
Mathematica Tutorial
To accompany

 Partial Differential Equations:

 Analytical and Numerical Methods, 2nd edition

 by
 Mark S. Gockenbach

 (SIAM, 2010)

Introduction

In this introduction, we explain the organization of this tutorial and give some basic information about Mathematica and
Mathematica notebooks. We also give a preliminary introduction to the capabilities of Mathematica.

■ About this tutorial

The purpose of this document is to explain the features of Mathematica that are useful for applying the techniques pre-
sented in the textbook. This really is a tutorial (not a reference), meant to be read and used in parallel with the textbook.
For this reason, the tutorial has the same chapter and section titles as the book. However, the purpose of the sections of
this document is not to explain the material in the text; rather, it is to present the capabilities of Mathematica as they are
needed by someone studying the text.

Therefore, for example, in Section 2.1, Heat flow in a bar; Fourier's Law, there is no discussion of physics or modeling.
(The physics and modeling are found in the text.) Instead, the Mathematica command for integration is presented, because
Section 2.1 is the first place in the text where you are asked to integrate a function. Because of this style of organization,
some parts of the text have no counterpart in this tutorial. For example, there is no Chapter 7, because, by the time you
have worked through the first six chapters of the tutorial, you have learned all of the capabilities of Mathematica that you
need to address the material in Chapter 7 of the text. For the same reason, you will see that some individual sections are
missing; Chapter 5, for example, begins with Section 5.2.

Our purpose in writing this tutorial is not to show you how to solve the problems in the text; rather, it is to give you the
tools to solve them. Therefore, you will not find a complete example of every problem type; otherwise, your "studying"
could degenerate to simply looking for an example, copying it, and making a few changes. At crucial points, we do
provide some complete examples, since we see no other way to illustrate the power of Mathematica than in context.
However, there is still plenty for you to figure out for yourself.

Getting help about commands

Help on Mathematica commands is always available through the help browser. The browser provides several ways to
access the information. We recommend choosing Wolfram Documentation from the help menu, after which you have
two options:

1. Choose one of the listed options (e.g. “graphics and visualization”).

2. Enter a command name or query (e.g. “LinearSolve” or “solving linear systems”) in the search bar.

■ About Mathematica

Mathematica is the creation of Stephen Wolfram, a theoretical physicist who has made important contributions to mathemat-
ics and computer science. Wolfram describes Mathematica as "the world's only fully integrated environment for technical
computing." At the heart of Mathematica is a computer algebra system, that is, a system for doing algebraic manipulations
symbolically (and therefore exactly). However, Mathematica also incorporates floating point (or finite precision) computa-
tion, arbitrary precision arithmetic, graphics, and text processing. It is also a programming environment. We will touch on
all of these capabilities in this tutorial.

■ Mathematica notebooks

This document you are reading is called a notebook. (Here we assume that you are reading this file in Mathematica, not as
a printed document. If you are reading a printed copy, you will have to ignore a few comments about how Mathematica
displays a notebook.) It consists of both text and Mathematica input and output, organized in cells. You are currently
reading a text cell; the next section presents some input and output cells. The most important thing to understand about a
notebook is that it is interactive: at any time you can execute a Mathematica command and see what it does. This makes a
Mathematica notebook a tremendous learning environment: when you read an explanation of a Mathematica feature, you
can immediately try it out.

■ Getting started with Mathematica

As mentioned above, Mathematica has many capabilities, such as the fact that one can write programs made up of Mathe-

matica commands. The simplest way to use Mathematica, though, is as an interactive computing environment (essentially,
a very fancy graphing calculator). You enter a command and the Mathematica kernel (the part of the software that actually
does the computation) executes it and returns the result. Here is an example:

In[1]:= 2 + 2

Out[1]= 4

The input cell (labeled by In[1]:=) contains the expression 2+2, which Mathematica evaluates, returning the result (4) in
the output cell (indicated by Out[1]=). The user types "2+2"; Mathematica automatically supplied the label "In[1]:=".
Looking to the far right of this document, you will see the brackets that indicate the grouping of the material into the cells.
(You will not see the brackets when the notebook is printed.) Moreover, the cells are nested. For example, the input and
output cells are grouped together in an input/output cell, which is grouped together with the text cells and more input/out-
put cells into this section of the document. Several sections are grouped together into this introductory chapter. Finally, all
of the chapters are grouped in a single cell, the notebook. Below we discuss some elementary manipulations of cells,
including the creation of text cells.

By default, when you type something in a Mathematica notebook, it is regarded as input. (You have to give a special
command, as explained below, to create a text cell, a heading, or something else.) Here is how you create an input cell:

2 mathtut2Open.nb

 explained heading, something else.) you input
Start by using the mouse to move the cursor over these words you are reading (do it now!). The cursor will look like a
vertical bar with little sticks at the top and bottom, almost like a capital I. Then move the cursor between this text cell and
the next. You should see the cursor become horizontal. (If you go too far, into the next text cell, the cursor will become
vertical again.) Clicking while the cursor is horizontal causes a horizontal line, extending across the entire document, to
appear. You can now enter input. For example, type 3+3, followed by shift/return (that is, press return while holding
down the shift key). If your keyboard has both a return key and an enter key, then the enter key by itself is equivalent to
shift/return. (On the other hand, your computer may have only an enter key, in which case it is equivalent to a return key,
and you must push shift/enter to tell Mathematica to execute a command.)

You should have noticed the following: when you pressed shift/return, Mathematica inserted "In[2]:=" before the "3+3"
you typed, and then displayed "Out[2]=6" on the next line. Here is how it should appear:

In[2]:= 3 + 3

Out[2]= 6

(However, the indexing of the input and output cells might be different, depending on what you have done so far. For
instance, when you typed "3+3" and pressed shift/return, Mathematica might have displayed "In[1]:=" instead of "In[2]:=".)

Now that you know how to enter commands and see the output, let's quickly go over some of the most basic capabilities of
Mathematica. First of all, Mathematica can do arithmetic with integers and rational numbers exactly, regardless of the
number of digits involved:

In[3]:= 123^45

Out[3]= 11 110 408 185 131 956 285 910 790587 176 451 918 559 153 212 268 021 823 629 073 199 866 111

001 242 743 283 966 127 048 043

In[4]:= 115 / 39 + 727 / 119

Out[4]=
42 038

4641

Mathematica knows the standard elementary functions, such as the trigonometric functions, logarithms and exponentials,
the square root function, and so forth. It also knows the common mathematical constant π. Consider the following
calculation:

In[5]:= SinPi  4

Out[5]=
1

2

There are several important things to learn from this example. First of all, π is typed with the first letter capitalized, as is
the built-in function Sin. In fact, every predefined symbol in Mathematica begins with a capital letter. One advantage of
this is that you can define your own symbols beginning with lowercase letters, knowing that you will not conflict with any
of Mathematica's names.

Another thing to notice from the previous example is that Mathematica knows that the sine of π/4 is exactly 1/ 2 ; it does
not return an estimate like 0.70710678, as a handheld calculator might. Now compare the previous example with this:

In[6]:= SinPi  4.0

Out[6]= 0.707107

The only difference between the two examples is that the integer 4 in the first was replaced by the floating point number
4.0 in the second. This difference was enough to cause Mathematica to return a floating point (approximate) result in the

mathtut2Open.nb 3

 enough floating point (approximate)
second example.

 Here is an important rule: An expression involving only exact (symbolic) quantities will be evaluated exactly
(symbolically), while an expression involving one or more floating point numbers will be evaluated approximately using
floating point arithmetic. Here are two more examples to illustrate this rule:

In[7]:= Sqrt[2]

Out[7]= 2

In[8]:= Sqrt[2.0]

Out[8]= 1.41421

(This example also introduces the square root function, spelled "Sqrt".)

Here are a few more sample calculations.

In[9]:= (100 - 9) (100 + 9)

Out[9]= 9919

In[10]:= (-5 + Sqrt[5^2 - 4 * 1 * 4]) / 2

Out[10]= -1

In[11]:= (-1)^2 + 5 (-1) + 4

Out[11]= 0

You should learn several things from these examples:

A power is formed using the "^" character.

 Parentheses are used for algebraic grouping, as in the expression (100-9)(100+9).

Multiplication can be indicated either by the "*" character, or simply by juxtaposition (with a space between the
symbols, if necessary).

The last point is illustrated in the following examples:

In[12]:= 2 * 2

Out[12]= 4

In[13]:= 2 × 2

Out[13]= 4

(Note that Mathematica automatically put in the times symbol; we just typed a pair of 2’s, separated by a space.)

In[14]:= 2 * x - 2 x

Out[14]= 0

In[15]:= (-1) (-1)

Out[15]= 1

One will often wish to perform a calculation in several steps. Mathematica makes it possible to refer to previous results in
a couple of ways. The "%" character always represents the last output:

4 mathtut2Open.nb

In[16]:= 119 / 11 + 47 / 13

Out[16]=
2064

143

In[17]:= % - 107 / 23

Out[17]=
32 171

3289

To refer to an earlier output (not just the most recent), use the "Out" keyword, followed by the index of the output. For
example, Out[1] always refers to the first output of your Mathematica session:

In[18]:= Out[1]

Out[18]= 4

You can evaluate a symbolic expression in floating point using the N operator:

In[19]:= 129 / 9

Out[19]=
43

3

In[20]:= N[%]

Out[20]= 14.3333

The N operator can perform calculations in any precision; you just follow the expression to be evaluated by the desired
number of digits:

In[21]:= NPi, 100

Out[21]= 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089

98628034825342117068

■ A few more points about Mathematica notebooks

Text cells and headings

Eventually, you may wish to produce your own notebooks, perhaps when writing up solutions to homework. You can
create a document like this one, with headings, subheadings, and text cells (in addition to input/output cells), using the
Style option from the Format menu at the top. For example, to create a text cell (like this one), click between cells (or
after the last cell in your document), so that Mathematica is prepared to receive input. Then (using the mouse) go to the
Format menu, click on Style, and then select Text from the list of options. Whatever you then type in the cell will be in
text format.

Headings are produced in exactly the same way. Go to Format, then Style, and select Title, Subtitle, Subsubtitle,
Section, Subsection, or Subsubsection.

Initializing a notebook

When you first open a notebook that contains input/output cells, Mathematica's kernel is not aware of those cells unless
you execute them. For example, consider the following input/output cell:

mathtut2Open.nb 5

In[22]:= a = 13

Out[22]= 13

What would happen if you moved your cursor after this cell, and tried to use the value of a (for example, you type a^2,
expecting to get the value 169)? If you do not first initialize the notebook by evaluating the input cells, the kernel will not
record that a has been assigned the value 13. One way to initialize a notebook is to simply move your cursor to each input
cell in turn and press shift/return. The kernel will then execute the commands. For the purposes of this tutorial, this is a
good way to proceed. Then the state of the Mathematica kernel is exactly as it appears as you read through the document.
(You may wish to go back to the beginning and initialize the cells up to this point.) You may already have noticed that,
when you issue a command in an uninitialized notebook, Mathematica prompts you as to whether you wish to initialize the
entire notebook before proceeding (it may not do this on every computer system). If you wish to go through the tutorial
sequentially, it is better to not initialize all of the cells at the beginning.

It may be preferable, in some cases, to initialize the entire notebook at the beginning. You can do this by going to the
Evaluation menu and selecting Evaluate notebook. If this is how you want to initialize the kernel, then you should do it
at the beginning of your session.

Saving a notebook

When you prepare a homework solution in Mathematica, or do some other work that you want to save for later reference,
you must save the contents of the notebook. To save the document, go the File menu, select the Save option, and then
enter a file name. By default, Mathematica will save the document in notebook format, that is, as a “.nb” file. Thus, if you
enter the name “hw1”, your file will be saved as “hw1.nb”. (You can choose a different format (e.g. PDF) using the drop-
down menu.) Thereafter, whenever you make changes to the notebook and save it, you will not need to enter the file name.
As you work on your notebook, you should frequently save it, so that, if something goes wrong, you will never lose much
work.

As you work your way through this tutorial, you will want to stop at times and come back to it later. At those times, you
will have to decide if you wish to save the changes you have made or not. You may wish to save the tutorial with your
modifications under a different name, so that you keep a clean copy of the original tutorial.

Manipulating cells

For the purposes of organization and appearance, the contents of cells can be hidden. For example, below is a section of
text, grouped with a heading, that has been hidden. Only the heading is seen, and, if you look to the right, you will see that
the cell delimiter has a little "flag" indicating that the contents of the cell are hidden. You can open the cell by moving
your cursor to the cell delimiter with the flag and double clicking on it.

A sample closed cell

This is a text cell that was originally hidden.

The first time you open this notebook, the Introduction should be revealed, but the subsequent chapters, and the sections
within the chapters, should be hidden. You will have to open them to read them. If you save the notebook after you read
and possibly modify it, then the cells will be in the same state (open or closed) as you left them.

6 mathtut2Open.nb

Chapter 1: Classification of Differential Equations

Mathematica allows us to define functions and compute their derivatives symbolically. Using these capabilities, it is
usually straightforward to verify that a given function is a solution to a differential equation.

Example

Suppose you wish to verify that

u (t) = eat

is a solution to the ordinary differential equation
du

dt
- au = 0.

First define the function:

In[23]:= u[t_] = E^(a * t)

Out[23]= ⅇ13 t

Here we have intentionally illustrated a common mistake: the symbol "a" was previously assigned a value (13), but now we
want to use it as an (indeterminate) parameter. The previous value must be cleared before the symbol is used again. It is a
good idea to clear the values of any symbols that are about to be defined or are about to be used as variables. This is
accomplished with the ClearAll command. There is no harm in clearing a symbol that has not been given a value yet, so it
is a good idea to use ClearAll liberally. Doing so will eliminate many errors that may otherwise be difficult to find. (A
related command is Clear, which clears the definition of a symbol but not necessarily all of the information associated with
it. In almost every case, Clear is sufficient, but, on the other hand, in most cases, ClearAll is what you really want to do.
We recommend the use of ClearAll.)

Here is the appropriate way to define u(t):

In[24]:= ClearAll[u, t, a]

u[t_] = E^(a * t)

Out[25]= ⅇa t

There are several important things to learn from this definition:

Function evaluation in Mathematica is indicated by square brackets. That is, while in mathematical notation, we write
f(x), in Mathematica the correct syntax is f[x].

Ordinary parentheses are used exclusively for algebraic grouping. Thus we write (a*t) to indicate that the exponent is
the product of a and t.

The value e = 2.71828 ... is a built-in constant, denoted by the capital E.

To indicate that a function is being defined by means of an expression involving a dummy variable (t in the above
example), the variable name is followed by an underscore on the left hand side of the equation defining the func-

mathtut2Open.nb 7

example), by equation defining
tion.

It is possible to put two or more Mathematica commands in the same input cell; each command begins on a new line.
The return key (as opposed to shift/return) produces a new line in the same input cell. (You can also extend a
single command over several lines if necessary by using the return key, but this is unnecessary; if you just keep
typing beyond the end of the line, Mathematica will automatically begin a new line for you.)

Now that Mathematica knows the definition of u, we can evaluate it:

In[26]:= u[5]

Out[26]= ⅇ5 a

We can also compute its derivative:

In[27]:= D[u[t], t]

Out[27]= a ⅇa t

The syntax of this command should be clear: differentiate (D) the first expression (u[t]) with respect to the variable given
as the second expression (t).

We now know enough to check whether the given function satisfies the differential equation. Note that Mathematica

automatically simplifies the given expression (although not necessarily as much as possible, as we shall see):

In[28]:= D[u[t], t] - a * u[t]

Out[28]= 0

This result shows that u is a solution.

Is v(t) = a t another solution? We check by defining the function and then substituting it into the left hand side of the
differential equation:

In[29]:= ClearAll[v, a, t]

v[t_] = a * t

Out[30]= a t

In[31]:= D[v[t], t] - a * v[t]

Out[31]= a - a2 t

Since the result is not the zero function, we see that v(t) is not a solution.

