
AN ELEMENTARY

INTRODUCTION TO THE

Wolfram

Language

STEPHEN WOLFRAM

AN ELEMENTARY

INTRODUCTION TO THE

Wolfram

Language

AN ELEMENTARY

INTRODUCTION TO THE

Wolfram

Language

STEPHEN WOLFRAM

Wolfram Media, Inc.

wolfram-media.com

ISBN 978-1-944183-00-4 (paperback)

ISBN 978-1-944183-01-1 (ebook)

Copyright © 2016 by Wolfram Media, Inc.

CC BY-NC-SA ©®®@
Attribution-NonCommercial-ShareAlike

creativecommons.Org/licenses/by-nc-sa/4.0/legalcode

Library of Congress Cataloging-in-Publication Data

Wolfram, Stephen, author.

An elementary introduction to the Wolfram Language / Stephen Wolfram.

Champaign, I L, USA : Wolfram Media, Inc., [2015]
|

Includes index.

LCCN 2015039066
|

ISBN 9781944183004 (pbk. : alk. paper)

LCSH: Wolfram Language (Computer program language)
|

Mathematica (Computer file)

LCC QA76.73.W65 W65 2015
|

DDC 510/.285536-dc23

LC record available at http://lccn.loc.gov/2015039066

Trademarks: Wolfram, Wolfram Language, Wolfram|Alpha, Wolfram Cloud, Wolfram Programming Lab,

Mathematica, Wolfram Workbench, Wolfram Knowledgebase, Wolfram Notebook, Wolfram Community,

Wolfram Data Drop, Wolfram Demonstrations Project, and Tweet-a-Program.

This book was written and produced using Wolfram Desktop and the Wolfram Language.

Printed by Friesens, Manitoba, Canada. © Acid-free paper.

First edition. Second printing.

Table of Contents

Preface vii 25
|

Ways to Apply Functions 141

What Is the Wolfram Language? xi
26

|

Pure Anonymous Functions 147

Practicalities of Using the Wolfram Language xiii

Other Resources XV
27

|

Applying Functions Repeatedly 153

1
1

Starting Out: Elementary Arithmetic 1
28

|

Tests and Conditionals 163

2
|

Introducing Functions 3
29

|

More about Pure Functions 171

3
|

First Look at Lists 7
30

|

Rearranging Lists 177

4
1

Displaying Lists 11
31

1

Parts of Lists 187

5
|

Operations on Lists 15
32

|

Patterns 193

6
|

Making Tables 19
33

|

Expressions and Their Structure 197

7
|

Colors and Styles 25
34

|

Associations 205

8
|

Basic Graphics Objects 29
35

|

Natural Language Understanding 211

9
|

Interactive Manipulation 33
36

|

Creating Websites and Apps 217

10
|

Images 39
37

|

Layout and Display 227

11
1

Strings and Text 45
38

|

Assigning Names to Things 233

12
|

Sound 53
39

|

Immediate and Delayed Values 239

13
|

Arrays, or Lists of Lists 57
40

|

Defining Your Own Functions 243

14
|

Coordinates and Graphics 63
41 More about Patterns 249

15
|

The Scope of the Wolfram Language 73
42 String Patterns and Templates 255

16
|

Real-World Data 77
43

|

Storing Things 261

17
|

Units 87
44

|

Importing and Exporting 265

18
|

Geocomputation 93
45

|

Datasets 271

19
|

Dates and Times 101
46

|

Writing Good Code 283

20
|

Options 107
47

|

Debugging Your Code 291

21
1

Graphs and Networks 115
What We Haven’t Discussed 295

Afterword: Being a Programmer 303

22
|

Machine Learning 123
Answers to Exercises 305

23
|
More about Numbers 129 Index 313

24 1 More Forms of Visualization 137

Preface — wolfr.am/eiwl-pref vii

Preface

I've been explaining what’s now the Wolfram Language to people for more than 25

years, and I finally decided it was time to take what I’d learned and write a minimal

introduction that people could read on their own. This book is the result of that effort.

When we first launched Mathematica—the precursor of the Wolfram Language-

in 1988. 1 published a book that provided both a tutorial introduction and reference

guide to the system. The book was very popular and I think contributed substantially

to the earlv success of Mathematica. Over the next decade or so, The Mathematica Book
,j j i

as it came to be known, went through five editions, and steadily grew until it was

nearly 1 500 pages long.

My goal in The Mathematica Book was to systematically cover all aspects of the system.

But when we released a huge new version in 2007, it became clear that this was

simply no longer possible in a single book. Our online documentation had mean-

while steadily grown, and in 2007, with the introduction of a vast number of new

examples, it reached the point where a printed version would have been well over

10,000 pages in length.

In 2009 Wolfram
|

Alpha arrived, with its natural-language interface specifically built

for use without explanation or documentation. But then, emerging from Mathematica

and Wolfram
|

Alpha, came the Wolfram Language, and there was once again a need

for both explanation and documentation.

I believe that the online documentation for the Wolfram Language—which in printed

form would exceed 50,000 pages—does very well at explaining the specifics of how to

use all the many capabilities of the system. But particularly for newcomers there’s also

a need to understand the principles of the language—that I’ve worked so hard over

the years to keep coherent and consistent.

The Wolfram Language is unique among programming languages, and different

in many ways. But some time ago, I wrote a Fast Introduction for Programmers

wolfr.am/fifp) that in about 30 pages gives modern programmers at least a basic

grounding in the principles of the Wolfram Language.

But what about people who don’t already know programming? The Wolfram Language

provides a unique opportunity not only to introduce anyone to programming, but to get

them quickly to the very frontiers ofwhat can be done with computation today.

That this is possible is a consequence of all the effort we’ve put into creating the

technology of the Wolfram Language over the course of nearly three decades. My goal

has been to build a language where anyone can specify as simply as possible what they

want to do, then inside, all the details are automatically taken care of to get it done.

For the quick question-answering of Wolfram
|

Alpha, it's enough just to say in plain

Lnglish what you want. But if you’re going to do more systematic tasks, you need a

way to explain them precisely. And that’s what the \\ olfram I -anguage is for.

viii An Elementary Introduction to the Wolfram Language

So how should people learn the Wolfram Language? One approach is immersion:

Be in an environment where the Wolfram Language is used. Explore programs that

run, and learn from them as examples. In my observation, this can work very well so

long as there is at least occasionally someone around to explain principles and help

with issues when they come up.

But what about learning the Wolfram Language entirely on one’s own? Here I think

what’s needed is a systematic introduction that progressively builds from one concept

to another, answering every obvious question as it goes. And that’s what I’m trying to

do in this book.

Learning the Wolfram Language is a bit like learning a human language. There’s

a mixture ofvocabulary and principles, that have to be learned hand in hand. The

Wolfram Language is immensely more systematic than human languages—with

nothing like irregular verbs to memorize—but still has the same kind of progression

towards fluency that comes with more and more practice.

I wondered how to write this book. And eventually I decided to base it loosely on

Latin textbooks, of the kind I used when I was a kid. Unlike living languages, Latin

cannot be learned by immersion, and so there is no choice but to build step by step,

as I do in this book.

In some ways learning programming is a bit like learning mathematics. Both have a

certain precision: things are either right or wrong. But with the Wolfram Language,

programming is much more concrete: At every step you can see what is happening,

and whether what you’re doing is right. There are no hidden concepts that have to be

explained abstractly from outside and cannot explicitly be seen.

Still, there’ve been two millennia of development in the teaching of mathematics, that

have progressively optimized the sequence of presenting arithmetic, algebra and so

on. The problem of teaching the Wolfram Language is something completely new,

where everything has to be figured out from scratch. Existing programming education

isn’t much help, because so much of it is about just the kinds of lower-lower structure

that have been automated away in the Wolfram Language.

I view this book as an experiment: an attempt to provide a particular path through

learning the Wolfram Language. I am not trying to cover everything in the language,

not least because that would take at least 50,000 pages. Instead, I am trying to explain

the principles of the language through a limited number of specific examples.

I’ve chosen the examples to be interesting and useful in practice. But the bigger point

is that through the examples, I cover most of the core principles of the language. And
knowing these principles, you’ll be ready to go to specific documentation to under-

stand any particular aspect of what the language can do.

Preface — wolfr.am/eiwl-pref ix

them like identifying objects in images—are sophisticated on the inside, but easy to

explain. But others- like computing Grobner bases—are also sophisticated to explain,

and may require significant outside knowledge of mathematics or computer science.

My goal is to make this book completely self-contained, and to assume nothing

beyond everyday common knowledge. I have avoided any explicit use of mathematics

beyond basic arithmetic, though those who know advanced mathematics may notice

many connections between concepts of mathematics and concepts in the book.

This is certainly not the only elementary introduction to the Wolfram Language that

could be written, and I hope there will be many more. It follows a specific—and in

many ways arbitrary—path through the vast capabilities of the language, highlighting

certain features but not even mentioning many other equally deserving ones.

Still, I hope that the power and beauty of the language that I have nurtured for more

than halfmy life will shine through, and that many students and other people, with

many diverse backgrounds, can use this book to get started with the Wolfram Language

and get involved with the kind of computational thinking that is quickly becoming a

defining feature of our times.

Stephen Wolfram

What Is the Wolfram Language? — wolfr.am/eiwl-what xi

What Is the Wolfram Language?

1 he Wolfram Language is a computer language. It gives you a way to communicate

with computers, in particular so you can tell them what to do.

There are many computer languages, such as C++, Java, Python andJavaScript.

The Wolfram Language is unique in that it’s knowledge based. That means that it

already knows a lot so you have to tell it much less to get it to do things you want.

In this book, you 11 see how to use the Wolfram Language to do a great many things.

You’ll learn how to think computationally about what you want to do, and how to

communicate it to a computer using the Wolfram Language.

Why can't you just say what you want using plain English? That’s what you do in

Wolfi'am
|

Alpha. And it works very well for asking short questions. But if you want to

do something more complex, it quickly becomes impractical to describe everything

just in plain English. And that’s where the Wolfram Language comes in.

It's designed to make it as easy as possible to describe what you want, making use of

huge amounts of knowledge that are built into the language. And the crucial thing is

that when you use the Wolfram Language to ask for something, the computer imme-

diately knows what you mean, and then can actually do what you want.

I view the Wolfram Language as an optimized tool for turning ideas into reality.

You start with an idea of something you want to do. You formulate the idea in

computational terms, then you express it in the Wolfram Language. T hen it’s up

to the Wolfram Language to do it as automatically as possible.

You can make things that are visual, textual, interactive or whatever. You can do

analyses or figure things out. You can create apps and programs and websites.

You can take a very wide variety of ideas and implement them—on your computer,

on the web, on a phone, on tiny embedded devices and more.

I started building what's now the Wolfram Language nearly 30 years ago. Along the

way, particularly in the form of Mathematica, the Wolfram Language has been

extremely widely used in the world’s research organizations and universities—and a

remarkable range of inventions and discoveries have been made with it.

’Today the Wolfram Language has emerged as something else: a new kind ol general

computer language, which redefines what’s practical to do with computers. Among the

early users of today’s Wolfram Language arc many ol the world’s leading innovators

and technology organizations. And there are large and important systems like'

W olfram
|

Alpha that are written in the Wolfram Language.

xii An Elementary Introduction to the Wolfram Language

But the very knowledge and automation that makes the Wolfram Language so powerful

also makes it accessible to anyone. You don’t have to know about the workings of

computers, or about technical or mathematical ideas; that’s the job of the Wolfram

Language. All you need to do is to know the Wolfram Language, so you can tell your

computer what you want.

As you work through this book, you’ll learn the principles of the Wolfram Language.

You’ll learn how to use the Wolfram Language to write programs, and you’ll see

some of the computational thinking it’s based on. But most of all, you’ll learn a set of

powerful skills for turning your ideas into reality. Nobody knows yet all the things that

the Wolfram Language will make possible. It’s going to be exciting to see—and what

you learn in this book will let you become a part of that future.

Practicalities of Using the Wolfram Language — wolfr.am/eiwl-prac xiii

Practicalities of Using the Wolfram Language

1 he best way to learn the Wolfram Language is to use it. Wolfram Programming Lab

is specifically set up for easy access in learning the language, though you can also use

other interactive Wolfram Language environments.

In any of these environments, you enter input in the Wolfram Language, and the

system immediately computes output from it. You can do this on desktop, web or

mobile. On desktop and web, you typically type Shift + Enter to say you’ve finished

your input; on mobile you typically press a
|

* button. Your sequence of inputs and

outputs—together with any text you may add—all exists in a Wolfram Notebook.

In[1] 2 + 2 [shift + enter Input

Out|1]: 4 Output

Within the Wolfram Notebook you’ll see a variety of aids to help you enter Wolfram

Language input.

Autocomplete

ListPlI

ListPlot Get information

ListPlot3D

ListPlay

EJ plot the sequence 1,3,4,2,5 Natural-language input

Suggestions for next input

labels... axes image size background more...

Table[Column[Range[n]],{n, 8}]

tabla columna rango ^ Code captions for non-

English environments

Wolfram Notebooks, with their interactive sequences of inputs and outputs, are an ideal

way to learn, explore and write programs in the Wolfram Language. But the \\ ollram

language can also operate without its own interactive interface, in a whole variety ol

software-engineering configurations. Inside, though, the language is still doing the same

computations as in the interactive configuration we discuss in this book.

xiv An Elementary Introduction to the Wolfram Language

Q&A

Do I need to know programming to read this book?

Absolutely not. This book is a self-contained introduction to programming.

What age group is this book suitable for?

Experience suggests that anything above about age 12 is appropriate. I’ve tried to choose examples that

will be relevant and engaging to all age groups, very much including adults.

How much math do I need to know to read this book?

Nothing beyond basic arithmetic. This is a book about programming in the Wolfram Language, not about math.

Do I need to use a computer while reading this book?

You could read it without one, but it will be much better to try things out interactively with a Wolfram

Language session, for example in the Wolfram Programming Lab.

Do I have to read this book sequentially?

It will be a lot better that way. I’ve constructed the book so it progressively builds up a broader and

broader base of concepts. If you jump around, you’ll probably need to backtrack a lot.

Why are the topics in this book so different from other programming books?

Because the Wolfram Language is a different and higher-level kind of language, that automates away

many of the details that programming books about other languages concentrate on.

Is the Wolfram Language an educational language?

It’s certainly used for education (and Mathematica is ubiquitous at universities). But it’s also very widely

used in industry. It’s good for education because it’s powerful and easy to learn.

Will learning the Wolfram Language help in learning other languages?

Definitely. Knowing the Wolfram Language you’ll understand higher-level concepts, which you’ll then see

played out in lower-level ways in other languages.

The Wolfram Language seems too easy; is it really programming?

Definitely. And because it automates away the drudgery you might associate with programming, you’ll be

able to go much further, and understand much more.

Can this book be used for a course?

Absolutely! Check out the book webpage (wolfr.am/eiwl) for supplementary material.

Can sections of the book be omitted for a course?

The book is written to provide a sequential presentation of material, so the content may require some
patching if sections in the middle are dropped.

How do the exercises relate to the text?

They check and solidify understanding, and show additional implications of the material.

What version of the Wolfram Language does this book assume I will use?

Anything 10.3 and above. Note that even some fairly simple examples (e.g. Table[x, 5]) won’t work in

earlier versions.

Is the code in the book “production grade”?

Usually, yes. Occasionally there is code that is slightly more complicated than it needs to be, because the

concepts necessary to make it simpler haven’t been introduced by that point in the book.

Other Resources — wolfr.am/eiwl-other xv

Other Resources

Wolfram Language Home Page

Broad collection of resources about the Wolfram Language

wolfrom.com/languoge

Wolfram Documentation Center

Documentation on alt functions in the Wolfram Language, with extensive examples

reference.wolfrom.com/languoge

Wolfram Programming Lab

Online and desktop access to the Wolfram Language, with educational Explorations

wolfram.com/progromming-lob

Fast Introduction for Programmers

Short Wolfram Language tutorial for people with programming experience

wolfrom.com/longuage/fast-introduction-for-progrommers

Wolfram Challenges

Dynamic collection of online Wolfram Language programming challenges

challenges, wolfram,com

Wolfram Tweet-a-Program

Many examples of Wolfram Language programs less than 140 characters long

wolfram.com/languoge/tweet-a-progrom

Wolfram Demonstrations Project

10,000+ interactive demonstrations written in the Wolfram Language

demonstrations, wolfram,com

Wolfram Community

Online community for learning and discussing Wolfram technology

community.wolfram.com

Wolfram Home Page

The home page of Wolfram Research, the company behind the Wolfram Language

wolfram.com

Stephen Wolfram’s Page

The home page for the author of this book

stephenwolfram.com

1
1

Starting Out: Elementary Arithmetic — wolfr.am/eiwl-1 1

1
|

Starting Out: Elementary Arithmetic

As a first example of how the Wolfram Language operates, let’s look at elementary

arithmetic.

Add numbers:

ln[1] 2 + 2

out(i]= 4

ln[2): 1234 + 5678

0ut[2)= 6912

Multiply numbers:

ln[3]:= 1234*5678

0ut[3)= 7 006 652

Vocabulary

2 + 2 addition

5-2 subtraction

2*3 multiplication (2 3 also works)

6/2 division

3 A 2 raising to a power (e.g. squaring)

Exercises

1.1 Compute 1+2+3.

1.2 Add the whole numbers from 1 to 5.

1.3 Multiply the whole numbers from 1 to 5.

1.4 Compute 5 squared (i.e. 5*5 or 5 raised to the power 2).

1.5 Compute 3 raised to the fourth power.

1.6 Compute 10 raised to the power 12 (a trillion).

1.7 Compute 2 to the power 2 to the power 2 to the power 2.

1.8 Add parentheses to 4 - 2 * 3 + 4 to make 14.

1.9 Compute a hundred and twenty thousand multiplied by a hundred and twenty-three.

2 An Elementary Introduction to the Wolfram Language

Q&A

In 2+2 etc. how do I tell the Wolfram Language that I’ve finished my input?

On a computer, press Shift + Enter . On a mobile device, press the % button. See Practicalities of Using

the Wolfram Language for more details.

Why is multiplication indicated by *?

Because the * (“star”, typically typed as Shift + 8)
looks like a multiplication sign. In the Wolfram

Language, you can also just put a space between numbers you want to multiply; the Wolfram Language

will then automatically insert a x multiplication sign.

What does “raised to the power”
(

A
)
mean?

6 A 3 means 6x6><6 (i.e. 6 multiplied by itself 3 times); 10 A5 means 10x10x10x10x10; etc.

How big can numbers get in the Wolfram Language?

As big as you want—so long as they fit in your computer’s memory.

What is the order of operations in the Wolfram Language?

The same as in ordinary math: powers, multiplication, addition. So 4*5 A2+7 means (4*(5 A 2))+7. You can

use parentheses just like in math. (In math, people sometimes use [...] as well as (...). In the Wolfram

Language [...] means something different.)

When I do division, how do I avoid getting fractions in my answer?

If you put in numbers with decimal points, you’ll get out numbers with decimal points. You can also use N,

as we discuss in Section 23.

What are the little spaces between digits in results like 7 006 652?

They’re there to help you read the number when it’s displayed; they’re not part of the number.

How do I enter a big number?

Just type the digits, without putting any commas, spaces or other separators (e.g. 1234123511415223).

What happens if I compute 1/0?

T ry it! You’ll get a symbolic representation of infinity, on which the Wolfram Language can then do further

computations.

More to Explore

Getting Started in Wolfram Programming Lab (wolfr.am/eiwl-l-more)

2
|

Introducing Functions — wolfr.am/eiwl-2 3

2
|

Introducing Functions

\\ hen you t\pe 2 + 2, the Wolfram Language understands it as Plus[2, 2]. Plus is a

Junction. There are more than 5000 functions built into the Wolfram Language.

Arithmetic uses just a very few of these.

Compute 3+4 using the function Plus:

Plus[3, 4]

0ut|i)= 7

Compute 1+2+3 using Plus:

Plus[l, 2, 3]

6

The function Times does multiplication:

Times[2, 3]

6

You can put functions inside other functions:

Times[2, Plus[2, 3]]

10

All functions in the Wolfram Language use square brackets, and have names that

start with capital letters.

The function Max finds the maximum, or largest, of a collection of numbers.

The maximum of these numbers is 7:

Max[2, 7, 3]

Out(5)= 7

The function Random Integer picks a random integer (whole number) between 0 and

whatever size you say.

Pick a random whole number between 0 and 100:

Randomlnteger[100]

71

Each time you ask, you get another random number:

Randomlnteger[100]

1

4 An Elementary Introduction to the Wolfram Language

Vocabulary

Plus[2, 2] 2 + 2 addition

Subtract[5, 2] 5-2 subtraction

Times[2, 3] 2*3 multiplication (2 3 also works)

Divide[6, 2] 6/2 division

Power[3, 2] 3 A 2 raising to a power

Max[3, 4] maximum (largest)

Min [3, 4] minimum (smallest)

Randomlnteger[10] random whole number

Exercises

2.1 Compute 7+6+5 using the function Plus.

2.2 Compute 2x(3+4) using Times and Plus.

2.3 Use Max to find the larger of 6^8 and 5x9.

2.4 Find a random number between 0 and 1000.

2.5 Use Max and Randomlnteger to generate a number between 10 and 20.

Q&A

Do I have to type the capital letters in Plus, Randomlnteger, etc.?

Yes. In the Wolfram Language, plus is not the same as Plus. The capital letter in Plus signifies that you’re

talking about the built-in (“official”) plus function.

Do I have to type square brackets [] when I use functions?

Yes. Square brackets [..] are for functions; parentheses (...) are for grouping, as in 2*(3+4), not for functions.

How does one read Plus[2, 3] out loud?

Usually “plus of 2 and 3”; sometimes “plus of 2 comma 3”. “[” can be read as “open bracket”; “]” as “close

bracket”.

Why use Plus[2, 3] instead of 2 + 3?

For Plus, it’s not necessary. But for the vast majority of functions— like Max or Randomlnteger—there’s no

special form like +, so you have to give their names.

CanlmixPlus[]and+?

Yes. Things like Plus[4 + 5, 2 + 3] or, forthat matter, Plus[4, 5] * 5 are just fine.

What does it mean if the Wolfram Language colors some of my input red?

It means you’ve typed something that the Wolfram Language can’t understand. See Section 47 for more
information. Start by checking that your open and close brackets are matched.

2
|

Introducing Functions — wolfr.am/eiwl-2 5

Tech Notes

• Expressions in the Wolfram Language (see Section 33) consist of nested trees of functions.

Plus can add any number of numbers, but Subtract only subtracts one number from another (to avoid

ambiguities between (2-3)-4 and 2-(3-4)).

The notion of a function is considerably more general in the Wolfram Language than in either traditional

mathematics or computer science. For example, /[anything] is considered a function, whether it

evaluates to something definite or remains in symbolic form.

More to Explore

Mathematical Functions in the Wolfram Language (wolfr.am/eiwl-2-more)

3
|

First Look at Lists — wolfr.am/eiwl-3 7

3 First Look at Lists

Ijsts are a basic way to collect things together in the Wolfram Language. {1, 2, 3} is

a list ol numbers. On their own, lists don’t do anything; they’re just a way to store

things. So il yon give a list as input, it'll just come back unchanged:

(1,2, 3, 4, a, b, c}

{1, 2, 3, 4, a, b, c}

ListPlot is a function that makes a plot of a list of numbers.

Plot the list of numbers {1, 1, 2, 2, 3, 4, 4}:

ListPlot[{l, 1, 2, 2, 3, 4, 4}]

4 p
•

3 ;

Out[2]= 2 - •

1
:

_ I 1 I I I I I ... I I

1 2 3 4 5 6 7

Plot the list of numbers {10, 9, 8, 7, 3, 2, 1}:

ListPlot[{10, 9, 8, 7, 3, 2, 1}]

Out[3j=

10
:

8
:

6 1

4 5 6 7

Range is a function that makes a list of numbers.

Generate a list of numbers up to 10:

Range[10]

{1,2, 3, 4, 5, 6, 7, 8, 9, 10}

8 An Elementary Introduction to the Wolfram Language

Generate a list of numbers, then plot it:

in[5) : ListPlot[Range[20]]

20 [

-i

Out[5]= 10 ;

5 -

5 10 15 20

Reverse reverses the elements in a list.

Reverse the elements in a list:

in[6] Reverse[{l, 2, 3, 4}]

out[6]= {4, 3, 2, 1}

Reverse what Range has generated:

in[7] Reverse[Range[10]]

outn= {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

Plot the reversed list:

m[8] ListPlot[Reverse[Range[10]]]

io F-
•

8
:

6 - •

Out[8]=

4
:

2
;

- ! . i . I . i . L_i . . I . i i I i i i L.

2 4 6 8 10

Join joins lists together, making a single list as the result.

Join lists together:

mm:- J 0in[{l, 2, 3}, {4, 5}, {6, 7}]

out[9]= {1, 2, 3, 4, 5, 6, 7}

in[io] Join[{l, 2, 3}, {1, 2, 3, 4, 5}]

out[ioj= {1, 2, 3, 1, 2, 3, 4, 5}

Join two lists made by Range:

mm] Join[Range[3], Range[5]]

Outji i]= {1, 2, 3, 1, 2, 3, 4, 5}

3
|

First Look at Lists — wolfr.am/eiwl-3 9

Plot three lists joined together:

ListPlot[Join[Range[20], Range[20], Range[30]]]

30

1

» ;

20 -
• • •

* *

Out[i 2]= 15 r

• • •

10 -

• • •
• • •

• • •

C • • •

5 '
.

10 20 30 40 50 60 70

Reverse the list in the middle:

mp3]: ListPlot[Join[Range[20], Reverse[Range[20]], Range[30]]]

30

25

20

Out[1 3]= 15

10

5

10 20 30 40 50 60 70

Vocabulary

{1, 2 , 3, 4} list of elements

ListPlot[{l, 2, 3, 4}] plot a list of numbers

Range[10] range of numbers

Reverse[{l, 2, 3}] reverse a list

Join[{4, 5, 6}, {2, 3, 2}] join lists together

Exercises

3.1 Use Range to create the list {1, 2, 3, 4}.

3.2 Make a list of numbers up to 100.

3.3 Use Range and Reverse to create {4, 3, 2, 1}.

3.4 Make a list of numbers from 1 to 50 in reverse order.

3.5 Use Range, Reverse and Join to create {1, 2, 3, 4, 4, 3, 2, 1}.

3.6 Plot a list that counts up from 1 to 100, then down to 1.

3.7 Use Range and Randomlnteger to make a list with a random length up to 10.

10 An Elementary Introduction to the Wolfram Language

3.8 Find a simpler form for Reverse[Reverse[Range[10]]].

3.9 Find a simpler form for Join [{1, 2}, Join [{3, 4}, {5}]].

3.10 Find a simpler form for Join[Range[10], Join[Range[10], Range[5]]].

3.11 Find a simpler form for Reverse[Join[Range[20], Reverse[Range[20]]]].

Q&A

How does one read {1, 2, 3} out loud?

Usually “list 1 2 3”. “{” and “}” are called “braces” or “curly brackets”. “{” is “open brace” and “}” is “close brace”.

Is a list a function?

Yes. {1, 2, 3} is List[l, 2, 3]. But unlike, say, Plus, the function List doesn’t actually compute anything; it just

comes back unchanged.

What is ListPlot plotting?

The values of successive list elements. The x value of each point gives the position in the list; they value

gives the value of that element.

How long can lists be?

As long as you want, until your computer runs out of memory.

Tech Notes

Range [w, n] generates numbers from m to n. Range [m, n, 5
]
generates numbers from m to n in steps of s.

• Many computer languages have constructs like lists (often called “arrays”). But usually they only allow

lists of explicit things, like numbers; you can’t have a list like {a, b, c} where you haven’t said what a, b

and c are. You can in the Wolfram Language, though, because the Wolfram Language is symbolic.

{a, b, c} is a list of elements in a definite order; {b, c, a} is a different list.

Like in math, you can make theorems about Wolfram Language functions. For example,

Reverse[Reverse[x]j is equal to x.

More to Explore

Guide to Lists in the Wolfram Language (wolfr.am/eiwl-3-more)

4
|

Displaying Lists — wolfr.am/eiwl-4 11

4
|

Displaying Lists

ListPlot is one way to display, or visualize
,
a list of numbers. There are lots of others.

Different ones tend to emphasize different features of a list.

ListLinePlot plots a listjoining up values:

ListLinePlot[{l, 3, 5, 4, 1, 2, 1, 4}]

When values jump around, it’s usually harderto understand if you don’t join them up:

ListPlot[{l, 3, 5,4, 1, 2,1,4}]

5[t

4 :

3 :
•

Out[2]=

2 :

1 :

_ : i i i i . i i i . . . i . i i l

2 4 6 8

Making a bar chart can be useful too:

BarChart[{l, 3, 5, 4, 1, 2, 1, 4}]

So long as the list isn’t too long, a pie chart can be useful:

PieChart[{l, 3, 5,4}]

Oit(4]-

12 An Elementary Introduction to the Wolfram Language

If you just want to know which numbers appear, you can plot them on a number line:

in[5] := NumberLinePlot[{l, 7, 11, 25}]

Out[5]= x _J I I I I I I I I I I I L

15 20 25

Sometimes you don’t want a plot at all; you just want to put the elements of a list in a column:

in[6]:= Column[{100, 350, 502, 400}]

Out[6]=

100

350

502

400

Lists can contain anything, including graphics. So you can combine plots by putting

them in lists.

Make a list of two pie charts:

in[7] := (PieChart[Range[3]], PieChart[Range[5]]}

Show three bar charts together:

in [8] := (BarChart[{l, 1, 4, 2}], BarChart[{5, 1, 1, 0}], BarChart[{l, 3, 2, 4}]}

LI _ftj

Vocabulary

ListLinePlot[{l, 2, 5}] values joined by a line

BarChart[{l, 2, 5}] bar chart (values give bar heights)

PieChart[{l, 2, 5}] pie chart (values give wedge sizes)

NumberLinePlot[{l, 2, 5}] numbers arranged on a line

Column [{1, 2, 5}] elements displayed in a column

4
|

Displaying Lists — wolfr.am/eiwl-4 13

Exercises

4.1 Make a bar chart of {1, 1, 2, 3, 5}.

4.2 Make a pie chart of numbers from 1 to 10.

4.3 Make a bar chart of numbers counting down from 20 to 1.

4.4 Display numbers from 1 to 5 in a column.

4.5 Make a number line plot of the squares {1, 4, 9, 16, 25}.

4.6 Make a list of pie charts with 1, 2 and 3 identical segments.

4.7 Make a column of pie charts with 1, 2 and 3 identical segments.

Q&A

How do pie charts work in the Wolfram Language?

As in any pie chart, the wedges have relative sizes determined by the relative sizes of numbers in the list.

In the Wolfram Language, the wedge for the first number starts at the 9 o’clock position, and then

subsequent wedges read clockwise. The colors of the wedges are chosen in a definite sequence.

How is the vertical scale determined on plots?

It’s set up to automatically include all points except distant outliers. Later on (Section 20), we’ll talk about

the PlotRange option, which lets you specify the exact range of the plot.

Tech Note

Particularly if you’re familiar with other computer languages, you may be surprised that a list of plots, for

example, can appear as the output of a computation. This is made possible by the crucial fact that the

Wolfram Language is symbolic. By the way, plots can appear in input as well.

More to Explore

Data Visualization in the Wolfram Language (wolfr.am/eiwl-4-more)

Charting and Information Visualization in the Wolfram Language (wolfr.am/eiwi-4-more2)

5
|

Operations on Lists — wolfr.am/eiwl-5 15

5
I

Operations on Lists

1 here are thousands of functions in the Wolfram Language that work with lists.

You can do arithmetic with lists:

{1, 2, 3} + 10

outm {11, 12, 13}

M2]:- {1, 1, 2}*{1, 2, 3}

out[2i {1, 2, 6}

Compute the first 10 squares:

H, i3]: Range[10] A 2

Out (3] (1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Plot the first 20 squares:

ListPlot[Range[20] A
2]

Sort sorts a list into order:

Sort[{4, 2, 1, 3, 6}]

Out] 3
]

{1, 2, 3, 4, 6}

Length finds how long a list is:

Length[{5, 3, 4, 5, 3, 4, 5}]

Out[6]= 7

Total gives the total from adding up a list:

Total[{l, 1, 2, 2}]

om 6

Find the total of the numbers from 1 to 10:

Total[Range[10]]

55

16 An Elementary Introduction to the Wolfram Language

Count counts the numbers of times something appears in a list.

Count the number of times a appears in the list:

in[9]:= Count[{a, b, a, a, c, b, a}, a]

Out[9]= 4

It’s often useful to be able to get individual elements of a list. First gives the first

element; Last gives the last element. Part gives the element at a particular position.

Pick out the first element of a list:

ln[1 0]:= First[{7, 6. 5}]

Out[10]= 7

Pick out the last element:

ln[1 1]:= Last[{7, 6, 5>]

Out[11]= 5

Pick out element number 2:

ln[12]:= Part[{7, 6, 5}, 2]

Out[1 2]= 6

Picking out the first element in a list you’ve sorted is the same as finding the minimum
element:

ln[13]:= First[Sort[{6, 7, 1, 2,4, 5}]]

Out[1 3]= 1

ln[14]:= Min[{6, 7, 1, 2, 4, 5}]

Out[14]= 1

If you have a number, like 5671, you can make a list of its digits using

lntegerDigits[5671].

Break a number into a list of digits:

ln[15]:= lntegerDigits[1988]

out[i5j= {1, 9, 8, 8}

Find the last digit:

m[i6] Last[lntegerDigits[1988]]

Out[1 6]= 8

5
|

Operations on Lists — wolfr.am/eiwl-5 17

Take lets you take a specified number of elements from the beginning of a list.

Take the first 3 elements from a list:

Take[{101, 203, 401, 602, 332, 412}, 3]

Outp 7j= {101,203,401}

Take the first 10 digits of 2 to the power 100:

ln[18]:= Take[lntegerDigits[2 A
100], 10]

0ut[i8j= {1, 2, 6, 7, 6, 5, 0, 6, 0, 0}

Drop drops elements from the beginning of a list.

In[19]:= Drop[{101, 203, 401, 602, 332, 412}, 3]

out[i 9j= {602,332,412}

Vocabulary

{2, 3,4} + {5, 6, 2} arithmetic on lists

Sort [{5, 7, 1}] sort a list into order

Length [{3, 3}] length of a list (number of elements)

Total[{l, 1, 2}] total of all elements in a list

Count[{3, 2, 3}, 3] count occurrences of an element

First[{2, 3}] first element in a list

Last [{6. 7, 8}] last element in a list

Part[{3, 1, 4}, 2] particular part of a list, also written as {3, 1, 4}[[2]]

Take[{6, 4, 3, 1}, 2] take elements from the beginning of a list

Drop[{6, 4, 3, 1>, 2] drop elements from the beginning of a list

lntegerDigits[1234] list of digits in a number

Exercises

5.1 Make a list of the first 10 squares, in reverse order.

5.2 Find the total of the first 10 squares.

5.3 Make a plot of the first 10 squares, starting at 1.

5.4 Use Sort, Join and Range to create {1, 1, 2, 2, 3, 3, 4, 4}.

5.5 Use Range and + to make a list of numbers from 10 to 20, inclusive.

18 An Elementary Introduction to the Wolfram Language

5.6 Make a combined list of the first 5 squares and cubes (numbers raised to the power 3), sorted

into order.

5.7 Find the number of digits in 2 A 128.

5.8 Find the first digit of 2 A 32.

5.9 Find the first 10 digits in 2A 100.

5.10 Find the largest digit that appears in 2 A 20.

5.11 Find how many zeros appear in the digits of 2 A 1000.

5.12 Use Part, Sort and IntegerDigits to find the second-smallest digit in 2 A20.

5.13 Make a line plot of the sequence of digits that appear in 2 A 128.

5.14 Use Take and Drop to get the sequence 11 through 20 from Range[100].

Q&A

Can one add lists of different lengths?

No. {1, 2} + {1, 2, 3} won’t work. {1, 2, 0} + {1, 2, 3} would be fine, if that’s what you mean.

Can there be a list with nothing in it?

Yes. {} is a list of length 0, with no elements. It’s usually called the null list or the empty list.

Tech Notes

• IntegerDigits [5671] gives digits in base 10. IntegerDigits [5671, 2] gives digits in base 2. You can use any

base you want. FromDigits[{5, 6, 7, 1}] reconstructs a number from its list of digits.

Rest[//sr] gives all the elements of list after the first one. Most[//.s7] gives all elements other than the

last one.

More to Explore

Guide to List Manipulation in the Wolfram Language (wolfr.am/eiwl-5-more)

6
|

Making Tables — wolfr.am/eiwl-6 19

6
|

Making Tables

W eYe seen a few ways to make lists in the Wolfram Language. You can just type

them in. ^ ou can use Range. And you can use functions like IntegerDigits. One of the

most common and flexible ways to make lists is with the function Table.

In its very simplest form, Table makes a list with a single element repeated some

specified number of times.

Make a list that consists of 5 repeated 10 times:

Table[5, 10]

Out[{5, 5, 5, 5, 5, 5, 5, 5, 5, 5}

This makes a list with x repeated 10 times:

Tablefx, 10]

{x, X, X, X, X, X, X, X, X, x}

You can repeat lists too:

Table[{l, 2}, 10]

{{ 1 ,
2), {1 ,

2 }, { 1 ,
2 }, {1 ,

2 }, { 1 ,
2 }, { 1 ,

2 }, { 1 ,
2 }, { 1 ,

2 }, { 1 ,
2}, { 1 ,

2}}

Or, actually, anything; here’s a list of 3 identical pie charts:

Table[PieChart[{l, 1, 1}], 3]

Hut what if we want to make a table where the elements aren’t identical? We can do

that by introducing a variable
,
and then iterating over that variable.

Iterate over n to make a list where n goes up to 5:

Table[a[n], {n, 5}]

{a[l], a [2], a[3], a [4], a[5]}

I lerc’s how this works. To make the first element of the list, n is taken to be 1, so a[n]

is a[l]. To make the second element, n is taken to be 2, so a[n] is a[2], and so on. n is

(ailed a variable because it’s varying as we make the different elements of the list.

Make a table that gives the value of n + 1 when n goes from 1 to 10:

Table[n + 1, {n, 10}]

(2, 3, 4, 5, 6, 7,8,9, 10,11}

20 An Elementary Introduction to the Wolfram Language

Make a table of the first 10 squares:

mm Table[n A
2, {n, 10}]

Out[7]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

With Table, you can make tables of anything.

Here’s a table of successively longer lists produced by Range:

in[8):= Table[Range[n], {n, 5}]

0ut[8]= {{1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}

Here each of the lists produced is shown as a column:

in[9 1
: Table[Column[Range[n]], {n, 8}]

Out[9]=

1

2

3

4

5

6

7

8

}

Here’s a table of plots of successively longer lists of values:

in[io] := Table[ListPlot[Range[10*n]], {n, 3}]

Out[10]=

{

• 20 : .
• 30 t

*
nilUOCM

15 •

20 -

,10 ,15r
-

: .
• 10 r

5 •

7
*

: . • 5 r* r -1 i i i. i i i l i i. i—

L

' ! . . . 1 1 , , . . i . , , , i

10 10 15 20 10 15 20

I I i i i i 1

25 30

Here are pie charts with successively more segments:

m{iii:, Table[PieChart[Table[l, n]], {n, 5}]

Outfl 1]=

{ }

So far we’ve always used n as our variable. That’s a pretty common choice. But \\

can actually use any (lowercase) letter we want, or any combination of letters.

All that matters is that wherever the variable appears, its name is the same.

6
|

Making Tables — wolfr.am/eiwl-6 21

expt is a perfectly good variable name:

Table[2 A expt, {expt, 10}]

{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

Here we’re using x as the variable name, and it happens to appear several times:

ln[13]:= Table[{x, x + 1, x A
2}, {x, 5}]

o«[i3] {{1, 2, 1}, {2, 3, 4}, {3, 4, 9}, {4, 5, 16}, {5, 6, 25}}

In Table[f[n], {n, 5}], n takes on values 1, 2, 3, 4, 5. Table[f[n], {n, 3, 5}] says to start at 3

instead: 3, 4, 5.

This generates a table with n going from 1 to 10:

ln[14]:= Table[f[n], {n, 10}]

0*14
,

f[2], f[3], f[4], f[5], f[6], f[7], f[8], f[9], f[10]}

This generates a table with n going from 4 to 10:

*15! Table[f[n], {n, 4, 10}]

Out[15J= W], f[5], f[6], f[7], f[8], f[9], f[10]}

This makes n go from 4 to 10 in steps of 2:

ln[16]:= Table[f[n], {n, 4, 10,2}]

out; -
{f[4] ,

f[6], f[8], f[10]}

The Wolfram Language emphasizes consistency, so for example Range is set up to

deal with starting points and steps just like Table.

Generate the range of numbers 4 to 10:

Range[4, 10]

{4, 5, 6, 7, 8, 9, 10}

Generate the range of numbers 4 to 10 going in steps of 2:

Range[4, 10, 2]

{4, 6, 8, 10}

Go from 0 to 1 in steps of 0.1:

Range[0, 1, 0.1]

{0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.}

22 An Elementary Introduction to the Wolfram Language

There are usually many ways to do the same thing in the Wolfram Language.

For example, here’s how Table and Range can produce identical plots.

Generate a table and plot it:

in
[
20

]
ListPlot[Table[x - x A

2, {x, 0, 1, .02}]]

0.20 :

0.15 r

Out[20]=
•'

0.10 r
.*

0.05 : /

10 20 30 40 50

Get the same result by doing arithmetic with the range of values:

in[2 i] ListPlot[Range[0, 1, .02] - Range[0, 1, .02]
A
2]

0.20 :

0.15 1

Out[21]=

0 . 10 :
.*

0.05 : /

10 20 30 40 50

Table always separately computes each entry in the list it generates—and you can see

this ifyou use Randomlnteger in Table.

This generates 20 independent random integers with size up to 10:

ln[22]:= Table[Randomlnteger[10], 20]

0ut[22j= {3, 1, 4, 3, 6, 7, 6, 10, 9, 2, 1, 4, 5, 8, 3, 8, 3, 8, 3, 0}

Randomlnteger can actually also generate the list directly.

This again generates 20 random integers with size up to 10:

ln[23]:= Randomlnteger[10, 20]

0ut[23! {3, 0, 3, 1, 9, 6, 0, 8, 5, 2, 7, 8, 0, 10, 4, 4, 9, 5, 7, 1}

Vocabulary

Table[x, 5] list of 5 copies of x

Table[f[n], {n, 10}] list of values of f[n] with n going up to 10

Table[f[n], (n, 2, 10}] list of values with n going from 2 to 10

Table[f[n], {n, 2, 10,4}] list of values with n going from 2 to 10 in steps of 4

Range[5, 10] list of numbers from 5 to 10

Range[10, 20, 2] list of numbers from 10 to 20 in steps of 2

Randomlnteger[10, 20] list of 20 random integers up to 10

6
|

Making Tables — wolfr.am/eiwl-6 23

Exercises

6.1 Make a list in which the number 1000 is repeated 5 times.

6.2 Make a table of the values of n A 3 for n from 10 to 20.

6.3 Make a number line plot of the first 20 squares.

6.4 Make a list of the even numbers (2, 4, 6, ...) up to 20.

6.5 Use Table to get the same result as Range[10].

6.6 Make a bar chart of the first 10 squares.

6.7 Make a table of lists of digits for the first 10 squares.

6.8 Make a list line plot of the number of digits in each of the first 100 squares.

6.9 Make a table of the first digits of the first 20 squares.

6.10 Make a list line plot of the first digits of the first 100 squares.

Q&A

What does the { } (list) in Table [n A
2, {n, 5}] mean?

A list is always a way of collecting things together. Here what it’s collecting is the variable n and its range

5. In the Wolfram Language, this kind of use of a list is called an iterator specification.

Why is the { } (list) in Tablefn A
2, {n, 5}] needed?

So one can easily generalize to multidimensional arrays, tike Table[x A 2-y A
2, {x, 5}, {y, 5}].

What are the constraints on the names of variables?

They can be any sequence of letters or numbers, but they can’t start with a number, and—to avoid

possible confusion with built-in Wolfram Language functions—they shouldn’t start with a capital letter.

Why do you have to name a variable if the name never matters?

Good question! In Section 26, we’ll see how to avoid having named variables. It’s very elegant, but it’s a

little more abstract than what we’re doing with Table here.

Can Range deal with negative numbers?

Yes. Range[-2, 2] gives {-2, -1, 0, 1, 2}. Range[2, -2] gives {}, but Range[2, -2, -1] gives {2, 1, 0, -1, -2}.

Tech Notes

• If you specify steps that don’t fit evenly in the range you give, Range and Table just go as far as the steps

take them, potentially stopping before the upper limit. (So Range[l, 6, 2] gives {1, 3, 5}, stopping at 5, not 6.)

Using forms like Table[x, 20] requires at least Version 10.2 of the Wolfram Language. In earlier versions,

this had to be specified as Table[x, {20}].

More to Explore

The Table Function in the Wolfram Language (wolfr.am/eiwi-6-more)

7
|

Colors and Styles — wolfr.am/eiwl-7 25

7 Colors and Styles

1 he \\ ollram Language doesn t just handle things like numbers. It also for example

handles things like colors. It lets you refer to common colors by their names.

Red represents the color red:

nfij Red

Out[1]= |

Make a list of colors:

{Red, Green, Blue, Purple, Orange, Black}

Out[2| {, ,,, }

You can do operations on colors. ColorNegate "‘negates” a color, giving the complemen-

tary' color. Blend blends a list of colors together.

Negating the color yellow gives blue:

ColorNegate[Yellow]

Out[3]=

Here’s the result of blending yellow, pink and green:

Blend[{Yellow, Pink, Green}]

Out(4]= |

You can specify a color by saying how much red, green and blue it contains.

The function RGBColor lets you do that, giving the amount of each color, from 0 to 1.

This gives maximum red, with no green or blue:

RGBColor[l, 0, 0]

Maximum red and green gives yellow:

RGBColorfl, 1,0]

This gives a table of colors with maximum red and varying levels of green:

Table[RGBColor[l, g, 0], {g, 0, 1, 0.05}]

l) m> my mi) m > mi) m) m i m > m> my my my my my my \ >}

26 An Elementary Introduction to the Wolfram Language

It’s often convenient to specify colors not directly in terms of red, green and blue, but

for example instead in terms of hue. The function Hue lets you do this.

A hue of 0.5 corresponds to cyan:

in [8]: Hue[0.5]

Out(8]= E3

Here’s a table of colors with hues from 0 to 1:

m[9] Table[Hue[x], (x, 0, 1, 0.05}]

Out|9 a,..,. a,. 11,, EE , ,, }

Sometimes you may want to just pick a random color. RandomColor lets you do this.

When you say Randomlnteger[10], you’re asking to generate a random integer up to

10. But for a random color you don’t have to specify a range, so you can just write

RandomColor[]—not giving any explicit input to the function.

Generate a random color:

in[io] RandomColorf]

Out[1 0]=

Make a table of 30 random colors:

mi- Table[RandomColor[], 30]

Out[11]=

Blending together lots of random colors usually gives something muddy:

in, 1

2

]
Blend[Table[RandomColor[], 20]]

Out[12]=

You can use colors in all sorts of places. For example, you can style output with colors.

This gives the number 1000, styled in red:

ln[13):= Style[1000, Red]

Out[13]= 1000

Here are 30 random integers, styled in random colors:

Table[Style[Randomlnteger[1000], RandomColorf]], 30]

outfi4i= {423, 803, 10, 432, 139, 188, 34, 981, 154, 340, 533, 52, 313, , 930,

332, 582, 67, 385, 564, 943, 987, 179, 391, 661, 606, 52, 577, 721, 507}

7
|

Colors and Styles — wolfr.am/eiwl-7 27

Another form of styling is size. You can specify a font size in Style.

Show x styled in 30-point type:

Stylefx, 30]

Xit[15)- X

This styles the number 100 in a sequence of different sizes:

Table[Style[100, n], {n, 30}]

j, , ,
, ioo, ioo, ioo, ioo, ioo, ioo, ioo, ioo, 100, 100, 100, 100, 100, 100, 100,

100
,
100

,
100

, 100 ,
100

,
100

,
100 , 100 , 100 ,

100
}

You can combine color and size styling; here’s x in 25 random colors and sizes:

Table[Style[x, RandomColor[], Randomlnteger[30]], 25]

{X, (, ,
X, X, x,

, ,
x, x, X,

,
X, ., X, ,

X,
,
X, X,

,
X, X,

, J

Vocabulary

Red, Green, Blue, Yellow, Orange, Pink, Purple, ... colors

RGBColor[0.4, 0.7, 0.3] red, green, blue color

Hue[0.8] color specified by hue

RandomColorf] randomly chosen color

ColorNegate[Red] negate a color (complement)

Blend[{Red, Blue}] blend a list of colors

Style [x, Red] style with a color

Style [x, 20] style with a size

Style [x, 20, Red] style with a size and color

Exercises

7.1 Make a list of red, yellow and green.

7.2 Make a red, yellow, green column (“traffic light”).

7.3 Compute the negation of the color orange.

7.4 Make a list of colors with hues varying from 0 to 1 in steps of 0.02.

7.5 Make a list of colors with maximum red and blue, but with green varying from 0 to 1 in steps of 0.05.

7.6 Blend the colors pink and yellow.

28 An Elementary Introduction to the Wolfram Language

7.7 Make a list of colors obtained by blending yellow with hues from 0 to 1 in steps of 0.05.

7.8 Make a list of numbers from 0 to 1 in steps of 0.1, each with a hue equal to its value.

7.9 Make a purple color swatch of size 100.

7.10 Make a list of red swatches with sizes from 10 to 100 in steps of 10.

7.11 Display the number 999 in red at size 100.

7.12 Make a list of the first 10 squares in which each value is styled at its size.

7.13 Use Part and Randomlnteger to make a length-100 list in which each element is randomly Red,

Yellow or Green.

7.14 Use Part to make a list of the first 50 digits of 2 A 1000, in which each digit has a size equal to 3 times

its value.

Q&A

What named colors does the Wolfram Language have?

Red, Green, Blue, Black, White, Gray, Yellow, Brown, Orange, Pink, Purple, LightRed, etc. In Section 16 we’ll

see how to use Ctrl + = i to enter any color name in plain English.

Why can colors be specified by red, green, blue values?

Basically because that’s how we humans perceive colors: there are three kinds of cells in our eyes that are

roughly sensitive respectively to red, green and blue components of light. (Some other organisms work

differently.)

What does color negation do?

It generates complementary colors, defined by computing 1-value (one minus the value) for each RGB
component. If you negate the “display (emitted light) primaries” red, green, blue, you get the “print

(reflected light) primaries” cyan, magenta, yellow.

What is hue?

It’s a way of specifying what are often called pure colors, independent of their tint, shade, saturation or

brightness. Colors of different hues are often arranged around a color wheel. The RGB values for a

particular hue are determined by a mathematical formula.

Are there other ways to specify colors than RGB?

Yes. A common one (implemented by Hue) is to use the combination of hue, saturation, and brightness.

LABColor and XYZColor are other examples. GrayLevel represents shades of gray, with GrayLevel[0] being

black and GrayLevel[l] being white.

Tech Notes

m The little squares of color used to display a color are usually called swatches.

• ChromaticityPlot and ChromaticityPlot3D plot lists of colors in color space.

You can set lots of other style attributes in the Wolfram Language, like Bold, Italic and FontFamily.

More to Explore

Color in the Wolfram Language (wolfr.am/eiwi-7-more)

8
|

Basic Graphics Objects — wolfr.am/eiwl-8 29

8 Basic Graphics Objects

In the \\ olfram Language, Circle[] represents a circle. To display the circle as graphics,

use the function Graphics. Later, we'll see how to specify the position and size of a

circle. But for now, we're just going to deal with a basic circle, which doesn’t need

any additional input.

Make graphics of a circle:

Graphics[Circle[]]

Disk represents a filled-in disk:

Graphics[Disk[]]

Out[2]=

RegularPolygon gives a regular polygon with however many sides you specify.

Here’s a pentagon (5-sided regular polygon):

Graphics[RegularPolygon[5]]

Make a table of graphics of regular polygons with between 5 and 10 sides:

Table[Graphics[RegularPolygon[n]], {n, 5, 10}]

30 An Elementary Introduction to the Wolfram Language

Style works inside Graphics, so you can use it to give colors.

Here’s an orange pentagon:

Graphics[Style[RegularPolygon[5], Orange]]

Out[5)=

The Wolfram Language works in 3D as well as 2D, with constructs such as Sphere,

Cylinder and Cone. When you have 3D graphics, you can rotate them around interac-

tively to see different angles.

Display a sphere in 3D:

in[6] : Graphics3D[Sphere[]]

Out[6]=

A list of a cone and a cylinder:

{Graphics3D[Cone[]], Graphics3D[Cylinder[]]}

Out[7]=

A yellow sphere:

Graphics3D[Style[Sphere[], Yellow]]

Out[8]=

8
|

Basic Graphics Objects — wolfr.am/eiwl-8 31

Vocabulary

Circlet] specify a circle

Disk[] specify a filled-in disk

RegularPolygon[//] specify a regular polygon with n sides

Graphics[r>/;>/m] display an object as graphics

Sphere[], Cylinder[], Cone[], ... specify 3D geometric shapes

Graphics3D [object] display an object as 3D graphics

Exercises

8.1 Use RegutarPolygon to draw a triangle.

8.2 Make graphics of a red circle.

8.3 Make a red octagon.

8.4 Make a list of disks with hue varying from 0 to 1 in steps of 0.1.

8.5 Make a column of a red and green triangle.

8.6 Make a list of pink regular polygons with between 5 and 10 sides.

8.7 Make a graphic of a purple cylinder.

8.8 Make a list of randomly colored polygons with 8 down to 3 sides, and apply Graphics to the list, to

show them all overlaid.

Q&A

How can I make graphics with several objects?

Section 14 will explain. To do so requires understanding coordinates.

Why use Circle
[], not just Circle?

For consistency. As we’ll see in Section 14, Circle[] is actually short for Circle[{0, 0}, 1], which means a

circle of radius 1 and center coordinates {0, 0}.

Why isn’t the yellow sphere pure yellow?

Because the Wolfram Language displays it like an actual 3D object, with lighting. If it were pure yellow,

you wouldn’t see any 3D depth, and it would just look like a 2D disk.

Tech Note

• Another way to specify styles for graphics is to give “directives” in a list, e.g.

{Yellow, Disk[], Black, Circle[]}.

More to Explore

Guide to Graphics in the Wolfram Language (wolfr.am/eiwl 8-more)

9
|

Interactive Manipulation — wolfr.am/eiwl-9 33

9
|

Interactive Manipulation

So far, we’ve been using the Wolfram Language in a question-answer way: we type

input, and the language responds with output. But the language also lets you set

up user interfaces where one can continually manipulate a variable. The function

Manipulate works a lot like Table, except that instead of producing a list of results,

it gives a slider to interactively choose the value you want.

The slider lets you pick values of n between 1 and 5 (in steps of 1):

Manipulate[Table[Orange, n], {n, 1, 5, 1}]

O
n «

Out(1]=

{}

Here’s the whole sequence of possible results:

Table[Table[Orange, n], {n, 1, 5, 1}]

{{}, }, }, fl B fl , fl }}

Here’s a similar interface for displaying a column of powers of a number:

Manipulate[Column[{n, n A
2, n A

3}], {n, 1, 10, 1}]

Q
n --. q

Out[3]=

36

And here’s the list of possible results in this case:

Table[Column[{n, n A
2, n A

3}], {n, 1, 10, 1}]

12345 6 7 8 9 10

(l, 4, 9 , 16, 25 ,36 ,49 ,64 ,81 , 100
}

1 8 27 64 125 216 343 512 729 1000

1 nlike Table, Manipulate isn’t limited to a fixed set of possible values. II you simply

omit the step size in Manipulate, it’ll assume you want any possible value in the range,

not limited to whole numbers.

34 An Elementary Introduction to the Wolfram Language

Without the step size, Manipulate allows any value:

Manipulate[Column[{n, n A
2, n A

3}], {n, 1, 10}]

O
H

Out[5]=
4.41

19.4481

85.7661

It’s very common to have graphics that you want to adjust interactively.

A bar chart that changes as you move the slider:

iniei Manipulate[BarChart[{l, a, 4, 2*a, 4, 3*a, 1}], {a, 0, 5}]

O
a ----- H

A pie chart of the same list:

n[? Manipulate[PieChart[{l, a, 4, 2*a, 4, 3*a, 1}], (a, 0, 5}]

O
£ imMMBBn OHHMMMan

9
|

Interactive Manipulation — wolfr.am/eiwl-9 35

Manipulate lets you set up any number ol controls. You just give the information for

each variable in turn, one after another.

Build an interface to vary the number of sides, and the hue, of a polygon:

Manipulate[Graphics[Style[RegularPolygon[n], Hue[h]]], {n, 5, 20, 1}, {h, 0, 1}]

n

h

There are many ways to specify controls for Manipulate. Ifyou give a list of possibili-

ties, you'll get a chooser or menu.

Build an interface that lets you choose between three colors:

Manipulate[Graphics[Style[RegularPolygon[5], color]], {color, {Red, Yellow, Blue}}]

color

Vocabulary

Manipulate[anything, {n, 0, 10, 1}] manipulate anything with n varying in steps of 1

Manipulate[<7/i\7/im#, {a, 0, 10}] manipulate anything with x varying continuously

36 An Elementary Introduction to the Wolfram Language

Exercises

9.1 Make a Manipulate to show Range[n] with n varying from 0 to 100.

9.2 Make a Manipulate to plot the whole numbers up to n, where n can range from 5 to 50.

9.3 Make a Manipulate to show a column of between 1 and 10 copies of x.

9.4 Make a Manipulate to show a disk with a hue varying from 0 to 1.

9.5 Make a Manipulate to show a disk with red, green and blue color controls.

9.6 Make a Manipulate to show digit sequences of 4-digit integers (between 1000 and 9999).

9.7 Make a Manipulate to create a list of between 5 and 50 equally spaced hues.

9.8 Make a Manipulate that shows a list of a variable number of hexagons (between 1 and 10),

and with variable hues.

9.9 Make a Manipulate that lets you show a regular polygon with between 5 and 20 sides, in red,

yellow or blue.

9.10 Make a Manipulate that shows a pie chart with a number of equal segments varying from 1 to 10.

9.11 Make a Manipulate that gives a bar chart of the 3 digits in integers from 100 to 999.

9.12 Make a Manipulate that shows n random colors, where n can range from 1 to 50.

9.13 Make a Manipulate to display a column of from 1 to 10 powers of integers from 1 to 25.

9.14 Make a Manipulate of a number line of values of x A n for integer x from 1 to 10, with n varying

from 0 to 5.

9.15 Make a Manipulate to show a sphere that can vary in color from green to red.

Q&A

Does Manipulate work the same on web, mobile and desktop?

Ultimately yes. But it can be significantly slower on the web and on some mobile systems, because every

time you move a slider it has to communicate over the internet with a server to find out what to do. On
desktop and some mobile systems, everything is happening right there, inside your computer or other

device—so it’s very fast.

Can I make a standalone app out of a Manipulate?

Yes. To make a web app, for example, you just need to use CloudDeploy. We’ll talk about this in Section 36.

Can I use random numbers in Manipulate?

Yes, but unless you “seed” them with SeedRandom, the random numbers will be different every time you
move a slider.

9
|

Interactive Manipulation — wolfr.am/eiwl-9 37

Tech Notes

Manipulate supports pretty much all standard user interface control types (checkboxes, menus, input

fields, color pickers, etc.).

Sliders in Manipulate often provide a button which opens out to additional controls—including

animation, single stepping, and numerical value display.

Many controls are rendered differently on mouse and touch devices, and some controls only work on

one or the other.

If you’re running natively on your computer, devices like gamepads should immediately work with

Manipulate. You can specify which controls should be hooked to what. Controllerlnformation[] gives

information on all your controllers.

More to Explore

The Wolfram Demonstrations Project (wolfr.am/eiwl-9-more): more than 10,000 interactive demonstrations

created with Manipulate (wolfr.am/eiwl-9-more2)

10
|

Images — wolfr.am/eiwl-10 39

10 Images

Main Junctions in the Wolfram Language work on images. It’s easy to get an image

into the \\ olfram Language, for example by copying or dragging it from the well

or from a photo collection. You can also just capture an image directly from your

camera using the function Currentlmage.

Get the current image from your computer’s camera (here, me working on this book):

Currentlmagef]

You can apply functions to images just like you apply functions to numbers or lists

or anything else. The function ColorNegate that we saw in connection with colors also

works on images, giving a “negative image
11

.

