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Preface

Modeling and simulation are powerful tools for explaining the world, making predictions, de-
signing things that work, and making them work better. Learning to use these tools can
be difficult; this book is my attempt to make the experience as enjoyable and productive as
possible.

By reading this book—and working on the exercises—you will learn some programming, some
modeling, and some simulation. With basic programming skills, you can create models for a
wide range of physical systems. My goal is to help you develop these skills in a way you can
apply immediately to real-world problems.

This book presents the entire modeling process, including model selection, analysis, simulation,
and validation. I explain this process in Chapter 1, and there are examples throughout the
book.

0.1 Who This Book Is For

To make this book accessible to the widest possible audience, I’ve tried to minimize the pre-
requisites.

This book is intended for people who have never programmed before. I start from the beginning,
define new terms when they are introduced, and present only the features you need, when you
need them.

I assume that you know trigonometry and some calculus, but not very much. If you understand
that a derivative represents a rate of change, that’s enough. You will learn about differential
equations and some linear algebra, but I will explain what you need to know as we go along.

I will assume you know basic physics, in particular the concepts of force, acceleration, velocity,
and position. If you know Newton’s second law of motion in the form F = ma, that’s enough.
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0.2 Overview

Here’s what you will find in this book:

Chapter 1: Modeling and Simulation Presents the modeling framework we’ll use in this
book, introduces the MATLAB and Octave programming languages, and helps you debug
some of the errors you are likely to make while you are getting started

Chapter 2: Scripts Introduces scripts, which are files that contain MATLAB/Octave code.
It also presents variables, values, and the assignment statement

Chapter 3: Loops Presents the for loop, sequences, series, plotting, and a way of writing
programs called incremental development

Chapter 4: Vectors Introduces vectors, which provide a way to store a sequence of values.
And it presents common vector operators including reduce and apply

Chapter 5: Functions Discusses name collisions and an important tool for avoiding them:
functions. It also explains input variables and function calls

Chapter 6: Conditionals Presents conditional statements, which check for conditions and
determine the behavior of programs. And it introduces a program development process
called encapsulation and generalization

Chapter 7: Zero-Finding Introduces fzero, which is a MATLAB function that finds the
zeros, or roots, of nonlinear equations. It also presents some tips that might help you
with debugging

Chapter 8: Functions of Vectors Combines two topics from previous chapters: vectors
and functions. It presents functions that take vectors as input variables and return them
as output variables. And it introduces logical vectors, which contain a sequence of true
and false values.

Chapter 9: Ordinary Differential Equations Introduces the most important idea in the
book, differential equations, and two ways to solve them, Euler’s method and a MATLAB
function called ode45

Chapter 10: Systems of ODEs Uses a system of differential equations to simulate the in-
teractions of predator and prey species and presents several ways to plot the results

Chapter 11: Second-Order Systems Describes Newtonian motion using a second-order
differential equation and uses ode45 to simulate falling objects with and without air
resistance
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Chapter 12: Two Dimensions Extends the methods from the previous chapter to simulate
projectiles like baseballs. It introduces spatial vectors as a way to represent quantities
with two and three dimensions

Chapter 13: Optimization Introduces fminsearch, which is a MATLAB function that
searches for the maximum or minimum of a function

Chapter 14: Springs and Things Adds new forces to the toolkit, including spring forces
and universal gravitation. It uses them to simulate the orbit of the Earth around the
Sun

Chapter 15: Under the Hood Reviews some of the MATLAB functions we’ve used—
fzero, ode45, and fminsearch—and explains more about how they work

I hope you enjoy the book and find it valuable.

0.3 Installing Software

This book is based on MATLAB, a programming language originally developed at the Univer-
sity of New Mexico and now produced by MathWorks, Inc.

MATLAB is a high-level language with features that make it well-suited for modeling and
simulation, and it comes with a program development environment that makes it well-suited
for beginners.

However, one challenge for beginners is that MATLAB uses vectors and matrices for almost
everything, which can make it hard to get started. The organization of this book is meant to
help: we start with simple numerical computations, adding vectors in Chapter 4 and matrices
in Chapter 10.

Another drawback of MATLAB is that it is “proprietary”; that is, it belongs to MathWorks,
and you can only use it with a license, which can be expensive.

Fortunately, the GNU Project has developed a free, open-source alternative called Octave (see
https://www.gnu.org/software/octave).

Most programs written in MATLAB can run in Octave without modification, and the other
way around. All programs in this book have been tested with Octave, so if you don’t have
access to MATLAB, you should be able to work with Octave. The biggest difference you are
likely to see is in the error messages.

To install and run MATLAB, see https://greenteapress.com/matlab/matlab.

https://www.gnu.org/software/octave
https://greenteapress.com/matlab/matlab
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The first time you run it, a start window should appear to guide you through some configura-
tion.

To install Octave, I recommend that you use Anaconda, which is a package management system
that makes it easy to work with Octave and supporting software.

Anaconda installs everything at the user level, so you can install it without admin or root
permissions. Follow the instructions for your operating system at https://greenteapress.
com/matlab/anaconda.

Once you have Anaconda, you can install Octave by launching the Jupyter Prompt (on Win-
dows) or a Terminal (on Mac OS or Linux), typing the following, and pressing enter:

conda install -c conda-forge octave

Then you can launch it by typing:

octave

and pressing enter.

0.4 Working with the Code

The code for each chapter in this book is in a ZIP file you can download from https:
//greenteapress.com/matlab/zip. Once you have the ZIP file, you can unzip it on the
command line by running

unzip PhysicalModelingInMatlab.zip

In Windows you can right-click on the ZIP file and select Extract All.

The result should be a folder called PhysicalModelingInMatlab that contains subfolders that
contain files containing MATLAB code. They are plain text files, so you can read them with
any application that reads text, but most often you will read them with MATLAB.

I’ll provide more information about working with these files when we get to them, but that
should be enough to get you started.

https://greenteapress.com/matlab/anaconda
https://greenteapress.com/matlab/anaconda
https://greenteapress.com/matlab/zip
https://greenteapress.com/matlab/zip
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Chapter 1

Modeling and Simulation

This book is about modeling and simulating physical systems. Before we can build any models,
it’ll help to have a high-level understanding of what a model is. We’ll also need to familiarize
ourselves with the tools we use to build them. In this chapter, we’ll look at the modeling
process and introduce MATLAB, the programming language we’ll use to represent models
and run simulations. At the end of the chapter you’ll find exercises you can use to test your
knowledge.

1.1 Modeling

When I say “modeling,” I’m talking about something like Figure 1.1. In the lower-left corner of
the figure is the system, something in the real world we’re interested in. Often, it’s something
complicated, so we have to decide which details can be left out; removing details is called
abstraction.

The result of abstraction is a model, shown in the upper left; a model is a description of the
system that includes only the features we think are essential. A model can be represented in
the form of diagrams and equations, which can be used for mathematical analysis. It can also
be implemented in the form of a computer program, which can run simulations.

The result of analysis and simulation might be a prediction about what the system will do,
an explanation of why it behaves the way it does, or a specific design engineered to satisfy a
requirement or optimize performance.

We can validate predictions and test designs by taking measurements from the real world and
comparing the data we get with the results from analysis and simulation.
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Figure 1.1: The modeling process

For any physical system there are many possible models, each one including and excluding
different features or including different levels of detail. The goal of the modeling process is to
find the model best suited to its purpose (prediction, explanation, or design).

Sometimes the best model is the most detailed. If we include more features, the model is more
realistic, and we expect its predictions to be more accurate. But often a simpler model is
better. If we include only the essential features and leave out the rest, we get models that are
easier to work with, and the explanations they provide can be clearer and more compelling.

As an example, suppose someone asked you why the orbit of the Earth is nearly elliptical.
If you model the Earth and Sun as point masses (ignoring their actual size), compute the
gravitational force between them using Newton’s law of universal gravitation, and compute
the resulting orbit using Newton’s laws of motion, you can show that the result is an ellipse.

Of course, the actual orbit of Earth is not a perfect ellipse, because of the gravitational forces
of the Moon, Jupiter, and other objects in the solar system, and because Newton’s laws of
motion are only approximately true (they don’t take into account relativistic effects).

But adding these features to the model would not improve the explanation; more detail would
only be a distraction from the fundamental cause. However, if the goal is to predict the position
of the Earth with great precision, including more details might be necessary.

Choosing the best model depends on what the model is for. It is usually a good idea to start
with a simple model, even if it’s likely to be too simple, and test whether it’s good enough
for its purpose. Then you can add features gradually, starting with the ones you expect to be
most essential. This process is called iterative modeling.

Comparing the results of successive models provides a form of internal validation so you can
catch conceptual, mathematical, and software errors. And by adding and removing features,



1.2 A Glorified Calculator 3

you can tell which ones have the biggest effect on the results, and which can be ignored.
Comparing results with data from the real world provides external validation, which is generally
the strongest test.

Figure 1.1 shows that models can be used for both analysis and simulation; in this book we will
do some analysis, but the focus is on simulation. And the tool we will use to build simulations
is MATLAB. So let’s get started.

1.2 A Glorified Calculator

MATLAB is a programming language with features that support modeling and simulation.
It has a lot of features, so it can seem overwhelming, but at heart MATLAB is a glorified
calculator. When you start MATLAB you should see a window entitled MATLAB that contains
smaller windows entitled Current Folder, Command Window, and Workspace. In Octave,
Current Folder is called File Browser.

1.2.1 The Interpreter

The Command Window runs the interpreter, which allows you to enter commands; once en-
tered, the interpreter executes the command and prints the result. Initially, the Command
Window contains a welcome message with information about the version of the software you’re
running, followed by a prompt, which looks like this:

>>

The >> symbol prompts you to enter a command. The simplest kind of command is a math-
ematical expression, like 2 + 1. If you type an expression and then press enter (or return),
MATLAB evaluates the expression and prints the result.

>> 2 + 1
ans = 3

Just to be clear: in this example, MATLAB displayed >>; I typed 2 + 1 and then hit enter,
and MATLAB displayed ans = 3.

In this expression, the plus sign is an operator and the numbers 2 and 1 are operands. An
expression can contain any number of operators and operands. You don’t have to put spaces
between them; some people do and some people don’t. Here’s an example with no spaces:
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>> 1+2+3+4+5+6+7+8+9
ans = 45

Speaking of spaces, you might have noticed that MATLAB puts a blank line between ans =
and the result. In my examples I’ll leave it out to save room.

The other arithmetic operators are pretty much what you would expect. Subtraction is denoted
by a minus sign (-), multiplication is designated by an asterisk (*), division is denoted by a
forward slash (/).

>> 2*3 - 4/5
ans = 5.2000

Another common operator is exponentiation, which uses the ^ symbol, sometimes called “caret”
or “hat.” So, 2 raised to the 16th power is

>> 2^16
ans = 65536

The order of operations is what you would expect from basic algebra: exponentiation happens
before multiplication and division, and multiplication and division happen before addition and
subtraction. If you want to override the order of operations, you can use parentheses.

>> 2 * (3-4) / 5
ans = -0.4000

When I added the parentheses, I removed some spaces to make the grouping of operands clearer
to a human reader. This is the first of many style guidelines I will recommend for making your
programs easier to read. Style doesn’t change what the program does; the MATLAB interpreter
doesn’t check for style. But human readers do, and the most important human who will read
your code is you.

And that brings us to the First Theorem of Debugging:

Readable code is debuggable code.

It’s worth spending time to make your code pretty; it will save you time debugging!
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1.2.2 Math Functions

MATLAB knows how to compute pretty much every math function you’ve heard of. For
example, it knows all the trigonometric functions—here’s how you use them:

>> sin(1)
ans = 0.8415

This command is an example of a function call. The name of the function is sin, which is the
usual abbreviation for the trigonometric sine. The value in parentheses is called the argument.

The trig functions sin, cos, and tan—among many others—work in radians, so the argument
in the example is interpreted as 1 radian. MATLAB also provides trig functions that work in
degrees: sind, cosd, and tand.

Some functions take more than one argument, in which case the arguments are separated by
commas. For example, atan2 computes the inverse tangent, which is the angle in radians
between the positive x-axis and the point with the given x- and y-coordinates.

>> atan2(1,1)
ans = 0.7854

If that bit of trigonometry isn’t familiar to you, don’t worry about it. It’s just an example of
a function with multiple arguments.

MATLAB also provides exponential functions, like exp, which computes e raised to the given
power. So exp(1) is just e:

>> exp(1)
ans = 2.7183

The inverse of exp is log, which computes the logarithm base e:

>> log(exp(3))
ans = 3

This example also demonstrates that function calls can be nested ; that is, you can use the
result from one function as an argument for another.

More generally, you can use a function call as an operand in an expression.

>> sqrt(sin(0.5)^2 + cos(0.5)^2)
ans = 1
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As you probably guessed, sqrt computes the square root.

There are lots of other math functions, but this isn’t meant to be a reference manual. To learn
about other functions, you should read the documentation.

1.3 Variables

Of course, MATLAB is good for more than just evaluating expressions. One of the features
that makes MATLAB more powerful than a calculator is the ability to give a name to a value.
A named value is called a variable.

MATLAB comes with a few predefined variables. For example, the name pi refers to the
mathematical quantity π, which is approximately this:

>> pi
ans = 3.1416

And if you do anything with complex numbers, you might find it convenient that both i and
j are predefined as the square root of −1.

You can use a variable name anywhere you can use a number—for example, as an operand in
an expression,

>> pi * 3^2
ans = 28.2743

or as an argument to a function:

>> sin(pi/2)
ans = 1

Whenever you evaluate an expression, MATLAB assigns the result to a variable named ans.
You can use ans in a subsequent calculation as shorthand for “the value of the previous ex-
pression.”

>> 3^2 + 4^2
ans = 25

>> sqrt(ans)
ans = 5

But keep in mind that the value of ans changes every time you evaluate an expression.
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1.3.1 Assignment Statements

You can create your own variables, and give them values, with an assignment statement. The
assignment operator is the equals sign (=), used like so:

>> x = 6 * 7
x = 42

This example creates a new variable named x and assigns it the value of the expression 6 * 7.
MATLAB responds with the variable name and the computed value.

There are a few rules when assigning variables a value. In every assignment statement, the
left side has to be a legal variable name. The right side can be any expression, including
function calls. Almost any sequence of lower- and uppercase letters is a legal variable name.
Some punctuation is also legal, but the underscore (_) is the only commonly used non-letter.
Numbers are fine, but not at the beginning. Spaces are not allowed. Variable names are case
sensitive, so x and X are different variables.

Let’s look at some examples of assignment statements.

>> fibonacci0 = 1;

>> LENGTH = 10;

>> first_name = 'bob'
first_name = 'bob'

The first two examples demonstrate the use of the semicolon, which suppresses the output from
a command. In this case MATLAB creates the variables and assigns them values but displays
nothing.

The third example demonstrates that not everything in MATLAB is a number. A sequence of
characters in single quotes is a string.

Although i, j, and pi are predefined, you are free to reassign them. It’s common to use i and
j for other purposes, but it’s rare to assign a different value to pi.

1.3.2 Variables in the Workspace

When you create a new variable, it appears in the Workspace window and is added to the
workspace, which is a set of variables and their values.

The who command prints the names of the variables in the workspace:
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>> x = 5;
>> y = 7;
>> z = 9;
>> who

Your variables are:

x y z

The clear command removes specified variables from the workspace:

>> clear x
>> who

Your variables are:

y z

But be careful: if you don’t specify any variables, clear removes them all.

To display the value of a variable, you can use the disp function:

>> disp(z)
9

but it’s easier to just type the variable name:

>> z
z = 9

Now that you’ve seen how to use them, let’s take a step back and think about why we’d use
variables.

1.3.3 Why Variables?

There are a number of reasons to use variables. A big one is to avoid recomputing a value
you use repeatedly. For example, if your computation uses e frequently, you might want to
compute it once and save the result.

>> e = exp(1)
e = 2.7183
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Variables also make the connection between the code and the underlying mathematics more
apparent. If you’re computing the area of a circle, you might want to use a variable named r:

>> r = 3
r = 3

>> area = pi * r^2
area = 28.2743

That way, your code resembles the familiar formula a = πr2.

You might also use a variable to break a long computation into a sequence of steps. Suppose
you’re evaluating a big, hairy expression like this:

p = ((x - theta) * sqrt(2 * pi) * sigma)^-1 * ...
exp(-1/2 * (log(x - theta) - zeta)^2 / sigma^2)

You can use an ellipsis to break the expression into multiple lines. Just enter ... at the end
of the first line and continue on to the next. But often it’s better to break the computation
into a sequence of steps and assign intermediate results to variables:

shiftx = x - theta
denom = shiftx * sqrt(2 * pi) * sigma
temp = (log(shiftx) - zeta) / sigma
exponent = -1/2 * temp^2
p = exp(exponent) / denom

The names of the intermediate variables explain their role in the computation: shiftx is the
value of x shifted by theta, it should be no surprise that exponent is the argument of exp,
and denom ends up in the denominator. Choosing informative names makes the code easier to
read and understand, which makes it easier to debug.

1.4 Errors

Every error is a learning opportunity. Whenever you learn a new feature, you should try to
make as many errors as possible, as soon as possible. When you make deliberate errors, you
see what the error messages are. Later, when you make accidental errors, you’ll know what
the messages mean.

Let’s look at some common errors. A big one for beginners is leaving out the * for multiplica-
tion, as in this example:
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area = pi r^2

This code should produce the following error message:

area = pi r^2
|

Error: Invalid expression. Check for missing multiplication
operator, missing or unbalanced delimiters, or other syntax
error. To construct matrices, use brackets instead of parentheses.

The message indicates that the expression is invalid and suggests several things that might be
wrong. In this case, one of its guesses is right: we’re missing a multiplication operator.

Another common error is to leave out the parentheses around the arguments of a function. For
example, in math notation it’s common to write something like sinπ, but in MATLAB if you
write

sin pi

you should get the following error message:

Undefined function 'sin' for input arguments of type 'char'.

The problem is that when you leave out the parentheses, MATLAB treats the argument as a
string of characters (which have type 'char'). In this case the error message is helpful, but in
other cases the results can be baffling. For example, if you call abs, which computes absolute
values, and forget the parentheses, you get a surprising result:

>> abs pi
ans = 112 105

I won’t explain this result; for now, I’ll just suggest that you should always put parentheses
around arguments.

Here’s another common error. If you were translating the mathematical expression

1

2
√
π

into MATLAB, you might be tempted to write this:

1 / 2 * sqrt(pi)
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But that would be wrong because of the order of operations. Division and multiplication are
evaluated from left to right, so this expression would multiply 1/2 by sqrt(pi).

To keep sqrt(pi) in the denominator, you could use parentheses,

1 / (2 * sqrt(pi))

or make the division explicit,

1 / 2 / sqrt(pi)

The last two examples bring us to the Second Theorem of Debugging:

The only thing worse than getting an error message is not getting an error message.

Beginning programmers often hate error messages and do everything they can to make the
messages go away. Experienced programmers know that error messages are your friend. They
can be hard to understand, and even misleading, but it’s worth the effort to understand them.

1.5 Documentation

MATLAB comes with two forms of documentation, help and doc. The help command works
in the Command Window; just enter help followed by the name of a command.

>> help sin

You should see output like this:

sin Sine of argument in radians.
sin(X) is the sine of the elements of X.

See also asin, sind, sinpi.

Some documentation uses vocabulary we haven’t covered yet. For example,
the elements of X might not make sense until we get to vectors and matrices a few chapters
from now.

The doc pages are usually better. If you enter doc sin, a browser window appears with more
detailed information about the function, including examples of how to use it. The examples
often use vectors and matrices, so they may not make sense yet, but you can get a preview of
what’s coming.
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1.6 Chapter Review

This chapter provided an overview of the modeling process, including abstraction, analysis and
simulation, measurement, and validation.

It also introduced MATLAB, the programming language we’ll use to write simulations. So far,
we’ve seen variables and values, arithmetic operations, and mathematical functions.

Here are a few terms from this chapter you might want to remember.

The interpreter is the program that reads and executes MATLAB or Octave code. It prints a
prompt to indicate that it’s waiting for you to type a command, which is a line of code executed
by the interpreter.

An operator is a symbol, like * or +, that represents a mathematical operation. An operand
is a number or variable that appears in an expression along with operators. An expression is
a sequence of operands and operators that specifies a mathematical computation and yields a
value.

A function is a named computation; for example, log10 is the name of a function that computes
logarithms in base 10. A function call is a command that causes a function to execute and
compute a result. An argument is an expression that appears in a function call to specify the
value the function operates on.

A variable is a named value. An assignment statement is a command that creates a new
variable (if necessary) and gives it a value. A workspace is a set of variables and their values.

Finally, a string is a value that consists of a sequence of characters (as opposed to a number).

In the next chapter, you’ll start writing longer programs and learn about floating-point num-
bers.

1.7 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 1.1. You might have heard that a penny dropped from the top of the Empire State
Building would be going so fast when it hit the pavement that it would be embedded in the
concrete or that if it hit a person it would break their skull.
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We can test this myth by making and analyzing a model. To get started, we’ll assume that
the effect of air resistance is small. This will turn out to be a bad assumption, but bear with
me.

If air resistance is negligible, the primary force acting on the penny is gravity, which causes
the penny to accelerate downward.

If the initial velocity is 0, the velocity after t seconds is at, and the distance the penny has
dropped is

h = at2/2

Using algebra, we can solve for t:
t =

√
2h/a

Plugging in the acceleration of gravity, a = 9.8 m/s2, and the height of the Empire State
Building, h = 381 m, we get t = 8.8 s. Then, computing v = at we get a velocity on impact of
86 m/s, which is about 190 miles per hour. That sounds like it could hurt.

Use MATLAB to perform these computations, and check that you get the same result.

Exercise 1.2. The result in the previous exercise is not accurate because it ignores air re-
sistance. In reality, once the penny gets to about 18 m/s, the upward force of air resistance
equals the downward force of gravity, so the penny stops accelerating. After that, it doesn’t
matter how far the penny falls; it hits the sidewalk at about 18 m/s, much less than 86 m/s.

As an exercise, compute the time it takes for the penny to reach the sidewalk if we assume
that it accelerates with constant acceleration a = 9.8 m/s2 until it reaches terminal velocity,
then falls with constant velocity until it hits the sidewalk.

The result you get is not exact, but it’s a pretty good approximation.
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Chapter 2

Scripts

So far we’ve typed all of our programs “at the prompt.” If you’re only writing a few lines, this
isn’t so bad. But what if you’re writing a hundred? Retyping each line of code every time you
want to change or test your program will be time-consuming and tedious. Luckily, you don’t
have to. In this chapter, we’ll look at a way to run many lines at once: scripts.

2.1 Your First Script

A script is a file that contains MATLAB code. When you run a script, MATLAB executes the
commands in it, one after another, exactly as if you had typed them at the prompt. Scripts
are also sometimes called M-files because they use the extension .m, short for MATLAB.

You can create scripts with any text editor or word processor, but the simplest way is to click
the New Script button in the upper-left corner of the MATLAB interface, which opens a text
editor designed for MATLAB.

To try it out, create a new script and enter the following code:

x = 5

Then press the Save button. A dialog window should appear where you can choose the filename
and the folder where your script will go. Change the name to myscript.m and save it into any
folder you like.

Now click the green Run button. You might get a message that says the script is not found
in the current folder. If so, click the button that says Change Folder and it should run.
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You can also run a script by typing its name in the Command Window and pressing enter. For
example, if you enter myscript, MATLAB should execute your script and display the result:

>> myscript
x = 5

There are a few things to keep in mind when using scripts. First, you should not include the
extension .m when you run a script. If you do, you’ll get an error message like this:

>> myscript.m
Undefined variable "myscript" or class "myscript.m".

Second, when you name a new script, try to choose something meaningful and memorable.
Don’t choose a name that’s already in use; if you do, you’ll replace one of MATLAB’s functions
with your own (at least temporarily). You might not notice right away, but you might get some
confusing behavior later.