It is no more difficult to check whether a function of several variables is a solution to a PDE. For example, is

w (x, y) = sin (π x) + sin (π y)

a solution of the differential equation

∂2 u

∂x2
+
∂2 u

∂y2
= 0?

As before, we check by defining the function and then substituting it into the left-hand side of the differential equation:

8 mathtut2Open.nb

In[32]:= ClearAll[w, x, y]

w[x_, y_] = SinPi * x + SinPi * y

Out[33]= Sin[π x] + Sin[π y]

In[34]:= D[w[x, y], x, x] + D[w[x, y], y, y]

Out[34]= -π2 Sin[π x] - π2 Sin[π y]

The answer is no, w is not a solution to the differential equation. To compute higher derivatives using the D command, as
this example shows, the independent variable is listed as many times as the order of the derivative. Mixed partial deriva-
tives are then computed in the obvious way; for example, to compute

∂2 w

∂x ∂y
,

we type

In[35]:= D[w[x, y], x, y]

Out[35]= 0

There is an alternate way to indicate repeated differentiation with respect to a given variable. The following command
computes

∂5 w

∂w5
:

In[36]:= D[w[x, y], {x, 5}]

Out[36]= π5 Cos[π x]

More about computing derivatives and defining functions:

Above, we showed how to compute derivatives, using the D command, by first defining the function to be differentiated.
For example, the following commands compute the derivative of x2 :

In[37]:= ClearAll[f, x]

f[x_] = x^2

Out[38]= x2

In[39]:= D[f[x], x]

Out[39]= 2 x

However, D computes the derivative of an expression, not of a function. Therefore, if it is convenient, we can skip the step
of defining f:

In[40]:= D[x^2, x]

Out[40]= 2 x

On the other hand, if we have defined f, and we wish to compute its derivative, we must apply D to f(x), not to f (f(x) is an
expression, while f is a function). Here is the wrong way to compute f'(x), followed by the right way:

mathtut2Open.nb 9

In[41]:= D[f, x]

Out[41]= 0

In[42]:= D[f[x], x]

Out[42]= 2 x

Now is a good time to try out the Help Browser, if you have not already done so. Go to the Help menu, select Wolfram
Documentation, and type D into the search bar.

We close this section by explaining a little more about how Mathematica handles functions. You should recall that a
function is simply a mapping from one set (the domain) into a second set (the codomain). In calculus (and therefore when
dealing with differential equations), the domain of a function of one variable tends to be the set of real numbers, or an
interval of real numbers. However, there are many other possibilities, and Mathematica is flexible enough to handle them.
For example, we can define a function g:{1,2,3}⟶R (the domain is the set {1,2,3} of three integers) by

g (1) = 1, g (2) = 4, g (3) = 9

This is expressed in Mathematica as follows:

In[43]:= ClearAll[g]

g[1] = 1

g[2] = 4

g[3] = 9

Out[44]= 1

Out[45]= 4

Out[46]= 9

Mathematica now knows the value of g for any of the three inputs 1, 2, or 3. For example:

In[47]:= g[2]

Out[47]= 4

However, any other input leads to an indeterminate result:

In[48]:= g[5]

Out[48]= g[5]

In[49]:= g[x]

Out[49]= g[x]

We could define the value of g[x] as follows:

In[50]:= g[x] = x^2

Out[50]= x2

However, notice the lack of the underscore character in the above definition (we entered "g[x]=x^2", not "g[x_]=x^2").
This means that g is defined for the input x, but not for an arbitrary input:

In[51]:= g[5]

Out[51]= g[5]

10 mathtut2Open.nb

The ? operator displays the definition of g:

In[52]:= ? g

Global`g

g[1] = 1

g[2] = 4

g[3] = 9

g[x] = x2

Hopefully, the meaning of the underscore character is now clear: it is necessary to tell Mathematica when an input is
regarded as a dummy variable. For example, recall the definition of f:

In[53]:= ? f

Global`f

f[x_] = x2

The function f was defined for an arbitrary input x:

In[54]:= f[5]

Out[54]= 25

A common mistake is to neglect the underscore when you mean to define a function for an arbitrary input; be forewarned!

The ability to give several definitions for a function can be useful. Consider the function

In[55]:= ClearAll[h, x]

h[x_] = Sin[x]  x

Out[56]=
Sin[x]

x

This function is formally undefined at x=0:

In[57]:= h[0]

Power::infy : Infinite expression
1

0
 encountered. 

Infinity::indet : Indeterminate expression 0 ComplexInfinity encountered. 
Out[57]= Indeterminate

However, as you might remember from calculus, the limit of h(x) as x approaches 0 exists and equals 1. Therefore, we
might like to add a second definition:

mathtut2Open.nb 11

In[58]:= h[0] = 1

Out[58]= 1

Now the function is completely defined:

In[59]:= h[0]

Out[59]= 1

In[60]:= h[x]

Out[60]=
Sin[x]

x

In[61]:= ? h

Global`h

h[0] = 1

h[x_] =
Sin[x]

x

Mathematica checks for any "special" definitions (like h[0]=1) before applying a general definition involving a dummy
variable.

A note about using ClearAll

You may wonder why we recommend that you clear a symbol before assigning it a value. For example, if we assign a
value to u, will not that value replace any previous value? The answer is "not always." Consider the following example:

In[62]:= ClearAll[u, x]

In[63]:= u = 4

Out[63]= 4

Now the symbol u has a value, and Mathematica will not allow another value to be assigned:

In[64]:= u[x_] = x^2

Set::write : Tag Integer in 4[x_] is Protected. 
Out[64]= x2

In[65]:= ? u

Global`u

u = 4

However, consider the following:

In[66]:= ClearAll[u, x]

12 mathtut2Open.nb

In[67]:= u[x_] = x^2

Out[67]= x2

In[68]:= u = 4

Out[68]= 4

In[69]:= ? u

Global`u

u = 4

u[x_] = x2

Now the symbol u has two meanings, which is probably not what is intended.

In[70]:= u[3]

Out[70]= 4[3]

The moral of the story is that it is a good idea to use ClearAll consistently, as we do in the rest of this tutorial. Undoubt-
edly, many of the instances of its use could be omitted without any harmful effects, but, in certain cases, omitting it leads to
errors that are not easy to find.

A corollary of these remarks is that if you encounter unexpected behavior when using Mathematica, it is a good idea to
verify that all symbols have been properly cleared and then assigned the desired value.

Chapter 2: Models in one dimension

■ Section 2.1: Heat flow in a bar; Fourier's Law

Mathematica can compute both indefinite and definite integrals. The command for computing an indefinite integral is
exactly analogous to that for computing a derivative:

In[71]:= ClearAll[x]

In[72]:= IntegrateSin[x], x

Out[72]= -Cos[x]

As this example shows, Mathematica does not add the "constant of integration." It simply returns one antiderivative (when
possible). If the integrand is too complicated, the integral is returned unevaluated:

mathtut2Open.nb 13

In[73]:= Integrate[E^Cos[x], x]

Out[73]=  ⅇ
Cos[x] ⅆx

Computing a definite integral such as


0

1

sin (x) dx

requires that we specify the variable of integration together with the lower and upper limits of integration:

In[74]:= IntegrateSin[x], {x, 0, 1}

Out[74]= 1 - Cos[1]

Mathematica also has a command for computing a definite integral numerically (that is, approximately):

In[75]:= NIntegrate[E^Cos[x], {x, 0, 1}]

Out[75]= 2.34157

As this example shows, NIntegrate is useful for integrating functions for which no elementary antiderivative can be found.

As an example, let us use the commands for integration and differentiation to test Theorem 2.1 from the text. The theorem
states that (under certain conditions)

d

dx


c

d

F (x, y) dy = 
c

d ∂F

∂x
(x, y) dy.

Here is a specific instance of the theorem:

In[76]:= ClearAll[F, x, y]

F[x_, y_] = x y^3 + x^2 y

Out[77]= x2 y + x y3

In[78]:= D[Integrate[F[x, y], {y, c, d}], x]

Out[78]= -
c4

4
+
d4

4
- c2 x + d2 x

In[79]:= Integrate[D[F[x, y], x], {y, c, d}]

Out[79]= -
c4

4
+
d4

4
- c2 x + d2 x

The two results are equal, as expected.

Solving simple BVPs by integration

Consider the following BVP:

-
d2 u

d2 x
= 1 + x, 0 < x < 1,

u (0) = 0,
u (1) = 0.

14 mathtut2Open.nb

The solution can be found by two integrations (cf. Example 2.2 in the text). As mentioned above, Mathematica will not
add a constant of integration, so we do it explicitly:

In[80]:= ClearAll[u, x, C1, C2]

In[81]:= Integrate[-(1 + x), x] + C1

Out[81]= C1 - x -
x2

2

In[82]:= Integrate[%, x] + C2

Out[82]= C2 + C1 x -
x2

2
-
x3

6

The above result is our candidate for u:

In[83]:= u[x_] = %

Out[83]= C2 + C1 x -
x2

2
-
x3

6

We now solve for the constants:

In[84]:= Solve[{u[0] ⩵ 0, u[1] ⩵ 0}, {C1, C2}]

Out[84]= C1 →
2

3
, C2 → 0

As this example shows, Mathematica can solve algebraic equations. The Solve command requires two inputs, a list of
equations and a list of variables for which to solve. Lists are always indicated by curly braces. When specifying an
equation, the symbol for equality is the double equals sign == (a single equals sign means assignment, as we have already
seen many times). Mathematica returns any solutions found as a list of replacment rules, from which we can read the
solution(s). It is also possible to extract the solutions automatically from the replacement rules, but this requires a fair
amount of explanation. It will be easier to understand how to manipulate replacement rules after we explain more about
Mathematica in Chapter 3, so, for now, we just read off the solution and assign it to the constants C1 and C2:

In[85]:= C1 = 2 / 3

Out[85]=
2

3

In[86]:= C2 = 0

Out[86]= 0

We now have the solution to the BVP:

In[87]:= u[x]

Out[87]=
2 x

3
-
x2

2
-
x3

6

Let us check that this really is the solution:

In[88]:= -D[u[x], {x, 2}] - (1 + x)

Out[88]= 0

mathtut2Open.nb 15

In[89]:= u[0]

Out[89]= 0

In[90]:= u[1]

Out[90]= 0

As another example, we solve a BVP with a nonconstant coefficient:

-
ⅆ

ⅆx
1 +

x

2


ⅆu

ⅆx
 = 0, 0 < x < 1,

u(0) = 20,

u(1) = 25.

Integrating once yields
ⅆu

ⅆx
(x) =

C1

1 +
x

2

.

Next we need to integrate the expression C1/(1+x/2):

In[91]:= Integrate[C1 / (1 + x / 2), x] + C2

Out[91]=
4

3
Log[6 + 3 x]

Whoops! Here we made the mistake that we warned you about earlier. The symbols C1 and C2 already had values from
the preceding example, so we need to clear them before using these symbols as undetermined constants:

In[92]:= ClearAll[C1, C2]

In[93]:= Integrate[C1 / (1 + x / 2), x] + C2

Out[93]= C2 + 2 C1 Log[2 + x]

From now on, we will be consistent about using the ClearAll command.

In[94]:= ClearAll[u, x]

In[95]:= u[x_] = %%

Out[95]= C2 + 2 C1 Log[2 + x]

(The symbol %% represents the last output but one.) Now we can solve for the constants of integration:

In[96]:= Solve[{u[0] ⩵ 20, u[1] ⩵ 25}, {C1, C2}]

Out[96]= C1 → -
5

2 (Log[2] - Log[3])
, C2 →

5 (5 Log[2] - 4 Log[3])

Log[2] - Log[3]


In[97]:= C1 = -5 / (2 (Log[2] - Log[3]))

Out[97]= -
5

2 (Log[2] - Log[3])

16 mathtut2Open.nb

In[98]:= C2 = 5 (5 Log[2] - 4 Log[3]) / (Log[2] - Log[3])

Out[98]=
5 (5 Log[2] - 4 Log[3])

Log[2] - Log[3]

Here is the final solution:

In[99]:= u[x]

Out[99]=
5 (5 Log[2] - 4 Log[3])

Log[2] - Log[3]
-

5 Log[2 + x]

Log[2] - Log[3]

Let's check it:

In[100]:= -D[(1 + x / 2) D[u[x], x], x]

Out[100]= -

5 1 +
x

2


(2 + x)2 (Log[2] - Log[3])
+

5

2 (2 + x) (Log[2] - Log[3])

The result is not zero; does this mean that we (or Mathematica!) made a mistake? The answer is no; before jumping to this
conclusion, we should ask Mathematica to simplify the result. When evaluating an expression, Mathematica will apply
some simplification transformations automatically, but it is necessary to give a command if we wish Mathematica to
perform all of its known algebraic transformations:

In[101]:= Simplify[%]

Out[101]= 0

We see that u is indeed a solution to the differential equation.

In[102]:= u[0]

Out[102]= -
5 Log[2]

Log[2] - Log[3]
+
5 (5 Log[2] - 4 Log[3])

Log[2] - Log[3]

In[103]:= Simplify[%]

Out[103]= 20

In[104]:= u[1]

Out[104]=
5 (5 Log[2] - 4 Log[3])

Log[2] - Log[3]
-

5 Log[3]

Log[2] - Log[3]

In[105]:= Simplify[%]

Out[105]= 25

The boundary conditions are also satisfied.

Simple plots

One of the most useful features of Mathematica is its ability to draw many kinds of graphs. Here we show how to produce
the graph of a function of one variable. The command is called Plot, and we simply give it the expression to graph, the
independent variable, and the interval. Here is a graph of the previous solution:

mathtut2Open.nb 17

In[106]:= Plot[u[x], {x, 0, 1}]

Out[106]=

0.2 0.4 0.6 0.8 1.0

20

21

22

23

24

25

The output of the Plot command can be controlled by various options. For example, we may not like the fact that, in the
above graph, the vertical range is the interval [20,25]. We can change this using the PlotRange option:

In[107]:= Plot[u[x], {x, 0, 1}, PlotRange → {0, 25}]

Out[107]=

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

We can label the graph using the AxesLabel and PlotLabel options (for readability, you might wish to put each option on a
new line, as in the following example):

18 mathtut2Open.nb

In[108]:= Plotu[x], {x, 0, 1},

PlotRange → {0, 25},

AxesLabel → {"x", "u(x)"},

PlotLabel → "Solution to a simple BVP"

Out[108]=

0.0 0.2 0.4 0.6 0.8 1.0
x

5

10

15

20

25
u(x)

Solution to a simple BVP

More information about options to the Plot command can be found in the “Options” section of the documention of the Plot
command. One more option will be explained here: how to graph multiple functions in a single plot. For example,
suppose we wish to compare the solution of the previous BVP to the solution of the related BVP with a constant coefficient
in the differential equation:

-
ⅆ2 v

ⅆx2
= 0, 0 < x < 1,

v(0)=20,

v(1)=25,

which is

In[109]:= ClearAll[v, x]

v[x_] = 20 + 5 x

Out[110]= 20 + 5 x

We simply give the Plot command a list of expressions to plot:

mathtut2Open.nb 19

In[111]:= Plot[{u[x], v[x]}, {x, 0, 1}]

Out[111]=

0.2 0.4 0.6 0.8 1.0

20

21

22

23

24

25

Chapter 3: Essential linear algebra

■ Section 3.1: Linear systems as linear operator equations

Mathematica will manipulate matrices and vectors, and perform the usual computations of linear algebra. Both symbolic
and numeric (that is, floating point) computation are supported.