Negate the colors in the image (making me look pretty weird):

ln[2]:=

Blur the image:

40 An Elementary Introduction to the Wolfram Language

The number says how much to blur the image:

N«d Mill Jill

You can make a table of the results of different amounts of blurring:

in[5]:= Table[Blu

Out[5]=

n], {n, 0, 15, 5}]

ImageCollage puts images together:

in[6] := lmageCollage[Table[Blur[! ,
n], {n, 0, 15, 5}]]

Out[6)=

10
|

Images — wolfr.am/eiwl-10 41

1 here s lots of analysis one can do on images. For example, DominantColors finds a list

of the most important colors in an image.

DominantColorsfj

{> I. }

Binarize makes an image black and white:

Not surprisingly, the dominant colors in the result are black and white:

n[9
]
= DominantColors[Binarize[!

{ > 1}

Another type of analysis is edge detection : finding where in the image there are shaip

changes in color. The result looks a bit like a sketch derived from the original image.

Pick out edges in the original image:

42 An Elementary Introduction to the Wolfram Language

“Add” the original image to the result of the edge detection:

It’s often convenient to do image processing interactively, creating interfaces using

Manipulate. For example, Binarize lets you specify a threshold for what will be turned

black as opposed to white. And often the best way to find the right threshold is just to

interactively experiment with it.

Make an interface to adjust the threshold for binarizing an image:

UUIIM

m[i 2] Manipulate[Binarize[!
,
t], {t, 0, 1}]

t — D

o

Out[1 2]=

10
|

Images — wolfr.am/eiwl-10 43

Vocabulary

Currentlmage[]

ColorNegate[

Binarize[pf^]

Blur[|W
, 5]

EdgeDetect[|p5
]

DominantColors[M
]

lmageCollage[{ m'. ,

ImageAdd M , asl]

}]

capture the current image from your computer, etc.

negate the colors in an image

convert an image to black and white

blur an image

detect the edges in an image

get a list of dominant colors in an image

put together images in a collage

add color values of two images

Exercises

10.1 Color negate the result of edge detecting an image.

10.2 Use Manipulate to make an interface for blurring an image from 0 to 20.

10.3 Make a table of the results from edge detecting an image with blurring from 1 to 10.

10.4 Make an image collage of an image together with the results of blurring, edge detecting and

binarizing it.

10.5 Add an image to a binarized version of it.

10.6 Create a Manipulate to display edges of an image as it gets blurred from 0 to 20.

10.7 Image operations work on Graphics and Graphics3D. Edge detect a picture of a sphere.

10.8 Make a Manipulate to make an interface for blurring a purple pentagon from 0 to 20.

10.9 Create a collage of 9 images of disks, each with a random color.

10.10 Use ImageCollage to make a combined image of spheres with hues from 0 to 1 in steps of 0.2.

10.11 Make a table of blurring a disk by an amount from 0 to 30 in steps of 5.

10.12 Use ImageAdd to add an image to an image of a disk.

10.13 Use ImageAdd to add an image to an image of a red octagon.

10.14 Add an image to the color negated version of the edge detected image.

44 An Elementary Introduction to the Wolfram Language

Q&A

Currentlmage gives me a dark image. What should I do?

Just run it again. When a computer camera is first switched on, it may not have adjusted itself for

light levels.

What does the number in Blur mean?

It’s the range of pixels that get blurred together.

How does Binarize decide what’s black and what’s white?

If you don’t tell it a threshold, it will pick one based on analyzing the distribution of colors in the image.

Tech Notes

• The very powerful fact that images can appear directly in Wolfram Language code is another

consequence of the fact that the Wolfram Language is symbolic.

A convenient way to get collections of images, say related to crocodiles, is to use

Wikipedia Data ["crocodiles", "ImageList"].

More to Explore

Guide to Image Computation in the Wolfram Language (wolfr.am/eiwl-10-more)

11
1

Strings and Text — wolfr.am/eiwl-11 45

11
|

Strings and Text

Another thing the Wolfram Language lets you compute with is text. You enter text as

a string
,
indicated by quotes (").

Enter a string:

[i] "This is a string."

0ut[i]= This is a string.

Just like when you enter a number, a string on its own comes back unchanged

except that the quotes aren’t visible when the string is displayed. There are many

functions that work on strings. Like StringLength, which gives the length of a string.

StringLength counts the number of characters in a string:

ini2]
StringLength["hello"]

Out[2]= 5

StringReverse reverses the characters in a string:

mo] StringReverse["hello"]

Out[3]= olleh

ToUpperCase makes all the characters in a string upper case (capital letters):

ToUpperCasef'Tm coding in the Wolfram Language!"]

out[4]= I'M CODING IN THE WOLFRAM LANGUAGE!

StringTake takes a certain number of characters from the beginning of a string:

StringTake["this is about strings", 10]

out[5]= this is ab

If you take 10 characters, you get a string of length 10:

StringLength[StringTake["this is about strings", 10]]

Ovt[6]= 10

StringJoin joins strings (don’t forget spaces if you want to separate words):

StringJoin["Hello",
"

", "there!", " How are you?"]

Hello there! How are you?

You can make list s of strings, then apply functions to them.

A list of strings:

{"apple", "banana", "strawberry"}

{apple, banana, strawberry}

46 An Elementary Introduction to the Wolfram Language

Get the first two characters from each string:

into] StringTake[{"apple", "banana", "strawberry"}, 2]

out[9)= {ap, ba, st}

StringJoin joins the strings in a list:

in[i o] StringJoin[{"apple", "banana", "strawberry"}]

out[i o]= applebananastrawberry

Sometimes it’s useful to turn strings into lists of their constituent characters.

Each character is actually a string itself, of length 1

.

Characters breaks a string into a list of its characters:

in[i i]:= Characters["a string is made of characters"]

out[n]= {a,
,
s, t, r, i, n, g, ,

i, s,
,
m, a, d, e,

,
o, f,

,
c, h, a, r, a, c, t, e, r, s}

Once you’ve broken a string into a list of characters, you can use all the usual list

functions on it.

Sort the characters in a string:

in [i 2]:= Sort[Characters["a string of characters"]]

out[i 2]= { , , ,
a, a, a, c, c, e, f, g, h, i, n, o, r, r, r, s, s, t, t}

The invisible elements at the beginning of the list are space characters. Ifyou want to

see strings in the form you’d input them, complete with use InputForm.

InputForm shows strings as you would input them, including quotes:

in [i 3] := lnputForm[Sort[Characters["a string of characters"]]]

f n m ii ii ii ii n ^ ii ii — ii ii«_ii »i ii ii ii ii _ »i urn ii _ ii iilii tv ; vi ii^ii ii^ii ii*.ii

°ut[i 3]= { , ,
,a,a,a,c,c,e,t,g,h,i,n,o,r,

n~.ii ii~.ii ii c ii ii.ii iij.ii iij.in
I, I, o, b, l, Ij

Functions like StringJoin and Characters work on strings of any kind; it doesn’t matter

if they’re meaningful text or not. There are other functions, like TextWords, that

specifically work on meaningful text, written, say, in English.

TextWords gives a list of the words in a string of text:

in[i4]:= TextWords["This is a sentence. Sentences are made of words."]

0ut[i4j= {This, is, a, sentence, Sentences, are, made, of, words}

This gives the length of each word:

in[i5] StringLength[TextWords["This is a sentence. Sentences are made of words."]]

out[i 5]= {4, 2, 1, 8, 9, 3, 4, 2, 5}

11
1

Strings and Text — wolfr.am/eiwl u 47

TextSentences breaks a text string into a list of sentences:

TextSentences["This is a sentence. Sentences are made of words."]

{This is a sentence., Sentences are made of words.}

lhere are lots ofways to get text into the Wolfram Language. One example is the

WikipediaData function, which gets the current text of Wikipedia articles.

Get the first 100 characters of the Wikipedia article about “computers”:

StringTake[WikipediaData["computers"], 100]

A computer is a general-purpose device

that can be programmed to carry out a set of arithmetic or lo

A convenient way to get a sense of what’s in a piece of text is to create a word cloud.

The function WordCloud does this. To avoid seeing “uninteresting” words like “the”

and “and" (often called stopwords), we use the function DeleteStopwords.

Create a word cloud for the Wikipedia article on “computers”:

WordCloud[DeleteStopwords[WikipediaData["computers"]]]

Out(18]=

hiah circuits workma systems know
4

n
.

design R0My cir<
',
u working

. invented hardware cinn
typically complete programming specialized .

9

device thousands
instruction stored ®{

tr5arithmetic- . .• output ai i i

world mor-hinpc inStrUCtlOnS different capable

arithmetic •

mstructl°P Stored output
World machines instructions different capable

integrated machine Mechanical system

.^"aiogcompute rs
Tu

T
9 “nit

K - called level

I IT ^ set
[jump

_ RAM
time

^computers—
d

>

:;

computer;
input computing cen,ury | tubes devices time

read information program electronic built

used language rnGITlOrV numbers data

icau n iiui 1 1 icuiui i p| Q| | | electronic uu,n

usec^ language msmorv numbers data

Programs <•»>
logic operation operations modern software possible

circuit
designed programmed

ron*ro i personal given

rp| .problems assembly ^
, uhallv code

vacuum Colossus general :;,v coae

use main store

Not surprisingly, “computer” and “computers” are the most common (non-stopword)

words in the article.

The Wolfram Language has lots of built-in knowledge about words that appear in

English and other languages. WordList gives lists of words.

Get the first 20 words from a list of common English words:

Take[WordList[], 20]

{a, aah, aardvark, aback, abacus, abaft, abalone,

abandon, abandoned, abandonment, abase, abasement, abash,

abashed, abashment, abate, abatement, abattoir, abbe, abbess}

48 An Elementary Introduction to the Wolfram Language

Make a word cloud from the first letters of all the words:

mpo): WordCloud[StringTake[WordList[], 1]]

Out[20]=

. w.n*

jbdat.

VCPSI
Qhime

q 0 v y z

Strings don’t have to contain text. In a juxtaposition of ancient and modern, we can

for example generate Roman numerals as strings.

Generate the Roman numeral string for 1988:

m[2 i] RomanNumeral[1988]

Out[21]= MCMLXXXVIII

Make a table of the Roman numerals for numbers up to 20:

m[22
]

Table[RomanNumeral[n], (n, 20}]

0ut[22j= (I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX}

As with everything, we can do computations on these strings. For example, we can

plot the lengths of successive Roman numerals.

Plot the lengths of the Roman numerals for numbers up to 100:

m[23] ListLinePlot[Table[StringLength[RomanNumeral[n]], {n, 100}]]

IntegerName gives the English name of an integer.

Generate a string giving the name of the integer 56:

in[24] lntegerName[56]

out[24]= fifty- six

11
1

Strings and Text — wolfr.am/eiwl-11 49

Here’s a plot of the lengths of integer names in English:

ListLinePlot[Table[StringLength[lntegerName[n]], {n, 100}]]

Out[25)=
6

12

10

4

20 40 60 80 100

There are various ways to turn letters into numbers (and vice versa).

Alphabet gives the alphabet:

ln[26]:= Alphabet[]

out(26]= {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

LetterNumber tells you where in the alphabet a letter appears:

in[27] := LetterN um ber[{"a ", "b", "x", "y", "z"}]

out[27]= (1, 2, 24, 25, 26}

FromLetterNumber does the opposite:

m[28]:= From LetterN um ber[{10, 11, 12, 13, 14, 15}]

out[28]= (j, k, l, m, n, o}

Alphabet knows about non-English alphabets too:

in [29] Alphabet["Russian"]

0ut[29j= {a, 6, b, r, a, e, e, >k, 3, m, m, k, ji, m, h, o, n, p, c, t, y, dp, x, u,, m, uj, m, i>, bi, b, 3, io, a}

Ifyou want to, you can also turn text into images, which you can then manipulate

using image processing. The function Rasterize makes a raster
,
or bitmap

,
of something.

Generate an image of a piece of text:

Rasterize[Style["ABC", 100]]

Do image processing on it:

EdgeDetect[Rasterize[Style["ABC", 100]]]

50 An Elementary Introduction to the Wolfram Language

Vocabulary

"string" a string

StringLength ["string"] length of a string

StringReverse["string"] reverse a string

String!ake["string", 4] take characters at the beginning of a string

StringJoin["jYrmg", "string"] join strings together

StringJoin[{'Lstrmg", "string"}] join a list of strings

TollpperCase["string"] convert characters to upper case

Characters ["string"] convert a string to a list of characters

TextWords["string"] list of words from a string

TextSentences ["string"] list of sentences

WikipediaData['7o/?/c"] Wikipedia article about a topic

WordCloud ["text"] word cloud based on word frequencies

DeleteStopwords["sfrz/7g"] delete uninteresting words from a string (a, and, ...)

WordList[] list of common words in English

Alphabet[] list of letters of the alphabet

LetterNumber["c"] where a letter appears in the alphabet

FromLetterNumber[/?] letter appearing at a position in the alphabet

RomanNumeral[/?] convert a number to its Roman numeral string

lntegerName[/?] convert a number to its English name string

InputForm ["sfrmg"] show a string with quotes

Rasterize ["string"] make a bitmap image

11
1

Strings and Text — wolfr.am/eiwl-11 51

Exercises

11.1 Join two copies of the string "Hello".

11.2 Make a single string of the whole alphabet, in upper case.

11.3 Generate a string of the alphabet in reverse order.

11.4 Join 100 copies of the string "AGCT".

11.5 Use StringTake, StringJoin and Alphabet to get "abcdef".

11.6 Create a column with increasing numbers of letters from the string "this is about strings".

11.7 Make a barchart of the lengths of the words in “A longtime ago, in a galaxy far, far away”.

11.8 Find the string length of the Wikipedia article for “computer”.

11.9 Find how many words are in the Wikipedia article for “computer”.

11.10 Find the first sentence in the Wikipedia article about “strings”.

11.11 Make a string from the first letters of all sentences in the Wikipedia article about computers.

11.12 Find the maximum word length among English words from WordList[].

11.13 Count the number of words in Word List
[]

that start with “q”.

11.14 Make a line plot of the lengths of the first 1000 words from WordList[].

11.15 Use StringJoin and Characters to make a word cloud of all letters in the words from WordList[].

11.16 Use StringReverse to make a word cloud of the last letters in the words from WordList[].

11.17 Find the Roman numerals forthe year 1959.

11.18 Find the maximum string length of any Roman-numeral year from 1 to 2020.

11.19 Make a word cloud from the first characters of the Roman numerals up to 100.

11.20 Use Length to find the length of the Russian alphabet.

11.21 Generate the uppercase Greek alphabet.

11.22 Make a bar chart of the letter numbers in “wolfram”.

11.23 Use FromLetterNumber to make a string of 1000 random letters.

11.24 Make a list of 100 random 5-letter strings.

11.25 Make a white-on-black size-200 letter “A”.

11.26 Use Manipulate to make an interactive selector of size-100 characters from the alphabet, controlled

by a slider.

11.27 Use Manipulate to make an interactive selector of black-on-white outlines of size-100 characters

from the alphabet.

11.28 Use Manipulate to create a “vision simulator” that blurs a size-200 letter “A” by an amount from 0 to

50.

52 An Elementary Introduction to the Wolfram Language

Q&A

What is the difference between "x" and x?

"x" is a string; x is a Wolfram Language symbol, just like Plus or Max, that can be defined to actually do

computations. We’ll talk much more about symbols later.

How do I enter characters that aren’t on my keyboard?

You can use whatever methods your computer provides, or you can do it directly with the Wolfram

Language using constructs such as \[Alpha].

How do I put quotes (") inside a string?

Use \" (and if you want to put \" literally in the string, use \\\"). (You’ll use a lot of backslashes if you want

to put \\\" in: \\\\\\\".)

What about letters that aren’t English? How are they numbered?

LetterNumber["o'", "Greek"] gives numbering in the Greek alphabet. All characters are assigned a

character code. You can find it using ToCharacterCode.

How are the colors of elements in word clouds determined?

By default it’s random within a certain color palette. You can specify it if you want to.

How come the word cloud shows “s” as the most common letter?

Because it is the most common first letter for common words in English. If you look at all letters, the most

common is “e”.

Tech Notes

StringTake["string", -2] takes 2 characters from the end of the string.

Every character, whether “a”, “a” or is represented by a Unicode character code, found with

ToCharacterCode. You can explore “Unicode space” with FromCharacterCode.

If you get a different result from WikipediaData, that’s because Wikipedia has been changed.

More to Explore

Guide to String Manipulation in the Wolfram Language (wolfr.am/eiwl-11-more)

12
|

Sound — wolfr.am/eiwt-12 53

Sound

In the Wolfram Language, sound works a lot like graphics, except that instead of

having things like circles, one has sound notes. Press the play button to actually

play sounds. Ifyou don’t say otherwise, the Wolfram Language will make the notes

sound as if they were played on a piano.

Generate a middle C note:

mm Sound[SoundNote["C"]]

You can specify a sequence of notes by giving them in a list.

Play three notes in sequence:

n[2
]

Sound[{SoundNote["C"], SoundNotef'C"], SoundNotef'G"]}]

Instead of giving names of notes, you can give a number to specify their pitch. Middle

C is 0. Each semitone above middle C goes up by 1 . Middle G is 7 semitones above

middle C, so it’s specified by the number 7. (An octave is 12 semitones.)

Specify the notes by numbers:

Sound[{SoundNote[0], SoundNote[0], SoundNote[7]}]

Use Table to generate a sequence of 5 notes:

ln[4):= Sound[Table[SoundNote[n], {n, 5}]]

5 s

54 An Elementary Introduction to the Wolfram Language

Ifyou don’t say otherwise, each note lasts 1 second. Use SoundNote[/;/7c/z, length

]

to

get a different length.

Play each note for 0.1 seconds:

m[5] Sound[Table[SoundNote[n, 0.1], {n, 5}]]

0.5 s

In addition to piano, SoundNote can handle a long list of possible instruments.

The name of each instrument is a string.

Play notes on a simulated violin:

in[6] := Sound[Table[SoundNote[n, 0.1, "Violin"], {n, 5}]]

MS' 0.5s

It’s easy to make “random music”—different every time you generate it.

Play a sequence of 20 notes with random pitches:

in[7] := Sound[Table[SoundNote[Randomlnteger[12], 0.1, "Violin"], 20]]

00 2 s

Vocabulary

Sound[{..,}] create a sound from notes

SoundNote["C"] a named note

SoundNote[5] a note with a numbered pitch

SoundNote[5, 0.1] a note played for a specified time

SoundNote[5, 0.1, "Guitar"] a note played on a certain instrument

12
|

Sound — wolfr.am/eiwl-12 55

Exercises

12.1 Generate the sequence of notes with pitches 0, 4, and 7.

12.2 Generate 2 seconds of playing middle A on a cello.

12.3 Generate a “piano riff” of notes from pitch 0 to pitch 48 in steps of 1, with each note lasting 0.05 seconds.

12.4 Generate a sequence of notes going from pitch 12 down to 0 in steps of 1.

12.5 Generate a sequence of 5 notes starting with middle C, then successively going up by an octave

at a time.

12.6 Generate a sequence of 10 notes on a trumpet with random pitches from 0 to 12 and duration

0.2 seconds.

12.7 Generate a sequence of 10 notes with random pitches up to 12 and random durations up to 10

tenths of a second.

12.8 Generate 0.1-second notes with pitches given by the digits of 2 A 31.

12.9 Create a sound from the letters in CABBAGE, each playing for 0.3 seconds sounding like a guitar.

12.10 Generate 0.1-second notes with pitches given by the letter numbers of the characters in “wolfram”.

Q&A

How do I know which instruments are available?

Look at the list under “Details and Options” in the SoundNote reference page, or just start typing and see

the completions you’re offered. You can also use instrument numbers, from 1 to 128. All the standard MIDI

instruments are there, including percussion.

How do I play notes below middle C?

Just use negative numbers, like SoundNote[-10],

What are sharp and flat notes called?

E U (E sharp), Ab (A flat), etc. They also have numbers (e.g. E# is 5).

How do I make a chord?

Put note names in a list, as in SoundNote[{"C", "G"}].

How do I make a rest?

For a 0.2-second rest, use SoundNote[None, 0.2].

How do I get a sound to play immediately, without having to press the play button?

Use EmitSound, as in EmitSound [Sound[SoundNote["C"]]j, etc.

Why do I need quotes in the name of a note like “C”?

Because the name is a Wolfram Language string. If you typed just C, it would be interpreted as a function

named C, which isn’t what you want.

56 An Elementary Introduction to the Wolfram Language

Tech Notes

• SoundNote corresponds to MIDI sound. The Wolfram Language also supports “sampled sound”,

for example using functions like ListPlay.

To get spoken output, use Speak. To make a beep, use Beep.

More to Explore

Guide to Sound Generation in the Wolfram Language (woifr.am/eiwl-12-more)

13
|

Arrays, or Lists of Lists — wolfr.am/eiwl-13 57

13
|

Arrays, or Lists of Lists

\\yVe seen how Table can be used to make lists. Now let’s see how Table can be used

to create higher-dimensional arrays of values.

Make a list of 4 copies of x:

in[i] Tablefx, 4]

Out(i]= {x, x, x, x}

Make a list of 4 copies of a list that contains 5 copies of x:

m[2]:= Tablefx, 4, 5]

Out[2]= {{x, X, X, X, x}, {x, X, X, X, x}, {x, X, X, X, x}, {x, X, X, X, x}}

Use Grid to display the result in a grid:

ln[3):= Grid[Table[x, 4, 5]]

X X X X X

X X X X X
Out[3]=

X X X X X

X X X X X

You can use Table with two variables to make a 2D array. The first variable corresponds

to the row; the second to the column.

Make an array of colors: red going down, blue going across:

in[4] := Grid[Table[RGBColor[r, 0, b], {r, 0, 1, .2}, {b, 0, 1, .2}]]

Out[4]=

Show every array element as its row number:

m[5i = Grid[Table[i, {i, 4}, (j, 5}]]

11111
2 2 2 2 2

"
' 3 3 3 3 3

4 4 4 4 4

58 An Elementary Introduction to the Wolfram Language

Show every array element as its column number:

in [6] := Grid[Table[j, {i, 4}, {j, 5}]]

1 2 3 4 5

1 2 3 4 5
Out[6]= „ , _

1 2 3 4 5

1 2 3 4 5

Generate an array in which each element is the sum of its row and column number:

in[7]:= Grid[Table[i+j, {i, 5}, (j, 5}]]

2 3 4 5 6

3 4 5 6 7

0ut[7]= 4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

Generate a multiplication table:

in[8j:= Grid[Table[i*j, {i, 5}, {j, 5}]]

1 2 3 4 5

2 4 6 8 10

out[8]= 3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

ArrayPlot lets you visualize values in an array. Larger values are shown darker.

Visualize a multiplication table:

in[9] := ArrayPlot[Table[i*j, {i, 5}, {j, 5}]]

Generate and plot an array of random values:

ln[10]:= ArrayPlot[Table[Randomlnteger[10], 30, 30]]

Out[1 0]=

13
|

Arrays, or Lists of Lists — wolfr.am/eiwl-13 59

ArrayPlot also lets you put colors as values:

ArrayPlot[Table[RandomColor[], 30, 30]]

Images are ultimately arrays of pixels. Color images make each pixel have red, green

and blue values. Black-and-white images have pixels with values 0 (black) or 1 (white).

You can get the actual pixel values using ImageData.

Find the value of pixels in an image of a “W”:

lmageData[Binarize[Rasterize["W"]]]

{{ 1 ,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }, { 1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 },

{ 1 ,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }, { 1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }, { 1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 },

{0 ,
0

,
1

,
1

,
1

,
0

,
0

,
1

,
1

,
1

,
0

,
0}, { 1 ,

0
,
1

,
1

,
1

,
0

,
0

,
1

,
1

,
1

,
0

,
1 }, { 1 ,

0
,
1

,
1

,
1

,
0

,
0

,
1

,
1

,
1

,
0

,
1 },

{ 1 ,
0

,
1

,
1

,
0

,
0

,
0

,
0

,
1

,
1

,
0

,
1 }, { 1 ,

0
,
0

,
1

,
0

,
1

,
1

,
0

,
1

,
0

,
0

,
1 }, { 1 ,

0
,
0

,
1

,
0

,
1

,
1

,
0

,
1

,
0

,
1

,
1 },

{1 ,
1

,
0

,
1

,
0

,
1

,
1

,
0

,
1

,
0

,
1

,
1 }, {1 ,

1
,
0

,
0

,
0

,
1

,
1

,
0

,
0

,
0

,
1

,
1 }, { 1 ,

1
,
0

,
0

,
1

,
1

,
1

,
1

,
0

,
0

,
1

,
1 },

{ 1 ,
1

,
0

,
0

,
1

,
1

,
1

,
1

,
0

,
0

,
1

,
1 }, { 1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }, {1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 },

(1 ,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }, { 1 ,

1
,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1

,
1 }}

Use ArrayPlot to visualize the array of values:

ArrayPlot[lmageData[Binarize[Rasterize["W"]]]]

The image is of very low resolution, because that’s how Rasterize made it in this case.

It’s also white-on-black instead of black-on-white. That’s because in an image 0 is

black and 1 is white (like in RGBColor), while ArrayPlot’s default is to make larger

values darker.

60 An Elementary Introduction to the Wolfram Language

You can do arithmetic with arrays, just like lists. That means it’s easy to swap 0 and 1

in this array: Just subtract everything from 1, so every 0 becomes 1-0 = 1, and every 1

becomes 1-1 = 0.

Find pixel values, then do arithmetic to swap 0 and 1 in the array:

ln[14]:= 1 “ lmageData[Binarize[Rasterize["W"]]]

0ut[i 4j= {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0},

{0 ,
0

,
1

,
0

,
0

,
1

,
1

,
0

,
0

,
1

,
0}, {0 ,

0
,
1

,
0

,
0

,
1

,
1

,
0

,
0

,
0

,
0}, {0 ,

0
,
1

,
1

,
1

,
0

,
1

,
1

,
1

,
0

,
0},

{0 ,
0

,
0

,
1

,
1

,
0

,
0

,
1

,
1

,
0

,
0}, {0 ,

0
,
0

,
1

,
0

,
0

,
0

,
1

,
0

,
0

,
0}, {0 ,

0
,
0

,
1

,
0

,
0

,
0

,
1

,
0

,
0

,
0},

{0 ,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0}, {0 ,

0
,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0}, {0 ,

0
,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0

,
0}}

The result is black-on-white:

in[i 5] := ArrayPlot[l - lmageData[Binarize[Rasterize["W"]]]]

Vocabulary

Table [x, 4, 5] make a 2D array of values

Grid [array] lay out values from an array in a grid

ArrayPlot [array] visualize the values in an array

ImageData [image] get the array of pixel values from an image

Exercises

13.1 Make a 12*12 multiplication table.

13.2 Make a 5*5 multiplication table for Roman numerals.

13.3 Make a 10*10 grid of random colors.

13.4 Make a 10*10 grid of randomly colored random integers between 0 and 10.

13.5 Make a grid of all possible strings consisting of pairs of letters of the alphabet (“aa”, “ab”, etc.).

13.6 Visualize {1, 4, 3, 5, 2} with a pie chart, number line, line plot, and a bar chart. Place these in a 2*2 grid.

13.7 Make an array plot of hue values x*y, where x and y each run from 0 to 1 in steps of 0.05.

13.8 Make an array plot of hue values x/y, where x and y each run from 1 to 50 in steps of 1.

13.9 Make an array plot of the lengths of Roman numeral strings in a multiplication table up to 100*100.

13
|

Arrays, or Lists of Lists — wolfr.am/eiwl-13 61

Q&A

Can the limits of one variable in a table depend on another?

Yes, later ones can depend on earlier ones. Table[x, {i, 4}, (j, i}] makes a “ragged” triangular array.

Can I make tables that are lists of lists of lists?

Yes, you can make tables of any dimension. lmage3D gives a way to visualize 3D arrays.

Why does 0 correspond to black, and 1 to white, in images?

0 means zero intensity of light, i.e. black. 1 means maximum intensity, i.e. white.

How do I get the original image back from the output of ImageData?

Just apply the function Image to it.

Tech Notes

Arrays in the Wolfram Language are just lists in which each element is itself a list. The Wolfram Language

also allows much more general structures, that mix lists and other things.

Lists in the Wolfram Language correspond to mathematical vectors; lists of equal-length lists correspond

to matrices.

m If most of the entries in an array are 0 (or some other fixed value), you can use SparseArray to construct

an array just by giving the positions and values of nonzero elements.

14
|

Coordinates and Graphics — wolfr.am/eiwl-14 63

Coordinates and Graphics

wvve used ListPlot and ListLi nePlot to plot lists of values, where each value appears

after the one before. But by giving lists containing pairs ofcoordinates instead of single

values, we can use these functions to plot points at arbitrary positions.

Plot a list of values where each value appears after the one before:

List Plot[{4, 3, 2, 1, 1, 1, 1, 2, 3, 4}]

4 F

3
:

Out[1]= 2 ;

1
:

....
_ _i » . I 1 1 . I i I . 1 I . I I I I i L

2 4 6 8 10

Plot a sequence of arbitrary points specified by {x,y} coordinates:

ListLinePlot[{{l, 1}, {1, 5}, {6, 4}, {6, 2}, {2, 3}, {5, 5}}]

i i i < i i i i i i » i i-

1 2 3 4 5 6

The position of each point here is specified by {x^y} coordinates. Following the

standard convention in mathematics, the x value says how far across horizontally

the point should be; thejy value says how far up vertically it should be.

Generate a sequence of random {x,y} coordinates:

Table[Randomlnteger[20], 10, 2]

{{19 ,
8}, {11 ,

20 }, {14 ,
15 }, {5 ,

8}, {6 ,
4}, {16 ,

14}, { 1 ,
17}, {10 ,

7}, {5 ,
6}, {17 ,

2}}

Another way to get random coordinates:

Randomlnteger[20, {10, 2}]

{{2 ,
2 }, {20 ,

18 }, {16 ,
2 }, {13 ,

13 }, {6 ,
15 }, {11 ,

18 }, {10 ,
20 }, {17 ,

20}, {8 ,
14}, {2 ,

10}}

64 An Elementary Introduction to the Wolfram Language

Plot 100 points at random coordinates:

in[5
]

: = ListPlot[Table[Randomlnteger[1000], 100, 2]]

1000 h ... • • • •
.

•

800 *
. •

. .

*

600 - • '

.
. • * •

out[5j= • .

400
:

••••
*,

• •

200
;

*
*. ’

’
-

_ . - . 1 . -i i_J i , i I i

'
' I i_l i L

200 400 600 800 1000

We can use coordinates to construct graphics. Earlier we saw how to make graphics

of one circle. To make graphics of more than one circle we have to say where each

circle is, which we can do by giving the coordinates of their centers.

Place circles by giving the coordinates of their centers:

m[6]:= Graphics[{Circle[{l, 1}], Circle[{l, 2}], Circle[{3, 1}]}]

If we apply color styles it’s easier to see which circle is which:

in[7):= Graphics[{Style[Circle[{l, 1}], Red], Style[Circle[{l, 2}], Green], Style[Circle[{3, 1}], Blue]}]

Make a graphic with 100 randomly placed circles, each with center coordinates up to 50:

m[8):= Graphics[Table[Circle[Randomlnteger[50, 2]], 100]]

14
|

Coordinates and Graphics — wolfr.am/eiwl-14 65

A 2D array of circles, arranged so that they just touch:

Graphics[Table[Circle[{x, y}], {x, 0, 10, 2}, {y, 0, 10, 2}]]

Circle [{.r, > }] means a circle centered at position {x,y}. Ifyou don’t say otherwise, the

circle is given radius 1. You can make a circle of any radius using Circle[{x, y}, r].

Use different radii for different circles:

in[i o]:- Graphics[{Circle[{l, 1}, 0.5], Circle[{l, 2), 1.2], Circle[{3, 1), 0.8]}]

Make 10 concentric circles:

in[i i

]

: Graphics[Table[Circle[{0, 0}, r], {r, 10}]]

Draw larger circles with centers that shift progressively to the right:

ln[12]:» Graphics[Table[Circle[{x, 0}, x], {x, 10}]]

66 An Elementary Introduction to the Wolfram Language

Pick both positions and radii at random:

in[i 3): Graphics[Table[Circle[Randomlnteger[50, 2], Randomlnteger[10]], 100]]

Out[13]=

RegularPolygon works much the same as Circle and Disk, except that in addition to

giving the position of the center and the size, you also have to specify how many sides

the polygon should have.

Make graphics of a size-1 regular pentagon and a size-0.5 regular heptagon:

in[i 4]
:= Graphics[{RegularPolygon[{l, 1}, 1, 5], RegularPolygon[{3, 1}, 0.5, 7]}]

Out[14]=

You can mix different kinds of graphics objects:

in[i 5]:= Graphics[{RegularPolygon[{l, 1}, 1
, 5],

Circle[{l, 1}, 1], RegularPolygon[{3, 1}, .5, 7], Disk[{2, 2}, .5]}]

Out[1 5]=

To make arbitrary graphics, you need the basic graphics primitives Point, Line and

Polygon. Point[{v, y}] represents a point at coordinate position {v, y}. To get multiple

points, you can either give a list of Point[{x, v}]s, or you can give a list of coordinate

positions inside a single Point.

Graphics of three points at specified positions:

in[i 6]:= Graphics[{Point[{0
,
0}], Point[{2

,
0}], Point[{l, 1 .5}]}]

Out[16]=

14
|

Coordinates and Graphics — wolfr.am/eiwl-14 67

An alternative form, where all the coordinate positions are collected in a single list:

Graphics[Point[{{0, 0}, {2, 0}, {1, 1.5}}]]

>ut|i

;

Make a line joining the positions:

Graphics[Line[{{0, 0}, {2, 0}, {1, 1.5}}]]

Out[18]=

Make a polygon with corners at the positions you give:

Graphics[Polygon[{{0, 0}, {2, 0}, {1, 1.5}}]]

Out[19]=

RegularPolygon makes a regular polygon in which all sides and angles are the same.

Polygon lets you make any polygon, even strange ones that fold over themselves.

A polygon with 20 corners at random coordinates below 100; the polygon folds over itself:

Graphics[Polygon[Table[Randomlnteger[100], 20, 2]]]

Outf20]=

68 An Elementary Introduction to the Wolfram Language

The things we’ve done so far here immediately generalize to 3D. Instead of having

two coordinates {x,y} we have three: {x,y, z}. In the Wolfram Language, x goes

across the screen
,

y

goes “into” the screen, and z goes up the screen.

Two spheres stacked on top of each other:

in[2i] := Graphics3D[{Sphere[{0, 0, 0}], Sphere[{0, 0, 2}]}]

Out[21]=

A 3D array of spheres (radius 1/2 makes them just touch):

in[22]
:= Graphics3D[Table[Sphere[{x, y, z), 1/2], (x, 5), {y, 5), (z, 5}]]

Out[22]=

A 3D array of points:

in[23j:= Gra phics3D[Ta ble[Point[{x, y, z}], {x, 10), {y, 10), {z, 10}]]

14
|

Coordinates and Graphics — wolfr.am/eiwl-14 69

50 spheres at random 3D positions, with each coordinate running up to 10:

Graphics3D[Table[Sphere[Randomlnteger[10, 3]], 50]]

Out[24]=

Ifyou don't say otherwise, 3D objects like spheres are drawn solid, so you can’t see

through them. But just like you can specify what color something is, you can also

specify its opacity. Opacity 1 means completely opaque, so you can’t see through it at

all; opacity 0 means completely transparent.

Specify opacity 0.5 for all spheres:

Graphics3D[Table[Style[Sphere[Randomlnteger[10, 3]], Opacity[0.5]], 50]]

Out[25]=

You can use Manipulate to make graphics—in 2D or 3D—that can be manipulated.

Manipulate the position and opacity of the second sphere:

•h; Manipulate[

Graphics3D[{Sphere[{0, 0, 0}], Style[Sphere[{x, 0, 0}], Opacity[o]]}], {x, 1, 3}, (o, 0.5, 1}]

o

70 An Elementary Introduction to the Wolfram Language

Vocabulary

Point [{*, y}] a point at coordinates [x, y}

Line [{{1, 1}, {2,4}, {1, 2}}] a line connecting specified coordinates

Circle [{.v, y}] a circle with center at {.x;, y}

Circle[{.v, y}, /]
a circle with center at {*, y} and radius r

RegularPolygon[{.\, v}, s, n] a regular polygon with center {*, y}

and n sides each 5 long

Polygon [{{1, 1}, {2, 4}, {1, 2}}] a polygon with the specified corners

Sphere [{.r, y, z}] a sphere with center at {jc, y, z}

Sphere [{.r, y,z>, r] a sphere with center at {x, y, z} and radius r

Opacity [level] specify an opacity level (0: transparent; 1: solid)

Exercises

14.1 Make graphics of 5 concentric circles centered at{0, 0}with radii 1,2, ,5.

14.2 Make 10 concentric circles with random colors.

14.3 Make graphics of a 10*10 grid of circles with radius 1 centered at integer points {x, y}.

14.4 Make a 10*10 grid of points with coordinates at integer positions up to 10.

14.5 Make a Manipulate with between 1 and 20 concentric circles.

14.6 Place 50 spheres with random colors at random coordinates up to 10.

14.7 Make a 10*10*10 array of spheres with RGB components ranging from 0 to 1.

14.8 Make a Manipulate with a varying between -2 and +2 that contains circles centered at {a *x, 0}

with x going from 1 to 10.

14.9 Make a 5*5 array of regular hexagons with size 1/2, centered at integer points.

14.10 Make a line in 3D that goes through 50 random points with coordinates randomly chosen up to 50.

14
|

Coordinates and Graphics — wolfr.am/eiwl-14 71

Q&A

What determines the range of coordinates shown?

By default it’s picked automatically, but you can set it explicitly using the PlotRange option, as discussed

in Section 20.

How can I put axes on graphics?

Use the option (see Section 20) Axes -> True.

How do I change the appearance of the edges of a polygon or disk?

Use EdgeForm inside Style.

What other graphics constructs are there?

Quite a few. Examples include Text (for placing text inside graphics), Arrow (for putting arrowheads on

lines etc.), Inset (for putting graphics inside graphics) and FilledCurve.

How do I get rid of the box around 3D graphics?

Use the option (see Section 20) Boxed -> False.

Tech Notes

The random circles here are drawn at integer coordinates. You can use RandomReal to place them at

arbitrary coordinates.

Instead of using Style, you can give directives for graphics in a list, like {Red, Disk[]}. A particular directive

will affect every graphics object that appears after it in the list.

In 2D graphics, objects are drawn in whatever order you give them, so later ones can cover up earlier ones.

You can apply geometric transformations to graphics objects using functions like Translate, Scale and Rotate.

Polygons that fold over themselves (say, to make a bowtie shape) are displayed using an even-odd rule.

3D graphics can include Cuboid, Tetrahedron and polyhedra specified by PolyhedronData, as well as

arbitrary shapes defined by meshes.

More to Explore

Guide to Graphics in the Wolfram Language (wolfr.am/eiwl-14-more)

15
|

The Scope of the Wolfram Language — wolfr.am/eiwl-15 73

The Scope of the Wolfram Language

In the past 14 sections, we’ve seen many things the Wolfram Language can do.

But what we’ve seen is only the very beginning. We’ve discussed around 85 built-in

(unctions but altogether the language has more than 5000.

You can go to the Documentation Center to start exploring all these functions.

The front page of the Wolfram Language Documentation Center:

Wolfram Language & System

Documentation Center
search documentation

Core Language

& Structure

Data Manipulation

& Analysis

Visualization

& Graphics

Symbolic & Numeric

Computation
Strings & Text Graphs & Networks

Images

Time-Related

Computation

Geometry

Geographic Data &
Computation

Sound

Scientific and Medical

Data & Computation

Engineering Data &
Computation

Financial Data &
Computation

Social, Cultural &

Linguistic Data

Higher Mathematical

Computation

Documents &

Presentation

User Interface

Construction

System Operation &

Setup

External Interfaces &
Connections

Cloud & Deployment

Fast Introduction for Programmers » Wolfram|Alpha Knowledgebase Examples » Legacy Documentation »

74 An Elementary Introduction to the Wolfram Language

Let’s pick Geometry as an example.

Open the Geometry tile:

Importing & Exporting Geometry

The Documentation Center has guide pages with overviews of functions related to

particular topics.

The guide page for Plane Geometry:

wolfram language guide Functions » Related Guides »

Plane Geometry

The Wolfram Language provides fully integrated support for plane geometry, including basic regions such as

points, lines, triangles, and disks; functions for computing basic properties such as arc length and area; and

nearest points to solvers to find the intersection of regions or integrals over regions.

Reference

Geometrical Objects a

SSSTriangle - a triangle specified by the length of Its sides

Point * Line • HalfLine InfiniteLine Circle

SASTriangle ASATriangle * AASTriangle Triangle ' Rectangle * Parallelogram

Polygon * HalfPlane InfinitePlane * Disk

Visualization

Graphics — visualize regions with different styles

Measures & Tests a

ArcLength — length of a curve

Area — area of a region

RegionMember — test whether a point is In a region

RegionNearest — nearest point In a region to a given point

RegionQ • RegionDimension Region Distance ...

Solving with Regions a

Findlnstance — find examples of points In a region

Solve - find curve crossings etc.

NSolve ' Reduce • Minimize • NMinimize • ...

15
|

The Scope of the Wolfram Language — wolfr.am/eiwl-15 75

Now you can visit the function page for a particular function, say Parallelogram.

The function page for Parallelogram:

BUILT-IN WOLFRAM LANGUAGE SYMBOL See Also * Related Guides t

Parallelogram

Parallelogram [p, {v,, v
2)]

represents a parallelogram with origin p and directions >'i and .

Details

Examples open all

Basic Examples l)

A standard parallelogram:

ln[i]:- Graphics[ParallelogramQ]

Out(I)-

There’s a summary at the top, then lots of examples of how the Parallelogram function

can be used, as well as a section to open to get more details.

Run the first example from the Parallelogram function page:

Graphics[Parallelogram[]]

Out[1]=

Whenever you start typing the name of a function, you’ll see an autocomplete menu.

Click the to see the function page for a particular function.

Select from the autocomplete menu to pick a function:

Parallj

Parallelogram

Parallelize

Parallelepiped

ParallelMap

ParallelTable

76 An Elementary Introduction to the Wolfram Language

When the name is complete you’ll see:

Parallelograml

0O]

Press the ^ to see:

Parallelogram

^ O

Parallelogram^, |v,, v
2j j

represents a parallelogram with origin p and directions v, and v
2

.

All the functions in the Wolfram Language follow the same principles—so for example

the Parallelogram function works very much like the RegularPolygon function that we

already discussed.

Q&A

How do I get to the Documentation Center?

It depends where you’re running the Wolfram Language. If you’re using the web or mobile, click the

fTI icon. On the desktop, go to the Help menu.

How do I try examples in the documentation?

Often you can just run them right inside the documentation. Alternatively, copy them to your working

notebook and run them there.

How long does it take to learn the whole Wolfram Language?

As in learning a human language, it takes some time to become fluent, and to know the principles of the

language. One can go on learning specific vocabulary almost indefinitely.

How much of the Wolfram Language does one need to know to use it in practice?

One needs to know its principles, as they are covered, for example, in this book. As with a human
language, one can have a comparatively small working vocabulary, not least because there are usually

many ways to express a given thing. It’s easy to expand vocabulary in any particular case just by looking

at documentation.

How can I read Wolfram Language code if I’m not fluent in English?

It’ll help if you switch on code captions—which give short descriptions for every function name that

appears, and are available for many languages.

Tech Note

There’s computable data about the structure of the Wolfram Language right in the Wolfram Language,

accessible from WolframLanguageData.

More to Explore

The Wolfram Language Home Page (wolfr.am/eiwl-15-more)

Wolfram Language Documentation Center (wolfr.am/eiwl-15-more2)

16
|

Real-World Data — wolfr.am/eiwl-16 77

Real-World Data

A central feature oi the Wolfram Language is that it’s got immense amounts ofreal-world

data built in. It’s got data on countries and animals and movies, and lots more. It gets all

this from the Wolfram Knowledgebase, which is being updated all the time—and is what

powers Wolfram
|

Alpha and services based on it.

Hut how can you talk about a country in the Wolfram Language? The easiest way is

just to use plain English. You can tell the Wolfram Language you’re going to be

giving it plain English by pressing Ctrl + = (hold down the Control key and press the

- key), or on a touch device, by pressing the button.

Enter the plain English “united states”:

S united states

As soon as you press Return (or click away), the Wolfram Language will try to interpret

what you typed. Assuming it succeeds, it’ll display a little yellow box that represents a

Wolfram Language entity. In this case, it’s the entity corresponding to the United States.

United States (country)
-

Press the check mark to confirm that’s what you want:

United States (country)
|

Now you can ask for lots ofproperties of this entity. Like you could ask for the US flag.

Ask for the flag property of the United States:

lnI1]:= United States (country)"] ["Flag"]

Out[1]=

The result you get is something you can go on doing computation with—like in this

case image processing.

Color-negate the US flag:

ColorNegate[[United States ount-yi
)

["Flag"]]

78 An Elementary Introduction to the Wolfram Language

If all you want to do is to get the US flag, you can just ask for it in English.

In[3]:= B US flag

Out[3]=

EntityValue is a more flexible way to ask for the values of properties.

Use EntityValue to get the US flag:

EntityValue[S US flag ,
"Flag"]ln[4]:=

Out[4]=

EntityValue also works with lists of entities.

Get flags for a list of countries:

EntityValue[{B US , B brazil], ^ chi na }, "Flag"]ln[5]:=

Out[5]'T

The Wolfram Language has deep knowledge about countries, as about many

other things.

Find out how many radio stations there are in the list of countries:

in[6]:= EntityValue[{B US , B brazil , B china }, "RadioStations"]

out[6]= {13 769, 1822, 673}

Make a pie chart of the results:

PieChart[EntityValue[{B US ,B brazil , B china }, "RadioStations"]]ln[7]:

Out[7]=

16
|

Real-World Data — wolfr.am/eiwl-16 79

Find countries that border Switzerland:

S Switzerland ["BorderingCountries"]

|
Austria]

,
[France]

,
(Germany

) ,
[Italy]

, [
Liechtenstein]

J

Find their flags:

EntityValue[B Switzerland ["BorderingCountries"], "Flag"]

Sometimes you'll want to talk about a class of entities—like, say, planets.

Ask for planets, and get the class of entities corresponding to planets:

in(ioj: B planets

Out(10]= «• planets
I

Classes of entities are indicated by You can get a list of all entities in a class

using Entity List.

Get the list of planets:

ln[11]:= Entity List[B planets]

,
[Venus],

J
Outfll

| (

Mercury Earth], [Mars], [Jupiter], [Saturn], Uranus], [Neptune >
J L : I

Get images of all of the planets:

EntityValue[B planets ,
"Image"]

80 An Elementary Introduction to the Wolfram Language

EntityValue can actually handle entity classes directly, so you don’t need to use EntityList

with it.

Get the radius of each of the planets, and make a barchart of them:

ln[13]:= BarChart[EntityValue[B planets ,
"Radius"]]

Out[13]=

It’s very convenient to use plain English to describe things. But a downside is that it

can be ambiguous. Ifyou say “mercury”, do you mean the planet mercury or the

chemical element mercury or something else called “mercury”? When you use

+ = ,
it'll always make an initial choice. But if you press the ••• you can changeCtrl

to another choice. Press the check mark / to accept a choice.

5 mercury

mercury (element) (j^fTl)

Assuming “mercury” is a chemical element Use as a planet

or referring to manned space missions or more » instead

To see how the Wolfram Language internally represents entities you can use

InputForm.

Show the internal form of the entity that represents the United States:

ln[14]:= lnputForm[B USA]

Out [14]= Entityf'Country", "UnitedStates"]

Show the internal form for New York City:

m[i5] InputFormfS nyc]

out[i5]= Entityf'City", {"NewYork", "NewYork", "UnitedStates"}]

There are millions of entities in the Wolfram Language, each with a definite internal

form. In principle you could enter any entity using its internal form. But unless you’re

using the same entity over and over again, it’s much more practical just to use Ctrl + =

and enter a name for the entity in plain English.

I here are thousands of different types of entities in the Wolfram Language, covering

all sorts of areas of knowledge. To find out about them, check out the Wolfram
Language documentation, or the Wolfram

|

Alpha examples pages. Each type of

entity then has a list of properties—often hundreds of them. One way to find this list

is to use EntityProperties.

16
|

Real-World Data — wolfr.am/eiwl-16 81

Possible properties for amusement parks:

Entity Properties!"AmusementPark"]

0ut(i 6]=
| (

administrative division
)

,
(
type

)
,

(
area

) , (
city

) , (
closing date

}
,

(
country

] , (
image

}
,

(
latitude

)
,

[
longitude

) , (
name

} ,
[number of rides

(
opening date

) , (
owner

) , (
coordinates

) ,
[slogan]

,
(
rides

]
, (status)

j

In practice, though, a good approach is to ask in plain English for a property of some

entity, then to look at the interpretation that’s found, and re-use the property from it.

Ask for the height of the Eiffel Tower:

B height oftheeiffel tower

Mi?] Beiffel tower ["Height"]

out[i7]= 1062.99 ft

Re-use the "Height" property, applied to the Great Pyramid:

inji 8] : = B pyramid of giza ["Height"]

out[ie]= 456.037 ft

Different types of entities have different properties. One common property for many

types of entities is "Image".

Get images of various entities:

-:i9 B koala ["Image"]

Out[1 9]=

Beiffel tower ["Image"]

82 An Elementary Introduction to the Wolfram Language

in[22] : = S ste phen wo Ifram ["Image"]

Out[22]=

Other types of objects have other properties.

A plot of a caffeine molecule:

in[23j : B caffeine ["MoleculePlot"]

Out{23]=

Rotatable 3 D graphics of a skull:

[24]:= B skull ["Graphics3D"]

Out[24]=

16
|

Real-World Data — wolfr.am/eiwl-16 83

A net that folds up into our 3D company logo:

S rhombic hexecontahedron ["Netlmage"]

Out[25]=

Vocabulary

Ctrl + = plain English input

EntityList[(7«.v.v] entities in a class

EntityValue [entities, property] value of a property of an entity

EntityProperties[/>y?e] list of properties for an entity type

lnputForm[<?/?//7v] internal Wolfram Language representation of an entity

Exercises

16.1 Find the flag of Switzerland.

16.2 Get an image of an elephant.

16.3 Use the "Mass" property to generate a list of the masses of the planets.

16.4 Make a bar chart of the masses of the planets.

16.5 Make an image collage of images of the planets.

16.6 Edge detect the flag of China.

16.7 Find the height of the Empire State Building.

16.8 Compute the height of the Empire State Building divided by the height of the Great Pyramid.

16.9 Compute the elevation of Mount Everest divided by the height of the Empire State Building.

16.10 Find the dominant colors in the painting The Starry Night.

16.11 Find the dominant colors in an image collage of the flag images of all countries in Europe.

16.12 Make a pie chart of the GDP of countries in Europe.

16.13 Add an image of a koala to an image of the Australian flag.

84 An Elementary Introduction to the Wolfram Language

Q&A

Where does the Wolfram Language get its real-world data?

It’s all from the central Wolfram Knowledgebase. We’ve been building this knowledgebase for many years,

carefully curating data from thousands of primary sources.

Is the data in the Wolfram Language regularly updated?

Yes. We put a lot of effort into keeping it all up to date. And in fact there’s new data flowing in every

second—about market prices, weather, earthquakes, aircraft positions and lots more.

How accurate is the data in the Wolfram Language?

We go to a lot of trouble to make it as accurate as possible, and we check it extensively. But ultimately we

often have to rely on what governments and other outside organizations report.

What is the relation to Wolfram|Alpha?

Wolfram|Alpha uses the same knowledgebase as the Wolfram Language.

How should I refer to a particular entity?

However you want to. The Wolfram Language is set up to understand all common ways to refer to entities.

(“New York City”, “NYC”, “the big apple”, etc., all work.)

How can I find all properties and values for a given entity?

Use £nr/ty["PropertyAssociation"].

What does it mean if EntityValue gives Missing[]?

It means the value you’ve asked for isn’t known, or at least isn’t in the Wolfram Knowledgebase. Use

DeleteMissing to delete Missing[.] elements in a list.

Tech Notes

• The Wolfram Knowledgebase is stored in the cloud, so even if you’re using a desktop version of the

Wolfram Language, you’ll need to connect to the network to start getting real-world data.

The Wolfram Knowledgebase contains many trillions of specific facts and values, stored in a Wolfram

Language symbolic framework, with a variety of underlying database technologies.

The Wolfram Knowledgebase has been systematically built and curated from large numbers of primary

sources of data. It doesn’t come from web searching.

Real-world data often involves units, which we’ll discuss in the next section.

Instead of using natural language, you can access the Wolfram Knowledgebase through specific

functions like CountryData and MovieData. Sometimes this may be faster.

If you want to find the original source of a particular piece of data, you can look at documentation

(e.g. for CountryData, etc.), or you can ask for the data in Wolfram|Alpha and follow source links.

Sometimes you want to talk about a special instance of an entity, like a country in a particular year,

or a certain amount of a substance. You can do this using Entitylnstance.

RandomEntity finds random entities of a given type.

16
|

Real-World Data — wolfr.am/eiwl-16 85

More to Explore

Major Areas Covered by the Wolfram Knowledgebase (wotfr.am/eiwl-16-more)

Geographic Data and Computation (wolfr.am/eiwl-16-more2)

Scientific and Medical Data and Computation (wolfr.am/eiwl-16-more3)

Engineering Data and Computation (wolfr.am/eiwl-16-more4)

Social, Cultural and Linguistic Data (wolfr.am/eiwl-16-more5)

17
|

Units — wolfr.am/eiwl-17 87

Units

As soon as you’re dealing with real-world quantities, it’s inevitable that you’ll run into

units. In the Wolfram Language, you can enter quantities with units using Ctrl + = .

Enter a quantity of time in units of hours:

B 2.6 hours

5 2.6 h V

Press the check mark to accept the interpretation:

in[i]:= 2.6 h

You can use InputForm to see how the Wolfram Language internally represents this.

Show the internal form of a quantity:

lnputForm[B 2.6 hours]

Quantity[2.6, "Hours"]

You can always enter quantities directly like this, or you can use Ctrl + =
,
either for

the whole thing, or just for the units.

The Wolfram Language knows about all the 10,000 or so common kinds of units.

UnitConvert converts between them.

Convert from hours to minutes:

UnitConvert[2.6 h
,
"Minutes"]

<?ui[3]= 156. min

You can do arithmetic with quantities even if they have different units.

Add a length in feet to one in centimeters:

B 7.5 ft +B 14 cm

242.6 cm

Divide one length by another:

B 7.5 ft IB 14 cm

16.3286

88 An Elementary Introduction to the Wolfram Language

You can compute with money too.

Use dollars in a computation:

ln[6]:= 7.5 *B $51 +2.51 *^ $8
)

out[6]= $42.58

Multiply a price per pound by a weight in kilograms:

ln[7]:=|:= € $15/lb *B 5.6 kg

0ut[7]= $185.19

You can convert between currencies. The Wolfram Language always knows the latest

conversion rate.

m[8]:= CurrencyConvert[B 100 euros , BUS dollars]

Out[8]= $112.10

There are many places where units show up. Another example is in angles—and this

is such a common case that the Wolfram Language lets you handle it in a special way.

You can enter an angle like 30 degrees either as 30 Degree, or as 30 °, where the ° can

be typed as Esc deg Esc

Display a string rotated by 30 degrees:

in[9]:= Rotate["hello", 30 °]

Out[9]=

Ifyou leave off the Degree or °, the Wolfram Language will assume you’re talking

about radians
,
which go from 0 to 2n (about 6.28) around a circle, rather than degrees,

which go from 0 to 360.

7T/2 radians is equivalent to 90°:

in[io]:= Rotate["hello", Pi/2]

_o

Out[1 0]=

Make a list of rotations in degrees from 0 to 360:

in[i i
]:= Table[Rotate[n, n Degree], (n, 0, 360, 30}]

[o, i'l, <g>,o <=U
,
os^ ogT> ^ g ^oa , 360}

17
|

Units — wolfr.am/eiwl-17 89

1 here’s lots to do with angles. For example, AnglePath gives the path you’d follow if

you successively turned by a sequence of angles.

Start off horizontal, then turn three times by 80°:

Graphics[Line[AnglePath[{0 °, 80 °, 80 °, 80 °}]]]

Keep turning by 80° and you’ll eventually get back to where you started:

in[i 3]: Graphics[Line[AnglePath[Table[80 °, 20]]]]

If you keep increasing the angle, you get an interesting pattern:

- Graphics[Line[AnglePath[Table[n*5 °, {n, 200}]]]]

Vocabulary

UnitConvert [quantity, unit

]

CurrencyConvert [amount, unit]

30 Degree

30°

Rotate [expr, an^lc]

AnglePath [{an%lc'i, an^lc2 , }]

convert between units

convert between currencies

angle in degrees

angle in degrees entered with Esc deg Esc

rotate on the screen

path derived from a sequence of turns

90 An Elementary Introduction to the Wolfram Language

Exercises

17.1 Convert 4.5 lbs (pounds) to kilograms.

17.2 Convert 60.25 mph to kilometers per hour.

17.3 Find the height of the Eiffel Tower in miles.

17.4 Find the height of Mount Everest divided by the height of the Eiffel Tower.

17.5 Find the mass of the Earth divided by the mass of the Moon.

17.6 Convert 2500 Japanese yen to US dollars.

17.7 Find the total of 35 ounces, 1/4 ton, 45 tbs and 9 stone in kilograms.

17.8 Get a list of the distance to each planet using the "DistanceFromEarth" property, and convert all the

results to light minutes.

17.9 Rotate the string "hello" by 180°.

17.10 Make a table of a size-100 “A” rotated by 0° through 360° in steps of 30°.

17.11 Make a Manipulate to rotate an image of a cat between 0° and 180°.

17.12 Generate graphics for a path obtained by turning 0°, 1°, 2°, ... ,
180°.

17.13 Make graphics of the path obtained by turning a constant angle 100 times, controlling the angle

from 0° to 360° with a Manipulate.

17.14 Make graphics of the path obtained by successively turning by the digits of 2 A 10000 multiplied by 30°.

Q&A

What unit abbreviations does the Wolfram Language understand?

Pretty much any common abbreviation, whether it’s miles/hr or mph or mi/h, etc. (If you’re wondering if

an abbreviation will work, just try it.)

Does the Wolfram Language pick units based on what country I’m in?

Yes. For example, it’ll tend to use inches if you’re in the US, and centimeters if you’re in continental Europe.

Do I have to be connected to the network to use units?

Only to interpret input like 5 kg. If you type Quantity[5, "Kilograms"] you don’t need the network—except

to deal with units like currencies whose values are always changing.

What can I do if my unit conversion gives me an exact fraction but I want a decimal number?

Use the function N[
]
to find a decimal approximation. Or add a decimal point to a number in your input.

We’ll talk more about this in Section 23.

Why don’t I get the same result for the currency conversion example?

Because, without doubt, the conversion rates have changed.

17
|

Units — wolfr.am/eiwl-17 91

Tech Notes

• Degree isn’t a function; like Red, Green, etc. it’s a symbol. We’ll talk more about these later.

AnglePath implements “turtle graphics” familiar from languages like Logo and Scratch.

More to Explore

Guide to Units in the Wolfram Language (wolfr.am/eiwl-17-more)

18
|

Geocomputation — wolfr.am/eiwl-18 93

18 I
Geocomputation

1 he Wolfram Language has extensive built-in knowledge of geography. For example,

it knows where New York City is, and it can compute how far it is from there to

Los Angeles.

Compute the distance between the centers of New York and Los Angeles:

GeoDistancefB new york ,S los angeles]

out(i]= 2432.07 mi

You can also plot locations on a map, using GeoListPlot.

Plot New York and Los Angeles on a map:

GeoListPlot[{B new york , Bios angeles }]

Out[2)=

Plot countries on a map:

ln[3]: GeoListPlot[{B iceland ,S france ,B italy }]

v V

94 An Elementary Introduction to the Wolfram Language

You can do things at a much smaller scale too.

Plot two famous locations in Paris:

in[4]:= GeoListPlot[{B Eiffel Tower , B Louvre }]

'iF~.
. fMK- ;

-,

~L l -
1

ifi
:

Out[4]= ¥ I';
1 ;(*£,' IB

.<*->' ,-ic ’h)/ ah, f j-, ,1'JB ,
T? vW.--. SSfll .

GeoListPlot is the analog for geography of ListPlot. GeoGraphics is the analog of Graphics.

Generate a map of New York City:

in[5] := GeoGraphics[B New York City]

18
|

Geocomputation — wolfr.am/eiwl-18 95

GeoPath represents a path on the surface of the Earth.

Show the shortest path from New York to Tokyo:

GeoGraphics[GeoPath[{B New York , e Tokyo }]]

Out [6]:

Styling works just like in other graphics:

GeoGraphics[Style[GeoPath[{B New York , B Tokyo }], Thick, Red]]

Out[7]=

GeoDisk is the analog of Disk; you specify its center and its radius.