Also, the name of the script cannot contain spaces. If you create a file named my script.m,
MATLAB will complain when you try to run it:

>> my script
Undefined function or variable 'my'.

It can be hard to remember which folder a script is in. To keep things simple, for now, I suggest
putting all of your scripts in one folder.

2.2 Why Scripts?

There are a few good reasons to use a script. When you’re writing more than a couple of lines
of code, it might take a few tries to get everything right. Putting your code in a script makes
it easier to edit than typing it at the prompt. Likewise, if you’re running a script repeatedly,
it’s much faster to type the name of the script than to retype the code! And you might be able
to reuse a script from one project to the next, saving you considerable time across projects.

But the great power of scripts comes with great responsibility: you have to make sure that the
code you are running is the code you think you are running. Whenever you start a new script,
start with something simple, like x = 5, that produces a visible effect. Then run your script
and confirm that you get what you expect. When you type the name of a script, MATLAB
searches for the script in a search path, which is a sequence of folders. If it doesn’t find the
script in the first folder, it searches the second, and so on. If you have scripts with the same
name in different folders, you could be looking at one version and running another.
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If the code you are running is not the code you are looking at, you’ll find debugging a frustrating
exercise! So it’s no surprise that this is the Third Theorem of Debugging:

Be sure that the code you are running is the code you think you are running.

Now that you’ve seen how to write a script, let’s use one to do something a little more com-
plicated.

2.3 The Fibonacci Sequence

The Fibonacci sequence, denoted F , is a sequence of numbers where each number is the sum of
the previous two. It’s defined by the equations F1 = 1, F2 = 1, and, for i > 2, Fi = Fi−1+Fi−2.
The following expression computes the nth Fibonacci number:

Fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]

We can translate this expression into MATLAB, like this:

s5 = sqrt(5);
t1 = (1 + s5) / 2;
t2 = (1 - s5) / 2;
diff = t1^n - t2^n;
ans = diff / s5

I use temporary variables like t1 and t2 to make the code readable and the order of operations
explicit. The first four lines have a semicolon at the end, so they don’t display anything. The
last line assigns the result to ans.

If we save this script in a file named fibonacci1.m, we can run it like this:

>> n = 10
>> fibonacci1
ans = 55.0000

Before calling this script, you have to assign a value to n. If n is not defined, you get an error:
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>> clear n
>> fibonacci1
Undefined function or variable 'n'.

Error in fibonacci1 (line 9)
diff = t1^n - t2^n;

This script only works if there is a variable named n in the workspace; otherwise, you should
get an error. MATLAB will tell you what line of the script the error is in and display the line.

Error messages can be helpful, but beware! In this example, the message says the error is in
fibonacci, but the actual problem is that we have not assigned a value to n. And that brings
us to the Fourth Theorem of Debugging:

Error messages tell you where the problem was discovered, not where it was caused.

Often you have to work backwards to find the line of code (or missing line) that caused the
problem.

2.4 Floating-Point Numbers

In the previous section, the result we computed was 55.0000. Since the Fibonacci numbers
are integers, you might have been surprised to see the zeros after the decimal point.

They are there because MATLAB performs calculations using floating-point numbers. With
floating-point numbers, integers can be represented exactly, but most fractions cannot.

For example, if you compute the fraction 2/3, the result is only approximate—the correct
answer has an infinite number of 6s:

>> 2/3
ans = 0.6666

It’s not as bad as this example makes it seem: MATLAB uses more digits than it shows by
default. You can use the format command to change the output format:

>> format long
>> 2/3
ans = 0.666666666666667
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In this example, the first 14 digits are correct; the last one has been rounded off.

Large and small numbers are displayed in scientific notation. For example, if we use the built-in
function factorial to compute 100!, we get the following result:

>> factorial(100)
ans = 9.332621544394410e+157

The e in this notation is not the transcendental number known as e; it’s just an abbreviation
for “exponent.” So this means that 100! is approximately 9.33× 10157. The exact solution is a
158-digit integer, but with double-precision floating-point numbers, we only know the first 16
digits.

You can enter numbers using the same notation.

>> speed_of_light = 3.0e8
speed_of_light = 300000000

Although the floating-point format can represent very large and small numbers, there are
limits. The predefined variables realmax and realmin contain the largest and smallest numbers
MATLAB can handle.

>> realmax
ans = 1.797693134862316e+308

>> realmin
ans = 2.225073858507201e-308

If the result of a computation is too big, MATLAB “rounds up” to infinity.

>> factorial(170)
ans = 7.257415615307994e+306

>> factorial(171)
ans = Inf

Division by zero also returns Inf.

>> 1/0
ans = Inf

For operations that are undefined, MATLAB returns NaN, which stands for “not a number.”

>> 0/0
ans = NaN
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2.5 Comments

Short, simple programs are easy to read, but as they get bigger and more complex, it gets
harder to figure out what they do and how. That’s what comments are for.

A comment is a line of text added to a program to explain how it works. It has no effect on
the execution of the program; it is there for human readers. Good comments make programs
more readable; bad comments are useless at best and misleading at worst.

To write a comment, you use the percent symbol (%) followed by the text of the comment.

>> speed_of_light = 3.0e8 % meters per second
speed_of_light = 300000000

The comment runs from the percent symbol to the end of the line. In this case it specifies the
units of the value. In an ideal world, MATLAB would keep track of units and propagate them
through the computation, but for now that burden falls on the programmer.

Avoid comments that are redundant with the code:

>> x = 5 % assign the value 5 to x

Good comments provide additional information that’s not in the code, like units in the example
above, or the meaning of a variable:

>> p = 0 % position from the origin in meters
>> v = 100 % velocity in meters / second
>> a = -9.8 % acceleration of gravity in meters / second^2

If you use longer variable names, you might not need explanatory comments, but there’s a
trade-off: longer variable names are clearer, but longer code can become harder to read. Also,
if you’re translating from math that uses short variable names, it can be useful to make your
program consistent with your math.

2.6 Documentation

Every script should provide documentation, which is a comment that explains what the script
does and what its requirements are.

For example, I might put something like this at the beginning of fibonacci1.m:
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% Computes a numerical approximation of the nth Fibonacci number.
% Precondition: you must assign a value to n before running this script.
% Postcondition: the result is stored in ans.

A precondition is something that must be true when the script starts in order for it to work
correctly. A postcondition is something that will be true when the script completes.

If there is a comment at the beginning of a script, MATLAB assumes it’s the documentation
for the script. So if you type help fibonacci1, you get the contents of the comment (without
the percent signs).

>> help fibonacci1
Computes a numerical approximation of the nth Fibonacci number.
Precondition: you must assign a value to n before running this script.
Postcondition: the result is stored in ans.

That way, scripts that you write behave just like predefined scripts. You can even use the doc
command to see your comment in the Help Window.

2.7 Assignment and Equality

For beginning programmers, a common source of confusion is assignment and the use of the
equals sign.

In mathematics, the equals sign means that the two sides of the equation have the same value.
In MATLAB, an assignment statement looks like a mathematical equality, but it’s not.

One difference is that the sides of an assignment statement are not interchangeable. The right
side can be any legal expression, but the left side has to be a variable, which is called the target
of the assignment. So this is legal:

>> y = 1;
>> x = y + 1
x = 2

But this is not:

>> y + 1 = x
y + 1 = x

|
Error: Incorrect use of '=' operator.
To assign a value to a variable, use '='.
To compare values for equality, use '=='.
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In this case the error message is not very helpful. The problem here is that the expression on
the left side is not a valid target for an assignment.

Another difference between assignment and equality is that a mathematical equality is true
(or false) for all eternity; an assignment statement is temporary. When you assign x = y + 1,
you get the current value of y. If y changes later, x does not get updated.

A third difference is that a mathematical equality is a statement that may or may not be
true. In mathematics, y = y + 1 is a statement that happens to be false for all values of y.
In MATLAB, y = y + 1 is a sensible and useful assignment statement. It reads the current
value of y, adds 1, and replaces the old value with the new value.

>> y = 1;
>> y = y + 1
y = 2

When you read MATLAB code, you might find it helpful to pronounce the equals sign as “gets”
rather than “equals.” So x = y + 1 is pronounced “x gets the value of y plus one.”

2.8 Chapter Review

This chapter presented scripts and suggested reasons to use them. We computed elements of
a Fibonacci sequence, but because we used floating-point numbers, the results were sometimes
only approximate. And we saw how to add comments to a program to document what it does
and explain how it works.

Here are some terms from this chapter you might want to remember.

An M-file is a file that contains a script, which is a sequence of MATLAB/Octave commands.
The search path is the list of folders where the interpreter looks for M-files.

A precondition is something that must be true when the script starts in order for it to work
correctly; a postcondition is something that will be true when the script completes.

The target of an assignment statement is the variable on the left side.

Floating-point is a way to represent and store numbers in a computer. Scientific notation is
a format for typing and displaying large and small numbers; for example, 3.0e8 represents
3.0× 108 or 300,000,000.

A comment is part of a program that provides additional information about the program, but
does not affect its execution.

In the next chapter, you’ll learn how to write programs that perform repetitive tasks using
loops.
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2.9 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 2.1. To test your understanding of assignment statements, write a few lines of code
that swap the values of x and y. Put your code in a script called swap.m and test it.

If it works correctly, you should be able to run it like this:

>> x = 1, y = 2
x = 1
y = 2

>> swap

>> x, y
x = 2
y = 1

Exercise 2.2. Imagine that you are the operator of a bike-share system with two locations:
Boston and Cambridge.

You observe that every day 5 percent of the bikes in Boston are dropped off in Cambridge,
and 3 percent of the bikes in Cambridge get dropped off in Boston. At the beginning of the
month, there are 100 bikes at each location.

Write a script called bike_update.m that updates the number of bikes in each location from
one day to the next. The precondition is that the variables b and c contain the number of
bikes in each location at the beginning of the day. The postcondition is that b and c have been
modified to reflect the net movement of bikes.

To test your program, initialize b and c at the prompt and then execute the script. The script
should display the updated values of b and c, but not any intermediate variables.

Remember that bikes are countable things, so b and c should always be integer values. You
might want to use the round function to compute the number of bikes that move each day.

If you execute your script repeatedly, you can simulate the passage of time from day to day
(you can repeat a command by pressing the up arrow and then enter).

What happens to the bikes? Do they all end up in one place? Does the system reach an
equilibrium, does it oscillate, or does it do something else?

In the next chapter, we will see how to execute your script automatically and how to plot the
values of b and c over time.
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Chapter 3

Loops

The programs we have seen so far are straight-line code; that is, they execute one instruc-
tion after another from top to bottom. This chapter introduces one of the most important
programming-language features, the for loop, which allows simple programs to perform com-
plex, repetitive tasks. This chapter also introduces the mathematical concepts of sequence and
series, and a process for writing programs, incremental development.

We’ll start by reviewing the exercise from the previous chapter; if you didn’t do it, you might
want to take a look before you go on.

3.1 Updating Variables

In Section 2.2, I asked you to write a program that models a bike-share system with bikes
moving between two stations. Each day 5 percent of the bikes in Boston are dropped off in
Cambridge, and 3 percent of the bikes in Cambridge get dropped off in Boston.

To update the state of the system, you might have been tempted to write something like

b = b - 0.05*b + 0.03*c
c = c + 0.05*b - 0.03*c

But that would be wrong, so very wrong. Why? The problem is that the first line changes the
value of b, so when the second line runs, it gets the old value of c and the new value of b. As a
result, the change in b is not always the same as the change in c, which violates the Principle
of Conservation of Bikes!

One solution is to use temporary variables like b_new and c_new:
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b_new = b - 0.05*b + 0.03*c
c_new = c + 0.05*b - 0.03*c
b = b_new
c = c_new

This has the effect of updating the variables simultaneously ; that is, it reads both old values
before writing either new value.

The following is an alternative solution that has the added advantage of simplifying the com-
putation:

b_to_c = 0.05*b - 0.03*c
b = b - b_to_c
c = c + b_to_c

It’s easy to look at this code and confirm that it obeys Conservation of Bikes. Even if the value
of b_to_c is wrong, at least the total number of bikes is right. And that brings us to the Fifth
Theorem of Debugging:

The best way to avoid a bug is to make it impossible.

In this case, removing redundancy also eliminates the opportunity for a bug.

3.2 Bug Taxonomy

The more you understand bugs, the better you will be at debugging. There are four kinds of
bugs:

Syntax error You have written a command that cannot execute because it violates one of
the language’s syntax rules. For example, in MATLAB, you can’t have two operands in a
row without an operator, so pi r^2 contains a syntax error. When the interpreter finds
a syntax error, it prints an error message and stops running your program.

Runtime error Your program starts running, but something goes wrong along the way. For
example, if you try to access a variable that doesn’t exist, that’s a runtime error. When
the interpreter detects the problem, it prints an error message and stops.

Logical error Your program runs without generating any error messages, but it doesn’t do
the right thing. The problem in the previous section, where we changed the value of b
before reading the old value, is a logical error.
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Numerical error Most computations in MATLAB are only approximately right. Most of
the time the errors are small enough that we don’t care, but in some cases the round-off
errors are a problem.

Syntax errors are usually the easiest to deal with. Sometimes the error messages are confusing,
but MATLAB can usually tell you where the error is, at least roughly.

Runtime errors are harder because, as I mentioned before, MATLAB can tell you where it
detected the problem, but not what caused it.

Logical errors are hard because MATLAB can’t help at all. From MATLAB’s point of view
there’s nothing wrong with the program; only you know what the program is supposed to do,
so only you can check it.

Numerical errors can be tricky because it’s not clear whether the problem is your fault. For
most simple computations, MATLAB produces the floating-point value that is closest to the
exact solution, which means that the first 15 significant digits should be correct.

But some computations are ill-conditioned, which means that even if your program is correct,
the round-off errors accumulate and the number of correct digits can be smaller. Sometimes
MATLAB can warn you that this is happening, but not always! Precision (the number of
digits in the answer) does not imply accuracy (the number of digits that are right).

3.3 Absolute and Relative Error

There are two ways of thinking about numerical errors. The first is absolute error, or the
difference between the correct value and the approximation. We often write the magnitude of
the error, ignoring its sign, when it doesn’t matter whether the approximation is too high or
too low.

The second way to think about numerical errors is relative error, where the error is expressed
as a fraction (or percentage) of the exact value.

For example, we might want to estimate 9! using the formula
√

18π(9/e)9. The exact answer
is 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362, 880. The approximation is 359, 536.87. So the absolute error
is 3, 343.13.

At first glance, that sounds like a lot—we’re off by three thousand—but we should consider the
size of the thing we are estimating. For example, $3,000 matters a lot if we’re talking about
an annual salary, but not at all if we’re talking about the national debt.

A natural way to handle this problem is to use relative error. In this case, we would divide
the error by 362, 880, yielding 0.00921, which is just less than 1 percent. For many purposes,
being off by 1 percent is good enough.
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3.4 for Loops

Let’s return to the bike-share example. In the previous chapter, we wrote a bike_update.m
script to simulate a day in the life of a bike-share system. To simulate an entire month, we’d
have to run the script 30 times. We could enter the same command 30 times, but it’s simpler
to use a loop, which is a set of statements that executes repeatedly.

To create a loop, we can use the for statement, like this:

for i=1:30
bike_update

end

The first line includes what looks like an assignment statement, and it is like an assignment
statement, except that it runs more than once. The first time, it creates the variable i and
assigns it the value 1. The second time, i gets the value 2, and so on, up to and including 30.

The colon operator (:) specifies a range of integers. You can create a range at the prompt:

>> 1:5
ans = 1 2 3 4 5

The variable you use in the for statement is called the loop variable. It’s common to use the
names i, j, and k as loop variables.

The statements inside the loop are called the body. By convention, they are indented to show
that they’re inside the loop, but the indentation doesn’t affect the execution of the program.
The end statement marks the end of the loop.

To see a loop in action you can run one that displays the loop variable:

>> for i=1:5
i

end

i = 1
i = 2
i = 3
i = 4
i = 5

As this example shows, you can run a for loop from the command line, but it’s more common
to put it in a script.
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Exercise 3.1. Create a script named bike_loop.m that uses a for loop to run bike_update.m
30 times. Before you run it, you have to assign values to b and c. For this exercise, start with
the values b = 100 and c = 100.

If everything goes smoothly, your script will display a long stream of numbers on the screen.
It’s probably too long to fit, and even if it did fit, it would be hard to interpret. A graph would
be much better!

3.5 Plotting

If the output of your program is a long stream of numbers, it can be hard to see what is
happening. Plotting the results can make things clearer.

The plot function is a versatile tool for plotting two-dimensional graphs. Unfortunately, it’s
so versatile that it can be hard to use (and hard to read the documentation). We’ll start simple
and work our way up.

To plot a single point, type

>> plot(1, 2, 'o')

A Figure Window should appear with a graph and a single blue circle at x position 1 and y
position 2.

The letter in single quotes is a style string that specifies how the point should be plotted; o
indicates a circle. Other shapes include +, *, x, s (for a square), d (for a diamond), and ^ (for
a triangle).

You can also specify the color by starting the style string with a color code:

>> plot(1, 2, 'ro')

Here, r stands for red; the other colors include g for green, b for blue, c for cyan, m for magenta,
y for yellow, and k for black.

When you use plot this way, it can only plot one point at a time. If you run plot again,
it clears the figure before making the new plot. The hold command lets you override that
behavior: hold on tells MATLAB not to clear the figure when it makes a new plot; hold off
returns to the default behavior.

Try this:
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>> clf
>> hold on
>> plot(1, 1, 'ro')
>> plot(2, 2, 'go')
>> plot(3, 3, 'bo')
>> hold off

The clf command clears the figure before we start plotting.

If you run the code above, you should see a figure with three circles. MATLAB scales the plot
automatically so that the axes run from the lowest values in the plot to the highest.

Exercise 3.2. Modify bike_loop.m so that it clears the figure before running the loop. Then,
each time through the loop, it should plot the value of b versus the value of i with a red circle.

Once you get that working, modify it so it plots the values of c with blue diamonds.

3.6 Sequences

Now that we have the ability to write loops, we can use them to explore sequences and series,
which are useful for describing and analyzing systems that change over time.

In mathematics, a sequence is a set of numbers that corresponds to the positive integers. The
numbers in the sequence are called elements. In math notation, the elements are denoted with
subscripts, so the first element of the series A is A1, followed by A2, and so on.

A for loop is a natural way to compute the elements of a sequence. As an example, in a
geometric sequence, each element is a constant multiple of the previous element. As a more
specific example, let’s look at the sequence with A1 = 1 and the relationship Ai+1 = Ai/2, for
all i. In other words, each element is half as big as the one before it.

The following loop computes the first 10 elements of A:

a = 1
for i=2:10

a = a/2
end

The first line initializes the variable a with the first element of the sequence, A1. Each time
through the loop, we find the next value of a by dividing the previous value by 2, and assign
the result back to a. At the end, a contains the 10th element.
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The other elements are displayed on the screen, but they are not saved in a variable. Later,
we’ll see how to save the elements of a sequence in a vector.

This loop computes the sequence recurrently, which means that each element depends on the
previous one. For this sequence, it’s also possible to compute the ith element directly, as a
function of i, without using the previous element.

In math notation, Ai = A1r
i−1, where r is the ratio of successive elements. In the previous

example, Ai+1 = Ai/2, so r = 1/2.

Exercise 3.3. Write a script named sequence.m that uses a loop to compute elements of A
directly.

3.7 Series

In mathematics, a series is the sum of the elements of a sequence. It’s a terrible name, because
in common English, “sequence” and “series” mean pretty much the same thing, but in math, a
sequence is a set of numbers, and a series is an expression (a sum) that has a single value. In
math notation, a series is often written using the summation symbol

∑
.

For example, the sum of the first 10 elements of A is

10∑
i=1

Ai

A for loop is a natural way to compute the value of this series:

Listing 3.1: A program that calculates a simple series
A1 = 1;
total = 0;
for i=1:10

a = A1 * (1/2)^(i-1);
total = total + a;

end
ans = total

Let’s walk through what’s happening here. A1 is the first element of the sequence, so we assign
it to be 1; we also create total, which will store the cumulative sum. Each time through the
loop, we set a to the ith element and add a to the total. At the end, outside the loop, we
store total as ans.
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The way we’re using total is called an accumulator, that is, a variable that accumulates the
result a little bit at a time.

Exercise 3.4. This example computes the terms of the series directly. As an exercise, write
a script named series.m that computes the same sum by computing the elements recurrently.
You will have to be careful about where you start and stop the loop.

3.8 Generalization

As written, the previous example always adds up the first 10 elements of the sequence, but we
might be curious to know what happens to total as we increase the number of terms in the
series. If you’ve studied geometric series, you might know that this series converges on 2; that
is, as the number of terms goes to infinity, the sum approaches 2 asymptotically.

To see if that’s true for our program, we can replace the constant 10 in Listing 3.1 with a
variable named n:

Listing 3.2: Updating our code from Listing 3.1 to have a variable number of terms
A1 = 1;
total = 0;
for i=1:n

a = A1 * (1/2)^(i-1);
total = total + a;

end
ans = total

The code in Listing 3.2 can now compute any number of terms, with the precondition that you
have to set n before you execute the code. I put this code in a file named series.m, then ran
it with different values of n:

>> n=10; series
total = 1.99804687500000

>> n=20; series
total = 1.99999809265137

>> n=30; series
total = 1.99999999813735

>> n=40; series
total = 1.99999999999818
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It sure looks like it’s converging on 2.

Replacing a constant with a variable is called generalization. Instead of computing a fixed,
specific number of terms, the new script is more general; it can compute any number of terms.
This is an important idea we’ll come back to when we talk about functions.

3.9 Incremental Development

As you start writing longer programs, you might find yourself spending more time debugging.
The more code you write before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to minimize the pain of debugging
by developing and testing in small steps. The fundamental steps are:

1. Always start with a working program. If you have an example from a book, or a program
you wrote that is similar to what you are working on, start with that. Otherwise, start
with something you know is correct, like x = 5. Run the program and confirm that you
are running the program you think you are running. This step is important, because
in most environments there are little things that can trip you up when you start a new
project. Get them out of the way so you can focus on programming.

2. Make one small, testable change at a time. A testable change is one that displays some-
thing on the screen (or has some other effect) that you can check. Ideally, you should
know what the correct answer is or be able to check it by performing another computa-
tion.

3. Run the program and see if the change worked. If so, go back to step 2. If not, you’ll
have to do some debugging, but if the change you made was small, it shouldn’t take long
to find the problem.

With incremental development, your code is more likely to work the first time, and if it doesn’t,
the problem is more likely to be obvious. And that brings us to the Sixth Theorem of Debug-
ging:

The best kind of debugging is the kind you don’t have to do.

In practice, there are two problems with incremental development. First, sometimes you have
to write extra code to generate visible output that you can check. This extra code is called
scaffolding because you use it to build the program and then remove it when you are done.
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But the time you save on debugging is almost always worth the time you invest in scaffolding.

The second problem is that when you’re getting started, you might not know how to choose
steps that get from x = 5 to the program you’re trying to write. We’ll look at an extended
example in Chapter 6.

If you find yourself writing more than a few lines of code before you start testing and you’re
spending a lot of time debugging, you should try incremental development.

3.10 Chapter Review

In this chapter, we used a loop to perform a repetitive computation—updating a model 30
times—and to compute sequences and series. Also, we used the plot function to visualize the
results.

Here are some terms from this chapter you might want to remember.

Absolute error is the difference between an approximation and an exact answer. Relative error
is the same difference expressed as a fraction or percentage of the exact answer.

A loop is part of a program that runs repeatedly. A loop variable is a variable that gets assigned
a different value each time through the loop. A range is a sequence of values assigned to the
loop variable, often specified with the colon operator—for example, 1:5. The body of a loop is
the set of statements inside the loop that runs repeatedly. An accumulator is a variable that
is used to accumulate a result a little bit at a time.

