236|8.517| 1.762| 5.836
w4 9.083| 4.304|11.180| 3.473| 4.604| 8.775| 6.0895.715|9.249] 19.430| 7.498)
5 5.646| 4.384
G5 2.419| 2214
w5 |20.290] 13.320

|Wimn] 0-130] 0.080] 0100] 0.033] 1.350] 0.310] 0.860]0.720[0.730] 0.760] 0.490]

Lecture 2
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Isolated Absorbers in a

Transparent Host

The overall material polarization is a superposition of the host and the absorber.

Rotal = })host + }storber
The overall dielectric function is then
2
wp

gr:1+;(host+ 2 2 .
@, — @ — jol'

At very high frequencies relative to the absorber, this becomes

ér (OO) = 1 + Zhost

At very low frequencies relative to the 0)2
absorber, this becomes e (()) - (oo) = —‘2’
r r
a); / 600
gr (O) = gr (OO) + 2 This provides a neat way to
23 measure the plasma frequency.
Lecture 2 67

Other Material
Models

9/19/2016
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Cole-Cole Models

Cole-Cole models are physics-based compact representations of
wideband frequency-dependent dielectric properties or polymers
and organic materials.

~ _ o Ag e, 21 a~0.1
E(w)=g +——t——
Jog, 1+ (th)Z')
\ J J
Y Y >
DC or average Dispersive Ag - 0
response response >0

ais an empirical parameter that accounts for the observed broad
distribution of relaxation time constants.

K. S. Cole, R. H. Cole, “Dispersion and Absorption in Dielectrics L.
Alternating Current Characteristics,” J. of Chem. Phys. 9, 341 (1941).
Lecture 2 69

Cauchy Equation

This is an empirical relationship between refractive index and
wavelength for transparent media at optical frequencies.

cC D
n(ﬂo)=B+7§+T:+~--

A, = free space wavelength in micrometers (um)

B, C, D, etc. are called Cauchy coefficients.

For most materials, only B and C are needed. m_m

C Fused silica 1.4580 0.00354
n (ﬂfo ) =B+ /12 Borosilicate glass BK7 1.5046 0.00420
0 Hard crown glass K5 1.5220 0.00459

Barium crown glass Bak4  1.5690 0.00531
Barium flint glass BaF10 1.6700 0.00743

Dense flint glass SF10 1.7280 0.01342
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Sellmeier Equation

This is an empirical relationship between refractive index and
wavelength for transparent media at optical frequencies.

Crown Glass (BK7)
BA; B = BA
: | value |
n*(4,) =1+ + 522+ 20 | coeficient |
ﬂo - Cl 2’0 - CZ ﬂo - C3 By 1.03961212
B, 0.231792344
A, = free space wavelength in micrometers (um) 5, 101046945
C, 6.00069867x1073
B,, B,, By, C,, C,, and C; are called Sellmeier coefficients. G 2.00179144x10°2
G 1.03560653%102

Each term represents the contribution of a different resonance to
refractive index. B, is the strength of the resonance while \/C,- is the
wavelength of the resonance in micrometers.

The Sellmeier exists in other forms to account for additional physics.

BA2 There are other forms that
n’ (/10) =A+ 22’—0 A= ni account for temperature,
i /10 - Ci pressure, and other parameters.
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