Show a 1-mile-radius disk around the Eiffel Tower:

GeoGraphics[GeoDisk[B eiffel tower],B 1 mile]]

/ >

96 An Elementary Introduction to the Wolfram Language

Generate a table of maps, with disks whose sizes go up as powers of 10:

ln[9]: Table[GeoGraphics[GeoDisk[S eiffel tower), B 1 mile * 10 A n]], {n, 0, 4}]

}

GeoPosition gives a position on the Earth. The numbers it contains are longitude and

latitude—the standard coordinates on the surface of the Earth.

Find the geo position of the Eiffel Tower:

in[io] := GeoPositionfa eiffel tower]

Out[10]= GeoPosition[{48.8583, 2.29444}]

Draw a 4000-mile-radius disk around 0 latitude, 0 longitude:

ln[11] = GeoGraphics[GeoDisk[GeoPosition[(0, 0}],B 4000 miles]]

Notice that the disk isn’t quite circular. That’s because we have to use a projection to

draw the surface of the Earth on a flat map. It’s one of the many subtleties in doing

geocomputation.

GeoNearest finds what’s nearest to a given place on the Earth. You tell it what type of

thing to look for, and how many you want it to find.

Find the nearest 5 countries to 0 longitude, 0 latitude:

m[i 2]:= GeoNearest["Country", GeoPosition[{0, 0}], 5]

out[i 2]=
|
[Ghana

| , [
Ivory Coast

) ,
[Togo]

,
[Benin

) , [
Sao Tome and Principe

) j

18
|

Geocomputation — wolfr.am/eiwl-18 97

Find the nearest cities instead:

GeoNearest["City", GeoPosition[{0, 0}], 5]

|
[Takoradi]

,
(Sekondi)

,
(Cape Coast]

,
[Elmina]

,
(jShamaJ

j

It's often nice to know your own geo position. So long as your computer, phone, etc.

knows, Here will give you that.

Find where your computer (or phone, etc.) thinks it is:

in(i 4] := Here

out[i4]= GeoPosition[{40.11, -88.24}]

You can do computations with Here.

Compute how far it is to the Eiffel Tower

in [i 5] := GeoDistance[Here, B eiffel tower]

out[i 5]= 4245.54 mi

Find the nearest 5 volcanoes to my position:

ln[16):= GeoNearestf'Volcano", Here, 5]

out[i6]=

|
[Dotsero]

,
(Valles Caldera]

,
(Carrizozo)

,
[Zuni-Bandera]

,
(Yellowstone)

J

Plot volcanoes on a map:

GeoListPlot[GeoNearest["Volcano", Here, 30]]

•V

•%

Out{17]=

98 An Elementary Introduction to the Wolfram Language

Vocabulary

GeoDistance [?/?//'A’i, entity2] geo distance between entities

GeoListPlot [{entityi, entity

'

2 , -•}] plot a list of entities on a map

GeoGraphics[...] map constructed from primitives

GeoPath [{entity1 ,
entity2}] path between entities

GeoDisk [entity, r] disk with radius r around an entity

Here where your computer, phone, etc. thinks it is

GeoPosition [entity] geo position of an entity

GeoNearest["type", location
,
n] nearest n objects of a certain type to a location

Exercises

18.1 Find the distance from New York to London.

18.2 Divide the distance from New York to London by the distance from New York to San Francisco.

18.3 Find the distance from Sydney to Moscow in kilometers.

18.4 Generate a map of the United States.

18.5 Plot on a map Brazil, Russia, India and China.

18.6 Plot on a map the path from New York City to Beijing.

18.7 Plot a disk centered on the Great Pyramid, with radius 10 miles.

18.8 Plot a disk centered on New York with a radius large enough to just reach San Francisco.

18.9 Find the nearest 5 countries to the North Pole (GeoPosition["NorthPole"j).

18.10 Find the flags of the 3 countries nearest to latitude 45°, longitude 0°.

18.11 Plot the 25 volcanoes closest to Rome.

18.12 Find the difference in latitude between New York and Los Angeles.

Q&A

Can I get different projections for maps?

Yes. Just use the GeoProjection option. There are more than 300 built-in projections to choose from.

The default projection used in any particular case depends on the scale and location of the map.

How detailed are the maps in the Wolfram Language?

They go down to the level of individual streets. Most streets in the world are included.

18
|

Geocomputation — wolfr.am/eiwl-18 99

How does the Wolfram Language find my geo position?

It uses the function FindGeoLocation. On a mobile device, this will normally ask for your GPS position.

On a computer, it’ll normally try to deduce your location from your internet address—this won’t always
work correctly. You can always explicitly set your geo location by assigning a value to $GeoLocation.

How can I specify the range of a map?

Use the option GeoRange -> distance (e.g. GeoRange -> B 5 miles)
or GeoRange -4 place

(e.g. GeoRange -> B Europe), as discussed in Section 20.

Can the Wolfram Language compute driving directions?

Yes. Use TravelDirections. GeoDistance gives the direct shortest path; TravelDistance gives the path

following roads, etc. TravelTime gives estimated travel time.

Is the Wolfram Language restricted to maps of the Earth?

No. For example, the moon and Mars also work. Use the option GeoModel -4 "Moon", etc.

Tech Notes

You need to be connected to the network to use maps in the Wolfram Language.

Instead of entering B nyc
, B LA you can just enter B nyc, LA and get the same result.

If you give GeoDistance extended regions (like countries), it’ll compute the shortest distance between

any points in the regions.

GeoPosition uses numerical values of longitude and latitude, not 35 Degree etc.

• GeoPosition normally uses decimal degrees. Use FromDMS to convert from degrees-minutes-seconds.

To color regions on a map by values, use GeoRegionValuePlot.

More to Explore

Guide to Maps & Cartography in the Wolfram Language (wolfr.am/eiwl-18-more)

Guide to Geographic Data & Entities in the Wolfram Language (wolfr.am/eiwl-18-more2)

19
|

Dates and Times — wolfr.am/eiwl-19 101

Dates and Times

In the \\ olfram Language, Now gives your current date and time.

Get the current date and time (as of when I wrote this!):

infl]: Now

Outft] Wed 23 Sep 2015 20:23:58 GMT-4.

You can do computations on this, for example adding a week.

Add a week to the current date and time:

in[2j:= Now +B l week

Out[2]= ^ Wed 30 Sep 2015 20:24:04 GMT-4.

Use Ctrl + = to enter a date in any standard format.

Enter a date:

in[3] : B june 23, 1988

Out[3]= ^ Thu 23 Jun 1988

InputForm shows that internally a date is a DateObject[]. You can always enter dates

directly in this form.
J

Find the internal representation of a date:

lnputForm[B june 23, 1988]

DateObject[{1988, 6
, 23}]

You can do arithmetic with dates, say, subtracting them to find how far apart they are.

Subtract two dates:

Now-B june 23, 1988

omp 9953.85 days

Convert the date difference to years:

UnitConvert[Now-B june 23, 1988 ,
"Years"]

04*. 27.2708 yr

102 An Elementary Introduction to the Wolfram Language

DayRange is the analog of Range for dates:

Give a list of the days spanning from yesterday to tomorrow:

in[7]:= DayRange[Yesterday, Tomorrow]

, |yy] Wed 23 Sep 2015
, [yy] Thu 24 Sep 2015

J

DayName finds the day of the week for a particular date.

Compute the day of the week 45 days from now:

in[8] :
= DayName[Today+B 45 days]

out[8]= Saturday

Once you know a date, there are lots of things you can compute. For example,

MoonPhase gives the phase of the moon (or, more accurately, the fraction of the Moon
that is illuminated when seen from the Earth).

Compute the phase of the moon now:

in [9]:- MoonPhase[Now]

out[9]= 0.7719

Out[7]

{
Tue 22 Sep 2015

Compute the phase of the moon on a certain date:

in[i o]:= MoonPhase[S june 23, 1988]

out[io]= 0.5716

Generate an icon forthe phase of the moon:

mni]:= MoonPhase[B june 23, 1988 ,
"Icon"]

Out[11]=

II you know both the date and a location on Earth, you can work out when the sun

will rise and set.

Compute when sunset will be today at my current location:

in[i2] Sunset[Here, Today]

Out[i 2]= [yy] Wed 23 Sep 2015 19:50 GMT-4.

19
|

Dates and Times — wolfr.am/eiwl-19 103

Successive sunrises are not exactly 1 day (24 hours) apart:

Sunrise[Here, Tomorrow] -Sunrise[Here, Today]

out;- 1.00069 days

l ime zones are one of many subtleties. LocalTime gives the time in the time zone of a

particular location.

Find the local time now in New York City:

LocalTimefB New York]

Ot.t[i4 ^ Wed 23 Sep 2015 20:25:43 GMT-4.

Find the local time now in London:

LocalTime[B London]

o t[ie ^ Thu 24 Sep 2015 01:25:46GMT+1.

Among the many areas where the Wolfram Language has extensive data is weather.

The function AirTemperatureData uses this data to give the historical air temperature

at a particular time and place.

Find the air temperature here at 6 pm yesterday:

AirTemperatureDatafHere, B 6 pm yesterday]

out[i6]= 80.6 °F

If> ou provide a pair of dates, AirTemperatureData computes a time series of estimated

temperatures between those dates.

Give a time series of air temperature measurements from a week ago until now:

AirTemperatureDatafHere, {B 1 week ago ,
Now}]

7]a TimeSeries
T me 16 Sep 2015 tc 23 Sep 2015

Data points 237

104 An Elementary Introduction to the Wolfram Language

DateListPlot is the analog of ListPlot for time series, where each value occurs at a

particular date.

Plot the list of air temperature measurements:

ln[1

8

]
DateListPlot[AirTemperatureData[Here, {S 1 week ago ,

Now}]]

The plot shows that, not surprisingly, the temperature is higher during the day than

at night.

Vocabulary

Now current date and time

Today date object for today

Tomorrow date object for tomorrow

Yesterday date object for yesterday

DayRangejVfafei, date2] list of dates from date 1 to date2

DayName [date] day of the week of date

MoonPhase [date] moon phase on date

Sunrise [date, location] time of sunrise on date at location

Sunset[r/crte, location] time of sunset on date at location

Loca ITime [location] current time at location

AirTemperatureData[/eca//o/7, time] air temperature at time at location

AirTemperatureData[/<7Crt/“/V?A7, {timei, time2}] time series of air temperatures from

time 1 to time2 at location

DateListPlotfr/wc^r/e.s] plot a time series

19
|

Dates and Times — wolfr.am/eiwl-19 105

Exercises

19.1 Compute how many days have elapsed since January 1, 1900.

19.2 Compute what day of the week January 1, 2000 was.

19.3 Find the date a hundred thousand days ago.

19.4 Find the local time in Delhi.

19.5 Find the length of daylight today by subtracting today’s sunrise from today’s sunset.

19.6 Generate an icon for the current phase of the moon.

19.7 Make a list of the numerical phase of the moon for each of the next 10 days.

19.8 Generate a list of icons for the moon phases from today until 10 days from now.

19.9 Compute the time today between sunrise in New York City and in London.

19.10 Find the air temperature at the Eiffel Tower at noon yesterday.

19.11 Plot the temperature at the Eiffel Tower over the past week.

19.12 Find the difference in air temperatures between Los Angeles and New York City now.

Q&4

Flow can I get a date as a string?

Use DateString[r/<7te]. There are many options for the format of the string. For example,

DateString[£/crte, "DateShort"] uses short day and month names.

How can I extract the month or some other element from a date?

Use DateValue. Date\la\ue[date, "Month"] gives the month number, DateValue[r/c/te, "MonthName"] gives

the month name, etc.

How far in the past can dates be in the Wolfram Language?

As far as you want. The Wolfram Language knows about historical calendar systems, and the history of

time zones. It also has the data to accurately compute sunrise, etc. going back at least 1000 years.

Where does the Wolfram Language get air temperature data from?

The worldwide network of weather stations, located at airports and other places. If you’ve got your own

air temperature measuring device, you can connect it to the Wolfram Language through the Wolfram Data

Drop (see Section 43).

What is a time series?

It’s a way of specifying the values of something at a series of times. You can enter a time series in the

Wolfram Language as TimeSeries[{{//w<?i, value i}, {time2 ,
valuej), }]. The Wolfram Language lets you

do arithmetic and many other operations with time series.

What does DateListPlot do?

It plots values against times or dates. The values can be given in a TimeSeries[
]
or in a list of the form

{{time 1 , value 1 }, {timei, value 2 }, }.

106 An Elementary Introduction to the Wolfram Language

Tech Notes

• The Wolfram Language decides whether to interpret a date like 8/10/15 as month/day/year or

day/month/year based on what country you’re in. You can pick the other interpretation if you want.

Monday, etc. are symbols with intrinsic meaning, not strings.

There are many subtleties in handling dates. An example is deciding when a particular day starts,

accounting for time zones, etc. DateObject has options to address such issues.

More to Explore

Guide to Dates & Times in the Wolfram Language (wolfr.am/eiwl-19-more)

20
|

Options — wolfr.am/eiwl-20 107

20
|

Options

Many functions in the Wolfram Language have options that determine the details of

how they work. For example, in making a plot, you can use PlotTheme -> "Web" to use

a w eb-oriented visual theme. On a keyboard, the -» is automatically formed if you

type -> (i.e. - followed by >).

A standard plot, with no options given:

ListLinePlot[Randomlnteger[10, 10]]

A plot with the PlotTheme option given as "Web":

ListLinePlot[Randomlnteger[10, 10], PlotTheme -4 "Web"]

A plot with the PlotTheme option given as "Detailed":

ListLinePlot[Randomlnteger[10, 10], PlotTheme -4 "Detailed"]

A plot with the PlotTheme option given as "Marketing":

ListLinePlot[Randomlnteger[10, 10], PlotTheme -4 "Marketing"]

0 2 4 8 8 10

108 An Elementary Introduction to the Wolfram Language

You can add more options. For example, Filling specifies what filling to add to a plot.

Fill the plot to the axis:

,n[5): = ListLinePlot[Randomlnteger[10, 10], PlotTheme "Web", Filling - Axis]

Background lets you specify a background color.

Also include an option for background color:

in[6] := ListLinePlot[Randomlnteger[10, 10],

PlotTheme "Web", Filling -> Axis, Background -> LightGreen]

Ifyou don’t mention a particular option, the Wolfram Language will use a pre-defined

default for that option. Most often that default is Automatic, which means that the

language will automatically determine what to do.

One option that’s often useful for graphics is PlotRange, which specifies what range of

values to include in a plot. With the default PlotRange Automatic, the system will try- to

automatically show the “interesting” part of the plot. PlotRange -» All shows all values.

With default options all but one “outlier” value are displayed:

in[7] := ListLinePlot[{36, 16, 9, 64, 1, 340, 36, 0, 49, 81}]

2 4 6 8 10

20
|

Options — wolfr.am/eiwl-20 109

PlotRange -* AH says to include all points:

ListLinePlot[{36, 16, 9, 64, 1, 340, 36, 0, 49, 81}, PlotRange All]

PlotRange -» 30 specifies to show values up to 30:

ListLinePlot[{36, 16, 9, 64, 1, 340, 36, 0, 49, 81}, PlotRange 30]

PlotRange -» {20, 100} specifies to show values between 20 and 100:

ListLinePlot[{36, 16, 9, 64, 1, 340, 36, 0, 49, 81}, PlotRange {20, 100}]

Out[10]=

You can specify ranges for all types of graphics. In GeoListPlot and GeoGraphics you

can use the option Geo Range to specify what part of the world to include in a plot.

By default, a geo plot of France pretty much includes only France:

GeoListPlot[B france]

110 An Elementary Introduction to the Wolfram Language

This requests a range that includes all of Europe:

in[i 2 i:=
GeoListPlot[S france ,

GeoRange -> B europe]

Out[1 2]=

GeoRange -> All specifies to use the whole world:

in[i 3] : GeoListPlot[B france ,
GeoRange -4 All]

Out[13]=

There are many other options for GeoListPlot. For example GeoBackground specifies

what kind of background should be used. GeoLabels adds labels.

Use a relief map as the background:

in[i4] : = GeoListPlot[B france
,
GeoRange -4 Q europe ,

GeoBackground -4 "ReliefMap"]

20
|

Options — wolfr.am/eiwl 20 111

Automatically add labels for geo objects:

GeoListPlot[{B paris , B new york , Sydney }, GeoLabels -> Automatic]

York City aris

Sydney

The function ListLinePlot has 57 different options you can set; GeoListPlot has 54. Some

options are common to all graphics functions. For example, AspectRatio determines the

overall shape of graphics, specifying the ratio of height to width.

With an aspect ratio of 1/3, the plot is 3 times wider than it is tall:

ListLinePlot[Randomlnteger[10, 10], AspectRatio -> 1/3]

The option ImageSize specifies the overall size of graphics.

Draw a circle with a “tiny” overall image size:

Graphics[Circle[], ImageSize Tiny]

o
Draw circles with specific image sizes between 5 and 50 pixels:

Table[Graphics[Circle[], ImageSize n], {n, 5, 50, 5}]

i°>
°’ O’ O’ O’O’ C3’

It 's not just Graphics that allows options. Lots of other functions do too. An example is

Style, which supports many options.

Set an option to use Chalkboard font to style text:

Stylef'text in a different font", 20, FontFamily -4 "Chalkboard"]

text in a different font

112 An Elementary Introduction to the Wolfram Language

It’s quite common for options to describe details of output, for example in WordCloud.

Create a word cloud with random word orientations:

m (20]:=
WordCloud[DeleteStopwords[WikipediaData["computer"]],

WordOrientation -» "Random"]

Out[20]=

I
r.

g

o
(Q
o’

Grid has many options. The Frame option controls whether and how a frame is drawn.

Create a multiplication table with a frame around each entry:

in[2i] := Grid[Table[i*j, {i, 5}, (j, 5}], Frame -4 All]

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

Like Graphics, Grid has a Background option:

in[22] := Grid[Ta ble[i * j, {i, 5}, (j, 5}], Frame -4 All, Background -4 LightYellow]

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

Out[22]=

20
|

Options — wolfr.am/eiwl-20 113

Vocabulary

PlotTheme theme for a plot (e.g. “Web”, “Detailed”, etc.)

Filling filling to add to a plot (Axis, Bottom, etc.)

PlotRange range of values to include in a plot (All, etc.)

GeoRange geo range to include (All, specific country, etc.)

GeoBackground background map (“ReliefMap”, “OutlineMap”, etc.)

GeoLabels labels to add to a map (e.g. Automatic)

Background background color

AspectRatio ratio of height to width

ImageSize size in pixels

Frame whether to include a frame (True, All, etc.)

FontFamily family of font to use (e.g. “Helvetica”)

WordOrientation how to orient words in a word cloud

Exercises

20.1 Create a list plot of Range[10] themed for the web.

20.2 Create a list plot of Range [10] with filling to the axis.

20.3 Create a list plot of Range[10] with a yellow background.

20.4 Create a map of the world with Australia highlighted.

20.5 Create a map of the Indian Ocean with Madagascar highlighted.

20.6 Use GeoGraphics to create a map of South America showing topography (relief map):

20.7 Make a map of Europe with France, Finland and Greece highlighted and labeled.

20.8 Make a 12*12 multiplication table as a grid with white type on a black background.

20.9 Make a list of 100 disks with random integer image sizes up 40.

20.10 Make a list of pictures of regular pentagons with image size 30 and aspect ratios from 1 to 10.

20.11 Make a Manipulate that varies the size of a circle between 5 and 500.

20.12 Create a framed 10*10 grid of random colors.

20.13 Make a line plot of the lengths of Roman numerals up to 100, with a plot range that would be

sufficient for all numerals up to 1000.

114 An Elementary Introduction to the Wolfram Language

Q&A

How can I get a list of the options for a function?

Look at the documentation. Or use for example Options[WordCloud]. Also, whenever you start typing the

name of an option, you’ll see a menu of possible completions.

How do I find out the possible settings for an option?

Look at the documentation for that option. Also, when you type you’ll typically get a menu of possible

common settings.

What is opt value internally?

It’s Rule[opt, value]. Rules are used in lots of places in the Wolfram Language, a -» b is usually read aloud

as “a goes to b” or “o arrow b”.

When are values of options given as strings?

Only a small set of standard option settings (such as Automatic, None and All) are not strings. Specialized

settings for particular options are normally strings.

Can one reset the default for an option?

Yes, using SetOptions. Though you have to be careful not to forget that you’ve done it.

Tech Notes

• Many options can be set to be pure functions (see Section 26). It’s important to put parentheses in the

correct place, as in ColorFunction -> (Hue[tt/4] &), or you won’t get the correct meaning.

$FontFamilies gives a list of possible setting for FontFamily.

More to Explore

Guide to Graphics Options in the Wolfram Language (wolfr.am/eiwl-20-more)

Guide to Formatting Options in the Wolfram Language (wolfr.am/eiwl-20-more2)

21
1

Graphs and Networks — wolfr.am/eiwl-21 115

21
|

Graphs and Networks

A graph is a way of showing connections between things—say, how web pages are

linked, or how people form a social network.

Let's start with a very simple graph, in which 1 connects to 2, 2 to 3, and 3 to 4. Each

ol the connections is represented by -> (typed as ->).

A very simple graph of connections:

Graph[{l -4 2, 2 -4 3, 3 -4 4}]

Out(1]= • 8 Xi

Automatically label all the “vertices”:

Graph[{l -4 2, 2 -4 3, 3 -4 4}, VertexLabels -4 All]

Out(2]= 1 _ 2 _ 3 4
•

Let’s add one more connection: to connect 4 to 1 . Now we have a loop.

Add another connection, forming a loop:

Graph[{l -4 2, 2 -4 3, 3 -4 4, 4 - 1}, VertexLabels -4 All]

4

Add two more connections, including one connecting 2 right back to 2:

Graph[{l -4 2, 2 -4 3, 3 -4 4, 4 -4 1, 3 - 1, 2 -4 2}, VertexLabels - All]

As we add connections, the Wolfram Language chooses to place the vertices or nodes

of the graph differently. All that really matters for the meaning, however, is how the

vertices are connected. And if you don’t specify otherwise, the Wollram I ,anguage

will try to lay the graph out so it’s as untangled and easy to understand as possible.

116 An Elementary Introduction to the Wolfram Language

There are options, though, to specify other layouts. Here’s an example. It’s the same

graph as before, with the same connections, but the vertices are laid out differently.

A different layout of the same graph (check by tracing the connections):

m[5]:= Graph[{l 2, 2 3, 3 -*• 4, 4 -4 1, 3 -4 1, 2 -4 2},

VertexLabels -4 All, GraphLayout -4 "RadialDrawing"]

You can do computations on the graph, say finding the shortest path that gets from

4 to 2, always following the arrows.

The shortest path from 4 to 2 on the graph goes through 1:

in[6] := FindShortestPath[Graph[{l -4 2, 2 -> 3, 3 - 4, 4 - 1, 3 -> 1, 2 -> 2}], 4, 2]

out[6j= {4, 1, 2}

Now let’s make another graph. This time let’s have 3 nodes, and let’s have a connection

between every one of them.

Start by making an array of all possible connections between 3 objects:

mm* Tablefi -4 j, (i, 3}, (j, 3}]

out[7]= {{l ”4 1, 1 -4 2, 1 -4 3}, {2 —> 1, 2 —> 2, 2 —> 3}, {3 —> 1, 3 —> 2, 3 —> 3}}

The result here is a list of lists. But what Graph needs is just a single list of connections.

We can get that by using Flatten to “flatten” out the sublists.

Flatten “flattens out” all sublists, wherever they appear:

ln[8]:= Flatten[{{a, b}, 1, 2, 3, {x, y, {z}}}]

out[8]= {a, b, 1, 2, 3, x, y, z}

Get a “flattened” list of connections from the array:

in[9] := Flatten[Table[i -4 j, {i, 3}, (j, 3}]]

out[9]= {1 -4 1, 1 -4 2, 1 -4 3, 2 -4 1, 2 -4 2, 2 -4 3, 3 -4 1, 3 -4 2, 3 ^ 3}

21
1

Graphs and Networks — wolfr.am/eiwl-21 117

Show the graph of these connections:

Graph[Flatten[Table[i - j, {i, 3}, {j, 3}]], VertexLabels - All]

Out[10]=

Generate the completely connected graph with 6 nodes:

in(i

i

]:= Graph[Flatten[Table[i j, {i, 6}, {j, 6}]]]

Out(11]=

Sometimes the ‘"direction” of a connection doesn’t matter, so we can drop the arrows.

The “undirected” version of the graph:

[k; UndirectedGraph[Flatten[Table[i j, {i, 6}, (j, 6}]]]

118 An Elementary Introduction to the Wolfram Language

Now let’s make a graph with random connections. Here is an example with 20

connections between randomly chosen nodes.

Make a graph with 20 connections between randomly chosen nodes numbered from 0 to 10:

,n[i 3]:= Graph[Table[Randomlnteger[10] -> Randomlnteger[10], 20], VertexLabels - All]

o

You’ll get a different graph ifyou generate different random numbers. Here are

6 graphs.

Six randomly generated graphs:

in[i4]:= Table[Graph[Table[Randomlnteger[10] -4 Randomlnteger[10], 20]], 6]

21
1

Graphs and Networks — wolfr.am/eiwl-21 119

1 here s lots of analysis that can be done on graphs. One example is to break a graph

into “communities clumps ol nodes that are more connected to each other than to

the rest of the graph. Let’s do that for a random graph.

Make a plot that collects “communities” of nodes together:

Out[15]=

The result is a graph with the exact same connections as the original, but with the

nodes arranged to illustrate the “community structure” of the graph.

Vocabulary

Graph [{/->./', ...}] a graph or network of connections

UndirectedGraph[{/ /', }] a graph with no directions to connections

VertexLabels an option for what vertex labels to include (e.g. All)

FindShortestPathL’ra/;/?, a, b] find the shortest path from one node to another

CommunityGraphPlot[//.s7] display a graph arranged into “communities”

Flatten[//.v/] flatten out sublists in a list

120 An Elementary Introduction to the Wolfram Language

Exercises

21.1 Make a graph consisting of a loop of 3 nodes.

21.2 Make a graph with 4 nodes in which every node is connected.

21.3 Make a table of undirected graphs with between 2 and 10 nodes in which every node is connected.

21.4 Use Table and Flatten to get {1, 2, 1, 2, 1, 2}.

21.5 Make a line plot of the result of concatenating all digits of all integers from 1 to 100

(i.e. ...,8,9, 1,0, 1, 1, 1,2,...).

21.6 Make a graph with 50 nodes, in which node i connects to node i + 1.

21.7 Make a graph with 4 nodes, in which each connection connects i to Max[i, j].

21.8 Make a graph in which each connection connects i to
j
- i, where i and

j
both range from 1 to 5.

21.9 Generate a graph with 100 nodes, each connecting to one randomly chosen node.

21.10 Generate a graph with 100 nodes, each connecting to two randomly chosen nodes.

21.11 For the graph {1 -» 2, 2 -» 3, 3 -> 4, 4 -» 1, 3 -» 1, 2 -» 2}, make a grid giving the shortest paths

between every pair of nodes, with the start node as row and end node as column.

Q&A

What’s the difference between a “graph” and a “network”?

There’s no difference. They’re just different words for the same thing, though “graph” tends to be more
common in math and other formal areas, and “network” more common in more applied areas.

What are the vertices and edges of a graph?

Vertices are the points, or nodes, of a graph. Edges are the connections. Because graphs have arisen in so

many different places, there are quite a few different names used for the same thing.

Flow is i -4
j
understood?

It’s Rulefi, j]. Rules are used in lots of places in the Wolfram Language—such as giving settings for options.

Can I compute my Facebook friend graph?

Yes. Use SocialMediaData ["Facebook", "FriendNetwork"]. Note, though, that only your friends who’ve

opted in through Facebook will be included. (See Section 44.)

Flow big a graph can the Wolfram Language handle?

It’s mostly limited by the amount of memory in your computer. Graphs with tens or hundreds of

thousands of nodes are not a problem.

Can I specify properties of nodes and edges?

Yes. You can give Graph lists of nodes and edges that include things tike Property[/?ocfe, VertexStyle -» Red]

or Property[edge, EdgeWeight -> 20]. You can also give overall options to Graph.

21
1

Graphs and Networks — wolfr.am/eiwl-21 121

Tech Notes

m Graphs, like strings, images, graphics etc., are first-class objects in the Wolfram Language.

You can enter undirected edges in a graph using <->, which displays as—

.

CompleteGraph[//] gives the completely connected graph with n nodes. Among other kinds of special

graphs are KaryTree, ButterflyGraph, HypercubeGraph, etc.

There are lots of ways to make random graphs (random connections, random numbers of connections,

scale-free networks, etc.). RandomGraph[{100, 200}] makes a random graph with 100 nodes and 200

edges.

AdjacencyMatrix[#ra/;>//] gives the adjacency matrix for a graph. AdjacencyGraph[m«/m] constructs a

graph from an adjacency matrix.

More to Explore

Guide to Graphs and Networks in the Wolfram Language (wolfr.am/eiwl-21-more)

22
|

Machine Learning — wolfr.am/eiwl-22 123

Machine Learning

So lar in this book, when we’ve wanted the Wolfram Language to do something, we’ve

written code to tell it exactly what to do. But the Wolfram Language is also set up to be

able to learn what to do just by looking at examples, using the idea of machine learning.

W e ll talk about how to train the language yourself. But first let’s look at some built-in

functions that have already been trained on huge numbers of examples.

Languageldentify takes pieces of text, and identifies what human language they’re in.

Identify the language each phrase is in:

Languageldentify[{ "thank you", "merci", "dar las gracias", "H&jjH", "6/iaroAapnTb"}]

outfi

j |
(English

) , (
French

) ,
(Spanish

| ,
(Chinese

) , (
Russian

) j

The Wolfram Language can also do the considerably more difficult “artificial intelligence”

task ofidentifying what an image is of.

Identify what an image is of:

There’s a general function Classify, which has been taught various kinds of classification.

One example is classifying the “sentiment” of text.

Upbeat text is classified as having positive sentiment:

Classify["Sentiment", "I'm so excited to be programming"]

Positive

Downbeat text is classified as having negative sentiment:

Classify["Sentiment", "math can be really hard"]

Negative

124 An Elementary Introduction to the Wolfram Language

You can also train Classify yourself. Here’s a simple example of classifying handwritten

digits as 0 or 1 . You give Classify a collection of training examples, followed by a

particular handwritten digit. Then it’ll tell you whether the digit you give is a 0 or 1

.

With training examples, Classify correctly identifies a handwritten 0:

in [5]:= Classify[{Q - 0,
j

-* 1, Q 0, ^
1, ^

-4
1,Q -> 0, Q -> 0, j

-* 1, j
-+ 1,

& °>Q °>
\
^

| I

1)>

01

Out[5]= 0

To get some sense ofhow this works—and because it’s useful in its own right—let’s talk

about the function Nearest, that finds what element in a list is nearest to what you supply.

Find what number in the list is nearest to 22:

m[6]:= Nearest[{10, 20, 30, 40, 50, 60, 70, 80}, 22]

Out[6]= {20}

Find the nearest three numbers:

in[7]:= Nearest[{10, 20, 30, 40, 50, 60, 70, 80}, 22, 3]

out[7]= {20, 30, 10}

Nearest can find nearest colors as well.

Find the 3 colors in the list that are nearest to the color you give:

in [8]:S Nearest[{B,,,, H,,,,,,,,,,,, },, 3]

Out(0J= {,,}

It also works on words.

Find the 10 words nearest to “good” in the list of words:

in[9]:= Nearest[Wordl_ist[], "good", 10]

°ut[9]= {good, food, goad, god, gold, goo, goody, goof, goon, goop}

d here’s a notion of nearness for images too. And though it’s far from the whole story,

this is effectively part of what Imageldentify is using.

22
|

Machine Learning — wolfr.am/eiwl-22 125

Something that’s again related is recognizing text (optical character recognition or OCR).

Let's make a piece of text that’s blurred.

Create an image of the word “hello”, then blur it:

ln|10]:= Blur[Rasterize[Style["hello", 30]], 3]

Out[10]= hello

TextRecognize can recognize the original text string in this.

Recognize text in the image:

mini TextRecognize[h0| |q]

Out[11]= hello

One more example involves taking a collection of things—say colors—and finding

clusters of similar ones. This can be achieved using FindClusters.

Collect “clusters” of similar colors into separate lists:

m[i 2] FindClusters[{R,,, H.,,,, R, R, R, R, R, R, R, R, R, R, D, R, R, R}]

outfit {{R, R, R, R, R, R, R, R}, {R, R, R, R, R, R, R, R, R}, {R, R, R, R, R}}

You can get a different view by connecting each color to the three most similar colors

in the list, then making a graph out of the connections. In the particular example

here, there end up being three disconnected subgraphs.

Create a graph of connections based on nearness in “colorspace”:

infi 3]
= NearestNeighborGraph[{R, R, R, R, R, R, R, R, R,

R, R, R, R, H, R, R, R, R, R, R, H}, 3, VertexLabels -4 All]

126 An Elementary Introduction to the Wolfram Language

Vocabulary

Languageldentifyltexr] identify what human language text is in

1mage 1dentify [image] identify what an image is of

TextRecognize[te,xr] recognize text from an image (OCR)

Classify[training, data]
classify data on the basis of training examples

Nearest [list, item]
find what element of list is nearest to item

Find Clusters [//.vf] find clusters of similar items

NearestNeighborGraph[//.st, n\ connect elements of list to their a? nearest neighbors

Exercises

22.1 Identify what language the word “ajatella” comes from.

22.2 Use Ctrl += to get an image of a tiger, then apply Imageldentify.

22.3 Make a table of image identifications for an image of a tiger, blurred by an amount from 1 to 5.

22.4 Classify the sentiment of “I’m so happy to be here”.

22.5 Find the 10 words in WordListf] that are nearest to “happy”.

22.6 Generate 20 random numbers up to 1000 and find which 3 are nearest to 100.

22.7 Generate a list of 10 random colors, and find which 5 are closest to Red.

22.8 Of the first 100 squares, find the one nearest to 2000.

22.9 Find the 3 European flags nearest to the flag of Brazil.

22.10 Make a graph of the 2 nearest neighbors of each color in Table[Hue[h], {h, 0, 1, .05}].

22.11 Generate a list of 100 random numbers from 0 to 100, and make a graph of the 2 nearest neighbors

of each one.

22.12 Collect the flags of Asia into clusters of similar flags.

22.13 Make raster images of the letters of the alphabet at size 20, then make a graph of the 2 nearest

neighbors of each one.

22.14 Generate a table of the results of using TextRecognize on "hello" rasterized at size 50 and then

blurred by between 1 and 10.

22
|

Machine Learning — wolfr.am/eiwl-22 127

Q&A

How do Wolfram Language functions for machine learning work?

They use a range of state-of-the-art methods, and have meta-algorithms for picking between methods
based on the particular problems they’re given.

Doesn’t Languageldentify just need a dictionary?

No. Specific words can occur in several languages. One needs to learn from examples how to deduce the

language from combinations of words.

Can Imageldentify get the wrong answer?

Yet. It can make mistakes, much like a human. This happens particularly if it’s asked about an object that’s

in an unusual configuration or environment.

Can I ask Imageldentify the probabilities it assigns to different identifications?

Yes. To find the probabilities for the top 10 identifications in all categories use

lmageldentify[/wogc, All, 10, "Probability"].

How many examples does Classify typically need to work well?

If the general area (like everyday images) is one it already knows well, then as few as a hundred. But in

areas that are new, it can take many millions of examples to achieve good results.

How does Nearest figure out a distance between colors?

It uses the function ColorDistance, which is based on a model of human color vision.

How does Nearest determine nearby words?

By looking at those at the smallest EditDistance, that is, reached by the smallest number of single-letter

insertions, deletions and substitutions.

Can a single graph have several disconnected parts?

Absolutely. An example is the last graph in this section.

Tech Notes

Barcodelmage and BarcodeRecognize work with bar codes and QR codes instead of pure text.

Imageldentify is the core of what the imageidentify.com website does.

Imageldentify uses methods that are inspired by idealized models of neural networks in the brain.

If you just give Classify training examples, it’ll produce a ClassifierFunction that can later be applied to

many different pieces of data. This is pretty much always how Classify is used in practice.

Classify automatically picks between methods such as logistic regression, naive Bayes, random forests,

support vector machines and neural networks.

m FindClusters does unsupervised machine learning, where the computer just looks at data without being

told anything about it. Classify does supervised machine learning, being given a set of training examples.

More to Explore

Guide to Machine Learning in the Wolfram Language (wolfr.am/eiwl-22-more)

23
|

More about Numbers — wolfr.am/eiwl-23 129

More about Numbers

When you do a computation with whole numbers, the Wolfram Language gives you

an exact answer. It does the same with exact fractions.

Adding 1/2+1/3 gives an exact answer as a fraction:

ln[1]:= 1/2 + 1/3

5
Out[1)=

—

6

Often you’ll just want a numerical or decimal approximation. You can get that using

the function N (for “numerical”).

Get an approximate numerical answer:

ln[2]:= N[l/2 + 1/3]

out[2]= 0.833333

If there’s any decimal number in your input, the Wolfram Language will automatically

give you an approximate answer.

The presence of a decimal number makes the result be approximate:

ln[3]:= 1.8/2 + 1/3

out[3]= 1.23333

It’s enough just to have a decimal point at the end of a number:

ln[4]:= 1/2. + 1/3

out[4j= 0.833333

The W olfram Language can handle numbers of any size, at least so long as they lit in

your computer’s memory.

Here’s 2 raised to the power 1000:

Inf-' 2 A 1000

10 715 086 071 862 673 209 484 250 490 600 018 105 614 048 117 055 336 074437 503 883 703 510 \

511249 361 224 931 983 788 156 958 581 275 946 729 175 531468 251 871452 856 923 140 435 \

984 577 574 698 574 803 934 567 774 824 230 985 421 074 605 062 371 141 877 954 182 153 046 \

474 983 581 941 267 398 767 559 165 543 946 077 062 914 571 196 477 686 542 167 660 429 831 \

652 624 386 837 205 668 069 376

Get a numerical approximation:

N[2 A 1000]

a < 1.07151 * 10
301

130 An Elementary Introduction to the Wolfram Language

This approximate form is given in scientific notation. If you need to enter scientific

notation, you can do it with *A
.

Enter a number in scientific notation:

ln[7]:= 2.7*A6

Out[7]= 2.7 * 10
6

Commonly used numbers like n (pi) are built into the Wolfram Language.

Get a numerical approximation to rr.

In[8]:= N[Pi]

Out[8]= 3.14159

The Wolfram Language can compute to arbitrary precision, so for example it can find

millions of digits ofn ifyou want them.

Compute 250 digits of tv.

In[9]:= N[Pi, 250]

0ut[9]= 3.141592653589793238462643383279502884197169399375105820974944592307816406286'-.

208998628034825342117067982148086513282306647093844609550582231725359408128'-.

481117450284102701938521105559644622948954930381964428810975665933446128475'-.

648233786783165271201909

There are many functions in the Wolfram Language that handle integers (whole

numbers). There are also many functions that handle real numbers—approximate

numbers with decimals. An example is RandomReal, which gives random real

numbers.

Generate a random real number in the range 0 to 10:

ln[10]:= RandomReal[10]

out[io]= 2.08658

Generate 5 random real numbers:

in[ii) := Table[RandomReal[10], 5]

out[ii]= {4.15071, 4.81048, 8.82945, 9.84995, 9.08313}

An alternative way to ask for 5 random real numbers:

inji 2]:= RandomReal[10, 5]

out[i2]= {6.47318, 3.29181, 3.57615, 8.11204, 3.38286}

23
|

More about Numbers — wolfr.am/eiwl-23 131

Random real numbers in the range 20 to 30:

RandomReal[{20, 30}, 5]

{24.1202, 20.1288, 20.393, 25.6455, 20.9268}

The Wolfram Language has a huge range of mathematical functions built in, from

basic to veryr sophisticated.

Find the 100th prime number:

ln[14]:s Prime[100]

out[i4]= 541

Find the millionth prime number:

ln[15]:= Prime[l 000 000]

0ut[i 5] 15485 863

Plot the first 50 primes:

ln[16]:= ListPlot[Table[Prime[n], {n, 50}]]

200 ;

150 ;

•••'

°utf16l= 100-

50 :

•
**

_ . l I 1 I I

10 20 30 40 50

Three functions common in many practical situations are Sqrt (square root), LoglO

logarithm to base 10) and Log (natural logarithm).

The square root of 16 is 4:

Sqrt[16]

Out(17)= 4

If you don’t ask for a numerical approximation, you’ll get an exact formula:

InflS]:* Sqrt[200]

10 y[2

N gives a numerical approximation:

N[Sqrt[200]]

14.1421

132 An Elementary Introduction to the Wolfram Language

Logarithms are often useful when you’re dealing with numbers that have a wide range

of sizes. Let’s plot the masses of the planets. With ListPlot one can’t tell anything about

the planets before Jupiter. But ListLogPlot shows the relative sizes much more clearly.

Make an ordinary ListPlot of the masses of the planets:

ln[20] = ListPlot[B planets ["Mass"]]

2.0 x 1027 r

1.5 xIO27
;

Out[20]= 1.0 x 1027 :

5.0 x 1026

. i_

2

-J i i i L.

4 6 8

Make a log plot:

ln[21]:= ListLogPlot[0 planets ["Mass"]]

io27

io26

0u,[211= io25
.

•

1024

I I I I I I I I I I I I 1 I I 1—

2 4 6 8

There are a few more functions that show up frequently in general programming.

First, there’s the almost trivial function Abs, that finds the absolute value, or positive

part, of a number.

Abs effectively just drops minus signs:

in[22]
:= {Abs[3], Abs[-3]}

Out[22]= {3, 3}

Next there’s Round, which rounds to the nearest whole number.

Round rounds to the nearest whole number:

in[23j:= {Round[3.2], Round[3.4], Round[3.6], Round[3.9]}

out[23]= (3, 3, 4, 4}

23
|

More about Numbers — wolfr.am/eiwl-23 133

Another function that’s very useful is Mod. Let’s say you’re counting up minutes in an

hour. When you reach 60, you’ll want to start again from 0. That’s what Mod lets you do.

Compute a sequence of numbers mod 60:

(Mod[50, 60], Mod[55, 60], Mod[60, 60], Mod[65, 60], Mod[70, 60]}

out[24]= {50, 55, 0, 5, 10}

Vocabulary

N [expr\ numerical approximation

Pi the number rr(pi)=:3.14

Sqrtf.v] square root

LoglOfv] logarithm to base 10

Log[-v] natural logarithm (In)

Abs [v] absolute value (drop minus signs)

Round [a] round to nearest integer

Prime[/?] nth prime number

Mod [a*, a;] modulo (“clock arithmetic”)

RandomReal[w«.r] random real number between 0 and max

RandomRealfmm:, /?] list of n random real numbers

ListLogPlotp/afr/] plot on a logarithmic scale

Exercises

23.1 Find yfl to 500-digit precision.

23.2 Generate 10 random real numbers between 0 and 1.

23.3 Make a plot of 200 points with random real x and y coordinates between 0 and 1.

23.4 Create a random walk using AnglePath and 1000 random real numbers between 0 and In.

23.5 Make a table of Modfn A
2, 10] for n from 0 to 30.

23.6 Make a line plot of Mod [n A n, 10] for n from 1 to 100.

23.7 Make a table of the first 10 powers of n, rounded to integers.

23.8 Make a graph by connecting n with Mod [n A
2, 100] for n from 0 to 99.

23.9 Generate graphics of 50 circles with random real coordinates 0 to 10, random real radii from 0 to 2,

and random colors.

134 An Elementary Introduction to the Wolfram Language

23.10 Make a plot of the nth prime divided by n* log(n), for n from 2 to 1000.

23.11 Make a line plot of the differences between successive primes up to 100.

23.12 Generate a sequence of 20 middle C notes with random durations between 0 and 0.5 seconds.

23.13 Make an array plot of Mod [i, j]
for i and

j
up to 50.

23.14 Make a list for n from 2 to 10 of array plots for x and y up to 50 of x A
y mod n.

Q&A

What are examples of mathematical functions in the Wolfram Language?

From standard school math, ones like Sin, Cos, ArcTan, Exp, as well as GCD, Factorial, Fibonacci. From

physics and engineering and higher math, ones like Gamma (“gamma function”), BesselJ (“Bessel

function”), EllipticK (“elliptic integral”), Zeta (“Riemann zeta function”), PrimePi, EulerPhi. From statistics,

ones like Erf, NormalDistribution, ChiSquareDistribution. Hundreds of functions altogether.

What is the precision of a number?

It’s the total number of decimal digits quoted in the number. N [100/3, 5] gives 33.333, which has 5 digits of

precision. The number 100/3 is exact; N [100/3, 5] approximates it to 5-digit precision.

What does the \ at the end of each line in a long number mean?

It’s there to show that the number continues onto the next line— like a hyphen in text.

Can I work with numbers in bases other than 10?

Yes. Enter a number in base 16 as 16AA ffa5. Find digits using I ntegerDigits [655, 16],

Can the Wolfram Language handle complex numbers?

Of course. The symbol I (capital “i”) represents the square root of -1.

Why does N [1.5/7, 100] not give me a 100-digit result?

Because 1.5 is an approximate number with much less than 100-digit precision. N[15/70, 100] will for

example give a 100-digit-precision number.

Tech Notes

The Wolfram Language does “arbitrary-precision computation”, meaning that it can keep as many digits

in a number as you want.

When you generate a number with a certain precision using N, the Wolfram Language will automatically

keep track of how that precision is affected by computations—so you don’t have to do your own

numerical analysis of roundoff errors.

If you type a number like 1.5, it’s assumed to be at the native “machine precision” of numbers on your

computer (usually about 16 digits). Use 1.5' 100 to specify 100-digit precision.

PrimeQ tests if a number is prime (see Section 28). Factorlnteger finds the factors of an integer.

23
|

More about Numbers — wolfr.am/eiwl-23 135

RandomReal can give numbers that aren’t just uniformly distributed. For example,

RandomReal[NormalDistribution[]] gives normally distributed numbers.

Round rounds to the nearest integer (up or down); Floor always rounds down; Ceiling always rounds up.

RealDigits is the analog of IntegerDigits for real numbers.

More to Explore

Guide to Numbers in the Wolfram Language (wolfr.am/eiwl-23-more)

Guide to Mathematical Functions in the Wolfram Language (wolfr.am/eiwl-23-more2)

24
|

More Forms of Visualization — wolfr.am/eiwl-24 137

More Forms of Visualization

W e ve seen how to plot lists ol data with ListPlot and ListLinePlot. If you want to plot

several sets of data at the same time, you just have to give them in a list.

Plot two sets of data at the same time:

ListLinePlot[{{l, 3, 4, 3, 1, 2}, {2, 2, 4, 5, 7, 6, 8}}]

The PlotStyle option lets you specify the style for each set of data:

in[2
]

= ListLinePlot[{{l, 3, 4, 3, 1, 2}, {2, 2, 4, 5, 7, 6, 8}}, PlotStyle {Red, Dotted}]

The Mesh option lets you show the actual data points too:

in[3] := ListLinePlot[{{l, 3, 4, 3, 1, 2}, {2, 2, 4, 5, 7, 6, 8}}, Mesh -> All, MeshStyle -4 Red]

As well as looking at the sequence of values in a list, it’s also very common to want to

see how often different values occur. You can do this with Histogram.

Here are the lengths of the first 30 common English words:

ln(4]:x StringLength[Take[WordList[], 30]]

{1, 3, 8, 5, 6, 5, 7, 7, 9, 11, 5, 9, 5, 7, 9, 5, 9, 8, 4, 6, 5, 5, 10, 11, 12, 8, 10, 7, 9, 6}

The histogram shows how often each length occurs among the first 200 words:

Histogram[StringLength[Take[WordList[], 200]]]

5 10 15

138 An Elementary Introduction to the Wolfram Language

Including all the words gives a smoother result:

i„[6]: Histogram[StringLength[WordList[]]]

Sometimes you’ll have data you want to visualize in 3D. For example,

GeoElevationData can give an array of height values. ListPlot3D makes a 3D plot.

Find an array of height values around Mount Everest, and plot it in 3D:

ln[7]:= ListPlot3D[GeoElevationData[GeoDisk[S mount everest , BIO miles]]]

An alternative visualization is a contour plot, in which one’s effectively looking from

above, and drawing contour lines at evenly spaced heights.

Make a contour plot, in which successive ranges of heights are separated by contour lines:

ln[8]:= ListContourPlot[GeoElevationData[GeoDisk[B mount everest ,5 10 miles]]]

50

40

30

Out[8]=

20

10

0 L

0 10 20 50 60

24
|

More Forms of Visualization — wolfr.am/eiwl-24 139

When one's dealing with large amounts of data, it’s often better to use a simpler

v isualization, such as a rehej plot
,
that essentially just colors according to height.

Make a relief plot of the topography 100 miles around Mount Everest:

ReliefPlot[GeoElevationData[GeoDisk[B mount everest ,S 100 miles 111

Vocabulary

ListLinePlot[{//.s7i, listi , ...}] plot several lists together

Histogram [list] make a histogram

ListPlot3D [array] plot an array of heights in 3D

ListContourPlot [array] plot contours for an array of heights

ReliefPlot [array] make a relief plot

GeoElevationData [region] array of geo elevations for a region

PlotStyle option for styling each set of data

Mesh whether to have a mesh of points or lines

MeshStyle option for styling a mesh

Exercises

24.1 Make a plot with lines joining the squares, the cubes and the 4th powers of integers up to 10.

24.2 Make a plot of the first 20 primes, joined by a line, filled to the axis, and with a red dot at each prime.

24.3 Make a 3D plot of the topography for 20 miles around Mount Fuji.

24.4 Make a relief plot of the topography for 100 miles around Mount Fuji.

24.5 Make a 3D plot of heights generated from Mod[i, j]
with i and

j
going up to 100.

24.6 Make a histogram of the differences between successive primes for the first 10000 primes.

24.7 Make a histogram of the first digits of squares of integers up to 10000 (illustrating Benford's law).

140 An Elementary Introduction to the Wolfram Language

24.8 Make a histogram of the length of Roman numerals up to 1000.

24.9 Make a histogram of sentence lengths in the Wikipedia article on computers.

24.10 Make a list of histograms of 10000 instances of totals of n random reals up to 100, with n going from

1 to 5 (illustrating the central limit theorem).

24.11 Generate a 3D list plot using the image data from a binarized size-200 letter “W” as heights.

Q&A

What other kinds of visualizations are there?

Lots. Like ListStepPlot and ListStreamPlot, or BubbleChart and BarChart3D, or SmoothHistogram and

BoxWhiskerChart, or AngularGauge and VerticalGauge.

How do I combine plots I’ve generated separately?

Use Show to combine them on common axes. Use GraphicsGrid etc. (see Section 37) to put them side by side.

How can I specify the bins to use in a histogram?

Histogram[for, n] uses n bins. Histogram [for, {jcmin, xmax, dx}\ uses bins from xmin to xmax in steps dx.

What’s the difference between a bar chart and a histogram?

A bar chart is a direct representation of data; a histogram represents the frequency with which data

occurs. In a bar chart, the height of each bar gives the value of a single piece of data. In a histogram, the

height of each bar gives the total number of pieces of data that occur within the x range of the bar.

How can I draw contour lines on a 3D topography plot?

Use MeshFunctions -» (tt3 &). The (03 &) is a pure function (see Section 26) that uses the third (z)

coordinate to make a mesh.

How do I tell the height of each contour line?

Use ContourLabels -» All to label all the contour lines.

Tech Notes

The Wolfram Language makes many automatic choices for visualization functions. You can override

these choices using options.

An alternative to using PlotStyle is to insert Style directly into the data given to functions like

ListLinePlot.

More to Explore

Guide to Data Visualization in the Wolfram Language (wolfr.am/eiwl-24-more)

25
|

Ways to Apply Functions — wolfr.am/eiwl-25 141

25
|

Ways to Apply Functions

\\ hen you write f[x] it means “apply the function f to x”. An alternative way to write

the same thing in the Wolfram Language is f@x.

f@x is the same as f[x]:

ln[1):= f@X

out[i)= f[x]

It’s often convenient to write out chains of functions using

ln[2]:= f@g@h@x

Out[2]= f[g[h[x]]]

Avoiding the brackets can make code easier to type, and read:

».!> ColorNegate@EdgeDetect@

There’s a third way to write f[x] in the Wolfram Language: as an ‘‘afterthought”,

in the form x // f.

Apply f “as an afterthought” to x:

|nf4):« X // f

O f[x]

You can have a sequence of “afterthoughts”:

x // f // g // h

<>-« mm

142 An Elementary Introduction to the Wolfram Language

The functions here read in the order they are applied:

A particularly common use of // is to apply N (for numerical evaluation) “as an

afterthought”.

Apply numerical evaluation “as an afterthought”:

ln[7]:= 2 Pi A 3 + l // N

0ut[7]= 63.0126

In working with the Wolfram Language, a powerful notation that one ends up using

all the time is /@, which means “apply to each element”.

Apply f to each element in a list:

In [8] : = f/@{l, 2, 3}

out[8]= {f[l], f[2], f[3]}

f usually would just get applied to the whole list:

ln[9]:= f[{l, 2, 3}]

Out[9)= f[{l, 2, 3}]

Framed is a function that displays a frame around something.

Display x framed:

in[i o]:= Framedfx]

Out[1 0]=

Applying Framed to a list just puts a frame around the whole list.

Apply Framed to a whole list:

mini: Framed[{x, y, z}]

{x, y, z}Out[11]=

25
|

Ways to Apply Functions — wolfr.am/eiwl-25 143

@ does exactly the same thing:

Framed@{x, y, z}

{x, y> z)

Now use/@ to apply Framed to each element in the list:

ln(13]:= Framed/@{x, y, z}

Out[13]= 0 ’0)

The same thing works with any other function. For example, apply the function Hue

separately to each number in a list.

/@ applies Hue separately to each number in the list:

ln(14]:= Hue/@{0. 1,0.2, 0.3, 0.4}

Out[14]= {, 1, ,}

Here’s what the /@ is doing:

{Hue[0.1], Hue[0.2], Hue[0.3], Hue[0.4]}

Out!15]=

It’s the same story with Range, though now the output is a list of lists.

/@ applies Range separately to each number, producing a list of lists:

Range/@{3, 2, 5, 6, 7}

{{ 1 ,
2

,
3 }, {1 ,

2}, {1 ,
2

,
3

,
4

,
5 }, { 1 ,

2
,
3

,
4

,
5

,
6}, { 1 ,

2
,
3

,
4

,
5

,
6

,
7}}

Here’s the equivalent, all written out:

{Range[3], Range[2], Range[5], Range[6], Range[7]}

{{ 1 ,
2

,
3 }, {1 ,

2 }, { 1 ,
2

,
3

,
4

,
5 }, { 1 ,

2
,
3

,
4

,
5

,
6}, { 1 ,

2
,
3

,
4

,
5

,
6

,
7}}

Given a list of lists, /@ is what one needs to do an operation separately to each sublist.

Apply PieChart separately to each list in a list of lists:

PieChart/@{{l, 1, 1, 1, 1, 1, 1}, (1, 1, 1, 4, 4, 4}, {1, 2, 1, 2, 1, 2}}

144 An Elementary Introduction to the Wolfram Language

You can use exactly the same idea with lots of other functions.

Apply Length to each element, getting the length of each sublist:

in [i 9]:= Length/@ {{a, a}, {a, a, b, c}, {a, a, b, b, b, b}, {a, a, a}, {c, c}}

outp 9]= {2, 4, 6, 3, 2}

Applying Length to the whole list just gives the total number of sublists:

in[20]:= Length @{{a, a}, {a, a, b, c}, {a, a, b, b, b, b}, {a, a, a}, {c, c}}

Out[20]= 5

Apply Reverse to each element, getting three different reversed lists:

in t2 i]:= Reversel@ {{a, b, c}, {x, y, z}, {1, 2, 3, 4}}

out[2i]= {{c, b, a}, {z, y, x}, {4, 3, 2, 1}}

Apply Reverse to the whole list, reversing its elements:

in[22]:= Reverse @{{a, b, c}, {x, y, z}, {1, 2, 3, 4}}

out[22]= {{1, 2, 3, 4}, {x, y, z}, {a, b, c}}

As always, the form with brackets is exactly equivalent:

ln[23]:= Reverse[{{a, b, c}, {x, y, z}, {1, 2, 3, 4}}]

Out[23]= {{1, 2, 3, 4}, {x, y, z}, {a, b, c}}

Some calculational functions are listable
,
which means they automatically apply

themselves to elements in a list.

N is listable, so you don’t have to use l@ to get it applied to each element in a list:

ln[24]:= N[{l/3, 1/4, 1/5, 1 / 6}]

0ut[24]= {0.333333, 0.25, 0.2, 0.166667}

The same is true with Prime:

ln[25]:= Prime[{10, 100, 1000, 10 000}]

0ut[25j= {29, 541, 7919, 104729}

25
|

Ways to Apply Functions — wolfr.am/eiwl-25 145

A function like Graphics definitely isn’t listable.

This makes a single graphic with three objects in it:

Graphics[{Circle[], RegularPolygon[7], Style[RegularPolygon[3], Orange]}]

Out[26]=

This gives three separate graphics, with Graphics applied to each object:

Graphics/@{Circle[], RegularPolygon[7], Style[RegularPolygon[3], Orange]}

Out[27]=

When you enter f /@ { 1 , 2, 3}, the Wolfram Language interprets it as Map[f, {1, 2, 3}].

f /@ x is usually read as “map f over x”.

The internal interpretation of f /@ {1, 2, 3}:

n(28 Map[f, {1, 2, 3}]

Out[28,= f[2], f[3]>

Vocabulary

f@x equivalent to /ft]

xllf equivalent to f[x]

fl@ {a, b, c} apply /separately to each element of the list

Map \J,{a, b,c}] alternative form of /@

Framed [expr] put a frame around something

Exercises

25.1 Use/@ and Range to reproduce the result of Table[f[n], {n, 5].

25.2 Use l@ twice to generate Table[f[g[n]], {n, 10}].

25.3 Use// to create a[b[c[d[x]]]].

25.4 Make a list of letters of the alphabet, with a frame around each one.

146 An Elementary Introduction to the Wolfram Language

25.5 Color negate an image of each planet, giving a list of the results.

25.6 Use /@ to draw separate maps of each country in the G5.

25.7 Binarize each flag in Europe, and make an image collage of the result.

25.8 Find a list of the dominant colors in images of the planets, putting the results for each planet in

a column.

25.9 Find the total of the letter numbers given by LetterNumber for the letters in the word “wolfram”.

Q&A

Why not always use f@x instead of f[x]?

f@x is a fine equivalent to f[x], but the equivalent of f[l + l] isf@(l + l), and in that case, f[l + l] is shorter

and easier to understand.

Why is l@ called Map?

It comes from math. Given a set {1, 2, 3}, f/@{l, 2, 3} can bethought of as mapping of this set to

another one.

How does one say "//" and

Typically “slash slash” and “slash at”.

When do I need to use parentheses with II and /@?

It’s determined by the precedence or binding of different operators. @ binds tighter than +, so f@ 1 +

1

means f[l] + l not f@ (1 + 1) orf[l + l], // binds looser than +, so 1/2 + 1/3 // N means (1/2 + 1/3) // N.

In a notebook you can find how things are grouped by repeated clicking.

Tech Notes

Quite a few functions are “listable”, so they automatically map themselves over lists.

Range is listable, so Range[{3, 4, 5}] is the same as Range/@{3, 4, 5}.

More to Explore

Guide to Functional Programming in the Wolfram Language (wolfr.am/eiwl-25-more)

26
|

Pure Anonymous Functions — wolfr.am/eiwl-26 147

26
|

Pure Anonymous Functions

Alter all the examples we’ve seen of the W olfram Language, we’re now ready to go

to a slightly higher level of abstraction, and tackle the very important concept of

pure functions (also known as pure anonymousfunctions).

I sing pure functions will let us unlock a new level ofpower in the Wolfram Language,

and also let us redo some of the things we’ve done before in a simpler and more

elegant way.

Let 's start with a simple example. Say we’ve got a list of images, and we want to apply

Blur to each of them. That’s easy to do with /@.

Apply Blur to each image in the list:

ln[1|:= Blur/@{Q,Q,Q}

0ut[1]= ooo>
But now let's say we want to include the parameter 5 in Blur. How can we do that?

The answer is to use a pure function.

Include a parameter by introducing a pure function:

Blur[»,5]&/@{
, , }

{ }

The original blur written as a pure function:

Blur[«]&/@{
), ,(fy

-ooo
The tt is a ‘'slot” into which each element is put. The & says that what comes before it

is a pure function.

Here’s the equivalent of Blur[tt, 5] & l@ expanded out:

{Blur[
, 5], Blur[,5], Blur[,5]}

148 An Elementary Introduction to the Wolfram Language

Let’s look at some other examples. Every time, the slot indicates where to put each

element when the pure function is applied.