In mathematics, a sequence is a set of numbers that correspond to the positive integers. The
numbers that make up the sequence are called elements. A series is the sum of a sequence
of elements. Sometimes we compute the elements of a sequence recurrently, which means that
each new element depends on previous elements. Sometimes we can compute the elements
directly, without using previous elements.

Generalization is a way to make a program more versatile, for example, by replacing a specific
value with a variable that can have any value. Incremental development is a way of program-
ming by making a series of small, testable changes. Scaffolding is code you write to help you
program or debug but that is not part of the finished program.

In the next chapter, we’ll use a vector to store the results from a loop.
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3.11 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 3.5. Years ago I was in a fudge shop and saw a sign that said “Buy one pound of
fudge, get another quarter pound free.” That’s simple enough.

But if I ran the fudge shop, I would offer a special deal to anyone who could solve the following
problem:

If you buy a pound of fudge, we’ll give you another quarter pound free. And then
we’ll give you a quarter of a quarter pound, or one-sixteenth. And then we’ll give
you a quarter of that, and so on. How much fudge would you get in total?

Write a script called fudge.m that solves this problem. Hint: start with series.m and generalize
it by replacing the ratio 1/2 with a variable, r.

Exercise 3.6. We have already seen the Fibonacci sequence, F , which is defined recurrently
as

for i ≥ 3, Fi = Fi−1 + Fi−2

In order to get started, you have to specify the first two elements, but once you have those, you
can compute the rest. The most common Fibonacci sequence starts with F1 = 1 and F2 = 1.

Write a script called fibonacci2.m that uses a for loop to compute the first 10 elements of this
Fibonacci sequence. As a postcondition, your script should assign the 10th element to ans.

Now generalize your script so that it computes the nth element for any value of n, with the
precondition that you have to set n before you run the script. To keep things simple for now,
you can assume that n is greater than 0.

Hint: you’ll have to use two variables to keep track of the previous two elements of the sequence.
You might want to call them prev1 and prev2. Initially, prev1 = F1 and prev2 = F2. At the
end of the loop, you’ll have to update prev1 and prev2; think carefully about the order of the
updates!
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Chapter 4

Vectors

In the previous chapter we used a loop to compute the elements of a sequence, but we were only
able to store the last element. In this chapter, we’ll use a vector to store all of the elements.
We’ll also learn how to select elements from a vector, and how to perform vector arithmetic
and common vector operations like reduce and apply.

4.1 Creating Vectors

A vector in MATLAB is a sequence of numbers. There are several ways to create vectors; one
of the most common is to put a sequence of numbers in square brackets:

>> [1 2 3]
ans = 1 2 3

Another way to create a vector is the colon operator, which we have already used to create a
range of values in a for loop.

>> 1:3
ans = 1 2 3

In general, anything you can do with a number, you can also do with a vector. For example,
you can assign a vector value to a variable:

>> X = [1 2 3]
X = 1 2 3

Note that variables that contain vectors are often capital letters. That’s just a convention;
MATLAB doesn’t require it, but it’s a useful way to remember which variables are vectors.
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4.2 Vector Arithmetic

As with numbers, you can do arithmetic with vectors. If you add a number to a vector,
MATLAB increments each element of the vector:

>> Y = X + 5
Y = 6 7 8

The result is a new vector; the original value of X has not changed.

If you add two vectors, MATLAB adds the corresponding elements of each vector and creates
a new vector that contains the sums:

>> Z = X + Y
Z = 7 9 11

But adding vectors only works if the operands are the same size. Otherwise you get an error:

>> W = [1 2]
W = 1 2

>> X + W
Matrix dimensions must agree.

This error message might be confusing, because we think of X and W as vectors, not matrices.
But in MATLAB, a vector is a kind of matrix. We’ll come back to matrices later, but in the
meantime, you might see the term in error messages and documentation.

If you divide two vectors, you might be surprised by the result:

>> X / Y
ans = 0.2953

MATLAB is performing an operation called right division, which is not what we expected.
To divide the elements of X by the elements of Y, you have to use ./, which is element-wise
division:

>> X ./ Y
ans = 0.1667 0.2857 0.3750

Multiplication has the same problem. If you use *, MATLAB does matrix multiplication. With
these two vectors, matrix multiplication is not defined, so you get an error:
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>> X * Y
Error using *
Incorrect dimensions for matrix multiplication.
Check that the number of columns in the first matrix
matches the number of rows in the second matrix.
To perform element-wise multiplication, use '.*'.

In this case, the error message is pretty helpful. As it suggests, you can use .* to perform
element-wise multiplication:

>> X .* Y
ans = 6 14 24

As an exercise, see what happens if you use the exponentiation operator (^) with a vector.

4.3 Selecting Elements

You can select an element from a vector with parentheses:

>> Y = [6 7 8 9]
Y = 6 7 8 9

>> Y(1)
ans = 6

>> Y(4)
ans = 9

This means that the first element of Y is 6 and the fourth element is 9. The number in
parentheses is called the index because it indicates which element of the vector you want.

The index can be a variable name or a mathematical expression:

>> i = 1;
>> Y(i)
ans = 6
>> Y(i+1)
ans = 7

We can use a loop to display the elements of Y:
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for i=1:4
Y(i)

end

Each time through the loop we use a different value of i as an index into Y.

In the previous example we had to know the number of elements in Y. We can make it more
general by using the length function, which returns the number of elements in a vector:

for i=1:length(Y)
Y(i)

end

This version works for a vector of any length.

4.4 Indexing Errors

An index can be any kind of expression, but the value of the expression has to be a positive
integer, and it has to be less than or equal to the length of the vector. If it’s zero or negative,
you’ll get an error:

>> Y(0)
Array indices must be positive integers or logical values.

If it’s not an integer, you get an error:

>> Y(1.5)
Array indices must be positive integers or logical values.

If the index is too big, you also get an error:

>> Y(5)
Index exceeds the number of array elements (4).

The error messages use the word array rather than matrix, but they mean the same thing, at
least for now.
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4.5 Vectors and Sequences

Vectors and sequences go together nicely. For example, another way to evaluate the Fibonacci
sequence from Chapter 2 is to store successive values in a vector. Remember that the definition
of the Fibonacci sequence is F1 = 1, F2 = 1, and Fi = Fi−1 + Fi−2 for i > 2.

Listing 4.1 shows how we can compute the elements of this sequence and store them in a vector,
using a capital letter for the vector F and lower-case letters for the integers i and n.

Listing 4.1: Calculating the Fibonacci sequence using a vector
F(1) = 1
F(2) = 1
for i=3:n

F(i) = F(i-1) + F(i-2)
end

If you had any trouble with , you have to appreciate the simplicity of this script. The MATLAB
syntax is similar to the math notation, which makes it easier to check for correctness.

If you only want the nth Fibonacci number, storing the whole sequence wastes some space.
But if wasting space makes your code easier to write and debug, that’s probably okay.

4.6 Plotting Vectors

If you call plot with a vector as an argument, MATLAB plots the indices on the x-axis and
the elements on the y-axis. To plot the Fibonacci numbers we computed in Listing 4.1, we’d
use

plot(F)

Figure 4.1 shows the result.

This way of looking at a vector is often useful for debugging, especially if it is big enough that
displaying the elements on the screen is unwieldy.

4.7 Common Vector Operations

We’ve covered some of the basic features of vectors. Let’s now look at some common patterns
we use to work with data stored in vectors.
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Figure 4.1: The first 10 elements of the Fibonacci sequence

4.7.1 Reduce

We frequently use loops to run through the elements of a vector and add them up, multiply
them together, compute the sum of their squares, and so on. This kind of operation is called
reduce, because it reduces a vector with multiple elements down to a single number.

For example, the loop in Listing 4.2 adds up the elements of a vector named X (which we
assume has been defined).

Listing 4.2: Reducing a vector to a single scalar value (the sum)

total = 0
for i=1:length(X)

total = total + X(i)
end
ans = total

The use of total as an accumulator is similar to what we saw in Chapter 3. Again, we use
the length function to find the upper bound of the range, so this loop will work regardless of
the length of X. Each time through the loop, we add in the ith element of X, so at the end of
the loop total contains the sum of the elements.

MATLAB provides functions that perform some reduce operations. For example, the sum
function computes the sum of the elements in a vector, and prod computes the product.
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4.7.2 Apply

Another common use of a loop is to run through the elements of a vector, perform some
operation on the elements, and create a new vector with the results. This operation is called
apply, because you apply the operation to each element in the vector.

For example, the loop in Listing 4.3 creates a vector Y that contains the squares of the elements
of X (assuming, again, that X is already defined).

Listing 4.3: Making a new vector Y by squaring the elements in X
for i=1:length(X)

Y(i) = X(i)^2
end

Many apply operations can be done with element-wise operators. The following statement is
more concise than the loop in Listing 4.3.

Y = X .^ 2

It also runs faster!

4.8 Chapter Review

In this chapter, we used a vector to store the elements of a sequence. We learned how to
select elements from a vector and perform vector arithmetic. We performed reduce and apply
operations using for loops, MATLAB functions, and element-wise operations.

Here are some terms from this chapter you might want to remember.

A vector is a sequence of values, which is a kind of matrix, also called an array in some
MATLAB documentation.

An index is an integer value used to indicate one of the elements in a vector or matrix (also
called a subscript in some MATLAB documentation).

An operation is element-wise if it acts on the individual elements of a vector or matrix (unlike
some linear algebra operations).

You can apply an operation to all elements of a vector, and you can reduce a vector to a single
value, for example by computing the sum of the elements.

In the next chapter, we’ll meet the most important idea in computer programming: functions!
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4.9 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 4.1. Write a loop that computes the first n elements of the geometric sequence
Ai+1 = Ai/2 with A1 = 1. Notice that math notation puts Ai+1 on the left side of the
equality. When you translate to MATLAB, you might want to rewrite it with Ai on the left
side.

Exercise 4.2. Write an expression that computes the square root of the sum of the squares
of the elements of a vector, without using a loop.

Exercise 4.3. The ratio of consecutive Fibonacci numbers, Fn+1/Fn, converges to a constant
value as n increases. Write a script that computes a vector with the first n elements of a
Fibonacci sequence (assuming that the variable n is defined) and then computes a new vector
that contains the ratios of consecutive Fibonacci numbers. Plot this vector to see if it seems
to converge. What value does it converge on?

Exercise 4.4. The following set of equations is based on a famous example of a chaotic system,
the Lorenz attractor (see https://greenteapress.com/matlab/lorenz):

xi+1 = xi + σ (yi − xi) dt
yi+1 = yi + [xi(r − zi)− yi] dt
zi+1 = zi + (xiyi − bzi) dt

1. Write a script that computes the first 10 elements of the sequences X, Y , and Z and
stores them in vectors named X, Y, and Z.

Use the initial values X1 = 1, Y1 = 2, and Z1 = 3 with the values σ = 10, b = 8/3,
r = 28, and dt = 0.01.

2. Read the documentation for plot3 and comet3, and plot the results in three dimensions.

3. Once the code is working, use semicolons to suppress the output and then run the program
with sequence lengths of 100, 1,000, and 10,000.

4. Run the program again with different starting conditions. What effect does it have on
the result?

5. Run the program with different values for σ, b, and r, and see if you can get a sense of
how each variable affects the system.

https://greenteapress.com/matlab/lorenz
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Exercise 4.5. The logistic map (see https://greenteapress.com/matlab/logistic) is de-
scribed by the following equation:

Xi+1 = rXi(1−Xi)

where Xi is a number between 0 and 1, and r is a positive number.

1. Write a script named logmap.m that computes the first 50 elements of X with r = 3.9
and X1 = 0.5, where r is the parameter of the logistic map and X1 is the initial value.

2. Plot the results for a range of values of r from 2.4 to 4.0. How does the behavior of the
system change as you vary r?

https://greenteapress.com/matlab/logistic
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Chapter 5

Functions

This chapter introduces the most important idea in computer programming: functions! To
explain why functions are so important, I’ll start by explaining one of the problems they solve:
name collisions.

5.1 Name Collisions

All scripts run in the same workspace, so if one script changes the value of a variable, all
other scripts see the change. With a small number of simple scripts, that’s not a problem, but
eventually the interactions between scripts become unmanageable.

For example, the following script computes the sum of the first n terms in a geometric sequence,
but it also has the side effect of assigning values to A1, total, i, and a.

A1 = 1;
total = 0;
for i=1:10

a = A1 * 0.5^(i-1);
total = total + a;

end
ans = total

If you were using any of those variable names before calling this script, you might be surprised
to find, after running the script, that their values had changed. If you have two scripts that
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use the same variable names, you might find that they work separately and then break when
you try to combine them. This kind of interaction is called a name collision.

As the number of scripts you write increases, and they get longer and more complex, name
collisions become more of a problem. Avoiding this problem is one of several motivations for
functions.

5.2 Defining Functions

A function is like a script, except that each function has its own workspace, so any variables
defined inside a function only exist while the function is running and don’t interfere with
variables in other workspaces, even if they have the same name. Function inputs and outputs
are defined carefully to avoid unexpected interactions.

To define a new function, you create an M-file with the name you want and put a function
definition in it. For example, to create a function named myfunc, create an M-file named
myfunc.m and put the following definition into it (Listing 5.1):

Listing 5.1: A function definition

function res = myfunc(x)
s = sin(x)
c = cos(x)
res = abs(s) + abs(c)

end

The first non-comment word of the file has to be function, because that’s how MATLAB tells
the difference between a script and a function file.

A function definition is a compound statement. The first line is called the signature of the
function; it defines the inputs and outputs of the function. In Listing 5.1 the input variable is
named x. When this function is called, the argument provided by the user will be assigned to
x.

The output variable is named res, which is short for result. You can call the output variable
whatever you want, but as a convention, I like to call it res. Usually the last thing a function
does is assign a value to the output variable.

Once you’ve defined a new function, you call it the same way you call built-in MATLAB
functions. If you call the function as a statement, MATLAB puts the result into ans:
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>> myfunc(1)

s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

ans = 1.38177329067604

But it’s more common (and better style) to assign the result to a variable:

>> y = myfunc(1)

s = 0.84147098480790

c = 0.54030230586814

res = 1.38177329067604

y = 1.38177329067604

While you’re debugging a new function, you might want to display intermediate results like
this, but once it’s working, you’ll want to add semicolons to make it a silent function. A silent
function computes a result but doesn’t display anything (except sometimes warning messages).
Most built-in functions are silent.

Each function has its own workspace, which is created when the function starts and destroyed
when the function ends. If you try to access (read or write) the variables defined inside a
function, you will find that they don’t exist.

>> clear
>> y = myfunc(1);
>> who
Your variables are: y

>> s
Undefined function or variable 's'.

The only value from the function that you can access is the result, which in this case is assigned
to y.

If you have variables named s or c in your workspace before you call myfunc, they will still be
there when the function completes.
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>> s = 1;
>> c = 1;
>> y = myfunc(1);
>> s, c

s = 1
c = 1

So inside a function you can use whatever variable names you want without worrying about
collisions.

5.3 Function Documentation

At the beginning of every function file, you should include a comment that explains what the
function does:

% res = myfunc(x)
% Compute the Manhattan distance from the origin to the
% point on the unit circle with angle (x) in radians.

function res = myfunc(x)
% this is not part of documentation given by help function

s = sin(x);
c = cos(x);
res = abs(s) + abs(c);

end

When you ask for help, MATLAB prints the comment you provide.

>> help myfunc
res = myfunc(x)
Compute the Manhattan distance from the origin to the
point on the unit circle with angle (x) in radians.

There are lots of conventions about what should be included in these comments. Among other
things, it’s a good idea to include the following:

Signature The signature of the function, which includes the name of the function, the input
variable(s), and the output variable(s).
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Description A clear, concise, abstract description of what the function does. An abstract
description is one that leaves out the details of how the function works and includes only
information that someone using the function needs to know. You can put additional
comments inside the function that explain the details.

Variables An explanation of what the input variables mean; for example, in this case it is
important to note that x is considered to be an angle in radians.

Conditions Any preconditions and postconditions.

5.4 Naming Functions

There are a few “gotchas” that come up when you start defining functions. The first is that the
“real” name of your function is determined by the file name, not by the name you put in the
function signature. As a matter of style, you should make sure that they are always the same,
but if you make a mistake, or if you change the name of a function, it’s easy to get confused.

In the spirit of making errors on purpose, edit myfunc.m and change the name of the function
from myfunc to something_else, like this:

function res = something_else (x)
s = sin(x);
c = cos(x);
res = abs(s) + abs(c);

end

Now call the function from the Command Window, like this:

>> y = myfunc(1)
y = 1.3818

The function is still called myfunc, because that’s the name of the file. If you try to call it like
this:

>> y = something_else(1)
Undefined function or variable 'something_else'.

It doesn’t work. The name of the file is what matters; the name of the function is ignored.

The second “gotcha” is that the name of the file can’t have spaces. For example, if you rename
the file to my func.m and try to run it, you get:
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>> y = my func(1)
y = my func(1)

|
Error: Unexpected MATLAB expression.

This fails because MATLAB thinks my and func are two different variable names.

The third “gotcha” is that your function names can collide with built-in MATLAB functions.
For example, if you create an M-file named sum.m and then call sum, MATLAB might call your
new function, not the built-in version! Which one actually gets called depends on the order of
the directories in the search path and (in some cases) on the arguments. As an example, put
the following code in a file named sum.m:

function res = sum(x)
res = 7;

end

And then try this:

>> sum(1:3)

ans = 6

>> sum

ans = 7

In the first case MATLAB used the built-in function; in the second case it ran your function!
This kind of interaction can be very confusing. Before you create a new function, check to see
if there is already a MATLAB function with the same name. If there is, choose another name!

5.5 Multiple Input Variables

Functions can take more than one input variable. For example, the following function in
Listing 5.2 takes two input variables, a and b:

Listing 5.2: A function that computes the sum of squares of two numbers

function res = sum_squares(a, b)
res = a^2 + b^2;

end
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This function computes the sum of squares of two numbers, a and b.

If we call it from the Command Window with arguments 3 and 4, we can confirm that the sum
of their squares is 25.

>> ss = sum_squares(3, 4)
ss = 25

The arguments you provide are assigned to the input variables in order, so in this case 3 is
assigned to a and 4 is assigned to b. MATLAB checks that you provide the right number of
arguments; if you provide too few, you get

>> ss = sum_squares(3)
Not enough input arguments.

Error in sum_squares (line 4)
res = a^2 + b^2;

This error message might be confusing, because it suggests that the problem is in sum_squares
rather than in the function call. Keep that in mind when you’re debugging.

If you provide too many arguments, you get

ss = sum_squares(3, 4, 5)
Error using sum_squares
Too many input arguments.

That’s a better error message, because it’s clear that the problem isn’t in the function, it’s in
the way we’re using the function.

5.6 Chapter Review

Now that we know about functions, and all the ways they can go wrong, let’s put them to
good use. In the next chapter we’ll develop a program that uses several functions to search for
Pythagorean triples (and I’ll explain what those are).

Here are a few terms in this chapter you might want to remember.

A function is a named sequence of statements stored in an M-file. A function can have one or
more input variables, which get their values when the function is called, and output variables,
which return a value from the function to the caller.
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The first line of a function definition is its signature, which specifies the name of the function,
the input variables, and the output variables.

A silent function doesn’t display anything, generate a figure, or have any other effect other
than returning output values.

5.7 Exercise

Before you go on, you might want to work on the following exercise.

Exercise 5.1. Write a function called hypotenuse that takes two parameters, a and b, that
represent the lengths of two sides of a right triangle. It should assign to res the length of the
third side of the triangle, given by the formula

c =
√
a2 + b2



Chapter 6

Conditionals

In this chapter, we’ll use functions and a new feature—conditional statements—to search for
Pythagorean triples. A Pythagorean triple is a set of integers, like 3, 4, and 5, that are the
lengths of the sides of a right triangle. Mathematically, it’s a set of integers a, b, and c such
that a2 + b2 = c2. This example will also demonstrate the incremental development process
we talked about in Chapter 3.

6.1 Relational Operators

Suppose we have three variables, a, b, and c, and we want to check whether they form a
Pythagorean triple. We can use the equality operator (==) to compare two values:

>> a = 3;
>> b = 4;
>> c = 5;
>> a^2 + b^2 == c^2

ans = logical 1

The result is a logical value, which means it’s either 1, which means “true,” or 0, which means
“false.” Here’s an example where the result is false:

>> c = 6;
>> a^2 + b^2 == c^2
ans = logical 0
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It’s a common error to use the assignment operator (=) instead of the equality operator (==).
If you do, you get an error:

>> a^2 + b^2 = c^2
a^2 + b^2 = c^2

|
Error: Incorrect use of '=' operator.
To assign a value to a variable, use '='.
To compare values for equality, use '=='.

The equality operator is one of several relational operators, so called because they test relations
between values. For example, x < 10 is true (1) if the value of x is less than 10 or false (0) if
otherwise. And x > 0 is true if x is greater than 0.

The other relational operators are <= for “less or equal,” >= for “greater or equal,” and ~= for
“not equal.”

6.2 if Statement

Now suppose that when we find a Pythagorean triple we want to display a message. The if
statement allows you to check for certain conditions and execute statements if the conditions
are met. For example:

if a^2 + b^2 == c^2
disp("Yes, that is a Pythagorean triple.")

end

The syntax is similar to a for loop. The first line specifies the condition we’re interested in.
If the condition is true, MATLAB executes the body of the statement, which is the indented
sequence of statements between the if and the end.

MATLAB doesn’t require you to indent the body of an if statement, but it makes your code
more readable, so you should do it.

If the condition is not satisfied, the statements in the body are not executed.

Sometimes there are alternative statements to execute when the condition is false. In that
case, you can extend the if statement with an else clause.

The complete version of the previous example might look like this:
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if a^2 + b^2 == c^2
disp("Yes, that is a Pythagorean triple.")

else
disp("No, that is not a Pythagorean triple.")

end

Statements like if and for that contain other statements are called compound statements. All
compound statements finish with end.

6.3 Incremental Development

Now that we have relational operators and if statements, let’s start writing the program.

Here are the steps we will follow to develop the program incrementally:

1. Write a script named find_triples.m and start with a loop that enumerates values of a
and displays them.

2. Write a second loop that enumerates values of b and a third loop that enumerates values
of c.

3. Use the if statement from the previous section to check whether a, b, and c form a
Pythagorean triple.

4. Display the values that pass the test.

5. Transform the script into a function and make it take an input variable that specifies the
range to search.

Along the way, we’ll optimize the program to eliminate unnecessary work.

6.4 Logical Functions

The first step is to create a logical function, which is a function that returns a logical value.
The following function takes three input variables, a, b, and c, and returns true (1) if they
form a Pythagorean triple and false (0) otherwise.
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function res = is_pythagorean(a, b, c)
if a^2 + b^2 == c^2

res = 1;
else

res = 0;
end

end

We can use this function like so:

>> is_pythagorean(3, 4, 5)
ans = 1

But we can write the same function more concisely, like this:

function res = is_pythagorean(a, b, c)
res = a^2 + b^2 == c^2;

end

The result of the equality operator is a logical value, which we can assign directly to res.

Put this function in a file called is_pythagorean.m, so we can use it as part of our program.

6.5 Nested Loops

The next step is to write loops that enumerate different values of a, b, and c. Create a new
file called find_triples.m where we’ll develop the rest of the program.

We’ll start with a loop for a:

for a=1:3
a

end

It might seem silly to start with such a simple program, but this is an essential element of
incremental development: start simple and test as you go.

The output is as expected.

1
2
3
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Now we’ll add a second loop for b. It might be tempting to write something like this:

for a=1:3
disp(a)

end
for b=1:4

disp(b)
end

But that loops through the values of a and then loops through the values of b, and that’s not
what we want.

Instead, we want to consider every possible pair of values, like this:

for a=1:3
for b=1:4

disp([a,b])
end

end

Now one loop is inside the other. The inner loop gets executed three times, once for each value
of a, so here’s what the output looks like (I’ve adjusted the spacing to make the structure
clear):

>> find_triples
1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4

The left column shows the values of a and the right column shows the values of b.