A vector is entered as a list of components:

In[112]:= ClearAll[x]

x = {1, 2, 3}

Out[113]= {1, 2, 3}

By default, a vector is displayed as a list of numbers; however, the more common notation of a column matrix can be
requested using the MatrixForm function:

In[114]:= MatrixForm[x]

Out[114]//MatrixForm=

1
2
3

An alternate way to apply the MatrixForm function (or any other function) is postfix syntax:

20 mathtut2Open.nb

In[115]:= x // MatrixForm

Out[115]//MatrixForm=

1
2
3

A matrix is entered as a list of row vectors:

In[116]:= ClearAll[A]

A = {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}

Out[117]= {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}

In[118]:= A // MatrixForm

Out[118]//MatrixForm=

1 2 -1
4 0 1
-7 -2 3

The transpose of a matrix is available:

In[119]:= Transpose[A] // MatrixForm

Out[119]//MatrixForm=

1 4 -7
2 0 -2
-1 1 3

Multiplication of a matrix times a vector or a matrix times a matrix is indicated by the Dot (.) operator:

In[120]:= A.x

Out[120]= {2, 7, -2}

In[121]:= A.A

Out[121]= {{16, 4, -2}, {-3, 6, -1}, {-36, -20, 14}}

In[122]:= ClearAll[B]

In[123]:= B = {{2, 1}, {-1, 0}, {3, -2}, {1, 4}}

Out[123]= {{2, 1}, {-1, 0}, {3, -2}, {1, 4}}

In[124]:= MatrixForm[B]

Out[124]//MatrixForm=

2 1
-1 0
3 -2
1 4

mathtut2Open.nb 21

In[125]:= A.B

Dot::dotsh : Tensors {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}
and {{2, 1}, {-1, 0}, {3, -2}, {1, 4}} have incompatible shapes. 

Out[125]= {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}.{{2, 1}, {-1, 0}, {3, -2}, {1, 4}}

As the last computation shows, Mathematica is aware of the rules of matrix algebra. The computation failed because the
number of columns in A is not the same as the number of rows in B.

It is frequently useful to refer to the components of a vector, the entries of a matrix, or the rows of a matrix. For these
purposes, Mathematica has an indexing operator. Since parentheses are reserved for algebraic grouping, square brackets
for function evaluation, and curly brackets for lists, Mathematica uses double square brackets for the indexing operator.
Thus the third component of x is obtained as follows:

In[126]:= x[[3]]

Out[126]= 3

The (2,3) entry of the matrix A is

In[127]:= A[[2, 3]]

Out[127]= 1

Since, in Mathematica, a matrix is a list of rows, we can extract a row using a single index. Here is the second row of A:

In[128]:= A[[2]]

Out[128]= {4, 0, 1}

A column of a matrix can be extracted using the All keyword:

In[129]:= A[[All, 2]]

Out[129]= {2, 0, -2}

You should understand the above notation as denoted all of the entries in the second column (all rows and column 2). The
following is an alternative for extracting the second row:

In[130]:= A[[2, All]]

Out[130]= {4, 0, 1}

■ Section 3.2: Existence and Uniqueness of solutions to Ax=b

Mathematica can find a basis for the null space of a matrix. Consider the matrix

In[131]:= ClearAll[B]

B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[132]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

22 mathtut2Open.nb

In[133]:= MatrixForm[B]

Out[133]//MatrixForm=

1 2 3
4 5 6
7 8 9

In[134]:= NullSpace[B]

Out[134]= {{1, -2, 1}}

The NullSpace command returns a list of vectors, which forms a basis for the nullspace of the given matrix. In the above
example, the nullspace is one-dimensional, so the result is a list containing a single vector. To refer to that vector, we
extract it from the list using the index operator:

In[135]:= ClearAll[y]

y = %%[[1]]

Out[136]= {1, -2, 1}

We can test whether the result is correct:

In[137]:= B.y // MatrixForm

Out[137]//MatrixForm=

0
0
0

If a matrix is nonsingular, then its null space is trivial (that is, it contains only the zero vector). Since the trivial subspace
does not have a basis, the NullSpace command returns an empty list:

In[138]:= NullSpace[A]

Out[138]= {}

(Recall that A is a nonsingular matrix that I defined above.)

Here is another example (see Example 3.16 in the text):

In[139]:= ClearAll[A1]

A1 = {{1, 3, -1, 2}, {0, 1, 4, 2}, {2, 7, 2, 6}, {1, 4, 3, 4}}

Out[140]= {{1, 3, -1, 2}, {0, 1, 4, 2}, {2, 7, 2, 6}, {1, 4, 3, 4}}

In[141]:= MatrixForm[A1]

Out[141]//MatrixForm=

1 3 -1 2
0 1 4 2
2 7 2 6
1 4 3 4

In[142]:= NullSpace[A1]

Out[142]= {{4, -2, 0, 1}, {13, -4, 1, 0}}

The null space of this matrix has dimension two.

mathtut2Open.nb 23

Mathematica can compute the inverse of a matrix:

In[143]:= ClearAllAinv

In[144]:= Ainv = Inverse[A]

Out[144]= -
1

14
,
1

7
, -

1

14
, 

19

28
,
1

7
,

5

28
, 

2

7
,
3

7
,
2

7


In[145]:= MatrixFormAinv

Out[145]//MatrixForm=

-
1

14

1

7
-

1

14
19

28

1

7

5

28
2

7

3

7

2

7

Check:

In[146]:= Ainv.A // MatrixForm

Out[146]//MatrixForm=

1 0 0
0 1 0
0 0 1

The command IdentityMatrix creates an identity matrix of a given size. Here is the 4 by 4 identity:

In[147]:= ClearAll[I4]

I4 = IdentityMatrix[4]

Out[148]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[149]:= MatrixForm[I4]

Out[149]//MatrixForm=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(The symbol I is reserved; it means -1 . Therefore, you cannot call your identity matrix I.)

Using the inverse matrix, you can solve a linear system:

In[150]:= ClearAll[x, b]

In[151]:= b = {1, 1, 1}

Out[151]= {1, 1, 1}

In[152]:= x = Ainv.b

Out[152]= {0, 1, 1}

However, it is more efficient to solve the system directly using the LinearSolve command:

24 mathtut2Open.nb

In[153]:= LinearSolve[A, b]

Out[153]= {0, 1, 1}

(LinearSolve does not compute A-1.)

■ Section 3.3: Basis and dimension

In this section, we demonstrate some more capabilities of Mathematica by repeating some of the examples from Section
3.3 of the text.

Example 3.25

Consider the three vectors v1, v2, v3 defined as follows:

In[154]:= ClearAll[v1, v2, v3]

v1 = {1 / Sqrt[3], 1 / Sqrt[3], 1 / Sqrt[3]}

v2 = {1 / Sqrt[2], 0, -1 / Sqrt[2]}

v3 = {1 / Sqrt[6], -2 / Sqrt[6], 1 / Sqrt[6]}

Out[155]= 
1

3
,

1

3
,

1

3


Out[156]= 
1

2
, 0, -

1

2


Out[157]= 
1

6
, -

2

3
,

1

6


The following calculations verify that these vectors are orthogonal:

In[158]:= v1.v2

Out[158]= 0

In[159]:= v1.v3

Out[159]= 0

In[160]:= v2.v3

Out[160]= 0

Example 3.27

In this example, we verify that the following three quadratic polynomials form a basis for P2:

mathtut2Open.nb 25

In[161]:= ClearAll[p1, p2, p3, x]

p1[x_] = 1

p2[x_] = x - 1 / 2

p3[x_] = x^2 - x + 1 / 6

Out[162]= 1

Out[163]= -
1

2
+ x

Out[164]=
1

6
- x + x2

Suppose that q(x) is an arbitrary quadratic polynomial.

In[165]:= ClearAll[a, b, c, q, x]

q[x_] = a x^2 + b x + c

Out[166]= c + b x + a x2

The following calculations write q in terms of p1, p2, and p3:

In[167]:= ClearAll[c1, c2, c3]

In[168]:= q[x] - (c1 p1[x] + c2 p2[x] + c3 p3[x])

Out[168]= c - c1 - c2 -
1

2
+ x + b x + a x2 - c3

1

6
- x + x2

We need to set each coefficient (that is, the constant term, the coefficient of x, and the coefficient of x2) to zero and solve
for c1, c2, and c3. To see the coefficients, we use the Collect command:

In[169]:= Collect[%, x]

Out[169]= c - c1 +
c2

2
-
c3

6
+ (b - c2 + c3) x + (a - c3) x2

Now we can extract the coefficients of the above polynomial, set them equal to zero, and solve for c1, c2, c3:

In[170]:= SolveCoefficient[%, x, 0] ⩵ 0,

Coefficient[%, x, 1] ⩵ 0, Coefficient[%, x, 2] ⩵ 0, {c1, c2, c3}

Out[170]= c1 →
1

6
(2 a + 3 b + 6 c), c2 → a + b, c3 → a

There is a unique solution c1, c2, c3 for any a, b, c, that is, for any quadratic polynomial q(x). This shows that {p1,p2,p3}
is a basis for P2.

Digression: Manipulating replacement rules

Here is a good place to explain how to manipulate the transformation rules that commands like Solve return. First, we
must explain the replacement operator “/.”. Suppose we have an expression like x2 + 3 x + 1, and we want to know its
value for x = 3. One way to do this is to assign the value 3 to x, and then type in the expression:

26 mathtut2Open.nb

In[171]:= ClearAll[x]

x = 3

Out[172]= 3

In[173]:= x^2 + 3 x + 1

Out[173]= 19

The disadvantage of this approach is that x now has the value 3 and therefore x will be replaced by 3 whenever it is used
(unless its value is cleared).

As an alternative, we can type the expression followed by the transformation rule x → 3. In between goes the replacement
operator “/.”, which tells Mathematica to apply the following transformation rule. (In the following example, we first clear
x to undo the above assignment .)

In[174]:= ClearAll[x]

In[175]:= x^2 + 3 x + 1 /. x → 3

Out[175]= 19

The above transformation rule is applied only to the foregoing expression; it has no permanent effect. In particular, x has
not been assigned the value of 3:

In[176]:= x

Out[176]= x

We can also give a list of transformation rules:

In[177]:= ClearAll[x, y]

In[178]:= x^2 y /. {x → 2, y → -4}

Out[178]= -16

Of course, a list can contain only one entry:

In[179]:= x^2 /. {x → -2}

Out[179]= 4

This last point is important in understanding how to manipulate the results returned by Solve. Here is the behavior of
Solve: it returns a list of solutions, each of which is a list of transformation rules for the unknown variables. Thus Solve
always returns a list of lists!

The following examples will hopefully make this clear. First, the simplest example: a single unknown, with a unique
solution:

In[180]:= ClearAll[x]

In[181]:= Solve[2 x + 1 ⩵ 0, x]

Out[181]= x → -
1

2


The result is a list of solutions; since the equation has a unique solution, this list contains a single entry:

mathtut2Open.nb 27

In[182]:= %[[1]]

Out[182]= x → -
1

2


This entry is a list of transformation rules, and since the equation contains a single unknown, this list also contains a single
entry. To extract the value of the unknown (without retyping it), I can use the replacement operator:

In[183]:= x /. %

Out[183]= -
1

2

Usually the previous two steps would be combined into one:

In[184]:= Solve[2 x + 1 ⩵ 0, x]

Out[184]= x → -
1

2


In[185]:= x /. %[[1]]

Out[185]= -
1

2

If we do not extract the first entry in the list, we get a list of solutions (in this case, a list with only one entry):

In[186]:= x /. %%

Out[186]= -
1

2


Next, here is an example with a single unknown, but two solutions:

In[187]:= Solve[x^2 - 3 x + 3 ⩵ 0, x]

Out[187]= x →
1

2
3 - ⅈ 3 , x →

1

2
3 + ⅈ 3 

Let us extract the second solution:

In[188]:= x /. %[[2]]

Out[188]=
1

2
3 + ⅈ 3 

Here are the list of all solutions :

In[189]:= x /. %%

Out[189]= 
1

2
3 - ⅈ 3 ,

1

2
3 + ⅈ 3 

Finally, here is an example with two variables and two solutions. Notice that it is convenient to assign a name to the output
of Solve, for easy reference later.

28 mathtut2Open.nb

In[190]:= ClearAll[x, y, sols]

sols = Solve[{x^2 + y^2 ⩵ 1, y ⩵ x}, {x, y}]

Out[191]= x → -
1

2
, y → -

1

2
, x →

1

2
, y →

1

2


Here is the first solution:

In[192]:= x /. sols[[1]]

Out[192]= -
1

2

In[193]:= y /. sols[[1]]

Out[193]= -
1

2

When the solution is complicated, it is important to be able to extract it from the transformation rule without retyping it,
which is tedious and difficult to do correctly.

Example

Here is a final example. Consider the following three vectors in R3:

In[194]:= ClearAll[u1, u2, u3]

u1 = {1, 0, 2}

u2 = {0, 1, 1}

u3 = {1, 2, -1}

Out[195]= {1, 0, 2}

Out[196]= {0, 1, 1}

Out[197]= {1, 2, -1}

We will verify that {u1,u2,u3} is a basis for R3 and express the following vector x in terms of the basis.

In[198]:= ClearAll[x]

x = {8, 2, -4}

Out[199]= {8, 2, -4}

As discussed in the text, {u1,u2,u3} is linearly independent if and only if the matrix A whose columns are u1, u2, u3 is
nonsingular.

In[200]:= ClearAll[A]

A = Transpose[{u1, u2, u3}]

Out[201]= {{1, 0, 1}, {0, 1, 2}, {2, 1, -1}}

mathtut2Open.nb 29

In[202]:= MatrixForm[A]

Out[202]//MatrixForm=

1 0 1
0 1 2
2 1 -1

(Note that, since Mathematica represents a matrix as a list of row vectors, the desired matrix is the transpose of the matrix
{u1,u2,u3}.) We can verify that A is nonsingular by computing its determinant:

In[203]:= Det[A]

Out[203]= -5

Since det(A) is nonzero, A is nonsingular. In general, computing the determinant is not a good way to check that the
matrix is nonsingular. If the matrix is large and the entries are floating point numbers, the determinant is likely to give a
misleading answer due to round-off error. A better command is MatrixRank. Here is an example:

In[204]:= B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

Out[204]= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

In[205]:= MatrixRank[B]

Out[205]= 2

Since the rank of the 3 by 3 matrix is only 2, the matrix is singular.

Back to the example: We can express x as a linear combination of u1, u2, u3 by solving Ac=x:

In[206]:= ClearAll[c]

c = LinearSolve[A, x]

Out[207]= 
18

5
, -

34

5
,
22

5


Check:

In[208]:= c[[1]] u1 + c[[2]] u2 + c[[3]] u3

Out[208]= {8, 2, -4}

In[209]:= x

Out[209]= {8, 2, -4}

■ Section 3.4: Orthogonal bases and projection

We have already explained how to compute dot products and verify orthogonality. For example:

30 mathtut2Open.nb

In[210]:= ClearAll[v1, v2, v3]

v1 = {1 / Sqrt[3], 1 / Sqrt[3], 1 / Sqrt[3]}

v2 = {1 / Sqrt[2], 0, -1 / Sqrt[2]}

v3 = {1 / Sqrt[6], -2 / Sqrt[6], 1 / Sqrt[6]}

Out[211]= 
1

3
,

1

3
,

1

3


Out[212]= 
1

2
, 0, -

1

2


Out[213]= 
1

6
, -

2

3
,

1

6


These vectors are orthogonal:

In[214]:= v1.v2

v1.v3

v2.v3

Out[214]= 0

Out[215]= 0

Out[216]= 0

They are also normalized:

In[217]:= v1.v1

v2.v2

v3.v3

Out[217]= 1

Out[218]= 1

Out[219]= 1

Therefore, we can easily express any vector as a linear combination of these three vectors, which form an orthonormal
basis:

In[220]:= ClearAll[a, b, c, x]

x = {a, b, c}

Out[221]= {a, b, c}

mathtut2Open.nb 31

In[222]:= (x.v1) v1 + (x.v2) v2 + (x.v3) v3

Out[222]= 

a

2
-

c

2

2
+

a

3
+

b

3
+

c

3

3
+

a

6
-

2

3
b +

c

6

6
,

a

3
+

b

3
+

c

3

3
-

2

3

a

6
-

2

3
b +

c

6
,

-

a

2
-

c

2

2
+

a

3
+

b

3
+

c

3

3
+

a

6
-

2

3
b +

c

6

6


In[223]:= Simplify[%]

Out[223]= {a, b, c}

Working with the L2inner product

The L2inner product is not provided in Mathematica, as is the dot product, so it is convenient to define a function imple-
menting it. Suppose we are working on the interval [0,1]. We call the desired function l2ip:

In[224]:= ClearAlll2ip

l2ip[f_, g_] := Integrate[f[x] × g[x], {x, 0, 1}]

This is the first time we have used ":=" for the assignment operator. The ":=" operator is the delayed-evaluation assign-
ment operator; it tells Mathematica to save the formula on the right-hand side until the function is called with specific
inputs. On the other hand, the "=" operator is the immediate-evaluation assignment operator. Here is an example:

In[226]:= ClearAll[f, g, x]

In[227]:= f[x_] = x x

Out[227]= x2

Notice how Mathematica evaluated the right-hand side (x times x) and decided to simplify it as x2. With the delayed-
evaluation operator, this does not happen:

In[228]:= g[x_] := x x

In[229]:= ? g

Global`g

g[x_] := x x

32 mathtut2Open.nb

In[230]:= ? f

Global`f

f[x_] = x2

For many purposes, immediate evaluation is fine. However, when defining functions in terms of integrals, sums, and so
forth, delayed evaluation may be essential. In the case of the function l2ip defined above, we do not want Mathematica to
try to integrate f(x)g(x) until particular functions f and g are specified.