Rotate each string by 90°:

in[5]:= Rotate[tt, 90 Degree] &/@{"one", "two", "three"}

QJ
fQJ O Qj]

°ut[5]=

Take a string and rotate it different amounts:

in[6]:= Rotate["hello", tt] &/@{30 °, 90 °, 180 °, 220 °}

Out[6]= °11 0L
1, q's?

|

Show text in a list of different colors:

in [7]:= Style["hello", 20, tt] &/@{Red, Orange, Blue, Purple}

Out[7]= {hello, hello, hello, hello}

Make circles different sizes:

in [8] : = Graphics[Circle[], ImageSize -> tt] &/@{20, 40, 30, 50, 10}

°“m- {oOoO°]
Show framed columns of a color and its negation:

in[9]:= Framed[Column[{W, ColorNegate[t$]}]] &/@{Red, Green, Blue, Purple, Orange}

Compute the lengths of three Wikipedia articles:

in[i o]:= StringLength[WikipediaData[tt]] &/@{"apple", "peach", "pear"}

out[i o]= {31 045, 24 153, 11 115}

Pair topics with results:

in[i i]:= {tt, StringLength[WikipediaData[#]]} &/@{"apple", "peach", "pear"}

out[n]= {{apple, 31 045}, {peach, 24 153}, {pear, 11 115}}

26
|

Pure Anonymous Functions — wolfr.am/eiwl-26 149

Make a grid of everything:

Grid[{£t, StringLength[WikipediaData[$T]]} &/@{"apple", "peach", "pear"}]

apple 31045
out(i 2]= peach 24153

pear 11115

This makes a list of digits, then maps a pure function over it:

Style[tt, Hue[t$/ 10], 5*£t] &/@lntegerDigits[2 A 100]

Out(1

3

i

|
, G, 7,6, , , 6, , ,2, 2, 8,2, 2, 9,4, ,., 4, 9, 6, 7, ,3, 2, , ,3, 7,6}

Here’s vyhat the pure function would do if mapped over {6, 8, 9}:

in[i4j {Sty le[6, Hue[6/10], 5*6], Style[8, Hue[8/10], 5*8], Style[9, Hue[9/10], 5*9]}

Now that we’ve seen some examples of pure functions in action, let’s look more

abstractly at what’s going on.

This maps an abstract pure function over a list:

ln[15]:= f[«,x]&/@{a,b,c,d,e}

out[i5]= {f[a, x], f[b, x], f[c, x], f[d, x], f[e, x]}

Here’s the minimal example:

ln(1 6]:= f[«]&/@{a, b,c,d,e}

0ut(i 6]= {f[a], f[b], f[c], f[d], f[e]}

It’s equivalent to:

, <7 f/@{a, b, c, d, e}

Out(1 7]= m, f[b], f[c], f[d], f[e]}

we can put slots wherever we want in the pure function, as many times as we want.

All the slots will get filled with whatever the pure function is applied to.

Apply a slightly more complicated pure function:

f[»,{x,«},{«,tt}]&/@{a,b,c}

{f[a, {x, a}, {a, a}], f[b, {x, b}, {b, b}], f[c, {x, c}, {c, c}]}

150 An Elementary Introduction to the Wolfram Language

It’s easier to read in a column:

in[i 9j:= f[tt, {x, »}, {», «}] &/@{a, b, c} II Column

f[a, {x, a}, {a, a}]

Out[19]= f[b, {x, b}, {b, b}]

f[c, {x, c}, {c, c}]

OK, now we’re ready to finally discuss how pure functions really work. When we

write f[x], we’re applying the function f to x. Often we’ll use a specific named function

instead off, say Blur, so we have Blur[x], etc.

But the point is that we can also replace f with a pure function. Then whatever we

apply this to will be used to fill the slot in the pure function.

Apply a pure function to x, so the tt slot gets filled with x:

ln[20):= f[«, a] & [x]

Out[20]= f[x, a]

An equivalent form, written with @ instead of
[]:

ln[21]:= f[tt, a] & @ x

Out[21]= fix, a]

So now we can see what /@ is doing: it’s just applying the pure function to each

element in the list.

In[22]:= f[tt, a] &/@{x, y, z}

Out[22]= {f[x, a], f[y, a], f[z, a]}

The same thing, written out more explicitly:

in[23
]

:= (f[tt, a] & @ x, f[tt, a] & @ y, f[tt, a] & @ z}

Out[23]= {fix, a], f[y, a], f[z, a]}

Why is this useful? First of all, because it’s the foundation for all the things pure

functions do with /@. But it’s actually also often useful on its own, for example as a

way to avoid having to repeat things.

Here’s an example of a pure function involving three occurrences of tt.

Apply a pure function to Blend [{Red, Yellow}]:

'"124] Column[{tt, ColorNegate[tt], tt}] & [Blend[{Red, Yellow}]]

out[24]= m

26
|

Pure Anonymous Functions — wolfr.am/eiwl-26 151

This is what it looks like without the pure function:

Column[{Blend[{Red, Yellow}], ColorNegate[Blend[{Red, Yellow}]], Blend[{Red, Yellow}]}]

In the W olfram Language, a pure function works just like anything else. On its own,

though, it doesn’t do anything.

Enter a pure function on its own and it’ll come back unchanged:

f[tt, 2] &

out • f[ttl, 2] &

Give it to the function Map (/@), though, and it’ll be used to do a computation.

Map uses the pure function to do a computation:

Map[f[tt, 2] &, {a, b, c, d, e}]

{f[a, 2], f[b, 2], f[c, 2], f[d, 2], f[e, 2]}

Over the course of the next few sections, we’ll see more and more uses of

pure functions.

Vocabulary

code & a pure function

tt slot in a pure function

Exercises

26.1 Use Range and a pure function to create a list of the first 20 squares.

26.2 Make a list of the result of blending yellow, green and blue with red.

26.3 Generate a list of framed columns containing the uppercase and lowercase versions of each letter of

the alphabet.

26.4 Make a list of letters of the alphabet, in random colors, with frames having random background colors.

26.5 Make a table of G5 countries, together with their flags, and arrange the result in a fully framed grid.

26.6 Make a list of word clouds (with stopwords deleted) for the Wikipedia articles about apple, peach

and pear.

26.7 Make a list of histograms of the word lengths in Wikipedia articles on apple, peach and pear

.

26.8 Make a list of maps of Central America, highlighting each country in turn.

152 An Elementary Introduction to the Wolfram Language

Q&A

Why are they called “pure functions”?

Because all they do is serve as functions that can be applied to arguments. They’re also sometimes called

anonymous functions, because, unlike say Blur, they’re not referred to by a name. Here I’m calling them

“pure anonymous functions” to communicate both meanings.

Why does one need the &?

The & (
ampersand)

indicates that what comes before it is the “body” of a pure function, not the name of a

function. f/@{l, 2, 3} gives {f[l], f[2], f[3]}, but f &/@{l, 2, 3} gives {f, f, f}.

What is f[tt, 1] & interpreted as?

Function [f[Tt, 1]]. The Function here is sometimes called the “function function”.

Tech Notes

• Pure functions are a characteristic feature of functional programming. They’re often called lambda

expressions, after their use in mathematical logic in the 1930s. Confusingly, the term “pure function”

sometimes just means a function that has no side effects (i.e. assigns no values to variables, etc.)

Table[f[x], {x, {a, b, c}}] actually does the same as f/@{a, b, c}. It’s sometimes useful, particularly if one

doesn’t want to have to explain pure functions.

Be careful if you have multiple nested &’s in an expression! Sometimes you may have to insert

parentheses. And sometimes you may have to use Function with a named variable, as in

Function [x, x A
2] rather than tt A 2 &, to avoid conflicts between uses oftt in different functions.

It sometimes makes for good-looking code to write Function [x, x A
2] as x t—+ x A

2. The h-

»

can be typed

as\[Function] or Esc fn Esc

Options can often be pure functions. It’s important to put parentheses around the whole pure function,

as in ColorFunction -> (Hue[tt/4] &), or it won’t be interpreted as you expect.

More to Explore

Guide to Functional Programming in the Wolfram Language (wolfr.am/eiwl-26-more)

27
|

Applying Functions Repeatedly — wolfr.am/eiwl-27 153

27
|

Applying Functions Repeatedly

f[x] applies f to x. f[f[x]] applies f to f[x], or effectively nests the application off.

It's common to want to repeat or nest a function.

This makes a list of the results of nesting f up to 4 times:

NestListff, x, 4]

ou.nH {x, f[x], f[f[x]], f[f[f[x]]], f[f[f[f[x]]]]}

Using Framed as the function makes it a little more obvious what’s going on:

NestList[Framed, x, 5]

|x, x , X , X 3 X 3 0 }1

If you want to see a list of the results of successive nestings, use NestList. Ifyou only

want to see the final result, use Nest.

This gives the final result of 5 levels of nesting:

3 Nest[Framed, x, 5]

Outp]=

Xestedly apply EdgeDetect to an image, first finding edges, then edges of edges,

and so on.

Nestedly do edge detection on an image:

Use a pure function to both edge-detect and color-negate at each step:

154 An Elementary Introduction to the Wolfram Language

Start with red, and nestcdly blend with yellow, getting more and more yellow.

Add another yellow into the blend at each step:

m[6] NestList[Blend[{#, Yellow}] &, Red, 20]

out[6] {I,,, I, I) H, I) I)

If you successively apply a function that adds 1, you just get successive integers.

Nestedly add 1, getting successive numbers:

mm NestList[# + l &, 1, 15]

outm= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}

Nestedly multiply by 2, getting powers of 2.

The result doubles each time, giving a list of powers of 2:

m[8] NestList[2*tt&, 1, 15]

0ut[8] {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16 384, 32 768}

Nested squaring very soon leads to big numbers:

m[9] NestList[tt A 2 &, 2, 6]

ou,[9] {2, 4, 16, 256, 65 536, 4 294 967 296, 18 446 744 073 709 551 616}

You can make nested square roots too.

Nestedly apply square root:

mno]: NestList[Sqrt[l + tt] &, 1, 5]

The decimal version of the result converges quickly (to the golden ratio):

i

n

1 1

1

]
NestList[Sqrt[l + tt] &, 1, 10] II N

0ut[i i] {1., 1.41421, 1.55377, 1.59805, 1.61185, 1.61612, 1.61744, 1.61785, 1.61798, 1.61802, 1.61803}

27
|

Applying Functions Repeatedly - wolfr.am/eiwl-27 155

RandomChoice randomly chooses from a list. You can use it to create a pure function

that, say, randomly either adds +1 or -1.

Randomly add or subtract 1 at each step, starting from 0:

NestList[# + RandomChoice[{+l, -1}] &, 0, 20]

{0, 1, 0, -1, -2, -3, -4, -5, -6, -5, -6, -5, -4, -5, -4, -3, -4, -3, -2, -1, -2}

This generates 500 steps in a “random walk”:

ListLinePlot[NestList[t$ + RandomChoice[{+l, -1}] &, 0, 500]]

So far, we’ve used NestList iteratively—effectively to perform a chain of applications of

a particular function. But you can also use it for recursion
,
in which the very pattern of

applications of the function is itself nested.

This does a chain of applications of the function f:

NestList[f[t$] &, x, 3]

{X, f[x], f[f[x]], f[f[f[x]]]}

The pattern of applications of f is more complicated here:

NestList[f[t$, tt] &, x, 3]

{x, f[x, x], f[f[x, x], f[x, x]], f[f[f[x, x], f[x, x]], f[f[x, x], f[x, x]]]}

Adding frames makes it a little easier to see what’s going on:

NestList[Framed[f[tt, tt]] &, x, 3]

156 An Elementary Introduction to the Wolfram Language

Putting everything in columns shows the nested pattern ol function applications.

The nested boxes are recursively combined in twos at each level:

m[i 7
]

NestList[Framed[Column[{», tt}]] &, x, 3]

Out[1 7]=

This gives a sequence of recursively nested grids:

in[i8]:= NestList[Framed[Grid[{{tt, #}, {tt, tt}}]] &, x, 3]

Out[1 8] =
{x,

x x

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

}

This forms the beginning of a fractal structure:

in[i9]:= NestList[Framed[Grid[{{0, tt}, {tt, tt}}]] &, x, 3]

Out[19]=
0 x

x x
’

0

0 x

X X

0 x

X X

0 x

X X

0

0
0 x

X X

0
0 x

X X

0 x

X X

0 x

X X

X X

}

0 x

X X

0 x

X X

0 x

X X

0 x

X X

27
|

Applying Functions Repeatedly - wotfr.am/eiwl-27 157

It’s easy to get some pretty ornate recursive structures:

NestList[Flatten[{«, Rotateftt, 90 °], Rotate[tt, 270 °]}] &, "R", 4]

r r ^ r 1?? -R ,

R,{R,a,4 R^^y.R
, r~ ,

k
y {R,*,W
c£ {o:‘;u‘y}

TT ;o

(r,^,^, d, r) ~r

{R.^
{R,cr, JO 'R' JO t-, <-n‘vi\

'E'5? fc‘;u‘y} ~R (y^R fr
£

;o
c

y) - ^
{R,^,^d,R, FT , , o£ y

J

, rL ~ /D ~-' {R,^^d,R)JJ^ y~ {R,“, ^
Q? fc‘*>‘y}

{R,cr,^}

‘^‘d}

FT

tx d

a [a‘R h:‘aj‘aj

o:

Not all results from recursion are so complicated. Here’s an example that successively

adds two shifted copies of a list together, as in {0, 1, 2, 1} + {1, 2, 1, 0}.

Prepend and append 0 to a list, then add together:

NestList[Join[{0}, tt] + Joinftt, {0}] &, {1}, 5]

{{1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 6, 4, 1}, (1, 5, 10, 10, 5, 1}}

If you put the result in a grid, it forms Pascal’s triangle of binomial coefficients :

NestList[Join[{0}, tt] + Join[tt, {0}] &, {1}, 8] II Grid

1

1 1

12 1

13 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

158 An Elementary Introduction to the Wolfram Language

Here’s another example of recursion with NestList.

Form a recursive structure with two functions f and g:

in[23)
NestList[{f[tt], g[tt]} &, x, 3]

Ou.1231 {x, {f[x], g[x]}, {f[{f[x], g[x]}], g[{f[x], g[x]}]},

mim, gMw, g[{fM, gM}]}],mm, gM}]^ gKfM, gMM}

Even if things are arranged in columns, it’s still quite difficult to understand the

structure that’s been created.

Arrange the recursive structure in columns:

n[24] NestList[Column[{f[tt], g[tt]}] &, x, 3]

NestGraph is basically like NestList, except that it makes a graph rather than a list.

It repeatedly applies a function to determine what nodes a particular node should

connect to. In this case, it produces a tree of nodes, making it clearer what’s going on.

Start from x, then repeatedly connect to the list of nodes obtained by applying the function:

m[25]:= N estG ra ph [{f[tt], g[tt]} &, x, 3, VertexLabels All]

X

Repeatedly apply a numerical function to form another tree structure:

in[26
]

: = NestGraph[{2 tt, 2 tt + 1) &, 0, 4, VertexLabels -> All]

27
|

Applying Functions Repeatedly - wolfr.am/eiwl-27 159

\ ou can use NestGraph to effectively “crawl’' outward creating a network. As an

example, we can repeatedly apply a function that for any country gives a list of

countries that border it. The result is a network that connects bordering countries,

here starting with Switzerland.

“Crawl” outward 2 steps from Switzerland, connecting each country to all those that border it:

NestGraph[tt["BorderingCountries"] &, B Switzerland , 2, VertexLabels -4 All]

Denmark

As another example, start from the word “hello” and successively connect every word

to 3 words in the list ofcommon words that Nearest considers nearest to it.

Create a network of nearby words with respect to 1-letter changes:

NestGraph[Nearest[WordList[], tX, 3] &, "hello", 4, VertexLabels -4 All]

aglow

Vocabulary

NestListf/, x, //]

Nest[/, x, n]

NestGraphf/, x, n]

make a list of applying/ to v up to n times

give the result of applying/ to .r exactly n times

make a graph by nestedly applying / starting with x

160 An Elementary Introduction to the Wolfram Language

Exercises

27.1 Make a list of the results of nesting Blur up to 10 times, starting with a rasterized size-30 “X”.

27.2 Make a list of nesting a frame with a random background color up to 10 times starting with x.

27.3 Start with a size-50 “A”, then make a list of nestedly applying a frame and a random rotation 5 times.

27.4 Make a line plot of 100 iterations of the logistic mop iteration 4# (1 -#) &, starting from 0.2.

27.5 Find the numerical value of the result from 30 iterations of 1 + 1/# & starting from 1.

27.6 Create a list of the first 10 powers of 3 (starting at 0) by nested multiplication.

27.7 Make a list of the result of nesting the {Newton’s method) function (# + 2/#)/2 & up to 5 times

starting from 1.0, and then subtract >pi from all the results.

27.8 Make graphics of a 1000-step 2D random walk which starts at {0, 0}, and in which at each step a pair

of random numbers between -1 and +1 are added to the coordinates.

27.9 Make an array plot of 50 steps of Pascal’s triangle modulo 2 by starting from {1} and nestedly joining

{0} at the beginning and at the end, and adding these results together modulo 2.

27.10 Generate a graph by starting from 0, then nestedly 10 times connecting each node with value n to

ones with values n + 1 and 2 n.

27.11 Generate a graph obtained by nestedly finding bordering countries starting from the United States,

and going 4 iterations.

Q&A

What’s the difference between iteration and recursion?

If one does one thing repeatedly, it’s iteration. When one takes the result of an operation and applies the

same operation to it wherever it is, that’s recursion. It’s slightly confusing, because simple cases of

recursion are just iteration. NestList always does recursion, but if only one slot appears in the function,

the recursion can be “unrolled” into iteration.

What is the relation between nesting, recursion and fractals?

They are very closely related. The definitions aren’t precise, but fractals are basically geometrical forms

that exhibit some type of nested or recursive structure.

What is Pascal’s triangle?

It’s a very common structure discussed in elementary mathematics. Its definition is very close to the

Wolfram Language code here: at each row each number is computed as the sum of the numbers directly

above it and above it to its right. Each row gives the coefficients in the expansion of (1 +x)
A n.

Is NestGraph like a web crawler?

Conceptually yes. One can think of it as doing the analog of starting from a webpage and then visiting links

from that page, and continuing recursively with that process. We’ll see an example of this in Section 44.

Why do some but not all countries have arrows both ways in the bordering countries graph?

If NestGraph was run for enough steps, all countries would have arrows both ways, since if A borders B,

then B borders A. But here we’re stopping after just 2 steps, so many of the reverse connections haven’t

been reached.

27
|

Applying Functions Repeatedly — wolfr.am/eiwl-27 161

Why use NestList for something like NestList[2*t$ &, 1, 15]?

You don’t need to. You can just use Power, as in Table[2 A n, {n, 0, 15}]. But it’s nice to see the sequence

Plus, Times, Power arise from successive nesting (e.g. NestList[2 +U &, 0, 15] isTable[2*n, {n, 0, 15}]).

Is there a way to keep applying a function until nothing is changing?

Yes. Use FixedPoint or FixedPointList (see Section 41).

Tech Note

The nearest words example can be made much more efficient by first computing a NearestFunction,

then using this repeatedly, rather than computing Nearest from scratch for every word. This example is

also closely related to NearestNeighborGraph, discussed in Section 22.

More to Explore

Guide to Functional Iteration in the Wolfram Language (wolfr.am/eiwl-27-more)

28
|

Tests and Conditionals — wolfr.am/eiwl-28 163

Tests and Conditionals

Is 2+2 equal to 4? Let’s ask the Wolfram Language.

Test whether 2+2 is equal to 4:

2 + 2 == 4

True

Not surprisingly, testing whether 2+2 is equal to 4 gives True.

We can also test whether 2x2 is greater than 5. We do that using >.

Test whether 2><2 is greater than 5:

2*2 > 5

o. False

The function If lets you choose to give one result if a test is True, and another if it’s False.

Since the test gives True, the result of the If is x:

m[3]= lf[2 + 2 == 4, x, y]

Out[3]= X

By using a pure function with /@, we can apply an If to every element of a list.

If an element is less than 4, make it x, otherwise make it y:

If[«<4,x,y]&/@{1,2, 3, 4, 5, 6, 7}

{x, x, x, y, y, y, y}

You can also test for less than or equal using <, which is typed as <=.

If an element is less than or equal to 4, make it x; otherwise, make it y:

lf[«< 4, x, y] &/@{l, 2, 3, 4, 5, 6, 7}

{x, x, x, x, y, y, y}

This makes an element x only if it is equal to 4:

|f[« == 4, x, y] &/@{l, 2, 3, 4, 5, 6,7}

{y, y> y> y, y> y}

164 An Elementary Introduction to the Wolfram Language

You can test whether two things are not equal using *, which is typed as !=.

If an element is not equal to 4, make it x; otherwise, make it y:

ln[7]:= lf[tt * 4, x, y] &/@{l, 2, 3, 4, 5, 6, 7}

0ut[7]= {x, X, x, y, x, X, x}

It’s often useful to select elements in a list that satisfy a test. You can do this by using

Select, and giving your test as a pure function.

Select elements in the list that are greater than 3:

in[8]:= Select[{l, 2, 3, 4, 5, 6, 7}, tt > 3 &]

out[8j= {4, 5, 6, 7}

Select elements that are between 2 and 5:

in[9
]

Select[{l, 2, 3, 4, 5, 6, 7}, 2 < tt < 5 &]

out[9]= {2, 3, 4, 5}

Beyond size comparisons like <, > and ==, the Wolfram Language includes many

other kinds of tests. Examples are EvenQ and OddQ, which test whether numbers are

even or odd. (The “Q” indicates that the functions are asking a question.)

4 is an even number:

ln[10]:= EvenQ[4]

out[i o]= True

Select even numbers from the list:

in[iij:= Select[{l, 2, 3, 4, 5, 6, 7, 8, 9}, EvenQ[tt] &]

out[n]= {2, 4, 6, 8}

In this case, we don’t need the explicit pure function:

infi 2j:= Select[{l, 2, 3, 4, 5, 6, 7, 8, 9}, EvenQ]

0ut[i2]= {2, 4, 6, 8}

IntegerQ tests whether something is an integer; PrimeQ tests whether a number
is prime.

Select prime numbers:

m[i3] Select[{l, 2, 3, 4, 5, 6, 7, 8, 9, 10}, PrimeQ]

0ut[i3]= (2, 3, 5, 7}

28
|

Tests and Conditionals — wolfr.am/eiwl-28 165

Sometimes we need to combine tests. && represents “and”,

represents “not”.

represents “or” and !

Select elements of the list that are both even and greater than 2:

Select[{l, 2, 3, 4, 5, 6, 7}, EvenQ[«]&&« > 2 &]

CXit;14 {4, 6}

Select elements that are either even or greater than 4:

Select[{l, 2, 3, 4, 5, 6, 7}, EvenQftt] || tt > 4 &]

out(i5)= {2, 4, 5, 6, 7}

Select elements that are not either even or greater than 4:

Select[{l, 2, 3, 4, 5, 6, 7}, !
(EvenQftt]

||
U > 4) &]

Out[16]= {1,3}

There are many other “(^functions" that ask various kinds of questions. LetterQ tests

whether a string consists of letters.

The space between letters isn’t a letter; nor is

{LetterQ["a"], LetterQ["bc"], LetterQ["a b"], LetterQ["!"]}

{True, True, False, False}

Turn a string into a list of characters, then test which are letters:

LetterQ/@Characters["30 is the best!"]

{False, False, False, True, True, False, True, True, True, False, True, True, True, True, False}

Select the characters that are letters:

Select[Characters["30 is the best!"], LetterQ]

v-i9 {i, s, t, h, e, b, e, s, t}

Select letters that appear after position 10 in the alphabet:

Select[Characters["30 is the best!"], LetterQ[tt]&&LetterNumber[Tt] > 10 &]

{s, t, s, t}

166 An Elementary Introduction to the Wolfram Language

You can use Select to find words in English that are palindromes
,
meaning that they are

the same ifyou reverse them.

>i] Select[WordList[], StringReverseftt] == tt &]

outpi! {a, aha, bib, bob, boob, civic, dad, deed, dud, ere, eve, ewe, eye, gag, gig, huh, kayak,

kook, level, ma'am, madam, minim, mom, mum, nan, non, noon, nun, oho, pap,

peep, pep, pip, poop, pop, pup, radar, refer, rotor, sis, tat, tenet, toot, tot, tut, wow}

MemberQ tests whether something appears as an element, or member, of a list.

5 appears in the list {1, 3, 5, 7}:

in[22j
MemberQ[{l, 3, 5, 7}, 5]

0ut[22
j

True

Select numbers in the range 1 to 100 whose digit sequences contain 2:

m[23] Select[Range[100], MemberQ[lntegerDigits[tt], 2] &]

0ut[23]= {2, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92}

ImagelnstanceQ is a machine-learning-based function that tests whether an image is an

instance of a particular kind of thing, like a cat.

Test if an image is of a cat:

in[24i ImagelnstanceQ!

0ut(24]= True

Select images of cats:

28
|

Tests and Conditionals — wolfr.am/eiwl-28 167

l lore s a geographic example

miles from San Francisco.

of Select: find which cities in a list are less than 3000

Select cities whose distance from San Francisco is less than 3000 miles:

Select[{S london ,Bnyc
, B tokyo , B Chicago },

GeoDistanceftt, B san francisco] < B 3000 miles &]

|
[New York City)

,
Chicago]

}

Vocabulary

a -- b test for equality

a <b test whether less

a>b test whether greater

a < b test whether less or equal

a > b test whether greater or equal

\i[test, u, v] give u if test is True and v if False

Select [list,/] select elements that pass a test

EvenQfv] test whether even

OddQf.v] test whether odd

IntegerQfv] test whether an integer

PrimeQ[.v] test whether a prime number

LetterQ[string] test whether there are only letters

MemberQ[// ls7‘, x] test whether x is a member of list

ImagelnstanceQ [image, category] test whether image is an instance of category

Exercises

28.1 Test whether 123 A321 is greater than 456 A 123.

28.2 Get a list of numbers up to 100 whose digits add up to less than 5.

28.3 Make a list of the first 20 integers, with prime numbers styled red.

28.4 Find words in WordList
[]

that both begin and end with the letter “p”.

28.5 Make a list of the first 100 primes, keeping only ones whose last digit is less than 3.

28.6 Find Roman numerals up to 100 that do not contain "I”.

28.7 Get a list of Roman numerals up to 1000 that are palindromes.

168 An Elementary Introduction to the Wolfram Language

28.8 Find names of integers up to 100 that begin and end with the same letter:

28.9 Get a list of words longer than 15 characters from the Wikipedia article on words.

28.10 Starting from 1000, divide by 2 if the number is even, and compute 3 tt + 1 & if the number is odd;

do this repeatedly 200 times {Collatz problem).

28.11 Make a word cloud of 5-letter words in the Wikipedia article on computers.

28.12 Find words in WordList[] whose first 3 letters are the same as their last 3 read backward, but where

the whole string is not a palindrome.

28.13 Find all 10-letter words in WordList[] for which the total of LetterNumber values is 100.

Q&A

Why does one test equality with == not =?

Because = means something else in the Wolfram Language. You’ll get very strange results if you use =

instead of == by mistake. (= is for assigning values of variables.) To avoid possible confusion, == is often

read as “double equals”.

Why is “and” written as &&, not &?

Because & means other things in the Wolfram Language. For example it’s what ends a pure function.

Flow are ==, >, &&, etc. interpreted?

== is Equal, * (!=) is Unequal, > is Greater, > is GreaterEqual, < is Less, && is And,
||

is Or, and ! is Not.

When do I need to use parentheses with &&, ||, etc.?

There’s an order of operations that’s a direct analog of arithmetic. && is like x,
||

is like +, and ! is like -.

So ! p && q means “(not p) and q”;
! (p&&q) means “not (p and q)”.

What’s special about “Q” functions?

They ask a question that normally has an answer of True or False.

What are some other “Q” functions?

NumberQ, StringContainsQ, BusinessDayQ and ConnectedGraphQ are a few.

Is there a better way to find real-world entities with certain properties than using Select?

Yes. You can do things like Entity["Country", "Population" GreaterThan[l * 10 7
people]] to find “implicit

entities”, then use EntityList to get explicit lists of entities.

28
|

Tests and Conditionals — wolfr.am/eiwl-28 169

Tech Notes

True and False are typically called Booleons in computer science, after George Boole from the mid-1800s.

Expressions with &&, ||, etc. are often called Boolean expressions.

In the Wolfram Language, True and False are symbols, and are not represented by 1 and 0 as in many
other computer languages.

If is often called a conditional. In If[test, then, else], the then and else aren’t computed unless the test says

their condition is met.

PalindromeQ directly tests if a string is a palindrome.

In the Wolfram Language, x is a symbol (see Section 33) that could represent anything, so x== 1 is just an

equation, that isn’t immediately True or False, x === 1 (“triple equals”) tests whether x is the same as 1,

and since it isn’t, it gives False.

More to Explore

Guide to Functions That Apply Tests in the Wolfram Language (wolfr.am/eiwl-28-more)

Guide to Boolean Computation in the Wolfram Language (wolfr.am/eiwl-28-more2)

29
|

More about Pure Functions — wolfr.am/eiwl-29 171

More about Pure Functions

\\ e \o sot'n how to make lists and arrays with Table. 1 here’s also a way to do it using

pure functions with Array.

Generate a 10-element array with an abstract function f:

Array[f, 10]

m, f[2], f[3], f[4], f[5], f[6], f[7], f[8], f[9], f[10]}

Use a pure function to generate a list of the first 10 squares:

Array[» A 2 &, 10]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Table can give the same result, though you have to introduce the variable n:

Table[n A
2, {n, 10}]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Array[f, 4] makes a single list of 4 elements. Array[f, {3, 4}] makes a 3x4 array.

Make a list of length 3, each of whose elements is a list of length 4:

ln[4]:= Array[f, {3, 4}]

{{f[l, 1], f[l, 2], f[l, 3], f[l, 4]}, {f[2, 1], f[2, 2], f[2, 3], f[2, 4]}, {f[3, 1], f[3, 2], f[3, 3], f[3, 4]}}

Display it in a grid:

Array[f, {3, 4}] II Grid

f[l,l] f[l, 2] f[l, 3] f[l, 4]

f[2,l] f[2, 2] f[2, 3] f[2, 4]

f[3, 1] f[3, 2] f[3, 3] f[3, 4]

If the function is Times, Array makes a multiplication table:

Grid[Array[Times, {5, 5}]]

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

What ifwe want to use a pure function in place of Times:
1 When we compute

Times[3, 4], we say that Times is applied to two arguments .
(In Times[3, 4, 5], Times is

applied to three arguments, etc.) In a pure function, XX\ represents the first argument,

tX2 the sec ond argument, and so on.

172 An Elementary Introduction to the Wolfram Language

Ul represents the first argument, tX2 the second argument:

ln[7]:= f[»l, «2] &[55, 66]

0ut[7] - f[55, 66]

ttl always picks out the first argument, and U2 the second argument:

lnt8]: f[«2, ttl, {tt2, U2, ttl}] &[55, 66]

Out[8]= f[66, 55, {66, 66, 55}]

Now we can use ttl and tX2 inside a function in Array.

Use a pure function to make a multiplication table:

in[9]:
= Array[ttl*tt2 &, {5, 5}] II Grid

1 2 3 4 5

2 4 6 8 10

0ut[9]= 3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

Use a different pure function that puts in x whenever the numbers are equal:

intioi Array[lf[ttl == U2, x, ttl*tt2] &, {5, 5}] II Grid

x 2 3 4 5

2 x 6 8 10

out[io]= 3 6 x 12 15

4 8 12 x 20

5 10 15 20 x

Here’s the equivalent computation with Table:

in[ii]:= Table[lf[i == j, x, i*j], {i, 5}, {j, 5}] II Grid

x 2 3 4 5

2 x 6 8 10

out[i i]= 3 6 x 12 15

4 8 12 x 20

5 10 15 20 x

Now that we’ve discussed pure functions with more than one argument, we're in a

position to talk about Fold List. You can think of Fold List as a 2-argument generaliza-

tion of NestList.

NestList takes a single function, say f, and successively nests it:

m;i 2
]

NestListff, x, 5]

out
(
i2]= {x, f[X], f[f[X]],mm, nmx]]]], f[f[f[f[f[x]]]]]}

29
|

More about Pure Functions — wolfr.am/eiwl-29 173

It’s easier to understand when the function we use is Framed:

NestList[Framed, x, 5]

NestList just keeps on applying a function to whatever result it got before. Fold List does

the same, except that it also “folds in” a new element each time.

Flere’s Fold List with an abstract function f:

<4 Fold List[f, x, {1, 2, 3, 4, 5}]

{x, f[x, If f[f[x, 1], 2], f[f[f[x, 1], 2f 3], f[f[f[f[x, If 21, 31, 4], f[f[f[f[f[x, 1], 2], 3], 4], 5]}

Including Framed makes it a little easierto see what’s goingon:

m;i5] FoldList[Framed[f[ttl, #2]] &, x, {1, 2, 3, 4, 5}]

At first, this may look complicated and obscure, and it might seem hard to imagine

how it could be useful. But actually, it’s very useful, and surprisingly common in real

programs.

Fold List is good for progressively accumulating things. Let’s start with a simple case:

progressively adding up numbers.

At each step Fold List folds in another element (tt2), adding it to the result so far (ttl):

FoldList[ttl + »2 &, 0, {1, 1, 1, 2, 0, 0}]

ie {0, 1, 2, 3, 5, 5, 5}

Flere’s the computation it’s doing:

{0,0 + 1
, (0 + 1

)
+ 1

, ((0 + l
)
+ l

)
+ l

, (((0 + l
)
+ l

)
+ l

)
+ 2

,

((((0 + l
)
+ l

)
+ l

)
+ 2

)
+ 0

, (((((0 + l
)
+ l

)
+ l

)
+ 2

)
+ 0

)
+ 0}

ouniT). {0, 1, 2, 3, 5, 5, 5}

Or equivalently:

{0 ,
0 + 1

,
0 + 1 + 1

,
0 + 1 + 1 + l ,0 + l + l + l + 2

,
0 + 1 + 1 + 1 + 2 + 0

,
0 + 1 + 1 + 1 + 2 + 0 + 0}

{0,1, 2, 3, 5, 5, 5}

174 An Elementary Introduction to the Wolfram Language

It may be easier to see what’s going on with symbols:

ln[19]:= FoldList[«l + tt2 &, 0, {a, b, c, d, e}]

0ut[i9]= {0, a, a + b, a + b + c, a + b + c + d, a + b + c + d + e}

Of course, this case is simple enough that you don’t actually need a pure function:

m[2o] FoldList[Plus, 0, {a, b, c, d, e}]

Out[20]= {0, a, a + b, a + b + c, a + b + c + d, a + b + c + d + e}

A classic use of Fold List is to successively “fold in” digits to reconstruct a number from

its list of digits.

Successively construct a number from its digits, starting the folding process with its first digit:

in[2 i] FoldList[10 ttl + tt2 &, {8, 7, 6, 1, 2, 3, 9, 8, 7}]

0ut[2i]= {8, 87, 876, 8761, 87 612, 876 123, 8 761 239, 87612 398, 876 123 987}

Finally, let’s use Fold List to “fold in” progressive images from a list, at each point

adding them with ImageAdd to the image obtained so far.

Progressively “fold in” images from a list, combining them with ImageAdd:

ln[22]:= FoldList[lmageAdd, {

Out[22]=

The concept of Fold List is not at first the easiest to understand. But when you’ve got it,

you’ve learned an extremely powerfulfunctionalprogramming technique that’s an exam-

ple of the kind of elegant abstraction possible in the Wolfram Language.

Vocabulary

Array [/, n] make an array by applying a function

Array [/, {m, n}] make an array in 2D

FoldList[/, x, list] successively apply a function, folding in elements of a list

29
|

More about Pure Functions — wolfr.am/eiwl-29 175

Exercises

29.1 Use Prime and Array to generate a list of the first 100 primes.

29.2 Use Prime and Array to find successive differences between the first 100 primes.

29.3 Use Array and Grid to make a 10 by 10 addition table.

29.4 Use Fold List, Times and Range to successively multiply numbers up to 10 (makingfactorials).

29.5 Use Fold List and Array to compute the successive products of the first 10 primes.

29.6 Use Fold List to successively ImageAdd regular polygons with between 3 and 8 sides, and with

opacity 0.2.

Q&A

What does tt alone mean?

It’s equivalent to ttl—a slot to be filled from the first argument of a function.

How does one say ttl?

Either “slot 1” (reflecting its role in a pure function), or “hash 1” (reflecting how it’s written—the “#” is

usually called “hash”).

Can one name arguments to a pure function?

Yes. It’s done with Function [{x, y}, x + y], etc. It’s sometimes nice to do this for code readability, and it’s

sometimes necessary when pure functions are nested.

Can Array make more deeply nested structures?

Yes—as deep as you want. Lists of lists of lists... for any number of levels.

What is functional programming?

It’s programming where everything is based on evaluating functions and combinations of functions. It’s

actually the only style of programming we’ve seen so far in this book. In Section 38 we’ll see procedural

programming, which is about going through a procedure and progressively changing values of variables.

Tech Notes

Fold gives the last element of Fold List, just like Nest gives the last element of NestList.

FromDigits reconstructs numbers from lists of digits, effectively doing what we used Fold List for above.

Accumulate[//.v/] is FoldList [Plus, list].

• Array and FoldList, like NestList, are examples of what are called higher-order functions, that take

functions as input. (In mathematics, they’re also known as functionals or functors.)

You can set up pure functions that take several arguments at a time using tttt, etc.

• You can animate a list of images using ListAnimate, and show the list in 3D using lmage3D.

More to Explore

Guide to Functional Programming in the Wolfram Language (wolfr.am/eiwl 29-more)

30
|

Rearranging Lists — wolfr.am/eiwl-30 177

30
|

Rearranging Lists

It s common for lists that come out of one computation to have to be rearranged

before going into another computation, Tor example, one might have a list of pairs,

and need to convert it into a pair of lists, or vice versa.

Transpose a list of pairs so it becomes a pair of lists:

Transpose[{{l, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}]

out|i {{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}

Transpose the pair of lists back to a list of pairs:

Transpose[{{l, 3, 5, 7, 9}, (2, 4, 6, 8, 10}}]

Outpi {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

Thread is a closely related operation, often useful for generating input to Graph.

“Thread” -> across the elements of two lists:

in[3j: Thread[{l, 3, 5, 7, 9} {2, 4, 6, 8, 10}]

Ou: {1 —> 2, 3 —> 4, 5 —> 6, 7 —> 8, 9 —> 10}

Partition takes a list, and partitions it into blocks of a specified size.

Partition a 12-element list into blocks of size 3:

ln(4]:= Partition[Range[12], 3]

{{1,2, 3}, {4,5,6}, {7, 8, 9}, {10, 11, 12}}

Partition a list of characters to display them in a grid:

Grid[Partition[Characters["An array of text made in the Wolfram Language"], 9],

Frame - All]

A
—
n a r r a y

0 f t e X t m
a d e i n t h

e W 0 ' f r a m
L a n g u a g e

Ifyou don’t tell it otherwise, Partition breaks a list up into non-overlapping blocks.

But you c an also tell it to break the list into blocks that have some specified offset.

Partition a list into blocks of size 3 with offset 1:

mw» Partition[Range[10], 3, 1]

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5>, {4, 5, 6}, {5, 6, 7}, {6, 7, 8}, {7, 8, 9}, {8, 9, 10}}

178 An Elementary Introduction to the Wolfram Language

Partition a list of characters into blocks with an offset of 1:

,nt7 |

Grid[Partition[Characters["Wolfram Language"], 12, 1], Frame All]

w 0 l f r a m L a n g

0 l f r a m L a n g u

l f r a m L a n g u a

f r a m L a n g u a g

r a m L a n g u a g e

Use an offset of 2 instead:

in[8i Grid[Partition[Characters["Wolfram Language"], 12, 2], Frame -> All]

W 0 l f r a m L a n g

l f r a m L a n g u a

r a m L a n g u a g e

Partition takes a list and breaks it into sublists. Flatten “flattens out” sublists.

Make a list of lists from digits of successive integers:

in[9] : = lntegerDigits/@ Range[20]

0ut[9i= {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {1, 0}, {1, 1},

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {2, 0}}

Make a flattened version:

ln[10]:= Flatten[lntegerDigits/@Range[20]]

out[io]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0}

Make a plot from the sequence of digits:

ListLinePlot[Flatten[lntegerDigits/@Range[20]]]

Flatten will normally flatten out all levels of lists. But quite often you only want to flatten,

say, one level of lists. This makes a 4x4 table in which each element is itself a list.

Make a list of lists of lists:

in[i 2
] Table[lntegerDigits[i A

j], {i, 4}, (j, 4}]

0ut[i2, {{{1}, {1}, {1}, {1}}, {{2}, {4}, {8}, {1, 6}}, {{3}, {9}, {2, 7}, {8, 1}}, {{4}, {1, 6}, {6, 4}, {2, 5, 6}}}

30
|

Rearranging Lists — wolfr.am/eiwl-30 179

Flatten everything out:

Flatten[Table[lntegerDigits[i A
j], {i, 4}, {j, 4}]]

{1, 1, 1, 1, 2, 4, 8, 1, 6, 3, 9, 2, 7, 8, 1, 4, 1, 6, 6, 4, 2, 5, 6}

Flatten out only one level of list:

Flatten[Table[lntegerDigits[i A
j], {i, 4}, {j, 4}], 1]

{{1}, {1}, {1}, {1}, {2}, {4}, {8}, {1, 6}, {3}, {9}, {2, 7}, {8, 1}, {4}, {1, 6}, {6, 4}, {2, 5, 6}}

ArrayFlatten is a generalization of Flatten, which takes arrays of arrays, and flattens

them into individual arrays.

This generates a deeply nested structure that’s hard to understand:

NestList[{{«, 0}, {«, «}} &, {{1}}, 2]

{{{1}}, {{{{1}}, 0}, {{{1}}, {{1}}}},

{{{{{{1}}, 0}, {{{1}}, {{1}}}}, 0}, {{{{{1}}, 0}, {{{1}}, {{1}}}}, {{{{1}}, 0}, {{{1}}, {{1}}}}}}}

ArrayFlatten makes a structure that’s a little easier to understand:

NestList[ArrayFlatten[{{tt, 0}, {tt, tt}}] &, {{1}}, 2]

{{{ 1 }}, {{ 1 ,
0 }, { 1 ,

1}}, {{ 1 ,
0

,
0

,
0}, { 1 ,

1
,
0

,
0}, {1 ,

0
,
1

,
0}, {1 ,

1
,
1

,
1}}}

With ArrayPlot, it’s considerably easier to see what’s going on:

ArrayPlot/@NestList[ArrayFlatten[{{tt, 0}, {#, #}}] &, {{1}}, 4]

Generate a fractal Sierpinski pattern with 8 levels of nesting:

ArrayPlot[Nest[ArrayFlatten[{{#, 0}, {tt, tt}}] &, {{1}}, 8]]

b.
b, b,

k.

b. b
\ k \ k

b
k

b,
Vl-.b.bbb

JL

K K~
k \ k

180 An Elementary Introduction to the Wolfram Language

There are many other ways to rearrange lists. For example, Split splits a list into runs

of identical elements.

Split a list into sequences of successive identical elements:

,n[19]:= Split[{l, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2}]

0u,[i9]= {{1, 1, 1}, {2, 2}, {1, 1}, {3}, {1, 1, 1}, {2}}

Gather, on the other hand, gathers identical elements together, wherever they appear.

Gather identical elements together in lists:

in[20]:= Gather[{l, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2}]

out[20]= {{1, 1, 1, 1, 1, 1, 1, 1}, {2, 2, 2}, {3}}

GatherBy gathers elements according to the result of applying a function to them.

Here it’s using LetterQ, so that it gathers separately letters and non-letters.

Gather characters according to whether they are letters or not:

in[2 ij := GatherBy[Characters["lt's true that 2+2 is equal to 4!"], LetterQ]

out[2 i]= {{I, t, s, t, r, u, e, t, h, a, t, i, s, e, q, u, a, l, t, o}, {',
, , , 2, +, 2, , , , , 4, !}}

SortBy sorts according to the result of applying a function.

Sort normally sorts shorter lists before longer ones:

in[22j:= Sort[Table[lntegerDigits[2 A n], {n, 10}]]

out[22j= {{2}, {4}, {8}, {1, 6}, {3, 2}, {6, 4}, {1, 2, 8}, {2, 5, 6}, {5, 1, 2}, {1, 0, 2, 4}}

Here SortBy is told to sort by the first element in each list:

ln[23]:= SortBy[Table[lntegerDigits[2 A n], {n, 10}], First]

0ut[23]= {{1, 6}, {1, 2, 8}, {1, 0, 2, 4}, {2}, {2, 5, 6}, {3, 2}, {4}, {5, 1, 2}, {6, 4}, {8}}

Sort sorts a list in order. Union also removes any repeated elements.

Find all the distinct elements that appear:

ln[24]:= Union[{l, 9, 5, 3, 1, 4, 3, 1, 3, 3, 5, 3, 9}]

Out[24]= {1, 3, 4, 5, 9}

You can use Union to find the “union” of elements that appear in any of several lists.

Get a list of all elements that appear in any of the lists:

me*] Union[{2, 1, 3, 7, 9}, {4, 5, 1, 2, 3, 3}, {3, 1, 2, 8, 5}]

out[25]= {1, 2, 3, 4, 5, 7, 8, 9}

30
|

Rearranging Lists — wolfr.am/eiwl-30 181

Find which elements are common to all the lists:

Intersection^, 1, 3, 7, 9}, {4, 5, 1, 2, 3, 3}, {3, 1, 2, 8}]

Out[26] {1, 2, 3}

Find which elements are in the first list but not the second one:

Complement^, 5, 1, 2, 3, 3}, {3, 1, 2, 8}]

Out[27) {4, 5}

Find letters that appear in any of English, Swedish and Turkish:

Union[Alphabet[" English"], Alphabet["Swedish"], Alphabet["Turkish"]]

{g, a, a, a, b, c, q, d, e, f, g, h, i, i, j, k, l, m, n, o, 6, p, q, r, s, t, u, u, v, w, x, y, z}

Letters that appear in Swedish but not English:

Complement[Alphabet["Swedish"], Alphabet!" English"]]

out[29]= {a, a, 6}

Another of the many functions you can apply to lists is Riffle, which inserts things

between successive elements of a list.

Riffle x in between the elements of a list:

ln[30]:= Riffle[{l, 2, 3, 4, 5}, x]

Out {1, x, 2, x, 3, x, 4, x, 5}

Riffle— into a list of characters:

Riffle[Characters["WOLFRAM"], "— "]

{W, —
, 0, — ,

L, —
,
F, —

,
R, —

,
A, —

,
M}

Join everything together in a single string:

StringJoin[Riffle[Characters["WOLFRAM"], "—
"]]

W—0— L— F—R—A—

M

Functions like Partition let you take a list and break it into sublists. Sometimes you’ll

instead just want to start from a collection of possible elements, and form lists from

them.

182 An Elementary Introduction to the Wolfram Language

Permutations gives all possible orderings, or permutations, ol a list.

Generate a list of the 31=3x2*1=6 possible orderings of 3 elements:

ln[33]:= Permutations[{Red, Green, Blue}]

CX.CI33] {{,, }. {,, }, {, }, {,, }, {, , }> {>> })

Generate all 2 3 = 8 possible subsets of a list of 3 elements:

in[34
]

Subsets[{Red, Green, Blue}]

Ou,(34]= {{}, {}, {}, {}, }, }, {, m, {, > }}

Tuples takes a list of elements, and generates all possible combinations of a given

number of those elements.

Generate a list of all possible triples of red and green:

ln[35]:= Tuples[{Red, Green}, 3]

oops,- {{, }, }, , , }, },m m }, : m,} {, }}

RandomChoice lets you make a random choice from a list of elements.

Make a single random choice from a list:

in [36] RandomChoice[{Red, Green, Blue}]

Out[36]=

Make a list of 20 random choices:

in[37] :
= RandomChoice[{Red, Green, Blue}, 20]

Out[37]= }

Make 5 lists of 3 random choices:

m[38] RandomChoice[{Red, Green, Blue}, {5, 3}]

Out[38]= {{,, }, }, }, ' }, }}

RandomSample picks a random sample of elements from a list, never picking any

particular element more than once.

Pick 20 elements from the range 1 to 100, never picking any number more than once:

in [39] RandomSample[Range[100], 20]

0ut[39]= {82, 3, 93, 92, 39, 45, 63, 32, 79, 75, 34, 1, 11, 59, 98, 67, 38, 44, 28, 76}

If you don’t say how many elements to pick you get a random ordering of the whole list:

in[40] RandomSample[Range[10]]

out[4oi= {2, 5, 1, 7, 4, 6, 3, 8, 9, 10}

30
|

Rearranging Lists — wolfr.am/eiwl-30 183

Vocabulary

Transpose[//.s7] transpose inner and outer lists

Thread [listi -* list 2] thread across elements of lists

Partition [list, //] partition into blocks of size n

Flatten [list] flatten out all sublists

Flatten[//sf, k] flatten out k levels of sublists

ArrayFlatten[//.s7] flatten arrays of arrays

Split[//.s7] split into runs of identical elements

Gather[//\s7] gather identical elements into lists

GatherBy[//'.s7, /] gather according to results of applying/

SortBy [list, j) sort according to results of applying/

Riffle [list, x] riffle x between elements of list

Union[//.s7] distinct elements in list

Union[//jfi, listi , ...] elements that appear in any of the lists

Intersection [listi, listi, .] elements that appear in all the lists

Complement[//sfi, listi] elements that appear in listi but not listi

Permutations[//.s7] all possible permutations (orderings)

Subsets [/zs/] all possible subsets

Tuples [list, n] all possible combinations of n elements

RandomChoice [//.s7] random choice from list

RandomChoice[//.s7, n] n random choices

RandomSample[//.s7, //] n random non-repeating samples

RandomSample[//.s7] random ordering of a list

184 An Elementary Introduction to the Wolfram Language

Exercises

30.1 Use Thread to make a list of rules with each letter of the alphabet going to its position in the alphabet.

30.2 Make a 4*6 grid of the first 24 letters of the alphabet.

30.3 Make a grid of the digits in 2 A 1000, with 50 digits per row, and put frames around everything.

30.4 Make a grid of the first 400 characters in the Wikipedia article for “computers”, with 20 characters

per row, and frames around everything.

30.5 Make a line plot of the flattened list of the digits from the numbers from 0 to 200 (
Champernowne

sequence).

30.6 Make 4 steps in the “Menger sponge” analog of the fractal Sierpinski pattern from the text, but with

a “kernel” of the form {{#, tt, tt}, {tt, 0, tt}, {tt, tt, tt}}.

30.7 Find Pythagorean triples involving only integers by selecting {x, y, Sqrt[x A 2 +y
A
2]} with x and y up to 20.

30.8 Find the lengths of the longest sequences of identical digits in 2 A n for n up to 100.

30.9 Take the names of integers up to 100 and gather them into sublists according to their first letters.

30.10 Sort the first 50 words in WordList[
]
by their last letters.

30.11 Make a list of the first 20 squares, sorted by their first digits.

30.12 Sort integers up to 20 by the length of their names in English.

30.13 Get a random sample of 20 words from WordList[], and gather them into sublists by length.

30.14 Find letters that appear in Ukrainian but not Russian.

30.15 Use Intersection to find numbers that appear both among the first 100 squares and cubes.

30.16 Find the list of countries that are in both NATO and the G8.

30.17 Make a grid in which all possible permutations of the numbers 1 through 4 appear as successive

columns.

30.18 Make a list of all distinct strings that can be obtained by permuting the characters in “hello”.

30.19 Make an array plot of the sequence of possible 5-tuples of 0 and 1.

30.20 Generate a list of 10 random sequences of 5 letters.

30.21 Find a simpler form for Flatten [Table[{i, j, k}, {i, 2}, {j, 2}, {k, 2}], 2].

30
|

Rearranging Lists — wolfr.am/eiwl-30 185

Q&A

What does Partition do if the blocks don’t fit perfectly?

If it’s not told otherwise, it’ll only include complete blocks, so it’ll just drop elements that appear only in

incomplete blocks. You can tell it to do something different if you want.

Tech Note

m DeleteDuplicates[//.vf] does the same as Union [list], except it doesn’t reorder elements.

More to Explore

Guide to Rearranging & Restructuring Lists in the Wolfram Language (wolfr.am/eiwl-30-more)

31
1

Parts of Lists — wolfr.am/eiwl-31 187

Parts of Lists

Part lets you pick out an element of a list.

Pick out element 2 from a list:

Part[{a, b, c, d, e, f, g}, 2]

ot b

[[]] is an alternative notation.

Use [[2]] to pick out element 2 from a list:

{a, b, c, d, e, f, g}[[2]]

Out! b

Negative part numbers count from the end of a list:

{a, b, c, d, e, f, g}[[-2]]

Out(% f

You can ask for a list of parts by giving a list of part numbers.

Pick out parts 2, 4 and 5:

{a, b,c,d,e, f, g}[[{2, 4, 5}]]

(b, d, e}

;; lets you ask for a span or sequence of parts.

Pick out parts 2 through 5:

{a, b, c, d, e, f, g}[[2 ;; 5]]

{b, c, d, e}

Take the first 4 elements from a list:

Take[{a,b, c, d,e, f, g}, 4]

(a, b, c, d}

Take the last 2 elements from a list:

Take[{a, b, c, d, e, f, g}, -2]

{f g}

Drop the last 2 elements from a list:

Drop[{a, b,c,d,e, f, g}, -2]

{a, b, c, d, e}

188 An Elementary Introduction to the Wolfram Language

Let’s now talk about lists oflists, or arrays. Each sublist acts as a row in the array.

In[9]:= {{a, b, c}, {d, e, f}, {g, h, i}} II Grid

a b c

out[9]= d e f

g h i

Pick out the second sublist, corresponding to the second row, in the array:

ln[10]:= {{a, b, c}, {d, e. f}, {g, h, i}}[[2]]

Out[1 0]= {d, e, f}

This picks out element 1 on row 2:

,n[i i]:= {{a, b, c}, {d, e, f}, {g, h, i}}[[2, 1]]

out[ii]= d

It’s also often useful to pick out columns in an array.

Pick out the first column, by getting element 1 on all rows:

in[i 2]:= {{a, b, c}, {d, e, f}, {g, h, i}}[[All, 1]]

out[i 2]= {a, d, g}

The function Position finds the list of positions at which something appears.

Here there’s only one d, and it appears at position 2, 1:

in[i3]:= Position[{{a, b, c}, (d, e, f}, {g, h, i}}, d]

Out[13]= {{2, 1}}

This gives a list of all positions at which x appears:

ln[14]:= Position[{{x, y, x}, {y, y, x>, {x, y, y}, {x, x, y}}, x]

0ut[i4]= {{1, 1}, {1, 3}, {2, 3}, {3, 1}, {4, 1}, {4, 2}}

The positions at which “a” occurs in a list of characters:

in[i5j:= Position[Characters["The Wolfram Language"], "a"]

Out[1 5]= {{10}, {14}, {18}}

Find the positions at which 0 occurs in the digit sequence of 2 A500:

inne] Flatten[Position[lntegerDigits[2 A
500], 0]]

0ut[i6j= {7, 9, 19, 20, 44, 47, 50, 65, 75, 88, 89, 96, 103, 115, 116, 119, 120, 137}

31
1

Parts of Lists — wolfr.am/eiwl-31 189

The function ReplacePart lets you replace parts of a list:

Replace part 3 with x:

ReplacePart[{a, b, c, d, e, f, g}, 3 -> x]

O ••• {a, b, X, d, e, f, g}

Replace two parts:

ReplacePart[{a, b, c, d, e, f, g}, {3 x, 5 -4 y}]

out[i 8] {a, b, x, d, y, f, g}

Replace 5 randomly chosen parts with “—
”:

ReplacePart[Characters["The Wolfram Language"], Table[Randomlnteger[20] -> "—
", 5]]

ou«[i 9]
-

{T, h, e,
,
W, —

,
l, f, r, a, m, —

,
—

,
—

,
n, g, u, a, g, —

}

Sometimes one wants particular parts of a list to just disappear. One can do this by

replacing them with Nothing.

Nothing just disappears:

ln[20]:= (1, 2, Nothing, 4, 5, Nothing}

om[2or {1, 2, 4, 5}

Replace parts 1 and 3 with Nothing:

ReplacePart[{a, b, c, d, e, f, g}, {1 -4 Nothing, 3 -4 Nothing}]

0ut[2 i]= {b, d,e, f, g}

Take 50 random words, dropping ones longer than 5 characters, and reversing others:

lf[StringLength[tt] > 5, Nothing, StringReverse[tt]] &/@RandomSample[WordList[], 50]

Out(22]= {yllud, yciuj, poons, tsioh}

Take takes a specified number of elements in a list based on their position. TakeLargest

and TakeSmallest take elements based on their size.

Take the 5 largest elements from a list:

TakeLargest[Range[20], 5]

{20, 19, 18, 17, 16}

TakeLargestBy and TakeSmallestBy take elements based on applying a function.

From the first 100 Roman numerals take the 5 that have the largest string length:

TakeLargestBy[Array[RomanNumeral, 100], StringLength, 5]

{LXXXVIII, LXXXIII, XXXVIII, LXXVIII, LXXXVII}

190 An Elementary Introduction to the Wolfram Language

Vocabulary

Part [for, n] part n of a list

Ust[[n]] short notation for part n of a list

for[[{/7i, n2 , ...}]] list of parts «i, n 2 , ...

for[[/?i ;; n 2]]
span (sequence) of parts n\ through n2

list[[m, /?]] element from row m, column n of an array

for[[AU, a?]] all elements in column n

Take [for, //] take the first n elements of a list

TakeLargest [for, n] take the largest n elements of a list

TakeSmallest[for, n] take the smallest n elements of a list

TakeLargestBy[for, /, n] take elements largest by applying/

TakeSmallestBy[for, /, n\ take elements smallest by applying/

Position[fovr, x] all positions of* in list

ReplacePartffor, n -» x] replace part n of list with x

Nothing a list element that is automatically removed

Exercises

31.1 Find the last 5 digits in 2 A 1000.

31.2 Pick out letters 10 through 20 in the alphabet.

31.3 Make a list of the letters at even-numbered positions in the alphabet.

31.4 Make a line plot of the second to last digit in the first 100 powers of 12.

31.5 Join lists of the first 20 squares and cubes, and get the 10 smallest elements of the combined list.

31.6 Find the positions of the word “software” in the Wikipedia entry for “computers”.

31.7 Make a histogram of where the letter “e” occurs in the words in WordList[].

31.8 Make a list of the first 100 cubes, with every one whose position is a square replaced by Red.

31.9 Make a list of the first 100 primes, dropping ones whose first digit is less than 5.

31.10 Make a grid starting with Range [10], then at each of 9 steps randomly removing another element.

31.11 Find the longest 10 words in WordList[].

31.12 Find the 5 longest integer names for integers up to 100.

31.13 Find the 5 English names for integers up to 100 that have the largest number of “e”s in them.

31
1

Parts of Lists — wolfr.am/eiwl-31 191

Q&A

How does one read //.vr[[//]] out loud?

Usually “ list part n” or “ list sub n”. The second form (with “sub” short for “subscript”) comes from thinking

about math and extracting components of vectors.

What happens if one asks for a part of a list that doesn’t exist?

One gets a message, and the original computation is returned undone.

Can I just get the first position at which something appears in a list?

Yes. Use FirstPosition.

Tech Notes

• First and Last are equivalent to [[1]] and [[-1]].

In specifying parts, 1 ;;
-1 is equivalent to All.

More to Explore

Guide to Parts of Lists in the Wolfram Language (wolfr.am/eiwl-31-more)

32
|

Patterns — wolfr.am/eiwl-32 193

Patterns

Patterns are a fundamental concept in the Wolfram Language. The pattern

_ (read “blank”) stands for anything.

Cases finds all cases in a list that match whatever pattern you specify.

Find all cases of sublists of two elements, where the elements can each be anything:

Cases[{{l, }, {1, }, (1,, }, {2,, }, {2, }}, _}]

outm {{!,},{!,}, {2, }}

Find cases of a list consisting of the element 1 followed by anything:

Cases[{{l, }, {1, }, {1,, }, {2,, }. {2, }}, {1, _}]

ouw {{!,},{!,}}

In a pattern, 1
|

2 indicates “either 1 or 2”.

Find cases of either 1 or 2, followed by anything:

Cases[{{l, }, {1, }, {1,, }, {2, , }. {2, }}, {1 |
2, _}]

ouw {{1, }, {1, }, {2 , }}

The notation
(
“double blank”) indicates any sequence of things.