The next step is to search for values of c that might make a Pythagorean triple. The largest
possible value for c is a + b, because otherwise we couldn’t form a triangle (see https://
greenteapress.com/matlab/triangle).

https://greenteapress.com/matlab/triangle
https://greenteapress.com/matlab/triangle
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for a=1:3
for b=1:4

for c=1:a+b
disp([a,b,c])

end
end

end

After each small change, run the program again and check the output.

6.6 Putting It Together

Now instead of displaying all of the triples, we’ll add an if statement and display only
Pythagorean triples:

for a=1:3
for b=1:4

for c=1:a+b
if is_pythagorean(a, b, c)

disp([a,b,c])
end

end
end

end

The result is just one triple:

>> find_triples
3 4 5

You might notice that we’re wasting some effort here. After checking the case when a is 1 and
b is 2, there’s no point in checking the case when a is 2 and b is 1. We can save the extra work
by adjusting the range of b:

for b=a:4

We can save even more work by adjusting the range of c:

for c=b:a+b

Here’s the final version:
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for a=1:3
for b=a:4

for c=b:a+b
if is_pythagorean(a, b, c)

disp([a,b,c])
end

end
end

end

6.7 Encapsulation and Generalization

As a script, this program has the side effect of assigning values to a, b, and c, which would
be bad if any of those names were in use. By wrapping the code in a function, we can avoid
name collisions; this process is called encapsulation because it isolates this program from the
workspace.

The first draft of the function takes no input variables:

function res = find_triples()
for a=1:3

for b=a:4
for c=b:a+b

if is_pythagorean(a, b, c)
disp([a,b,c])

end
end

end
end

end

The empty parentheses in the signature are not necessary, but they make it apparent that
there are no input variables. Similarly, it’s a good idea when calling the new function to use
parentheses as a reminder that it’s a function, not a script:

>> find_triples()

The output variable isn’t necessary, either; it never gets assigned a value. But I put it there
as a matter of habit and so my function signatures all have the same structure.

The next step is to generalize this function by adding input variables. The natural generaliza-
tion is to replace the constant values 3 and 4 with a variable so we can search an arbitrarily
large range of values.
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function res = find_triples(n)
for a=1:n

for b=a:n
for c=b:a+b

if is_pythagorean(a, b, c)
disp([a,b,c])

end
end

end
end

end

Here are the results for the range from 1 to 15:

>> find_triples(15)
3 4 5
5 12 13
6 8 10
8 15 17
9 12 15

The triples 5, 12, 13 and 8, 15, 17 are new, but the others are just multiples of the 3, 4, 5 triangle.

6.8 Adding a continue Statement

As a final improvement, let’s modify the function so it only displays the “lowest” of each
Pythagorean triple, and not the multiples.

The simplest way to eliminate the multiples is to check whether a and b share a common
factor. If they do, dividing both by the common factor yields a smaller, similar triangle that
has already been checked.

MATLAB provides a gcd function that computes the greatest common divisor of two numbers.
If gcd(a,b) is greater than 1, a and b share a common factor and we can use the continue
statement to skip to the next pair. Listing 6.1 contains the final version of this function:

Listing 6.1: Our final Pythagorean triples function

function res = find_triples(n)
for a=1:n

for b=a:n
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for c=b:a+b
if gcd(a,b) > 1

continue
end
if is_pythagorean(a, b, c)

disp([a,b,c])
end

end
end

end
end

The continue statement causes the program to end the current iteration immediately, jump
to the top of the loop, and “continue” with the next iteration.

In this case, since there are three loops, it might not be obvious which loop to jump to, but
the rule is to jump to the innermost loop (which is what we want).

Here are the results with n = 40:

>> find_triples(40)
3 4 5
5 12 13
7 24 25
8 15 17
9 40 41

12 35 37
20 21 29

6.9 How Functions Work

Let’s review the sequence of steps that occur when you call a function:

1. Before the function starts running, MATLAB creates a new workspace for it.

2. MATLAB evaluates each of the arguments and assigns the resulting values, in order, to
the input variables (which live in the new workspace).

3. The body of the code executes. Somewhere in the body a value gets assigned to the
output variable.
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4. The function’s workspace is destroyed; the only thing that remains is the value of the
output variable and any side effects the function had (like displaying values).

5. The program resumes from where it left off. The value of the function call is the value
of the output variable.

When you’re reading a program and you come to a function call, there are two ways to interpret
it. You can think about the mechanism I just described, and follow the execution of the program
into the function and back, or you can assume that the function works correctly, and go on to
the next statement after the function call.

When you use a built-in function, it’s natural to assume that it works, in part because you
don’t usually have access to the code in the body of the function. But when you start writing
your own functions, you might find yourself following the “flow of execution.” This can be
useful while you are learning, but as you gain experience, you should get more comfortable
with the idea of writing a function, testing it to make sure it works, and then forgetting about
the details of how it works.

Forgetting about details is called abstraction; in the context of functions, abstraction means
forgetting about how a function works and just assuming (after appropriate testing) that it
works. For many people, it takes some time to get comfortable with functions. If you are
one of them, you might be tempted to avoid functions, and sometimes you can get by without
them.

But experienced programmers use functions extensively, for several good reasons. First, each
function has its own workspace, so using functions helps avoid name collisions. Functions also
lend themselves to incremental development: you can debug the body of the function first (as
a script), then encapsulate it as a function, and then generalize it by adding input variables.

Also, functions allow you to divide a large problem into small pieces, work on the pieces one
at a time, and then assemble a complete solution.

Once you have a function working, you can forget about the details of how it works and
concentrate on what it does. This process of abstraction is an important tool for managing
the complexity of large programs.

6.10 Chapter Review

In this chapter, we encountered relational operators and if statements, and we used them to
develop a program that searches for Pythagorean triples. We wrote a logical function, which
is a function that returns a logical value (1 for “true” or 0 for “false”).
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We also saw an example of incremental development, or developing programs gradually, adding
just a few lines of code at a time and testing as you go. If you develop programs this way, you
will have fewer bugs and you will find them more quickly.

This chapter defined two new terms: encapsulation is the process of wrapping part of a program
in a function in order to limit interactions (including name collisions) between the function
and the rest of the program; abstraction is the process of ignoring the details of how a function
works in order to focus on a simpler model of what the function does.

The next chapter introduces a new tool, called fzero, that we’ll use to solve nonlinear equa-
tions.

6.11 Exercise

Before you go on, you might want to work on the following exercise.

Exercise 6.1. There is an interesting connection between Fibonacci numbers and Pythagorean
triples. If F is a Fibonacci sequence, then

(
FiFi+3, 2Fi+1Fi+2, F

2
i+1 + F 2

i+2

)
is a Pythagorean triple, for all i ≥ 1.

Write a function named fib_triple that takes n as an input variable, computes the first
n Fibonacci numbers, stores them in a vector, and checks whether this formula produces
Pythagorean triples for numbers in the sequence.
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Chapter 7

Zero-Finding

In this chapter we’ll use the MATLAB function fzero to solve nonlinear equations. Nonlinear
equations are useful for modeling physical systems; for example, in one of the exercises at the
end of this chapter, you can use fzero to find the equilibrium point of an object floating on
water. Using fzero is also an opportunity to learn about function handles, which we’ll need
for the following chapters.

7.1 Solving Nonlinear Equations

What does it mean to “solve” an equation? That may seem like an obvious question, but let’s
take a minute to think about it, starting with a simple example.

Suppose we want to know the value of a variable, x, but all we know about it is the relationship
x2 = a. If you’ve taken algebra, you probably know how to solve this equation: you take the
square root of both sides and get x = ±

√
a. Then, with the satisfaction of a job well done,

you move on to the next problem.

But what have you really done? The relationship you derived is equivalent to the relationship
you started with—they contain the same information about x—so why is the second one
preferable to the first?

There are two reasons. One is that the relationship is now explicit in x: because x is all alone
on the left side, we can treat the right side as a recipe for computing x, assuming that we know
the value of a.
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The other reason is that the recipe is written in terms of operations we know how to perform.
Assuming that we know how to compute square roots, we can compute the value of x for any
value of a.

When people talk about solving an equation, what they usually mean is something like “finding
an equivalent relationship that is explicit in one of the variables.” In the context of this book,
that’s what we’ll call an analytic solution, to distinguish it from a numerical solution, which is
what we are going to do next.

To demonstrate a numerical solution, consider the equation x2 − 2x = 3. You could solve this
analytically, either by factoring it or by using the quadratic formula, and you would discover
that there are two solutions, x = 3 and x = −1. Alternatively, you could solve it numerically
by rewriting it as x = ±

√
2x+ 3.

This equation is not explicit, since x appears on both sides, so it’s not clear that this move
did any good at all. But suppose we had reason to expect a solution near 4. We could start
with x = 4 as an initial value and then use the equation x =

√
2x+ 3 to compute successive

approximations of the solution. (To understand why this works, see https://greenteapress.
com/matlab/fixed.)

Here’s what happens:

>> x = 4;
>> x = sqrt(2*x+3)
x = 3.3166

>> x = sqrt(2*x+3)
x = 3.1037

>> x = sqrt(2*x+3)
x = 3.0344

>> x = sqrt(2*x+3)
x = 3.0114

>> x = sqrt(2*x+3)
x = 3.0038

After each iteration, x is closer to the correct answer, and after five iterations the relative error
is about 0.1 percent, which is good enough for most purposes.

Techniques that generate numerical solutions are called numerical methods. The nice thing
about the method we just used is that it’s simple. But it doesn’t always work, and it’s not
often used in practice. We’ll see a better alternative in the next section.

https://greenteapress.com/matlab/fixed
https://greenteapress.com/matlab/fixed
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7.1.1 Zero-Finding

The MATLAB function fzero that uses numerical methods to search for solutions to nonlinear
equations. In order to use it, we have to rewrite the equation as an error function, like this:

f(x) = x2 − 2x− 3

The value of the error function is 0 if x is a solution and nonzero if it is not. This function is
useful because we can use values of f(x), evaluated at various values of x, to infer the location
of the solutions. And that’s what fzero does. Values of x where f(x) = 0 are called zeros of
the function or roots.

To use fzero you have to define a MATLAB function that computes the error function, like
this:

function res = error_func(x)
res = x^2 - 2*x -3;

end

You can call error_func from the Command Window and confirm that 3 and −1 are zeros:

>> error_func(3)
ans = 0

>> error_func(-1)
ans = 0

But let’s pretend that we don’t know where the roots are; we only know that one of them is
near 4. Then we could call fzero like this:

>> fzero(@error_func, 4)
ans = 3.0000

Success! We found one of the zeros.

The first argument is a function handle that specifies the error function. The @ symbol allows
us to name the function without calling it. The interesting thing here is that you’re not actually
calling error_func directly; you’re just telling fzero where it is. In turn, fzero calls your
error function—more than once, in fact.

The second argument is the initial value. If we provide a different value, we get a different root
(at least sometimes).
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>> fzero(@error_func, -2)
ans = -1

Alternatively, if you know two values that bracket the root, you can provide both.

>> fzero(@error_func, [2,4])
ans = 3

The second argument is a vector that contains two elements.

You might be curious to know how many times fzero calls your function, and where. If you
modify error_func so that it displays the value of x when it is called and then run fzero
again, you get

>> fzero(@error_func, [2,4])
x = 2
x = 4
x = 2.75000000000000
x = 3.03708133971292
x = 2.99755211623500
x = 2.99997750209270
x = 3.00000000025200
x = 3.00000000000000
x = 3
x = 3
ans = 3

Not surprisingly, it starts by computing f(2) and f(4). Then it computes a point in the
interval, 2.75, and evaluates f there. After each iteration, the interval gets smaller and the
guess gets closer to the true root. The fzero function stops when the interval is so small that
the estimated zero is correct to about 15 digits.

If you’d like to know more about how fzero works, see Chapter 15.2.

7.1.2 What Could Go Wrong?

The most common problem people have with fzero is leaving out the @. In that case, you get
something like so:

>> fzero(error_func, [2,4])
Not enough input arguments.

Error in error_func (line 2)
res = x^2 - 2*x -3;
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The error occurs because MATLAB treats the first argument as a function call, so it calls
error_func with no arguments.

Another common problem is writing an error function that never assigns a value to the out-
put variable. In general, functions should always assign a value to the output variable, but
MATLAB doesn’t enforce this rule, so it’s easy to forget.

For example, if you write

function res = error_func(x)
y = x^2 - 2*x -3

end

and then call it from the Command Window,

>> error_func(4)
y = 5

it looks like it worked, but don’t be fooled. This function assigns a value to y, and it displays
the result, but when the function ends, y disappears along with the function’s workspace. If
you try to use it with fzero, you get

>> fzero(@error_func, [2,4])
y = -3

Error using fzero (line 231)
FZERO cannot continue because user-supplied function_handle ==>
error_func failed with the error below.

Output argument "res" (and maybe others) not assigned during call
to "error_func".

If you read it carefully, this is a pretty good error message, provided you understand that
“output argument” and “output variable” are the same thing.

You would have seen the same error message when calling error_func from the interpreter, if
you had assigned the result to a variable:

>> x = error_func(4)
y = 5

Output argument "res" (and maybe others) not assigned during
call to "error_func".
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Another thing can go wrong: if you provide an interval for the initial guess and it doesn’t
actually contain a root, you get

>> fzero(@error_func, [0,1])
Error using fzero (line 272)
The function values at the interval endpoints must differ in sign.

There is one other thing that can go wrong when you use fzero, but this one is less likely to
be your fault. It’s possible that fzero won’t be able to find a root.

Generally, fzero is robust, so you may never have a problem, but you should remember that
there is no guarantee that fzero will work, especially if you provide a single value as an initial
guess. Even if you provide an interval that brackets a root, things can still go wrong if the
error function is discontinuous.

7.1.3 Choosing an Initial Value

The better your initial value is, the more likely it is that fzero will work, and the fewer
iterations it will need.

When you’re solving problems in the real world, you’ll usually have some intuition about the
answer. This intuition is often enough to provide a good initial guess.

If not, another way to choose an initial guess is to plot the error function and approximate the
zeros visually. If you have a function like error_func that takes a scalar input variable and
returns a scalar output variable, you can plot it with ezplot:

>> ezplot(@error_func, [-2,5])

The first argument is a function handle; the second is the interval you want to plot the function
in. By examining the plot, you can estimate the locations of the two roots.

7.1.4 Vectorizing Functions

When you call ezplot, you might get the following warning (or error, if you’re using Octave):

Warning: Function failed to evaluate on array inputs;
vectorizing the function may speed up its evaluation and
avoid the need to loop over array elements.
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This means that MATLAB tried to call error_func with a vector, and it failed. The problem
is that it uses the * and ^ operators. With vectors, those operators don’t do what we want,
which is element-wise multiplication and exponentiation (see “Vector Arithmetic” on page 38).

If you rewrite error_func like this:

function res = error_func(x)
res = x.^2 - 2.*x -3;

end

the warning message goes away, and ezplot runs faster.

7.2 Debugging

When you start writing longer programs, you might spend more time debugging. So we’ll end
this chapter with some debugging tips.

7.2.1 More Name Collisions

Functions and variables occupy the same workspace, which means that whenever a name
appears in an expression, MATLAB starts by looking for a variable with that name; if there
isn’t one, it looks for a function.

As a result, if you have a variable with the same name as a function, the variable shadows the
function; metaphorically, you can’t see the function because the variable is in the way.

For example, if you assign a value to sin and then try to use the sin function, you might get
an error:

>> sin = 3;
>> sin(5)
Index exceeds the number of array elements (1).

'sin' appears to be both a function and a variable.
If this is unintentional, use 'clear sin' to remove
the variable 'sin' from the workspace.

Since the value we assigned to sin is a number, and a number is considered a 1 × 1 matrix,
MATLAB tries to access the fifth element of the matrix and finds that there isn’t one.
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In this case, MATLAB is able to detect the error, and the error message is pretty helpful. But
if the value of sin were a vector, or if the argument were smaller, you would be in trouble. For
example,

>> sin = 3;
>> sin(1)
ans = 3

Just to review, the sine of 1 is not 3!

You can avoid these problems by choosing function names carefully. Use long, descriptive
names for functions, not single letters like f. To be even clearer, use function names that end
in func. And before you define a function, check whether MATLAB already has a function
with the same name.

7.2.2 Debugging Your Head

When you’re working with a new function or a new language feature for the first time, you
should test it in isolation before you put it into your program.

For example, suppose you know that x is the sine of some angle and you want to find the
angle. You find the MATLAB function asin, and you’re pretty sure it computes the inverse
sine function. Pretty sure is not good enough; you want to be very sure.

Since we know sin 0 = 0, we could try

>> asin(0)
ans = 0

which is correct. Now, we also know that the sine of 90°is 1, so if we try asin(1), we expect
the answer to be 90, right?

>> asin(1)
ans = 1.5708

Oops. We forgot that the trig functions in MATLAB work in radians, not degrees. The answer
we got is π/2, which is 90°, in radians.

With this kind of testing, you’re not really checking for errors in your program; you’re checking
your understanding. If you make an error because you are confused about howMATLAB works,
it might take a long time to find, because when you look at the code, it looks right.

Which brings us to the Seventh Theorem of Debugging:

The worst bugs aren’t in your code; they’re in your head.
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7.3 Chapter Review

This chapter introduced fzero, a function we can use to solve nonlinear equations. To use
fzero, you have to write an error function and pass a function handle as an argument. Using
functions in this way can be tricky at first, but get comfortable with it, because we are going
to use it a lot.

Here are some terms from this chapter you might want to remember.

If we can solve an equation by performing algebraic operations and deriving an explicit way to
compute a value, the result is an analytic solution. Otherwise, we can use a numerical method,
which finds a numerical solution to the equation, which is usually an approximation.

To solve nonlinear equations, we often rewrite them as functions and then find one or more
zeros of the function, that is, arguments that make the value of the function 0.

A function handle is a way of referring to a function by name (and passing it as an argument)
without calling it.

Finally, shadowing is a kind of name collision in which a new definition causes an existing
definition to become invisible. In MATLAB, variable names can shadow built-in functions
(with hilarious results).

In the next chapter, we’ll write functions that take vectors as inputs and return vectors as
outputs.

7.4 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 7.1. 1. Write a function called cheby6 that evaluates the sixth Chebyshev poly-
nomial. It should take an input variable, x, and return

32x6 − 48x4 + 18x2 − 1

2. Use ezplot to display a graph of this function in the interval from −1 to 1. Estimate
the location of any zeros in this range.

3. Use fzero to find as many different roots as you can. Does fzero always find the root
that is closest to the initial value?
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Exercise 7.2. When a duck is floating on water, how much of its body is submerged?1

To estimate a solution to this problem, we’ll assume that the submerged part of a duck is well
approximated by a section of a sphere. If a sphere with radius r is submerged in water to a
depth d, the volume of the sphere below the water line is

V =
π

3
(3rd2 − d3) as long as d < 2r

We’ll also assume that the density of a duck is ρ = 0.3 g/cm3 (0.3 times the density of water)
and that its mass is 4

3πr
3ρ g.

Finally, according to the law of buoyancy, an object floats at the level where the weight of the
displaced water equals the total weight of the object.

Here are some suggestions for how to proceed:

1. Write an equation relating ρ, d, and r.

2. Rearrange the equation so the right-hand side is zero. Our goal is to find values of d that
are roots of this equation.

3. Write a MATLAB function that evaluates this function. Test it, then make it a quiet
function.

4. Make a guess about the value of d0 to use as an initial value.

5. Use fzero to find a root near d0.

6. Check to make sure the result makes sense. In particular, check that d < 2r, because
otherwise the volume equation doesn’t work!

7. Try different values of ρ and r and see if you get the effect you expect. What happens
as ρ increases? Goes to infinity? Goes to zero? What happens as r increases? Goes to
infinity? Goes to zero?

1This exercise is adapted from C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 4th edition
(Boston: Addison-Wesley, 1989).



Chapter 8

Functions of Vectors

Now that we have functions and vectors, we’ll put them together to write functions that take
vectors as input variables and return vectors as output variables. You’ll also see two patterns
for computing with vectors: existential and universal quantification.

8.1 Functions and Vectors

In this section we’ll look at common patterns involving functions and vectors, and you will
learn how to write a single function that can work with vectors as well as scalars.

8.1.1 Vectors as Input Variables

Since many of the built-in functions take vectors as arguments, it should come as no surprise
that you can write functions that take vectors as input. Here’s a simple (but not very useful)
example:

function res = display_vector(X)
for i=1:length(X)

display(X(i))
end

end
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There’s nothing special about this function. The only difference from the scalar functions we’ve
seen is that this one uses a capital letter to remind us that X is a vector.

Using display_vector doesn’t actually return a value; it just displays the elements of the
vector it gets as an input variable:

>> display_vector(1:3)
1
2
3

Here’s a more interesting example that encapsulates the code from Listing 4.2 on page 42 to
add up the elements of a vector:

function res = mysum(X)
total = 0;
for i=1:length(X)

total = total + X(i);
end
res = total;

end

I called this function mysum to avoid a collision with the built-in function sum, which does
pretty much the same thing.

Here’s how you call it from the Command Window:

>> total = mysum(1:3)
total = 6

Because this function has an output variable, I made a point of assigning it to a variable.

8.1.2 Vectors as Output Variables

There’s also nothing wrong with assigning a vector to an output variable. Here’s an example
that encapsulates the code from Listing 4.3 on page 43:

function res = mysquare(X)
for i=1:length(X)

Y(i) = X(i)^2;
end
res = Y;

end
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This function squares each element of X and stores it as an element of Y. Then it assigns Y to
the output variable, res. Here’s how we use this function:

>> V = mysquare(1:3)
V = 1 4 9

The input variable is a vector with the elements 1,2,3. The output variable is a vector with
the elements 1,4,9.

8.1.3 Vectorizing Functions

Functions that work on vectors will almost always work on scalars as well, because MATLAB
considers a scalar to be a vector with length 1.

>> mysum(17)
ans = 17

>> mysquare(9)
ans = 81

Unfortunately, the converse isn’t always true. If you write a function with scalar inputs in
mind, it might not work on vectors.

But it might! If the operators and functions you use in the body of your function work on
vectors, then your function will probably work on vectors. For example, here’s the very first
function we wrote:

function res = myfunc(x)
s = sin(x);
c = cos(x);
res = abs(s) + abs(c);

end

And lo! It turns out to work on vectors:

>> Y = myfunc(1:3)
Y = 1.3818 1.3254 1.1311

Some of the other functions we wrote don’t work on vectors, but they can be patched up with
just a little effort. For example, here’s hypotenuse from Section 5.1:
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function res = hypotenuse(a, b)
res = sqrt(a^2 + b^2);

end

This doesn’t work on vectors because the ^ operator tries to do matrix exponentiation, which
only works on square matrices.

>> hypotenuse(1:3, 1:3)
Error using ^ (line 51)
Incorrect dimensions for raising a matrix to a power.
Check that the matrix is square and the power is a scalar.
To perform element-wise matrix powers, use '.^'.

But if you replace ^ with the element-wise operator (.^), it works!

>> A = [3,5,8];
>> B = [4,12,15];
>> C = hypotenuse(A, B)

C = 5 13 17

The function matches up corresponding elements from the two input vectors, so the elements
of C are the hypotenuses of the pairs (3, 4), (5, 12), and (8, 15), respectively.

In general, if you write a function using only element-wise operators and functions that work
on vectors, the new function will also work on vectors.

8.1.4 Sums and Differences

Another common vector operation is cumulative sum, which takes a vector as an input and
computes a new vector that contains all of the partial sums of the original. In math notation,
if V is the original vector, the elements of the cumulative sum, C, are

Ci =

i∑
j=1

Vj

In other words, the ith element of C is the sum of the first i elements from V . MATLAB
provides a function named cumsum that computes cumulative sums:
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>> X = 1:5

X = 1 2 3 4 5

>> C = cumsum(X)

C = 1 3 6 10 15

The inverse operation of cumsum is diff, which computes the difference between successive
elements of the input vector.