For convenience, we also define a function implementing the L2 norm:

In[231]:= ClearAll[l2norm]

l2norm[f_] := Sqrtl2ip[f, f]

Example 3.35

Now consider the following two functions:

In[233]:= ClearAll[f, g, x]

f[x_] = x (1 - x)

g[x_] = 8  Pi^3 SinPi x

Out[234]= (1 - x) x

Out[235]=
8 Sin[π x]

π3

The following graph shows that the two functions are quite similar:

In[236]:= Plot[{f[x], g[x]}, {x, 0, 1}]

Out[236]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

By how much do the two functions differ? One way to answer this question is to compute the relative difference in the L2
norm:

mathtut2Open.nb 33

In[237]:= ClearAll[h, x]

h[x_] = f[x] - g[x]

Out[238]= (1 - x) x -
8 Sin[π x]

π3

In[239]:= N[l2norm[h] / l2norm[f]]

Out[239]= 0.038013

The difference is less than 4%. (The previous command computed ||f-g||/||f||, where the norm is the L2 norm.)

To further illustrate the capabilities of Mathematica, we work through two more examples from Section 3.4.

Example 3.37

The data given in this example can be stored in two vectors:

In[240]:= ClearAll[x, y]

x = {0.1, 0.3, 0.4, 0.75, 0.9}

y = {1.7805, 2.2285, 2.3941, 3.2226, 3.5697}

Out[241]= {0.1, 0.3, 0.4, 0.75, 0.9}

Out[242]= {1.7805, 2.2285, 2.3941, 3.2226, 3.5697}

When working with discrete data like this, a useful command is ListPlot, which plots a collection of points in the plane. In
order to use this command, the data must be stored as (x,y) pairs in a table or a matrix with two columns. Here is one way
to do this:

In[243]:= ClearAll[data]

data = Transpose[{x, y}]

MatrixForm[data]

Out[244]= {{0.1, 1.7805}, {0.3, 2.2285}, {0.4, 2.3941}, {0.75, 3.2226}, {0.9, 3.5697}}

Out[245]//MatrixForm=

0.1 1.7805
0.3 2.2285
0.4 2.3941
0.75 3.2226
0.9 3.5697

34 mathtut2Open.nb

In[246]:= ListPlot[data]

Out[246]=

0.2 0.4 0.6 0.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

If the dots are not easily visible, they can be given a greater weight:

In[247]:= plot1 = ListPlotdata,

PlotStyle → PointSize[0.02]

Out[247]=

0.2 0.4 0.6 0.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Now we compute the first-degree function f(x)=mx+b that best fits this data. The Gram matrix and the right-hand side of
the normal equations are computed as follows:

mathtut2Open.nb 35

In[248]:= ClearAll[e, G, z]

e = {1, 1, 1, 1, 1}

G = {{x.x, x.e}, {e.x, e.e}}

z = {x.y, e.y}

Out[249]= {1, 1, 1, 1, 1}

Out[250]= {{1.6325, 2.45}, {2.45, 5}}

Out[251]= {7.43392, 13.1954}

Now we can solve for the coefficients in the best approximation:

In[252]:= ClearAll[c]

c = LinearSolve[G, z]

Out[253]= {2.24114, 1.54092}

The solution is shown below:

In[254]:= ClearAll[l, s]

l[s_] = c[[1]] s + c[[2]]

plot2 = Plot[l[s], {s, 0, 1}]

Out[255]= 1.54092 + 2.24114 s

Out[256]=

0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

The Show command allows us to display two (or more) graphs together. In this case, we would like to see the data and the
approximating line together. Above, the two graphs were assigned variable names (plot1, plot2).

36 mathtut2Open.nb

In[257]:= Show[plot1, plot2]

Out[257]=

0.2 0.4 0.6 0.8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

The fit is not bad.

Example 3.38

In this example, we compute the best quadratic approximation to the function ex on the interval [0,1]. Here are the standard
basis functions for the subspace P2:

In[258]:= ClearAll[p1, p2, p3, x]

p1[x_] = 1

p2[x_] = x

p3[x_] = x^2

Out[259]= 1

Out[260]= x

Out[261]= x2

We now compute the Gram matrix and the right-hand side of the normal equations. Notice the function ex is named Exp.

In[262]:= ClearAll[G]

G = l2ip[p1, p1], l2ip[p1, p2], l2ip[p1, p3],

l2ip[p2, p1], l2ip[p2, p2], l2ip[p2, p3],

l2ip[p3, p1], l2ip[p3, p2], l2ip[p3, p3]

Out[263]= 1,
1

2
,
1

3
, 

1

2
,
1

3
,
1

4
, 

1

3
,
1

4
,
1

5


In[264]:= ClearAll[b]

b = l2ip[p1, Exp], l2ip[p2, Exp], l2ip[p3, Exp]

Out[265]= {-1 + ⅇ, 1, -2 + ⅇ}

mathtut2Open.nb 37

Now we solve the normal equations and find the best quadratic approximation:

In[266]:= ClearAll[c]

c = LinearSolve[G, b]

Out[267]= {3 (-35 + 13 ⅇ), -12 (-49 + 18 ⅇ), 30 (-19 + 7 ⅇ)}

In[268]:= ClearAll[q, x]

q[x_] = c[[1]] × p1[x] + c[[2]] × p2[x] + c[[3]] × p3[x]

Out[269]= 3 (-35 + 13 ⅇ) - 12 (-49 + 18 ⅇ) x + 30 (-19 + 7 ⅇ) x2

One way to judge the goodness of fit is with a plot:

In[270]:= Plot[{Exp[x], q[x]}, {x, 0, 1}]

Out[270]=

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

The fit is quite good, so it is more informative to graph the error:

38 mathtut2Open.nb

In[271]:= Plot[q[x] - Exp[x], {x, 0, 1}]

Out[271]= 0.2 0.4 0.6 0.8 1.0

-0.015

-0.010

-0.005

0.005

0.010

We can also judge the fit by the relative error in the L2 norm:

In[272]:= ClearAll[h, x]

In[273]:= h[x_] = Exp[x] - q[x]

Out[273]= ⅇx - 3 (-35 + 13 ⅇ) + 12 (-49 + 18 ⅇ) x - 30 (-19 + 7 ⅇ) x2

In[274]:= N[l2norm[h] / l2norm[Exp]]

Out[274]= 0.00295186

The error is less than 0.3%.

Particularly if you wish to use a subspace with a larger dimension, typing in the formula for the Gram matrix and the right-
hand side of the normal equations can be quite monotonous. One can avoid the repetitive typing, but only by defining the
basis functions differently. Here is an example:

In[275]:= ClearAll[p, x]

p[1][x_] = 1

p[2][x_] = x

p[3][x_] = x^2

Out[276]= 1

Out[277]= x

Out[278]= x2

Now, for each i=1,2,3, p[i] is one of the basis functions. Here is the third, for example:

In[279]:= p[3][x]

Out[279]= x2

We can now define the Gram matrix using a Table command:

mathtut2Open.nb 39

In[280]:= ClearAll[G]

G = Tablel2ippi, pj, i, 1, 3, j, 1, 3

Out[281]= 1,
1

2
,
1

3
, 

1

2
,
1

3
,
1

4
, 

1

3
,
1

4
,
1

5


A similar command computes the right-hand side:

In[282]:= ClearAll[b]

b = Tablel2ippi, Exp, i, 1, 3

Out[283]= {-1 + ⅇ, 1, -2 + ⅇ}

Now we solve as before:

In[284]:= ClearAll[c]

c = LinearSolve[G, b]

Out[285]= {3 (-35 + 13 ⅇ), -12 (-49 + 18 ⅇ), 30 (-19 + 7 ⅇ)}

Further examples of the Table command will be given below. Remember that you can also consult the help browser for
more information.

■ Section 3.5: Eigenvalues and eigenvectors of a symmetric matrix

Mathematica can compute the eigenvalues and eigenvectors of a square matrix:

In[286]:= ClearAll[A]

A = {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}

MatrixForm[A]

Out[287]= {{1, 2, -1}, {4, 0, 1}, {-7, -2, 3}}

Out[288]//MatrixForm=

1 2 -1
4 0 1
-7 -2 3

In[289]:= ClearAll[evals, evecs]

evals = Eigenvalues[A]

evecs = Eigenvectors[A]

Out[290]= 1 + 15 , 1 - 15 , 2

Out[291]= -
-1 + 15

7 + 15
, -

4 - 15

7 + 15
, 1, -

1 + 15

-7 + 15
, -

-4 - 15

-7 + 15
, 1, {0, 1, 2}

Note that the eigenvalues are returned as a list of numbers, while the eigenvectors are returned as a list of vectors. As far as
we know, there is no guarantee that the order in these two lists is the same, that is, that the first eigenvector listed corre-
sponds to the first eigenvalue, for 00

00 example. However, the command Eigensystem combines the two previous commands,
and the orders of the eigenvalues and eigenvectors are guaranteed to correspond:

40 mathtut2Open.nb

In[292]:= ClearAll[evals, evecs]

{evals, evecs} = Eigensystem[A]

Out[293]= 1 + 15 , 1 - 15 , 2,

-
-1 + 15

7 + 15
, -

4 - 15

7 + 15
, 1, -

1 + 15

-7 + 15
, -

-4 - 15

-7 + 15
, 1, {0, 1, 2}

(Thus, if you want both the eigenvalues and the corresponding eigenvectors, you should use the Eigensystem command,
not Eigenvalues or Eigenvectors.)

We now have a list of eigenvalues and a list of eigenvectors. The individual eigenvalues or eigenvectors can be accessed
using the index operator. For instance, here is the first eigenvalue/eigenvector pair:

In[294]:= evals[[1]]

evecs[[1]]

Out[294]= 1 + 15

Out[295]= -
-1 + 15

7 + 15
, -

4 - 15

7 + 15
, 1

We can check to see if Mathematica's calculation was correct. If λ, x form an eigenvalue/eigenvector pair, then
Ax - λx = 0 must hold:

In[296]:= A.evecs[[1]] - evals[[1]] * evecs[[1]]

Out[296]= -1 -
2 4 - 15 

7 + 15
-
-1 + 15

7 + 15
+
-1 + 15  1 + 15 

7 + 15
,

1 -
4 -1 + 15 

7 + 15
+
4 - 15  1 + 15 

7 + 15
, 2 - 15 +

2 4 - 15 

7 + 15
+
7 -1 + 15 

7 + 15


Does the above result mean that Mathematica made a mistake? Before jumping to this conclusion, we should make sure
that the result is simplified as much as possible:

In[297]:= Simplify[%]

Out[297]= {0, 0, 0}

The problem of computing the eigenvalues of an n by n matrix is equivalent to the problem of finding the roots of an nth-
degree polynomial. One of the most famous theoretical results of the 19th century is that it is impossible to find a formula
(analogous to the quadratic formula) expressing the roots of an arbitrary polynomial of degree 5 or more. Therefore,
asking Mathematica for the eigenvalues of large matrix is most likely an exercise in futility:

mathtut2Open.nb 41

In[298]:= ClearAll[B]

B = Table1  i + j + 1, i, 1, 5, j, 1, 5;

MatrixForm[B]

Out[300]//MatrixForm=

1

3

1

4

1

5

1

6

1

7
1

4

1

5

1

6

1

7

1

8
1

5

1

6

1

7

1

8

1

9
1

6

1

7

1

8

1

9

1

10
1

7

1

8

1

9

1

10

1

11

In[301]:= ClearAll[evals1]

evals1 = Eigenvalues[B]

Out[302]= Root-1 + 5 603 255 #1 - 246 181 488 000 #12 +

191 979 048 240 000 #13 - 4 545 067 645 440 000 #14 + 5 175 372 787 200 000 #15 &, 5,

Root-1 + 5 603 255 #1 - 246 181 488 000 #12 + 191 979 048 240 000 #13 -

4 545 067 645 440 000 #14 + 5 175 372 787 200 000 #15 &, 4,

Root-1 + 5 603 255 #1 - 246 181 488 000 #12 + 191 979 048 240 000 #13 -

4 545 067 645 440 000 #14 + 5 175 372 787 200 000 #15 &, 3,

Root-1 + 5 603 255 #1 - 246 181 488 000 #12 + 191 979 048 240 000 #13 -

4 545 067 645 440 000 #14 + 5 175 372 787 200 000 #15 &, 2,

Root-1 + 5 603 255 #1 - 246 181 488 000 #12 + 191 979 048 240 000 #13 -

4 545 067 645 440 000 #14 + 5 175 372 787 200 000 #15 &, 1

Mathematica cannot find the roots of the characteristic polynomial of B; the output simply indicates that the desired
eigenvalues are the roots of the fifth-degree polynomial shown above.

In a case like this, it is possible to have Mathematica estimate the roots numerically. In fact, Mathematica will perform a
numerical computation instead of a symbolic computation whenever the input matrix has floating point entries instead of
symbolic entries.

In[303]:= N[B] // MatrixForm

Out[303]//MatrixForm=

0.333333 0.25 0.2 0.166667 0.142857
0.25 0.2 0.166667 0.142857 0.125
0.2 0.166667 0.142857 0.125 0.111111

0.166667 0.142857 0.125 0.111111 0.1
0.142857 0.125 0.111111 0.1 0.0909091

42 mathtut2Open.nb

In[304]:= ClearAll[evals2, evecs2]

{evals2, evecs2} = Eigensystem[N[B]]

Out[305]= 0.83379, 0.0430979, 0.00129982, 0.0000229962, 1.79889 × 10-7,

{{-0.612635, -0.489105, -0.408486, -0.351316, -0.308497},

{0.684809, 0.0159186, -0.287687, -0.435542, -0.508254},

{0.374365, -0.632042, -0.347579, 0.13307, 0.567323},

{0.122651, -0.564324, 0.514257, 0.403397, -0.489189},

{0.0228469, -0.206359, 0.604238, -0.711648, 0.292141}}

Let us check the result for the first eigenvalue/eigenvector pair:

In[306]:= B.evecs2[[1]] - evals2[[1]] * evecs2[[1]]

Out[306]= -1.11022 × 10-16, 1.11022 × 10-16, -1.11022 × 10-16, -5.55112 × 10-17, 0.

As should be expected for a computation performed in finite precision arithmetic, the expected relationship fails to hold,
but only by an amount attributable to roundoff error.

