

Lecture Outline

• High level picture of dielectric response

BITTE

- Resonance
- Lorentz model for dielectrics
- Lorentz model for permeability
- Drude model for metals
- Generalizations
- Other materials models

High Level Picture of Dielectric Response

Lorentz Model for Dielectrics

Susceptibility (1 of 2)

Recall the following:

$$\vec{P}(\omega) = N \langle \vec{\mu}(\omega) \rangle = \varepsilon_0 \chi(\omega) \vec{E}(\omega)$$
$$\vec{\mu}(\omega) = \alpha(\omega) \vec{E}(\omega)$$
$$\alpha(\omega) = \frac{q^2}{m_e} \frac{1}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$
This leads to an expression for the susceptibility:
$$\gamma(\omega) = \frac{N\alpha(\omega)}{\omega_0} = \left(\frac{Nq^2}{\omega_0}\right) - \frac{1}{\omega_0}$$

ame

rdinary refractive index

Complex Refractive Index \tilde{n}

Refractive is like a "density" to an electromagnetic wave. It quantifies the speed of an electromagnetic wave through a material. Waves travel slower through materials with higher refractive index.

$$\tilde{n} = n + j\kappa = \pm \sqrt{\tilde{\mu}_r \tilde{\varepsilon}_r} = \pm \sqrt{\left(1 + \chi_m\right)\left(1 + \chi_e\right)}$$

For now, we will ignore the magnetic response.

$$\tilde{n} = n + j\kappa = \pm \sqrt{\tilde{\mathcal{E}}_r}$$
 $n \equiv \text{ ordinary refractive inc
 $\kappa \equiv \text{ extinction coefficient}$$

Converting between dielectric function and refractive index.

Lecture 2

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><equation-block><section-header><equation-block>

18

Drude Model for Metals

Drude Model for Metals

In metals, most electrons are free because they are not bound to a nucleus. For this reason, the restoring force is negligible and there is no natural frequency.

Eme

We derive the Drude model for metals by assuming ω_0 =0.

$$\tilde{\varepsilon}_{r}(\omega) = 1 + \frac{\omega_{p}^{2}}{\omega^{2} - \omega^{2} - j\omega\Gamma} \qquad \omega_{p}^{2} = \frac{Nq^{2}}{\varepsilon_{0}m_{e}}$$

$$\tilde{\varepsilon}_{r}(\omega) = 1 - \frac{\omega_{p}^{2}}{\omega^{2} + j\omega\Gamma} \qquad \text{Note, } N \text{ is now interpreted as electron density } N_{e}.$$

$$m_{e} \text{ is the effective mass of the electron.}$$

Conductivity (1 of 2) emr When describing metals, it is often more meaningful to put the equation in terms of the "mean collision rate" τ . This is also called the momentum scattering time. $\tilde{\varepsilon}_r(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + j\omega\tau^{-1}}$ $\tau = \frac{1}{\Gamma}$ This can be written in terms of the real and imaginary components. $\tilde{\varepsilon}_{r} = \left(1 - \frac{\omega_{p}^{2} \tau^{2}}{1 + \omega^{2} \tau^{2}}\right) + j \left(\frac{\omega_{p}^{2} \tau / \omega}{1 + \omega^{2} \tau^{2}}\right)$ 53 Lecture 2

Conductivity (2 of 2)

Lecture 2

In practice, metals are usually described in terms of a real-valued permittivity and a conductivity. These can be defined from above using Ampere's circuit law.

Ampere's Law with $\tilde{\varepsilon}_r$	
$\nabla \times \vec{H} = j\omega \varepsilon_0 \tilde{\varepsilon}_r \vec{E}$	

Ampere's Law with
$$\varepsilon_r$$
 and σ
 $\nabla \times \vec{H} = \sigma \vec{E} + i\omega \varepsilon_r \varepsilon \vec{E}$

 σ

54

Comparing the two sets of Maxwell's equations leads to

$$\nabla \times \vec{H} = j\omega\varepsilon_0 \tilde{\varepsilon}_r \vec{E} = \sigma \vec{E} + j\omega\varepsilon_0 \varepsilon_r \vec{E} \qquad \qquad \tilde{\varepsilon}_r = \varepsilon_r - j\frac{\sigma}{\omega\varepsilon_0}$$