>> D = diff(C)

D = 2 3 4 5

Notice that the output vector is shorter by one than the input vector. As a result, MAT-
LAB’s version of diff is not exactly the inverse of cumsum. If it were, we would expect
cumsum(diff(X)) to be X:

>> cumsum(diff(X))

ans = 1 2 3 4

But it isn’t.

Exercise 8.1. Write a function named mydiff that computes the inverse of cumsum so that
cumsum(mydiff(X)) and mydiff(cumsum(X)) both return X.

8.1.5 Products and Ratios

The multiplicative version of cumsum is cumprod, which computes the cumulative product. In
math notation, that’s

Pi =

i∏
j=1

Vj

In MATLAB, that looks like

>> V = 1:5
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V = 1 2 3 4 5

>> P = cumprod(V)

P = 1 2 6 24 120

MATLAB doesn’t provide the multiplicative version of diff, which would be called ratio,
and which would compute the ratio of successive elements of the input vector.

Exercise 8.2. Write a function named myratio that computes the inverse of cumprod, so that
cumprod(myratio(X)) and myratio(cumprod(X)) both return X.

You can use a loop, or if you want to be clever, you can take advantage of the fact that
eln a+ln b = ab.

8.2 Computing with Vectors

In this section, we’ll look at two common patterns for working with vectors and connect them
to the corresponding ideas from mathematics, existential and universal quantification. And
you’ll learn about logical vectors, which contain the Boolean values 0 and 1.

8.2.1 Existential Quantification

It’s often useful to check the elements of a vector to see if there are any that satisfy a condition.
For example, you might want to know if there are any positive elements. In mathematical terms,
checking whether something exists is called existential quantification, and it’s denoted with the
symbol ∃, which is pronounced “there exists.” For example,

∃x in S : x > 0

means, “there exists some element x in the set S such that x > 0.” In MATLAB, it’s natural to
express this idea with a logical function, like exists, that returns 1 if there is such an element
and 0 if there is not.

function res = exists(X)
for i=1:length(X)

if X(i) > 0
res = 1;
return

end
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end
res = 0;

end

We haven’t seen the return statement before ; it’s similar to break except that it breaks out
of the whole function, not just the loop. That behavior is what we want here because as soon
as we find a positive element, we know the answer (it exists!) and we can end the function
immediately without looking at the rest of the elements.

If we get to the end of the loop, that means we didn’t find what we were looking for, so the
result is 0.

8.2.2 Universal Quantification

Another common operation on vectors is to check whether all of the elements satisfy a condi-
tion, which is called universal quantification, denoted with the symbol ∀ and pronounced “for
all.” So the expression

∀x in S : x > 0

means “for all elements x in the set S, x > 0.”

One way to evaluate this expression in MATLAB is to reduce the problem to existential quan-
tification, that is, to rewrite

∀x in S : x > 0

to the following:
∼∃x in S : x ≤ 0

where ∼∃ means “does not exist.” In other words, checking that all the elements are positive
is the same as checking that there are no elements that are nonpositive.

Exercise 8.3. Write a function named forall that takes a vector and returns 1 if all of the
elements are positive and 0 if there are any nonpositive elements.

8.2.3 Logical Vectors

When you apply a logical operator to a vector, the result is a logical vector : a vector whose
elements are the logical values 1 and 0. Let’s look at an example:
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>> V = -3:3

V = -3 -2 -1 0 1 2 3

>> L = V>0

L = 0 0 0 0 1 1 1

In this example, L is a logical vector whose elements correspond to the elements of V. For each
positive element of V, the corresponding element of L is 1.

Logical vectors can be used like flags to store the state of a condition. And they are often
used with the find function, which takes a logical vector and returns a vector that contains
the indices of the elements that are “true.”

Applying find to L from the example above yields

>> find(L)

ans = 5 6 7

which indicates that elements 5, 6, and 7 have the value 1.

If there are no “true” elements, the result is an empty vector.

>> find(V>10)

ans = Empty matrix: 1x0

This example computes the logical vector and passes it as an argument to find without as-
signing it to an intermediate variable. You can read this version abstractly as “find the indices
of elements of V that are greater than 10.”

We can also use find to write exists more concisely:

function res = exists(X)
L = find(X>0)
res = length(L) > 0

end

Exercise 8.4. Write a version of forall using find.
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8.3 Debugging in Four Acts

When you’re debugging a program, and especially if you’re working on a hard bug, there are
four things to try:

Reading Examine your code, read it back to yourself, and check that it means what you
meant to say.

Running Experiment by making changes and running different versions. Often, if you display
the right thing at the right place in the program, the problem becomes obvious, but you
might have to invest time building scaffolding.

Ruminating Take some time to think! What kind of error is it: syntax, runtime, or logical?
What information can you get from the error messages or from the output of the program?
What kind of error could cause the problem you’re seeing? What did you change last,
before the problem appeared?

Retreating At some point, the best thing to do is back off, undoing recent changes, until
you get back to a program that works and that you understand. Then you can start
rebuilding.

Beginning programmers sometimes get stuck on one of these activities and forget the others.
Each activity comes with its own failure mode. For example, reading your code might help if
the problem is a typographical error, but not if the problem is a conceptual misunderstanding.
If you don’t understand what your program does, you can read it 100 times and never see the
error, because the error is in your head.

Running experiments can help, especially if you run small, simple tests. But if you run ex-
periments without thinking or reading your code, you might fall into a pattern I call “random
walk programming,” which is the process of making random changes until the program does
the right thing. Needless to say, random walk programming can take a long time.

The way out is to take more time to think. Debugging is like an experimental science. You
should have at least one hypothesis about what the problem is. If there are two or more
possibilities, try to think of a test that would eliminate one of them.

Taking a break sometimes helps with the thinking. So does talking. If you explain the problem
to someone else (or even yourself), you will sometimes find the answer before you finish asking
the question.

But even the best debugging techniques will fail if there are too many errors or if the code you
are trying to fix is too big and complicated. Sometimes the best option is to retreat, simplifying
the program until you get to something that works, and then rebuild.
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Beginning programmers are often reluctant to retreat, because they can’t stand to delete a
line of code (even if it’s wrong). If it makes you feel better, copy your program into another
file before you start stripping it down. Then you can paste the pieces back in, a little bit at a
time.

To summarize, here’s the Eighth Theorem of Debugging:

Finding a hard bug requires reading, running, ruminating, and sometimes retreat-
ing. If you get stuck on one of these activities, try the others.

8.4 Chapter Review

This chapter presents patterns for working with vectors, including existential and universal
quantification. We learned how to write functions that take vectors as input variables and
return vectors as output variables. And we learned about logical vectors, which contain the
values 1 and 0 to represent true and false.

Some of the functions in this chapter are not idiomatic MATLAB; many of them can be
done more simply using built-in MATLAB operators and functions, rather than writing them
yourself. But these examples demonstrate concepts you will need to know when you work on
more complicated problems.

In the next chapter, we will apply the tools we have learned so far to the central goal of this
book, modeling physical systems.
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Ordinary Differential Equations

In the previous chapter, we found the equilibrium point where a duck would float on water.
This kind of problem is called static because it does not move. This chapter introduces dynamic
problems, which involve things that change over time.

Also, you’ll learn about a mathematical tool for describing physical systems, differential equa-
tions, and two computational tools for solving them, Euler’s method and ode45.

But first I have a quick suggestion about organizing code in files.

9.1 Functions and Files

So far we’ve only put one function in each file. It’s also possible to put more than one function
in a file, but only the first one, the top-level function, can be called from the Command
Window. The other helper functions can be called from anywhere inside the file, but not from
the Command Window or any other file.

Keeping multiple functions in one file is convenient, but it makes debugging difficult because
you can’t call helper functions from the Command Window.

To help with this problem, I often use the top-level function to develop and test my helper
functions. For example, to write a program for Section 7.2, I would create a file named duck.m
and start with a top-level function named duck that takes no input variables and returns no
output value.
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Then I would write a function named error_func to evaluate the error function for fzero. To
test error_func, I would call it from duck and then call duck from the Command Window.

Here’s what my first draft might look like:

function res = duck()
error = error_func(10)

end

function res = error_func(d)
rho = 0.3; % density in g / cm^3
r = 10; % radius in cm
res = d;

end

This program is not complete, but it is enough code to test. Once this program is working,
I would finish writing error_func. And once I’d finished and tested error_func, I would
modify duck to use fzero.

This problem might only require two functions, but if there were more, I could write and test
them one at a time and then combine them into a working program.

Now, let’s get back to differential equations.

9.2 Differential Equations

A differential equation (DE) is an equation that describes the derivatives of an unknown func-
tion. “Solving a DE” means finding a function whose derivatives satisfy the equation.

For example, suppose we would like to predict the population of yeast growing in a nutrient
solution. Assume that we know the initial population is 5 billion yeast cells. When yeast grow
in particularly yeast-friendly conditions, the rate of growth at any point in time is proportional
to the current population. If we define y(t) to be the population at a time t, we can write the
following equation for the rate of growth:

dy

dt
(t) = ay(t)

where dy
dt (t) is the derivative of y(t) and a is a constant that characterizes how quickly the

population grows. This equation is differential because it relates a function to one of its
derivatives.
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It is an ordinary differential equation (ODE) because all the derivatives involved are taken
with respect to the same variable. If it related derivatives with respect to different variables
(partial derivatives), it would be a partial differential equation (PDE).

This equation is first order because it involves only first derivatives. If it involved second
derivatives, it would be second order, and so on.

Lastly, it’s linear because each term involves t, y, or dy/dt raised to the first power; if any of
the terms involved products or powers of t, y, or dy/dt it would be nonlinear.

Now suppose we want to predict the yeast population in the future. We can do that using
Euler’s method.

9.3 Euler’s Method

Here’s a test to see if you’re as smart as Leonhard Euler. Let’s say you arrive at time ( t)
and measure the current population (y) and the rate of change (r). What do you think the
population will be after some period of time ∆t has elapsed?

If you said y + r∆t, congratulations! You just invented Euler’s method.

This estimate is based on the assumption that r is constant, but in general it’s not, so we only
expect the estimate to be good if r changes slowly and ∆t is small.

What if we want to make a prediction when ∆t is large? One option is to break ∆t into smaller
pieces, called time steps. Then we can use the following equations to get from one time step
to the next:

Ti+1 = Ti + dt

Yi+1 = Yi +
df

dt
(t) dt

Here, Ti is a sequence of times where we estimate the value of y, and Yi is the sequence of
estimates. For each index i, Yi is an estimate of y(Ti).

If the rate doesn’t change too fast and the time step isn’t too big, Euler’s method is accurate
enough for most purposes.
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9.4 Implementing Euler’s Method

As an example we’ll use Euler’s method to solve the equation from page 88,

dy

dt
(t) = ay(t)

with the initial condition y(0) = 5 billion cells and the growth parameter a = 0.2 per hour.

As a first step, create a file named euler.m with a top-level function and a helper function:

function res = euler()
T(1) = 0;
Y(1) = 5;
r = rate_func(T(1), Y(1))

end

function res = rate_func(t, y)
a = 0.2;
dydt = a * y;
res = dydt;

end

In euler we initialize the initial conditions and then call rate_func, so called because it
computes the rate of growth in the population.

After testing these functions, we can add code to euler to compute these difference equations:

Ti+1 = Ti + ∆t

Yi+1 = Yi + r∆t

where r is the rate of growth computed by rate_func. Listing 9.1 has the code we need:

Listing 9.1: A function implementing Euler’s method
function res = euler()

T(1) = 0;
Y(1) = 5;
dt = 0.1;

for i=1:40
r = rate_func(T(i), Y(i));
T(i+1) = T(i) + dt;
Y(i+1) = Y(i) + r * dt;
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end
plot(T, Y)

end

Before the loop, we create two vectors, T and Y, and set the first element of each with the
initial conditions; dt, which is the size of the time steps, is 0.1 hours.

Inside the loop, we compute the growth rate based on the current time, T(i), and population,
Y(i). You might notice that the rate depends only on population, but we pass time as an
input variable anyway, for reasons you’ll see soon.

After computing the growth rate, we add an element both T and Y. Then, when the loop exits,
we plot Y as a function of T.

If you run the code, you should get a plot of population over time, as shown in Figure 9.1.
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Figure 9.1: Solution to a simple differential equation by Euler’s method

As you can see, the population doubles in a little less than 4 hours.

9.5 Solving ODEs with ode45

A limitation of Euler’s method is that it assumes that the derivative is constant between time
steps, and that’s not generally true. Fortunately, there are better methods that estimate the
derivative between time steps, and they are much more accurate.
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MATLAB provides a function called ode45 that implements one of these methods. In this
section I’ll explain how to use it; you can read more about how it works in “How ode45 Works”
on page 149.

In order to use ode45, you have to write a function that evaluates dy/dt as a function of t and
y. Fortunately, we already have one, called rate_func:

function res = rate_func(t, y)
a = 0.2;
dydt = a * y;
res = dydt;

end

We can call ode45 from the Command Window like this:

[T, Y] = ode45(@rate_func, [0, 4], 5);
plot(T, Y)

The first argument is a function handle, as we saw in Chapter 7. The second argument is the
time interval where we want to evaluate the solution; in this case the interval is from t = 0 to
t = 4 hours. The third argument is the initial population, 5 billion cells.

The ode45 function is the first function we’ve seen that returns two output variables. In order
to store them, we have to assign them to two variables, T and Y. Figure 9.2 shows the results.

The solid line is the estimate we computed with Euler’s method; the dashed line is the solution
from ode45.

For the first 2–3 hours, the two solutions are visually indistinguishable. During the last hour,
they diverge slightly; at 4 hours, the difference is less than 1 percent.

For many purposes, the difference between Euler’s method and ode45 is the least of our worries.
In this example, we probably don’t know the initial population with perfect accuracy or the
growth constant, a. Also, the assumption that the growth rate only depends on population is
probably not true. Any of these modeling errors could be bigger than 1 percent.

However, for some problems, Euler’s method can be off by a lot more than 1 percent. In
those cases ode45 is almost always more accurate, for two reasons: first, it computes the rate
function several times per time step; second, if the time step is too big, ode45 can detect the
problem and shrink the time step. For more details, see “How ode45 Works” on page 149.
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Figure 9.2: Solutions to a simple differential equation using Euler’s method and ode45

9.6 Time Dependence

Looking at rate_func in the previous section, you might notice that it takes t as an input
variable but doesn’t use it. That’s because the growth rate does not depend on time—bacteria
don’t know what time it is.

But rats do. Or, at least, they know what season it is. Suppose that the growth rate for rats
depends on the current population and the availability of food, which varies over the course of
the year. The differential equation might be something like

dy

dt
(t) = ay(t) (1− cos(ωt))

where t is time in days and y(t) is the population at time t. Because the growth rate depends
on time, this differential equation is time dependent.

The variables a and ω are parameters, which are values that quantify a physical aspect of the
scenario. Parameters are often constants, but in some models they vary in time.

In this example, a characterizes the reproductive rate per day, and ω is the frequency of a
periodic function that describes the effect of varying food supply on reproduction.

We’ll use the values a = 0.002 and ω = 2π/365 (one cycle per year). The growth rate is lowest
at t = 0, on January 1, and highest at t = 365/2, on June 30.
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Now we can write a function that evaluates the growth rate:

function res = rate_func(t, y)
a = 0.002;
omega = 2*pi / 365;
res = a * y * (1 - cos(omega * t));

end

To test this function, I put it in a file called rats.m with a top-level function called rats:

function res = rats()
t = 365/2;
y = 1000;
res = rate_func(t, y);

end

The top-level function assumes, for purposes of testing, that there are 1000 rats at t = 365/2

(June 30) and computes the growth rate under those conditions.

We can run the top-level function like this:

>> r = rats

r = 4

Under these conditions, the growth rate is 4 new rats per day.

Now that we’ve tested rate_func, we can use ode45 to solve the differential equation. Here’s
how to call it from the top-level function in rats.m:

[T, Y] = ode45(@rate_func, [0, 365], 1000)
plot(T, Y)

The first argument is a function handle, again. The second argument is the interval we are
interested in, a duration of one year, expressed in units of days. The third argument is the
initial population, y(0) = 1000.

Figure 9.3 shows the results.

The population grows slowly during the winter, quickly during the summer, and then slowly
again in the fall.

To see the population at the end of the year, you can display the last element of Y:
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Figure 9.3: Solutions to a simple differential equation by Euler’s method and ode45

Y(end)
2.0751e+03

That’s a little more than 2000 rats, so the population roughly doubles in one year.

The index here is end, which is a special word in MATLAB that means “the index of the last
element.” You can use it in an expression, so Y(end - 1) is the second-to-last element of Y.

9.7 What Could Go Wrong?

Don’t forget the @ on the function handle. If you leave it out, like:

[T, Y] = ode45(rate_func, [0, 365], 1000)

MATLAB treats the first argument as a function call and calls rate_func without providing
arguments. Then you get an error message:

Not enough input arguments.

Error in rats>rate_func (line 18)
res = a * y * (1 - cos(omega * t));

Error in rats (line 6)
[T, Y] = ode45(rate_func, [0, 365], 1000);
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Also, the rate function you write has to take two input variables, t and y, in that order, and
return one output variable, res.

If you’re working with a rate function like:

dy

dt
(t) = ay(t)

you might be tempted to write this:

function res = rate_func(y) % WRONG
a = 0.002;
res = a * y;

end

But that would be wrong. So very wrong. Why? Because when ode45 calls rate_func, it
provides two arguments. If you only take one input variable, you’ll get an error. So you have
to write a function that takes t as an input variable, even if you don’t use it:

function res = rate_func(t, y) % RIGHT
a = 0.002;
res = a * y;

end

Another common error is to write a function that doesn’t make an assignment to the output
variable. If you write something like:

function res = rate_func(t, y)
a = 0.002;
omega = 2*pi / 365;
r = a * y * (1 - cos(omega * t)); % WRONG

end

and then call it from ode45, you get

Output argument "res" (and maybe others) not assigned during call
to "rate_func".

I hope these warnings save you some time debugging.
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9.8 Labeling Axes

The plots in this chapter have labels on the axes, and one of them has a legend, but I didn’t
show you how to do that. Let’s do it now.

The functions to label the axes are xlabel and ylabel:

xlabel('Time (hours)')
ylabel('Population (billions of cells)')

The function to generate a legend is legend:

legend('euler', 'ode45')

The arguments are the labels for the lines, in the order they were drawn. Usually the legend
is in the upper-right corner, but you can move it by providing an optional argument called
Location:

legend('euler', 'ode45', 'Location', 'northwest')

Finally, save the figures using saveas:

saveas(gcf, 'runge.eps', 'epsc')

The first argument is the figure we want to save; gcf is a MATLAB command that stands for
“get current figure,” which is the figure we just drew. The second argument is the filename.
The extension specifies the format we want, which is Encapsulated PostScript (.eps). The
third argument tells MATLAB what driver to use. The details aren’t important, but epsc
generates figures in color.

9.9 Chapter Review

This chapter introduced differential equations (DE), which are equations that describe the
derivatives of an unknown function. In an ordinary differential equation (ODE), all derivatives
are taken with respect to the same variable, as opposed to a partial differential equation (PDE),
which includes derivatives with respect to more than one variable.

A first-order DE includes only first derivatives, and a linear DE includes no products or powers
of the function and its derivatives. A differential equation is time dependent if the rate function
depends on time.
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When we solve a differential equation numerically, the time step is the interval in time between
successive elements of the solution. A parameter is a value that appears in a model to quantify
some physical aspect of the scenario being modeled.

Until now we have only put one function in each M-file, but in this chapter we wrote a top-level
function, which is the first function in an M-file, and a helper function, which is any function
in an M-file that is not the top-level function.

In the next chapter, we’ll solve systems of ODEs, which are used to describe physical systems
with multiple parts that interact. But first, here’s an exercise where you can apply what you’ve
learned so far.

9.10 Exercise

Before you go on, you might want to work on the following exercise.

Exercise 9.1. Suppose that you’re given an 8-ounce cup of coffee at 90 ◦C. You have learned
from bitter experience that the hottest coffee you can drink comfortably is 60 ◦C.

If the temperature of the coffee drops by 0.7 ◦C during the first minute, how long will you have
to wait to drink your coffee?

You can answer this question with Newton’s Law of Cooling (see https://greenteapress.
com/matlab/newton):

dy

dt
(t) = −k(y(t)− e)

where y(t) is the temperature of the coffee at time t, e is the temperature of the environ-
ment, and k is a parameter that characterizes the rate of heat transfer from the coffee to the
environment.

Let’s assume that e is 20 ◦C and constant; that is, the coffee does not warm up the room.

Let’s also assume k is constant. In that case, we can estimate it based on the information we
have. If the temperature drops 0.7 ◦C during the first minute, when the coffee is 90 ◦C, we can
write

−0.7 = −k(90− 20)

Solving this equation yields k = 0.01.

Here are some suggestions for getting started:

https://greenteapress.com/matlab/newton
https://greenteapress.com/matlab/newton
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1. Create a file named coffee.m and write a function called coffee that takes no input
variables. Put a simple statement like x = 5 in the body of the function and invoke
coffee from the Command Window.

2. Add a helper function called rate_func that takes t and y and computes dy/dt. In this
case, rate_func does not actually depend on t; nevertheless, your function has to take t
as the first input variable in order to work with ode45.

3. Test your function by adding a line like rate_func(0, 90) to coffee, then call coffee
from the Command Window. Confirm that the initial rate is −0.7 ◦C/min.

4. Once you get rate_func working, modify coffee to use ode45 to compute the tempera-
ture of the coffee for 60 minutes. Confirm that the coffee cools quickly at first, then cools
more slowly, and reaches room temperature after about an hour.

5. Plot the results and estimate the time when the temperature reaches 60 ◦C.
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Chapter 10

Systems of ODEs

In the previous chapter we used Euler’s method and ode45 to solve a single first-order differ-
ential equation. In this chapter, we’ll move on to systems of ODEs and implement a model of
a predator-prey system. But first, we have to learn more about matrices.

10.1 Matrices

A matrix is a two-dimensional version of a vector. Like a vector, it contains elements that are
identified by indices. The difference is that the elements are arranged in rows and columns, so
it takes two indices to identify an element.

10.1.1 Creating a Matrix

A common way to create a matrix is the zeros function, which returns a matrix with the given
size filled with zeros. This example creates a matrix with two rows and three columns.

>> M = zeros(2, 3)

M = 0 0 0
0 0 0

If you don’t know the size of a matrix, you can display it by using whos:
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>> whos M
Name Size Bytes Class Attributes
M 2x3 48 double

or the size function, which returns a vector:

>> V = size(M)

V = 2 3

The first element is the number of rows; the second is the number of columns.

To read an element of a matrix, you specify the row and column numbers:

>> M(1,2)

ans = 0

>> M(2,3)

ans = 0

When you’re working with matrices, it takes some effort to remember which index comes first,
row or column. I find it useful to repeat “row, column” to myself, like a mantra. You might
also find it helpful to remember “down, across” or the abbreviation RC as in “radio control” or
RC Cola.

Another way to create a matrix is to enclose the elements in brackets, with semicolons between
rows:

>> D = [1,2,3 ; 4,5,6]

D = 1 2 3
4 5 6

>> size(D)

ans = 2 3

10.1.2 Row and Column Vectors

Although it’s useful to think in terms of numbers, vectors, and matrices, from MATLAB’s
point of view everything is a matrix. A number is just a matrix that happens to have one row
and one column:
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>> x = 5;
>> size(x)

ans = 1 1

And a vector is a matrix with only one row:

>> R = 1:5;
>> size(R)

ans = 1 5

Well, some vectors have only one row, anyway. Actually, there are two kinds of vectors. The
ones we’ve seen so far are called row vectors, because the elements are arranged in a row; the
other kind are column vectors, where the elements are in a single column.