Example 3.49

We now use the spectral method to solve Ax = b for the following A and b:

In[307]:= ClearAll[A, b]

A = {{11, -4, -1}, {-4, 14, -4}, {-1, -4, 11}}

b = {1, 2, 1}

Out[308]= {{11, -4, -1}, {-4, 14, -4}, {-1, -4, 11}}

Out[309]= {1, 2, 1}

We need the eigenpairs of A:

In[310]:= ClearAll[evals, evecs]

{evals, evecs} = Eigensystem[A]

Out[311]= {{18, 12, 6}, {{1, -2, 1}, {-1, 0, 1}, {1, 1, 1}}}

Here is an important point: Mathematica does not necessarily normalize the eigenvectors it returns. These eigenvectors are
orthogonal since A is symmetric and the eigenvalues are distinct, but we must normalize the eigenvectors manually. We
call the normalized eigenvectors u1, u2, u3:

mathtut2Open.nb 43

In[312]:= Clear[u1, u2, u3]

u1 = evecs[[1]] / Norm[evecs[[1]]]

u2 = evecs[[2]] / Norm[evecs[[2]]]

u3 = evecs[[3]] / Norm[evecs[[3]]]

Out[313]= 
1

6
, -

2

3
,

1

6


Out[314]= -
1

2
, 0,

1

2


Out[315]= 
1

3
,

1

3
,

1

3


The solution of Ax=b is computed as follows:

In[316]:= ClearAll[x]

x = (u1.b / 18) u1 + (u2.b / 12) u2 + (u3.b / 6) u3

Out[317]= 
11

54
,

7

27
,
11

54


Check:

In[318]:= A.x - b

Out[318]= {0, 0, 0}

Chapter 4: Essential ordinary differential equations

■ Section 4.2: Solutions to some simple ODEs

Second-order linear homogeneous ODEs with constant coefficients

Suppose we wish to solve the following IVP:

ⅆ2 u

ⅆt2
+ 4

ⅆu

ⅆt
-3u=0,

u(0)=1,
ⅆu

ⅆt
(0) = 0.

The characteristic polynomial is r2 + 4 r - 3, which has the following roots:

44 mathtut2Open.nb

In[319]:= ClearAll[r]

roots = Solve[r^2 + 4 r - 3 ⩵ 0, r]

Out[320]= r → -2 - 7 , r → -2 + 7 

The general solution is given below:

In[321]:= r1 = (r /. roots[[1]])

r2 = (r /. roots[[2]])

ClearAll[u, t, c1, c2]

u[t_] = c1 Exp[r1 t] + c2 Exp[r2 t]

Out[321]= -2 - 7

Out[322]= -2 + 7

Out[324]= c1 ⅇ
-2- 7  t

+ c2 ⅇ
-2+ 7  t

We can now solve for the unknowns c1, c2:

In[325]:= ClearAll[sols]

sols = Solve[{u[0] ⩵ 1, (D[u[t], t] /. t → 0) ⩵ 0}, {c1, c2}]

c1 = (c1 /. sols[[1]])

c2 = (c2 /. sols[[1]])

Out[326]= c1 →
1

14
7 - 2 7 , c2 →

1

14
7 + 2 7 

Out[327]=
1

14
7 - 2 7 

Out[328]=
1

14
7 + 2 7 

Here is the solution of the IVP:

mathtut2Open.nb 45

In[329]:= u[t]

Plot[u[t], {t, 0, 5}]

Out[329]=
1

14
7 - 2 7  ⅇ

-2- 7  t
+

1

14
7 + 2 7  ⅇ

-2+ 7  t

Out[330]=

1 2 3 4 5

5

10

15

20

A special inhomogeneous second-order linear ODE

Consider the IVP

ⅆ2 u

ⅆt2
+4u=sin(πt),

u(0)=0,

ⅆu

ⅆt
(0) = 0.

The solution, as given in Section 4.2.3 of the text, is calculated as follows:

In[331]:= ClearAll[u, t, s]

u[t_] = Simplify(1 / 2) IntegrateSin[2 (t - s)] SinPi s, {s, 0, t}

Out[332]=
π Cos[t] Sin[t] - Sin[π t]

-4 + π2

Let us check this solution:

In[333]:= D[u[t], {t, 2}] + 4 u[t]

Out[333]=
4 (π Cos[t] Sin[t] - Sin[π t])

-4 + π2
+
-4 π Cos[t] Sin[t] + π2 Sin[π t]

-4 + π2

In[334]:= Simplify[%]

Out[334]= Sin[π t]

46 mathtut2Open.nb

In[335]:= u[0]

Out[335]= 0

In[336]:= u'[0]

Out[336]= 0

First-order linear ODEs

Now consider the following IVP:
ⅆu

ⅆt
-

1

2
u = -t,

u(0)=1.

Section 4.2.4 contains an explicit formula for the solution:

In[337]:= ClearAll[u, t, s]

u[t_] = Simplify[Exp[1 / 2 t] + Integrate[Exp[1 / 2 (t - s)] (-s), {s, 0, t}]]

Out[338]= 4 - 3 ⅇt/2 + 2 t

Here is a graph:

In[339]:= Plot[u[t], {t, 0, 3}]

Out[339]=

0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

1

Just out of curiosity, let us determine the value of t at which u[t] is zero:

mathtut2Open.nb 47

In[340]:= Solve[u[t] ⩵ 0, t]

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use

Reduce for complete solution information. 

Out[340]= t → -2 1 + ProductLog-
3

4 ⅇ
 , t → -2 1 + ProductLog-1, -

3

4 ⅇ
 

This type of result is sometimes seen when using Mathematica; the program is aware of many special mathematical
functions, and results are sometimes expressed using functions that are unfamiliar. In this case, we can obtain a more
meaningful answer using numerical evaluation:

In[341]:= N[%]

Out[341]= {{t → -1.16026}, {t → 1.92256}}

The second solution is the one we are seeking.

Mathematica has another command for solving equations, one which uses numerical rather than symbolic methods. This
command, called FindRoot, needs a starting point (an estimate of the desired solution):

In[342]:= FindRoot[u[t] ⩵ 0, {t, 1.9}]

Out[342]= {t → 1.92256}

■ Section 4.3: Linear systems with constant coefficients

Since Mathematica can compute eigenvalues and eigenvectors (either numerically or, when possible, symbolically), it can
be used to solve linear systems with constant coefficients. We begin with a simple example, solving the homogeneous IVP

ⅆx

ⅆt
=Ax,

x(0)=x0,

where A and x0 are the following matrix and vector:

In[343]:= ClearAll[A, x0]

A = {{1, 2}, {3, 4}}

x0 = {4, 1}

Out[344]= {{1, 2}, {3, 4}}

Out[345]= {4, 1}

The first step is to find the eigenpairs of A:

In[346]:= ClearAll[l, V]

{l, V} = Eigensystem[A]

Out[347]= 
1

2
5 + 33 ,

1

2
5 - 33 , 

1

6
-3 + 33 , 1, 

1

6
-3 - 33 , 1

Next, the initial vector must be expressed in terms of the eigenvectors of A:

48 mathtut2Open.nb

In[348]:= ClearAll[c]

c = LinearSolve[Transpose[V], x0]

Out[349]= 
1

22
11 + 9 33 ,

1

22
11 - 9 33 

Here is the solution:

In[350]:= ClearAll[x]

x[t_] = c[[1]] Exp[l[[1]] t] V[[1]] + c[[2]] Exp[l[[2]] t] V[[2]]

Out[351]= 
1

132
11 - 9 33  -3 - 33  ⅇ

1

2
5- 33  t

+
1

132
-3 + 33  11 + 9 33  ⅇ

1

2
5+ 33  t

,

1

22
11 - 9 33  ⅇ

1

2
5- 33  t

+
1

22
11 + 9 33  ⅇ

1

2
5+ 33  t



Notice that x(t) is a vector (that is, x is a vector-valued function). For example, the first component is

In[352]:= x[t][[1]]

Out[352]=
1

132
11 - 9 33  -3 - 33  ⅇ

1

2
5- 33  t

+
1

132
-3 + 33  11 + 9 33  ⅇ

1

2
5+ 33  t

Here is its graph:

In[353]:= Plot[x[t][[1]], {t, 0, 1}]

Out[353]=

0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

(Notice that the solution is dominated by a rapidly growing exponential.)

Inhomogeneous systems and variation of parameters

Next, we use Mathematica to solve inhomogeneous systems of the form
ⅆx

ⅆt
=Ax+f(t),

mathtut2Open.nb 49

x (0) = x0.

Consider the following matrix, (vector-valued) function, and initial vector:

In[354]:= ClearAll[A, f, t]

A = {{1, 2}, {2, 1}}

f[t_] = Sin[t], 0

x0 = {0, 1}

Out[355]= {{1, 2}, {2, 1}}

Out[356]= {Sin[t], 0}

Out[357]= {0, 1}

First, we find the eigenvalues and eigenvectors of A:

In[358]:= ClearAll[l, U]

{l, U} = Eigensystem[A]

Out[359]= {{3, -1}, {{1, 1}, {-1, 1}}}

Next, we normalize the eigenvectors (which are orthogonal, as they must be):

In[360]:= ClearAll[u1, u2]

u1 = U[[1]] / Sqrt[U[[1]].U[[1]]]

u2 = U[[2]] / Sqrt[U[[2]].U[[2]]]

Out[361]= 
1

2
,

1

2


Out[362]= -
1

2
,

1

2


We have f (t) = c1(t) u1 + c2(t) u2 and x0 = b1 u1 + b2 u2, where c1, c2, b1, b2 are calculated as follows;

In[363]:= ClearAll[c1, c2, b1, b2, t]

c1[t_] = u1.f[t]

c2[t_] = u2.f[t]

b1 = u1.x0

b2 = u2.x0

Out[364]=
Sin[t]

2

Out[365]= -
Sin[t]

2

Out[366]=
1

2

Out[367]=
1

2

50 mathtut2Open.nb

We then solve the two decoupled IVPs
da1

dt
= λ1 a1 + c1 (t), a1 (0) = b1,

da2

dt
= λ2 a2 + c2 (t), a2 (0) = b2.

The solutions, using the techniques of Section 4.2, are computed as follows:

In[368]:= ClearAll[a1, a2, t]

a1[t_] = b1 Exp[l[[1]] t] + Integrate[Exp[l[[1]] (t - s)] c1[s], {s, 0, t}]

a2[t_] = b2 Exp[l[[2]] t] + Integrate[Exp[l[[2]] (t - s)] c2[s], {s, 0, t}]

Out[369]=
ⅇ3 t

2
-
-ⅇ3 t + Cos[t] + 3 Sin[t]

10 2

Out[370]=
ⅇ-t

2
-
ⅇ-t - Cos[t] + Sin[t]

2 2

The solution to the original system is then

In[371]:= ClearAll[x, t]

x[t_] = Simplify[a1[t] u1 + a2[t] u2]

Out[372]= 
1

20
-5 ⅇ-t + 11 ⅇ3 t - 6 Cos[t] + 2 Sin[t],

1

20
5 ⅇ-t + 11 ⅇ3 t + 4 Cos[t] - 8 Sin[t]

Check:

In[373]:= D[x[t], t] - A.x[t] - f[t]

Out[373]= 
1

20
5 ⅇ-t - 11 ⅇ3 t + 6 Cos[t] - 2 Sin[t] - Sin[t] +

1

20
5 ⅇ-t + 33 ⅇ3 t + 2 Cos[t] + 6 Sin[t] +

1

10
-5 ⅇ-t - 11 ⅇ3 t - 4 Cos[t] + 8 Sin[t],

1

20
-5 ⅇ-t + 33 ⅇ3 t - 8 Cos[t] - 4 Sin[t] +

1

10
5 ⅇ-t - 11 ⅇ3 t + 6 Cos[t] - 2 Sin[t] +

1

20
-5 ⅇ-t - 11 ⅇ3 t - 4 Cos[t] + 8 Sin[t]

In[374]:= Simplify[%]

Out[374]= {0, 0}

In[375]:= x[0] - x0

Out[375]= {0, 0}

■ Section 4.4: Numerical methods for initial value problems

When we turn to numerical methods for initial value problems in ODEs, we naturally wish to write programs to implement
the methods. Since time-stepping methods involve repeated steps of the same form, it would be quite tedious to apply the
methods manually. Here is another strength of Mathematica: not only does it integrate symbolic and numeric computation

mathtut2Open.nb 51

 manually. strength only integrate symbolic computation
with graphics, but it also provides a programming environment. In this section, we explain the basics of programming in
Mathematica.

Interactive commands

Mathematica supports the usual programming constructs, which can be used both interactively and in programs. For
example, suppose we wish to apply Euler's method to estimate the solution of

du

dt
=

u

1 + t2
,

u (0) = 1

on the interval [0,1]. The exact solution, which we will use below to test our results, is the following function:

In[376]:= ClearAll[v, t]

v[t_] = Exp[ArcTan[t]]

Out[377]= ⅇArcTan[t]

We now apply Euler's method with a step length of Δt=0.1. The new Mathematica command that we need is the Do
command, which implements an indexed loop. We also need to know how to store the computed results; since Euler's
method (and other time-stepping methods for IVPs) produces estimates of the solution on a grid, we will store the results
as a list of points of the form (ti,ui), i=1,2,…,n. The results will then be of the right form to pass to ListPlot and other
useful commands.

In[378]:= ClearAll[dt, n]

dt = 0.1

n = 10

Out[379]= 0.1

Out[380]= 10

The following command creates an empty list of points (the Table command is useful for creating lists):

In[381]:= ClearAll[U]

U = Table{Null, Null}, i, 0, n

Out[382]= {{Null, Null}, {Null, Null}, {Null, Null}, {Null, Null}, {Null, Null}, {Null, Null},

{Null, Null}, {Null, Null}, {Null, Null}, {Null, Null}, {Null, Null}}

It is not very instructive to see the output of the last command, and this is often the case. Mathematica will not display the
output of commands that end in a semicolon, as follows:

In[383]:= U = Table{Null, Null}, i, 0, n;

We now assign the initial values of t and u:

In[384]:= U[[1, 1]] = 0.

U[[1, 2]] = 1.

Out[384]= 0.

Out[385]= 1.

Here is an important but subtle point. When implementing a numerical method, we want to do floating point, not symbolic,
computations. This is why the initial data is entered as "0." and "1.", rather than "0" and "1". When the following loop

52 mathtut2Open.nb

computations. why following loop
executes, the operations will be done in floating point. If we used symbolic data for the initial data, the computations
would be done symbolically, which is comparatively slow and undesirable in most cases.

Euler's method is now performed by a single command:

In[386]:= Do

Ui + 1, 1 = Ui, 1 + dt;

Ui + 1, 2 = Ui, 2 + dt * Ui, 2  1 + Ui, 1^2,

i, 1, n

We can now look at the computed results:

In[387]:= TableForm[U]

Out[387]//TableForm=

0. 1.
0.1 1.1
0.2 1.20891
0.3 1.32515
0.4 1.44673
0.5 1.57144
0.6 1.69716
0.7 1.82195
0.8 1.94423
0.9 2.06278
1. 2.17675

How well did Euler's method work? We can compare with the exact solution at the final time:

In[388]:= N[v[1] - U[[n + 1, 2]]]

Out[388]= 0.016535

Several comments about the above computations are in order.

 The Table command produced a list of points that is indexed from 1 to n+1. Thus Mathematica, like Fortran or MAT-
LAB, but unlike C, uses indices beginning with 1.

 The Null object is used to as a place holder, indicating the absence of an expression.

 The Do command has the form Do[expr,{i,imin,imax}]. This command causes the expression expr to be evaluated (imax-
imin+1) times, the first time with i=imin, the second time with i=imin+1, and so forth until i=imax.

 If several commands are to be performed during each iteration of the Do loop, then expr can be replaced by expr1;expr2;...;-

exprk. That is, expr can be a sequence of expressions, separated by semicolons.

 The loop index i can be incremented by a value other than 1; the iterator would be {i,imin,imax,step}, giving i=imin,
i=imin+step, i=imin+2*step,....

Mathematica gives us two ways to visualize the computed solution. First of all, we can graph the points (ti,ui) as points in
the (t,u) plane using the ListPlot command:

mathtut2Open.nb 53

In[389]:= ListPlot[U]

Out[389]=

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Secondly, we can create a function from the computed data; specifically, an interpolating function:

In[390]:= ClearAll[uf]

uf = Interpolation[U]

Out[391]= InterpolatingFunction
Domain: {{0., 1.}}
Output: scalar 

We can then evaluate the interpolating function at any point in the interval [0,10], or plot it (or differentiate it, etc.):

In[392]:= Plot[uf[t], {t, 0, 1}]

Out[392]=

0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

54 mathtut2Open.nb

Here is the error in the computed solution.