Substituting the Drude equation into this result leads to expressions for the conductivity and the real-valued permittivity.

$$\varepsilon_r = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2} \qquad \sigma = \frac{\sigma_0}{1 + \omega^2 \tau^2} \qquad \sigma_0 = \varepsilon_0 \omega_p^2 \tau$$
$$\sigma_0 = \text{DC conductivity}$$

Obse	ervatio	n #2					anti			
The plasma frequency for typical metals lies in the ultra-violet.										
	Metal	Symbol	Plasma Wa	avelength	Plasma Frequency		1			
	Aluminum	Al	82.78	•	3624		-			
	Chromium	Cr	115.35	nm	2601	THz				
	Copper	Cu	114.50	nm	2620	THz	1			
	Gold	Au	137.32	nm	2185	THz				
	Nickel	Ni	77.89	nm	3852	THz				
	Silver	Ag	137.62	nm	2180	THz				
Lecture 2							57			

Low Frequency Properties of Metals

Most applications use frequencies well below ultraviolet so the behavior in this region is of particular interest.

For very low frequencies, $\omega \ll \frac{1}{\tau} \ll \omega_p$ the Drude model reduces to...

$$\tilde{\varepsilon}_r \cong 1 + j \frac{\sigma_0}{\omega} \qquad \varepsilon_r \cong 1 \\ \sigma \cong \sigma_0$$

The complex refractive index is then

$$\tilde{n} \cong (1+j)\sqrt{\frac{\sigma_0}{2\omega}} \longrightarrow \alpha(\omega) \cong \sqrt{\frac{\sigma_0\omega}{2c_0^2}}$$

61

Skin Depth (at Low Frequencies)

Now that we know the complex refractive index, we can see how quickly a wave will attenuate due to the loss.

Skin depth is defined as the distance a wave travels where its amplitude decays by 1/e from this starting amplitude. This is simply the reciprocal of the absorption coefficient.

$$d(\omega) = \frac{1}{\alpha(\omega)} \cong \sqrt{\frac{2c_0^2}{\sigma_0 \omega}}$$

Lecture 2

We see that higher frequencies experience greater loss and decay faster. For this reason, metallic structures are perform better at lower frequencies.

Accounting for Multiple Resonances

At a macroscopic level, all resonance mechanisms can be characterized using the Lorentz model. This allows any number of resonances to be accounted for through a simple summation.

BIIIE

ane

The overall material polarization is a superposition of the host and the absorber.

$$\vec{P}_{\text{total}} = \vec{P}_{\text{host}} + \vec{P}_{\text{absorber}}$$

The overall dielectric function is then

$$\tilde{\varepsilon}_r = 1 + \chi_{\text{host}} + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - j\omega\Gamma}$$

At very high frequencies relative to the absorber, this becomes

$$\tilde{\varepsilon}_r(\infty) = 1 + \chi_{\text{host}}$$

At very low frequencies relative to the absorber this becomes

At very low frequencies relative to the absorber, this becomes

$$\tilde{\varepsilon}_r(0) = \tilde{\varepsilon}_r(\infty) + \frac{\omega_p^2}{\omega_0^2}$$
This provides a neat way to measure the plasma frequency.
Lecture 2
$$\int_{r} \tilde{\varepsilon}_r(0) - \tilde{\varepsilon}_r(\infty) = \frac{\omega_p^2}{\omega_0^2}$$
This provides a neat way to measure the plasma frequency.

Cauchy Equation			AN	đ					
This is an empirical relationship between refractive index and wavelength for transparent media at optical frequencies. $n(\lambda_0) = B + \frac{C}{\lambda_0^2} + \frac{D}{\lambda_0^4} + \cdots$ $\lambda_0 \equiv \text{free space wavelength in micrometers (µm)}$ $B, C, D, \text{ etc. are called Cauchy coefficients.}$									
For most materials, only B and C are needed.	Material	в	C (μm²)						
C	Fused silica	1.4580	0.00354						
$n(\lambda_0) = B + \frac{C}{\lambda_2^2}$	Borosilicate glass BK7	1.5046	0.00420						
λ_0	Hard crown glass K5	1.5220	0.00459						
	Barium crown glass BaK4	1.5690	0.00531						
	Barium flint glass BaF10	1.6700	0.00743						
	Dense flint glass SF10	1.7280	0.01342						
Lecture 2				70					