One way to create a column vector is to create a matrix with only one element per row:

>> C = [1;2;3]

C =

1
2
3

>> size(C)

ans = 3 1

The difference between row and column vectors is important in linear algebra, but for most
basic vector operations, it doesn’t matter. For example, when you index the elements of a
vector, you don’t have to know what kind it is:

>> R(2)

ans = 2

>> C(2)

ans = 2
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10.1.3 The Transpose Operator

The transpose operator, which looks remarkably like an apostrophe, computes the transpose
of a matrix, which is a new matrix that has all of the elements of the original, but with each
row transformed into a column (or you can think of it the other way around).

In this example D has two rows:

>> D = [1,2,3 ; 4,5,6]

D = 1 2 3
4 5 6

so its transpose has two columns:

>> Dt = D'

Dt = 1 4
2 5
3 6

Exercise 10.1. What effect does the transpose operator have on row vectors, column vectors,
and numbers?

10.2 Solving Systems of ODEs

Now that we’ve seen the basics of matrices, let’s see how we can use them to solve systems of
differential equations.

10.2.1 Lotka-Volterra

The Lotka-Volterra model describes the interactions between two species in an ecosystem, a
predator and its prey. As an example, we’ll consider foxes and rabbits.

The model is governed by the following system of differential equations:

dx

dt
= ax− bxy

dy

dt
= −cy + dxy
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where x and y are the populations of rabbits and foxes, and a, b, c, and d are parameters that
quantify the interactions between the two species (see https://greenteapress.com/matlab/
lotka).

At first glance, you might think you could solve these equations by calling ode45 once to solve
for x and once to solve for y. The problem is that each equation involves both variables, which
is what makes this a system of equations and not just a list of unrelated equations. To solve a
system, you have to solve the equations simultaneously.

Fortunately, ode45 can handle systems of equations. The difference is that the initial condition
is a vector that contains the initial values x(0) and y(0), and the output is a matrix that contains
one column for x and one for y.

Listing 10.1 shows the rate function with the parameters a = 0.1, b = 0.01, c = 0.1, and
d = 0.002:

Listing 10.1: A rate function for Lotka-Volterra
function res = rate_func(t, V)

% unpack the elements of V
x = V(1);
y = V(2);

% set the parameters
a = 0.1;
b = 0.01;
c = 0.1;
d = 0.002;

% compute the derivatives
dxdt = a*x - b*x*y;
dydt = -c*y + d*x*y;

% pack the derivatives into a vector
res = [dxdt; dydt];

end

The first input variable, t, is time. Even though the time variable is not used in this rate
function, it has to be there in order for this function to work with ode45. The second input
variable, V, is a vector with two elements, x(t) and y(t). The body of the function includes
four sections, each explained by a comment.

The first section unpacks the vector by copying the elements into variables. This isn’t necessary,
but giving names to these values will help you to remember what’s what. It also makes the

https://greenteapress.com/matlab/lotka
https://greenteapress.com/matlab/lotka
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third section, where we compute the derivatives, resemble the mathematical equations we were
given, which helps prevent errors.

The second section sets the parameters that describe the reproductive rates of rabbits and
foxes, and the characteristics of their interactions. If we were studying a real system, these
values would come from observations of real animals, but for this example I chose values that
yield interesting results.

The third section computes the derivatives of x and y, using the equations we were given.

The last section packs the computed derivatives back into a vector. When ode45 calls this
function, it provides a vector as input and expects to get a vector as output.

Sharp-eyed readers will notice something different about this line:

res = [drdt; dfdt];

The semicolon between the elements of the vector is not an error. It is necessary in this case
because ode45 requires the result of this function to be a column vector.

As always, it’s a good idea to test your rate function before you call ode45. Create a file named
lotka.m with the following top-level function:

function res = lotka()
t = 0;
V_init = [80, 20];
rate_func(t, V_init)

end

V_init is a vector that represents the initial condition, 80 rabbits and 20 foxes. The result
from rate_func is

-8.0000
1.2000

which means that with these initial conditions, we expect the rabbit population to decline
initially at a rate of 8 per week and the fox population to increase by 1.2 per week.

Now we can run ode45 like this:

tspan = [0, 200]
[T, M] = ode45(@rate_func, tspan, V_init)

The first argument is the function handle for the rate function. The second argument is the
time span, from 0 to 200 weeks. The third argument is the initial condition.
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10.2.2 Output Matrices

The ode45 function returns two values: T, a vector, and M, a matrix.

>> size(T)
ans = 101 1

>> size(M)
ans = 101 2

T has 101 rows and 1 column, so it is a column vector with one row for each time step.

M has 101 rows, one for each time step, and 2 columns, one for each variable, x and y.

This structure—one column per variable—is a common way to use matrices. And plot under-
stands this structure, so if you do the following:

>> plot(T, M)

MATLAB understands that it should plot each column from M versus T.

You can copy the columns of M into other variables like this:

>> R = M(:, 1);
>> F = M(:, 2);

In this context, the colon represents the range from 1 to end, so M(:, 1) means “all the rows,
column 1” and M(:, 2) means “all the rows, column 2.”

>> size(R)
ans = 101 1

>> size(F)
ans = 101 1

So R and F are column vectors.

Now we can plot these vectors separately, which makes it easier to give them different style
strings:

>> plot(T, R, '-')
>> plot(T, F, '--')
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Figure 10.1: Solution for the Lotka-Volterra model

Figure 10.1 shows the results. The x-axis is time in weeks; the y-axis is population. The top
curve shows the population of rabbits; the bottom curve shows foxes.

Initially, there are too many foxes, so the rabbit population declines. Then there are not
enough rabbits, and the fox population declines. That allows the rabbit population to recover,
and the pattern repeats.

This cycle of “boom and bust” is typical of the Lotka-Volterra model.

10.2.3 Phase Plot

Instead of plotting the two populations over time, it is sometimes useful to plot them against
each other:

>> plot(R, F)

Figure 10.2 shows the result, which is called a phase plot. Each point on this plot represents a
certain number of rabbits (on the x-axis) and a certain number of foxes (on the y-axis). Since
these are the only two variables in the system, each point in this plane describes the complete
state of the system, that is, the values of the variables we’re solving for.

Over time, the state moves around the plane. Figure 10.2 shows the path traced by the state
over time; this path is called a trajectory.
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Figure 10.2: Phase plot from the Lotka-Volterra model

Since the behavior of this system is periodic, the trajectory is a loop.

If there are three variables in the system, we need three dimensions to show the state of the
system, so the trajectory is a 3D curve. You can use plot3 to trace trajectories in three
dimensions, but for four or more variables, you’re on your own.

10.2.4 What Could Go Wrong?

The output vector from the rate function has to be a column vector, otherwise you get an
error:

Error using odearguments (line 93)
RATE_FUNC must return a column vector.

which is a pretty good error message. It’s not clear why it needs to be a column vector, but
that’s not our problem.

Another possible error is reversing the order of the elements in the initial conditions or the
vectors inside lotka. MATLAB doesn’t know what the elements are supposed to mean, so it
can’t catch errors like this; it will just produce incorrect results.

The order of the elements (rabbits and foxes) is up to you, but you have to be consistent. That
is, the order of the initial conditions you provide when you call ode45 has to be the same as
the order inside rate_func where you unpack the input vector and the same as the order of
the derivatives in the output vector.
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10.3 Chapter Review

In this chapter, we used ode45 to solve a system of first-order differential equations. As an
exercise, you’ll have a chance to solve the famous Lorenz equations, one of the first examples
of a chaotic system.

Here are the terms from this chapter you might want to remember.

A row vector is a matrix that has only one row, and a column vector is a matrix that has only
one column. The transpose operation transforms the rows of a matrix into columns (or the
other way around, if you prefer).

A system of equations is a collection of equations written in terms of the same set of variables.

In a rate function, we often have to unpack the input variable, copying the elements of a vector
into a set of variables. Then we have to pack the results into a vector as an output variable.

The state of a system is a set of variables that quantify the condition of the system as it changes
over time.

When we solve a system of differential equations, we can visualize the results with a phase plot,
which shows the state of a system as a point in the space of possible states. A trajectory is a
path in a phase plot that shows how the state of a system changes over time.

In the next chapter, we’ll move on to second-order systems, which we use to describe systems
with objects moving in space, governed by Newton’s laws of motion.

10.4 Exercises

Before you go on, you might want to work on the following exercise.

Exercise 10.2. Based on the examples we’ve seen so far, you’d think that all ODEs describe
population as a function of time, but that’s not true.

For example, the Lorenz system is a system of differential equations based on a model of fluid
dynamics in the atmosphere (see https://greenteapress.com/matlab/lorenz). It turns out
to be interesting in part because its solutions are chaotic; that is, small changes in the initial
conditions yield big differences in the solutions.

https://greenteapress.com/matlab/lorenz
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The system is described by these differential equations:

xt = σ(y − x)

yt = x(r − z)− y
zt = xy − bz

Common values for the parameters are σ = 10, b = 8/3, and r = 28.

Use ode45 to estimate a solution to this system of equations.

1. Create a file named lorenz.m with a top-level function named lorenz and a helper func-
tion named rate_func.

2. The rate function should take t and V as input variables, where the components of V are
understood to be the current values of x, y, and z. It should compute the corresponding
derivatives and return them in a single column vector.

3. Test the function by calling it from the top-level function with values like t = 0, x = 1,
y = 2, and z = 3. Once you get your function working, you should make it a silent
function before calling ode45.

4. Use ode45 to estimate the solution for the time span [0, 30] with the initial condition
x = 1, y = 2, and z = 3.

5. Plot the results as a time series, that is, each of the variables as a function of time.

6. Use plot3 to plot the trajectory of x, y, and z.
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Chapter 11

Second-Order Systems

So far we’ve seen first-order differential equations and systems of first-order ODEs. In this
chapter, we’ll introduce second-order systems, which are particularly useful for modeling New-
tonian motion.

11.1 Newtonian Motion

Newton’s second law of motion is often written like this:

F = ma

where F is the net force acting on an object, m is the mass of the object, and a is the
acceleration of the object.

This equation suggests that if you know m and a, you can compute the force. And that’s true,
but in most physical simulations it’s the other way around: based on a physical model, you
know F and m, and you compute a.

So if we know acceleration as a function of time, how do we find the position of the object,
r? Well, we know that acceleration is the second derivative of position, so we can write the
differential equation

d2r

dt2
= a
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where d2r/dt2 is the second time derivative of r.

Because this equation includes a second derivative, it’s a second-order ODE. We can’t solve
the equation using ode45 in this form, but by introducing a new variable, v, for velocity, we
can rewrite it as a system of first-order ODEs:

dr

dt
= v

dv

dt
= a

The first equation says that the first derivative of r is v; the second equation says that the first
derivative of v is a.

11.2 Free Fall

As an example of Newtonian motion, let’s go back to the question from Section 1.1:

If you drop a penny from the top of the Empire State Building, how long does it
take to reach the sidewalk, and how fast is it going when it gets there?

We’ll start with no air resistance; then we’ll add air resistance to the model and see what effect
it has.

Near the surface of the earth, acceleration due to gravity is −9.8 m/s2, where the minus sign
indicates that gravity pulls down. If the object falls straight down, we can describe its position
with a scalar value y, representing altitude.

Listing 11.1 contains a rate function we can use with ode45 to solve this problem:

Listing 11.1: A rate function for the falling penny problem
function res = rate_func(t, X)

% unpack position and velocity
y = X(1);
v = X(2);

% compute the derivatives
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dydt = v;
dvdt = -9.8;

% pack the derivatives into a column vector
res = [dydt; dvdt];

end

The rate function in Listing 11.1 takes t and X as input variables, where the elements of X are
understood to be the position and velocity of the penny.

It returns a column vector that contains dydt and dvdt, which are velocity and acceleration,
respectively. Since velocity is the second element of X, we can simply assign this value to
dydt. And since the derivative of velocity is acceleration, we can assign the acceleration due
to gravity to dvdt.

As always, we should test the rate function before we call ode45. Here’s the top-level function
we can use to test it:

function penny()
t = 0;
X = [381, 0];
rate_func(t, X)

end

The initial condition of X is the initial position, which is the height of the Empire State Building,
about 381 m, and the initial velocity, which is 0 m/s.

The result from rate_func is

0
-9.8000

which is what we expect.

Now we can run ode45 with this rate function:

tspan = [0, 10]
[T, M] = ode45(@rate_func, tspan, X)

As always, the first argument is the function handle, the second is the time span (10 seconds),
and the third is the initial condition.

The result is a vector, T, that contains the time values, and a matrix, M, that contains two
columns, one for altitude and one for velocity.

We can extract the first column and plot it, like this:
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Figure 11.1: Altitude versus time for an object in free fall

Y = M(:, 1)
plot(T, Y)

Figure 11.1 shows the result. Altitude drops slowly at first and picks up speed. Between 8 and
9 seconds, the altitude reaches 0, which means the penny hits the sidewalk. But ode45 doesn’t
know where the ground is, so the penny keeps going through 0 into negative altitude. We’ll
solve that problem in the next section.

11.3 ODE Events

Normally when you call ode45 you specify a start time and an end time. But sometimes you
don’t know ahead of time when the simulation should end. To solve this problem we can define
an event, something of interest that happens during a simulation, like the penny reaching the
ground.

Here are the steps:

1. First we define an event function that allows ode45 to figure out when an event occurs.
Here’s an event function for the penny example:

function [value, isterminal, direction] = event_func(t,X)
value = X(1);
isterminal = 1;



11.4 Air Resistance 117

direction = -1;
end

The event function takes the same input variables as the rate function and returns three
output variables: value determines when an event can occur, direction determines
whether it does, and isterminal determines what happens. More specifically, an event
can occur when value passes through 0. If direction is positive, the event only occurs if
value is increasing. If direction is negative, the event only occurs if value is decreasing.
If direction is 0, the event always occurs. If isterminal is 1, the event causes the
simulation to end; if it is 0, the simulation continues.

This event function uses the altitude of the penny as value so an event can occur when
altitude passes through 0. Because direction is negative, an event occurs only when
altitude is decreasing, and because isterminal is 1, the simulation ends if an event
occurs.

2. Next, we use odeset to create an object called options:

options = odeset('Events', @event_func);

The name of the option is Events and the value is the handle of the event function.

3. Finally, we pass options as a fourth argument to ode45:

[T, M] = ode45(@rate_func, tspan, X, options);

When ode45 runs, it invokes event_func after each time step. If the event function
indicates that a terminal event occurred, ode45 stops the simulation.

Let’s look at the results from the penny example:

>> T(end)
8.8179

>> M(end, :)
0.0000 -86.4153

The last value of T is about 8.8, which is the number of seconds the penny takes to reach the
sidewalk.

The last row of M indicates that the final altitude is 0, which is what we wanted, and the final
velocity is about −86 m/s.

11.4 Air Resistance

To make this simulation more realistic, we can add air resistance. For large objects moving
quickly through air, the force due to air resistance, called drag, is proportional to velocity
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squared. For an object falling down, drag is directed up, so if velocity is negative, drag force
is positive.

Here’s how we can compute the force of drag as a function of velocity in one dimension:

fd = −sign(v)bv2

where v is velocity and b is a drag constant that depends on the density of air, the cross-sectional
area of the object, and the shape of the object.

The sign or signum function returns the value 1 for positive values of v and −1 for negative
values. So fd is always in the opposite direction of v.

To convert from force to acceleration we have to know mass, but that’s easy to find: the mass
of a penny is about 2.5 g. It’s not as easy to find the drag constant, but based on reports that
the terminal velocity of a penny is about 18 m/s, I’ve estimated that it’s about 75× 10−6 kg/m.

Listing 11.2 defines a function that takes t and X as input variables and returns the total
acceleration of the penny due to gravity and drag:

Listing 11.2: Calculating acceleration of a penny with drag

function res = acceleration(t, X)
b = 75e-6; % drag constant in kg/m
v = X(2); % velocity in m/s
f_d = -sign(v) * b * v^2; % drag force in N

m = 2.5e-3; % mass in kg
a_d = f_d / m; % drag acceleration in m/s^2

a_g = -9.8; % acceleration of gravity in m/s^2
res = a_g + a_d; % total acceleration

end

First, we compute force due to drag . Then we compute acceleration due to drag . Lastly, we
compute total acceleration due to drag and gravity.

Be careful when you’re working with forces and accelerations; make sure you only add forces
to forces or accelerations to accelerations. In my code, I use comments to remind myself what
units the values have. That helps me avoid errors like adding forces to accelerations.

To use this function, we make a small change in rate_func:



11.4 Air Resistance 119

function res = rate_func(t, X)
y = X(1);
v = X(2);

dydt = v;
dvdt = acceleration(t, X); % this line has changed

res = [dydt; dvdt];
end

In the previous version, dvdt is always -9.8, the acceleration due to gravity. In this version,
we call acceleration to compute the total acceleration due to gravity and drag .
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Figure 11.2: Altitude versus time for a penny in free fall with air resistance

Everything else is the same. Figure 11.2 shows the result.

Air resistance makes a big difference! Velocity increases until acceleration due to drag equals
acceleration due to gravity; after that, velocity is constant and position decreases linearly (and
much more slowly than it would in a vacuum).

With air resistance, the time until the penny hits the sidewalk is 22.4 s, substantially longer
than before (8.8 s).

And the final velocity is 18.1 m/s, substantially slower than before (86 m/s).
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11.5 Chapter Review

In this chapter, we used Newton’s laws of motion to write a differential equation that describes
the motion of a falling penny.

We rewrote that equation as a system of first-order differential equations so we could use ode45
to solve it. Then we ran simulations of a falling penny with and without air resistance, also
known as drag.

We defined an event as something of interest that happens during a simulation, like a collision
between moving objects, and we wrote an event function, which allows ode45 to figure out
when an event occurs.

In the next chapter, we extend Newtonian motion to two dimensions and model the flight of a
baseball.

11.6 Exercises

Before you go on, you might want to work on the following exercise.

Exercise 11.1. In this exercise we’ll model the descent of a skydiver, taking into account the
change in drag when the parachute opens.

1. Modify the penny code from this chapter to simulate the descent of a 75 kg skydiver from
an initial altitude of 4000 m. The drag constant for a skydiver without a parachute is
about 0.2 kg/m. What would the velocity of the skydiver be on impact?

2. After opening their parachute, the velocity of the skydiver slows to about 5 m/s. Use
your simulation to find the drag constant that yields a terminal velocity of 5 m/s.

3. Increase the mass of the skydiver, and confirm that terminal velocity increases. This
phenomenon is the source of the intuition that heavy objects fall faster; in air, they do!

4. Now suppose the skydiver free falls until they get to an altitude of 1000 m before opening
the parachute. How long would it take them to reach the ground?

5. What is the lowest altitude where the skydiver can open the parachute and still land at
less than 6 m/s (assuming that the parachute opens and deploys instantly)?

Exercise 11.2. Here’s a question from the website Ask an Astronomer (see https://
greenteapress.com/matlab/astro):

https://greenteapress.com/matlab/astro
https://greenteapress.com/matlab/astro


11.6 Exercises 121

If the Earth suddenly stopped orbiting the Sun, I know eventually it would be
pulled in by the Sun’s gravity and hit it. How long would it take the Earth to hit
the Sun? I imagine it would go slowly at first and then pick up speed.

Use ode45 to answer this question. Here are some suggestions about how to proceed:

1. Look up the Law of Universal Gravitation and any constants you need. I suggest you
work entirely in SI units: meters, kilograms, and newtons.

2. When the distance between the Earth and the Sun gets small, this system behaves badly,
so you should use an event function to stop when the surface of the Earth reaches the
surface of the Sun.

3. Express your answer in days, and plot the results as millions of kilometers versus days.
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Chapter 12

Two Dimensions

In the previous chapter, we solved a one-dimensional problem—a penny falling from the Em-
pire State Building. Now we’ll solve a two-dimensional problem—finding the trajectory of a
baseball.

To do that, we’ll use spatial vectors to represent quantities in two and three dimensions,
including force, acceleration, velocity, and position.

12.1 Spatial Vectors

The word vector means different things to different people. In MATLAB, a vector is a matrix
that has either one row or one column. So far, we’ve used MATLAB vectors to represent the
following:

Sequences A mathematical sequence, like the Fibonacci numbers, is a set of values identified
by integer indices; in Chapter 4.5, we used a MATLAB vector to store the elements of a
sequence.

State vectors A state vector is a set of values that describes the state of a physical system.
When you call ode45, you give it initial conditions in a state vector. Then, when ode45
calls your rate function, it gives you a state vector.

Time series One of the results from ode45 is a vector that represents a sequence of time
values.
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In this chapter, we’ll see another use of MATLAB vectors: representing spatial vectors. A spa-
tial vector represents a multidimensional physical quantity like position, velocity, acceleration,
or force.

For example, to represent a position in two-dimensional space, we can use a vector with two
elements:

>> P = [3 4]

To interpret this vector, we have to know the coordinate system it is defined in. Most commonly,
we use a Cartesian system where the x-axis points east and the y-axis points north. In that
case P represents a point 3 units east and 4 units north of the origin.

When a spatial vector is represented in this way, we can use it to compute the magnitude and
direction of a physical quantity. For example, the magnitude of P is the distance from the
origin to P, which is the hypotenuse of the triangle with sides P(1) and P(2). We can compute
it using the Pythagorean theorem:

>> sqrt(P(1)^2 + P(2)^2)
ans = 5

Or we can do the same thing using the function norm, which computes the Euclidean norm of
a vector, which is its magnitude:

>> norm(P)
ans = 5

There are two ways to get the direction of a vector. One convention is to compute the angle
between the vector and the x-axis:

>> atan2(P(2), P(1))
ans = 0.9273

In this example, the angle is about 0.9 rad. But for computational purposes, we often represent
direction with a unit vector, which is a vector with length 1. To get a unit vector we can divide
a vector by its length:

function res = hat(V)
res = V / norm(V)

end

This function takes a vector, V, and returns a unit vector with the same direction as V. It’s
called hat because in mathematical notation, unit vectors are written with a “hat” symbol.
For example, the unit vector with the same direction as P would be written P̂.
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12.2 Adding Vectors

Vectors are useful for representing quantities like force and acceleration because we can add
them up without having to think explicitly about direction.

As an example, suppose we have two vectors representing forces:

>> A = [2, 4];
>> B = [2, -2];

A represents a force pulling northeast; B represents a force pulling southeast, as shown in
Figure 12.1:
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Figure 12.1: The sum of two forces represented by vectors

To compute the sum of these forces, all we have to do is add the vectors:

>> A + B
ans = 4 2

Later in the chapter, we’ll use vector addition to add accelerations due to different forces acting
on a baseball.

12.3 ODEs in Two Dimensions

So far we’ve used ode45 to solve a system of first-order equations and a single second-order
equation. Now we’ll take one more step, solving a system of second-order equations.
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As an example, we’ll simulate the flight of a baseball. If there is no wind and no spin on the
ball, the ball travels in a vertical plane, so we can think of the system as two-dimensional,
with x representing the horizontal distance traveled from the starting place and y representing
height or altitude.

Listing 12.1 shows a rate function we can use to simulate this system with ode45:

Listing 12.1: A rate function we can use to model the flight of a baseball
function res = rate_func(t, W)

P = W(1:2);
V = W(3:4);

dPdt = V;
dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];
end

function res = acceleration(t, P, V)
g = 9.8; % acceleration due to gravity in m/s^2
a_gravity = [0; -g];
res = a_gravity;

end

The second argument of rate_func is understood to be a vector, W, with four elements. The
first two are assigned to P, which represents position; the last two are assigned to V, which
represents velocity. Both P and V have two elements, representing the x and y components.

The goal of the rate function is to compute the derivative of W, so the output has to be a vector
with four elements, where the first two represent the derivative of P and the last two represent
the derivative of V. The derivative of P is velocity. We don’t have to compute it; we were given
it as part of W. The derivative of V is acceleration. To compute it, we call acceleration, which
takes as input variables time, position, and velocity. In this example, we don’t use any of the
input variables, but we will soon.