Find cases of any sequence of things, followed by blue:

Cases[{{l, }, {3, }, {1,, }. {2,, }, {2, }}, }]

- {{3, }, {1,, }, {2, }, {2, }}

Find cases that start with 1 or 2, then have any sequence, then end with blue:

Cases[{{l, }, {3, }, {1,, }, {2, , }. {2, }}, {1
|
2, }]

O-r {{1, }, {2, }}

Cases can pick out anything from a list, not just lists that appear:

Cases[{f[B], g[,], {1, 2, 3}, f[B], f[3, 4]}, f[]]

Outlet {f[Bl, f[B], f[3, 4]}

()nr of the many uses of patterns is to define replacements. /. (“slash dot”) performs

a replacement.

Replace b with Red in a list:

{a, b, a, a, b, b, a, b} /. b - Red

{3, I* 3, a, a,

194 An Elementary Introduction to the Wolfram Language

Replace all occurrences of 2-element lists that begin with 1:

Intel {{1, }, {1, }, {1, }, (2,, }, {2, }} /. {1, _} X

out[8]= {x, x, {1,, }, {2,, }, {2, }}

You can have a list of replacements to use:

mis] {{1, }, {1, }, {1, }, {2,, }, {2, }} /. {{1, _} - x, Blue} -4 y}

ont[9]= {x, x, y, y, y}

The “blank” pattern _ matches absolutely anything. This means, for example, that

matches any list of two elements. But what ifyou want to insist that the two

elements be the same? You can do that using a pattern like {x_, x_}.

{_, _} matches any list of two elements, whether the elements are the same or not:

,n[io] Cases[{{0, m, }, {, }, {, }, {, }, {, }, }, {}, {}, {}}, {_,_}]

ou.no,. {{, }, {, }, {, }, }, }}

{x_, x_} matches only lists of two identical elements:

mm, Cases[{{E3,, }, {, }, <p, }. {H, }, {, }, {, }, {}, {}, {}}, {x_, x_}]

Out[11]= {{, },{ }}

x_ is an example of a named pattern. Named patterns are especially important in replace-

ments, because they give one way to make use of parts ofwhat one’s replacing.

Use the named pattern x_ in a replacement:

In(i 2
] {{1, }, (1, }, {1,, }, {2,, }, (2, }} /. {1, x_} -4 {x, x, x, Orange}

0ut[i 2j= {{, }, {, }, {1, }, {2 , }, {2 , }}

The form a-^b is usually called a rule. If x_ appears on the left-hand side of a rule,

then whatever the x_ matches can be referred to on the right-hand side as x.

Use x in the right-hand side of the rule to refer to what x_ matches:

N13] (f[l], g[2], f[2], f[6], g[3]} /. f[x_] x + 10

0ut[i3,= {11, g[2], 12, 16, g[3]}

You can use rules inside Cases as well.

Pick out elements in the list that match f[x_], and give the result of replacing them by x + 10:

imu] Cases[{f[l], g[2], f[2], f[6], g[3]}, f[x_] - x + 10]

0ut[i4, {11, 12, 16}

Later on, we ll see how named patterns are crucial to defining your own functions in

the Wolfram Language.

32
|

Patterns — wolfr.am/eiwl-32 195

Vocabulary

pattern standing for anything (“blank”)

— pattern standing for any sequence (“double blank”)

A_ pattern named jc

a I b pattern matching a or/?

Cases[/m, pattern

]

find cases of a pattern in a list

Ihs -> rhs rule for transforming Ihs into rhs

expr 1. Ihs -* rhs replace Ihs by rhs in expr

Exercises

32.1 Find lists beginning with 1 and ending with 9 in lntegerDigits[Range[1000]].

32.2 Find lists of three identical elements in lntegerDigits[Range[1000]].

32.3 In the digit lists for the first 1000 squares, find those that begin with 9 and end with 0 or 1.

32.4 In IntegerDigits [Range [1000]] replace all 0’s by Gray and all 9’s by Orange.

32.5 Make a list of the digits of 2 A 1000, replacing all zeros by Red.

32.6 Remove the vowels a, e, i, o and u from the list of characters in “The Wolfram Language”.

32.7 Find a simpler form for Select[lntegerDigits[2 A 1000], XX == 0 1|
tX == 1 &].

32.8 Find a simpler form for Select[lntegerDigits[Range[100, 999]], First[tt] == Last[tt] &].

Q&A

Do the names of pattern variables (x_ etc.) matter?

No. They just have to be consistent inside a given pattern. Different patterns can reuse the same name for

different purposes, and the name can also appear outside the pattern.

What else can be used to define patterns?

We’ll discuss several more things in Section 41.

What’s the difference between
|

and ||?

p | q r, a pattern construct, that matches either p or q. p || q is a logic construct, that tests whether p or q

is True.

How is /. interpreted?

It's the function ReplaceAll. Replace tries to replace a whole expression. ReplaceList gives a list of results

from all possible ways to match a particular pattern.

If /. has several replacements, which one will it use?

It uses the first one that applies. If replacements apply to multiple levels of an expression, /. will use it on

the outermost level.

196 An Elementary Introduction to the Wolfram Language

Tech Notes

• Patterns for strings are discussed in Section 42.

Pattern matching in the Wolfram Language takes account of facts such as the equivalence of x + y and

y + x, orx + (y + z) and (x + y) + z. See Section 41.

In writing Ihs -> rhs, the Ihs stands for “left-hand side” and the rhs for “right-hand side”.

Patterns are scoping constructs, in the sense that they localize names like the x in x_ to just the scope of

the pattern.

In the rare case that /. is followed by a digit (like 0), you need to leave a space to avoid confusion with division.

More to Explore

Guide to Patterns in the Wolfram Language (wolfr.am/eiwl-32-more)

33
|

Expressions and Their Structure — wolfr.am/eiwl-33 197

33
|

Expressions and Their Structure

WeVe now seen all sorts of things that exist in the Wolfram Language: lists, graphics,

pure functions and much more. And now we’re ready to discuss a very fundamental

fact about the Wolfram Language: that each of these things—and in fact everything

the language deals with—is ultimately constructed in the same basic kind of way.

Everything is what’s called a symbolic expression.

Symbolic expressions are a very general way to represent structure, potentially with

meaning associated with that structure. f[x, y] is a simple example of a symbolic expres-

sion. On its own, this symbolic expression doesn’t have any particular meaning attached,

and ifyou type it into the Wolfram Language, it’ll just come back unchanged.

f[x, y] is a symbolic expression with no particular meaning attached:

mm f[x, y]

out[i)= f[x, y]

{x, y, z} is another symbolic expression. Internally, it’s List [x, y, z], but it’s displayed as

{x, y, z}.

The symbolic expression List [x, y, z] displays as {x, y, z}:

ln[2): Listfx, y, z]

0ut
(2]

{x, y, z}

Symbolic expressions are often nested:

3 List[List[a, b], List[c, d]]

out[3
]

{{a, b}, (c, d}}

FullForm shows you the internal form of any symbolic expression.

In{4]:= FullForm[{{a, b}, {c, d}}]

List[List[a, b], List[c, d]]

Graphics [Circle [{0, 0}]] is another symbolic expression, that just happens to display as a

picture of a circle. FullForm shows its internal structure.

This symbolic expression displays as a circle:

Graphics[Circle[{0, 0}]]

oun^i

198 An Elementary Introduction to the Wolfram Language

FullForm shows its underlying symbolic expression structure:

in[6i FullFormf!O
out[6]= Graphics[Circle[List[0, 0]]]

Symbolic expressions often don’t just display in special ways, they actually evaluate to

give results.

A symbolic expression that evaluates to give a result:

ln[7] Plus[2, 2]

Out[7]= 4

The elements of the list evaluate, but the list itself stays symbolic:

ini8]:- {Plus[3, 3], Times[3, 3], Power[3, 3]}

out[8]= {6, 9, 27}

Here’s the symbolic expression structure of the list:

in[9j {Plus[3, 3], Times[3, 3], Power[3, 3]} II FullForm

Out[9]= List[6, 9, 27]

This is just a symbolic expression that happens to evaluate:

strings and symbols.

Things like x, y, f, Plus, Graphics and Table arc all symbols. Every symbol has a unique

You could write it like this:

Blur[Graphics[Circle[{0, 0}]], 5]

Out[1 1]=

What are the ultimate building blocks of symbolic expressions? They’re called atoms

(after the building blocks of physical materials). The main kinds of atoms are numbers,

33
|

Expressions and Their Structure - wolfr.am/eiwl-33 199

A crucial defining feature of the Wolfram Language is that it can handle symbols

purely as symbols “symbolically" without them having to evaluate, say to numbers.

In the Wolfram Language, x can just be x, without having to evaluate to anything:

ln| X

O.ti: X

x does not evaluate, but the addition is still done, here according to the laws of algebra:

x + x + x + 2 y + y + x

Out: i 4x + 3y

Given symbols like x, y and f, one can build up an infinite number of expressions from

them. There’s f[x], and f[y], and f[x, y]. Then there’s f[f[x]] or f[x,f[x,y]], or, for that

matter, x[x][y, f[x]] or whatever.

In general, each expression corresponds to a tree, whose ultimate “leaves” are atoms.

You can display an expression as a tree using TreeForm.

An expression shown in tree form:

TreeForm[{f[x, f[x, y]], {x, y, f[l]}}]

Here’s a graphics expression shown in tree form:

TreeForm[Graphics[(Circle[{0, 0}], Hue[0.5], Disk[{l, 1}]}]]

Because expressions ultimately have a very uniform structure,

Wolfram Language operate in a very uniform way on them.

operations in the

200 An Elementary Introduction to the Wolfram Language

For example, any expression has parts, just like a list, and you ean extract them using [[..]].

This is equivalent to {x, y, z}[[2]], which extracts the second element in a list:

ln[16]:= List[x, y, z][[2]]

Extracting parts works exactly the same way for this expression:

in[i7] f[x, y, z][[2]]

0ut[i7]= y

This extracts the coordinates of the center of the circle:

in[i8]:= Graphics[Circle[{0, 0}]][[1, 1]]

Out[18]= {0,0}

This works exactly the same:

Out[19]= {0,0}

In f[x, y], f is called the head of the expression, x and y are called arguments.

The function Head extracts the head of an expression.

The head of a list is List:

in[20]:= Head[{x, y, z}]

Out[20]= List

Every part of an expression has a head, even its atoms.

The head of an integer is Integer:

in[2i]:= Head[1234]

out[2 i]= Integer

The head of an approximate real number is Real:

in[22
]

Head[12.45]

Out[22]= Real

The head of a string is String:

ln[23]:= Head["hello"]

out{23]= String

out[i6j= y

33
|

Expressions and Their Structure — wolfr.am/eiwl-33 201

Even symbols have a head: Symbol.

Head[x]

os. mi Symbol

In patterns, you can ask to match expressions with particular heads. Jnteger

represents any integer, _String any string, and so on.

_ Integer is a pattern that matches only objects with head Integer:

i

[5] Cases[{x, y, 3, 4, z, 6, 7}, Jnteger]

out|25]= {3, 4, 6, 7}

Named patterns can have specified heads too:

in[26): Cases[{99, x, y, z, 101, 102}, njnteger {n, n}]

0ut[26] {{99, 99}, {101, 101}, {102, 102}}

In using the Wolfram Language, most of the heads you’ll see are symbols. But there are

important cases where there are more complicated heads. One such case is pure func-

tions—where when you apply a pure function, the pure function appears as the head.

Here is the full form of a pure function (# is Slot [1]):

2 ? FullFormftt A 2 &]

0ut(27]- Function[Power[Slot[l], 2]]

When you apply the pure function, it appears as a head:

Function[Power[Slot[l], 2]] [1000]

out - 1000000

As you become more sophisticated in Wolfram Language programming, you’ll

encounter more and more examples of complicated heads. In fact, many functions

that we’ve already discussed have operatorforms where they appear as heads—and

using them in this way leads to very powerful and elegant styles of programming.

Select appears as a head here:

mt»|> Select[» > 4 &][{1, 2.2, 3, 4.5, 5, 6, 7.5, 8}]

{4.5, 5, 6, 7.5, 8}

Both Cases and Select appear as heads here:

Cases[_lnteger]@Select[tt > 4 &]@{1, 2.2, 3, 4.5, 5, 6, 7.5, 8}

{5, 6, 8}

202 An Elementary Introduction to the Wolfram Language

All the basic structural operations that we have seen for lists work exactly the same for

arbitrary expressions.

Length does not care what the head of an expression is; it just counts arguments:

ln[31]:= Length[f[x, y, z]]

Out[31]= 3

/@ does not care about the head of an expression either; it just applies a function to the

arguments:

ln[32]:= f/@g[X,y, Z]

Out[32]= g[f[x], fly], f[z]]

Since there are lots of functions that generate lists, it’s often convenient to build up

structures as lists even if eventually one needs to replace the lists with other functions.

@@ effectively replaces the head of the list with f:

ln[33] f@@{x,y, z}

out[33]= f[x, y, zj

This yields Plus [1, 1, 1, 1], which then evaluates:

ln[34]:= Plus@@{l, 1, 1, 1}

Out[34]= 4

This turns a list into a rule:

ln[35]:= ttl -4 tt2 &@@ {X, y}

out(35]= x -> y

Here’s a simpler alternative, without the explicit pure function:

ln[36]:= Rule@@{x, y}

0ut[36]= x -> y

A surprisingly common situation is to have a list of lists, and to want to replace the

inner lists with some function. It’s possible to do this with @@ and /@. But @@@
provides a convenient direct way to do it.

Replace the inner lists with f:

in[37] f@@@{{l, 2, 3}, {4, 5, 6}}

out[37]= {f[l, 2, 3], f[4, 5, 6]}

33
|

Expressions and Their Structure — wolfr.am/eiwl-33 203

Turn the inner lists into rules:

Rule@@@{{l, 10}, {2, 20}, {3, 30}}

{1 -> 10, 2 -> 20, 3 -> 30}

I lore’s an example of how @@@ can help construct a graph from a list of pairs.

This generates a list of pairs of characters:

Partition[Characters["antidisestablishmentarianism"], 2, 1]

{{a, n}, {n, t}, {t, i}, {i, d}, {d, i}, {i, s}, {s, e}, {e, s}, (s, t}, {t, a}, {a, b}, {b, l}, {l, i}, {i, s},

{s, h}, {h, m}, {m, e}, {e, n}, {n, t}, {t, a}, {a, r}, {r, i}, {i, a}, {a, n}, {n, i}, {i, s}, {s, m}}

Turn this into a list of rules:

Rule@@@Partition[Characters["antidisestablishmentarianism"], 2, 1]

{a —> n, n —> t, t —» i, i
—» d, d —» i, i

—> s, s —> e, e s, s —> t, t —> a, a —» b, b —> l, l —> i, i
—> s,

s -> h, h -> m, m -> e, e -> n, n -> t, t -> a, a -> r, r -» i, i -» a, a -> n, n -> i, i -» s, s -» m}

Form a transition graph showing how letters follow each other:

Graph[Rule@@@ Partition[Characters["antidisestablishmentarianism"], 2, 1],

VertexLabels -» All]

Vocabulary

FullFormfe.v/?/'] show full internal form

TreeFormfeA/?/] show tree structure

Headfc.rpr\ extract the head of an expression

_ head match any expression with a particular head

f@@ list replace the head of expr with /

/ @@@{listi,li.st2 , } replace heads of listi, list2 ,
with /

204 An Elementary Introduction to the Wolfram Language

Exercises

33.1 Find the head of the output from ListPlot.

33.2 Use @@ to compute the result of multiplying together integers up to 100.

33.3 Use @@@ and Tuples to generate {f[a, a], f[a, b], f[b, a], f[b, b]}.

33.4 Make a list of tree forms for the results of 4 successive applications of XX & starting from x.

33.5 Find the unique cases where i

A
2/(j

A 2 + 1) is an integer, with i and
j
going up to 20.

33.6 Create a graph that connects successive pairs of numbers in Table[Mod[n A 2 + n, 100], {n, 100}].

33.7 Generate a graph showing which word can follow which in the first 200 words of the Wikipedia

article on computers.

33.8 Find a simpler form forf@@tt &/@{{l, 2}, {7, 2}, {5, 4}}.

Q&A

How are @@ and @@@ interpreted?

f@@expr is Apply[/, expr].f@@@expr is Apply} /, expr, {1}]. They’re usually just read as “double at”

and “triple at”.

Are all expressions in the Wolfram Language trees?

At a structural level, yes. When there are variables with values assigned (see Section 38), though, they can

behave more like directed graphs. And of course one can use Graph to represent any graph as an

expression in the Wolfram Language.

Tech Notes

The basic concept of symbolic languages comes directly from work in mathematical logic stretching

back to the 1930s and before, but other than in the Wolfram Language it’s been very rare for it to be

implemented in practice.

* Wolfram Language expressions are a bit like XML expressions (and can be converted to and from them).

But unlike XML expressions, Wolfram Language expressions can evaluate so that they automatically

change their structure.

Things like Select} /] that are set up to be applied to expressions are called operator forms, by analogy

with operators in mathematics. Using Select[/][expr] instead of Select[e;c/?r, /] is often called currying,

after a logician named Haskell Curry.

Symbols like x can be used to represent algebraic variables or “unknowns”. This is central to doing many
kinds of mathematics in the Wolfram Language.

LeafCount gives the total number of atoms at the leaves of an expression tree. ByteCount gives the

number of bytes needed to store the expression.

More to Explore

Guide to Expressions in the Wolfram Language (wolfr.am/eiwl-33-more)

34
|

Associations — wolfr.am/eiwl-34 205

Associations

Associations are a kind of generalization of lists, in which every element has a key as

well as a value. Counts is a typical function that produces an association.

Counts gives an association that reports how many times each different element occurs:

Counts[{a, a, b, c, a, a, b, c, c, a, a}]

<
|

a —> 6, b—>2, c—>3|>

You can get the value associated with a particular key using [...].

Find the value associated with c in the association:

in[2
] < |

a -4 6, b 2, c -> 3
| > [c]

Out[2): 3

Operations that work on lists typically also work on associations—but apply

themselves only to the values, not the keys.

This adds 500 to each value in the association:

in(3] <
|
a — 6, b — 2, c — 3

|
> + 500

outpj- <
|

a —> 506, b —> 502, c —> 503
|

>

/@ applies a function to each value in the association:

f/@ <
|
a — 6, b — 2, c — 3 |

>

Out[4]= <|a-> f[6], b -> f[2], c -> f[3]
|

>

Total gives the total of the values:

Total[<| a -> 6, b->2, c —» 3
|
>]

Out[5] 11

Sort operates on the values:

Sort[<
|
a — 6, b — 2, c — 3

| >]

<
|

b —>2, c—>3, a—>6|>

KeySort operates on the keys:

KeySort[<|c->l, b-»2, a-»4|>]

<|a—>4, b—>2, c—>1|>

206 An Elementary Introduction to the Wolfram Language

The functions Keys and Values extract the keys and values of an association.

Get the list of keys in the association:

in[8): Keys[< |
a — 6, b—>2, c — 3 | >]

out[8j= {a, b, c}

Get the list of values in the association:

mo] Values[<| a -4 6, b -4 2, c -4 3 |>]

0ut[9]= {6, 2, 3}

Normal turns an association into a normal list of rules. Association makes an

association from a list of rules.

m[io] Normalf <| a -4 6, b -4 2, c -4 3 |>]

out[io)= {a -> 6, b -> 2, c -> 3}

in[ii] Association[{a -4 6, b -4 2, c -4 3}]

out[n]^ <|a—>6, b—>2, c->3|>

LetterCounts counts how many times letters occur in a string.

Count how many times each letter occurs in the Wikipedia article on computers:

i n
[
1

2

]
LetterCounts[WikipediaData["computers"]]

<
|

e -> 4833, t —> 3528, a —> 3207, o —> 3059, r —> 2907, i
-> 2818, n -> 2747, s -4 2475, c -> 1800,

l -4 1673, m -4 1494, h -4 1473, u -4 1357, d -4 1329, p -4 1153, g -4 818, f -4 766,

y -4 594, b -4 545, w -4 456, v -> 391, k -> 174, T -4 150, A -4 110, 1 -4 101, C -4 84,

M -4 82, x -4 77, S —> 68, P —> 64, q -

¥

58, U 55, B -4 45, H —> 43, E —> 42, R —> 41,

L -> 41, z -> 38, O -> 38, D -4 37, W -4 30, N -4 29, F -4 28, j
-> 25, G -> 23, J -4 17,

K -4 14, V -4 10, Z -^ 8, Q -> 4, u -> 4, 1 -> 4, o -> 2, a -^ 2, Y -4 1, X -> 1, e -> 1, a —> 1
1

y

KeyTake picks out elements of an association that appear in a list of keys you specify.

Here we’re taking the elements whose keys are letters in the (lowercase) alphabet.

Take only those elements in the association whose keys appear as letters in the alphabet:

i, nr KeyTake[LetterCounts[WikipediaData["computers"]], Alphabetf]]

<|a-> 3207, b -4 545, c -4 1800, d -4 1329, e -4 4833, f -4 766, g -4 818, h -4 1473,

i -4 2818, j
-» 25, k -> 174, l -4 1673, m -4 1494, n -4 2747, o -4 3059, p -4 1153, q -4 58,

r -4 2907, s -4 2475, t -4 3528, u -4 1357, v -4 391, w -4 456, x -4 77, y -4 594, z -4 38
|

>

OUt[13]:

34
|

Associations — wolfr.am/eiwl-34 207

BarChart plots the values in an association. With the option ChartLabels -» Automatic,

it uses the keys as labels.

Make a bar chart of how many times each letter appears; “e” is the most common:

BarChart[KeyTake[LetterCounts[WikipediaData["computers"]], Alphabetf]],

ChartLabels -4 Automatic]

Here’s a direct way to apply a pure function to an association:

Apply a pure function to an association:

f[tt["apples"], #["oranges"]] &[<| "apples" -4 10, "oranges" -4 12, "pears" -4 4 |>]

Out|15 f[10, 12]

It’s very7 common to have keys that are strings, and the Wolfram Language has a

special way to handle these when it comes to pure functions: you can just use ttkey to

refer to an element whose key is "key".

Use the simpler notation for association elements whose keys are strings:

ffttapples, ttoranges] &[<
|
"apples" -4 10, "oranges" -4 12, "pears" -4 4

| >]

a** f[10, 12]

As a more realistic example, apply a pure function that extracts the value for “e” from

the letter counts, and divides by the total. The N gives the result as a decimal.

Compute the fraction of letters in the “computers” article that are “e”:

tte/Total[tt] & @LetterCounts[WikipediaData["computers"]] II N

0.11795

208 An Elementary Introduction to the Wolfram Language

Vocabulary

<1 key\ “ value i, key2 -> valuer ... |> an association

Association [rules] turn a list of rules into an association

assoc[key] extract an element of an association

Keys [fl.v,sw] list of keys in an association

Values[am>c] list of values in an association

Normal [assoc] turn an association into a list of rules

KeySort [assoc] sort an association by its keys

KeyTake [assoc, keys]
take elements with particular keys

ttkey function slot for an element with key “key”

Counts [list] an association with counts of distinct elements

LetterCounts [string] an association with counts of distinct letters

Exercises

34.1 Make a list, in order, of the number of times each of the digits 0 through 9 occurs in 3 A 100.

34.2 Make a labeled barchart of the number of times each of the digits 0 through 9 occurs in 2 A 1000.

34.3 Make a labeled bar chart of the number of times each possible first letter occurs in words from

WordList[].

34.4 Make an association giving the 5 most common first letters of words in Word List [] and their counts.

34.5 Find the numerical ratio of the number of occurrences of “q” and “u” in the Wikipedia entry for

computers.

34.6 Find the 10 most common words in ExampleData [{"Text", "AlicelnWonderland"}].

Q&A

Why are associations called “associations”?

Because they associate values with keys. Other names used for the same concept are associative arrays,

dictionaries, hashmaps, structs, key-value maps and symbolically indexed lists.

Can an association have several elements with the same key?

No. Keys in an association are always unique.

What happens if I ask for a key that’s not in an association?

Normally you get Missing[]. But if you use Lookup to look up the key, you can specify what to return if the

key is absent.

34
|

Associations — wolfr.am/eiwt-34 209

How can I do operations on the keys of an association?

Use KeyMap, or use functions like KeySelect and KeyDrop. AssociationMap creates an association by

mapping a function over keys.

How can I combine several associations into one?

Use Merge. You have to give a function to say what to do if the same key occurs in multiple associations.

Can one use [[..]] to extract part of an association, like one extracts part of a list?

Yes, if you explicitly say ajsoc-[[Key[&ey]]]. assoc^2]], for example, will extract the second element of assoc,

whatever key it has. assoc[[key][is a special case that works the same as assoc[£ey].

What happens in pure functions if the keys in an association aren’t strings?

You can’t use tthey anymore; you have to explicitly use tt[key].

Tech Notes

• Most functions effectively operate on associations as if they were operating on lists of their values.

Functions that thread themselves over lists typically do the same over associations.

Associations are like tables in a relational database. JoinAcross does the analog of a database join.

More to Explore

Guide to Associations in the Wolfram Language (wolfr.am/eiwl-34-more)

35
|

Natural Language Understanding - wolfr.am/eiwl-35 211

35
|

Natural Language Understanding

\\ c saw earlier how to use Ctrl += to enter natural language input. Now we re going

to talk about how to set up functions that understand natural language.

Interpreter is the key to much of this. You tell Interpreter what type of thing you want

to get, and it will take any string you provide, and try to interpret it that way.

Interpret the string "nyc" as a city:

lnterpreter["City"]["nyc"]

Outjl] New York City

)

“The big apple” is a nickname for New York City:

lnterpreter["City"]["the big apple"]

Out[J New York City
]

Interpret the string "hot pink" as a color:

lnterpreter["Color"]["hot pink"]

Out(3]=

Interpreter converts natural language to Wolfram Language expressions that you can

compute with. Here’s an example involving currency amounts.

Interpret various currency amounts:

lnterpreter["CurrencyAmount"][

{"4.25 dollars", "34 russian rubles", "5 euros", "85 cents"}]

[
$4.25 , py634, €5 , 850

}

Compute the total, doing conversions at current exchange rates:

Total[{ $4.25
, py634 , €5 , 850 }]

o„, $11.07

1 fere’s another example, involving locations.

Interpreter gives the geo location of the White House:

lnterpreter["Location"]["White House"]

GeoPosition[{38.8977, -77.0366}]

212 An Elementary Introduction to the Wolfram Language

It can also work from a street address:

in[7
|
: = lnterpreter["Location"]["1600 Pennsylvania Avenue, Washington, DC"]

out[7]= GeoPosition[{38.8977, -77.0366}]

Interpreter handles many hundreds of different types of objects.

Interpret names of universities (which “U of I” is picked depends on geo location):

in[8] :
= lnterpreter["University"][{"Harvard", "Stanford", "U of I"}]

Out[8]=

|
(Harvard University]

,
(Stanford University]

,

(University of Illinois at Urbana-Champaign
) J

Interpret names of chemicals:

in[9]:= lnterpreter["Chemical"][{"H20", "aspirin", "C02", "wolfram"}]

out[9]=

|
(water)

,
(aspirin)

,
(carbon dioxide)

,
(tungsten)

J

Interpret names of animals, then get images of them:

in[io] := EntityValue[lnterpreter["Animal"][{"cheetah", "tiger", "elephant"}], "Image"]

Interpreter interprets whole strings. TextCases, on the other hand, tries to pick out

instances ofwhat you request from a string.

Pick out the nouns in a piece of text:

mm] TextCases["A sentence is a linguistic construct", "Noun"]

out[i i]= {sentence, construct}

Pick out currency amounts:

infi 2]
:= TextCasesf'Choose between $5, €5 and ¥5000", "CurrencyAmount"]

Out[12]= {$5, €5, ¥5000}

35
|

Natural Language Understanding — wolfr.am/eiwl-35 213

\ on can use TextCases to pick out particular kinds ol things from a piece of text.

Here vve pick out instances of country names in a Wikipedia article.

Generate a word cloud of country names from the Wikipedia article on the EU:

WordCloud[TextCases[WikipediaData["EU"], "Country"]]

Italy
Romania Sweden Hungarian Ireland

<Netherlands®p
f
nish^

fSKos£5£Den markczecfcsh

Out[13]=

- • Belgium^

'

y |D I U 13 Portugal Latvia

TextStructure shows you the whole structure of a piece of text.

Find how a sentence of English can be parsed into grammatical units:

TextStructure["You can do so much with the Wolfram Language."]

You can do so much with the Wolfram Language

Pronoun Verb Verb Adverb Adverb Preposition Determiner Proper Noun Proper Noun Punctuation

Noun Phrase Adverb Phrase Noun Phrase

°u,t
14

l
=

Prepositional Phrase

Verb Phrase

Verb Phrase

Sentence

••y Bulgaria
• Lithuania i ranee

the United Kingdom
lc^aj<?German sPa 'g’

“S.^GermanyMaita;

English
i n »«*»»

Scottish

Poland

siovaLa Luxembou rg
Greenland ^ ^ « Hrani mi

An alternative representation, as a graph:

TextStructuref'You can do so much with the Wolfram Language.", "ConstituentGraphs"]

Sentence

Noun Phrase Verb Phrase Punctuation

Pronoun Verb

{
You can

Verb Phrase

Verb Adverb Phrase Prepositional Phrase

do Adverb Adverb Preposition Noun Phrase

}

SO much With Determiner Proper Noun Proper Noun

the Wolfram Language

Vocabulary

Interpreter ["type"] specify a function to interpret natural language

TextCases["/c;c/", "type") find cases of a given type of object in text

TextStructure ["text”) find the grammatical structure of text

214 An Elementary Introduction to the Wolfram Language

Exercises

35.1 Use Interpreter to find the location of the Eiffel Tower.

35.2 Use Interpreter to find a university referred to as “U of T”.

35.3 Use Interpreter to find the chemicals referred to as C2H4, C2H6 and C3H8.

35.4 Use Interpreter to interpret the date “20140108”.

35.5 Find universities that can be referred to as“U of X”, where x is any letter of the alphabet.

35.6 Find which US state capital names can be interpreted as movie titles (use CommonName to get the

string versions of entity names).

35.7 Find cities that can be referred to by permutations of the letters a, i, l and rm.

35.8 Make a word cloud of country names in the Wikipedia article on “gunpowder”.

35.9 Find all nouns in “She sells seashells by the sea shore.”

35.10 Use TextCases to find the number of nouns, verbs and adjectives in the first 1000 characters of the

Wikipedia article on computers.

35.11 Find the grammatical structure of the first sentence of the Wikipedia article about computers.

35.12 Find the 10 most common nouns in ExampleData [{"Text", "AlicelnWonderland"}].

35.13 Make a community graph plot of the graph representation of the text structure of the first sentence

of the Wikipedia article about language.

Q&A

What possible types of interpreters are there?

It’s a tong list. Check out the documentation, or evaluate $lnterpreterTypes to see the list.

Does Interpreter need a network connection?

In simple cases, such as dates or basic currency, no. But for full natural-language input, yes.

When I say “4 dollars”, how does it know if I want US dollars or something else?

It uses what it knows of your geo location to tell what kind of dollars you’re likely to mean.

Can Interpreter deal with arbitrary natural language?

If something can be expressed in the Wolfram Language, then Interpreter should be able to interpret it.

lnterpreter["SemanticExpression"] takes any input, and tries to understand its meaning so as to get a

Wolfram Language expression that captures it. What it’s doing is essentially the first stage of what

Wolfram|Alpha does.

Can I add my own interpreters?

Yes. GrammarRules lets you build up your own grammar, making use of whatever existing interpreters

you want.

What about languages other than English?

Interpreter mostly works only with English. But for example WordT ranslation translates words to and from

many languages.

Can I find the meaning of a word?

WordDefinition gives dictionary definitions.

35
|

Natural Language Understanding — wolfr.am/eiwl-35 215

Tech Notes

• TextStructure requires complete grammatical text, but Interpreter uses many different techniques to

also work with fragments of text.

When you use Ctrl + you can resolve ambiguous input interactively. With Interpreter you have to do it

programmatically, using the option AmbiguityFunction.

More to Explore

Guide to Natural Language Interpreters in the Wolfram Language (wolfr.am/eiwl-35-more)

36
|

Creating Websites and Apps — wolfr.am/eiwl-36 217

36
|

Creating Websites and Apps

The W olfram Language makes it easy to put anything you create onto the web.

Create some graphics:

GeoGraphics[GeoRange -4 All, GeoProjection -4 "Albers"]

out(i]= v A.,

Deploy it to the cloud:

CloudDeploy[GeoGraphics[GeoRange -4 All, GeoProjection -4 "Albers"]]

CloudObject[https://www.wolframcloud.com/objects/9elf3855-df3f-4d63-96f0-49c6bcd 14138]

Ifyou don’t tell it a location, Cloud Deploy will set up a new web page, with a unique

address. Ifyou go to that web page, you’ll find your graphics there.

4 (
https://www wolframcloud.com/objects/9elf3855-df3f-4d63-96fO-49c6bcdl4138

! C

Ifyou want the whole world to be able to see what you created, you can do that too

at least so long as you’ve got appropriate access to the Wolfram Cloud).

Deploy to the Wolfram Cloud, giving everyone permission to see what you’ve made:

CloudDeploy[Graphics[{Red, Disk[]}], Permissions -4 "Public"]

CloudObject[https://www.wolframcloud.com/objects/b76ab315-ee3a-4400-bed8-66c3c9b07c22]

218 An Elementary Introduction to the Wolfram Language

Anyone who has the web address (URL) can now go there to see what you’ve made.

URLShorten makes a short URL that’s easier to tell to people.

Make a short URL for the web page you’ve created:

in [4
1

:

URLShorten[CloudDeploy[Graphics[{Red, Disk[]}], Permissions - "Public"]]

out(4] https://wolfr.am/7vm~o2zC

You can deploy active content, like Manipulate, to the web too.

m[5
]

CloudDeploy[Manipulate[

Graphics[Table[Circle[{0, 0}, r], {r, min, max}]], {min, 1, 30, 1}, {max, 1, 30, 1}]]

jut[5] CloudObject[https://www.wolframcloud.com/objects/fll3bc73-f933-4dc2-8359-7198cl78a06b]

Now you’ll get a web page with active sliders and so on. You’ll be able to use them in

any standard web browser, though because they have to communicate over the

internet, they’ll run slower than if they were directly on your computer.

Cloud Deploy normally works by first doing whatever computation it can, and then

putting the result on the web. This means, for example, that Cloud Deploy [Now] will

make a web page that always just shows the time when it was deployed. If instead you

want to make a web page that gives the current time every time the page is requested,

you can do this with CloudDeploy[Delayed [Now]].

Use Delayed to make a clock that’s regenerated every time the web page is requested:

in[6] Cloud Deploy[Delayed[ClockGauge[Now]]]

0ut[6]= CloudObject[https://www.wolframcloud.com/objects/94aaf4ad-daea-4fe5-a50f-97bl46a8b6ff]

36
|

Creating Websites and Apps — wolfr.am/eiwl-36 219

Now every time you go to the web page, it’ll regenerate the clock in the Wolfram
Cloud, and put a new version onto the web page.

You can create a “real-time dashboard” by specifying an update interval.

Set up the web page you create to automatically update itself every 2 seconds:

CloudDeploy[Delayed[ClockGauge[Now], Updatelnterval -> 2]]

CloudObject[https://www.wolframcloud.com/objects/88e8fb8a-6d50-4474-b52a-6458a9aaccal]

We’ve talked about things in terms ofweb pages. But actually, all of this works on

mobile too, where you're for example viewing things through the Wolfram Cloud app.

But what about making your own apps on the web or on mobile:1

In the W olfram

Language it's for example easy to set up a form-based app.

The basic idea is to set up a FormFunction that defines both the structure of the form,

and the action that's performed when the form is submitted.

220 An Elementary Introduction to the Wolfram Language

Let’s set up a form with one field labeled name that expects the name of an animal,

then generates an image of that animal—and then deploys this to the cloud.

Set up a form-based app with a single input field for entering the name of an animal:

in [8]:= CloudDeploy[FormFunction[{"name" - "Animal"}, ttname["lmage"] &]]

0ut[8]- CloudObject[https://www.wolframcloud.com/objects/6925826b-776e-429a-bbOa-629be4594f35]

Now if you go to that web address, you’ll see a form:

4r {
https://www.wolframcloud.cofn/objects/6925826b-776e-429a-bb0a-629be4594f35] 0

Submit the form and you’ll get back a picture of a tiger:

36
|

Creating Websites and Apps — wolfr.am/eiwl-36 221

You can have your form generate anything, including, for example, an active

Manipulate.

Generate a Manipulate from a form:

CloudDeploy[FormFunction[{"name" -4 "Animal"},

Manipulate[Rotate[$$name["lmage"], 0], {0, 0,360°}] &]]

Cloud0 bject[https://www.wolframcloud.com/objects/0870 f086-37bl-4e3c-b078-510 b9e95938 b]

You can set up a form with any number of fields. For each field you say what type of

input it should accept using the same specifications as Interpreter.

Deploy a form that accepts two numbers:

CloudDeploy[FormFunction[{"x" -4 "Number", "y" -4 "Number"}, ttx + tty &]]

CloudObject[https://www.wolframcloud.com/objects/464eeeff-c7a0-4f93-bl32-6721302a6048]

f https://www. wotframcloud.com/objects/464eeeff-c7a0-4f93-bl32-6721302a6048 j 0

>

X

y
) ! !

Submit

222 An Elementary Introduction to the Wolfram Language

If you try to give this form an input that isn’t a number, you’ll get an error:

^ (^https //www.wotframdoud.com/objects/464<eeff-c 7a0-4f93-b 132-6721 302a6048 j C*

x 67

y ostrich

Enter a valid number.

You can have fields that expect strings ("String") or integers ("Integer") or dates

("Date") or hundreds of other kinds of things.

When you ask for “real-world” types of input, like "Animal" or "City", CloudDeploy

automatically sets up smartfields in your form, indicated by that use natural

language understanding to interpret what’s entered in them. But for more-abstract

types of input, like numbers, you can for example choose between "Number",

"SemanticNumber" and "ComputedNumber".

"Number" only allows explicit numbers, like 71. "SemanticNumber" also allows numbers

in natural language, like “seventy-one”. "ComputedNumber" also allows numbers that

have to be computed, like “20th prime number”.

Allow numbers specified by natural language:

in(ii] CloudDeploy[

FormFunction[{"x" -> "SemanticNumber", "y" - "SemanticNumber"}, ttx + tty &]]

CloudObject[https://www.wolframcloud.com/objects/662dc9bd-89ff-4c58-85c9-43ael276082b]

“Seventy-one” works as a semantic number; to find the prime requires a computed number:

[
https://vvww.wolframcloud com/objects/662dc9bd-89ff~4c58-85c9-43ael276082b] 0

x seventy-one

y 20th prime number

No number interpretation found. Try again.

Submit

36
|

Creating Websites and Apps - wolfr.am/eiwl-36 223

II you specify a type of input like "Image",

image like direct access to the camera or

you’ll get special controls for acquiring the

photo gallery on a mobile device.

Deploy an edge-detection app for images:

Cloud Deploy[Form Function [{"photo" - "Image"}, EdgeDetect[ttphoto] &]]

CloudObject[https://www.wolframcloud.com/objects/727cl2 b9-6e42-496f-aald-0c5630 c0fc5c]

On a mobile device, you can get the image from the camera:

FormFunction lets you set up “one-shot” forms. You fill in a form, press Submit, then

get a result. Ifyou want to get another result, you have to go back to the form, and

then submit it again. Form Page lets you set up pages that always include the form

along with the result—like, for example, Wolfram
|

Alpha or a search engine would.

224 An Elementary Introduction to the Wolfram Language

Create a form page that shows a map of a city:

ln(13):
CloudDeploy[FormPage[{"city" -4 "City"}, GeoGraphics[«city] &]]

out[i3i
CloudObject[https://www.wolframcloud.com/objects/0330658f-294c-43be-9dlf-3b7clc455624]

You can change the field and submit again to get a new result:

t- httpi c0^ o6<ocK oVw.^ ^-»tb» ^dlf ibn U4MM4

j

Q

Vocabulary

Cloud Deploy [expr] deploy to the cloud

Delayed [expr] computation delayed until it is requested

FormFunction [form, function] representation of a deployable form

Form Page [form, function] representation of a deployable form+result page

URLShorten[//r/] make a short version of a web URL

36
|

Creating Websites and Apps - wolfr.am/eiwl-36 225

Exercises

36.1 Deploy a map of your current location to the web.

36.2 Deploy to the web a map that shows the current inferred location of the user.

36.3 Create a website that displays a new random number up to 1000 at size 100 every time it is visited.

36.4 Deploy a form on the web that takes a number x and returns x A
x.

36.5 Deploy a form on the web that takes numbers x and y and computes x A
y.

36.6 Deploy a form on the web that takes the topic of a Wikipedia page and gives a word cloud for the

page (with stopwords removed).

36.7 Deploy a form page on the web that takes a string and repeatedly gives a reversed version at size 50.

36.8 Deploy a form page on the web that takes an integer n and repeatedly generates a picture of a

polygon with random color and n sizes.

36.9 Deploy a form page that takes a location and a number n and repeatedly gives a map of the n

nearest volcanoes to the location.

Q&A

Why are the web addresses so long?

They’re UUIDs (universally unique identifiers) that are long enough that with overwhelming probability no

two identical ones will ever be created in the history of the universe.

How do I deploy to the cloud in a particular format?

Just ask for the format using ExportForm (or by giving the format inside FormFunction). Popular formats

include “GIF”, “PNG”, “JPEG”, “SVG”, “PDF”, “HTMLFragment”.

How can I embed a web page generated by CloudDeploy?

Use EmbedCode to generate the necessary HTML.

How do I specify a label for a field in a form?

Just say e.g. {"s", "Enter a string here"} -» "String". By default, the label shown for a field is just the name

you use for the variable corresponding to the field. You can use any label you want for a field, including

graphics, etc.

How do I specify initial or default values for a field in a form?

Say e.g. "n" -» "Integer" -» 100.

How do I restrict the values that can be entered in a particular field of a form?

Use Restricted. For example, Restricted["Number", {0, 10}] specifies a number between 0 and 10.

Restricted["Location", g italy]
specifies a location in Italy.

How do I specify the look of a form?

To start with, use options like FormTheme. For more control, you can put a FormObject inside a

FormFunction, and give very detailed instructions. You can include any headers or text or styling that can

appear in a notebook.

Can forms have checkboxes, sliders, etc.?

Yes. They can use the same controls as Manipulate, including checkboxes, radio buttons, popup menus,

sliders, color pickers, etc.

226 An Elementary Introduction to the Wolfram Language

Can I make extensible and multipage forms?

Yes. Field specifications can include constructs like RepeatingElement and CompoundElement. And forms

can consist of lists of pages, including ones that are generated on the fly.

When I deploy to the cloud, where are the computations actually done?

In the cloud ©. Or in practice: on computers at centralized locations around the world.

How can I create a mobile app?

When you deploy to the cloud, you immediately have a mobile app that you can access from within the

Wolfram Cloud app. You can specify a custom icon for your app using IconRules.

What about APIs?

APIFunction works very much like FormFunction, except it creates a web API that you can call by giving

parameters in a URL query. EmbedCode lets you take an APIFunction, and generate code to call the API

from many external programming languages and environments.

Tech Notes

3D graphics are by default deployed to be rotatable and zoomable.

AutoRefreshed makes a web page be automatically refreshed on a schedule, so it’s ready if you ask for it.

You can give detailed permissions for who can access something you deploy to the cloud, and what they

can do with it. Setting $Permissions specifies a default choice of permissions.

More to Explore

Guide to Creating Web Sites and Apps in the Wolfram Language (wolfr.am/eiwl-36-more)

37
|

Layout and Display - wolfr.am/eiwl-37 227

37
|

Layout and Display

Earlier we saw how to use Framed to add a frame when one displays something.

Generate a number and put a frame around it:

Framed[2 A 100]

1 267 650 600 228 229 401 496 703 205 376

You can give options to Framed.

Specify a background color and a frame style:

Framed[2 A 100, Background -> LightYellow, FrameStyle -> LightGray]

1 267 650 600 228 229 401496 703 205 376

Labeled lets you make things be labeled.

Add a label to the framed number:

Labeled[Framed[2 A
100], "a big number"]

Out[3]= 1 267 650 600 228 229 401496 703 205 376

a big number

This adds a label to a number styled with a yellow background:

Labeled[Style[2 A 100, Background -> Yellow], "a big number"]

1 267 650 600 228 229 401496 703 205 376

a big number

This adds styling to the label:

Labeled[Style[2 A 100, Background -> Yellow], Style["a big number", Italic, Orange]]

1 267 650 600 228 229 401496 703 205 376

o big number

228 An Elementary Introduction to the Wolfram Language

You can use Labeled in graphics as well.

Make a pie chart in which some wedges are labeled:

in[6]:= PieChart[

{Labeled[l, "one"], Labeled[2, "two"], Labeled[3, Red], Labeled[4, Orange], 2, 2}]

Out[6]=

Plot labeled points:

ln[7] ListPlot[

{Labeled[l, "one"], Labeled[2, "two"], Labeled[3, Pink], Labeled[4, Yellow], 5, 6, 7}]

Out[7]=

5 6 7

Plot all the first twenty primes labeled with their values:

in[8]:= ListPlot[Table[Labeled[Prime[n], Prime[n]], {n, 20}]]

Out[8]=

There are all sorts of ways to annotate graphics. Style directly inserts styling.

Tooltip generates interactive tooltips. Legended puts labels into a legend on the side.

Specify styles for the first three pie wedges:

in[9] = PieChart[{Style[3, Red], Style[2, Green], Style[l, Yellow], 1, 2}]

Out[9]=

37
|

Layout and Display — wolfr.am/eiwl-37 229

Set up words and colors as legends for pie wedges:

PieChart[{Legended[l, "one"], Legended[2, "two"],

Legended[3, Pink], Legended[4, Yellow], 2, 2}]

0ut(10]=

one

two

The default plot theme for the web is more brightly colored:

PieChart[{l, 2, 3, 4, 2, 2}, PlotTheme - "Web"]

Out[1 1]=

It's common to want to combine different objects for presentation. Row, Column and

Grid are convenient ways to do this.

Display a list of objects in a row:

Row[{Yellow, Pink, Cyan}]

0ut[i2j= HHH

Display objects in a column:

Column[{Yellow, Pink, Cyan}]

Out(13]=

I ’sc GraphicsRow, GraphicsColumn and GraphicsGrid to arrange objects to fit in a

certain overall size.

230 An Elementary Introduction to the Wolfram Language

Generate an array of random pie charts, sized to fit:

GraphicsGrid[Table[PieChart[RandomReal[10, 5]], 3, 6]]

Do it with a frame around everything:

in[i 5 GraphicsGrid[Table[PieChart[RandomReal[10, 5]], 3, 6], Frame -> All]

Vocabulary

Framed [e.xpr] add a frame

Labeled [expr, lab

]

add a label

Tooltip [expr, lab] add an interactive tooltip

Legendedfexpr, lab] add a legend

Ro\N[{exprly expr2 , ...}] arrange in a row

Column [{expriy expr2 , ...}] arrange in a column

GraphicsRowffccc/?/!, expr2 , }] arrange in a resizable row

GraphicsColumn[{e;c/?ri, expr2 , ...}] arrange in a resizable column

GraphicsGrid [array] arrange in a resizable grid

37
|

Layout and Display — wolfr.am/eiwl-37 231

Exercises

37.1 Make a list of numbers up to 100, with even numbers on yellow and odd numbers on light gray.

37.2 Make a list of numbers up to 100, with primes framed.

37.3 Make a list of numbers up to 100, with primes framed and labeled in light gray with their values
modulo 4.

37.4 Create a 3*6 GraphicsGrid of randomly colored disks.

37.5 Make a pie chart of the GDPs of the countries in the G5, labeling each wedge.

37.6 Make a pie chart of the populations of the countries in the G5, giving a legend for each wedge.

37.7 Make a 5*5 GraphicsGrid of pie charts that give the relative frequencies of digits in 2 A n with n

starting at 1.

37.8 Make a graphics row of word clouds for Wikipedia articles on the G5 countries.

Q&A

Can I get rounded corners with Framed?

Yes. Use an option like RoundingRadius -»0.2.

What kinds of things can be in a label?

Anything you want. A label can be text or a graphic or, for that matter, a whole notebook.

Can I use Labeled to put labels in places other than at the bottom?

Yes. Use e.g. Labeled [expr, label, Left] or Labeled [expr, label, Right].

How do I determine where a legend goes?

Use Placed.

Can visualization be animated or dynamic?

Yes. ListAnimate creates an animation. Constructs from Tooltip to Manipulate can be used to set up

dynamic visualizations.

Tech Notes

The Wolfram Language tries to place labels where they won’t interfere with the data that’s being plotted.

You can resize any graphic using Sho\N[graphic, ImageSize -» width] or

Show[graphic, ImageSize {width, height}]. ImageSize -» Tiny, etc. also work.

More to Explore

Guide to Labeling & Annotation in the Wolfram Language (wolfr.am/eiwl 37-more)

38
|

Assigning Names to Things — wolfr.am/eiwl-38 233

38
|

Assigning Names to Things

Particularly when you’re doing quick experiments in the Wolfram Language, it’s

often convenient to use % to refer to the result of your most recent computation.

Do a simple computation:

Range[10]

out[i {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

% gives the result of the previous computation:

ln[2): %

out|2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

This squares the most recent result:

ln[3): % A 2

out(3 {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

If you expect to refer to a result later, you can assign it a name. For example, you can

say thing = Range[10] to assign thing as a name for the result of Range[10].

Assign thing to be the result of Range[10]:

thing = Range[10]

out {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Whenever thing appears, it’ll be replaced by the result of Range[10]:

nisi thing

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Square the value of thing:

thing A 2

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

You ran assign a name to the result of a computation even if you never display the

result. Lnd your input with
;
(semicolon) to avoid seeing the result.

Assign a name to a list of a million elements, but don’t display the list:

millionlist = Range[1000 000];

234 An Elementary Introduction to the Wolfram Language

Find the total of all the elements in the list:

in [8] Total[millionlist]

Out[8]= 500 000500000

When you assign a name to something, the name will stay until you explicitly clear it.

Assign x the value 42:

ln[9] X = 42

0ut[9)= 42

You might have thought this would be {x, y, z}—but x has value 42:

mno] {x, y, z}

out[i o]= {42, y, z}

Ifyou want to clear assignments, use Clear.

Clear any assignment for x:

in[i i]:= Clear[x]

Now x, like y and z, isn’t replaced:

ln[12]:= {X, y, Z>

0ut[i 2]= {x, y, z}

Assigning a. global value for x, like x = 42, is potentially a big deal, because it can affect

everything you do in your session (at least until you clear x). Something that's much

safer—and extremely useful—is just to assign a temporary, local value to x, inside a

module.

This locally sets the value of x to be Range[10] inside the Module:

in[i 3] Module[{x = Range[10]}, x A
2]

Out[13]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Outside the module, x still has no value assigned:

ln[14]:= X

Out(14]= X

38
|

Assigning Names to Things — wolfr.am/eiwl-38 235

\ on can have as many local variables inside a module as you want.

Define local variables x and n, then compute x A n using the values you’ve assigned:

Module[{x = Range[10], n = 2}, x A n]

{ 1 ,
4

,
9

,
16

,
25

,
36

,
49

,
64

,
81

,
100 }

In thefunctional style ofprogramming that we’ve used in most of this book, you carry

out sequences of operations by applying sequences of functions. This is a very power-

ful and direct style of programming that’s uniquely suited to the Wolfram Language.

But once one’s defining variables, one can use a different style, in which one doesn’t

feed results directly from one function to another, but instead assigns them as values

of variables to be used later. This kind ofproceduralprogramming is what’s been used in

lower-level languages since the very earliest days of computing.

It's still useful in the Wolfram Language, though in many ways it’s eclipsed by func-

tional programming, as well as by tht pattern-based style ofprogramming that we’ll

discuss later.

To specify sequences of actions in the Wolfram Language one just separates them by

semicolons (;). (Putting a semicolon at the end is like specifying an empty final action,

which is why this has the effect of not displaying a result.)

Do a sequence of operations; the result is what the last operation produces:

x = Range[10]; y = x A
2; y = y + 10000

{10001 ,
10004

,
10009

,
10016

,
10025

,
10 036

,
10 049

,
10064, 10 081

,
10100 }

This defined global values for x and y; don’t forget to clear them:

Clearfx, y]

You can use semicolons to do sequences of operations inside Module.

This does a sequence of operations, with x and y maintained as local variables:

Module[{x, y}, x = Range[10]; y = x A
2; y = y + 10000]

{10001 ,
10004

,
10009

,
10016

,
10025

,
10036

,
10049

,
10064

,
10081

,
10100}

You can mix local variables that do and don’t have initial values:

Module[{x, y, n = 2}, x = Range[10]; y = x A n; y = y + 10000]

{10001 ,
10004

,
10009

,
10016

,
10025

,
10036

,
10049

,
10064

,
10081

,
10100 }

You can nest modules which is useful if you’re'

want to isolate different parts of your code.

building large programs where' you

236 An Elementary Introduction to the Wolfram Language

Vocabulary

% the most recent computation result

x = value assign a value

Clear[.v] clear a value

Module[{x= value), ...] set up a temporary variable

expr
;

do a computation, but don’t display its result

expri ;
expr2 ;

... do a sequence of computations

Exercises

38.1 Use Module to compute x A 2 + x where x is Range [10].

38.2 Use Module to generate a list of 10 random integers up to 100, then make a column giving the

original list, and the results of applying Sort, Max and Total to it.

38.3 Use Module to generate an image collage from a picture of a giraffe, and the results of applying Blur,

EdgeDetect and ColorNegate to it.

38.4 Inside a Module, let r = Range[10], then make a line plot of r joined with the reverse of r joined with r

joined with the reverse of r.

38.5 Find a simplerform for{Range[10] + l, Range[10]-1, Reverse[Range[10]]}.

38.6 Find a simplerform forModule[{u = 10}, Join[{u}, Table[u = Mod[17u + 2, 11], 20]]].

38.7 Generate 10 random strings made of 5 letters, in which consonants (non-vowels) alternate with

vowels (aeiou).

Q&A

How come we’re at Section 38, and only now introducing variable assignments?

Because, as we’ve seen, in the Wolfram Language one can go a very long way without introducing them.

And it tends to be a lot cleaner to program without them.

Can I assign a name to anything?

Yes. Graphics, arrays, images, pure functions, whatever.

How does one read x = 4 out loud?

“x equals 4”, or, more rarely, “assign x to 4”, or “give x the value 4”.

What are good principles for global names?

Use names that are specific and explicit. Don’t worry if they’re long; they’ll get autocompleted when you
type. For “informal” names, start with lowercase letters. For more carefully thought out names, consider

using capitalization like built-in functions do.

38
|

Assigning Names to Things — wolfr.am/eiwl-38 237

°'0 gives the previous result. What about the result before that, etc.?

%% gives the next to last, %%% gives the next-to-next-to-last, etc. % n gives the result on line n

(i.e. the result labeled Out[//]).

Can I assign to several variables at once?

Yes. x = y = 6 assigns both x and y to 6. {x, y} = {3, 4} assigns x to 3 and y to 4. {x, y} = {y, x} swaps the

values of x and y.

What happens if a variable escapes from a Module without having been assigned a value?

Try it! You’ll find you’ll get a new variable that’s been given a unique name.

What about other procedural programming constructs, like Do and For?

The Wolfram Language has those. Do is sometimes worth using, particularly when your objective is side

effects, like assigning variables or exporting data. For is almost always a bad idea, and can almost always

be replaced by much cleaner code using constructs such as Table.

Tech Notes

The result of x = 2 + 2 is just 4, but as a side effect an assignment is made for x.

In pure functional programming, the only effect of any computation is to give the result. As soon as

you’re assigning values, there’s effectively a hidden state that’s set up by those assignments.

x=. is an alternative to Clear[x],

Module does lexical scoping, which means it effectively localizes the names of variables. Block does

dynamic scoping, which means it localizes the values, but not the names, of variables. Both are useful in

different circumstances. Table effectively uses Block.

x ++ is equivalent to x = x + 1. x += n is equivalent to x = x + n. AppendTo[x, n] is equivalent to

x = Append[x, n] orx = Join[x, {n}].

39
|

Immediate and Delayed Values — wolfr.am/eiwl-39 239

39 Immediate and Delayed Values

I here are two ways to assign a value to something in the Wolfram Language:

immediate assignment (=), and delayed assignment (:=).

In immediate assignment, the value is computed immediately when the assignment is

done, and is never recomputed. In delayed assignment, the computation of the value

is delayed, and is done every' time the value is requested.

As a simple example, consider the difference between value = RandomColor[] and

value := RandomColor[j.

In immediate assignment (=), a random color is immediately generated:

value = RandomColor[]

outm

Every time you ask for value, you get the same random color:

value

Out[2]=

In delayed assignment (:=), no random color is immediately generated:

value := RandomColor[]

Each time you ask for value, RandomColor[] is computed, and a new color is generated:

value

The color will typically be different every time:

value

It’s very common to use := if something isn’t ready yet when you’re defining a value.

You can make a delayed assignment for circles even though n doesn’t yet have a value:

circles := Graphics[Table[Circle[{x, 0}, x/2], (x, n}]]

Give n a value:

n = 6

6

240 An Elementary Introduction to the Wolfram Language

Now you can ask for circles:

m[8):= circles

Out[8]=

The idea of delayed assignment is directly analogous to the Delayed construct we

discussed for deploying web pages. In delayed assignment we don’t compute a value

until we need it. Similarly, when we use Cloud Deploy with Delayed we don’t compute

the content of a web page until someone asks for it.

There’s a notion of delayed rules too. x -» rhs computes rhs immediately. But in a

delayed rule x rhs (typed :>), rhs is instead recomputed every time it’s requested.

This is an immediate rule, where a specific value for RandomReal[] is immediately computed:

in[9] := x RandomRealf]

Out[9]= x -> 0.522293

You can replace four x’s, but they’ll all be the same:

in[io] := {x, x, x, x) /. x -4 RandomReal[]

out[io]= {0.821639, 0.821639, 0.821639, 0.821639}

This is a delayed rule, where the computation of RandomReal[] is delayed:

in[ii] := x RandomRealf]

out[n]= x RandomReal[]

RandomReal[] is computed separately when each x is replaced, giving four different values:

m[i 2]:= {x, x, x, x} /. x RandomRealf]

0ut[i2]= {0.536115, 0.84214, 0.242933, 0.514131}

Vocabulary

x := value delayed assignment, evaluated every time x is requested

x value delayed rule, evaluated every time x is encountered (typed :>)

39
|

Immediate and Delayed Values — wolfr.am/eiwl-39 241

Exercises

39.1 Replace x in {x, x + 1, x + 2, x A
2} by the same random integer up to 100.

39.2 Replace each x in {x, x + 1, x + 2, x A
2} by a separately chosen random integer up to 100.

Q&A

Why not always use :=?

Because you don’t want to have to recompute things unless it’s necessary. It’s more efficient to just

compute something once, then use the result over and over again.

How does one read := and :> out loud?

:= is usually just “colon equals”, though sometimes “delayed assignment”. :> is usually “colon greater”,

though sometimes “delayed rule”.

What happens if I do x = x + 1, with x not having a value?

You’ll start an infinite loop that’ll eventually get cut off by the system, x = {x} is the same story.

What’s the significance of inputs being labeled In [/?] :=, and outputs Out[/?] = ?

It indicates that inputs are assigned to I n

[

a?] and outputs to Out[r?]. The := for input means the assignment

is delayed, so that if you ask for ln[n] the result will be recomputed.

Tech Notes

In the Wolfram Language, the process of computing results is often called evaluation, because it involves

finding values of things.

The Wolfram Language has many ways of controlling evaluation. An example is the function Hold, which

maintains an expression in “held” form until it is “released”.

The internal form of x = y is Set[x, y]. x := y is SetDelayed [x, y]. x y is RuleDelayed [x, y].

40
|

Defining Your Own Functions — wolfr.am/eiwl-40 243

Defining Your Own Functions

As we ve seen in this book, there’s a huge amount that can be done with functions

that are already built into the Wolfram Language. But you can go even further if you

define your own functions too. And the Wolfram Language has a very flexible way of

letting you do this.o J

Let’s start with a typical, simple example of a function definition.

This defines a function pinks that takes any argument:

pinks[n_] := Table[Pink, n]

This uses the function definition:

pinks[5]

{,,,,}

pinks[10]

: m m, m,}

How does this function definition work? The idea is that the := defines a value for the

pattern pinks[/z_]. When you ask for pinks[5], this matches the pinks[/?_] pattern, and

the value you’ve defined for this is used.

But this is just the beginning of the story of function definition in the Wolfram Language.

Because in the Wolfram Language, you can give a definition for anything.

Here’s a list of expressions:

{f[Red], f[Yellow], f[Green], f[Orange], f[Magenta]}

mi mi mi mi fM

Define values forf[Red] and f[Green]:

f[Red] = 1000; f[Green] = 2000;

Now f[Red] and f[Green] are replaced by the values defined; the other cases are left

unchanged:

{f[Red], f[Yellow], ffGreen], f[Orange], ffBlue]}

{1000, f[B], 2000, f[B], f[B]}

Now let 's add a definition for the pattern f[jcJ. The Wolfram Language will use this

whenever the special definitions for f[Red] and f[Green] don’t apply.