In[393]:= Plot[v[t] - uf[t], {t, 0, 1}]

Out[393]=

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

Creating new Mathematica commands

For convenience, we can write a program to implement Euler's method. In Mathematica, writing a program really implies
creating a new Mathematica command. A reasonable command for applying Euler's method to the IVP

du

dt
= f (t, u)

u (t0) = u0

would take as inputs f , t0, u0, as well as T (the final time) and n (the number of steps), and would produce a list of the
computed estimates (like the output U above). A simple function consists of a list of Mathematica commands
(expressions), enclosed in parentheses; the return value of the function is simply the value of the last expression:

In[394]:= ClearAll[f, t0, T, u0, n, U, euler]

euler[f_, t0_, T_, u0_, n_] :=

U = Table{Null, Null}, i, 0, n;

U[[1, 1]] = t0;

U[[1, 2]] = u0;

dt = (T - t0) / n;

Do

Ui + 1, 1 = Ui, 1 + dt;

Ui + 1, 2 = Ui, 2 + dt * fUi, 1, Ui, 2,

i, 1, n;

U

(Notice that the use of the delayed-evaluation assignment operator ":=" is important in defining new commands.) Now let
us see how the command euler works.

mathtut2Open.nb 55

In[396]:= ClearAll[f, t, u, r]

f[t_, u_] = u / (1 + t^2)

r = euler[f, 0., 1., 1.0, 10]

Out[397]=
u

1 + t2

Out[398]= {{0., 1.}, {0.1, 1.1}, {0.2, 1.20891},

{0.3, 1.32515}, {0.4, 1.44673}, {0.5, 1.57144}, {0.6, 1.69716},

{0.7, 1.82195}, {0.8, 1.94423}, {0.9, 2.06278}, {1., 2.17675}}

In[399]:= ListPlot[r]

Out[399]=

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

In Mathematica, one need not "declare" variables in the same way one does in a compiled language. For example, in the
euler function, there is no instruction to Mathematica to expect a scalar input for u0, or to expect f to be a scalar-valued
function. Therefore, euler will work just as well for a system, as the following examples shows.

 Consider the system

In[144]:=
dx1

dt
= -x2, x1 (0) = 1

dx2

dt
= x1, x2 (0) = 0

whose solution is the following function:

In[400]:= ClearAll[x, t]

x[t_] = Cos[t], Sin[t]

Out[401]= {Cos[t], Sin[t]}

Define the vector-valued function f as follows:

56 mathtut2Open.nb

In[402]:= ClearAll[f, t, u]

f[t_, u_] := {-u[[2]], u[[1]]}

Now we can apply Euler's method:

In[404]:= r1 = eulerf, 0., 2. * Pi, {1, 0}, 20;

TableForm[r1]

Out[405]//TableForm=

0. 1
0

0.314159 1.
0.314159

0.628319 0.901304
0.628319

0.942478 0.703912
0.911472

1.25664 0.417565
1.13261

1.5708 0.0617441
1.26379

1.88496 -0.335288
1.28319

2.19911 -0.738415
1.17786

2.51327 -1.10845
0.945877

2.82743 -1.40561
0.597648

3.14159 -1.59336
0.156064

3.45575 -1.64239
-0.344506

3.76991 -1.53416
-0.860478

4.08407 -1.26383
-1.34245

4.39823 -0.842091
-1.73949

4.71239 -0.295613
-2.00405

5.02655 0.333976
-2.09691

5.34071 0.992742
-1.99199

5.65487 1.61854
-1.68011

5.96903 2.14637
-1.17163

6.28319 2.51445
-0.497332

Working with the output is a little more difficult, since ListPlot, for example, will not handle data in which the second
coordinate is a vector:

mathtut2Open.nb 57

In[406]:= ListPlot[r1]

Out[406]=

-1 1 2

-2.0

-1.5

-1.0

-0.5

0.5

1.0

To plot the first component of the solution, for example, we have to create a list of data points of the form (ti,(x1)i):

In[407]:= ListPlotTabler1i, 1, r1i, 2[[1]], i, 1, 21

Out[407]=

1 2 3 4 5 6

-1

1

2

A similar command will graph the second component:

58 mathtut2Open.nb

In[408]:= ListPlotTabler1i, 1, r1i, 2[[2]], i, 1, 21

Out[408]=

1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

0.5

1.0

There is a serious shortcoming to the program we have written: the symbols used by the euler command are not "local".
For example, dt now has the value it was assigned during the last execution of euler:

In[409]:= dt

Out[409]= 0.314159

Obviously this is undesirable, since the use of a function like euler can change the value of symbols that are in use outside
the scope of the function. Mathematica provides a way to avoid this type of behavior. The Module command creates a
block of code with local variables. The command Module[{vars},expr] evaluates the expression expr, while regarding the
variables vars as local to the scope of the Module command. Here is the Euler function rewritten to use local variables:

In[410]:= ClearAll[euler]

euler[f_, t0_, T_, u0_, n_] :=

ModuleU, i, dt, U = Table{Null, Null}, i, 0, n;

U[[1, 1]] = t0;

U[[1, 2]] = u0;

dt = (T - t0) / n;

Do

Ui + 1, 1 = Ui, 1 + dt;

Ui + 1, 2 = Ui, 2 + dt * fUi, 1, Ui, 2,

i, 1, n;

U

Now we have the desired behavior:

mathtut2Open.nb 59

In[412]:= ClearAll[dt]

r1 = eulerf, 0., 2. * Pi, {1, 0}, 10;

dt

Out[414]= dt

This shows that dt has no value after the execution of euler.

Having decided that a certain algorithm is useful enough to be made into a Mathematica command, you will probably wish
to save it in a file, so that it can be loaded (rather than typed anew) whenever it is needed in a new Mathematica session.
Doing this is simple enough; the Mathematica commands defining the function are simply typed into a plain text file and
read into Mathematica using the << operator.

To illustrate this, we wrote a file called euler, containing the definition of euler (just as it was previously typed it into
Mathematica). There is an important detail about using an external file like this: Mathematica must be able to find it. The
simplest way to ensure that Mathematica can find a file is to make sure the file is in the current working directory. The
Directory command tells the current working directory:

In[415]:= Directory[]

Out[415]= /Users/msgocken

If this is not the desired directory, SetDirectory allows us to switch to a different working directory:

In[416]:= SetDirectory"/Users/msgocken/books/pdebook2/tutorial/mathematica"

Out[416]= /Users/msgocken/books/pdebook2/tutorial/mathematica

The FileNames command lists the files in the current directory:

In[417]:= FileNames[]

Out[417]= {euler, fempack, fempack~, mathtut2.nb, mathtut2.pdf, mathtut2.tar.gz}

The file euler is there, so I can load it now. (I will first clear euler just to show that the << operator really does retrieve the
definition from the file):

In[418]:= ClearAll[euler]

? euler

Global`euler

In[420]:= << euler

60 mathtut2Open.nb

In[421]:= ? euler

Global`euler

euler[f_, t0_, T_, u0_, n_] := Module{U, i, h}, U = Table[{Null, Null}, {i, 0, n}];

U〚1, 1〛 = t0;

U〚1, 2〛 = u0;

h =
T-t0

n
;

Do[U〚i + 1, 1〛 = U〚i, 1〛 + h;

U〚i + 1, 2〛 = U〚i, 2〛 + h f[U〚i, 1〛, U〚i, 2〛], {i, 1, n}];

U

The FilePrint command lists the contents of a text file. This operator may be useful, for example, to check that one really
wants to load a given file.

In[422]:= FilePrint["euler"]

euler[f_, t0_, T_, u0_, n_] :=

 Module[{U, i, h}, U = Table[{Null, Null}, {i, 0, n}];

 U[[1, 1]] = t0;

 U[[1, 2]] = u0;

 h = (T - t0)/n;

 Do[

 U[[i + 1, 1]] = U[[i, 1]] + h;

 U[[i + 1, 2]] =

 U[[i, 2]] + h*f[U[[i, 1]], U[[i, 2]]],

 {i, 1, n}];

 U]

Having loaded the definition of euler, we can now use it as before.

If euler had not been found in the current working directory, we could proceed in three ways. One option would be to
move the file euler into the current directory (using an operating system command). The second would be to change the
working directory using the SetDirectory command, as illustrated above. The final option is to give a full path name so
that Mathematica can find the file.

In[423]:= ClearAll[euler]

? euler

Global`euler

In[425]:= << /Users/msgocken/books/pdebook2/tutorial/mathematica/euler

mathtut2Open.nb 61

In[426]:= ? euler

Global`euler

euler[f_, t0_, T_, u0_, n_] := Module{U, i, h}, U = Table[{Null, Null}, {i, 0, n}];

U〚1, 1〛 = t0;

U〚1, 2〛 = u0;

h =
T-t0

n
;

Do[U〚i + 1, 1〛 = U〚i, 1〛 + h;

U〚i + 1, 2〛 = U〚i, 2〛 + h f[U〚i, 1〛, U〚i, 2〛], {i, 1, n}];

U

Chapter 5: Boundary value problems in statics

■ Section 5.2: Introduction to the spectral method; eigenfunctions

We begin this section by verifying that the eigenfunctions of the negative second derivative operator (under Dirichlet
conditions), sin(nπx/l), l=1,2,3,..., are mutually orthogonal:

In[427]:= ClearAll[m, n, l, x]

IntegrateSinn Pi x / l Sinm Pi x / l, {x, 0, l}

Out[428]=
l n Cos[n π] Sin[m π] - l m Cos[m π] Sin[n π]

m2 π - n2 π

In[429]:= Simplify[%]

Out[429]=
l n Cos[n π] Sin[m π] - l m Cos[m π] Sin[n π]

m2 π - n2 π

At first glance, this result is surprising: Why did Mathematica not obtain the expected result, 0? However, a moment's
thought reveals the reason: The integral is not necessarily zero unless m and n are positive integers, and Mathematica has
no way of knowing that the symbols m and n are intended to represent integers. Fortunately, there is a way to tell
Mathematica:

In[430]:= Simplify[%, Element[{m, n}, Integers]]

Out[430]= 0

When performing Fourier series calculations, the above command is very useful. However, it would be tedious to repeat-
edly specify the assumption that m and n are integers. We can specify such an assumption once and for all using the global
variable $Assumptions:

62 mathtut2Open.nb

In[431]:= $Assumptions = Element[{m, n}, Integers]

Out[431]= (m n) ∈ Integers

Now m and n will be treated as integers, whereas another variable, such as k, will not:

In[432]:= SimplifySinm Pi

SimplifySinn Pi

SimplifySink Pi

Out[432]= 0

Out[433]= 0

Out[434]= Sin[k π]

Example 5.5

Let

In[435]:= ClearAll[f, x]

f[x_] = x (1 - x)

Out[436]= (1 - x) x

We can easily compute the Fourier sine coefficients of f on the interval [0,1]. For convenience, we define a function (of n)
representing the coefficient:

In[437]:= ClearAll[a, n]

a[n_] = 2 Integratef[x] Sinn Pi x, {x, 0, 1}

Out[438]= -
4 (-1 + (-1)n)

n3 π3

Mathematica can represent finite sums using the Sum command. The following trick is useful: since we often wish to
experiment with the number of terms used in a partial Fourier series, we define the number of terms to be an input variable:

In[439]:= ClearAll[s, x, M]

s[x_, M_] := Suma[n] Sinn Pi x, {n, 1, M}

(Notice the use of the delayed-evaluation assignment operator ":=".) The function becomes a function of x alone when an
integer is entered for M:

In[441]:= s[x, 5]

Out[441]=
8 Sin[π x]

π3
+
8 Sin[3 π x]

27 π3
+
8 Sin[5 π x]

125 π3

We can now see how well the partial Fourier series approximates f by looking at some graphs:

mathtut2Open.nb 63

In[442]:= Plot[{f[x], s[x, 1]}, {x, 0, 1}]

Out[442]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

In[443]:= Plot[{f[x], s[x, 3]}, {x, 0, 1}]

Out[443]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

64 mathtut2Open.nb

In[444]:= Plot[{f[x], s[x, 5]}, {x, 0, 1}]

Out[444]=

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

Once the approximation becomes very accurate, it is more informative to plot the error:

In[445]:= Plot[f[x] - s[x, 7], {x, 0, 1}]

Out[445]=

0.2 0.4 0.6 0.8 1.0

-0.0004

-0.0002

0.0002

0.0004

0.0006

0.0008

mathtut2Open.nb 65

In[446]:= Plot[f[x] - s[x, 19], {x, 0, 1}]

Out[446]=

0.2 0.4 0.6 0.8 1.0

-0.00005

0.00005

■ Section 5.5: The Galerkin method

We now show how to apply the Galerkin method with a polynomial basis. Suppose we wish to approximate the solution to
the BVP

-
d

dx
[(1 + x)

du

dx
] = x2, 0 < x < 1,

u (0) = u (1) = 0

using the subspace of CD
2 [0, 1] spanned by the following four polynomials:

In[447]:= ClearAll[p, x]

p[1][x_] = x (1 - x)

p[2][x_] = x (1 / 2 - x) (1 - x)

p[3][x_] = x (1 / 3 - x) (2 / 3 - x) (1 - x)

p[4][x_] = x (1 / 4 - x) (1 / 2 - x) (3 / 4 - x) (1 - x)

Out[448]= (1 - x) x

Out[449]=
1

2
- x (1 - x) x

Out[450]=
1

3
- x

2

3
- x (1 - x) x

Out[451]=
1

4
- x

1

2
- x

3

4
- x (1 - x) x

The energy inner product is defined as follows:

In[452]:= ClearAll[a, u, v]

a[u_, v_] := Integrate[(1 + x) D[u[x], x] × D[v[x], x], {x, 0, 1}]

The L2 inner product is defined as

66 mathtut2Open.nb

In[454]:= ClearAll[L, u, v]

L[u_, v_] := Integrate[u[x] × v[x], {x, 0, 1}]

Now the calculation is simple in principle (but it would be very tedious to carry out by hand): We just need to compute the
stiffness matrix and the load vector, and solve the linear system. The stiffness matrix is

In[456]:= ClearAll[K]

K = Tableapi, pj, i, 1, 4, j, 1, 4

Out[457]= 
1

2
, -

1

30
,

1

90
, -

1

672
, -

1

30
,

3

40
, -

19

3780
,

3

896
,


1

90
, -

19

3780
,

5

567
, -

41

60 480
, -

1

672
,

3

896
, -

41

60 480
,

43

43 008


Let the right-hand side be g(x) = x2:

In[458]:= ClearAll[g, x]

g[x_] = x^2

Out[459]= x2

The load vector is

In[460]:= ClearAll[f]

f = TableLpi, g, i, 1, 4

Out[461]= 
1

20
, -

1

120
,

1

630
, -

1

2688


Then the coefficients defining the (approximate) solution are

In[462]:= ClearAll[c]

c = LinearSolve[K, f]

Out[463]= 
3325

34 997
, -

9507

139 988
,

1575

69 994
,

420

34 997


and the approximate solution is

In[464]:= ClearAll[v, x]

v[x_] = Sumcj × pj[x], j, 1, 4

Out[465]=
3325 (1 - x) x

34 997
-

9507 
1

2
- x (1 - x) x

139 988
+

1575 
1

3
- x 

2

3
- x (1 - x) x

69 994
+

420 
1

4
- x 

1

2
- x 

3

4
- x (1 - x) x

34 997

Here is a graph:

mathtut2Open.nb 67

In[466]:= Plot[v[x], {x, 0, 1}]

Out[466]=

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025

The exact solution can be found by integration:

In[467]:= ClearAll[c1, s, x]

Integrate[-s^2, {s, 0, x}] + c1

Out[468]= c1 -
x3

3

In[469]:= u[x_] = Simplify[Integrate[(c1 - s^3 / 3) / (1 + s), {s, 0, x}]]

Out[469]= ConditionalExpression

1

18
(x (-6 + (3 - 2 x) x) + 6 (1 + 3 c1) Log[1 + x]), Im[x] ≠ 0 || Re[x] > -1

The last result is unnecessarily complicated (because Mathematica does not know that x is a real number); let us repeat the
calculation with the assumption that x > 0:

In[470]:= u[x_] = Simplify[Integrate[(c1 - s^3 / 3) / (1 + s), {s, 0, x}], x > 0]

Out[470]=
1

18
(x (-6 + (3 - 2 x) x) + 6 (1 + 3 c1) Log[1 + x])

In[471]:= ClearAll[sols]

sols = Solve[u[1] ⩵ 0, c1]

Out[472]= c1 →
5 - 6 Log[2]

18 Log[2]


In[473]:= c1 = (c1 /. sols[[1]])

Out[473]=
5 - 6 Log[2]

18 Log[2]

Check:

68 mathtut2Open.nb

In[474]:= -D[(1 + x) D[u[x], x], x]

Out[474]= -
1

18
(1 + x) 6 - 12 x -

6 1 +
5-6 Log[2]

6 Log[2]


(1 + x)2
+

1

18
6 - (3 - 4 x) x - (3 - 2 x) x -

6 1 +
5-6 Log[2]

6 Log[2]


1 + x

In[475]:= Simplify[%]

Out[475]= x2

In[476]:= u[0]

Out[476]= 0

In[477]:= u[1]

Out[477]=
1

18
-5 + 6 1 +

5 - 6 Log[2]

6 Log[2]
Log[2]

In[478]:= Simplify[u[1]]

Out[478]= 0

Now we can compare the exact and approximate solutions:

In[479]:= Plot[{u[x], v[x]}, {x, 0, 1}]

Out[479]=

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

0.025

mathtut2Open.nb 69

In[480]:= Plot[u[x] - v[x], {x, 0, 1}]

Out[480]= 0.2 0.4 0.6 0.8 1.0

-6.×10-6

-4.×10-6

-2.×10-6

2.×10-6

4.×10-6

The computed solution is highly accurate!