For now we’ll ignore air resistance, so the only force on the baseball is gravity. We represent
acceleration due to gravity with a vector that has magnitude g and direction along the negative
y-axis.

Let’s assume that a ball is batted from an initial position 1 m above the home plate, with an
initial velocity of 40 m/s in the horizontal and 30 m/s in the vertical direction.

Here’s how we can call ode45 with these initial conditions:
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P = [0; 1]; % initial position in m
V = [40; 30]; % initial velocity in m/s
W = [P; V]; % initial condition

tspan = [0 8]
[T, M] = ode45(@rate_func, tspan, W);

P and V are column vectors because we put semicolons between the elements. So W is a column
vector with four elements. And tspan specifies that we want to run the simulation for 8 s.

The output variables from ode45 are a vector, T, that contains time values and a matrix, M,
with four columns: the first two are position; the last two are velocity.

Here’s how we can plot position as a function of time:

X = M(:, 1);
Y = M(:, 2);

plot(T, X)
plot(T, Y)

X and Y get the first and second columns from M, which are the x and y position coordinates.

Figure 12.2 shows what these coordinates look like as a function of time. The x-coordinate
increases linearly because the x velocity is constant. The y-coordinate goes up and down, as
we expect.

The simulation ends just before the ball lands, having traveled almost 250 m. That’s substan-
tially farther than a real baseball would travel, because we have ignored air resistance, or “drag
force.”

12.4 Drag Force

A simple model for the drag force on a baseball is

Fd = −1

2
ρvCdAV̂

where Fd is a vector that represents the force on the baseball due to drag, ρ is the density of
air, Cd is the drag coefficient, and A is the cross-sectional area.
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Figure 12.2: Simulated flight of a baseball neglecting drag force

V is the baseball’s velocity vector, v is the magnitude of V, and V̂ is a unit vector in the
same direction as V. The minus sign at the beginning means that the result is in the opposite
direction to V.

The function in Listing 12.2 computes the drag force on a baseball:

Listing 12.2: A function that calculates the drag force on a baseball
function res = drag_force(V)

C_d = 0.3; % dimensionless
rho = 1.3; % kg / m^3
A = 0.0042; % m^2
v = norm(V); % m/s

res = -1/2 * C_d * rho * A * v * V;
end

The drag coefficient for a baseball is about 0.3. The density of air at sea level is about 1.3 kg/m3.
The cross-sectional area of a baseball is 0.0042 m2.

Now we have to update acceleration to take drag into account:

function res = acceleration(t, P, V)
g = 9.8; % acceleration due to gravity in m/s^2
a_gravity = [0; -g];
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m = 0.145; % mass in kilograms
a_drag = drag_force(V) / m;
res = a_gravity + a_drag;

end

As in Listing 12.1, acceleration represents acceleration due to gravity with a vector that has
magnitude g and direction along the negative y-axis. But now it also computes drag force and
divides by the mass of the baseball to get acceleration due to drag. Finally, it adds a_gravity
and a_drag to get the total acceleration of the baseball.

Figure 12.3 shows the following quantities graphically: (1) acceleration due to drag, D, which
is in the opposite direction to (2) velocity, V; (3) acceleration due to gravity, G, which is
straight down; and (4) total acceleration, A, which is the sum of D and G.
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Figure 12.3: Diagram of velocity, V; acceleration due to drag force, D; acceleration due to
gravity, G; and total acceleration, A

Figure 12.4 shows the results from ode45. The ball lands after about 5 s, having traveled less
than 150 m, substantially less than what we got without air resistance, about 250 m.

This result suggests that ignoring air resistance is not a good choice for modeling a baseball.

12.5 What Could Go Wrong?

What could go wrong? Well, vertcat for one. To explain what that means, I’ll start with
concatenation, which is the operation of joining two matrices into a larger matrix. Vertical con-
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Figure 12.4: Simulated flight of a baseball including drag force

catenation joins the matrices by stacking them on top of each other; horizontal concatenation
lays them side by side.

Here’s an example of horizontal concatenation with row vectors:

>> x = 1:3
x = 1 2 3

>> y = 4:5
y = 4 5

>> z = [x, y]
z = 1 2 3 4 5

Inside brackets, the comma operator performs horizontal concatenation. The vertical concate-
nation operator is the semicolon. Here’s an example with matrices:

>> X = zeros(2, 3)

X = 0 0 0
0 0 0

>> Y = ones(2, 3)
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Y = 1 1 1
1 1 1

>> Z = [X; Y]

Z = 0 0 0
0 0 0
1 1 1
1 1 1

These operations only work if the matrices are the same size along the dimension where they
are glued together. If not, you get

>> a = 1:3

a = 1 2 3

>> b = a'

b = 1
2
3

>> c = [a, b]
Error using horzcat
Dimensions of matrices being concatenated are not consistent.

>> c = [a; b]
Error using vertcat
Dimensions of matrices being concatenated are not consistent.

In this example, a is a row vector and b is a column vector, so they can’t be concatenated in
either direction.

Reading the error messages, you might guess that horzcat is the function that performs
horizontal concatenation, and likewise with vertcat and vertical concatenation. You would
be correct.

In Listing 12.1 we used vertical concatenation to pack dPdt and dVdt into the output variable:

function res = rate_func(t, W)
P = W(1:2);



132 Two Dimensions

V = W(3:4);

dPdt = V;
dVdt = acceleration(t, P, V);

res = [dPdt; dVdt];
end

As long as dPdt and dVdt are column vectors, the semicolon performs vertical concatenation,
and the result is a column vector with four elements. But if either of them is a row vector,
that’s trouble.

The ode45 function expects the result from rate_func to be a column vector, so if you are
working with ode45, it’s probably a good idea to make everything a column vector.

In general, if you run into problems with horzcat and vertcat, use size to display the
dimensions of the operands, and make sure you are clear on which way your vectors go.

12.6 Chapter Review

In this chapter, we simulated the flight of a baseball with and without air resistance and saw
that the difference is substantial. We can conclude that it’s important to model air resistance
if we want to make accurate predictions about baseballs and similar projectiles.

Here are some terms from this chapter you might want to remember.

A spatial vector is a value that represents a multidimensional physical quantity like position,
velocity, acceleration, or force. A spatial vector has a direction and a magnitude. The mag-
nitude is also called the norm of the vector. A unit vector is a vector with norm 1, which is
often used to represent a direction.

Concatenation is the operation of joining two vectors or matrices end-to-end to form a new
vector or matrix.

In the next chapter, we’ll continue with the baseball example, using fzero, which we saw in
Chapter 7, and a new tool for optimization, called fminsearch. We’ll also see a simple way to
animate the solution of a differential equation.
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12.7 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 12.1. When the Boston Red Sox won the World Series in 2007, they played the
Colorado Rockies at their home field in Denver, Colorado. Find an estimate of the density of
air in the Mile High City. What effect does this have on drag? What effect does it have on the
distance the baseball travels?

Exercise 12.2. The actual drag on a baseball is more complicated than what is captured by
our simple model. In particular, the drag coefficient depends on velocity. You can get some
of the details from Robert K. Adair’s The Physics of Baseball (Harper Perennial, 2002); the
figure you need is reproduced at https://greenteapress.com/matlab/drag.

Use this data to specify a more realistic model of drag and modify your program to implement
it. How big is the effect on the distance the baseball travels?

Exercise 12.3. According to Wikipedia, the record distance for a human cannonball is 59.05 m

(see https://greenteapress.com/matlab/cannon).

Modify the example from this chapter to simulate the flight of a human cannonball. You might
have to do some research to find the drag coefficient and cross-sectional area for a flying human.

Find the initial velocity (both magnitude and direction) you would need to break this record.
You might have to experiment to find the optimal launch angle.

How much acceleration can a human withstand without injury? At this maximum acceleration,
how long would the barrel of the cannon have to be to reach the initial velocity needed to break
the record?

https://greenteapress.com/matlab/drag
https://greenteapress.com/matlab/cannon
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Chapter 13

Optimization

In in the previous chapter you were asked to find the best launch angle for a human cannonball,
meaning the angle that maximizes the distance traveled before landing. This kind of problem,
finding minimums and maximums, is called optimization.

In this chapter, we’ll solve a similar problem, finding the best launch angle for a baseball. We’ll
solve the problem two ways, first running simulations with a range of values and plotting the
results, then using a MATLAB function that automates the process, fminsearch.

13.1 Optimal Baseball

In the previous chapter we wrote functions to simulate the flight of a baseball with a known
initial velocity. Now we’ll use that code to find the launch angle that maximizes range, that
is, the distance the ball travels before landing.

First, we need an event function to stop the simulation when the ball lands.

function [value, isterminal, direction] = event_func(t, W)
value = W(2);
isterminal = 1;
direction = -1;

end

This is similar to the event function we saw in Chapter 11.3, except that it uses W(2) as the
event value, which is the y-coordinate. This event function stops the simulation when the
altitude of the ball is 0 and falling.
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Now we can call ode45 like this:

P = [0; 1]; % initial position in m
V = [40; 30]; % initial velocity in m/s
W = [P; V]; % initial condition

tspan = [0 10];
options = odeset('Events', @event_func);
[T, M] = ode45(@rate_func, tspan, W, options);

The initial position of the ball is 1 m above home plate. The ball’s initial velocity is 40 m/s in
the x-direction and 30 m/s in the y-direction.

The maximum duration of the simulation is 10 s, but we expect an event to stop the simulation
first. We can get the final values of the simulation like this:

T(end)
M(end, :)

The final time is 5.1 s. The final x-position is 131 m; the final y-position is 0, as expected.

13.2 Trajectory

Now we can extract the x- and y-positions:

X = M(:, 1);
Y = M(:, 2);

In Chapter 12.3 we plotted X and Y separately as functions of time. As an alternative, we can
plot them against each other, like this:

plot(X, Y)

Figure 13.1 shows the result, which is the trajectory of the baseball from launch, on the left,
to landing, on the right.

13.3 Range Versus Angle

Now we’ll simulate the trajectory of the baseball with a range of launch angles. First, we’ll take
the code we have and wrap it in a function that takes the launch angle as an input variable,
runs the simulation, and returns the distance the ball travels (Listing 13.1).
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Figure 13.1: Simulated flight of a baseball plotted as a trajectory

Listing 13.1: A function that takes the launch angle of a baseball and returns the distance it
travels
function res = baseball_range(theta)

P = [0; 1];
v = 50;
[vx, vy] = pol2cart(theta, v);

V = [vx; vy]; % initial velocity in m/s
W = [P; V]; % initial condition

tspan = [0 10];
options = odeset('Events', @event_func);
[T, M] = ode45(@rate_func, tspan, W, options);

res = M(end, 1);
end

The launch angle, theta, is in radians. The magnitude of velocity, v, is always 50 m/s. We use
pol2cart to convert the angle and magnitude (polar coordinates) to Cartesian components,
vx and vy.

After running the simulation we extract the final x-position and return it as an output variable.

We can run this function for a range of angles like this:
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thetas = linspace(0, pi/2);
for i = 1:length(thetas)

ranges(i) = baseball_range(thetas(i));
end

And then plot ranges as a function of thetas:

plot(thetas, ranges)

Figure 13.2 shows the result. As expected, the ball does not travel far if it’s hit nearly horizontal
or vertical. The peak is apparently near 0.7 rad.
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Figure 13.2: Simulated flight of a baseball plotted as a trajectory

Considering that our model is only approximate, this result might be good enough. But if we
want to find the peak more precisely, we can use fminsearch.

13.4 fminsearch

The fminsearch function is similar to fzero, which we saw in Chapter 7. Recall that fzero
takes a function handle and an initial guess, and it returns a root of the function. As an
example, to find a root of the function

function res = error_func(x)
res = x^2 - 2;

end
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we can call fzero like this:

>> x = fzero(@error_func, 1)
ans = 1.4142

The result is near the square root of 2. Let’s call fminsearch with the same function:

>> x = fminsearch(@error_func, 1)
x = -8.8818e-16

The result is close to 0, which is where this function is minimized. Optionally, fminsearch
returns two values:

>> [x, fval] = fminsearch(@error_func, 1)
x = -8.8818e-16

fval = -2

The x is the location of the minimum, and fval is the value of the function evaluated at x.

If we want to find the maximum of a function, rather than the minimum, we can still use
fminsearch by writing a short function that negates the function we want to maximize. In
the baseball example, the function we want to maximize is baseball_range; we can wrap it
in another function like this:

function res = min_func(angle)
res = -baseball_range(angle);

end

And then we call fminsearch like this:

>> [x, fval] = fminsearch(@min_func, pi/4)

x = 0.6921

fval = -131.5851

The optimal launch angle for the baseball is 0.69 rad; launched at that angle, the ball travels
almost 132 m.

If you’re curious about how fminsearch works, see “How fminsearch Works” on page 152.
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13.5 Animation

Animation is a useful tool for checking the results of a physical model. If something is wrong,
animation can make it obvious. There are two ways to do animation in MATLAB. One is to
use getframe to capture a series of images and then use movie to play them back.

The more informal way is to draw a series of plots. Listing 13.2 is a function that animates
the results of a baseball simulation:

Listing 13.2: A function that animates the results of a baseball simulation
function animate(T,M)

X = M(:,1);
Y = M(:,2);

minmax = [min([X]), max([X]), min([Y]), max([Y])];

for i=1:length(T)
clf; hold on
axis(minmax)
plot(X(i), Y(i), 'o')
drawnow;

if i < length(T)
dt = T(i+1) - T(i);
pause(dt);

end
end

end

The input variables are the output from ode45: T, which contains the time values, and M, which
contains the position and velocity of the baseball.

A vector of four elements, minmax is used inside the loop to set the axes of the figure. This
is necessary because otherwise MATLAB scales the figure each time through the loop, so the
axes keep changing, which makes the animation hard to watch.

Each time through the loop, animate uses clf to clear the figure and axis to reset the axes.
Then it plots a circle to represent the position of the baseball.

We have to call drawnow after plot so that MATLAB actually displays each plot. Otherwise
it waits until you finish drawing all the figures and then updates the display.

We can call animate like this:
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tspan = [0 10];
W = [0 1 30 40];
[T, M] = ode45(@rate_func, tspan, W);
animate(T, M)

One limitation of this kind of animation is that the speed of the animation depends on how
fast your computer can generate the plots. Since the results from ode45 are usually not equally
spaced in time, your animation might slow down where ode45 takes small time steps and speed
up where the time steps are larger.

One way to fix this problem is to change the way we specify tspan. Here’s an example:

tspan = 0:0.1:10;

The result is a vector that goes from 0 to 10 with a step size of 0.1. Passing tspan to ode45
in this form doesn’t affect the accuracy of the results; ode45 still uses variable time steps to
generate the estimates, but then it interpolates them before returning the results.

With equal time steps, the animation should be smoother.

Another option is to use pause to play the animation in real time. After drawing each frame
and calling drawnow, you can compute the time until the next frame and use pause to wait:

dt = T(i+1) - T(i);
pause(dt);

A limitation of this method is that it ignores the time required to draw the figure, so it tends
to run slow, especially if the figure is complex or the time step is small.

13.6 Chapter Review

This chapter presented two new tools, fminsearch and animate. The MATLAB function
fminsearch searches efficiently for the minimum of a function and can be adapted to search
for the maximum, too. The animate function is one I wrote to read results from ode45 and
generate an animation; the version in this chapter works with the results from the baseball
simulation, but it can be adapted for other simulations.

In the exercises below, you have a chance to extend the example from this chapter and bring
together many of the tools we have used so far.

In the next chapter, we move on to a new example, celestial mechanics, which describes the
motion of planets and other bodies in outer space.
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13.7 Exercises

Before you go on, you might want to work on the following exercises.

Exercise 13.1. Manny Ramirez is a former member of the Boston Red Sox who was famous
for his relaxed attitude. The goal of this exercise is to solve the following Manny-inspired
problem:

What is the minimum effort required to hit a home run in Fenway Park?

Fenway Park is a baseball stadium in Boston, Massachusetts. One of its most famous features
is the “Green Monster,” which is a wall in left field that is unusually close to home plate, only
310 feet away. To compensate for the short distance, the wall is unusually high, at 37 feet.

You can solve this problem in two steps:

1. For a given velocity, find the launch angle that maximizes the height of the ball when it
reaches the wall. Notice that this is not quite the same as the angle that maximizes the
distance the ball travels.

2. Find the minimal velocity that clears the wall, given that it has the optimal launch angle.
Hint: this is actually a root-finding problem, not an optimization problem.

Exercise 13.2. A golf ball hit with backspin generates lift, which might increase the distance
it travels, but the energy that goes into generating spin probably comes at the cost of lower
initial velocity.

Write a simulation of the flight of a golf ball and use it to find the launch angle and allocation
of spin and initial velocity (for a fixed energy budget) that maximizes the horizontal range of
the ball in the air.

The lift of a spinning ball is due to the Magnus force (see https://greenteapress.com/
matlab/magnus), which is perpendicular to the axis of spin and the path of flight. The coeffi-
cient of lift is proportional to the spin rate; for a ball spinning at 3000 rpm it is about 0.1. The
coefficient of drag of a golf ball is about 0.2 as long as the ball is moving faster than 20 m/s.

https://greenteapress.com/matlab/magnus
https://greenteapress.com/matlab/magnus
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Springs and Things

The computational tools you have learned so far make up a versatile toolkit for modeling
physical systems described by first- and second-order differential equations and systems of
equations.

With ode45 you can compute the state variables of these systems as they change over time.
By varying the parameters of the model, you can see what effect they have on the results.
Then you can use fminsearch and fzero to find minimums, maximums, and places where the
outputs pass through zero.

These tools are all you need to solve a lot of problems, so this chapter doesn’t present new
computational tools (whew!). Instead, we’ll look at some different physical systems and some
forces we haven’t dealt with yet, including spring forces and universal gravitation.

The examples in this chapter are a little more open-ended than the previous ones. I will
present a motivating problem and some background information, and you will have a chance
to implement the models as exercises.

14.1 Bungee Jumping

Suppose you want to set the world record for the highest “bungee dunk,” which is a stunt in
which a bungee jumper dunks a cookie in a cup of tea at the lowest point of a jump. An
example is shown in this video: https://greenteapress.com/matlab/dunk.

Since the record is 70 m, let’s design a jump for 80 m. We’ll start with the following parameters:

https://greenteapress.com/matlab/dunk
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• Initially, the jumper stands on a platform 80 m above a cup of tea. One end of the
bungee cord is connected to the platform, the other end is attached to the jumper, and
the middle hangs down.

• The mass of the jumper is 75 kg, and they are subject to gravitational acceleration of
9.8 m/s2.

• In free fall the jumper has a cross-sectional area of 1 m and a terminal velocity of 60 m/s.

To model the force of the bungee cord on the jumper, I’ll make the following assumptions:

• Until the cord is fully extended, it applies no force to the jumper. It turns out this might
not be a good assumption; we’ll revisit it in the next section.

• After the cord is fully extended, it obeys Hooke’s Law; that is, it applies a force to the
jumper proportional to the extension of the cord beyond its resting length.

We can write Hooke’s Law as Fs = −kx where Fs is the force of the spring (bungee cord) on the
jumper in newtons, x is the distance the spring is stretched in meters, and k is a spring constant
that represents the strength of the spring in newtons per meter. The minus sign indicates that
the direction of the spring force is opposite to the direction the spring is stretched.

Hooke’s Law is not a law in the sense that it is always true; really, it is a model of how some
things behave under some conditions. Almost everything obeys Hooke’s Law when x is small
enough, but for large values everything deviates from this ideal behavior, one way or the other.

In reality, the spring constant of a bungee cord depends on x over the range we are interested
in, but as a starting place I’ll assume k is constant.

Exercise 14.1. Write a simulation of this scenario, based on these parameters and modeling
assumptions. Use your simulation to choose the length of the cord, L, and its spring constant,
k, so that the jumper falls all the way to the tea cup, but no farther!

You could start with the length 25 m and the spring constant 40 N/m.

14.2 Bungee Revisited

In the previous section, we modeled the motion of a bungee jumper taking into account gravity,
air resistance, and the spring force of the bungee cord. But we ignored the weight of the cord.
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It’s tempting to say that the cord has no effect because it falls along with the jumper, but that
intuition is incorrect. As the cord falls, it transfers energy to the jumper.

At https://greenteapress.com/matlab/bungee, you’ll find a paper by Heck, Uylings, and
Kedzierska titled “Understanding the physics of bungee jumping”; it explains this phenomenon
and derives the acceleration of the jumper, a, as a function of position, y, and velocity, v:

a = g +
µv2/2

µ(L+ y) + 2L

where g is acceleration due to gravity, L is the length of the cord, and µ is the ratio of the
mass of the cord, m, to the mass of the jumper, M .

If you don’t believe that their model is correct, this video might convince you: https://
greenteapress.com/matlab/chain.

Exercise 14.2. Modify your solution to the previous problem to model this effect. How does
the behavior of the system change as we vary the mass of the cord? When the mass of the
cord equals the mass of the jumper, what is the net effect on the lowest point in the jump?

14.3 Spider-Man

In this example we’ll develop a model of Spider-Man swinging from a springy cable of webbing
attached to the top of the Empire State Building. Initially, Spider-Man is at the top of a
nearby building, as shown in Figure 14.1.

L

P

H

O

Figure 14.1: Diagram of the initial state for the Spider-Man example

The origin, O, is at the base of the Empire State Building. The vector H represents the position
where the webbing is attached to the building, relative to O. The vector P is the position of
Spider-Man relative to O. And L is the vector from the attachment point to Spider-Man.

https://greenteapress.com/matlab/bungee
https://greenteapress.com/matlab/chain
https://greenteapress.com/matlab/chain
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By following the arrows from O, along H, and along L, we can see that

H + L = P

So we can compute L like this:

L = P - H

Exercise 14.3. As an exercise, simulate this system and estimate the parameters that maxi-
mize the distance Spider-Man swings.

1. Implement a model of this scenario to predict Spider-Man’s trajectory.

2. Choose the right time for Spider-Man to let go of the webbing in order to maximize the
distance he travels before landing.

3. Choose the best angle for Spider-Man to jump off the building, and the best time to let
go of the webbing, to maximize range.

Use the following parameters:

• According to the Spider-Man Wiki (https://greenteapress.com/matlab/spider),
Spider-Man weighs 76 kg.

• Assume his terminal velocity is 60 m/s.

• The length of the web is 100 m.

• The initial angle of the web is 45° to the left of straight down.

• The spring constant of the web is 40 N/m when the cord is stretched and 0 N/m when
it’s compressed.

14.4 Celestial Mechanics

Celestial mechanics describes how objects move in outer space. If you did Section 11.2, you
simulated the Earth being pulled toward the Sun in one dimension. Now we’ll simulate the
Earth orbiting the Sun in two dimensions.

To keep things simple, we’ll consider only the effect of the Sun on the Earth and ignore the
effect of the Earth on the Sun. So we’ll place the Sun at the origin and use a spatial vector,
P, to represent the position of the Earth relative to the Sun.

https://greenteapress.com/matlab/spider
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Given the mass of the Sun, m1, and the mass of the Earth, m2, the gravitational force between
them is

Fg = −Gm1m2

r2
P̂

where G is the universal gravitational constant (see https://greenteapress.com/matlab/
gravity), r is the distance of the Earth from the Sun, and P̂ is a unit vector in the direction
of P.

Exercise 14.4. Write a simulation of the Earth orbiting the Sun. You can look up the orbital
velocity of the Earth or manually search for the initial velocity that causes the Earth to make
one complete orbit in one year. Optionally, use fminsearch to find the velocity that gets the
Earth as close as possible to the starting place after one year.

14.5 Conservation of Energy

A useful way to check the accuracy of an ODE solver is to see whether it conserves energy. For
planetary motion, it turns out that ode45 does not.

The kinetic energy of a moving body is

KE = mv2/2

The potential energy of a sun with mass m1 and a planet with mass m2 and a distance r
between them is

PE = −Gm1m2

r

Exercise 14.5. Write a function called energy_func that takes the output of your Earth sim-
ulation and computes the total energy (kinetic and potential) of the system for each estimated
position and velocity.