Define a value for f with any argument:

f[x_] := Framed[Column[{x, ColorNegatefx]}]]

244 An Elementary Introduction to the Wolfram Language

If the special cases don’t apply, the general definition is used:

in[8]: {f[Red], f[Yellow], f[Green], f[Orange], f[Blue]}

Out[8]=

1
1000,

Clear definitions for f to make sure nothing gets confused later:

in[9j:= Clear[f]

As another example, let’s do the classic computer science exercise of defining the

factorial function. Start by saying that factorial[l] = 1. Then define how to compute

factorial[/i_] recursively in terms of another instance of factorial.

Give a recursive definition of factorial:

in[ioi factorial[l] = 1; factorial[n_lnteger] := n*factorial[n-l]

Askforfactorial[50]:

in[i i

]

: factorial[50]

0ut[ii]= 30 414 093 201713 378 043 612 608 166 064 768 844 377 641 568 960 512 000 000 000 000

There’s also a built-in factorial function, which gives the same result:

ln[12]:= 50 !

out[i 2]= 30 414 093 201 713 378 043 612 608 166 064 768 844 377 641 568 960512 000 000 000 000

Instead of having definitions for factorial[l] and factorial[«_] we could have had a

single definition and used If. But having separate definitions for each case tends to

make things much easier to read and understand.

An alternative definition using If:

in[i3]:= factorial[n_lnteger] := lf[n == 1, 1, n*factorial[n-l]]

It’s nice to be able to break out special cases, but the real power of being able to make

definitions for anything comes when one goes beyond simple function[arguments

]

cases.

As a simple example, consider making a definition for plusminus[{v_, y_}].

Define a value for a pattern:

in[i4j:= plusminus[{x_, y_}] := (x + y, x-y)

Use the definition:

m[i5): plusminus[{4, 1}]

Out[15]= {5, 3}

40
|

Defining Your Own Functions — wotfr.am/eiwl-40 245

A much less elegant form based on a traditional function[argument\ definition:

plusminus[v_] := {v[[l]] + v[[2]], v[[l]]-v[[2]]}

It's very common to want to define a function that applies only to objects with a

certain structure. This is easy to do with patterns. Here’s an example.

A list with some Framed objects:

{a, Framed[b], c, Framed[{d, e}], 100}

OUt[1 7):

{
a

,

[bj> c, {d,e} 100}

Define a function that applies only to framed objects:

highlight[Framed[x_]] := Style[Labeled[x, 20, Background LightYellow]

Apply highlight to each element of a list; it knows what to do when it’s given something
framed:

•i

:

1 9; highlight/@ (a, Framed[b], c, Framed[{10, 20}], 100}

Out is |highlight[a], b
,
highlight[c], {10, 20}, highlight[100]|

+ +

This definition applies to anything with head List:

highlight[list_List] := highlight/@list

Now you no longer have to use /@:

highlight[{a, Framed[b], c, Framed[{10, 20}], 100}]

Out[21]= |highlight[a], b
,
highlightfc], {10, 20}, highlight[100]}

+ +

Give a general case, to use if none of the special cases apply:

highlightfx]
:= Style[Rotate[x, -30 Degree], 20, Orange]

This uses the special cases when it can, then the general case when nothing else applies:

highlight[{a, Framed[b], c, Framed[{10, 20}], 100}]

{<?, b, c, {10, 20},^}
+ +

246 An Elementary Introduction to the Wolfram Language

Exercises

Note: These exercises involve defining functions. Remember to use Clear to get rid of definitions once

you’re finished with each exercise.

40.1 Define a function f that computes the square of its argument.

40.2 Define a function poly that takes an integer, and makes a picture of an orange regular polygon with

that number of sides.

40.3 Define a function f that takes a list of two elements and puts them in reverse order.

40.4 Create a function f that takes two arguments and gives the result of multiplying them and dividing

by theirsum.

40.5 Define a function f that takes a list of two elements and returns a list of their sum, difference and ratio.

40.6 Define a function evenodd that gives Black if its argument is even and White otherwise, but gives

Red if its argument is 0.

40.7 Define a function f of three arguments where the second two arguments are added if the first

argument is 1, multiplied if it’s 2, and raised to a power if it’s 3.

40.8 Define a Fibonacci function f with f[0] and f[l] both being 1, and f[n] for integer n being the sum of

f[n-l] and f[n — 2],

40.9 Create a function animal that takes a string, and gives a picture of an animal with that name.

40.10 Define a function nearwords that takes a string and an integer n, and gives the n words in

WordList[] that are nearest to a given string.

What kind of a pattern can be used in a function definition?

Absolutely any pattern you want. Even one where the head is itself a pattern.

How can I see the definitions made for a particular function?

Use ?f to see the definitions forf.

How do I overwrite an existing function definition?

Just make a new definition for the same pattern. Use Clear to remove all definitions.

How are different definitions for a particular function sorted?

Typically from most specific to least specific. If there are definitions that can’t be ordered by specificity,

definitions made later are put later. When definitions are used, the earlier ones are tried first.

Can I redefine built-in functions like Max or Plus?

Usually yes. First, though, you often have to say e.g. Unprotect[Max]. Then definitions you add will be used

in preference to built-in ones. Some functions, like Plus, are so fundamental that the system locks them in

a protected state. Even in this case, though, you can make “upvalue” definitions that are associated with

particular structures of arguments.

Can I do object-oriented programming in the Wolfram Language?

A symbolic generalization of object-oriented programming, yes. Given an object “type” t, one wants to

make definitions e.g. for f[t[]] and g[t[]]. One can associate such definitions with t by saying

t /: f[t[
]]
= In the Wolfram Language, this is called defining an upvalue fort.

40
|

Defining Your Own Functions — wolfr.am/eiwl-40 247

Can I use = instead of := for function definitions?

Sometimes. f[n_] = n A 2 will work fine, because the right-hand side doesn’t evaluate when you make the
assignment. f[n_] = Now and f[n_] := Now will give different results. And in many cases the right-hand side

can’t be meaningfully evaluated until specific arguments are given.

How can I share function definitions with other people?

Just send the code! A convenient way to do this through the cloud is to use CloudSave and CloudGet,

as discussed in Section 43.

Tech Notes

Many low-level languages require functions to have particular static types of arguments (e.g. integers,

reals, strings). Some languages allow dynamic typing, with arguments allowed to have any of a certain

set of types. The Wolfram Language generalizes this by allowing arguments to be defined by arbitrary

symbolic structures.

Having a pattern like {x_, y_} in a function definition allows immediate and convenient destructuring of

the function argument.

Definitions can be associated with the head of a function (“downvalues”), with the heads of its

arguments (“upvalues”), or with the head of the head, etc. (“subvalues”). Upvalues are effectively a

generalization of methods in object-oriented languages.

f = (tX A 2 &) and f[n_] := n A 2 are two ways of defining a function, that for example give the same results

for f[10]. Pure function definitions tend to be easier to combine with each other, but much coarser in

their handling of argument structures.

More to Explore

Guide to Defining Functions in the Wolfram Language (wolfr.am/eiwl-40-more)

41
1

More about Patterns — wolfr.am/eiwl-41 249

More about Patterns

Within the Wolfram Language, there’s a whole sublanguage of patterns. We’ve

already seen some of its important elements.

_ "blank") stands for anything. x_ ("x blank") stands for anything, but calls it x. _h

stands for anything with head h. And xji stands for anything with head h, and calls it x.

Define a function whose argument is an integer named n:

digitback[n_lnteger] := Framed[Reverse[lntegerDigits[n]]]

The function evaluates whenever the argument is an integer:

{digitback[1234], digitback[6712], digitback[x], digitback[{4, 3, 2}], digitback[2 A
32]}

{
{4, 3, 2, 1} , {2, 1, 7, 6} ,

digitbackfx], digitback[{4, 3, 2}], {6, 9, 2, 7, 6, 9, 4, 9, 2, 4}}

Sometimes you may want to put a condition on a pattern. You can do this with /;

(“slash semi”), njnteger/; n > 0 means any integer that is greater than 0.

Give a definition which only applies when n > 0:

pdigitback[n_lnteger /; n > 0] := Framed[Reverse[lntegerDigits[n]]]

The definition doesn’t apply to negative numbers:

{pdigitback[1234], pdigitback[-1234], pdigitback[x], pdigitback[2 A
40]}

,
pdigitback[— 1234], pdigitback[x],

The /; can go anywhere—even at the end of the whole definition.

Define different cases of the check function:

check[x_, y_] := Red /; x > y

check[x_, y_] := Green /; x < y

Some examples of the check function:

{check[l, 2], check[2, 1], check[3, 4], check[50, 60], check[60, 50]}

{, , }

{
{4, 3, 2, 1} {6, 7, 7, 7, 2, 6, 1, 1, 5, 9, 9, 0,

1}]}

(“double blank”) stands for any sequence of one or more arguments,

“triple blank ") stands for zero or more.

Define a function that looks for black and white (in that order) in a list.

The pattern matches black followed by white, with any elements before, between and after them:

blackwhite[{
,
Black, m

,
White, }] := {m, m, m}

250 An Elementary Introduction to the Wolfram Language

Pick out the (smallest) sequence between a black and a white:

ln[9]:= blackwhiteKH, .a. }]

out[9]= {, i n » , , n,, n, 1}

By default, and pick the shortest matches that work. You can use Longest to

make them pick the longest instead.

Specify that the sequence between black and white should be as long as possible:

in[i o] blackwhitex[{
,
Black, Longest[m], White, }] := {m, m, m}

Now m grabs elements all the way to the last white:

in[ii]:= blackwhitex[{H, ,, }]

out[i i]=
,}

x
| y |

z matches x, y or z. x .. matches any number of repetitions of x.

bwcut effectively cuts out the longest run of black and white:

in[i2] bwcut[{a
,
Longest[(Black

|
White) ..], b }] := {{a}, Red, {b}}

ln(13]:= bwcut[{s, E3,, , ,,,}]
out[i 3]= {{H, H}, M, {B}}

The pattern x_ is actually short for x : which means “match anything (i.e. _) and

name the result x”. You can use notations like x : for more complicated patterns too.

Set up a pattern named m that matches a list of two pairs:

m[i4]:= grid22[m:{{_, {_, _}}] := Grid[m, Frame -> All]

,n[i5] {grid22[{{a, b}, {c, d}}], grid22[{{12, 34}, {56, 78}}],

grid22[{123, 456}], grid22[{{l, 2, 3}, {4, 5, 6}}]}

Out[1 5]=

{

12 34

56 78
,
grid22[{123, 456}], grid22[{{l, 2, 3}, {4, 5, 6

Name the sequence of black and white, so it can be used in the result:

in[i6i bwcut[{a
,
r:Longest[(Black

|
White)..], b }] :={{a}, Framed[Length[{r}]], {b}}

In[i7]:= bwcut[{D, E3,, , ,,,}]

Out[17]= {{, }, fil {H}}

As a final example, let’s use patterns to implement the classic computer science algorithm

of sorting a list by repeatedly swapping pairs of successive elements that are found to be

out of order. It’s easy to write each step in the algorithm as a replacement for a pattern.

Replace the first elements one finds out of order by ones that are in order:

in[i8) {5, 4, 1, 3, 2} /. {a ,
b_, c_, d } /; b > c -> {a, c, b, d}

Out[18]= {4, 5, 1, 3, 2}

41
1

More about Patterns — wolfr.am/eiwl-41 251

Do the same operation 10 times, eventually sorting the list completely:

NestList[(» /. {x
,
b_, a_, y } /; b > a {x, a, b, y}) &, {4, 5, 1, 3, 2}, 10]

{{4, 5, 1, 3, 2}, {4, 1, 5, 3, 2}, {1, 4, 5, 3, 2}, {1, 4, 3, 5, 2}, {1, 3, 4, 5, 2},

{1, 3, 4, 2, 5}, {1, 3, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}}

At the beginning, we won’t know how long it’ll take to finish sorting a particular list.

So the best thing is to use FixedPointList, which is like NestList, except that you don’t

have to tell it a specific number of steps, and instead it just goes on until the result

reaches afixed point
,
where nothing more is changing.

Do the operation until a fixed point is reached:

FixedPointList[(tt /. {x
,
b_, a_, y } /; b > a -» (x, a, b, y}) &, {4, 5, 1, 3, 2}]

{{4, 5, 1, 3, 2}, {4, 1, 5, 3, 2}, {1, 4, 5, 3, 2}, {1, 4, 3, 5, 2},

{1, 3, 4, 5, 2}, {1, 3, 4, 2, 5}, {1, 3, 2, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}}

Transpose to find the list of elements appearing first, second, etc. at successive steps:

Transpose[%]

{{4, 4, 1, 1, 1, 1, 1, 1, 1}, {5, 1, 4, 4, 3, 3, 3, 2, 2},

{1, 5, 5, 3, 4, 4, 2, 3, 3}, {3, 3, 3, 5, 5, 2, 4, 4, 4}, {2, 2, 2, 2, 2, 5, 5, 5, 5}}

ListLinePlot plots each list in a different color, showing how the sorting process proceeds:

ln[22]:= ListLinePlot[%]

Here’s the result for sorting a random length-20 list:

ListLinePlot[Transpose[FixedPointList[

(tt /. {x
,
b_, a_, y } /; b > a -4 (x, a, b, y}) &, RandomSample[Range[20]]]]]

20 40 60 80

252 An Elementary Introduction to the Wolfram Language

Vocabulary

patt /; cond a pattern that matches if a condition is met

— a pattern for any sequence of zero or more elements (“triple blank”)

patt .. a pattern for one or more repeats of patt

Longest[patt] a pattern that picks out the longest sequence that matches

FixedPointList [/, x] keep nesting/until the result no longer changes

Exercises

41.1 Find the list of digits for squares of numbers less than 100 that contain successive repeated digits.

41.2 In the first 100 Roman numerals, find those containing L, I and X in that order.

41.3 Define a function f that tests whether a list of integers is the same as its reverse.

41.4 Get a list of pairs of successive words in the Wikipedia article on alliteration that have identical first letters.

41.5 Use Grid to show the sorting process in this section for {4, 5, 1, 3, 2}, with successive steps going

down the page.

41.6 Use ArrayPlot to show the sorting process in this section for a list of length 50, with successive steps

going across the page.

41.7 Start with 1.0, then repeatedly apply the “Newton’s method” function (tt + 2/tt)/2 & until the result

no longer changes.

41.8 Implement Euclid’s algorithm forGCD in which {a, b} is repeatedly replaced by {b, Mod [a, b]} until b

is 0, and apply the algorithm to 12345, 54321.

41.9 Define combinotors using the rules s[x_][y_][z_] -» x[z][y[z]], k[x_][y_] -» x, then generate a list by

starting with s[s][k][s[s[s]][s]][s] and applying these rules until nothing changes.

41.10 Remove all trailing 0’s from the digit list for 100 !

.

41.11 Start from {1, 0} then for 200 steps repeatedly remove the first 2 elements, and append {0, 1} if the first

element is 1 and {1, 0, 0} if it is 0, and get a list of the lengths of the sequences produced [tag system).

41.12 Start from {0, 0} then for 200 steps repeatedly remove the first 2 elements, and append {2, 1} if the

first element is 0, {0} if the first element is 1, and {0, 2, 1, 2} if it is 2, and make a line plot of the

lengths of the sequences produced [tog system).

41
1

More about Patterns — wolfr.am/eiwl-41 253

Q&A

What are other pattern constructs in the Wolfram Language?

Except[/wrr] matches anything except patt. PatternSequence[/wrr] matches a sequence of arguments in a

function. OrderlessPatternSequence[/;«/v] matches them in any order. f[x_: v] defines v as a default value,

so f[] is matched, with x being v.

How can one see all the ways a pattern could match a particular expression?

Use ReplaceList. Replace gives the first match; ReplaceList gives a list of all of them.

What does FixedPointList do if there’s no fixed point?

It’ll eventually stop. There’s an option that tells it how far to go. Fixed PointList [/', x, n\ stops after at

most n steps.

Tech Notes

In a repeating pattern patt .., don’t forget to leave a space in e.g. 0 .. to avoid confusion with decimal numbers.

Functions can have attributes that affect how pattern matching works. For example, Plus has attributes

Flat and Orderless. Flat means that b + c can be pulled out ofa + b + c + d. Orderless means that elements

can be reordered, so a + c can be pulled out. (Flat is like the mathematical property of associativity,

Orderless like commutativity.)

The algorithm for sorting shown is usually called bubble sort. For a list of length n, it’ll typically take about

n A 2 steps. The built-in Wolfram Language function Sort is much faster, and takes only a little over n steps.

More to Explore

Guide to Patterns in the Wolfram Language (wolfr.am/eiwl-41-more)

42
|

String Patterns and Templates — wolfr.am/eiwl-42 255

42
|

String Patterns and Templates

String patterns work very much like other patterns in the Wolfram Language, except

that they operate on sequences of characters in strings rather than parts of expressions.

In a string pattern, you can combine pattern constructs like _ with strings like "abc"

usingO

This picks out all instances of + followed by a single character:

StringCases["+string +patterns are +quite +easy", "+" — _]

{+s, +p, +q, +e}

This picks out three characters after each +:

StringCases["+string +patterns are +quite +easy", "+" _— _— _]

{+str, +pat, +qui, +eas}

Use the name x for the character after each +, and return that character framed:

StringCases["+string +patterns are +quite +easy", "+" — x_ -4 Framed[x]]

Out[3]=

{
s

, P , q , e
}

In a string pattern, _ stands for any single character. (“double blank”) stands for any

sequence of one or more characters, and (“triple blank
11

)
stands for any sequence of

zero or more characters. and will normally grab as much of the string as they can.

Pick out the sequence of characters between
[
and]:

StringCases["the [important] word", "[" — x — "]" -4 Framed[x]]

t important
f

normally matches as long a sequence of characters as it can:

StringCases["now [several] important [words]", "[" — x — "]" -4 Framed[x]]

1
several] important [words

f

Shortest forces the shortest match:

StringCases["now [several] important [words]",

"[" — Shortest[x]
— "]" -> Framed[x]]

|
several , words

J

StringCases picks out cases of a particular pattern in a string. StringReplace makes

replacements.

Make replacements for characters in the string:

StringReplacef'now [several] important [words]", {"["

now «several>> important <<words»

"«", "]" -4 "»"}]

256 An Elementary Introduction to the Wolfram Language

Make replacements for patterns, using to compute ToUpperCase in each case:

in[8] StringReplace["now [several] important [words]",

"[" — Shortest[x]
— "]" ToUpperCase[x]]

out[8] now SEVERAL important WORDS

Use NestList to apply a string replacement repeatedly:

i n[9] NestList[StringReplace[tt, ("A" - "AB", "B" "BA"}] &, "A", 5]

Outpi- {A, AB, ABBA, ABBABAAB, ABBABAABBAABABBA, ABBABAABBAABABBABAABABBAABBABAAB}

StringMatchQ tests whether a string matches a pattern.

Select common words that match the pattern of beginning with a and ending with b:

in[io]:= Select[WordList[], StringMatchQftt, "a" ~~ ~~ "b"] &]

out[io]= {absorb, adsorb, adverb, alb, aplomb}

You can use
|

and .. in string patterns just like in ordinary patterns.

Pick out any sequence of A or B repeated:

mm] StringCases["the AAA and the BBB and the ABABBBABABABA", ("A"
|
"B") ..]

Out[1l]= {AAA, BBB, ABABBBABABABA}

In a string pattern, LetterCharacter stands for any letter character, DigitCharacter for any

digit character, and Whitespace for any sequence of “white” characters such as spaces.

Pick out sequences of digit characters:

in[i 2
)

: = StringCases["12 and 123 and 4567 and 0x456", DigitCharacter..]

Out[12]= {12, 123, 4567, 0, 456}

Pick out sequences of digit characters “flanked” by whitespace:

in[i3i StringCases["12 and 123 and 4567 and 0x456",

Whitespace— DigitCharacter Whitespace]

0ut[i3]= { 123 , 4567 }

It’s common in practice to want to go back and forth between strings and lists.

You can split a string into a list of pieces using StringSplit.

Split a string into a list of pieces, by default breaking at spaces:

m[i4]:= StringSplit["a string to split"]

0ut[i4]= {a, string, to, split}

This uses a string pattern to decide where to split:

in(i 5] : StringSplit["you+can+split—at+any—delimiter", "+"
|

"—
"]

out[i 5]= {you, can, split, at, any, delimiter}

42
|

String Patterns and Templates - wolfr.am/eiwl-42 257

Within strings, there’s a special newline character which indicates where the string

should break onto a new line. The newline character is represented within strings as \n.

Split at newlines:

Stri ngSplit["fi rst line

second line

third line", "\n"]

{first line, second line, third line}

StringJoin joins any list of strings together. In practice, though, one often wants to

insert something between the strings before joining them. StringRiffle does this.

Join strings, riffling the string " " in between them:

StringRiffle[{"a", "list", "of", "strings"}, " "]

0ut[i 7

1

- a list of strings

In assembling strings, one often wants to turn arbitrary Wolfram Language expressions

into strings. One can do this using Textstring.

Textstring turns numbers and other Wolfram Language expressions into strings:

StringJoin["two to the ", TextString[50], " is ", TextString[2 A
50]]

two to the 50 is 1125899906842624

A more convenient way to create strings from expressions is to use string templates.

String templates work like pure functions in that they have slots into which arguments

can be inserted.

In a string template each
'

'
is a slot for a successive argument:

StringTemplate["first
'

' then
'

"][100, 200]

Out[19]= first 100 then 200

Named slots pick elements from an association:

StringTemplate["first: a
;
second ' b'

;
first again a'"][

<| "a" -* "AAAA", "b" - "BB BBB" |>]

first: AAAA; second BB BBB; first again AAAA

You can insert any expression within a string template by enclosing it with <* *>. 1 he

value of the expression is computed when the template is applied.

Evaluate the <*...*> when the template is applied; no arguments are needed:

StringTemplate["2 to the 50 is <* 2 A50 *>"][]

2 to the 50 is 1125899906842624

258 An Elementary Introduction to the Wolfram Language

Use slots in the template (
' is the backquote character):

in[22]= StringTem plate[" '
1

' to the ' 2
' is <* ' 1 ' A ' 2

' *>"][2, 50]

out[22]= 2 to the 50 is 1125899906842624

The expression in the template is evaluated when the template is applied:

in[23} StringTemplate["the time now is <* Now *>"][]

out[23i= the time now is Wed 16 Sep 2015 16:50:43

Vocabulary

pattx— patt2 sequence of string patterns

Shortest[jKitt] shortest sequence that matches

StringCases[.str/>2g, patt] cases within a string matching a pattern

StringReplace[string, patt val] replace a pattern within a string

StringMatchQ^sVrmg, patt] test whether a string matches a pattern

LetterCharacter pattern construct matching a letter

DigitCharacter pattern construct matching a digit

Whitespace pattern construct matching spaces etc.

\n newline character

Str\ngSp\\t[string] split a string into a list of pieces

StringJoinKs/rw#!, strings ...}] join strings together

StringRiffle [{strings string2 , ...}, m] join strings, inserting m between them

TextString[cx/;>r] make a text string out of anything

StringTemplatef.sVrmg] create a string template to apply

'

'

slot in a string templete

<*...*> expression to evaluate in a string template

42
|

String Patterns and Templates — wolfr.am/eiwl-42 259

Exercises

42.1 Replace each space in "1 2 3 4" with "

42.2 Get a sorted list of all sequences of 4 digits (representing possible dates) in the Wikipedia article on

computers.

42.3 Extract “headings” in the Wikipedia article about computers, as indicated by strings starting and

ending with "===".

42.4 Use a string template to make a grid of results of the form i+j = for i and
j
up to 9.

42.5 Find names of integers below 50 that have an “i” somewhere before an “e”.

42.6 Make any 2-letter word uppercase in the first sentence from the Wikipedia article on computers.

42.7 Make a labeled bar chart of the number of countries whose Textstring names start with each

possible letter.

42.8 Find simpler code for

Grid[Table[StringJoin[TextString[i],
" A

", TextString[j], TextString[i A
j]], {i, 5}, (j, 5}]].

Q&A

How should one read — out loud?

It’s usually read “tilde tilde”. The underlying function is StringExpression.

Can I write rules for understanding natural language?

Yes, but we didn’t cover that here. The key function is GrammarRules.

Tech Notes

There’s a correspondence between patterns for strings, and patterns for sequences in lists.

SequenceCases is the analog for lists of StringCases for strings.

The option Overlaps specifies whether or not to allow overlaps in string matching. Different functions

have different defaults.

String patterns by default match longest sequences, so you need to specify Shortest if you want it.

Expression patterns by default match shortest sequences.

Among string pattern constructs are Whitespace, Numberstring, WordBoundary, StartOfLine, EndOfLine,

StartOfString and EndOfString.

Anywhere in a Wolfram Language symbolic string pattern, you can use RegularExpression to include

regular expression syntaxes like jc* and [abc][def\.

You can compare strings using operations like SequenceAlignment. This is particularly useful in bioinformatics.

FileTemplate, XMLTemplate and NotebookTemplate let you do the analog of StringTemplate for files,

XML (and HTML) documents, and notebooks.

The Wolfram Language includes the function TextSearch, for searching text in large collections of files.

More to Explore

Guide to String Patterns in the Wolfram Language (wolfr.am/oiwl 42 morn)

43
|

Storing Things — wolfr.am/eiwl-43 261

43
|

Storing Things

The Wolfram Language makes it easy to store things either in the Wolfram Cloud,

or locally on your computer system. Let’s talk about the Wolfram Cloud first.

In the Wolfram Cloud everything is a cloud object, specified by a UUID (universally

unique identifier).

Cloud objects are immediately assigned a UUID:

CloudObject[]

CloudObject[https://www.wolframcloud.com/objects/388bOfdO-7769-42e4-a992-7dlb9985fe55]

As soon as you create a cloud object, it’s assigned a long randomly generated UUID.

The great thing about UUIDs is that one can assume that there’ll never be two the

same generated. (There are 300 trillion trillion trillion possible Wolfram UUIDs.)

Put a Wolfram Language expression into the cloud:

ln[2]:= CloudPut[{

CloudObject[https://www.wolframcloud.com/objects/715b04e7-e589-4ebb-8b88-dde32fe0718b]

Get the expression back from the cloud:

: CloudGet[%]

If you’ve made definitions using = and :=, you can save these using CloudSave. (If your

definitions depend on other definitions, these will get saved too.) You can load your

definitions into a new session using CloudGet.

Make a definition:

colorlist[n_lnteger] := RandomColorfn]

Save it in the cloud to be retrieved later using CloudGet:

CloudSave[colorlist]

CloudObject[https://www.wolframcloud.com/objects/b274clle-88c2-44d9-b805-599dbf7f898e]

CloudPut lets you store single Wolfram Language expressions, but what if you want

to progressively accumulate expressions coming either from within the \\ olfram

Language, or, say, from an outside device or sensor?

262 An Elementary Introduction to the Wolfram Language

The Wolfram Data Drop lets you do exactly this. You start by creating a databin.

You can do this in the Wolfram Language using CreateDatabin.

Create a databin:

in[6]:= bin = CreateDatabin[]

Out(6]: DatabinJ
Short ID: 6nzQYo8x

Entry count: 0

You can add data to this databin from all sorts of outside devices and services—as

well as using the DatabinAdd function in the Wolfram Language.

Add an entry to a databin:

in[7j:= DatabinAdd[bin, {1, 2, 3, 4}]

Out[7)= Databiin[Q .A.
Short ID: 6nzQYo8x

Entry count: 1

Here’s a databin that’s accumulated data from a little sensor on my desk. DateListPlot

plots the time series of data.

Use a short ID to reference a databin connected to sensors on my desk:

in[8] := Databin["7m3ujLVf"]

Out[8]= Databin
Name: Desktop sensors

Entry count: 42282

Plot time series from the databin:

in|9] DateListPlot[Databin["7m3ujLVf"]]

Wolfram Data Drop, like CloudPut and CloudSave, saves data into the cloud. But

particularly if you’re not connected to the cloud, you may instead want to store things

on a local computer. If you figure out where in your filesystem you want the files to

go, you can use Put, Save and Get to store and retrieve them.

43
|

Storing Things — wolfr.am/eiwl-43 263

It's also possible to get the Wolfram Language to automatically figure out an

“anonymous’' local location. You can do this with LocalObject.

Generate an “anonymous” location for Put, Save, etc.:

LocalObject[]

LocalObject[file:///home/Wolfram/Objects/365e034d-9830-4842-8681-75d3714b3dl9]

Put an image to the location:

LocalObject[file:///home/Wolfram/Objects/365e034d-9830-4842-8681-75d3714b3dl9]

Get the image back:

ln|12]:

Out[12J:

Get[%]

Vocabulary

CloudObjectf] create a cloud object

Cloud Put [expr] put into the cloud

CloudGet[o/?y] get from the cloud

CloudSavefv] save definitions to the cloud

CreateDatabin[] create a new databin

DatabinAdd[r;/?y, value
]

add something to a databin

DateListPlotf/c/Zu] make a date list plot

LocalObject[] create a local object

Put [expr, obj] put into a local object

Get [obj] get from a local object

264 An Elementary Introduction to the Wolfram Language

Q&A

What do the letters and numbers in UUIDs mean?

They’re digits in hexadecimal (base 16); the letters “a” through “f” are the hex digits 10 through 15. Each

UUID has 32 hex digits, corresponding to 16 A 32 ~ 3 * 10
38

possibilities.

How does the number of possible UUIDs compare to other things?

It’s about the number of atoms in a cubic kilometer of water, or 100 trillion times the number of stars in

the universe. If every one of 50 billion computers on Earth generated a UUID at 10 GHz, it’d take the age of

the universe to run out of UUIDs.

Can I specify a file name in CloudObject, CloudPut, etc.?

Yes. And the file name will be taken to be relative to your home directory in the cloud. The file will also get

a URL, that includes the base of the cloud you’re using, and your user ID.

Can I work with databins without using the Wolfram Language?

Yes. You can use the web and many other systems to create and add to databins.

Tech Notes

• When you work in the cloud, Wolfram Notebook documents are automatically stored after every change

you make— unless you say not to do this.

You can save large objects more efficiently with DumpSave than Save, but then the file you create is

binary, not text.

Databins can have data signatures, that specify how data in them should be interpreted, for example in

terms of units, date formats, etc.

More to Explore

Guide to Files in the Wolfram Language (wolfr.am/eiwl-43-more)

Wolfram Data Drop (wolfr.am/eiwl-43-more2)

44
|

Importing and Exporting — wolfr.am/eiwl-44 265

44
I

Importing and Exporting

Everything we’ve done so far in this book has been done entirely within the Wolfram

Language and the Wolfram Knowledgebase. But sometimes you need to get things

from the outside. Needless to say, they often won’t be as clean and organized as what

we’re used to inside the Wolfram Language.

As a first example, let’s import the text from the front page of the United Nations

website. We can do this using the function Import.

Import a text version of the front page of the UN website:

lmport["http://un.org"]

Out It's earth hour at UN Headquarters in New York - Switch your computer off!

I

Welcome

Bienvenue

/],o6po nowa/ioBaTb

Bienvenidos

^_oY I a I
— I

(j

1 1 ‘4^1 Lc.

United Nations — It's your world!

Nations Unies — C'est votre monde!

OpraHH3au,ufl 06-beflUHeHHbix Hau.nu —
Las Naciones Unidas son su mundo

3to Bam Mnp!

The result is a string, with some blank lines—and (at least as retrieved here) a strange

message at the top. Let’s start by splitting the string at newlines.

Split at newlines to get a list of strings:

StringSplit[lmport["http://un.org"], "\n"]

{it's earth hour at UN Headquarters in New York - Switch your computer off!
,

, , , ,
Welcome

,
Bienvenue

, /Jo6po nowa/iOBaTb
,

Bienvenidos
,
,^Vl s^UI — kpj TJL.

,

United Nations — It’s your world!
,
Nations Unies — C'est votre monde! ,

OpraHH3auna ObteAHHem-ibix Hau.nu — 3to Bam Mnp!
,

Las Naciones Unidas son su mundo}

Identify the language for each string (blank lines are considered English):

Languageldentify[StringSplit[lmport["http://un.org"], "\n"]]

|
[English)

,
(English)

,
[English]

,
(English)

,
[Arabic)

,

Chinese
'L J ,

(English
,

French
,
[Russian

,
Spanish

,
English

Arabic
,

l y 7
Chinese— ,

[English
,

French
,

Russian
,
[Spanish

266 An Elementary Introduction to the Wolfram Language

Import lets you import a wide variety of different elements. "Hyperlinks" gets hyperlinks

that appear on a web page; "Images" gets images.

Get a list of the hyperlinks on the front of the UN website:

in(4j :
lmport["http://un.org", "Hyperlinks"]

0ut[4]: {//www.un.org/ar/index.html, //www.un.org/zh/index.html, //www.un.org/en/index.html,

//www.un.org/fr/index.html, //www.un.org/ru/i ndex.htm l, //www.un.org/es/index.html}

Get a list of the images on the front page of Wikipedia:

in[5] = lmport["http://wikipedia.org", "Images"]

°*'
{ WikipediA ® v

WIKIMEOIA
projei-t }

As a more sophisticated example, here’s a graph of the hyperlinks in part ofmy
website. To keep it manageable, I’ve taken just the first 5 hyperlinks at each level, and

gone only 3 levels.

Compute part of the hyperlink graph for my website:

in[6] : = NestGraph[Take[lmport[tt, "Hyperlinks"], 5] &, "http://stephenwolfram.com", 3]

The Wolfram Language can import hundreds of formats—including spreadsheets,

images, sounds, geometry, databases, log files and more. Import will automatically

look at the file extension (.png, .xls, etc.) to determine what to do.

Import a picture from my website:

m[7i lmport["http://www.stephenwolfram.com/images/stephen-wolfram-portrait.png"]

Out[7)=

44
|

Importing and Exporting — wolfr.am/eiwl-44 267

The Wolfram Language recognizes me!

Classifyf'NotablePerson", %]

[Stephen Wolfram

As well as importing from the web, Import can also import from your own files, stored

in your computer system or in the Wolfram Cloud.

The Wolfram Language lets you not only deal with web pages and files, but also with

sendees or APIs. For example, SocialMediaData lets you get data from social media

sen ices—at least once you’ve authorized them to send the data.

Find the network of my Facebook friends who give access to their connection data:

SocialMediaDataf'Facebook", "Friend Network"]

Out(9]

You can also send things from the Wolfram Language, for example by email.

SendMail does this.

Send oneself a message by email:

SendMailf'Hello from the Wolfram Language!"]

V
Stephen Wolfram Today at 12:05AM

To Stephen Wolfram

Hello from the Wolfram Langauge!

268 An Elementary Introduction to the Wolfram Language

Send email to a test account with subject “Wolf” and a picture of a wolf attached:

mini SendMail["test@wolfram.com", {"Wolf", "Here's a wolf...",

If you want to interact with external programs and services, you’ll often have to export

things from the Wolfram Language.

Export a graphic of a circle to the cloud in PDF format:

in [i 2]:= CloudExport[Graphics[Circle[]], "PDF"]

0ut[i 2)= CloudObject[https://www.wolframcloud.com/objects/6d93f2de-6597-4d9f-9edb-7cdc342571b8]

You can also export to local files using Export.

Export 3D geometry in a format suitable for 3D printing:

in[i3] :
= Export["spikey.stl", 0 rhombic hexecontahedron ["Image"]]

0ut[i3]= spikey.stl

44
|

Importing and Exporting - wolfr.am/eiwl-44 269

Vocabulary

Import[/r?c] import from an external location

SocialMediaData[...] get data from social media networks

Send Mail [eA/?r] send email

Cloud Export [expr, format] export in a certain format to the cloud

Export [file, expr] export to a file

Exercises

44.1 Import the images from http://google.com.

44.2 Make an image collage of disks with the dominant colors from images on http://google.com.

44.3 Make a word cloud of the text on http://bbc.co.uk.

44.4 Make an image collage of the images on http://whitehouse.gov.

44.5 Use ImagelnstanceQ to find pictures on https://en.wikipedia.org/wiki/Ostrich that are of birds.

44.6 Use TextCases with "Country" to find instances of country names on http://nato.int, and make a

word cloud of them.

44.7 Find the number of links on https://en.wikipedia.org.

44.8 Send yourself mail with a map of your current location.

44.9 Send yourself mail with an icon of the current phase of the moon.

Q&A

Why doesn’t Import retrieve elements that I see when I visit a web page in a browser?

Probably because they’re not directly present in the HTML source of the web page, which is what Import

looks at. They’re probably being dynamically added using JavaScript.

What formats can Import handle?

See the list at wolfr.am/ref-importexport or evaluate $lmportFormats.

How do Import and Export figure out what format to use?

You can explicitly tell them. Or they can determine it from file extensions, like .gif or .mbox.

What is an API?

An application program interface. It’s an interface that a program exposes to other programs, rather than

to humans. The Wolfram Language has several APIs, and lets you create your own, using APIFunction.

How do I authorize a connection to an external account of mine?

When you use SocialMediaData or ServiceConnect, you’ll typically be prompted to authorize the Wolfram

Connection app for that particular service.

270 An Elementary Introduction to the Wolfram Language

Tech Notes

Importstring lets you “import” from a string rather than from an external file or URL. Exportstring

“exports” to a string.

SendMail uses either mail server preferences you set up, or a proxy in the Wolfram Cloud.

The Wolfram Language supports many external services. Typically it uses mechanisms like OAuth to

authenticate them.

Another way to get (and send) data is through direct connection from your computer to a sensor,

Arduino, etc. The Wolfram Language has a whole framework for dealing with such things, including

functions such as DeviceReadTimeSeries.

More to Explore

Guide to Importing and Exporting in the Wolfram Language (wolfr.am/eiwl-44-more)

45
|

Datasets — wolfr.am/eiwl-45 271

Datasets

Especially in larger organizations, computing often centers around dealing with large

amounts of structured data. The Wolfram Language has a very powerful way to deal

with structured data, using what it calls datasets.

A simple example of a dataset is formed from an association of associations.

Create a simple dataset that can be viewed as having 2 rows and 3 columns:

data = Dataset[

Out[1]=

<1 "a" <

X y z

a 1 2 3

b 5 10 7

2 levels
|

2 raws

The W olfram Language displays most datasets in tabular form. You can extract parts

from datasets just like you would from associations.

Get the element from “row b” and “column z”:

in[2j: dataf'b", "z"]

Out[2]= 7

You can first extract the whole “b row”, then get the “z” element of the result:

in [3]:= data["b"]["z"]

Out(3]= 7

You can also just get the whole “b row” of the dataset. The result is a new dataset,

which for ease of reading happens to be displayed in this case as a column.

Generate a new dataset from the “b row” of the original dataset:

dataf'b"]

x 5

y io

z 7

1 level
|
3 elements

1 Icre is the dataset that corresponds to the “z column” for all “rows

Generate a dataset consisting of the “z column” for all rows:

data [All, "z”]

a 3

b 7

1 level
|
2 element*

Extrading parts of datasets is just the beginning. Anywhere you can ask lot a pat t you

can also give a function that will be applied to all parts at that level.

272 An Elementary Introduction to the Wolfram Language

Get totals for each row by applying Total to all columns for all the rows:

in[6] := data[All, Total]

a 6

Out[6]=
b 22

1 level
|
2 elements

Ifwe use f instead of Total, we can see what’s going on: the function is being applied

to each of the “row” associations.

Apply the function f to each row:

ln[7]:=

Out[7]=

Apply a function that adds the x and z elements of each association:

in[8] := data[All, ttx + ttz &]

a 4

Out[8]=
b 12

1 level
|
2 elements

data[All, f]

a f [< | x — 1 (y-»2, z->3|>]

b f[<|x-»5, y-»10, z-»7|>]

1 level
|
2 elements

You can use any function; here’s PieChart:

in[9] := data[All, PieChart]

Out[9]=

You can give a function to apply to all rows too.

This extracts the value of each “z column”, then applies f to the association of results:

lr>[10]:= data[f, "z"]

out[ioj= f[<|a—>3, b—>7|>]

Apply f to the totals of all columns:

in[i i]:= data[f, Total]

out[iij= f[c
|

a -> 6, b -> 22
|
> 1

45
|

Datasets — wolfr.am/eiwl-45 273

Find the maximum of these totals:

ln(12]:= data[Max, Total]

out(i2]= 22

You can always “chain” queries, for example first finding the totals for all rows, then

picking out the result for the “b row”.

Find totals for all rows, then pick out the total for the “b row”:

ln[13]:= data[All, Total]["b"]

out[i 3j= 22

It’s equivalent to this:

ln[14]:= data["b", Total]

out[i4)= 22

Particularly when one’s dealing with large datasets, it’s common to want to select

parts based on a criterion. The operatorform of Select provides a very convenient way

to do this.

Select numbers greater than 5 from a list:

ln[15]:= Select[{l, 3, 6, 8, 2, 5, 9, 7}, tt > 5 &]

out[i5]= {6, 8, 9, 7}

Another way to get the same answer, using the operator form of Select:

10 (16]:= Selectf# > 5 &][{1, 3, 6, 8, 2, 5, 9, 7}]

0ut[i6]= {6, 8, 9, 7}

The operator form of Select is a function which can be applied to actually perform the

Select operation.

Make a dataset by selecting only rows whose “z column” is greater than 5:

data[Select[ttz > 5 &]]

For each row, select columns whose values are greater than 5, leaving a ragged structure:

data[All, Selectf# > 5 &]]

a < I I
>

b <| y -» 10, z -* 7 |>

2l*v«4»
I 2 row*

274 An Elementary Introduction to the Wolfram Language

Normal turns the dataset into an ordinary association of associations:

ln[19]:= Normal[%]

out[i9]= <
|
a —> <| |

> ,
b —> <

| y -> 10, z —> 7
|
>

|

>

Many Wolfram Language functions have operator forms.

Sort according to the values of a function applied to each element:

in[2o]: = SortBy[{l, 3, 6, 8, 2, 5, 9, 7}, lf[EvenQ[tt], tt, 10 + tt] &]

out[2oj= {2, 6, 8, 1, 3, 5, 7, 9}

SortBy has an operator form:

in[2i]:= SortBy[lf[EvenQ[tt], tt, 10 + tt] &][{1, 3, 6, 8, 2, 5, 9, 7}]

0ut[2i]= {2, 6, 8, 1, 3, 5, 7, 9}

Sort rows according to the value of the difference of the x and y columns:

ln[22]:= data[SortBy[ttx-tty &]]

X y Z

b 5 10 7

a 1 2 3

2 levels
|

2 rows

Sort the rows, and find the total of all columns:

ln[23]:= data[SortBy[ttx-tty &], Total]

b 22
Out[23]=

a 6

1 level
|
2 elements

Sometimes you want to apply a function to each element in the dataset.

Apply f to each element in the dataset:

ln[24]:=

Out[24]=

Square each element before sorting and totaling:

ln[25]:= data[SortBy[ttx-tty &], Total, tt A 2 &]

b 174

a 14

1 level
|
2 elements

data[All, All, f]

Out[25]=

45
|

Datasets — wolfr.am/eiwl-45 275

Datasets can contain arbitrary mixtures of lists and associations,

can be thought of as a list oj records with namedfields.

Here’s a dataset that

A dataset formed from a list of associations:

Dataset[{ < |
"x" -4 2, "y" -4 4, "z" -4 6 | > , < |

"x" -4 11, "y" - 7, "z" -4 1
1 > }]

X y z

2 4 6

11 7 1

2 levels
|

2 rows

It’s OK for entries to be missing:

Dataset[{ < |
"x" ->• 2, "y" -> 4, "z" -4 6

|
> , <

|
"x" - 11, "y" -4 7

| > }]

Out[27]=

X y z

2 4 6

11 7 KeyAbsent

2 levels
|

2 rows

Now that we’ve seen some simple examples, it’s time to look at something slightly

more realistic. Let’s import a dataset giving properties of planets and moons. The

dataset has a hierarchical structure, with each planet having a mass and radius of its

own, and then also having a collection of moons, each ofwhich have their own

properties. This general structure is extremely common in practice (think students

and grades, customers and orders, etc.).

Get a hierarchical dataset of planets and moons from the cloud:

planets = CloudGet["http://wolfr.am/7FxLgPm5"]

Mass Radius Moons

Mercury 0.0552734 /W® 2439.7 km <1 l>

Venus 0.81 4996 M® 6051.9 km <1 l>

Earth 1.0000000 A4® 6367.4447 km <
|

Moon -> <
|

Mass -* 0.01 2300 A4®
,
Radius -» 1 737.5 km

|
>

|

>

Mars 0.107447 M® 3386. km
<|

Phobos -»
<|

Mass -> 1 .796 * 1
O'9M®

,

Radius -» 11.1 km |>, Deimos -» <

Jupiter 317.828 M® 69173. km <
|

Ganymede -»
<

|

Mass -* 0.024807 M®
,
Radius -> 2631 .2 km

|

> ,
Callisto

Saturn 95.1608 A/f® 57316. km <
|

Titan -»
<

|

Mass -» 0.022525 M®, Radius -4 2575.5 km
|

> ,
Rhea - <

|

Mas

Uranus 14.5357M9 25266. km <
|

Titania -4 <
|

Mass -4 0.0005903 M®, Radius -4 788.9 km
|
> ,

Oberon -» <
|

Neptune 1 7.1478 M®

4 levels
|

Brows

24553. km < I Triton -» < |

Mass -4 0.0035823 M®. Radius -» 1353.4 km
|
> ,

Proteus -> <

276 An Elementary Introduction to the Wolfram Language

Find the radii of all the planets:

ln[29]:= planets[All, "Radius"]

Mercury 2439.7 km

Venus 6051 .9 km

Earth 6367.4447 km

Mars 3386. km

Jupiter 69173. km

Saturn 57316. km

Uranus 25266. km

Neptune 24553. km

1 level
|
8 elements

Make a bar chart of planet radii:

in[30] := BarChart[planets[All, "Radius"], ChartLabels -4 Automatic]

Ifwe ask about the moons of Mars, we get a dataset, which we can then query further.

Get a dataset about the moons of Mars:

in[3i]:= planets["Mars", "Moons"]

Mass Radius

Phobos 1.796x1 O'9Me 11.1 km

Deimos 2.5x10

-

10 /We 6.2 km

2 levels
|

2 rows

“Drill down” to make a table of radii of all the moons of Mars:

m[32]:= planets[" Ma rs", "Moons", All, "Radius"]

Phobos 11.1 km
Out[32]=

Deimos 6.2 km

1 level
|
2 elements

45
|

Datasets — wo!fr.am/eiwl-45 277

We can do computations about the moons of all planets. First, let’s just find out how
many moons are listed for each planet.

Make a dataset of the number of moons listed for each planet:

ln(33]:= planets[All, "Moons", Length]

Mercury 0

Venus 0

Earth 1

Mars 2

Jupiter 38

Saturn 33

Uranus 21

Neptune 8

1 level
|
8 elements

Find the total mass of all moons for each planet:

ln[34]:= planets[All, "Moons", Total, "Mass"]

Mercury 0M&
Venus 0m9

Earth 0.012300 Mq

Mars 2.04x10-9 Mq

Jupiter 0.065807

Saturn 0.023527Me

Uranus 0.001531

Neptune 0.003598

1 level
|
8 elements

Get the same result, but only for planets with more than 10 moons:

planets[Select[Length[#Moons] > 10 &], "Moons", Total, "Mass"]

Jupiter 0.065807

Saturn 0.023527 M#

Uranus 0.001531

1 level
|

3 elements

278 An Elementary Introduction to the Wolfram Language

Make a pie chart of the result:

in[36i PieChart[%, ChartLegends -> Automatic]

Out[36]=

Jupiter

Saturn

Uranus

Get a dataset with moons that are more than 1% of the mass of the Earth.

For all moons, select ones whose mass is greater than 0.01 times the mass of the Earth:

ln[37] planets[All, "Moons", SelectfttMass > B .01 earth masses &]]

Out[37]=

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

<1 l>

<1 l>

<
|

Moon -4 <
|

Mass -4 0.01 2300 M®
,
Radius -4 1 737.5 km

|
>

|
>

<1 l>

<
|

Ganymede -4 <
|

Mass -4 0.024807 /W®, Radius -4 2631 .2 km
|

> ,
Callisto -4 <

|

Mass -4 0.01801 1 A4e ,

,

<
|

Titan -4 <
|

Mass -4 0.022525 Me , Radius -4 2575.5 km
|
>

|

>

<1 l>

<1 l>

3 levels
|

8 rows

Get the list of keys (i.e. moon names) in the resulting association for each planet:

in[38j:= planets[All, "Moons", SelectfttMass > B .01 earth masses &]][All, Keys]

Mercury 0
Venus {}

Earth { Moon

}

Mars {}

Jupiter {Ganymede, Callisto, lo}

Saturn {Titan}

Uranus {}

Neptune {}

2 levels
|
8 rows

45
|

Datasets — wolfr.am/eiwl-45 279

Get the underlying association:

Normal[%]

<
|

Mercury -> {}, Venus -> {}, Earth -> {Moon}, Mars -> {},

Jupiter -» {Ganymede, Callisto, lo}, Saturn -> {Titan}, Uranus -> {}, Neptune -4 {} |

>

Catenate the lists for all keys:

Catenate[%]

{Moon, Ganymede, Callisto, lo, Titan}

Here’s the whole computation in one line:

planets[All, "Moons", Select[#Mass > B .01 earth masses &]][Catenate, Keys] II Normal

{Moon, Ganymede, Callisto, lo, Titan}

Here's one more example, where we find the logarithm of the mass of each moon,

then make a number line plot of these values for each planet.

Make number line plots of the logarithms of masses for moons of each planet:

planets[All, "Moons", NumberLinePlot[Values[tt]] &, Log[ttMass/B 1 earth mass] &]

Mercury

Venus

Earth •

Mars • •

Jupiter mmamm m
Saturn

Uranus • mmammmm • «m»

Neptune - -esc: .

1 level
|
8 elements

As a final example, let’s make a word cloud of names of moons, sized according to the

masses of the moons. To do this, we need a single association that associates the name

of each moon with its mass.

When given an association, WordCloud determines sizes from values in the association:

WordCloudf <
|

"A" -4 5, "B" -4 4, "C" -4 3, "D" -4 2, "E" -4 1 1 >]

The function Association combines associations:

Association! <| "a" -4 1, "b" -4 2 |> , <| "c" -4 3 |>]

<
|
a -4 1, b 4 2, c 4 3

|
>

280 An Elementary Introduction to the Wolfram Language

Generate the word cloud of moon masses:

in[45]:= planets[WordCloud[Association[Values[tt]]] &, "Moons", All, "Mass"]

Narv, Skathi Paaliaq 0^;~"”Ad,as.ea Thebe

Mim“ Sycorax
Amalthea EP^etheus

Hermlppe
®‘nop'' D i

TntonM

Out[45]=

AiihAfl Epimetheus u
oeu,uu

althea K Hermippe calyt

:aiaa 00 fl
D^"

Phobos Crossida JL Taygete Nereid

Erinome | I l^^Harpalyke Erriapo

di 1 1cl I irre
-
Bel,nda

Erinome I

Rhea Titania

Deimos Megaclite

Pasiphae
Tarvos Autonoe

,sonoe
Miranda

Kiviuq Ophelia 5,2007 52

Kalyke

J I
A,tne

. 0®s

Callisto
Europa

Oesdemona Galatea

Thalassa Caliban

Hyperion Umbriel

Euanthe Janus
Enceladus Phoebe Juliet

Themisto Larissa LedaMundilfari __

Metis u T
eleSt° Praxidike Prometheus

1
Chaldene Suttungr Bianca Puck

Ijlraq p
en8 Eupon0 ,apetus Stephano Cordelia Carme

Proteus Pandora Lysithea Himalia E |ara Kale

For what it does, the code here is surprisingly simple. But we can make it slightly

more streamlined by using @* or /*.

We’ve seen before that we can write something like f[g[x]] as f@g@x or x // g // f.

We can also write it f[g[tt]] &[x]. But what about f[g[tt]] &? Is there a short way to write

this? The answer is that there is, in terms of thefunction composition operators @* and /*.

represents a composition of functions to be applied right-to-left:

ln[46]:= (f@*g@*h)[x]

Out[46]= f[g[h[x]]]

h /* g /* f represents a composition of functions to be applied left-to-right:

ln[47]:= (h /* g /* f)[x]

Out[47]= f[g[h[x]]]

Here’s the previous code rewritten using composition @*:

in
[
48] := planets[WordCloud @* Association @* Values, "Moons", All, "Mass"]

Out(48]=

»™ S"a.hl Paaliaq
0ber„ Adraslea plo^o^S Sy»r« Amakhea Epimekheus

lo
:^,0"mooi

“•tTitan
tiinuiiic

Rhea Titania

c,aiypso _ ..— Tethys

Despina At |as
T aygete Nereid

Harpalyke Erriapo

Eurydome Belinda

Thrymr "

e J - |
i Aline Del

Callisto
Deimos Megaclite

Pasiphae
Tarvos Autonoe

lsonoe
Miranda

Kiviuq Ophelia S/2007 S2
i r-% q

Kalyke Mundlilafi L-U I U UCl Themisto Larissa Leda

Metis u !
e,eSl° Praxidike Prometheus Chaldene Su,tun9 r Bjanca Puck

lnraaT 606 Eupor,e lapetus Stephano Cordelia
Siarnap Carme

Portia pr(rt0U8 Pandofa Lysithea Himalia eiara Kft)e

Desdomona Galatea

Thalassa Caliban

Hyperion Umbriel

Euanthe Janus
Enceladus ph0ebe Juliet

45
|

Datasets — wolfr.am/eiwl-45 281

And using right composition /*:

planets[Values /* Association /* WordCloud, "Moons", All, "Mass"]

Out(49)=

N«<v, »»« otvifnn Adrastea p,0SM,„ Thebe
' Ep^.,rM,u8_ ™S..eoos s,nope Anal

XI™? Syoorax
Amalmaa Hertnlppe Calypso T

D»ne
P»nkM«e 'zjr. Triform Te,hys
• — -one

, IVIOOn DeSp,na Atlas
Taygete Nereid

Ennome I I I
|

|r "m Harpalyke Ernapo
Rhea Titanu- I f| I 1 | f1 | I Eurydome Belinda

I Thrymr

Deimos Megaciite

Pasiphae

,

T«vw Auionoe
lson°« Miranda
Kl™« Ophelia

Kalyke

Callisto
2S£Europa
o Praxidike Prometheus

'

hiraq
Jupone Stephano

Portia Prcaeus pandora Lysithea

Desdemona Galatea

Thalassa Caliban

Hyperion Umbriel

Euanthe Janus
Enceladus Phoebe Juliat

Themisto Larissa Leda

Metis T81**10 p,axiaike Prometheus "chaktene Suttungr Blanca PuC|<
neiene Euporia lapetus Stephano Cordelia Slarna<l Carme

Vocabulary

Dataset[t/tfta] a dataset

Normal [dataset] convert a dataset to normal lists and associations

Catenate[{<7.v.soci, ...}] catenate associations, combining their elements

f@*g composition of functions (/Jg[x]] when applied tox)

//* g right composition (g[/{x]] when applied tox)

Exercises

Note: These exercises use the dataset planets = CloudGet["http://wolfr.am/7FxLgPm5"].

45.1 Make a word cloud of the planets, with weights determined by their number of moons.

45.2 Make a bar chart of the number of moons for each planet.

45.3 Make a dataset of the masses of the planets, sorted by their number of moons.

45.4 Make a dataset of planets and the mass of each one’s most massive moon.

45.5 Make a dataset of masses of planets, where the planets are sorted by the largest mass of their moons.

45.6 Make a dataset of the median mass of all moons for each planet.

45.7 For each planet, make a list of moons larger in mass than 0.0001 Earth masses.

45.8 Make a word cloud of countries in Central America, with the names of countries proportional to the

lengths of the Wikipedia article about them.

282 An Elementary Introduction to the Wolfram Language

Q&A

What kinds of data can datasets contain?

Any kinds. Not just numbers and text but also images, graphs and lots more. There’s no need for all

elements of a particular row or column to be the same type.

Can I turn spreadsheets into datasets?

Yes. Semanticlmport is often a good way to do it.

What are databases and how do they relate to Dataset?

Databases are a traditional way to store structured data in a computer system. Databases are often set up

to allow both reading and writing of data. Dataset is a way to represent data that might be stored in a

database so that it’s easy to manipulate with the Wolfram Language.

How does data in Dataset compare to data in an SQL (relational) database?

SQL databases are strictly based on tables of data arranged in rows and columns of particular types,

with additional data linked in through “foreign keys”. Dataset can have any mixture of types of data, with

any number of levels of nesting, and any hierarchical structure, somewhat more analogous to a NoSQL
database, but with additional operations made possible by the symbolic nature of the language.

Tech Notes

• Dataset supports a new kind of symbolic database structure which generalizes both relational and

hierarchical databases.

• Dataset has many additional mechanisms and capabilities that we haven’t discussed.

Everything that can be done with queries on datasets can also be done by using functions like Map and

Apply on underlying lists and association—but it’s typically much simpler with dataset queries.

You can connect the Wolfram Language directly to SQL databases—and do queries with SQL syntax-

using DatabaseLink.

More to Explore

Guide to Computation with Structured Datasets in the Wolfram Language (wolfr.am/eiwl-45-more)

46
|

Writing Good Code — wolfr.am/eiwl-46 283

46
|

Writing Good Code

W riting good code is in many ways like writing good prose: you need to have your

thoughts clear, and express them well. When you first start writing code, you’ll most

likely think about what your code does in English or whatever natural language you

use. But as you become fluent in the Wolfram Language yotf 11 start thinking directly

in code, and it'll be faster for you to type a program than to describe what it does.

MV goal as a language designer has been to make it as easy as possible to express

things in the Wolfram Language. The functions in the Wolfram Language are much

like the words in a natural language, and I’ve worked hard to choose them well.

Functions like Table or NestList or Fold List exist in the Wolfram Language because

they express common things one wants to do. As in natural language, there are

always many ways one can in principle express something. But good code involves

finding the most direct and simple way.

To create a table of the first 10 squares in the Wolfram Language, there’s an obvious

good piece of code that just uses the function Table.

Simple and good Wolfram Language code for making a table of the first 10 squares:

Table[n A
2, {n, 10}]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Why would anyone write anything else? A common issue is not thinking about the

“whole table”, but instead thinking about the steps in building it. In the early days ol

computing, computers needed all the help they could get, and there was no choice

but to give code that described every step to take.

A much worse piece of code that builds up the table step by step:

Module[{list, i}, list = {}; For[i = 1, i < 10, i ++, list = Append[list, i
A
2]]; list]

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

But the point of the Wolfram Language is to let one express things at a higher level

and to create code that as directly as possible captures the concept of what one wants

to do. ()nce one knows the language, it’s vastly more efficient to operate at this level.

And it leads to code that’s easier for both computers and humans to understand.

In writing good code, it’s important to ask frequently, “What’s the big picture ol what

this code is try ing to do? Often you’ll start oil understanding only some part, and

writing c ode just for that. But then you’ll end up extending it, and adding more

and more pieces to your code. But il you think about the big picture you may sud-

den!) realize that there s some more powerful function like a Fold that you c an use

to make your code nice and simple again.

284 An Elementary Introduction to the Wolfram Language

Make code to convert {hundreds ,
tens

,
ones} digits to a single integer:

in [3): fromdigits[{h_, t_, o_}] := 100 h + lOt + o

Run the code:

in[4] : fromdigits[{5, 6, 1}]

Out[4]= 561

Write a generalization to a list of any length, using Table:

in(5]
: fromdigits[list_List] := Total[Table[10 A (Length[list]-i)*list[[i]], {i, Length[list]}]]

The new code works:

in[6] := fromdigits[{5, 6, 1, 7, 8}]

out[6]= 56178

Simplify the code by multiplying the whole list of powers of 10 at the same time:

mm fromdigits[list_List] := Total[10 A Reverse[Range[Length[list]]-l]*list]

Try a different, recursive, approach, after first clearing the earlier definitions:

in[8] Clearffromdigits]

in[9] fromdigits[{k_}] := k

m[io] fromdigits[{digits
,
k_}] := 10*fromdigits[{digits}] + k

The new approach works too:

in[ii] = fromdigits[{5, 6, 1, 7, 8}]

out[i i]= 56178

But then you realize: it’s actually all just a Fold!

in[i 2]:= Clearffromdigits]

in[i3] := fromdigits[list_] := Fold[10*ttl + tt2 &, list]

ln[14]:= fromdigits[{5, 6, 1, 7, 8}]

out[i4]= 56178

Of course, there’s a built-in function that does it too:

ln[15):= FromDigits[{5, 6, 1, 7, 8}]

Out[1 5]= 56178

Why is it good for code to be simple? First, because it’s more likely to be correct.