■ Section 5.6: Piecewise polynomials and the finite element method

Representing piecewise linear functions

A useful feature of Mathematica for working with piecewise linear functions is the Interpolation command. Since a
continuous piecewise linear function has values defined by linear interpolation, it is possible to define a function from the
nodes and nodal values. Interpolation was introduced before, in Section 4.4, but we will now explain it in more detail.

For example, consider the following data (which define a piecewise linear interpolant of sin(πx) on the interval [0,1]):

In[481]:= ClearAllv, i

v = Tablei  5, NSinPi i  5, i, 0, 5;

In[483]:= TableForm[v]

Out[483]//TableForm=

0 0.
1

5
0.587785

2

5
0.951057

3

5
0.951057

4

5
0.587785

1 0.

The following command creates the continuous piecewise linear function with these nodal values. (Notice the use of the
InterpolationOrder option. This is necessary to cause Mathematica to use linear interpolation.)

70 mathtut2Open.nb

In[484]:= ClearAll[p]

p = Interpolationv, InterpolationOrder → 1

Out[485]= InterpolatingFunction
Domain: {{0., 1.}}
Output: scalar 

We can now plot the piecewise linear function:

In[486]:= Plot[p[x], {x, 0, 1}]

Out[486]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

We can also compare it to the function it interpolates:

In[487]:= PlotSinPi x, p[x], {x, 0, 1}

Out[487]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

mathtut2Open.nb 71

We can use interpolating functions to represent the standard piecewise linear basis functions:

In[488]:= ClearAllphi, i, n

phii_, n_ :=

InterpolationTablej  n, Ifi ⩵ j, 1, 0, j, 0, n, InterpolationOrder → 1

In[490]:= Plotphi[3, 10][x], {x, 0, 1}, PlotRange → All

Out[490]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

However, although InterpolatingFunctions are useful for some purposes, such as graphing piecewise linear functions,
Mathematica is not able to perform some needed operations on them. For example, suppose we want to apply the finite
element method, with piecewise linear functions, to the following BVP:

-
d

dx
[k (x)

du

dx
] = x, 0 < x < 1,

u (0) = u (1) = 0.

Using a regular mesh with 10 subintervals, we would need to compute the following integrals:


0

1

ϕi (x) x dx, i = 1, 2, ..., 10

Mathematica cannot do this directly:

In[491]:= Integratephii, 10[x] * x, {x, 0, 1}

Out[491]= 
0

1

x InterpolatingFunction
Domain: {{0, 1}}
Output: scalar [x] ⅆx

72 mathtut2Open.nb

In[492]:= Integratephi[1, 10][x] * x, {x, 0, 1}

Out[492]= 
0

1

x InterpolatingFunction
Domain: {{0, 1}}
Output: scalar [x] ⅆx

(The definition of the interpolating function is just too complicated for Mathematica to integrate automatically.)

The best way to proceed is to recognize that each ϕi is represented by simple formulas on the two subintervals that form its
support. We define these two formulas in general:

In[493]:= ClearAllphi1, phi2, x, i, n

phi1x_, i_, n_ = x - i - 1  n  (1 / n)

phi2x_, i_, n_ = -x - i + 1  n  (1 / n)

Out[494]= n -
-1 + i

n
+ x

Out[495]= n
1 + i

n
- x

The function phi1 represents ϕi on the subinterval [xi-1, xi], while phi2 represents ϕi on the subinterval [xi, xi+1].

we can now compute the load vector for the finite element method by recognizing that


0

1

ϕi (x) x dx = 
xi-1

xi

ϕi (x) x dx + 
xi

xi+1

ϕi (x) x dx.

Here are two different ways to create the load vector. First, create a vector of all zeros:

In[496]:= ClearAll[n, h, f]

n = 10

h = 1 / n

f = Table0, i, 1, n - 1

Out[497]= 10

Out[498]=
1

10

Out[499]= {0, 0, 0, 0, 0, 0, 0, 0, 0}

Then compute the components using a loop:

In[500]:= ClearAlli

Dofi = Integratephi1x, i, n x, x, i * h - h, i * h +

Integratephi2x, i, n x, x, i * h, i * h + h, i, 1, n - 1

In[502]:= f

Out[502]= 
1

100
,

1

50
,

3

100
,

1

25
,

1

20
,

3

50
,

7

100
,

2

25
,

9

100


We can accomplish the same thing in a single Table command:

mathtut2Open.nb 73

In[503]:= ClearAllf, i

f = TableIntegratephi1x, i, n x, x, i * h - h, i * h +

Integratephi2x, i, n x, x, i * h, i * h + h, i, 1, n - 1

Out[504]= 
1

100
,

1

50
,

3

100
,

1

25
,

1

20
,

3

50
,

7

100
,

2

25
,

9

100


We can use similar commands to create the stiffness matrix K. For the first example, we choose the constant coefficient
k(x)=1, because we already know what the result should be (see Section 5.6.1 of the text).

In[505]:= ClearAll[k, x]

k[x_] = 1

Out[506]= 1

Since most of the entries of K are zero, we define a zero matrix, and then fill in the nonzero entries:

In[507]:= ClearAllK, i, j

K = Table0.0, i, 1, n - 1, j, 1, n - 1

Out[508]= {{0., 0., 0., 0., 0., 0., 0., 0., 0.},

{0., 0., 0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0., 0., 0.},

{0., 0., 0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0., 0., 0.},

{0., 0., 0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0., 0., 0.},

{0., 0., 0., 0., 0., 0., 0., 0., 0.}, {0., 0., 0., 0., 0., 0., 0., 0., 0.}}

The following loop computes the diagonal entries:

In[509]:= DoKi, i = Integratek[x] × Dphi1x, i, n, x^2, x, i * h - h, i * h +

Integratek[x] × Dphi2x, i, n, x^2, x, i * h, i * h + h, i, 1, n - 1

In[510]:= MatrixForm[K]

Out[510]//MatrixForm=

20 0. 0. 0. 0. 0. 0. 0. 0.
0. 20 0. 0. 0. 0. 0. 0. 0.
0. 0. 20 0. 0. 0. 0. 0. 0.
0. 0. 0. 20 0. 0. 0. 0. 0.
0. 0. 0. 0. 20 0. 0. 0. 0.
0. 0. 0. 0. 0. 20 0. 0. 0.
0. 0. 0. 0. 0. 0. 20 0. 0.
0. 0. 0. 0. 0. 0. 0. 20 0.
0. 0. 0. 0. 0. 0. 0. 0. 20

(Note that 20=2/h, which is the expected result.) Now for the off-diagonal entries:

In[511]:= DoKi, i + 1 =

Integratek[x] × Dphi2x, i, n, x × Dphi1x, i + 1, n, x, x, i * h, i * h + h;

Ki + 1, i = Ki, i + 1,

i, 1, n - 2

You should notice several things:

The matrix K is an (n-1) by (n-1) matrix, with (n-2) entries along the first subdiagonal and superdiagonal. This
explains why the loop goes from i=1 to i=n-2.

74 mathtut2Open.nb

explains why loop goes

The matrix K is symmetric, so we just compute K[[i,i+1]] and assigned the value to K[[i+1,i]].

Over the interval [xi, xi+1], which is the common support of ϕi and ϕi+1, we use the function phi2 to represent ϕi and
phi1 to represent ϕi+1. This is because the interval [xi, xi+1] supports the right half of (the nonzero part of) ϕi and
the left half of (the nonzero part of) ϕi+1.

Here is the result; notice that the off-diagonal entries are

-
1

h
= -10,

as expected.

In[512]:= MatrixForm[K]

Out[512]//MatrixForm=

20 -10 0. 0. 0. 0. 0. 0. 0.
-10 20 -10 0. 0. 0. 0. 0. 0.
0. -10 20 -10 0. 0. 0. 0. 0.
0. 0. -10 20 -10 0. 0. 0. 0.
0. 0. 0. -10 20 -10 0. 0. 0.
0. 0. 0. 0. -10 20 -10 0. 0.
0. 0. 0. 0. 0. -10 20 -10 0.
0. 0. 0. 0. 0. 0. -10 20 -10
0. 0. 0. 0. 0. 0. 0. -10 20

We complete the solution process by solving the equation Ku=f:

In[513]:= ClearAll[u]

u = LinearSolve[K, f]

Out[514]= {0.0165, 0.032, 0.0455, 0.056, 0.0625, 0.064, 0.0595, 0.048, 0.0285}

Whether we wish to graph the nodal values or create the piecewise linear function defined by them (using the Interpola-
tion command), we need to create a table containing the data pairs (xi, ui). First, we append the boundary value 0 to each
end of the vector u. This requires the Flatten command, which "flattens" a nested list:

In[515]:= u = Flatten[{0, u, 0}]

Out[515]= {0, 0.0165, 0.032, 0.0455, 0.056, 0.0625, 0.064, 0.0595, 0.048, 0.0285, 0}

Next, we create the x-values defining the mesh:

In[516]:= ClearAllX, i

X = Tablei * h, i, 0, n

Out[517]= 0,
1

10
,
1

5
,

3

10
,
2

5
,
1

2
,
3

5
,

7

10
,
4

5
,

9

10
, 1

Finally, we make the table of data points:

In[518]:= ClearAll[U]

U = Transpose[{X, u}];

mathtut2Open.nb 75

In[520]:= MatrixForm[U]

Out[520]//MatrixForm=

0 0
1

10
0.0165

1

5
0.032

3

10
0.0455

2

5
0.056

1

2
0.0625

3

5
0.064

7

10
0.0595

4

5
0.048

9

10
0.0285

1 0

Now we can use the ListPlot command:

In[521]:= ListPlotU,

PlotStyle → PointSize[0.02]

Out[521]=

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

We can also create an interpolating function and use the Plot command. We want to use linear interpolation, so we give
the option InterpolationOrder->1:

In[522]:= ClearAll[uf]

uf = InterpolationU, InterpolationOrder → 1

Out[523]= InterpolatingFunction
Domain: {{0., 1.}}
Output: scalar 

76 mathtut2Open.nb

In[524]:= Plot[uf[x], {x, 0, 1}]

Out[524]=

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

0.06

An advantage of creating an interpolating function is that we can compare to the exact function, when we know it. In the
above example, the exact solution is v(x) = x - x36:

In[525]:= ClearAll[v, x]

v[x_] = (x - x^3) / 6

Out[526]=
1

6
x - x3

Here is the error in the finite element solution:

In[527]:= Plot[uf[x] - v[x], {x, 0, 1}]

Out[527]=

0.2 0.4 0.6 0.8 1.0

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

mathtut2Open.nb 77

A nonconstant coefficient example

Now suppose we wish to solve the BVP

-
d

dx
[k (x)

du

dx
] = x, 0 < x < 1,

u (0) = u (1) = 0,

where

In[528]:= ClearAll[k, x]

k[x_] = 1 + x

Out[529]= 1 + x

We use the same mesh; then the load vector is exactly the same as before and need not be recomputed. The stiffness matrix
can be computed just as before:

In[530]:= ClearAllK, i, j

K = Table0.0, i, 1, n - 1, j, 1, n - 1;

The following loop computes the diagonal entries:

In[532]:= DoKi, i = Integratek[x] × Dphi1x, i, n, x^2, x, i * h - h, i * h +

Integratek[x] × Dphi2x, i, n, x^2, x, i * h, i * h + h, i, 1, n - 1

Now for the off-diagonal entries:

In[533]:= DoKi, i + 1 =

Integratek[x] × Dphi2x, i, n, x × Dphi1x, i + 1, n, x, x, i * h, i * h + h;

Ki + 1, i = Ki, i + 1, i, 1, n - 2

Here is the result:

In[534]:= MatrixForm[K]

Out[534]//MatrixForm=

22 -
23

2
0. 0. 0. 0. 0. 0. 0.

-
23

2
24 -

25

2
0. 0. 0. 0. 0. 0.

0. -
25

2
26 -

27

2
0. 0. 0. 0. 0.

0. 0. -
27

2
28 -

29

2
0. 0. 0. 0.

0. 0. 0. -
29

2
30 -

31

2
0. 0. 0.

0. 0. 0. 0. -
31

2
32 -

33

2
0. 0.

0. 0. 0. 0. 0. -
33

2
34 -

35

2
0.

0. 0. 0. 0. 0. 0. -
35

2
36 -

37

2

0. 0. 0. 0. 0. 0. 0. -
37

2
38

Now we solve for the nodal values:

78 mathtut2Open.nb

In[535]:= ClearAll[u]

u = LinearSolve[K, f]

Out[536]= {0.0131347, 0.0242576, 0.0328907, 0.0386621,

0.0412769, 0.0404971, 0.0361283, 0.0280091, 0.0160044}

Finally, we assemble the data points and plot the result:

In[537]:= u = Flatten[{0, u, 0}];

ClearAll[X, U]

X = Tablei * h, i, 0, n;

U = Transpose[{X, u}]

Out[540]= {0, 0}, 
1

10
, 0.0131347, 

1

5
, 0.0242576,


3

10
, 0.0328907, 

2

5
, 0.0386621, 

1

2
, 0.0412769, 

3

5
, 0.0404971,


7

10
, 0.0361283, 

4

5
, 0.0280091, 

9

10
, 0.0160044, {1, 0}

In[541]:= ClearAll[uf]

uf = InterpolationU, InterpolationOrder → 1

Out[542]= InterpolatingFunction
Domain: {{0., 1.}}
Output: scalar 

In[543]:= Plot[uf[x], {x, 0, 1}]

Out[543]=

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

mathtut2Open.nb 79

Chapter 6: Heat flow and diffusion

■ Section 6.1: Fourier series methods for the heat equation

Example 6.2: An inhomogeneous example

Consider the following IBVP:

∂u

∂t
- A

∂2 u

∂x2
= 10-7, 0 < x < 100, t > 0,

u (x, 0) = 0, 0 < x < 100,

u (0, t) = 0, t > 0,

u (100, t) = 0, t > 0.

The constant A has value 0.208 cm2 s.

In[544]:= ClearAll[A]

A = 0.208

Out[545]= 0.208

The solution can be written as

u (x, t) = 
n=1

∞

an (t) sin (
nπx

100
),

where the coefficient an(t) satisfies the IVP

dan

dt
+

An2 π2

1002
an = cn, t > 0,

an (0) = 0.