Plot the result as a function of time and check whether it increases or decreases over the course
of the simulation.

You can reduce the rate of energy loss by decreasing ode45’s tolerance option using odeset
(see “ODE Events” on page 116):

https://greenteapress.com/matlab/gravity
https://greenteapress.com/matlab/gravity
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options = odeset('RelTol', 1e-5);
[T, M] = ode45(@rate_func, tspan, W, options);

The name of the option is RelTol for “relative tolerance.” The default value is 1e-3, or 0.001.
Smaller values make ode45 less “tolerant,” so uses smaller step sizes to make the errors smaller.

Run ode45 with a range of values for RelTol and confirm that as the tolerance gets smaller,
the rate of energy loss decreases.

Along with ode45, MATLAB provides several other ODE solvers (see https://
greenteapress.com/matlab/solver). Run your simulation with one of the other ODE solvers
MATLAB provides and see if any of them conserve energy. You might find that ode23 works
surprisingly well (although technically it does not conserve energy either).

14.6 Chapter Review

This chapter presents examples where you can apply the tools in this book to solve more
realistic problems. Some of them are more serious than others, but I hope you had some fun
with them.

I think this toolkit is powerful and versatile. If you use it to solve an interesting problem, let
me know!

https://greenteapress.com/matlab/solver
https://greenteapress.com/matlab/solver
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Under the Hood

In this chapter we “open the hood,” looking more closely at how some of the tools we have
used—ode45, fzero, and fminsearch—work.

15.1 How ode45 Works

According to the MATLAB documentation, ode45 uses “an explicit Runge-Kutta formula,
the Dormand-Prince pair.” You can read about it at https://greenteapress.com/matlab/
runge, but I’ll give you a sense of it here.

The key idea behind all Runge-Kutta methods is to evaluate the rate function several times at
each time step and use a weighted average of the computed slopes to estimate the value at the
next time step. Different methods evaluate the rate function in different places and compute
the average with different weights.

As an example, we’ll solve the following differential equation:

dy

dt
(t) = y sin t

Given a differential equation, it’s usually straightforward to write a rate function:

function res = rate_func(t, y)
dydt = y * sin(t);
res = dydt;

end

https://greenteapress.com/matlab/runge
https://greenteapress.com/matlab/runge
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And we can use it like this:

y0 = 1;
tspan=[0 4];
options = odeset('Refine', 1);
[T, Y] = ode45(@rate_func, tspan, y0, options);

For this example we’ll use odeset to set the Refine option to 1, which tells ode45 to return
only the time steps it computes, rather than interpolating between them.

Now we can modify the rate function to plot the places where it gets evaluated:

function res = rate_func(t, y)
dydt = y * sin(t);
res = dydt;

plot(t, y, 'ro')
dt = 0.01;
ts = [t t+dt];
ys = [y y+dydt*dt];
plot(ts, ys, 'r-')

end

When rate_func runs, it plots a red circle at each location and a short red line showing the
computed slope.

Figure 15.1 shows the result; ode45 computes 10 time steps (not counting the initial condition)
and evaluates the rate function 61 times.

Figure 15.2 shows the same plot, zoomed in on a single time step. The dark squares at 0.8

to 1.2 show the values that were returned as part of the solution. The circles show the places
where the rate function was evaluated.

We can see that ode45 evaluates the rate function several times per time step, at several places
between the end points. We can also see that most of the places where ode45 evaluates the
rate function are not part of the solution it returns, and they are not always good estimates
of the solution. This is good to know when you are writing a rate function; you should not
assume that the time and state you get as input variables will be part of the solution.

In a sense, the rate function is answering a hypothetical question: “If the state at a particular
time has these particular values, what would the slope be?”

At each time step, ode45 actually computes two estimates of the next value. By comparing
them, it can estimate the magnitude of the error, which it uses to adjust the time step. If the
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Figure 15.1: Points where ode45 evaluates the rate function

error is too big, it uses a smaller time step; if the error is small enough, it uses a bigger time
step. Because ode45 is adaptive in this way, it minimizes the number of times it calls the rate
function to achieve a given level of accuracy.

15.2 How fzero Works

According to the MATLAB documentation, fzero uses “a combination of bisection, secant, and
inverse quadratic interpolation methods.” (See https://greenteapress.com/matlab/fzero)

To understand what that means, suppose we’re trying to find a root of a function of one
variable, f(x), and assume we have evaluated the function at two places, x1 and x2, and found
that the results have opposite signs. Specifically, assume f(x1) > 0 and f(x2) < 0, as shown
in Figure 15.3.

As long as f is continuous, there must be at least one root in this interval. In this case we
would say that x1 and x2 bracket a zero.

If this were all you knew about f , where would you go looking for a root? If you said “halfway
between x1 and x2,” congratulations! You just invented a numerical method called bisection!

If you said, “I would connect the dots with a straight line and compute the zero of the line,”
congratulations! You just invented the secant method !

https://greenteapress.com/matlab/fzero
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Figure 15.2: Points where ode45 evaluates the rate function, zoomed in
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Figure 15.3: Initial state of a root-finding search

And if you said, “I would evaluate f at a third point, find the parabola that passes through
all three points, and compute the zeros of the parabola,” congratulations, you just invented
inverse quadratic interpolation!

That’s most of how fzero works. The details of how these methods are combined are interest-
ing, but beyond the scope of this book. You can read more at https://greenteapress.com/
matlab/brent.

15.3 How fminsearch Works

According to the MATLAB documentation, fminsearch uses the Nelder-Mead simplex algo-
rithm. You can read about it at https://greenteapress.com/matlab/nelder, but you might

https://greenteapress.com/matlab/brent
https://greenteapress.com/matlab/brent
https://greenteapress.com/matlab/nelder
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find it overwhelming.

To give you a sense of how it works, I will present a simpler algorithm, the golden-section
search. Suppose we’re trying to find the minimum of a function of a single variable, f(x).

As a starting place, assume that we have evaluated the function at three places, x1, x2, and
x3, and found that x2 yields the lowest value. Figure 15.4 shows this initial state.

x3x2x1

Figure 15.4: Initial state of a golden-section search

We will assume that f(x) is continuous and unimodal in this range, which means that there is
exactly one minimum between x1 and x3.

The next step is to choose a fourth point, x4, and evaluate f(x4). There are two possible
outcomes, depending on whether f(x4) is greater than f(x2) or not. Figure 15.5 shows the
two possible states.

x4x2 x3x1x4x2 x3x1

Figure 15.5: Possible states of a golden-section search after evaluating f(x4)

If f(x4) is less than f(x2) (shown on the left), the minimum must be between x2 and x3, so
we would discard x1 and proceed with the new triple (x2, x4, x3).

If f(x4) is greater than f(x2) (shown on the right), the local minimum must be between x1
and x4, so we would discard x3 and proceed with the new triple (x1, x2, x4).

Either way, the range gets smaller and our estimate of the optimal value of x gets better.

This method works for almost any value of x4, but some choices are better than others. You
might be tempted to bisect the interval between x2 and x3, but that turns out not to be the best
choice. You can read about a better option at https://greenteapress.com/matlab/golden.

https://greenteapress.com/matlab/golden
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15.4 Chapter Review

The information in this chapter is not strictly necessary; you can use these methods without
knowing much about how they work. But there are two reasons you might want to know.

One reason is pure curiosity. If you use these methods, and especially if you come to rely on
them, you might find it unsatisfying to treat them as “black boxes.” At the risk of mixing
metaphors, I hope you enjoyed opening the hood.

The other reason is that these methods are not infallible; sometimes things go wrong. If you
know how they work, at least in a general sense, you might find it easier to debug them.

With that, you have reached the end of the book, so congratulations! I hope you enjoyed it and
learned a lot. I think the tools in this book are useful, and the ways of thinking are important,
not just in engineering and science, but in practically every field of inquiry.

Models are the tools we use to understand the world: if you build good models, you are more
likely to get things right. Good luck!



Appendix A

Glossary

Absolute error The difference between an approximation and an exact answer.

Abstraction The process of ignoring the details of how a function works in order to focus on
a simpler model of what the function does.

Accumulator A variable that is used to accumulate a result a little bit at a time.

Analytic solution A way of solving an equation by performing algebraic operations and
deriving an explicit way to compute a solution.

Apply A way of processing a vector by performing some operation on each of the elements,
producing a vector that contains the results.

Argument An expression that appears in a function call to specify the value the function
operates on.

Assignment statement A command that creates a new variable (if necessary) and gives it
a value.

Body The statements inside a loop that are run repeatedly.

Call (a function) To cause a function to execute and compute a result.

Column vector A matrix that has only one column.

Command A line of MATLAB code executed by the interpreter.

Comment Part of a program that provides additional information about the program but
does not affect its execution.
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Compound statement A statement, like if and for, that contains other statements in an
indented body.

Concatenation The operation of joining two vectors or matrices end-to-end to form a new
vector or matrix.

Differential equation (DE) An equation that relates the derivatives of an unknown func-
tion.

Directly (compute) A way of computing an element in a sequence without using previous
elements.

Element (of a matrix) One of the values in a vector or matrix.

Element (of a sequence) One of the numbers in a mathematical sequence.

Elementwise An operation that acts on the elements of a vector or matrix (unlike some linear
algebra operations).

Encapsulation The process of wrapping part of a program in a function in order to limit
interactions (including name collisions) between the function and the rest of the program.

Evaluate To compute the value of an expression.

Existential quantification A logical condition that expresses the idea that “there exists” an
element of a set with a certain property.

Expression A sequence of operands and operators that specifies a mathematical computation
and yields a value.

First-order DE A differential equation that includes only first derivatives.

Floating-point A way to represent numbers in a computer.

Function A named computation; for example, log10 is the name of a function that computes
logarithms in base 10.

Function call A command that executes a function.

Function handle A function handle is a way of referring to a function by name (and passing
it as an argument) in MATLAB without calling it.

Generalization Making a function more versatile by replacing specific values with input
variables.

Helper function A function in an M-file that is not the top-level function; it can only be
called from another function in the same file.

Incremental development A way of programming by making a series of small, testable
changes.
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Index An integer value used to indicate one of the values in a vector or matrix (also called
subscript in some MATLAB documentation).

Input variable A variable in a function that gets its value, when the function is called, from
one of the arguments.

Interpreter The program that reads and executes MATLAB code.

Linear DE A differential equation that includes no products or powers of the function and
its derivatives.

Logical function A function that returns a logical value (1 for “true” or 0 for “false”).

Logical vector A vector, often the result of applying a logical operator to a vector, that
contains logical values 1 and 0.

Loop A part of a program that runs repeatedly.

Loop variable A variable, defined in a loop, that gets assigned a different value each time
through the loop.

M-file A file that contains a MATLAB program.

Matrix A two-dimensional collection of values (also called “array” in some MATLAB docu-
mentation).

Name collision The scenario where two scripts that use the same variable name interfere
with each other.

Nested function call An expression that uses the result from one function call as an argu-
ment for another.

Nesting Putting one compound statement in the body of another.

Norm The magnitude of a vector, sometimes called “length,” but not to be confused with the
number of elements in a MATLAB vector.

Numerical method A method (or algorithm) for generating a numerical solution.

Numerical solution A way of solving an equation by finding a numerical value that satisfies
the equation, often approximately.

Operand A number or variable that appears in an expression along with operators.

Operator One of the symbols, like * and +, that represent mathematical operations.

Order of operations The rules that specify which operations in an expression are performed
first.
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Ordinary DE (ODE) A differential equation in which all derivatives are taken with respect
to the same variable.

Output variable A variable in a function that is used to return a value from the function to
the caller.

Pack To copy values from a set of variables into a vector.

Parameter A value that appears in a model to quantify some physical aspect of the scenario
being modeled.

Partial DE (PDE) A differential equation that includes derivatives with respect to more
than one variable.

Phase plot A plot that shows the state of a system as a point in the space of possible states.

Postcondition Something that will be true when the script completes.

Precondition Something that must be true when the script starts, in order for it to work
correctly.

Projection The component of one vector that is in the direction of the other.

Prompt The symbols the interpreter prints to indicate that it’s waiting for the user to type
a command.

Range A matrix of values specified with the colon operator, for example, 1:5.

Recurrently A way of computing the next element of a sequence based on previous elements.

Reduce A way of processing the elements of a vector and generating a single value, for ex-
ample, the sum of the elements.

Relative error The difference between an approximation and an exact answer, expressed as
a fraction or percentage of the exact answer.

Row vector A matrix that has only one row.

Scaffolding Code you write to help you program or debug, but which is not part of the
finished program.

Scalar A single value.

Scientific notation A format for typing and displaying large and small numbers, e.g., 3.0e8,
which represents 3.0× 108 or 300,000,000.

Script An M-file that contains a sequence of MATLAB commands.

Search A way of processing a vector by examining the elements in order until one is found
that has the desired property.
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Search path The list of folders where MATLAB looks for M-files.

Sequence A set of numbers that correspond to the positive integers, in mathematics.

Series The sum of the elements in a sequence, in mathematics.

Shadow A kind of name collision in which a new definition causes an existing definition
to become invisible. In MATLAB, variable names can shadow built-in functions (with
hilarious results).

Side effect An effect, like modifying the workspace, that is not the primary purpose of a
function or script.

Signature The first line of a function definition, which specifies the names of the function,
the input variables, and the output variables.

Silent function A function that doesn’t display anything, generate a figure, or have any other
side effects.

Spatial vector A value that represents a multidimensional physical quantity like position,
velocity, acceleration, or force.

State If a system can be described by a set of variables, the values of those variables are called
the state of the system.

String A value that consists of a sequence of characters.

System of equations A collection of equations written in terms of the same set of variables.

Target The variable on the left side of an assignment statement.

Time step The interval in time between successive estimates in the numerical solution of a
differential equation.

Top-level function The first function in an M-file; it’s the only
function that can be called from the Command Window or from another file.

Trajectory A path in a phase plot that shows how the state of a system changes over time.

Transpose An operation that transforms the rows of a matrix into columns (and the other
way around).

Unit vector A vector with norm 1, used to indicate direction.

Universal quantification A logical condition that expresses the idea that all elements of a
set have a certain property.

Unpack To copy the elements of a vector into a set of variables.

Value The result of a computation, most often a number, string, or matrix.
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Variable A named value.

Vector A sequence of values.

Workspace A set of variables and their values.

Zero (of a function) An argument that makes the value of a function 0.
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absolute error, 27
abstraction, 1, 64
acceleration, 115, 118, 125, 129, 145
accumulator, 32, 42
adaptive, 151
addition

vector, 145
air resistance, 13, 114, 117, 126, 133
altitude, 126
analysis, 1
analytic solution, 68
animation, 140
ans, 48
apply, 43, 79
argument, 5, 6, 71
arithmetic

vector, 38
arithmetic operator, 4
array, 40
assignment

target, 21
assignment operator, 7
assignment statement, 28
axes, 97
axis, 140

baseball, 123, 126, 135, 142
bike share system, 23, 25
bisection, 151
body of loop, 28
boom and bust, 108
Boston Red Sox, 133, 142
bracket, 151

bug, 27
bungee cord, 144
bungee jump, 143, 144
buoyancy, 76

cannon, 133
Cartesian coordinates, 124, 137
case sensitive, 7
celestial mechanics, 146
character, 7
Chebyshev polynomial, 75
clear, 8
clear figure, 30, 140
clf, 30, 140
coefficient

drag, 127, 133
coffee, 98
collision

name, 47, 50, 52, 73
colon, 107
colon operator, 28
column, 102
column vector, 102, 107, 109, 115, 132
comma operator, 130
command, 3
Command Window, 3, 15
comment, 20, 50
complex number

imaginary unit, 6, 7
compound statement, 48, 57
computation

explicit, 67
concatenation, 130
conditional statement, 56
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conservation of energy, 147
continue, 62
cookie, 143
cooling, 98
cross-sectional area, 128
cumprod, 81
cumsum, 80
cumulative product, 81
cumulative sum, 80

data, 1
debugging, 74, 85

Eighth Theorem, 86
Fifth Theorem, 26
First Theorem, 4
Fourth Theorem, 18
Second Theorem, 11
Seventh Theorem, 74
Sixth Theorem, 33
Third Theorem, 16

definition
function, 48

denominator, 9, 11
density, 76, 128, 133
derivative, 126
design, 1
diff, 81
differential equation, 88, 149

first-order, 89
second-order, 113

direct computation, 31
direction, 124
disp, 8
division, 4, 11

by zero, 19
doc, 21
documentation

doc, 11
function, 20, 50
help, 11

Dormand-Prince, 149
drag, 117, 127, 133
drag coefficient, 127

drawnow, 140
duck, 76

Earth, 120, 146
element, 11, 30, 39, 102
element-wise operator, 73, 80
elementwise operator, 38
ellipse, 2
ellipsis, 9
else clause, 56
Empire State Building, 12, 115, 145
encapsulation, 61, 78
end statement, 28, 95
energy, 147
equality, 21
equation

differential, 88
nonlinear, 67

error, 9
absolute, 27
logical, 26
numerical, 27
relative, 27
runtime, 26
syntax, 26

error function, 69
error message, 10, 22
Euclidean norm, 124
Euler’s method, 89
event function, 116, 135
existential quantification, 82
explanation, 1
explicit computation, 67
exponent, 19
exponentiation, 4
expression, 3, 6, 7, 40

invalid, 10
external validation, 3
ezplot, 72, 75

factorial, 19
Fenway Park, 142
Fibonacci, 21, 41, 44



INDEX 163

Fibonacci number, 17, 65
figure, 97
Figure Window, 29
file extension, 15
find, 84
fixed-point iteration, 68
flag, 84
floating-point, 18
flow of execution, 64
fminsearch, 138, 147, 153
folder, 16
for loop, 28
force, 118, 125

drag, 127
Magnus, 142

format, 18
fox, 104
function, 47, 63

length, 40
argument, 5
documentation, 20
error, 69
event, 116
gcd, 62
helper, 87
rate, 92, 149
silent, 49
top-level, 87
vectorizing, 72, 79

function call, 6
nested, 5

function definition, 48
function handle, 69, 92, 95, 106, 115
function name, 51
fzero, 69, 138, 151

gcd function, 62
gcf, 97
generalization, 32, 61
geometric sequence, 30
get current figure, 97
getframe, 140
golden-section search, 153

golf ball, 142
gravity, 114, 126
Green Monster, 142

handle
function, 69, 92, 106

help, 21, 50
Help Window, 21
helper function, 87
hold, 29
Hooke’s Law, 144
horzcat, 131
human cannonball, 133
hypothesis, 85

if statement, 56
incremental development, 33, 57, 88
indentation, 56
index, 39, 40, 101

end, 95
Inf, 19
initial condition, 90, 106, 126, 136
input variable, 48, 52, 77, 96
internal validation, 3
interpreter, 3
interval, 72, 94
invalid expression, 10
inverse quadratic interpolation, 151
iterative modeling, 2

kinetic energy, 147

labeling axes, 97
launch angle, 135, 136, 142
Law of Universal Gravitation, 120, 146
legend, 97
length function, 40, 42
linear algebra, 103
linear differential equation, 89
logical error, 26
logical vector, 83
logistic map, 45
loop, 28, 30, 39

nested, 58
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loop body, 28
loop variable, 28
Lorenz attractor, 44, 110
Lotka-Volterra model, 104

M-file, 15, 48
magnitude, 124
Magnus force, 142
Manny Ramirez, 142
mass, 118, 146
math function

exponential, 5
logarithm, 5
square root, 6
trigonometric, 5

matrix, 11, 38, 101, 115
matrix exponentiation, 80
matrix multiplication, 39
matrix transpose, 104
mechanics

celestial, 146
minimum, 153
model, 1
modeling, 2
multiplication, 4

matrix, 39
myth, 12

name
function, 51
variable, 7

name collision, 47, 50, 52, 73
NaN, 19
Nelder-Mead, 153
nested function call, 5
nested loop, 58
Newton, 2
Newton’s law of cooling, 98
Newton’s law of motion, 113
Newtonian motion, 113
nonlinear equation, 67
norm, 124
not a number, 19

number
floating-point, 18

numerator, 9
numerical error, 26
numerical method, 68
numerical solution, 68

ODE event, 116, 135
ode23, 148
ode45, 91, 105, 141, 147, 149
odeset, 117, 135, 147, 150
operand, 3, 5, 6
operations

order of, 4
operator, 3

assignment, 7
colon, 28
comma, 130
element-wise, 73
elementwise, 38
relational, 55

optimization, 135, 146
options, 117
orbit, 2
order of operations, 4, 11
ordinary differential equation (ODE), 88
output

suppress, 7
output argument, 71
output variable, 48, 61, 71, 78, 92, 96, 127

pack vector, 106
parachute, 120
parameter, 93, 106, 146
parentheses, 4, 10, 39
partial differential equation (PDE), 88
pause, 141
penny, 12, 115
percent sign, 20
phase plot, 108
plot

ezplot, 72
plot, 29, 41
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plot3, 109
plotting vector, 41
pol2cart, 137
polar coordinates, 137
position, 114, 124, 146
postcondition, 21, 51
potential energy, 147
precondition, 21, 51
predefined variable, 6
prediction, 1
product

cumulative, 81
prompt, 3
Pythagorean theorem, 124
Pythagorean triple, 55, 65

quantification
existential, 82
universal, 83

rabbit, 104
radian, 137
Ramirez, Manny, 142
random walk programming, 85
range, 28, 135, 136, 146
rate function, 92, 95, 105, 114, 126, 149
reading, 85
realism, 2
realmax, 19
realmin, 19
recurrent computation, 31
reduce, 42
relative error, 27
relativity, 2
RelTol, 148
res, 48
retreating, 85
return statement, 83
root, 69, 151
row, 102
row vectors, 102
ruminating, 85
Runge-Kutta, 149

running, 85
runtime error, 26

saveas, 97
scaffolding, 34
scientific notation, 19
script, 15, 48

filename, 16
reasons for, 16

search path, 16
secant method, 151
second derivative, 113
second-order differential equation, 113
semicolon, 7, 17, 102, 106
sequence, 30, 41, 124

Fibonacci, 17
series, 31
shadow, 73
sign, 118
signum function, 118
silent function, 49
simplicity, 2
simulation, 1
size, 102
skydiver, 120
spatial vector, 124, 146
sphere, 76
Spider-Man, 145
spring constant, 144, 146
square root, 44, 67
state, 108, 124
statement

assignment, 7, 28
compound, 57
end, 28
return, 83

step size, 141
string, 7
style string, 29
sum, 31

cumulative, 80
sum, 78
Sun, 120, 146
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suppress output, 7
syntax

..., 9
semicolon, 7

syntax error, 26
system, 1

of equations, 105
of ODEs, 104

tea, 143
terminal velocity, 118, 146
time dependence, 93
time series, 124
time span, 115, 127, 141
time step, 89, 91, 150
tolerance, 147
top-level function, 87, 90
trajectory, 108, 136, 146
transcendental number, 19
transpose operator, 104
trigonometry, 5

undefined operation, 19
underscore, 7
unimodal, 153
unit, 20
unit vector, 124, 128
universal gravitation constant, 147
universal quantification, 83
unpack vector, 106
update, 26

validation, 1
external, 3
internal, 3

variable, 6, 7, 37
assignment, 21
input, 48, 52
loop, 28
name, 7
output, 48, 61, 71, 92
predefined, 6
reasons for, 8

variable name, 20
vector, 11, 37, 41, 42, 70, 77

column, 102
logical, 83
plotting, 41
row, 102
spatial, 124
unit, 124

vector addition, 145
vector arithmetic, 38
vectorizing, 72, 79
velocity, 114, 126, 135, 142, 147
vertcat, 130
vertical concatenation, 130

who, 7
whos, 102
workspace, 3, 7, 18, 47, 49, 63

xlabel, 97

ylabel, 97

zero
division by, 19

zero-finding, 69
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