It’s much easier for a mistake to hide in a complicated piece of code than a simple

one. Code that’s simple is also usually more general, so it’ll tend to cover even cases

you didn’t think of, and avoid you having to write more code. And finally, simple

46
|

Writing Good Code — wolfr.am/eiwl-46 285

code tends to be much easier to read and understand. (Simpler isn't always the same

as shorter, and in fact short “code poetry” can get hard to understand.)

An ovedy short version of fromdigits, that’s starting to be difficult to understand:

fromdigits = Fold[{10, l}.{#tt} &, tt] &

;

It still works though:

fromdigits[{5, 6, 1, 7, 8}]

out|i7 56178

Ifwhat you're trying to do is complicated, then your code may inevitably need to be

complicated. Good code, though, is broken up into functions and definitions that are

each as simple and self-contained as possible. Even in very large Wolfram Language

programs, there may be no individual definitions longer than a handful of lines.

Here’s a single definition that combines several cases:

is] fib[n_] := lf[! lntegerQ[n] ||n < 1, "Error", lf[n == l||n == 2, 1, fib[n-l] + fib[n-2]]]

It’s much better to break it up into several simpler definitions:

,[i9] fib[l] = fib[2] = 1;

,[lo] fib[n_lnteger] := fib[n-l] + fib[n-2]

A very' important aspect ofwriting good code is choosing good names for your functions.

For the built-in functions of the Wolfram Language, IVe made a tremendous effort over

the course of decades to pick names well—and to capture in their short names the

essence ofwhat the functions do, and how to think about them.

When you're writing code, it’s common to first define a new function because you

need it in some very specific context. But it’s almost always worth trying to give it a

name that you'll understand even outside that context. And ifyou can’t find a good

name, it’s often a sign that it’s not quite the right function to define in the first place.

A sign of a good function name is that when you read it in a piece of code, you

immediately know what the code does. And indeed, it’s an important feature of the

W olfram Language that it’s typically easier to read and understand well-written code

directly than from any kind of textual description of it.

286 An Elementary Introduction to the Wolfram Language

How would one describe this in plain English?

in[2 i

]

: Graphics[

{White, Riffle[NestList[Scale[Rotate[tt, 0.1], 0.9] &, Rectangle[], 40], {Pink, Yellow}]}]

Out[21]=

When you write Wolfram Language code, youTl sometimes have to choose between

using a single rare built-in function that happens to do exactly what you want—and

building up the same functionality from several more common functions. In this

book, I’ve sometimes chosen to avoid rare functions so as to minimize vocabulary.

But the best code tends to use single functions whenever it can—because the name of

the function explains the intent of the code in a way that individual pieces cannot.

Use a small piece of code to reverse the digits in an integer:

m[22
]

FromDigits[Reverse[lntegerDigits[123456]]]

Out[22]= 654321

Using a single built-in function explains the intent more clearly:

ln[23]:= lntegerReverse[123456]

out[23]= 654321

Good code needs to be correct and easy to understand. But it also needs to run

efficiently. And in the Wolfram Language, simpler code is typically better here too~

because by explaining your intent more clearly, it makes it easier for the Wolfram

Language to optimize how the computations you need are done internally.

With every new version, the Wolfram Language does better at automatically figuring

out how to make your code run fast. But you can always help by structuring your

algorithms well.

Timing gives the result of a computation, together with its timing (in seconds):

m[24] Timing[fib[20]]

ou.[24i {0.021843, 6765}

46
|

Writing Good Code — wolfr.am/eiwl-46 287

Plot the time to compute fib[n] according to the definitions above.

With the definitions of fib above, the time grows very rapidly:

ListLinePlot[Table[First[Timing[fib[n]]], {n, 20}]]

The algorithm we used happens to do an exponential amount of unnecessary work

recomputing what it’s already computed before. We can avoid this by making the

definition for fib[n_] always do an assignment for fib[n], so it stores the result of each

intermediate computation.

Redefine the fib function to remember every value it computes:

fibfl] = fib[2] = 1;

fib[n_lnteger] := fib[n] = fib[n-l] + fib[n-2]

Now even up to 1000 each new value takes only microseconds to compute:

ListLinePlot[Table[First[Timing[fib[n]]], {n, 1000}]]

Vocabulary

FromDigits[//.s7] assemble an integer from its digits

IntegerReversef/] reverse the digits in an integer

Timing [expr] do a computation, timing how long it takes

288 An Elementary Introduction to the Wolfram Language

Exercises

46.1 Find a simpler form for Module[{a, i}, a = 0; For[i = 1, i
< 1000, i ++, a = i * (i + 1) + a]; a].

46.2 Find a simpler form for Module[{a, i}, a = x; For[i = 1, i < 10, i ++, a = 1/ (1 + a)]; a].

46.3 Find a simpler form for

Module[{i, j, a}, a = {}; For[i = 1, i
< 10, i ++, For[j = 1, 10, j++, a = Join[a, {i, j}]]]; a].

46.4 Make a line plot of the timing for computing n A n for n up to 10000.

46.5 Make a line plot of the timing for Sort to sort Range[n] from a random order, for n up to 200.

Q&A

What does i ++ mean?

It’s a short notation for i = i + 1. It’s the same notation that C and many other low-level computer

languages use for this increment operation.

What does the For function do?

It’s a direct analog of the for (...) statement in C. For [start, test, step, body] first executes start, then checks

test, then executes step, then body. It does this repeatedly until test no longer gives True.

Why can shortened pieces of code be hard to understand?

The most common issue is that variables and sometimes even functions have been factored out, so there

are fewer names to read that might give clues about what the code is supposed to do.

What’s the best IDE for authoring Wolfram Language code?

For everyday programming, Wolfram Notebooks are best. Make sure to add sections, text, and examples

right alongside your code. For large multi-developer software projects, Wolfram Workbench provides an

Eclipse-based IDE.

What does Timing actually measure?

It measures the CPU time spent in the Wolfram Language actually computing your result. It doesn’t

include time to display the result. Nor does it include time spent on external operations, like fetching data

from the cloud. If you want the absolute “wall clock” time, use AbsoluteTiming.

How can I get more accurate timings for code that runs fast?

Use RepeatedTiming, which runs code many times and averages the timings it gets. (This won’t work if the

code is modifying itself, like in the last definition of fib above.)

What are some tricks for speeding up code?

Beyond keeping the code simple, one thing is not to recompute anything you don’t have to. Also, if you’re

dealing with lots of numbers, it may make sense to use N to force the numbers to be approximate. For

some internal algorithms you can pick your PerformanceGoal, typically trading off speed and accuracy.

There are also functions like Compile that force more of the work associated with optimization to be done

up front, rather than during a computation.

46
|

Writing Good Code — wolfr.am/eiwl-46 289

Tech Notes

Complicated behavior can arise even from extremely simple code: that’s what my 1280-page book

A New Kind ofScience is about. A good example is CellularAutomaton[30, {{1}, 0}].

The fib function is computing Fibonacci [//]. The original definition always recurses down a whole tree of

0(1.618
n

)
values.

Remembering values that a function has computed before is sometimes called memoization, sometimes

dynamic programming, and sometimes just caching.

The function IntegerReverse is new in Version 10.3.

For large programs, the Wolfram Language has a framework for isolating functions into contexts and

packages.

• lf[tt 1 >2, 2tt 0[# l - tt 0[TT 1 - 2]], 1]& /@ Range[50] is an example of short code that’s seriously

challenging to understand...

47
|

Debugging Your Code - wolfr.am/eiwl-47 291

47
|

Debugging Your Code

Even the most experienced programmers have to spend time debugging their code.

easy, especially if you follow a few principles.

fhe first and most important principle is to tiy out any piece ofcode you write. Because

the Wolfram Language is interactive—and symbolic—you can always instantly do this.

So even ifyou just make a tiny change, run your code again, and see ifyour test examples

still work. If they don’t, fix the code before you go on.

The Wolfram Language can sometimes tell as soon as you type something in that it’s

likely to be wrong—and then it’ll color it red.

A piece of code with various problems, indicated with red:

WordCloud[Nest[Join[#, Length[J + Reverse[#, 1, 2]] &, {0}, m], Spacings -> 0]

Once you run a piece of code, the Wolfram Language can also often tell if things

have gone obviously wrong—in which case it’ll display a message. The code here

ends up, for example, asking for the first element of a length-0 list.

Something is obviously wrong when First is applied to the {} that’s produced by Cases:

First[Cases[{l, 2, 3, 4}, 777]]

: {} has zero length and no first element. »

0*11= First[{}]

Sometimes the Wolfram Language may not know what to do with something, but it

may not be sure there’s a problem. In such cases, it’ll just leave the input unchanged

and return it in a symbolic form that can later get a definite value.

Without values for a, b and c, the Wolfram Language just returns this unchanged:

Graph[{a, b, c}]

Graph[{a, b, c}]

If you generate graphics with symbolic pieces that can’t be rendered, you’ll get a pink box:

Graphics[(Circle[{0, 0}], Disk[{a, b}]}]

292 An Elementary Introduction to the Wolfram Language

Use With to temporarily set m = 4 to test a fragment of code:

in[4] :
= With[{m = 4}, Nest[Join[tt, Lengthftt] + Reverseftt]] &, {0}, m]]

0ut[4]= {0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8}

When debugging takes a long time it’s usually because one’s made the wrong assumption

about what one’s code is doing. And in my experience, the best way to overcome this is

just to systematically analyze how the code behaves, making tables of results, generating

visualizations, testing out assertions, and so on.

Make plots to see what the code is doing:

in[5] : = ListLinePlot/@Table[Nest[Join[tt, Length[t$] + Reverse[tt]] &, {0}, m], {m, 6}]

}

If this code is working correctly, the result should contain every number from 0 to 2 A m - 1:

in[6]:= Sort[With[{m = 4}, Nest[Join[tt, Length[tt] + Reverse[tt]] &, {0}, m]]]

0ut[6]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Systematically check this up to m = 10:

in[7]:= Table[

Sort[Nest[Join[tt, Length[tt] + Reverse[tt]] &, {0}, m]] == Range[0, 2 A m -
1], {m, 10}]

out[7]= {True, True, True, True, T rue, T rue, True, T rue, T rue, T rue}

Sometimes it’s not sufficient just to see the final result of a piece of code; you need to

see what’s going on inside as well. You can insert the function Echo anywhere to print

intermediate results or values from your code.

Echo prints values, but does not interfere with the result:

in[8j:= Table[Echo[n] A
2, {n, 3}]

» l

» 2

» 3

out[8]= {1, 4, 9}

47
|

Debugging Your Code — wolfr.am/eiwl-47 293

II you re running a long computation, you can monitor its progress using Monitor.

Continuously show (with a frame) the value of n reached so far:

Monitor[Table[PrimeQ[2 A 2 A n + 1], {n, 15}], Framedfn]]

{True, True, True, True, False, False, False, False, False, False, False, False, False, False, False}

Echo and Monitor just display things. Ifyou want to actually capture intermediate

results, you can do it using Sow and Reap.

Reap gives the final result together with a list of everything that was sown by Sow:

Reap[Total[Table[Sow[n], {n, 5}]]]

Out(io]= {15, {{1, 2, 3, 4, 5}}}

This sows successive values of Length[Q], and reaps the results:

Last[Reap[Nest[Join[tt, Sow[Length[tt]] + Reverseftt]] &, {0}, 10]]]

Outji
. {{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}}

Vocabulary

With [{a
- = value), expr

]
compute expr with a replaced by value

Echo[cv/;r] display and return the value of expr

Monitor[cA7?r, obj] continually display obj during a computation

Sow [expr] sow the value of expr for subsequent reaping

Reapfc.vpr] collect values sowed while expr is being computed

Exercises

47.1 Correct the program Counts[StringTake[Tt, 2] & /@ Word List
[]]

for counting possible first two

letters in words.

47.2 Use Sow and Reap to find intermediate values ofU 1 in Fold [10 tt l + tt2&, {1, 2, 3, 4, 5}].

47.3 Use Sow and Reap to get a list of all cases where #/2 is used in

Nest[lf[EvenQ[tt], U/2, 3tt + l]&, 1000, 20],

294 An Elementary Introduction to the Wolfram Language

Q&A

Can I cause a problem by just trying to run a piece of code?

Not unless your code is for example set up to delete something. The Wolfram Language has protections

against “obviously wrong” infinite loops and so on. If something is taking too long, you can always abort it.

If you’re really concerned about resources, use TimeConstrained and MemoryConstrained.

Is there a most common type of bug in Wolfram Language code?

Not really. The design of the language makes all sorts of bugs that are common in other programming languages

rare. For example, “off by one” errors are common in languages where you’re always explicitly manipulating

loop variables, but are rare when you’re using Wolfram Language “whole-list” functions like Table.

If I can’t figure out what’s going on, is it worth just trying random things?

If you think you’re close, it’s often not crazy to try making small random changes to code to see what

happens. Since in the Wolfram Language simpler code is usually more likely to be correct, it’s not

uncommon to hit the code you want by a small amount of random searching.

Is there a way to do interactive step-by-step debugging in the Wolfram Language?

Yes (at least with a native desktop interface)—though it’s rarely used. Given the structure of the Wolfram

Language, systematically capturing and analyzing intermediate results is almost always a better approach.

How can I tell what’s wrong when a piece of graphics is “pinked”?

Hover over it and you’ll see the underlying symbolic expression. Or press the + to print messages.

What is the code that makes the fractal-like graphics doing?

It’s making a Gray code—an ordering of integers so that only one binary digit changes at each step.

Tech Notes

For large-scale software development, the Wolfram Language has a built-in framework for creating and

running systematic tests, with functions like VerificationTest and TestReport.

A major goal of good language design is to encourage people to write correct code.

More to Explore

Guide to Debugging in the Wolfram Language (wolfr.am/eiwl-47-more)

What We Haven't Discussed — wolfr.am/eiwl-etc 295

What We Haven’t Discussed

There’s a lot more to the Wolfram Language than we’ve been able to cover in this

book. 1 lere’s a sampling ofjust a few of the many topics and areas that we’ve missed.

User Interface Construction

Set up a tabbed interface:

TabView[Table[ListPlot[Range[20] A n], {n, 5}]]

1 2 3 4 5

400

300
.

’

0ut[1]=

200

100 .
*

- »,«*.* * *

5 10 15 20

User interfaces are just another type of symbolic expression; make a grid of sliders:

Grid[Table[Slider[], 4, 3]]

Out[2]=

Function Visualization

Plot a function:

Plot[Sin[x] + Sin[Sqrt[2] x], (x, 0, 20}]

3D contour plot:

ContourPlot3D[x A 3 + y
A 2-z A

2, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

2

296 An Elementary Introduction to the Wolfram Language

Mathematical Computation

Do symbolic computations, with x as an algebraic variable:

m[5):= Factor[x A 10-l]

Out[5]= (— 1 + x) (1 + x) (l-x + x
2 -x3 + x

4

)
(l + x + x

2 + x
3 + x

4

)

Get symbolic solutions to equations:

m[6]:= Solve[x A 3-2x + l == 0, x]

out[6
]=

|{x -> 1}, {x ->• {x-> -(-l + Vs
-

)}}

Do calculus symbolically:

in[7]:= lntegrate[Sqrt[x + Sqrt[x]], x]

Out[7]= — V V7 + X (-3 + 2 yfx + 8 x) + - Log[1 + 2 yj~K + 2 V V"x~ + X 1

12
' '

8
L J

Display results in traditional mathematical form:

in[8] ;= lntegrate[AiryAi[x], x] II TraditionalForm

x(<[3 xr(lf ,f2(|;
i

f)
- 3 f(i) P(|) ,F2(i;

Out[8]= — •

9x32/3 r(f)r(i)r(f)

Use 2D notation for input:

^2- Binomial[n, i] i

!

In[9]:= }
ho (n + l+i)!

WF
Out[9]=

2 (1 + 2 n))

!

Numerics

Minimize a function inside a spherical ball:

in[io]:= NMinimize[{x A 4 + y
A 4-z/(x + l), y > 0}, {x, y, z} e Ball[]]

out[io]= {-7.34516, {x -+ -0.971029, y -> 0.0139884, z -> 0.238555}}

What We Haven't Discussed — wotfr.am/eiwl-etc 297

Solve a differential equation to get an approximate function:

NDSolve[{y "[x] + Sin[y[x]] y[x] == 0, y[0] == 1, y '[0] == 0}, y, {x, 0, 30}]

out[i

i
j|y

-» InterpolatingFunctionJ^ ^°
main tt°-* 30-»

jjj

Make a plot using the approximate function:

Plot[Evaluate[{y[x], y '[x], y "[x]} /. %], {x, 0, 30}]

Geometry

The area of a disk (filled circle) of radius r:

ln[13]:= Area[Disk[{0, 0}, r]]

TTr2
Outfi 3]= 7Tr

Make a shape by “shrinkwrapping” around 100 random points in 3D:

M ConvexHullMesh[RandomReal[l, {100, 3}]]

298 An Elementary Introduction to the Wolfram Language

Algorithms

Find the shortest tour of the capitals of Europe (traveling salesman problem):

in[i 5] : With[{c = 0 europe capital cities coordinates },

GeoListPlot[c[[Last@FindShortestTour[c]]], Joined True]]

Out[15]=

Factor a big number:

ln[16]:= Factorlnteger[2 A 255 - 1]

out
(
i 6]= {{7, 1}, {31, 1}, {103, 1}, {151, 1}, {2143, 1}, {11 119, 1}, {106591, 1}, {131071, 1},

{949 111, 1}, {9 520 972 806 333 758 431, 1}, {5 702 451 577 639 775 545 838 643 151, 1}}

Logic

Make a truth table:

i7] BooleanTable[p||q&&(p||
! q), {p}, {q}] II Grid

True True

False False

Find a minimal representation of a Boolean function:

BooleanMinimize[BooleanCountingFunction[{2, 3}, {a, b, c, d}]] II TraditionalForm

out[i8]= (a/\b/\-'d)\/(af\-ib/\c)\/(a/\-‘cf\d)\/(-'a/\b/\d)\/(b/\cf\-uf)\/(-^bf\c/\d)

What We Haven't Discussed — wolfr.am/eiwl-etc 299

The Computational Universe

Run my favorite example of a very simple program with very complex behavior:

ln(19):= ArrayPlot[CellularAutomaton[30, {{!}, 0}, 200]]

Out[19)=

Building APIs

Deploy a simple web API that finds the distance from a specified location:

CloudDeploy[APIFunction[{"loc" -*• "Location"}, GeoDistancefttloc, Here] &]]

CloudObject[https://www.wolframcloud.com/objects/0850dc98-e7d7-4fa6-884b-642ce545d3c3]

Create embeddable code for an external Java program to call the API:

i n

[

2 i EmbedCode[%, "Java"]

Embeddable Code
Use the code below to call the Wolfram Cloud function from Java:

Copy to Clipboard

impon jdvd.io.iutxcepuun;

public class WolframCloudCall {

public static String calKString loc) throws lOException {

URL url = new URL("http://www.wolframcloud.com/objects/09302cdc-4d52-457e-86ae-b834bd9717ae"
^

Out[2i]= HttpURLConnection _conn = (HttpURLConnection) _url.openConnection();

_conn.setRequestMethod("POST");

_conn.setDoOutput(true);

_conn.setDolnput(true);

_conn.setUseCaches(false);

_conn.setAllowUserlnteraction(false);

_conn.setRequestProperty("Content-Type", "application/x-www-form-urlencoded; charset=utf-8");

_conn.setRequestProperty("User-Agent", "EmbedCode- Java/1.0");

DataOutputStream out = new DataOutputStream(_conn.getOutputStream());

_out.writeBytes("loc");

out M/ritoRut£>c I'

300 An Elementary Introduction to the Wolfram Language

Document Generation

Documents are symbolic expressions, like everything else:

m[22]:= DocumentNotebook[

{Style["A Circle", "Section"], Style["How to make a circle"], Graphics[Circle[]]}]

Evaluation Control

Hold a computation unevaluated:

ln[23]:= Hold[2 + 2 == 4]

out[23]= Hold[2 + 2 == 4]

Release the hold:

ln[24]:= ReleaseHold[%]

out[24]= True

Systems-Level Operations

Run an external process (not allowed in the cloud!):

in[25] : = RunProcess["ps", "StandardOutput"]

0ut[25]= PI D TTY TIME CM

D

374 ttysOOO 0:00.03 -tcsh

40192 ttysOOO 0:00.66 ssh pi

60521 ttysOOl 0:00.03 -tcsh

Encrypt anything:

in[26 Encrypt["sEcreTkey", "Read this if you can!"]

A Circle
How to make a circle

Out[22]=

data length 32 bytes

IV length: 128 bits

original form: String

What We Haven't Discussed — wolfr.am/eiwl-etc 301

Parallel Computation

I’m running on a 12-core machine:

$ProcessorCount

Out|27|= 12

Sequentially test a sequence of (big) numbers for primality, and find the total time taken:

Table[PrimeQ[2 A Prime[n]-1], {n, 500}] //Counts II AbsoluteTiming

(4.15402, <
|

True -» 18, False -> 482
|
>

}

Doing the same thing in parallel takes considerably less time:

ParallelTable[PrimeQ[2 A Primefn] - 1], {n, 500}] II Counts II AbsoluteTiming

o (0.572106, <
|

True -> 18, False -> 482
|
> }

Afterword: Being a Programmer — wolfr.am/eiwl-afterword 303

Afterword: Being a Programmer

It you ve understood what s in this book, and can do its exercises, then you can now
consider yourself a Wolfram Language programmer! There’ll always be more you

can learn, but you’re ready to start using what you know to do real programming.

What can you do? An amazing amount! In fact, there’ll probably be something you

want to program every day. With a traditional computer language it’d take too long

to actually do it, though. But with the Wolfram Language—with all its built-in knowl-

edge and automation—anyone who knows the language can write very useful pro-

grams even in a matter of minutes.

And this means you’ll routinely be able to write programs for all sorts of things. Things

you want to understand, things you want to create, things you want to do for other

people. Sometimes you’ll dash off a program, run it once, and never use it again. But

much more often you’ll end up using your program many times—and maybe progres-

sively making it more and more sophisticated over time.

For everyday programming, it’s normally best to write Wolfram Language programs

directly in Wolfram Notebooks, that let you—like in this book—mix results and

textual explanations along with code. After a while, you’ll probably end up with lots

of Wolfram Notebooks, that do lots of different things.

Quite often you’ll just run your programs in those notebooks. But you’ll also often

want to deploy the programs to create websites, apps or whatever. And one of the

great things about the Wolfram Language is that this is easy to do.

There’s nothing to say that with a few well-chosen lines of Wolfram Language you

might not be able to create something like a website that many people will want to

use. But more often you’ll find there are all sorts of extra details you want to cover,

and you'll end up writing a significantly longer program to handle all of them.

In many ways, there's nothing different about a longer Wolfram Language program.

Even if there are millions of lines of code (as, for example, in Wolfram
|

Alpha), they

locally all look pretty much like the code in this book; just a lot more of it.

In any programming project, however, there are some new issues that come up when

programs get larger. You need to be sure to maintain systematic tests (which in the

Wolfram Language you can do using VerificationTest). You need to organize code into

properly separated packages. And particularly if multiple programmers are involved,

you need version control, code reviews, and other management structures.

But beyond that, you need good overall design and architecture. How will users

and programmers understand your system? What structures will you use to represent

whatever you re dealing with? I low will different parts ol your code interact? 1 hcsc

are the kinds ol things people in charge ol building large software systems need to

think about, and it can take considerable skill and experience to gel them right.

304 An Elementary Introduction to the Wolfram Language

But what if you’re just getting started? What does it take to create the kinds ofprograms

you need to do things? The first step in creating a program for something is to see how

to think about the thing in computational terms.

It might be something where computers have long been used. It might be something

that’s only now conceivable for computers as a result of the Wolfram Language.

Whatever it is, try to imagine a Wolfram Language function for doing it.

What input would the function get? What output would it generate? What might the

function be called? Don’t at first think about how you’d write the code. Just think

about what the function should do. And only after you’ve understood that, start

writing the code.

Look in this book and on the Wolfram Language website for examples that are similar

to what you’re trying to do. If you’re lucky, you’ll get everything you need. But maybe

there’ll be some part that it's just not clear how to achieve. And if that happens, it’s

often good to imagine how you'd explain what’s needed to someone with infinite

technical capability. Often just doing that will lead you to identify at least some definite

tasks—which you can then start formulating in the Wolfram Language.

A great feature of the Wolfram Language is that it’s always easy to do experiments

with. You can try all sorts of things, and see what works. It’s always worthwhile to be

as systematic in your explorations as you can. And to recognize that in the Wolfram

Language it’s usually less about writing lots of code than about understanding how

best to think about what you want in computational terms.

It’s extremely satisfying to take an idea and turn it into a working program. It’s also a

powerful and valuable thing to be able to do. And with the Wolfram Language there

are now remarkable opportunities to build programs far beyond anything possible

before—and to make advances in many areas. And with what you’ve learned in this

book, you should now be in a position to be part of that.

Answers to Exercises — wotfr.am/eiwl-answers 305

Answers to Exercises

Note: Almost all the exercises have many possible correct answers; what’s listed here are

merely sample correct answers.

1 Starting Out: Elementary Arithmetic

1.1 1 + 2 + 3

1.2 1 + 2 + 3 + 4 + 5

1.3 1*2*3*4*5

1.4 5*2

1.5 3 A4

1.6 10 A 12

1.7 2 A2A2 A2

1.8 (4 -2) *(3 + 4)

1.9 120000*123

2 Introducing Functions

2.1 Plus[7, 6, 5]

2.2 Times[2, Plus[3, 4]]

2.3 Max[6*8,5*9]

2.4 Random!nteger[1000]

2.5 Max[10, Randomlnteger[20]]

3 First Look at Lists

3.1 Range[4]

3.2 Range[100]

3.3 Reverse[Range[4]]

3.4 Reverse[Range[50]]

3.5 Join[Range[4], Reverse[Range[4]]]

3.6 ListPlot[Join[Range[100], Reverse[Range[99]]]]

3.7 Range[Randomlnteger[10]]

3.8 Range[10]

3.9 Range[5]

3.10 Join[Range[10], Range[10], Range[5]]

3.11 Join[Range[20], Reverse[Range[20]]]

4 Displaying Lists

4.1 BarChart[{l, 1, 2, 3, 5}]

4.2 PieChart[Range[10]]

4.3 BarChart(Reverse[Range[20]]]

4.4 Column[Range[5]]

4.5 NumberLinePlot[{l, 4, 9, 16, 25}]

4.6 {PieChart[{l}], PieChart[{l, 1}], PieChart[{l, 1, 1}]}

'< 7 Column[{PieChart[{l}], PieChart[{l, 1}], PieChart[{l, 1, 1}]}]

5 Operations on Lists

r

, 1 Reverse[Range[10j A
2]

5.2 Total[Range(10] A
2]

5.3 LiitPlot[Range[10] A
2]

6 4 Sort[Join[Range[4], Range[4]]]

5.5 9 + Range[ll]

5.6 Sort[Join[Range[5] A
2, Range[5] A3]]

5.7 Length[lntegerDigits[2A 128]]

5.8 First[lntegerDigits[2 A 32]]

5.9 Take[lntegerDigits[2A 100], 10]

5.10 Max[lntegerDigits[2A20]]

5.11 Count[lntegerDigits[2 A 1000], 0]

5.12 Part[Sort[lntegerDigits[2 A
20]], 2]

5.13 ListLinePlot[lntegerDigits[2 A 128]]

5.14 Take[Drop[Range[100], 10], 10]

6 MakingTables

6.1 Table[1000, 5]

6.2 Table[n A 3, {n, 10, 20}]

6.3 NumberLinePlot[Table[n A
2, (n, 20}]]

6.4 Range[2, 20, 2]

6.5 Table[n,{n,10}]

6.6 BarChart[Table[n A 2,{n, 10}]]

6.7 Table[lntegerDigits[n A 2],{n, 10}]

6.8 ListLinePlot[Table[Length[lntegerDigits[n A 2]],{n, 100}]]

6.9 Table[First[lntegerDigits[n A 2]],{n,20}]

6.10 ListLinePlot[Table[First[lntegerDigits[n A
2]], {n, 100}]]

7 Colors and Styles

7.1 {Red, Yellow, Green}

7.2 Column[{Red, Yellow, Green}]

7.3 ColorNegate[Orange]

7.4 Table[Hue[h],{h, 0,1, 0.02}]

7.5 Table[RGBColor[l, g, 1], {g, 0, 1, 0.05}]

7.6 Blend[{Pink, Yellow}]

7.7 Table[Blend[{Yellow, Hue[x]}], {x, 0, 1, .05}]

7.8 Tabte[Style[n, Hue[n]], {n, 0, 1, .1}]

7.9 Style[Purple, 100]

7.10 Table[Style[Red, x], {x, 10, 100, 10}]

7.11 Style[999, Red, 100]

7.12 Table[Style[n A
2, n A

2], {n, 10}]

7.13 Table[Part[{Red, Yellow, Green},

Randomlnteger[2] + 1], 100]

7.14 Table[Style[Part[lntegerDigits[2 A 1000], n],

3 * Part[lntegerDigits[2 A 1000], n]], {n, 50}]

8 Basic Graphics Objects

8.1 Graphics[RegularPolygon[3]]

8.2 Graphics[Style[Circle[], Red]]

8.3 Graphics[Style[RegularPolygon[8], Red]]

8.4 Table[Graphics[Style[Disk[], Hue[h]]], {h, 0, 1, 0.1}]

306 An Elementary Introduction to the Wolfram Language

8.5 Column[{Graphics[Style[RegularPolygon[3], Red]],

Graphics[Style[RegularPolygon[3], Green]]}]

8.6 Table[Graphics[Style[RegularPolygon[n], Pink]], {n, 5, 10}]

8.7 Graphics3D[Style[Cylinder[], Purple]]

8.8 Graphics[Reverse[Table[Style[RegularPolygon[n],

RandomColor[]], {n, 3, 8}]]]

9 Interactive Manipulation

9.1 Manipulate[Range[n], {n, 0, 100}]

9.2 Manipulate[ListPlot[Range[n]], {n, 5, 50, 1}]

9.3 Manipulate[Column[Table[x, n]],{n, 1, 10, 1}]

9.4 Manipulate[Graphics[Style[Disk[], Hue[h]]], (h, 0, 1}]

9.5 Manipulate[Graphics[

Style[Disk[], RGBColor[red, green, blue]]],

{red, 0, 1}, {green, 0, 1}, {blue, 0, 1}]

9.6 Manipulate[lntegerDigits[n], {n, 1000, 9999, 1}]

9.7 Manipulate[Tabte[Hue[h], {h, 0, 1, 1 / n}], {n, 5, 50, 1}]

9.8 Manipulate[Table[Graphics[Style[RegularPolygon[6],

Hue[h]]], n], {n, 1, 10, 1}, {h, 0, 1}]

9.9 Manipulate[Graphics[Style[RegularPolygon[n], color]],

{n, 5, 20, 1}, {color, {Red, Yellow, Blue}}]

9.10 Manipulate[PieChart[Table[l, n]], {n, 1, 10, 1}]

9.11 Manipulate[BarChart[lntegerDigits[n]], {n, 100, 999, 1}]

9.12 Manipulate[Table[RandomColor[], n],{n, 1,50, 1}]

9.13 Manipulate[Column[Table[a A m,{m, n}]],

{n, 1, 10, 1}, {a, 1,25,1}]

9.14 Manipulate[NumberLinePlot[

Table[xA n,{x, 10}]], {n, 0, 5}]

9.15 Manipulate[Graphics3D[Style[Sphere[],

RGBColor[n, 1 - n, 0]]], {n, 0, 1}]

10 Images

10.1 ColorNegate[EdgeDetect[|^(j]]]

10.2 Manipulate[Blur[fcj|] ,
r], {r, 0, 20}]

10.3 Table[EdgeDetect[Blur[[^j|| ,
n]], {n, 10}]

10.4 lmageCollage[{|^|, Blur[|^|],

EdgeDetect[[]jjfc], Binarize[|^|]}]

10.5 lmageAdd[Binarize[jl^|], [^fcl]

10.6 Manipulate[EdgeDetect[Blur[j^|, r]],{r, 0,20}]

10.7 EdgeDetect[Graphics3D[Sphere[]]]

10.8 Manipulate[Blur[Graphics[Style[RegularPolygon[5],

Purple]], r],{r, 0,20}]

10.9 lmageCollage[Table[Graphics[Style[Disk[],

RandomColorf]]], 9]]

10.10 lmageCollage[Table[Graphics3D[Style[

Sphere[], Hue[h]]], {h, 0, 1, 0.2}]]

10.11 Table[Blur[Graphics[Disk[]], n], {n, 0, 30, 5}]

10.12 lmageAdd[Graphics[Disk[]], [Li]]

10.13 lmageAdd[Graphics[Style[

RegularPolygon[8], Red]],]

10.14 lmageAdd[|^|||,ColorNegate[EdgeDetect[[^|||]]]

11 Strings and Text

11.1 StringJoin["Hello", "Hello"]

11.2 ToUpperCase[StringJoin[Alphabet[]]]

11.3 StringReverse[StringJoin[Alphabet[]]]

11.4 StringJoin[Table["AGCT", 100]]

11.5 StringTake[StringJoin[Alphabet[]],6]

11.6 Column[Table[StringTake["this is about strings", n],

{n, StringLength["this is about strings"]}]]

11.7 BarChart[StringLength[TextWords["A longtime ago,

in a galaxy far, far away"]]]

11.8 StringLength[WikipediaData["computer"]]

11.9 Length[TextWords[WikipediaData["computer"]]]

11.10 First[TextSentences[WikipediaData["strings"]]]

11.11 StringJoin[StringTake[TextSentences[

WikipediaPata["computers"]], 1]]

11.12 Max[StringLength[WordList[]]]

11.13 Count[StringTake[WordList[], 1], "q"]

11.14 ListLinePlot[Take[StringLength[WordList[]], 1000]]

11.15 WordCloud[Characters[StringJoin[WordList[]]]]

11.16 WordCloud[StringTake[StringReverse[WordList[]], 1]]

11.17 RomanNumeral[1959]

11.18 Max[StringLength[RomanNumeral[Range[2020]]]]

11.19 WordCloud[Table[StringTake[

RomanNumeral[n], 1], {n, 100}]]

11.20 Length[Alphabet["Russian"]]

11.21 ToUpperCase[Alphabet["Greek"]]

11.22 BarChart[LetterNumber[Characters["wolfram"]]]

11.23 StringJoin[FromLetterNumber[Table[

Randomlnteger[25] + 1, 1000]]]

11.24 Table[StringJoin[FromLetterNumber[

Table[Randomlnteger[25] + 1, 5]]], 100]

11.25 ColorNegate[Rasterize[Style["A", 200]]]

11.26 Manipulate[Style[FromLetterNumber[n], 100],

{n, 1, Length[Alphabet[]], 1}]

11.27 Manipulate[ColorNegate[EdgeDetect[

Rasterize[Style[c, 100]]]], {c, Alphabetf]}]

11.28 Manipulate[Blur[Rasterize[Style["A", 200]], r], {r, 0, 50}]

12 Sound

12.1 Sound[{SoundNote[0], SoundNote[4], SoundNote[7]}]

12.2 Sound[SoundNote["A", 2, "Cello"]]

12.3 Sound[Table[SoundNote[n, 0.05], {n, 0, 48}]]

12.4 Sound[Reverse[Table[SoundNote[n],{n,0, 12}]]]

12.5 Sound[Table[SoundNote[12 * n], {n, 0, 4}]]

12.6 Sound[Table[SoundNote[
Randomlnteger[12], .2, "Trumpet"], 10]]

12.7 Sound[Table[SoundNote[Randomlnteger[12],

Randomlnteger[10] / 10], 10]]

12.8 Sound[Table[SoundNote[Part[lntegerDigits[2 A
31],

n], .1], {n, Length[lntegerDigits[2 A
31]]}]]

12.9 Sound[Table[SoundNote[Part[Characters["CABBAGE"],

n], .3, "Guitar"], {n, 1,7}]]

12.10 Sound[Table[SoundNote[Part[

LetterNumber[Characters["wolfram"]],

n], .1], {n, StringLength["wolfram"]}]]

Answers to Exercises — wolfr.am/eiwt-answers 307

13 Arrays, or Lists of Lists

13.1 Grid[Table[i * j, {i, 12}, {j, 12}]]

1 62 Grid[Table[RomanNumeral[i*j],{i,5},{j,5}]]

13.3 Grid[Table[RandomColor[], 10, 10]]

13.4 Grid[Table[Style[Randomlnteger[10],

RandomColor[]], 10, 10]]

13.5 Grid[Table[StringJoin[FromLetterNumber[{i, j}]],

{i, 26}, {j, 26}]]

13.6 Grid[{{PieChart[{l, 4, 3, 5, 2}],

NumberLinePlot[{l, 4, 3, 5, 2}]}, (ListLinePlotf

{1, 4, 3, 5, 2}], BarChart[{l, 4, 3, 5, 2}]}}]

13.7 ArrayPlot[Table[Hue[i * j], {i, 0, 1, .05}, {j, 0, 1, .05}]]

13.8 ArrayPlot[Table[Hue[x / y], (x, 50}, {y, 50}]]

13.9 ArrayPlot[Table[StringLength[RomanNumeral[i * j]],

{i, 100}, {j, 100}]]

14 Coordinates and Graphics

14.1 Graphics[Table[Circle[{0, 0}, r], (r, 5}]]

14.2 Graphics[Table[Style[Circle[{0, 0}, r],

RandomColor[]], {r, 10}]]

14.3 Graphics[Table[Circle[{x, y}], {x, 10}, {y, 10}]]

14.4 Graphics[Table[Point[{x, y}], {x, 10}, {y, 10}]]

14.5 Manipulate[GraphicstTable[Circle[(0, 0}, r], {r, n}]],

{n, 1
,
20

,
1 }]

14.6 Graphics3D[Table[Style[Sphere[Table[

Randomlnteger[10], 3]], RandomColorf]], 50]]

14.7 Graphics3D[Table[Style[Sphere[{x, y, z}, 1 / 2],

RGBColor[{x / 10, y / 10, z / 10}]],

{x, 10}, (y, 10}, {z, 10}]]

14.8 Manipulate[Graphics[Table[Circle[{a x, 0}, x], {x, 10}]],

(a, -2, 2}]

14.9 Graphics[Table[RegularPolygon[{x, y}, 1 / 2, 6],

{x, 5}, {y, 5}]]

14.10 Graphics3D[Line[Table[Randomlnteger[50], 50, 3]]]

16 Real-World Data

Note: =[] represents natural language input s

16.1 = [flag of Switzerland]

16.2 = [elephant]["lmage"]

EntityValue[= [planets], "Mass"]

16 4 BarChart[EntityValue[= [planets], "Mass"]]

lmageCollage[EntityValue[= [planets], "Image"]]

16 EdgeDetect[= [china]["Flag"]]

= [empire state building]["Height"]

= [empire state building]["Height"] /

= [great pyramid]["Height"]

= [mount everest]["Elevation"] /

= [empire state building]["Height"]

DominantColors[= [starry night][”lmage"]]

OominantColors[lmageCollage[EntityValue[

* [countries in europe], "Flaglmage"]]]

PieChart[[countries in europe]["GDP"]]

ImageAddJ [koala]["lmage"], [australia]["Flag"]J

17 Units

Note: =[] represents natural language input a

17.1 UnitConvert[= [4.5 lbs], "Kilograms"]

17.2 UnitConvert[= [60.25 mph], = [km / hr]]

17.3 UnitConvert[= [height of the eiffel tower], "Miles"]

17.4 = [height of mount everest]/

= [height of the eiffel tower]

17.5 = [mass of earth] /= [mass of moon]

17.6 CurrencyConvert[= [2500 Japanese yen],

= [us dollars]]

17.7 UnitConvert[= [35 ounces + 1 / 4 ton + 45 lbs + 9 stone],

= [kilograms]]

17.8 UnitConvert[= [planets]["DistanceFromEarth"],

"LightMinutes"]

17.9 Rotate["hello", 180 °]

17.10 Table[Rotate[Style["A", 100], n Degree],

{n, 0,360, 30}]

17.11 Manipulate[Rotate[= [cat] ["Image"], 8],{d, 0°, 180°}]

17.12 Graphics[Line[AnglePath[Table[n Degree, {n,0, 180}]]]]

17.13 Manipulate[Graphics[Line[AnglePath[Table[x, 100]]]],

{x, 0,360°}]

17.14 Graphics[Line[

AnglePath[30 ° * lntegerDigits[2 A 10 000]]]]

18 Geocomputation

Note: =[] represents natural language input a

18.1 GeoDistance[= [newyork], =[london]]

18.2 GeoDistance[= [new york], = [london]] / GeoDistance[

= [newyork], = [san francisco]]

18.3 UnitConvert[GeoDistance[= [Sydney],

= [moscow]], =[km]]

18.4 GeoGraphics[= [united states]]

18.5 GeoListPlot[{ = [brazil], =[russia],

= [india], = [china]}]

18.6 GeoGraphics[GeoPath[{ = [new york], = [beijing]}]]

18.7 GeoGraphics[GeoDisk[= [great pyramid], = [10 miles]]]

18.8 GeoGraphics[GeoDisk[= [new york], GeoDistance[

= [new york city], = [san francisco]]]]

18.9 GeoNearest["Country", GeoPosition["NorthPole"], 5]

18.10 EntityValue[GeoNearest["Country",

GeoPosition[{45, 0}], 3], "Flag"]

18.11 GeoListPlot[GeoNearest["Volcano", =[rome],25]]

18.12 GeoPosition[= [new york]][[l, 1]] - GeoPosition[

= [losangeles]][[l, 1]]

19 Dates and Times

Note: =[]
represents natural language input

19.1 Now- =[januaryl, 1900]

19.2 DayName[= [january 1, 2000]]

19.3 Today- =[100000 days]

19.4 LocalTime[= [delhi]]

19.5 Sunset[Here, Today] - SunrisejHere, Today]

19.6 MoonPhasefNow, "Icon"]

19.7 Table[MoonPhase[Today + n = [days]], {n, 10}]

19 8 Table[MoonPhase[Today + n [days], "Icon"], {n, 10}]

308 An Elementary Introduction to the Wolfram Language

19.9 Sunrise[= [new york city], Today] - Sunrise[

= [london], Today]

19.10 AirTemperatureData[= [eiffel tower],

= [noon yesterday]]

19.11 DateListPlot[AirTemperatureData[= [eiffel tower],

{Now - = [1 week], Now}]]

19.12 AirTemperatureData[= [los angeles]] -

AirTemperatureData[= [new york]j

20 Options

Note: =[] represents natural language input B

20.1 ListPlot[Range[10], PlotTheme "Web"]

20.2 ListPlot[Range[10], Filling -* Axis]

20.3 ListPlot[Range[10], Background - Yellow]

20.4 GeoListPlot[= [australia], GeoRange All]

20.5 GeoListPlot[= [madagascar],

GeoRange -* = [indian ocean]]

20.6 GeoGraphics[= [south america],

GeoBackground -4 "ReliefMap"]

20.7 GeoListPlot[{ = [trance], = [finland], =[greece]},

GeoRange -* = [europe], GeoLabels -4 Automatic]

20.8 Grid[Table[Style[i * j, White], {i, 12}, {j, 12}],

Background -4 Black]

20.9 Table[Graphics[Disk[],

ImageSize -4 Randomlnteger[40]], 100]

20.10 Table[Graphics[RegularPolygon[5], ImageSize -4 30,

AspectRatio -4 n], {n, 1, 10}]

20.11 Manipulate[Graphics[Circle[], ImageSize -4 s],

{s, 5,500}]

20.12 Grid[Table[RandomColor[], 10, 10], Frames All]

20.13 ListLinePlot[Table[StringLength[

RomanNumeral[n]], {n, 100}], PlotRange -4 Max[
Table[StringLength[RomanNumeral[n]],{n, 1000}]]]

21 Graphs and Networks

21.1 Graph[{l 2, 2 3, 3 -» 1}]

21.2 Graph[Flatten[Table[i -4j,{i,4}, {j,4}]]]

21.3 Table[UndirectedGraph[Flatten[

Table[i -4 j, {i, n}, (j, n}]]], {n, 2, 10}]

21.4 Flatten[Table[{l,2},3]]

21.5 ListLinePlot[Flatten[Table[lntegerDigits[n], {n, 100}]]]

21.6 Graph[Table[i -4 i + 1, {i, 50}]]

21.7 Graph[Flatten[Table[i -4 Max[i, j], {i, 4}, {j, 4}]]]

21.8 Graph[Flatten[T able[i -4
j
- i, {i, 5}, {j, 5}]]]

21.9 Graph[Table[i -4 Randomlnteger[{l, 100}], {i, 100}]]

21.10 Graph[Flatten[Table[{i -4 Randomlnteger[{l, 100}],

i -4 Randomlnteger[{l, 100}]}, {i, 100}]]]

21.11 Grid[Table[FindShortestPath[

Graph[{l -4 2, 2 -4 3, 3 -4 4, 4 -4 1, 3 -4 1, 2 -4 2}],

i.j]»{i,4},{j,4}]]

22 Machine Learning

Note: =[] represents natural language input $ j

22.1 Languageldentify["ajatella"]

22.2 lmageldentify[= [image of a tiger]]

22.3 Table[lmageldentify[

Blur[= [image of a tiger], r]], {r, 5}]

22.4 Classify["Sentiment", "I'm so happy to be here"]

22.5 Nearest[WordList[], "happy", 10]

22.6 Nearest[Randomlnteger[1000, 20], 100, 3]

22.7 Nearest[Table[RandomColor[], 100], Red, 5]

22.8 First[Nearest[Table[n A
2, {n, 100}], 2000]]

22.9 Nearest[= [european flags], = [flag of brazil], 3]

22.10 NearestNeighborGraph[Table[Hue[h], {h, 0, 1, .05}],

2, VertexLabels -* All]

22.11 NearestNeighborGraph[Table[

Randomlnteger[100], 40], 2, VertexLabels -4 All]

22.12 FindClusters[= [flags of Asia]]

22.13 NearestNeighborGraph[Table[Rasterize[Style[

FromLetterNumber[n], 20]], {n, 26}], 2,

VertexLabels -4 All]

22.14 Table[TextRecognize[Blur[Rasterize[

Style["hello", 50]], n]], {n, 10}]

23 More about Numbers

23.1 N[Sqrt[2], 500]

23.2 RandomReal[l, 10]

23.3 ListPlot[Table[RandomReal[l, 2], 200]]

23.4 Graphics[Line[AnglePath[RandomReal[2 Pi, 1000]]]]

23.5 Table[Mod[n A
2, 10], {n, 0, 30}]

23.6 ListLinePlot[Table[Mod[n A n, 10], {n, 100}]]

23.7 Table[Round[Pi A n],{n, 10}]

23.8 Graph[Table[n -4 Mod[n A
2, 100], {n, 0, 99}]]

23.9 Graphics[Table[Style[Circle[RandomReal[10, 2],

RandomReal[2]], RandomColor[]], 50]]

23.10 ListPlot[Table[Prime[n] /(n Log[n]),{n, 2, 1000}]]

23.11 ListLinePlot[Table[Prime[n + 1]
- Primefn], {n, 100}]]

23.12 Sound[Table[SoundNote["C", RandomReal[0.5]], 20]]

23.13 Array Plot[Table[Mod[i, j], {i, 50}, {j, 50}]]

23.14 Table[ArrayPlot[Table[

Mod[xA y, n], {x, 50}, {y, 50}]], {n, 2, 20}]

24 More Forms of Visualization

Note: =[] represents natural language input B j

24.1 ListLinePlot[Table[n A
p, {p, 2, 4}, {n, 10}]]

24.2 ListLinePlot[Table[Prime[n], {n, 20}], Filling -* Axis,

Mesh -4 True, MeshStyle -4 Red]

24.3 ListPlot3D[GeoElevationData[GeoDisk[= [mount fuji]
,

= [20 miles]]]]

24.4 ReliefPlot[GeoElevationData[GeoDisk[= [mount fuji]
,

= [100 miles]]]]

24.5 ListPlot3D[Table[Mod[i, j], {i, 100}, {j, 100}]]

24.6 Histogram[Table[Prime[n + 1]
- Primefn], {n, 10000}]]

24.7 Histogram[Table[First[lntegerDigits[n A 2]],{n, 10000}]]

24.8 Histogram[Table[StringLength[

RomanNumeralfn]], {n, 1000}]]

24.9 Histogram[StringLength[TextSentences[

WikipediaData["computers"]]]]

24.10 Table[Histogram[Table[Total[

RandomReal[100, n]], 10000]], {n, 5}]

24.11 ListPlot3D[l - lmageData[Binarize[

Rasterize[Style["W", 200]]]]]

Answers to Exercises — wolfr.am/eiwl-answers 309

25 Ways to Apply Functions

Note: =[] represents natural language input ^

25.1 f/@Range[5]

25.2 f/@g/@Range[10]

25.3 x // d // c // b // a

25.4 Framed /@Alphabet[]

25.5 ColorNegate/@ EntityValue[= [planets], "Image"]

25.6 GeoGraphics l@ EntityListf = [countries in g5]]

25.7 lmageCollage[Binarize /@ = [flags of europe]]

25.8 Column l@ DominantColors /@ EntityValuef

= [planets], "Image"]

25.9 Total[LetterNumber/@Characters["wolfram"]]

26 Pure Anonymous Functions

Note: =[] represents natural language input a

26.1 tt A2&/@Range[20]

26.2 Blend[(tt, Red}] & /@ (Yellow, Green, Blue}

26.3 Framed[Column[(ToUpperCase[tt], tt}]] &/@ Alphabetf]

26.4 Framed[Style[tt, RandomColor[]],

Background -* RandomColor[]] &/@Alphabet[]

26.5 Grid[(tt, EntityValue[tt, "Flag"]} & l@ EntityList[

= [g5 countries]], Frame -4 All]

26.6 WordCloud[DeleteStopwords[
WikipediaData[tt]]] &/@{"apple", "peach", "pear"}

26.7 Histogram[StringLength[TextWords[WikipediaData[tt]]]

]&/@ ("apple", "peach", "pear"}

26.8 GeoListPlot[(tt}, GeoRange -» = [central america]] & /@
EntityList[= [central america]]

27 Applying Functions Repeatedly

Note: =[] represents natural language input s

27.1 NestListfBlur, Rasterize[Style["X", 30]], 10]

27.2 NestList[Framed[tt,

Background -> RandomColor[]] &, x, 10]

27.3 NestList[Rotate[Framed[tt],

RandomReal[(0, 360 °}]] &, Style["A", 50], 5]

27.4 ListLinePlot[NestList[4 tt (1 - tt) &, 0.2, 100]]

27.5 Nest[l + l/ttft,l,30]//N

27.6 NestList[3*ttft,l,10]

27.7 NestList[(tt + 2 / tt) / 2 &, 1.0, 5] - Sqrt[2]

Graphics[Line[NestList[tt + RandomReal[(-l, 1}, 2] &,

{0,0}, 1000]]]

ArrayPlot[NestList[Mod[Join[(0}, tt] +

Join[tt, {0}], 2] &, {1}, 50]]

NestGraph[{« + 1, 2 »} &, 0, 10]

NestGraph[tt["BorderingCountries"] ft, = [US], 4,

VertexLabels-* All]

28 Tests and Conditionals

28 1 123' 321 > 456*123

S*lect[Range[100], Total[lntegerDigits[tt]] < 5 ft]

/:
; lf[Prime0[tt], Style[tt, Red], Range[20]

/ '• Select[WordList[], StringTakeftt, 1] «« StringTake[

StringReverseftt], 1] *• "p" ft]

Select[Array[Prime, 100], Last[lntegerDigit',[tt]J < 3 ft]

S^lectfRomanNumerallRangpJlOO]], I MemberQ!

Charar ter.[tt], "I"] ft]

28.7 Select[RomanNumeral[Range[1000]],

tt == StringReverse[tt] &]

28.8 Select[Table[lntegerName[n],(n, 100}], First[

Characters[tt]] == Last[Characters[tt]] &]

28.9 Select[TextWords[Wikipedi a Data["words"]],
StringLength[tt] > 15 &]

28.10 NestList[lf[EvenQ[tt], tt / 2, 3 tt + 1
] ft, 1000, 200]

28.11 WordCloud[Select[TextWords[

WikipediaData["computers"]],

StringLength[tt] == 5 &]]

28.12 Select[WordList[], StringLength[tt] ^ 3

&&tt * StringReverseftt] && StringTake[tt, 3] ==

StringTake[StringReverse[tt],3] ft]

28.13 Select[Select[WordList[], StringLength[tt] == 10 &],

Total[LetterNumber/@Characters[tt]] == 100 &]

29 More about Pure Functions

29.1 Array[Prime, 100]

29.2 Array[Prime[tt + 1] - Prime[tt] ft, 99]

29.3 Grid[Array[Plus,{10, 10}]]

29.4 FoldList[Times, 1, Range[10]]

29.5 FoldList[Times, 1, Array[Prime, 10]]

29.6 FoldList[lmageAdd,Table[Graphics[Style[

RegularPolygon[n], Opacity[.2]]], (n, 3, 8}]]

30 Rearranging Lists

Note: =[]
represents natural language input B

30.1 Thread[Alphabet[] -* Range[Length[Alphabet[]]]]

30.2 Grid[Partition[Alphabet[], 6]]

30.3 Grid[Partition[lntegerDigits[2 A 1000], 50], Frame -+ All]

30.4 Grid[Partition[Characters[StringTake[

WikipediaData["computers"], 400]], 20],

Frame - All]

30.5 ListLinePlot[Flatten[lntegerDigits /@ Range[0, 200]]]

30.6 ArrayPlot /@ NestList[ArrayFlatten[((tt, tt, tt},

(tt, 0, tt}, (tt, tt, tt}}] &, {{1}}, 4]

30.7 Select[Flatten[Table[(x, y, Sqrt[xA 2 + y
A
2]},

(x, 20}, (y, 20}], 1], lntegerQ[Last[tt]] &]

30.8 Table[Max[Length /@ Split[lntegerDigits[2 A n]]],

(n, 100}]

30.9 GatherBy[Array[lntegerName, 100],

StringTake[tt, 1] &]

30.10 SortBy[Take[WordList[], 50], StringTake[

StringReverse[tt], 1] &]

30.11 SortBy[Table[n A
2, (n, 20}], First[lntegerDigits[tt]] ft]

30.12 SortBy[Range[20], IntegerName]

30.13 GatherBy[RandomSample[WordList[], 20],

StringLength]

30.14 Complement[Alphabet[" Ukrainian"],

Alphabet["Russian"]]

30.15 lntersection[Range[100] A
2, Range[100]

A
3]

30.16 lntersection[EntityList[= [nato]], EntityList[= [g8]]]

30.17 Grid[Transpose[Permutations[Range[4]]]]

30.18 Union[StringJoin l@ Permutations!

Characters["hello"]]]

30.19 ArrayPlot[Tuples[(0, 1}, 5]]

10.20 Table[StringJoin[RandomChoice[Alphabet[], 5]], 10]

10 21 Tuples[(l,2},3]

310 An Elementary Introduction to the Wolfram Language

31 Parts of Lists

31.1 Take[lntegerDigits[2A 1000],-5]

31.2 Alphabet[][[10 ;; 20]]

31.3 Part[Alphabet[], Range[2, Length[Alphabet[]], 2]]

31.4 ListLinePlot[Table[lntegerDigits[12 A n][[-2]], {n, 100}]]

31.5 TakeSmallest[Join[Table[n A
2, {n, 20}],

Table[n A
3, {n, 20}]], 10]

31.6 Ftatten[Position[TextWords[

WikipediaData["computers"]], "software"]]

31.7 Histogram[Flatten[Position[Characters[tJ], "e"] &/@
WordList[]]]

31.8 ReplacePart[Range[100] A
3,

Thread[Table[n A2,{n, 10}] -» Red]]

31.9 lf[First[lntegerDigits[tt]] < 5, Nothing, tt] & l@
ArrayfPrime, 100]

31.10 Grid[NestList[ReplacePart[tt, Randomlnteger[

(1, Length]#]}] -> Nothing] &, Range[10], 9]]

31.11 TakeLargestBy[WordList[], StringLength, 10]

31.12 TakeLargestBy[Array[lntegerName, 100],

StringLength, 5]

31.13 TakeLargestBy[Array[lntegerName, 100],

Count[Characters[tt], "e"] &, 5]

32 Patterns

32.1 Cases[lntegerDigits[Range[1000]], (1, , 9}]

32.2 Cases[lntegerDigits[Range[1000]], {x_, x_, x_}]

32.3 Cases[lntegerDigits[Range[1000] A
2],{9, ,0| 1}]

32.4 lntegerDigits[Range[100]] /. {0 -* Gray, 9 -» Orange}

32.5 lntegerDigits[2A 1000] /. 0 -» Red

32.6 Characters["The Wolfram Language"] /.

"a"
|

"e"
|

"i"
|
"o"

|
"u" -* Nothing

32.7 Cases[lntegerDigits[2 A 1000], 0
|
1]

32.8 Cases[lntegerDigits[Range[100,999]],{x_,_, x_}]

33 Expressions and Their Structure

33.1 Head[ListPlot[Range[5]]]

33.2 Times @@Range[100]

33.3 f@@@Tuples[{a, b}, 2]

33.4 TreeForm /@ NestList[# A# &, x, 4]

33.5 Union[Cases[Flatten[Table[i A
2/(j

A 2 + 1),

{i, 20}, (j, 20}]], Jnteger]]

33.6 Graph[Rule@@@ Partition[Table[Mod[n A2+ n, 100],

{n, 100}], 2, 1]]

33.7 Graph[Rule@@@ Partition[TextWords[WikipediaData[

"computers"], 200], 2, 1], VertexLabels -» All]

33.8 f@@@{{l,2},{7,2},{5,4}}

34 Associations

34.1 Values[KeySort[Counts[lntegerDigits[3 A
100]]]]

34.2 BarChart[KeySort[Counts[lntegerDigits[2 A
1000]]],

ChartLabels - Automatic]

34.3 BarChart[Counts[StringTake[WordList[], 1]],

ChartLabels -* Automatic]

34.4 TakeLargest[Counts[StringTake[WordList[], 1]],5]

34.5 ttq/ttu&@LetterCounts[
WikipediaData["computers"]] // N

35 Natural Language Understanding

Note: =[] represents natural language input

35.1 lnterpreter["Location"]["eiffel tower"]

35.2 lnterpreter["University"]["U of T"]

35.3 lnterpreter["Chemical"][{"C2H4", "C2H6", "C3H8"}]

35.4 lnterpreter["Date"]["20140108"]

35.5 Cases[lnterpreter["University"][StringJoin["U of ",

#] &/@ ToUpperCase[Alphabet[]]],_Entity]

35.6 Cases[lnterpreter["Movie"][CommonName/@

= [us state capitals]], _Entity]

35.7 Cases[lnterpreter["City"][StringJoin l@
Permutations[{"l", "i", "m", "a"}]],_Entity]

35.8 WordCloud[TextCases[WikipediaData["gunpowder"],

"Country"]]

35.9 TextCases["She sells seashells by the sea shore.",

"Noun"]

35.10 Length[TextCases[StringTake[WikipediaData[

"computers"], 1000], «]] &/@
{"Noun", "Verb", "Adjective"}

35.11 TextStructure[First[TextSentences[

WikipediaData["computers"]]]]

35.12 Keys[TakeLargest[Counts[TextCases[

ExampleData[{"Text", "AlicelnWonderland"}],

"Noun"]], 10]]

35.13 CommunityGraphPlot[First[TextStructure[

First[TextSentences[WikipediaData["language"]]],

"ConstituentGraphs"]]]

36 Creating Websites and Apps

36.1 CloudDeploy[GeoGraphics[]]

36.2 CloudDeploy[Delayed[GeoGraphics[]]]

36.3 CloudDeploy[Delayed[Style[

Randomlnteger[1000], 100]]]

36.4 CloudDeploy[FormFunction[{"x" - "Number"},
Ox AOx&]]

36.5 CloudDeploy[FormFunction[{"x" -» "Number",
"y" ^ "Number"}, Ox A»y &]]

36.6 CtoudDeploy[FormFunction[{"topic" -> "String"},

WordCloud[DeleteStopwords[

WikipediaDataftttopic]]] &]]

36.7 CloudDeploy[FormPage[{"string" -* "String"},

Style[StringReverse[tistring], 50] &]]

36.8 CloudDeploy[FormPage[{"n" -+ "Integer"}, Graphics]

Style[RegularPolygon[ttn], RandomColor[]]] &]]

36.9 CloudDeploy[FormPage[{"location" -* "Location",

"n" -» "Integer"}, GeoListPlot[

GeoNearest["Volcano", tTlocation, ttn]] &]]

37 Layout and Display

Note: =[] represents natural language input

37.1 Style[tt, Background -* lf[EvenQ[tt], Yellow,

LightGray]] & /@ Range[100]

37.2 lf[PrimeQ[tt], Framedftt], tt] & /@ Range[100]

37.3 lf[PrimeQ[tt], Labeled[Framed[tt], Style[Mod[tt, 4],

LightGray]], tt] & l@ Range[100]

37.4 GraphicsGrid[Table[Graphics[Style[Disk[],

RandomColor[]]], 3, 6]]

37.5 PieChart[LabeledrO["GDP"], Ol & /@

34.6

Keys[TakeLargest[Counts[TextWords[ExampleData[

{"Text", "AlicelnWonderland"}]]], 10]]

Answers to Exercises — wolfr.am/eiwl-answers 311

PieChartfLegendedfttf" Population"], tt] & l@
EntityListf = [g5 countries]]]

GraphicsGrid[Partition[Table[PieChart[Counts[

lntegerDigits[2 A n]]], (n, 25}], 5]]

GraphicsRow[WordCloud[DeleteStopwords[

WikipediaDataftt]]] &/@ EntityListf

= [g5 countries]]]

38 Assigning Names to Things

Note: =[]
represents natural language input a

38.1 Moduleffx = RangeflO]}, x A 2 + x]

38.2 Moduleffx = RandomlntegerflOO, 10] },

Columnffx, Sortfx], Maxfx], Totalfx] }]]

38.3 Moduleffg = = [picture of a giraffe]}, ImageCollagef

{g, Blurfg], EdgeDetectfg], ColorNegatefg]}]]

38.4 Moduleffr = RangeflO]}, ListLinePlotf

Joinfr, Reversefr], r, Reversefr]]]]

38.5 Moduleffx = RangeflO]}, fx + 1, x - 1, Reversefx]}]

38.6 NestList[Mod[17 tt + 2, 11] &, 10, 20]

38.7 Table[StringJoin[Module[{v = Charactersf'aeiou"], c},

c = ComplementfAlphabetf], v];

RandomChoice /@ fc, v, c, v, c}]], 10]

39 Immediate and Delayed Values

39.1 fx,x + l,x + 2, xA 2}/. x -* RandomlntegerflOO]

39.2 fx, x + l,x + 2, x A2}/. x:-» RandomlntegerflOO]

40 Defining Your Own Functions

40.1 ffxj :=xA 2

40.2 poly[n_lnteger] := GraphicsfStylef

RegularPolygonfn], Orange]]

40.3 f[{a_, bJ] := fb, a}

40.4 f[x_, yJ := (x * y) / (x + y)

40.5 f[{a_, b_}] := fa + b, a - b, a / b}

40.6 evenodd[n_lnteger] := IffEvenQfn], Black, White];

evenoddfO] = Red

40.7 ffl, x
, yj := x + y; f[2, x_, yJ := x * y;

f[3,x_,yj :=x A
y

40.8 f[0] = ffl] = 1; ffnjnteger] := ffn - 1] + ffn - 2]

animal[s_String] := lnterpreter["Animal"][s]["lmage"]

nearwords[s_String, n_lnteger] := Nearestf

WordList[],s, n]

41 More about Patterns

Cases[Table[lntegerDigits[n A
2], fn, 100}],

{ x_, }]

2 StringJoin/@CasesfArrayf

CharactersfRomanNumeralftt]] &, 100],

{ ,"L" ,”1" ,"X" }]

ffx
:
{_lnteger ..}]:* x « Reversefx]

<14 CasesfPartitionfTextWordsf

WikipediaDataf "alliteration"]], 2, 1], fa_, b_}/;

StrmgTakefa, 1] ** StringTakefb, 1]]

4
. , Grid[FixedPointList[(tt /. fx .

b_, a_, y } /; b >

a -» fx, a, b, y}) &, {4, 5, 1, 3, 2}]]

4 i ArrayPlotfTransposefFixedPointListf

{XXI. fx , b_, a_, y } /; b > a - fx, a, b, y}) &,

RandomSample[Range[50]]]]]

41.7 FixedPointList[(tt + 2 / tt) / 2 &, 1.0]

41.8 FixedPointListftt /. fa_, b_} /; b * 0 -> fb, Modfa, b]} &,

{12 345,54 321}]

41.9 FixedPointListftt /. fsfxJfyJfzJ -» x[z][y[z]],

kfxJfyJ -* x} &, s[s][k][s[s[s]][s]]fs]]

41.10 IntegerDigitsflOO!]/. fx ,
0 ..}-»{x}

41.11 Length l@ NestListftt /. {{1, _, x } -> fx, 0, 1},

(0, x } - fx, 1, 0, 0}} &, (1, 0}, 200]

41.12 ListLinePlotfLength /@ NestListftt/. {

(0, x }
-> fx, 2, 1}, {1, _, x }

-> fx, 0},

(2, _,x }-> fx, 0,2,1, 2}} &, (0, 0}, 200]]

42 String Patterns and Templates

Note: =[] represents natural language input a

42.1 StringReplacef'l 2 3 4", " " ^ " "]

42.2 Sort[StringCasesfWikipediaData["computers"],

DigitCharacter— DigitCharacter—
DigitCharacter— DigitCharacter]]

42.3 StringCasesfWikipediaDataf'computers"],

Shortest["===" ~~ x — "==="] x]

42.4 GridfTablefStringTernplatef" 1’ + ' 2‘ =' 3'
"][i,j, i +j],

{i.9},{j,9}]]

42.5 Select[Table[lntegerName[n],{n,50}],

StringMatchQftt, ~~ "i" ~~ ~~ "e" ~~] &]

42.6 StringReplacef

FirstfTextSentencesfWikipediaDatafcomputers"]]],

x
:
(Whitespace— LetterCharacter—

LetterCharacter— Whitespace) ToUpperCasefx]]

42.7 BarChartfKeySortfCountsfStringTakef

TextString/@ EntityListf = [countries]], 1]]],

ChartLabels -* Automatic]

42.8 TablefStringTemplatef"' 1' A ' 2' = 3'
"][i, j, i

A
j],

fi, 5}, (j, 5}] II Grid

44 Importing and Exporting

Note: =[] represents natural language input B

44.1 lmport["http://google.com", "Images"]

44.2 ImageCollagefGraphicsfStylefDiskf], tt]] &/@
(Union@@ DominantColors l@

lmport["http://google.com", "Images"])]

44.3 WordCloud[lmport["http://bbc. co.uk"]]

44.4 I mageCollageflmportf" http://whitehouse.gov",

"Images"]]

44.5 Select[lmport["https://en.Wikipedia. org/wiki/Ostrich",

"Images"], ImagelnstanceQftt, = [bird]] &]

44.6 WordCloudfTextCasesflmportf" http://www.nato.int/"],

"Country"]]

44.7 Length[lmport["https://en.wikipedia.org/",

"Flyperlinks"]]

44.8 SendMailfGeoGraphicsfHere]]

44.9 SendMailfMoonPhasefNow, "Icon"]]

45 Datasets

Note: =[]
represents natural language input B

45 1 WordCloudfNormalfplanetsfAII, "Moons", Length]]]

45 2 BarChartfplanetsfAII, "Moons", Length],

ChartLabels -* Automatic]

45 J planetsfSortByfLengthfttMoons] &], "Mass"]

312 An Elementary Introduction to the Wolfram Language

45.4 planets[All, "Moons", Max, "Mass"]

45.5 planets[All, "Moons", Total, "Mass"][Sort]

45.6 planets[All, "Moons", Median, "Mass"]

45.7 planets[All, "Moons", Select[ttMass >

= [0.0001 earth mass] &] /* Keys]

45.8 WordCloud[Association[tt -* StringLength[

WikipediaData[ti]]&/@ EntityList[

= [central america]]]]

46 Writing Good Code

46.1 Total[Table[i * (i + 1), {i, 1000}]]

46.2 Nest[l / (1 + tt) &, x, 10]

46.3 Flatten[Array[List, {10, 10}]]

46.4 ListLinePlot[Table[First[Timing[n A n]],{n, 10000}]]

46.5 ListLinePlot[Table[First[Timing[Sort[

RandomSample[Range[n]]]]], {n, 200}]]

47 Debugging Your Code

47.1 Counts[lf[StringLength[tt] > 1, StringTakeftJ, 2],

Nothing] &/@WordList[]j

47.2 First[Last[Reap[Fold[10 Sow[Ol] + »2 &,

{1,2, 3, 4, 5}]]]]

47.3 Last[Reap[Nest[lf[EvenQ[tt], Sowftt] / 2, 3« + 1] &,

1000, 20]]] II First

Index 313

Index

3D graphics, 30, 68, 138

box around (Boxed), 71

in thecloud,226

3D printing, 268

3D shapes, 68, 71

3n+l problem, 168

Abbreviations, for units, 90

Aborting evaluation, 294

Abs, 132

Absolute value (Abs), 132

AbsoluteTiming, 288, 301

Access, to cloud deployments, 217

Accumulate

in databin, 262

with Fold List, 173

Accumulate, 175

Add to databin (DatabinAdd), 262

Addition, of lists, 15

Addition (Plus), 1

AdjacencyGraph, 121

AdjacencyMatrix, 121

Afterthought (function

application as), 141

Age group, target, xiv

Age of universe, compared

to UUIDs, 264

Al (artificial intelligence), 123

Aircraft positions, 84

AirTemperatureData, 103

AiryAi, 296

Algebra, 296

Algebraic variables, symbols as, 204

Algorithms

built in, 298

for music, 54

for sorting, 250

Alignment, of sequences, 259

All (as option value), 109

Alpha (Wolfram|A!pha), vii

Alphabet, 49, 181, 206

Alphabet position

(LetterNumber), 49

Alternation (in regular

expressions), 259

Alternatives

in patterns (|), 193

in string patterns (|), 256

Ambiguity, 80, 214

AmbiguityFunction, 215

Amusement parks, as entities, 81

Anatomy, as example of data, 83

And '&&), 165,298

Android deployment, 219

AnglePath, 89

Angles, units for, 88

AngularGauge, 140

Animals

interpreter for, 212

web app about, 220

Animation, 175, 231

in Manipulate, 37

Annotations

for code, 288

in plots, 228

Anonymous functions, 147

Anonymous local files, 263

Answer, latest (%), 233

APIFunction, 226, 299

APIs

building, 226, 299

external, 267, 269

Append, 237, 283

AppendTo, 237

Apply, 204

Applying functions, 141

Approximate numbers, 129

Apps, creating, 217

Arbitrary precision, 130

Architecture, of systems, 303

ArcTan, 134

Arduino, 270

Area, 297

Arguments, of functions, 171,

200

Arithmetic, 1

modulo, 133

on lists, 15

with dates, 101

with units, 87

Array, 171

Array subscript (Part), 16

ArrayFlatten, 179

ArrayPlot, 58, 299

Arrays

lists as, 10

multidimensional, 57

of arrays, 179

Arrow (graphics primitive), 71

Arrow (-»), 107

Artificial intelligence, 123

ASCII (ToCharacterCode), 52

AspectRatio, 111

Assignment

delayed, 239

immediate, 239

of names, 233

Association, 206

AssociationMap, 209

Associations, 205

and string templates, 257

combining, 280

in datasets, 271

of associations, 271

Associative arrays

(associations), 208

Associativity, 253

Assumptions, in debugging, 292

At sign (@), 141

Atoms

compared to UUIDs, 264

in expressions, 198

Attributes, of functions, 253

Audio, 53

Authorization, of external

services, 269

Autocomplete menu, xiii, 75

Automatic, for options, 108

AutoRefreshed, 226

Autoupdating website, 219

Axes, 71

Background, 108

for Framed, 227

forGrid, 112

Backquote ('), 134, 258

Backslashes

for entering quotes, 52

in numbers, 134

Backtick 0, 134,258

Backward

(Reverse), 8

(StringReverse), 45

Ball, 296

BarChart, 11,80,276

for associations, 207

versus Histogram, 140

BarChart3D, 140

Barcodelmage, 127

BarcodeRecognize, 127

Base expansions

(IntegerDigits), 18, 134

Bases, numbers in other, 18, 134

BBC, word cloud from

website of, 269

Beep, 56

Beginning of list (First), 16

Benford’s law, 139

BesselJ, 134

Bidirectional graph

(UndirectedGraph), 117

Big numbers, 2

Binarize, 41

Binary digits (IntegerDigits), 18

Binary dump format

(DumpSave), 264

Bindings, for APIs

(EmbedCode), 226

Binomial, 296

Binomial coefficients, 157, 296

Bins, in histogram, 140

Bioinformatics, 259

Bitmaps, 49

Black, 25

Black and white (Binarize), 41

Blank (J, 193

Blend, 25, 154

Block, compared to Module, 237

Block matrices (ArrayFlatten), 179

Blocks, partitioning into, 177

Blue, 25

Blur, 39, 147

text recognition and, 125

Bold, 28

Boolean computation, 298

Boolean operations, 165

314 Index

BooleanCountingFunction, 298

BooleanMinimize, 298

Booleans, 169

BooleanTable, 298

Bordering countries, 79

Borders, of graphics (EdgeForm), 71

Bowtie polygon, 71

Boxed, 71

BoxWhiskerChart, 140

Braces ({ }), for lists, 10

Brackets ([]), square, 3

Brains, as inspiration for

Imageldentify, 127

Break strings (StringSplit), 256

Bubble sort, 253

BubbleChart, 140

Bugs, 284, 291

Built-in functions, 73

redefining, 246

BusinessDayQ, 168

ButterflyGraph, 121

ByteCount, 204

C language, 288

C++, xi, 288

Caching, in function

definitions, 289

Caffeine, 82

Cake chart (PieChart), 11

Calculus, 296

Calendarsystems, 105

Calling APIs, 226

Camera

in apps, 223

picture from, 39

Canonical form, for entities, 80

Capital letters, for functions, 3-4

Capitalize (ToUpperCase), 45

Capitals, of Europe, 298

Car, directions by, 99

Cartography, 93

Cases, 193, 201

operator form of, 201

Catenate, 279

Cats, testing for pictures of, 166

Ceiling, 135

CellularAutomaton, 289, 299

Centimeters, 87

Central limit theorem, 140

Chaining, of dataset queries, 273

Chains of functions, 141

Chalkboard font, 111

Champernowne sequence, 184

Character codes, 52

Characters, in string patterns, 255

Characters, 46, 165, 177, 188, 203

Chart

bar (BarChart), 11

pie (PieChart), 11

ChartLabels, 207

Checkboxes

in forms, 225

in Manipulate, 37

Cheetah, image

identification of, 123

Chemicals, interpreter for, 212

ChiSquareDistribution, 134

Choose elements (Select), 164

Chords, musical, 55

ChromaticityPlot, 28

ChromaticityPlot3D, 28

Circle, 29, 148

size of, 111

with coordinates, 64

Circle graph (PieChart), 11

Circle packing, 65

Cities

as entities, 93

distance between, 93

nearest, 97

Classes of entities, 79

ClassifierFunction, 127

Classify, 123,267

Clear, 234, 244

Clock, on web, 219

Clock arithmetic (Mod), 133

ClockGauge, 218

Closest (Nearest), 124

Cloud

deployment to, 217

interactivity on, 36, 221

Manipulate on, 36, 221

physical location of, 226

Wolfram Knowledgebase in, 84

Cloud base, 264

CloudCDF, 221

Cloud objects, 261

CloudDeploy, 217, 299

CloudExport, 268

CloudGet, 261,275

CloudPut, 261

CloudSave, 261

Cluster analysis, 125

Code

annotations to, 288

debugging of, 291

efficiency of, 286

making random changes in, 294

optimization of, 288

overly short, 285, 289

writing good, 283

Code captions, xiii, 76

Code generation (EmbedCode), 226

Code reviews, 303

Collage (ImageCollage), 40

Collatz problem, 168

Collect elements (Gather), 180

Collisions, of UUIDs, 261

Colon (:), in patterns, 250

Colon-equals (:=), 239

Colon-greater (:>), 240

Color cube, 70

Color pickers, in forms, 225

Color spaces, 28

nearness in, 125

Color wheel, 28

CotorDistance, 127

ColorFunction, 114

CotorNegate, 25, 141, 148, 153

for images, 39

Colors, 25

background (Background), 108

blending (Blend), 25

dominant (DominantColors), 41

in graphics (Style), 30

models of, 28

names of, 28

nearest, 124-125

of text (Style), 26

picking in Manipulate, 37

random (RandomColor), 26

Column, 12, 229

Column chart (BarChart), 11

Columns

in arrays, 188

in datasets, 271

Combinations (Tuples), 182

Combinators, 252

Combining

associations (Association), 280

colors (Blend), 25

lists (Join), 8

plots (Show), 140

strings (StringJoin), 45

Comments in code, 288

Common elements

(Intersection), 181

Common words

in English (WordList), 47

in word cloud, 47, 279

Communities, in graphs, 119

Community, Wolfram, xv

CommunityGraphPlot, 119

Commutativity, 253

Compile, 288

Complement, 181

Complementary color

(ColorNegate), 25

Complete graph, 117

CompleteGraph, 121

Complex numbers, 134

Complexity, from simple

programs, 289, 299

Composite heads, 201

Compositing images

(ImageAdd), 42

Composition operators, 280

Compound expressions (;), 235

CompoundElement, 226

Computational geometry, 297

Computational thinking, ix, 304

Computational universe, 299

Computed numberfields, 222

Computer algebra, 296

Concatenate

Catenate, 279

Join, 8

StringJoin, 45

Conditionals, 163

Conditions, on patterns (/;), 249

Cone, 30

Connected devices, data from,

261

Connected graph, 127

ConnectedGraphQ. 168

Index 315

Connections, in graphs, 115

Connectivity (internet)

for Interpreter, 214

for units, 90

needed for data, 84

Constituent graph, 213

Constraints, on form fields, 225

Contexts, 289

Contour lines (MeshFunctions),

140

Contour plot, 138

ContourLabels, 140

ContourPlot3D, 295

Control + = ,77,211

for dates, 101

for units, 87

Controllerlnformation, 37

Conversions, between units, 87

ConvexHullMesh, 297

Coordinates, 63

on Earth’s surface, 96

Corners, of polygons, 67

Corporate data, 271

Cos, 134

Count, 16

Countries

as entities, 77

graph of bordering, 159

maps of, 93

nearest, 96

picking out names of, 213

Country plots

(GeoRegionValuePlot), 99

CountryData, 84

Counts, 205, 301

Courses, use of book in, xiv

CPU time, 288

Crawling, on network

(NestGraph), 159

CreateDatabin, 262

Creating functions, 243

Cryptography, 300

Cuboid, 71

Curly brackets ({ }), for lists, 10

Currency

interpreter for, 211

units of, 88

Current location (Here), 97

Current time, 101

Currentlmage, 39

Currying, 204

Customer data, 275

Cylinder, 30

Dashboard

autorefreshed, 226

creating a web, 219

Data

hierarchical, 275

importing, 265

real-world, 77

Data Drop, Wolfram, 261

Data signatures, for databins, 264

Database join (JoinAcross), 209

Databaselink, 282

Databases, 282

connecting to external, 282

importing, 266

DatabinAdd, 262

Databins (in Wolfram

Data Drop), 262

Dataset, 271

DateListPlot, 104,262

DateObject, 101

Dates, 101

formats of, 101

DateString, 105

DateValue, 105

Day of week (DayName), 102

DayName, 102

DayRange, 102

DDMMYY (date format), 106

Debugging, 291

interactive, 294

Decimal approximation, 129

Decimal degrees, 99

Decimal expansion

(IntegerDigits), 16

Decimal points, and approximate

numbers, 129

Default values, in patterns, 253

Defining variables, 233

Definitions

of functions, 243

of words (WordDefinition), 214

Defocus (Blur), 39

Degree, 88

Degrees-minutes-seconds, 99

Delayed, 218

as analog of :=, 240

Delayed assignment (:=), 239

Delayed rules (:->), 240

DeleteMissing, 84

DeleteStopwords, 47

Deleting, elements of lists, 189

Delimiters, split strings at, 256

Demonstrations Project, xv, 37

Deployment (CloudDeploy), 217

Desk, sensor on my, 262

Destructuring, of function

arguments, 247

Device framework, 270

DeviceReadTimeSeries, 270

Diagramming, sentence, 213

Dictionaries (associations), 208

Dictionary

and Languageldentify, 127

definitions

(WordDefinition), 214

list (WordList), 47

Differential equation, 297

DigitCharacter, 256

Digits

as examples of coding

styles, 284

folding in, 174

number of, 130

of integers (IntegerDigits), 16

Directed graph (Graph), 117

Disambiguation, 80, 214

Disappear (Nothing), 189

Disconnected graph, 127

Disk, 29

area of, 297

Display (Echo), 292

Displaying lists, 11

Distance, between cities, 93

Divide string (StringSplit), 256

Division (Divide), 1

by zero, 2

DMS, forgeo positions, 99

Do, 237

Document generation, 300

Documentation, for Wolfram

Language, xv, 73

DocumentNotebook, 300

Dollars

as units, 88

interpreter for, 211

DominantColors, 41

Dotted, 137

Double at (@@), 204

Double blank
(), 193

Double equals (==), 168

Downvalues, 247

Drawing

from EdgeDetect, 41

of graphs, 116

Driving directions, 99

Drop, 17

DumpSave, 264

Duplicates, remove (Union), 180

Dynamic programming, 289

Dynamic scoping, 237

Dynamic typing, 247

Dynamic visualization, 231

Each element, apply to (/@), 142

Earth surface path, 95

Earthquakes, 84

Echo, 292

Eclipse IDE, 288

EdgeDetect, 41, 49, 141, 153,

223

EdgeForm, 71

Edges, of graph, 120

EdgeWeight, 120

EditDistance, 127

Efficiency, of code, 286

Eiffel Tower, 81, 94

Elements

of lists (Part), 16

test for (MemberQ), 166

Elevation data (for Earth), 138

EllipticK (elliptic integral), 134

Email, sending, 267

EmbedCode, 225, 299

Embedding, of graphs, 116

EmitSound, 55

Emitted light colors, 28

Empty list, 18

Encrypt, 300

End of list (Last), 16

EndOfLine, 259

EndOfString, 259

316 Index

English

alphabet, 181

as input language, 77

computation on, 46

lengths of words in, 137

versus Wolfram Language, 286

words in (WordList), 47

Entities, 77

implicitly specified, 168

in text (TextCases), 212

searching for, 168

types of, 80

Entitylnstance, 84

EntityList, 79

EntityProperties, 81

EntityValue, 78

Equality testing (Equal), 163

Equations

solving (Solve), 296

structure of (==), 169

Erf, 134

Errors, input, 4, 291

Escaping in strings, 52

Euclid’s algorithm, 252

EulerPhi, 134

Europe, shortest tour of capitals, 298

European

dates, 106

units, 90

Euros, interpreter for, 211

Evaluation

controlled, 300

in Wolfram Language, 199, 241

Even-odd rule, 71

EvenQ, 164

Everest, Mount, 138

Except, 253

Exp, 134

Experiments, in Wolfram

Language, 304

Exponential time, 287

Export, 268

Exportstring, 270

Expressions

size of, 204

symbolic, 197

Extensible forms, 226

External device, data from, 261

External programs, 268, 300

External services, 267

Eyes, and color, 28

Facebook social graph, 120, 267

Factor, 296

Factorial function

built-in (!), 134, 244

defining a, 244

Factorlnteger, 134, 298

False, 163

Feet (unit), 87

Fibonacci, 134, 289

as example of coding, 285

Fields

for forms, 221

in datasets, 275

File path, 263

Files

extensions for, 269

importing from, 267

local, 262

names of, 264

searching text, 259

FileTemplate, 259

Filled disk (Disk), 29

FilledCurve, 71

Filling, 108

Filter a list (Select), 164

FindClusters, 125

FindGeoLocation, 99

FindShortestPath, 116

FindShortestTour, 298

Finishing input, xiii

First, 16

applied incorrectly, 291

First letter (StringTake), 45

FirstPosition, 191

FixedPointList, 251

Flags, of countries, 77

Flat, as function attribute, 253

Flat (b) notes, 55

Flatten, 116, 178, 188

Floating point numbers, 134

Floor, 135

Fluency, in Wolfram

Language, viii, 283

Fold, 175,283

Folded polygons, 71

FoldList, 172

Font size (Style), 27

$FontFamilies, 114

FontFamily, 28, 111

For, 237, 283, 288

For each (/@), 142

Foreign exchange, 88

Foreign keys, 282

Foreign languages

function names in, 76

WordTranslation, 214

Form fields, restrictions on

values in, 225

Form-based apps, 219

Formats

cloud deployment, 225

import, 269

FormFunction, 219

FormObject, 225

FormPage, 223

Forms

apps based on, 219

extensible, 226

multipage, 226

FormTheme, 225

Forum (Wolfram Community), xv

Fractals, 156, 179

Fractions, exact, 129

Frame, 112, 230

Framed, 142, 148, 153, 155, 173, 227

rounded corners for, 231

Free-form input, xiii, 77, 211

Frequency, of letters, 207

Frequency plot (Histogram), 137

Friend network, 120, 267

FromCharacterCode, 52

FromDigits, 18, 175, 284, 286

FromDMS, 99

FromLetterNumber, 49

Fuji, Mount, 139

FullForm, 198

Function function (Function), 152

Function page, in documentation, 75

Functional programming,

152, 174-175, 237

lack of assignments in, 235

Functions

approximate, 297

attributes of, 253

built-in, 3, 73

compared to math, 5

composition of, 280

defining your own, 243

plotting, 295

pure, 147

reading out loud, 4

repeated application of, 153

saving to cloud of, 261

templates for, 76

translations of names for, 76

ways to apply, 141

Functors, 175

G5, 231

Gamepads, for Manipulate, 37

Gamma (gamma function), 134

Ganymede, 280

Gather, 180

GatherBy, 180

Gaussian-distributed numbers

(RandomReal), 135

GCD, 134

GCD algorithm, 252

Genomics, 259

as string example, 51

GeoBackground, 110

Geocomputation, 93

Geodesic path, 95

GeoDisk, 95

GeoDistance, 93, 167

GeoElevationData, 138

Geographic position

(GeoPosition), 96

GeoGraphics, 217

ranges in, 109

geolP, 99

GeoLabels, 110

GeoListPlot, 93

ranges in, 109

$GeoLocation, 99

Geometry, 297

as example of topic, 74

export of, 268

fractal, 160

importing, 266

transformations in, 71

GeoModel, 99

GeoNearest, 96

Index 317

GeoPath, 95

GeoPosition, 96

GeoProjection, 98, 217

GeoRange, 99, 109

GeoRegionValuePlot, 99

Get, 262

Get from cloud (CloudGet), 261

Ghost image (ColorNegate), 39

GIF, 225, 269

GIS (geocomputation), 93

Giza Pyramid, 81

Global values, 234

Goes to (Rule), 114

Golden ratio, 154, 289

Good code, 283

GPS position, 99

Grades data, 275

GrammarRules, 214, 259

Grammatical structure

(TextStructure), 213

Graph, 115

using Thread in constructing, 177

Graphics

3D, 30, 138

as not listable, 145

colors in (Style), 30

interactive, 34

labeling in, 228

lighting in, 31

objects in, 29

of data (ListPlot), 7

primitives, 66

resizing of, 231

GraphicsColumn, 229

GraphicsGrid, 229

GraphicsRow, 229

GraphLayout, 116

Graphs

constructing from lists, 203

nested, 158

of nearest neighbors, 125

random (RandomGraph), 121

social, 267

Gray code, as example

of program, 292, 294

GrayLevel, 28

Great circle path, 95

Great Pyramid, 81

Greater than (>), 163

GreaterEqual (>), 168

GreaterThan, 168

Greek alphabet, 51-52

Green, 25

Grid, 57, 149, 171, 177,229

nested, 156

options for, 112

Grobner bases, ix

Grouping (FindClusters), 125

GUI construction, 295

Guide page, in documentation, 74

Gunpowder, 214

Handwritten digits, 124

Hash (#), 175

Hashmaps (associations), 208

Haskell Curry, 204

Head, 200

Heads, associating values with,

247

Height map, 138

Height/width for plots, 111

Help, on functions, 76

Here, 97

Hexadecimal, in UUIDs, 264

Hexagon (RegularPolygon), 29

Hidden state, 237

HIDs, for Manipulate, 37

Hierarchical data, 275, 282

Higher-order functions, 175

Histogram, 137

Historical calendars, 105

Hold, 241, 300

Home page, for Wolfram

Language, xv

Hot pink, 211

Hour, as unit, 87

HTML

exporting fragments, 225

importing from web, 269

templates (XMLTemplate), 259

Hue, 26, 143

Human language

identification of, 123

input in, 77, 211

learning as comparison, viii

Humidity, from desk sensor, 262

HypercubeGraph, 121

Hyperlinks

from my website, 266

importing, 266

network of, 115

i (square root of -1), 134

IconRules, 226

Icons, for mobile apps, 226

IDE, for Wolfram Language, 288

Identity testing (===), 169

Idioms, in code, 286

If, 163

in function definitions, 244

Illumination, in 3D graphics, 31

lmage3D, 61, 175

ImageAdd, 42, 174

ImageCollage, 40

ImageData, 59

Imageldentify, 123

imageidentify.com, 127

ImagelnstanceQ, 166

Images, 39

adding (ImageAdd), 42

as arrays of numbers, 59

combining (ImageCollage), 40

getting from data, 61

importing from websites, 266

in forms, 223

nearness for, 124

of entities, 79

testing for objects in, 166

ImageSize, 1 1 1, 231

Immediate assignment (=), 239

Immersion, for language

learning, viii

Imperial units, 90

Implicit entities, 168

Import, 265

SlmportFormats, 269

Importstring, 270

In, 241

Increment (++), 237, 283, 288

Indices

found with Position, 188

in lists (Part), 16

in tables, 19

Infinite loops, 241

Infinity, 2

Input, terminating, xiii

Input fields

in Manipulate, 37

in web forms, 220

Input labels (In), 241

InputForm, 46

for dates and times, 101

for entities, 80

for quantities, 87

Inserting in strings (StringRiffle),

257

Inset (graphics primitive), 71

Instances, of entities

(Entitylnstance), 84

Instances (Cases), 193

Instant APIs, 226, 299

Instruments, musical, 54

IntegerDigits, 16, 134, 149, 286

IntegerName, 48

IntegerQ, 164

IntegerReverse, 286

Integers

big, 2

English names (IntegerName), 48

factoring, 298

random, 3

Integrate, 296

Interactivity, 33

in 3D graphics, 30

of cloud graphics, 226

on cloud, 36

Interleaving

for lists (Riffle), 181

for strings (StringRiffle), 257

Intermediate results

capturing, 293

printing, 292

Internal form (FullForm), 198

International characters, 52

International versions, code

captions for, 76

Internet address, for geo location, 99

Internet connectivity

for data, 84

for maps, 99

InterpolatingFunction, 297

Interpretations, multiple, 80

Interpreter, 211

Interpreters, for web forms, 222

SlnterpreterTypes, 214

318 Index

Intersection, 181

iOS deployment, 219

IT organizations, 271

Italic, 28

Iteration, 155

for tables (Table), 19

versus recursion, 160

Iterator specification, 23

Java, xi

code generation for, 299

JavaScript, xi

importing from web, 269

Join, 8, 157, 237

JoinAcross, 209

Joining points, 67

Joysticks, for Manipulate, 37

JPEG, 225

KaryTree, 121

Key-value maps (associations), 208

KeyDrop, 209

KeyMap, 209

Keys, in associations, 205-206

KeySelect, 209

KeySort, 205

KeyTake, 206

Kilograms, 88

Knowledge-based language, xi

Knowledgebase, 77

Koala, as example of entity, 81

LABColor, 28

Labeled, 227

Labels

for any expressions, 227

for bar charts, 207

for contour lines, 140

for form fields, 225

in maps, 111

of graphs, 115

placement of, 231

Lambda expressions, 152

Language design, 283

Languageldentify, 123, 265

Languages

code captions in other, xiii

translation between, 214

Large programs, xi, 289

Largest elements (TakeLargest),

189

Largest (Max), 3

Last, 16

Latest result (%), 233

Latin, viii

Latitude, 96

Layout

of graphics, 227

of graphs, 116

of tabular data, 57, 229

LeafCount, 204

Leaves, in expressions, 199

Left composition, 280

Legended, 228

Legends, placement of, 231

Length

of general expressions

(Length), 202

of lists (Length), 15, 144

of strings (StringLength), 45

Less, 168

LetterCharacter, 256

LetterCounts, 206

LetterNumber, 49, 165

LetterQ, 165, 180

Letters, in strings (Characters), 46

Lexical scoping, 237

Ihs (left-hand side), 196

Light, from desk sensor, 262

LightGray, 227

Lighting, simulated in 3D

graphics, 31

LightYellow, 227

Line, 66

Line drawing (from EdgeDetect), 41

Line numbering, in sessions, 237

Lines, terminating input, xiii

Link graph, 266

Listability, 15, 144, 146

and associations, 209

ListAnimate, 175, 231

ListLinePlot, 11, 48, 63

options for, 107

with multiple datasets, 137

ListLogPlot, 132

ListPlay, 56

ListPlot, 7, 63

analog for time series, 104

labeled, 228

ListPlot3D, 138

Lists

arithmetic on, 15

as functions, 10

as tables (Table), 19

dropping sublists (Drop), 17

filtering (Select), 164

first look at, 7

in datasets, 275

internal structure of, 197

joining (Join), 8

length of (Length), 15

membership in (MemberQ),

166

of rules, 177

of rules and associations, 206

operations on, 15

parts of, 16, 187

random choice from

(RandomChoice), 155, 182

sequences in, 259

symbolic, 10

taking sublists (Take), 17

visualization of, 11

zero-length, 18

ListStepPlot, 140

ListStreamPlot, 140

Load definitions (CloudGet), 261

Local files, 262

importing from, 267

Local values, 234

Local variables, in modules, 235

Localized names, 237

Localized values, 237

LocalObject, 263

LocalTime, 103

Location, interpreter for, 211

Location (Here), 97

Locked functions, 246

Log, 279

Log files, importing, 266

Log plot (ListLogPlot), 132

LoglO, 131

Logarithm

base 10 (LoglO), 131

natural (Log), 131

Logic computation, 298

Logic operations, 165

Logistic regression, 127

Logo, and AnglePath, 91

London, as time zone example,

103

Long computations, monitoring,

293

Long output, suppressing, 233

Longer programs, 303

Longest, 250

Longitude, 96

Loop variable errors, 294

Loops

for, 288

in graphs, 115

infinite, 241, 294

Los Angeles, 93

Louvre, 94

Machine learning, 123

Machine precision, 134

Magnitude (Abs), 132

Mail, sending, 267

Mail server, for SendMail, 270

Manipulate, 33

deploying to web, 218

generating in cloud, 221

Map (/@), 145

Maps

geographic, 93

range of (GeoRange), 99

Market prices, 84

Marketing, plots themed for, 107

Mars, maps of, 99

Matches

all possible, 253

for patterns (Cases), 193

for string patterns, 256

longest, 250

shortest, 250

Matching of brackets ([.]), 4

Math notation, 296

Math typesetting, 296

Mathematica, vii

Mathematical computation, 296

Mathematical functions, 134

visualization of, 295

Mathematical logic, 152, 204

Mathematical operations, 1

Index 319

Mathematics

comparison to learning, viii

notion of function in, 5

notion of mapping in, 146

prerequisites, ix, xiv

Matrices, lists of lists as, 61

Max, 3

in Dataset, 273

M BOX, 269

Meaning, of words, 214

MemberQ, 166

Memoization, in function

definitions, 289

Memory, and big numbers, 2

MemoryConstrained, 294

Menus

in forms, 225

in Manipulate, 37

Mercury, as disambiguation

example, 80

Merge, for associations, 209, 280

Mesh, 137

MeshFunctions, 140

Meshing, 297

MeshStyle, 137

Messages

from code, 291

sending mail, 267

Meta-algorithms, 127

Methods, symbolic

generalization of, 247

Middle C (note), 53

MIDI, 55

Min, 4

Minimization, of Boolean

functions, 298

Minimize, 296

Minus (Subtract), 4

Missing, 84, 208

Missing entries, in datasets, 275

Mixing colors (Blend), 25

ML (machine learning), 123

MMDDW (date format), 106

Mobile apps, creation of, 219, 226

Mod, 133

Modularity, in good code, 285

Module, 234

compared to With, 291

Modulo (Mod), 133

Molecule, as example of entity, 82

Money, computations with, 88

Monitor, 293

Month, from date, 105

Moon

maps of, 99

phase of (MoonPhase), 102

MoonPhase, 102

Moons, as examples of Dataset, 275

Mosaic (ImageCollage), 40

Most, 18

Mount Everest, 138

Mount Fuji, 139

Movie titles, 214

MovieData, 84

Multicore system, 301

Multipage forms, 226

Multiple assignments, 237

Multiplication sign (x), 2

Multiplication table, 58, 171

Multiplication (Times), 1

Music, 53

N, 129, 142,288

Naive Bayes machine learning, 127

Named patterns, 194, 250

Naming

of fields in datasets, 275

of functions, 285

of objects, 233

principles of, 236

NATO, 184

website of, 269

Natural language, and language

identification, 123

Natural language input, xiii, 211

Natural language understanding,

211

Natural logarithm, 131

NDSolve, 297

Nearest, 124, 159

NearestFunction, 161

NearestNeighborGraph, 125, 161

Negative part numbers, 187

Negative sentiment, 123

Neighbors, nearest (Nearest), 124

Nest, 153,292

NestGraph, 158

Nesting, of functions, 153

NestList, 153, 179,251,256

versus Fold List, 172

Net of polyhedron, 83

Networks, 115

Neural networks, 127

New Kind ofScience, A, 289, 299

New York City, 93-94, 211

as entity, 80

as time zone example, 103

Newlines, 257

split at (StringSplit), 256, 265

Newton’s method, 160, 252

Night, temperatures at, 104

NKS (A New Kind ofScience), 289

NLP (natural language

processing), 212

NLU (natural language

understanding), 211

Nodes, of graph, 120

Nonlinear optimization, 296

Normal

for associations, 206

on Dataset, 274

Normal-distributed numbers

(RandomReal), 135

NormalDistribution, 134

NoSQL databases, 282

Not (!), 165

Notable person classifier, 267

Notation, mathematical, 296

Note, musical (SoundNote), 53

Notebook generation, 300

Notebooks, xiii, 303

as forms, 225

as IDE, 288

in cloud, 264

NotebookTemplate, 259

Nothing, 189

Nouns, 212

Now, 101,218

Null list, 18

Number crunching, 296

Number of occurrences (Count), 16

NumberLinePlot, 12, 279

NumberQ, 168

Numbers

arithmetic with, 1

big, 2, 129

digits of, 16

from digits (FromDigits), 18

Gaussian distributed

(RandomReal), 135

in other bases, 18, 134

list of, 7

maximum size of, 2

of letters (LetterNumber), 49

precision of, 134

random, 3, 130

random sequences of, 22, 131

range of, 7

tests on, 164

Numberstring, 259

Numerical analysis, 134

Numerical approximation, 129

Numerics, 296

OAuth, 270

Obfuscated code, 285, 289

Object recognition

(Imageldentify), 123

Object-oriented programming, 246

Occurrences (Count), 16

OCR (optical character

recognition), 125

Octagon (RegularPolygon), 29

Octave, 53

OddQ, 164

ODE, 297

Off-by-one errors, 294

Offsets, in partitioning, 177

On-demand computation, 218, 239

OOP (object-oriented

programming), 246

Opacity, 69

Operations, order of, 2

Operator forms, 201, 204, 273

Operators, in mathematics, 204

Opportunities, with

programming, 304

Optical character recognition, 125

Optimization

numerical, 296

of code, 288

Options, 107

autocompletion of, 114

global setting of, 114

pure functions as settings for, 114

320 Index

Options (list of options), 114

Or

Boolean (||), 165, 298

for patterns (|), 193

Orange, 25

Order of operations, 2

Orderless, as function attribute,

253

OrderlessPatternSequence, 253

Ostrich, as example of image

import, 269

Out, 241

Outliers, 108

Output, suppressing, 233

Output labels (Out), 237, 241

Overlaps, 259

Overlaying plots (Show), 140

Packages, 289, 303

Paint colors, 28

Pairs (Tuples), 182

PalindromeQ, 169

Palindromes, in English, 166

Parallel computation, 301

Parallelogram, as example

function, 75

ParallelTable, 301

Parentheses ({...)), 2

and functional forms, 146

in logic operations, 168

Paris, 94

Parsing (TextStructure), 213

Part, 16, 187

Partition, 177, 203

Parts

and associations, 209

of datasets, 271

of general expressions, 200

replacing (ReplacePart), 189

Pascal’s triangle, 157, 160

modulo two, 160

Path

in graph, 116

traveling salesman, 298

with angles (AnglePath), 89

Pattern-based programming, 235

Patterns, 193, 249

and function definitions, 243

conditions on (/;), 249

for strings, 255

named, 194

PatternSequence, 253

Pause, in sound, 55

PDF, 225,268

Pentagon (RegularPolygon), 29

Perception of color, 28

PerformanceGoal, 288

Permanence, of names, 234

Permissions, 217

in cloud, 226

$Permissions, 226

Permutations, 182

Persistence, of names, 234

Phase of moon (MoonPhase), 102

Phone, location of, 97

Photo mosaic (ImageCollage), 40

Photos

Currentlmage, 39

in apps, 223

Phrase structure, 213

Pi (n), 130

Piano, 53

Pictogram (BarChart), 11

PieChart, 11,78, 143

annotation of, 228

in Dataset, 272

labeled, 228

Pigment colors, 28

Pink, hot, 211

Pink boxes, and graphics

errors, 291, 294

Pitch, of musical notes, 54

Pixel array, 59

Pixel size, of graphics

(ImageSize), 111

Place value (IntegerDigits), 16

Placed, 231

Placement, of labels, 231

Planets, 79

as example of Dataset, 275

plot of sizes of, 132

PLI (Programmable Linguistic

Interface), 214

Plot, of arrays (ArrayPlot), 58

Plot, for functions, 295

PlotRange, 108

Plots

combining (Show), 140

of colors, 28

of lists (ListPlot), 7

range of (PlotRange), 108

PlotStyle, 137

PlotTheme, 107, 229

Plus, 1, 198

as a function, 3

PNG, 225

importing, 266

Point, 66

Point size, of text, 27

Points

in graphics, 63

on graph, 120

Polygon, regular

(RegularPolygon), 29

Polygon, 66

Polyhedron, net of, 83

PolyhedronData, 71

Polynomial factoring, 296

Popup menus, in forms, 225

Position, 188

Positions (coordinates), 65

Positive part (Abs), 132

Positive sentiment, 123

Post tag system, 252

Postfix form (//), 141

Pounds, as weight unit, 88

Powers of ten, on map, 96

Powers of two, 154

Powers of numbers (Power), 1

definition of, 2

Precedence

of arithmetic operations, 2

of logic operations, 168

Precision, of numbers, 130, 134

Prefix form (@), 141

Pressure, from desk sensor, 262

Previous result (%), 233

Primality testing (PrimeQ), 164

Primary colors, 28

Prime, 131,144, 228,301

PrimePi, 134

PrimeQ, 134, 164, 293,301

Print (Echo), 292

Printout, 3D, 268

Probabilities

in Imageldentify, 127

of UUID collisions, 225

Procedural programming, 235

compared to functional, 175

$ProcessorCount, 301

Programmers

being, 303

fast intro for, vii

Programming Lab, Wolfram,

xiii-xv

Programming languages, other,

xi, xiv

Projections, in maps, 96, 98

Pronunciation, of functions, 4

Properties, of entities, 77

Property, 120

Prose, compared to code, 283

Proxy, for SendMail, 270

ps (external process), 300

Pseudorandom numbers, 3

Publishing, web page, 217

Pure colors, 28

Pure functions, 147, 171

and parentheses, 152

arrow form of, 152

as composite heads, 201

nesting of, 153

versus named function

definitions, 247

with explicit variables, 152

Purple, 25

Put, 262

Put into cloud (CloudPut), 261

Pyramid, Great, 81

Pythagorean triples, 184

Python, xi

Q functions, 164, 168

QA (quality assurance), 294

QR codes, 127

Quadtree, 156

Quality assurance, 294

Quantity, 87

Queries, on datasets, 273

Question functions, 164

Quotes, to indicate strings, 45

Quoting (evaluation control), 300

Radians, 88

Radio buttons, in forms 225

Index 321

Radio stations, number in

countries, 78

Radius, of circle, 65

Ragged arrays, 61

Rainbow (color lists), 26

Raising to powers (Power), 1

definition of, 2

Random forests machine

learning, 127

Random graph, 118

Random numbers

as coordinates, 63

continuous, 130

grid of, 58

integer, 3, 22

seeding (SeedRandom), 36

Random walk, 155

RandomChoice, 155, 182

RandomColor, 26, 239

RandomEntity, 84

RandomGraph, 121

Randomlnteger, 3

sequences from, 22

RandomReal, 130, 240, 297

RandomSample, 182

Range

of map, 99

of plots (PlotRange), 108

Range, 7

analog for dates, 102

listability of, 146

with negative numbers, 23

with strides, 21

Rapid prototyping (3D printing), 268

Rasterize, 49, 125

data from, 59

Readability, of code, 285

Real numbers, 130

Real-time display, 33

on web, 219

Real-world data, 77

Rea IDigits, 135

Reap, 293

Recognition

of barcodes, 127

of images (Imageldentify), 123

of text (TextRecognize), 125

Recomputation, 241

avoiding, 288

in Fibonacci algorithm, 287

Records, in datasets, 275

Recursion, 155

infinite, 241

versus iteration, 160

Recursive definition, 244, 284

Red, 25, 95, 137

Red input, 4, 291

Red-green-blue colors

fRGBColor), 25

Reflected light colors, 28

RegularExpression, 259

RegularPolygon, 29

and coordinates, 66

Relational databases, 282

and associations, 209

ReleaseHold, 300

Relief maps, 110, 139

ReliefPlot, 139

Repeat, list elements (Table), 19

RepeatedTiming, 288

RepeatingElement, 226

Repetition, of functions, 153

Repetitions

in patterns (..), 250

in string patterns, 256

ReplaceAll, 195

ReplaceList, 195, 253

Replacements, 193

in strings (StringReplace), 255

ReplacePart, 189

Replicate, list elements (Table), 19

Resizing graphics, 231

Resolution, of images, 59

Rest, musical, 55

Rest, 18

RESTful APIs, 226

Restricted, 225

Result, latest (%), 233

Reversal, of string

(StringReverse), 45

Reverse, 8, 144, 286

RGBColor, 25

Rhombic hexecontahedron, 83, 268

rhs (right-hand side), 196

Riffle, 181

Right composition, 280

RomanNumeral, 48, 189

Rotate, 71, 88, 148

Rotation, of 3D graphics, 30

Round, 132

Round down (Floor), 135

Round up (Ceiling), 135

Rounded corners, 231

RoundingRadius, 231

Roundoff errors, 134

Row, for display, 229

Rows

in arrays, 188

in datasets, 271

Rubles, interpreter for, 211

Rule 30 (cellular

automaton), 289, 299

Rule (-*), 107, 203

as used in options, 114

in Graph, 120

in replacements, 194

RuleDelayed (:*), 241

Rules

delayed (:->), 240

lists of and associations, 206

Run-length encoding (Split), 180

Running time

for bubble sort, 253

for recursive definition, 287

RunProcess, 300

Runs of elements (Split), 180

Russian alphabet, 49

Sameness testing (===), 169

Sampled sound, 56

San Francisco, 167

Sandboxed code execution, 294

Saturation, of color, 28

Save, 262

Saving

in binary, 264

to cloud (CloudSave), 261

Scale, 71

Scale-free network, 121

Scientific notation, 130

Scoping, of variables, 234

Scoping constructs, patterns as, 196

Scratch, and AnglePath, 91

Search engine, building a web

page like a, 223

Searching, text files, 259

Secondary colors, 28

Sector graph (PieChart), 11

See-through graphics (Opacity), 69

SeedRandom, 36

Select, 164

in datasets, 273

operator form of, 201, 273

Semantic expression, as

interpretation, 214

Semantic number, as

interpretation, 222

Semanticlmport, 282

Semantics, 211

Semicolon
(;), at end of line, 233

Semitones, 53

Sending mail (SendMail), 267

SendMail, 267

server for, 270

Sensors

data from, 261

direct connection to, 270

Sentence diagramming, 213

Sentences

lengths of, 140

lists of (TextSentences), 47

Sentiment analysis, 123

Sequence of numbers (Range), 7

SequenceAlignment, 259

SequenceCases, 259

Sequences

in lists, 259

of operations (;), 235

of parts, 187

ServiceConnect, 269

Services, accessing external, 267

Sessions, results in, 233

Set (=), 241

Set complement (Complement), 181

Set intersection (Intersection), 181

Set union (Union), 180

SetDelayed (:=), 241

SetOptions, 114

Setting names, 233

Shade

of color (Hue), 28

of gray (GrayLevel), 28

Shapes, of plots (AspectRatio), 111

Sharp (#) notes, 55

Shift + Enter;, xiil

322 Index

Short URL (URLShorten), 218

Shortest, 255, 259

Shortest path, in graph, 116

Shrinkwrapping, 297

SI units, 90

Side effects, 152, 237

Side labels, in plots (Legended), 228

Sierpinski pattern, 179

Sigma (Sum), 296

Simple programs, 299

Simplicity of good code, 284

Simplification, of Boolean

functions, 298

Sin, 134, 295

Size

of big numbers, 2

of expressions, 204

of graphics (ImageSize), 111

of text, 27

SK combinators, 252

Sketch (from EdgeDetect), 41

Skull, 83

Slash at (/@), 142, 146

Slash dot (/.), 193

Slash semi (/;), 249

Slash slash (//), 146

Slider, 295

Sliders

in forms, 225

in Manipulate, 33

on web, 218

Slot (#), 175

Slots

in pure functions, 171

in pure functions (#), 147

in string templates, 257

Smallest elements

(TakeSmallest), 189

Smallest value (Min), 4

Smart fields, 222

SmoothHistogram, 140

Social networks, 115

SocialMediaData, 267

Software engineering, 288, 303

Solid objects, 69

Solve, 296

Sonification, 53

Sort, 15, 180

in associations, 205

of characters, 46

timing of, 288

SortBy, 180

operator form of, 274

Sorting algorithm, 250

Sound, 53

importing, 266

SoundNote, 53

Sow, 293

Spaces

for multiplication, 2

in string patterns, 256

Spanish captions, xiii

Spans, in lists, 187

SparseArray, 61

Speak, 56

Speed, of code, 286

Sphere, 30

and coordinates, 68

Spikey

3D printout of, 268

net of, 83

Spiral, from AnglePath, 89

Split, 180

Split strings (StringSplit), 256

Spoken output (Speak), 56

Spreadsheets

as source for datasets, 282

importing, 266

SQL databases, 282

connecting to, 282

Sqrt (square root), 131

Square brackets, 4

for functions, 3

Square root (Sqrt), 131

nested, 154

Squares

generated with Array, 171

of numbers (Power), 1

table of, 20, 283

Squaring, nested, 154

Stacked output (Column), 12

Star

for multiplication, 2

in regular expressions, 259

Starry Night, The (painting), 82

Start of list (First), 16

StartOfLine, 259

StartOfString, 259

State capitals, 214

Static typing, 247

Stephen Wolfram

A New Kind ofScience

book by, 289

as Currentlmage example, 39

as example of entity, 82

automatic recognition of, 267

home page, xv

importing from website of, 266

stephenwolfram.com, 266

Steps

debugging in, 294

in lists, 21

in procedural programs, 235

STL file, 268

Stock prices, 84

Stopwords, 47

Store in cloud (CloudPut), 261

Stream plot (ListStreamPlot),

140

Street

addresses, 212

maps, 98

Stride, in lists, 21

String templates, 257

StringCases, 255

StringContainsQ, 168

StringJoin, 45, 257

StringLength, 45, 137, 148

StringMatchQ, 256

StringReplace, 255

StringReverse, 45, 166

StringRiffle, 257

Strings, 45

dates as, 105

exporting from

(Exportstring), 270

from expressions, 257

importing from

(Importstring), 270

joining (StringJoin), 45

natural language

interpretation of, 211

overlaps in matching for, 259

patterns for, 255

quotes in (InputForm), 46

to lists of letters (Characters), 46

versus symbols, 52

StringSplit, 256, 265

StringTake, 45

StringTemplate, 258

Structs (associations), 208

Structured data, 271

Student data, 275

Style, 49, 95, 148

for labels, 227

in document generation, 300

in plots, 228

options in, 111

Styles, in forms, 225

Sub, for Part, 191

Subject line, for email, 268

Sublists

creating, 177

operations on, 259

Subscript (Part), 16

Subsets, 182

Subtraction (Subtract), 1,4

Subvalues, 247

Successor function, 154

Suggestions, xiii

Sum, 296

Sum of elements (Total), 15

Sunrise, 103

Sunset, 102

Supervised machine learning, 127

Support vector machines, 127

Suppressing output, 233

SVG, 225

Swapping values, 237

Swatches, of color, 28

Swedish, alphabet, 181

Switzerland

as example, 79

graph of bordering countries,

159

Symbolic

database generalization, 282

documents, 300

expressions, 197

generalization of types, 247

images as, 44

languages, 10, 13, 84, 204

lists as example, 10

mathematics, 296

mixing of types in lists, 13

representation of infinity, 2

results, 291

user interfaces, 295

Index 323

Symbolically indexed lists

(associations), 208

Symbols, 198

Syntax errors, 4, 291

Systems operations, 300

Table, 19,283

and /@, 152

for lists of lists, 57

in earlier versions, 23

versus Array, 171

Tabular data, 271

Tabular output (Grid), 57

Tag cloud (WordCloud), 47

Tag system, 252

Take, 17, 187

analog for keys (KeyTake), 206

TakeLargest, 189

TakeSmallest, 189

Temperature

AirTemperatureData, 103

from desk sensor, 262

Templates

for built-in functions, 76

string, 257

Testing

framework for, 294

importance of, 291

of larger programs, 303

TestReport, 294

Tests, 163

on form fields, 225

Tetrahedron, 71

Text

color of (Style), 26

computation with, 45

rotation of (Rotate), 88

structure of, 213

Text (graphics primitive), 71

Textbook math, 296

TextCases, 212

TextRecognize, 125

TextSearch, 259

TextSentences, 47

Textstring, 257

TextWords, 46

Theme

of forms (FormTheme), 225

of graphics (PlotTheme), 107

Theorems, about Wolfram

Language, 10

Thick, 95

Thread, 177

Three-dimensional

graphics, 30, 68, 138

in the cloud, 226

Three-dimensional printing, 268

Tilde tilde (—), 259

Time series, 103

Time zones, 103

TimeConstrained, 294

Times, 101

Times, 1, 171

as a function, 3

TimeSeries, 105

Timing, 286, 288

Tint, 28

Tiny, as ImageSize, 111

ToCharacterCode, 52

Today, 102

Tokyo, 95

Tomorrow, 102

Tooltip, 228

Topography, 138

Total, 15, 234, 284

in associations, 205

in Dataset, 272

ToUpperCase, 45

TraditionalForm, 296, 298

Traffic lights, as color example, 27

Training, in machine learning, 124

Transition graph, 203

Translate, 71

Translation

of function names, 76

of words (WordTranslation), 214

Transparency (Opacity), 69

Transpose, 177, 251

TravelDirections, 99

TravelDistance, 99

Traveling salesman problem, 298

TravelTime, 99

Tree

as graph (KaryTree), 121

from NestGraph, 158

TreeForm, 199

Trees, expressions as, 204

Triangle (RegularPolygon), 31

Triple at (@@@), 204

Triple blank (), 249

Triple equals (===), 169

Triples (Tuples), 182

True, 163

Truth table, 298

TSP (traveling salesman

problem), 298

Tuples, 182

Turkish, alphabet, 181

Turning path (AnglePath), 89

Turtle graphics (AnglePath), 91

Tweet-a-Program, xv

Types, in Wolfram Language, 246

Typesetting, 296

Ul construction, 295

UN website, 265

UndirectedGraph, 117

Unequal (*), 168

Unevaluated results, 291

Unicode, 52

Union, 180

Unique identifiers, 225

Unit tests, 294

UnitConvert, 87

for dates, 101

United Nations website, 265

United States

as entity, 77

map of, 93

Units, of measure, 87

Universally unique identifiers, 225

Universities, interpreter for, 212

Unknowns, symbols as, 204

Unprotect, 246

Unravel (Flatten), 178

Unsupervised machine learning, 127

Updatelnterval, 219

Upper case (ToUpperCase), 45

Upvalues, 246-247

URLShorten, 218

US units, 90

User functions, defining, 243

User ID, 264

User interface construction, 295

UUIDs, 225, 261

format of, 264

number of, 264

Validation, of form fields, 225

Values, in associations, 206

Van Gogh, painting as example, 82

Vanish (Nothing), 189

Variables

global, 234

in tables, 19

local, 234

names of, 20, 23

scoping of, 234

Vector plot (ListStreamPlot), 140

Vectors, lists as, 61

VerificationTest, 294, 303

Version, of Wolfram

Language, xiv, 289

Version control, 303

VertexLabels, 115, 158

VertexStyle, 120

Vertical output (Column), 12

VerticalGauge, 140

Vertices, of graphs, 115

Violin, 54

Visible quotes (InputForm), 46

Vision, color, 28, 127

Visualization, 137

annotation of, 228

for debugging, 292

of functions, 295

of lists, 11

Voice output, 56

Volcanoes, 97

Voxels (lmage3D), 61

Wait to evaluate, 239

Wall clock time

(AbsoluteTiming), 288

Waveforms, for sound, 56

Weather, data on, 103

Web
interactivity on, 36

Manipulate on, 36

network of, 115

plots themed for, 107

Web address

in Wolfram Cloud, 218

length of, 225

Web APIs, 226

Web computation (Delayed), 218

Web crawler, 160, 266

Web forms, 222

324 Index

Web search, vs. Wolfram

Knowledgebase, 84

Webcam, picture from, 39

Websites

creating, 217, 303

embedding on (EmbedCode), 225

Weeks, and time computations, 101

Weight, as example of quantity, 88

White House

images from website of, 269

location of, 211

Whitespace, 256, 259

Whole number, random, 3

Wikipedia, importing images

from, 266

WikipediaData, 148, 206, 213

images from, 44

text from, 47

With, 291

wolfr.am, 218

Wolfram|Alpha, vii

comparison with, xi

Wolfram Cloud, 217

and SendMail, 270

storage in, 261

Wolfram Cloud app, 219, 226

Wolfram Community, xv

Wolfram Connector, 269

Wolfram Data Drop, 261

Wolfram Demonstrations

Project, xv, 37

Wolfram Knowledgebase, 77, 265

Wolfram Language

home page, xv

metadata about

(WolframLanguageData), 76

nature of, xi

scope of, 73

time to learn, 76

uses of, xi

version of, xiv

Wolfram logo

3D printout of, 268

net of, 83

Wolfram Notebooks, xiii, 303

as IDE, 288

in cloud, 264

Wolfram Programming Lab, xiii-xv

Wolfram Research, xv

Wolfram Workbench, 288

Wolfram|Alpha

as example of large program, 303

building a web page like, 223

data vs. Wolfram Language, 84

interpreting strings like, 214

knowledgebase for, 77

WolframLanguageData, 76

WordBoundary, 259

WordCtoud, 47, 213

options for, 112

weighting in, 280

WordDefinition, 214

WordList, 47, 124, 137, 166

WordOrientation, 112

Words

graph of nearest, 159

lengths of common, 137

nearest, 124, 127, 159

Words for integers (IntegerName), 48

Words in text (TextWords), 46

WordTranslation, 214

XLS, importing, 266

XML, 204

XMLTemplate, 259

XYZColor, 28

Yellow, 25

Yellow box, for entities, 77

Yesterday, 102

Zeta (Riemann zeta function), 134

An Elementary Introduction to the

Wolfram Language

The Wolfram Language represents a major advance in programming languages that

makes leading-edge computation accessible to everyone. Unique in its approach of

building in vast knowledge and automation, the Wolfram Language scales from a single

line of easy-to-understand interactive code to million-line production systems.

wolfram.com/language

This book provides an elementary introduction to the Wolfram Language and modern

computational thinking. It assumes no prior knowledge of programming, and is

suitable for both technical and non-technical college and high-school students, as well

as anyone with an interest in the latest technology and its practical application.

wolfr.am/eiwl

Stephen Wolfram is the creator of the Wolfram Language, as well

as Wolfram|Alpha and Mathematica. He has been a pioneer in the

science and technology of computation for nearly four decades. He

started using computers while doing physics research in his early

teens, and made many important discoveries that led eventually to

his groundbreaking 2002 book A New Kind of Science. Since founding it in 1987, Wolfram

has been CEO of Wolfram Research, one of the world’s most respected software

companies, known for its long history of technical innovation.

stephenwolfram.com

All code in this book is available for interactive use in

the Wolfram Open Cloud at wolfr.am/eiwl-c, as well as in

web and desktop versions of Wolfram Programming Lab.

Additional material is available at wolfr.am/eiwl.

ISBN 978-1-944183-00-4

781 944 1 83004

USD $19.95

5 1 9 9 5>

9