The values c1, c2, c3, ... are the Fourier sine coefficients of the constant function 10-7:

In[546]:= $Assumptions = Element[{m, n}, Integers]

ClearAll[c, n, x]

2 / 100 Integrate10^(-7) Sinn Pi x / 100, {x, 0, 100}

Out[546]= m ∈ Integers

Out[548]=

Sin
n π

2

2

2 500 000 n π

80 mathtut2Open.nb

In[549]:= c[n_] = %

Out[549]=

Sin
n π

2

2

2 500 000 n π

We compute an(t) by the formula an(t) = ∫0

t
e-An2 π2(t-s)1002

cn ⅆs.

In[550]:= ClearAll[a, n, x, t]

IntegrateExp-A n^2 Pi^2 (t - s) / 100^2 c[n], {s, 0, t}

Out[551]=

ⅇ-0.000205288 n2 t -0.000620222 + 0.000620222 ⅇ0.000205288 n
2 t Sin

n π

2

2

n3

In[552]:= a[t_, n_] = %

Out[552]=

ⅇ-0.000205288 n2 t -0.000620222 + 0.000620222 ⅇ0.000205288 n
2 t Sin

n π

2

2

n3

Now we define the Fourier series solution:

In[553]:= ClearAll[u, x, t, M]

u[x_, t_, M_] := Suma[t, n] Sinn Pi x / 100, {n, 1, M}

We can easily look at some "snapshots" of the solution. For example, we will show the concentration distribution after 10
minutes (600 seconds). Some trial and error may be necessary to determine how many terms in the Fourier series are
required for a qualitatively correct plot. (As discussed in the text, this number decreases as t increases, due to the smooth-
ing of the solution.)

In[555]:= Plot[u[x, 600, 10], {x, 0, 100}, PlotRange → All]

Out[555]=

20 40 60 80 100

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

The wiggles at the top of the arch suggest that we did not use enough terms in the Fourier series, so we try again with more
terms. (Of course, perhaps those wiggles are really part of the solution. In that case, they will persist when we draw the
graph with more terms.)

mathtut2Open.nb 81

In[556]:= Plot[u[x, 600, 20], {x, 0, 100}, PlotRange → All]

Out[556]=

20 40 60 80 100

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

In[557]:= Plot[u[x, 600, 40], {x, 0, 100}, PlotRange → All]

Out[557]=

20 40 60 80 100

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

82 mathtut2Open.nb

In[558]:= Plot[{u[x, 600, 10], u[x, 600, 20], u[x, 600, 40]}, {x, 0, 100}, PlotRange → All]

Out[558]=

20 40 60 80 100

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

The above graphs suggest that 20 terms is enough for a qualitatively correct graph at t=600.

■ Section 6.4: Finite element methods for the heat equation

Now we show how to use the backward Euler method with the finite element method to (approximately) solve the heat
equation. Since the backward Euler method is implicit, it is necessary to solve an equation at each step. This makes it
difficult to write a general-purpose program implementing backward Euler, and we do not attempt to do so. Instead, the
command beuler (defined below) applies the algorithm to the system of ODEs

M
dα

dt
+ Kα = f (t), t > 0,

α (0) = α0,

which is the result of applying the finite element method to the heat equation.

In[559]:= ClearAll[M, K, f, a0, n, dt, beuler]

beuler[M_, K_, f_, a0_, n_, dt_] :=

Modulei, L, U = Tablei * dt, Null, i, 0, n;

U[[1, 2]] = a0;

L = M + dt * K;

DoUi + 1, 2 = LinearSolveL, M.Ui, 2 + dt * fUi + 1, 1, i, 1, n;

U

To solve a specific problem, we have to compute the mass matrix M, the stiffness matrix K, the load vector f, and the initial
data α0. The techniques should by now be familiar.

Example 6.8

An 100 cm iron bar, with ρ=7.88 gcm3, c=0.437 J/(g K), and κ=0.836 W/(cm K), is chilled to an initial temperature of 0

degrees, and then heated internally with both ends maintained at 0 degrees. The heat source is described by the following
function:

mathtut2Open.nb 83

In[561]:= ClearAll[F, x, t]

F[x_, t_] = 10^(-8) t x (100 - x)^2

Out[562]=
t (100 - x)2 x

100 000 000

The temperature distribution is the solution of the IBVP

ρc
∂u

∂t
- κ

∂2 u

∂x2
= F (x, t), 0 < x < 100, t > 0,

u (x, 0) = 0, 0 < x < 100,

u (0, t) = 0, t > 0,

u (100, t) = 0, t > 0.

We begin by defining the mesh and the constants:

In[563]:= ClearAll[n, h, k, p, c]

n = 100

h = 100. / n

k = 0.836

p = 7.88

c = 0.437

Out[564]= 100

Out[565]= 1.

Out[566]= 0.836

Out[567]= 7.88

Out[568]= 0.437

Next we define the stiffness matrix (for this constant coefficient problem, there is no need to perform any integrations---we
already know the entries in the stiffness matrix):

In[569]:= ClearAllK, i, j

K = Table0.0, i, 1, n - 1, j, 1, n - 1;

DoKi, i = 2 k / h, i, 1, n - 1

DoKi, i + 1 = -k / h;

Ki + 1, i = Ki, i + 1, i, 1, n - 2

Similarly, we know the entries of the mass matrix:

In[573]:= ClearAllM, i, j

M = Table0.0, i, 1, n - 1, j, 1, n - 1;

DoMi, i = 2 h p c / 3, i, 1, n - 1

DoMi, i + 1 = h p c / 6;

Mi + 1, i = Mi, i + 1, i, 1, n - 2

The load vector f = f (t) (which is a vector-valued function) can be computed with the Table command:

84 mathtut2Open.nb

In[577]:= ClearAllphi1, phi2, x, i

phi1x_, i_ = x - i - 1 * h  h

phi2x_, i_ = -x - i + 1 * h  h

Out[578]= 1. (-1. (-1 + i) + x)

Out[579]= 1. (1. (1 + i) - x)

In[580]:= ClearAll[f, t]

f[t_] = TableIntegrateF[x, t] × phi1x, i, x, i * h - h, i * h +

IntegrateF[x, t] × phi2x, i, x, i * h, i * h + h, i, 1, n - 1;

Finally, before invoking beuler, we need the initial vector:

In[582]:= ClearAll[a0]

a0 = Table0.0, i, 1, n - 1;

Now we choose the time step and the number of time steps, and invoke the backward Euler method:

In[584]:= ClearAll[dt, steps, U]

dt = 2.

steps = 180. / dt

U = beuler[M, K, f, a0, steps, dt];

Out[585]= 2.

Out[586]= 90.

Finally, we set up a table of data and display the result at time t=10. Note that U[[steps+1,1]] is the final time (in this case,
t = 180) and U[[steps+1,2]] is the vector of nodal values of the piecewise linear function approximating u(x, t) for this
value of t.

mathtut2Open.nb 85

In[588]:= ClearAllX, i, u, dat

X = Tablei * h, i, 0, n;

u = Flatten[{0, U[[steps + 1, 2]], 0}];

dat = Transpose[{X, u}];

ListPlot[dat]

Out[592]=

20 40 60 80 100

1

2

3

4

5

6

7

Chapter 8: First-order PDEs and the Method of Characteristics

■ Section 8.1: The simplest PDE and the method of characteristics

When solving PDEs in two variables, it is sometimes desirable to graph the solution as a function of two variables (that is,
as a surface), rather than plotting snapshots of the solution. This is particularly appropriate when neither variable is time.

The Plot3D function plots a function of two variables:

In[593]:= ClearAll[u, x, y]

u[x_, y_] = 1 / (1 + (x + y / 2)^2)

Out[594]=
1

1 + x +
y

2

2

86 mathtut2Open.nb

In[595]:= Plot3D[u[x, y], {x, -5, 5}, {y, 0, 10}]

Out[595]=

If you would like to see the surface from a different angle, you can click on the figure and rotate it by moving the mouse
(i.e. put the pointer on the figure, hold down the left mouse button, and move the mouse).

■ Section 8.2: First-order quasi-linear PDEs

The purpose of the method of characteristics is to reduce a PDE to a family of ODEs. Mathematica has a function called
DSolve that will solve many ordinary differential equations symbolically. We will illustrate the use of DSolve in the
context of Example 8.6 from the text.

The method of characteristics reduces the PDE in Example 8.6 to the IVP
dv

dt
= v2, v (0) =

1

1 + s2
.

DSolve will solve this problem as follows:

In[596]:= ClearAll[v, t, s]

DSolve[{v'[t] ⩵ v[t]^2, v[0] == 1 / (1 + s^2)}, v[t], t]

Out[597]= v[t] →
1

1 + s2 - t


If no initial condition is given, DSolve will return the general solution of the ODE:

mathtut2Open.nb 87

In[598]:= DSolve[v'[t] ⩵ v[t]^2, v[t], t]

Out[598]= v[t] →
1

-t - C[1]


DSolve will solve a system of ODEs (when possible). Here is the system of ODEs from Example 8.7:
dx

dt
= v, x (0) = s,

dy

dt
= y, y (0) = 1,

dv

dt
= x, v (0) = 2 s.

The solution is given as follows:

In[599]:= ClearAll[x, y, v, t, s, sol]

sol = DSolve[{x'[t] == v[t], y'[t] == y[t], v'[t] == x[t],

x[0] == s, y[0] == 1, v[0] == 2 s}, {x[t], y[t], v[t]}, t]

Out[600]= v[t] →
1

2
ⅇ-t 1 + 3 ⅇ2 t s, x[t] →

1

2
ⅇ-t -1 + 3 ⅇ2 t s, y[t] → ⅇt

The solutions can be defined for further use as follows:

In[601]:= x[t_] = (x[t] /. sol[[1]])

y[t_] = (y[t] /. sol[[1]])

v[t_] = (v[t] /. sol[[1]])

Out[601]=
1

2
ⅇ-t -1 + 3 ⅇ2 t s

Out[602]= ⅇt

Out[603]=
1

2
ⅇ-t 1 + 3 ⅇ2 t s

Chapter 11: Problems in multiple spatial dimensions

■ Section 11.2: Fourier series on a rectangular domain

Fourier series calculations on a rectangular domain proceed in almost the same fashion as in one-dimensional problems.
The key difference is that we must compute double integrals and double sums in place of single integrals and single sums.
Fortunately, Mathematica makes this easy. We do not need to learn any new commands, since a double integral over a
rectangle can be computed as an iterated integral.

As an example, we compute the Fourier double sine series of the following function f on the unit square:

88 mathtut2Open.nb

In[604]:= ClearAll[f, x, y]

f[x_, y_] = x (1 - x) y (1 - y)^2

Out[605]= (1 - x) x (1 - y)2 y

The Fourier series has the form



m=1

∞



n=1

∞

amn sin (mπx) sin (nπy),

where

amn = 4 
0

1


0

1

f (x, y) sin (mπx) sin (nπy) dydx.

We calculate amn directly and define a function a(m, n) for convenience. As usual, when performing Fourier series computa-
tions, we want Mathematica to know which symbols represent integers.

In[606]:= $Assumption = Element[{m, n}, Integers]

Out[606]= m ∈ Integers

In[607]:= ClearAll[m, n, x, y]

a[m_, n_] =

4 IntegrateIntegratef[x, y] Sinm Pi x Sinn Pi y, {y, 0, 1}, {x, 0, 1}

Out[608]= -
8 (-1 + (-1)m) (2 n π (2 + Cos[n π]) - 6 Sin[n π])

m3 n4 π7

Note that, when computing an iterated integral, there is no need to nest the Integrate commands (that is, a single Integrate
suffices):

In[609]:= 4 Integratef[x, y] Sinm Pi x Sinn Pi y, {y, 0, 1}, {x, 0, 1}

Out[609]= -
8 (-1 + (-1)m) (2 n π (2 + Cos[n π]) - 6 Sin[n π])

m3 n4 π7

The same is true when defining a double sum. Here is the function representing the (partial) Fourier series:

In[610]:= ClearAll[S, x, y, M]

S[x_, y_, M_] := Suma[m, n] Sinm Pi x Sinn Pi y, {n, 1, M}, {m, 1, M}

Here is the graph of f:

mathtut2Open.nb 89

In[612]:= Plot3D[f[x, y], {x, 0, 1}, {y, 0, 1}]

Out[612]=

We compare the above graph with the partial Fourier series having 100 terms:

90 mathtut2Open.nb

In[613]:= Plot3D[S[x, y, 10], {x, 0, 1}, {y, 0, 1}]

Out[613]=

The approximation looks pretty good. To confirm this, we graph the error:

In[614]:= Plot3D[f[x, y] - S[x, y, 10], {x, 0, 1}, {y, 0, 1}]

Out[614]=

mathtut2Open.nb 91

Looking at the vertical scale on the last two plots, we see that the relative difference between f and its partial Fourier series
with 100 terms is only about 0.1%.

Improving efficiency of double Fourier series calculations

If you create a few plots of a double Fourier series, particularly experimenting with the number of terms in the series, you
will soon notice that it takes quite a bit of time to produce the plots. This is not surprising, when you realize that Plot3D
samples the function on a 15 by 15 grid (225 points) by default. Evaluating a sum with hundreds or thousands of terms that
many times is bound to be time-consuming. To demonstrate this, we use the built-in TimeUsed function, which records
the CPU time used by the Mathematica kernel since the beginning of the session.

In[615]:= tmp = TimeUsed[];

Plot3D[S[x, y, 10], {x, 0, 1}, {y, 0, 1}]

PrintTimeUsed[] - tmp

Out[616]=

18.5977

So it took about 16 seconds to create the above graph. (When you execute the above on your computer, you will most
likely get a different result; your computer may be faster or slower.)

One way to gain efficiency is to force Mathematicato evaluate expressions numerically early in its computations rather than
late. Certainly, in computing points to plot, Mathematica must, in the end, obtain numerical values. However, it is liable to
manipulate the expression symbolically as much as it can before doing a numerical evaluation. It is better to force it to do
numerical computation throughout. In our example, we can do this by defining the coefficients as numerical rather than
symbolic quantities:

92 mathtut2Open.nb

In[618]:= tmp = a[m, n]

Out[618]= -
8 (-1 + (-1)m) (2 n π (2 + Cos[n π]) - 6 Sin[n π])

m3 n4 π7

In[619]:= ClearAll[a, m, n]

a[m_, n_] = N[tmp]

Out[620]= -
0.00264875 (-1. + (-1.)m) (6.28319 n (2. + Cos[3.14159 n]) - 6. Sin[3.14159 n])

m3 n4

Now that amn is defined by numerical quantities, we redefine S:

In[621]:= ClearAll[S, x, y, M, m, n]

S[x_, y_, M_] := SumSinm Pi x Suma[m, n] Sinn Pi y, {n, 1, M}, {m, 1, M}

This allows Mathematica to produce the plot much more quickly:

In[623]:= tmp = TimeUsed[];

Plot3D[S[x, y, 10], {x, 0, 1}, {y, 0, 1}]

PrintTimeUsed[] - tmp

Out[624]=

0.845885

By the way, let us look again at the error in the Fourier approximation:

mathtut2Open.nb 93

In[626]:= Plot3D[f[x, y] - S[x, y, 10], {x, 0, 1}, {y, 0, 1}]

Out[626]=

Since both f and S are smooth functions, why does the surface appear so jagged? The answer is simply that the grid on
which Mathematica sampled the function f - S is not fine enough to give an accurate graph. We can produce a more
accurate graph by refining this grid via the PlotPoints option. The option PlotPoints->k causes Mathematica to use a grid
with k2 points (the default is k=15). Of course, requesting a finer grid will result in a more time-consuming computation:

94 mathtut2Open.nb

In[627]:= Plot3Df[x, y] - S[x, y, 10], {x, 0, 1}, {y, 0, 1}, PlotPoints → 50

Out[627]=

■ Section 11.3: Fourier series on a disk

The Bessel functions Jn(s) are built-in functions in Mathematica, just as are the more common elementary functions sine,
cosine, exp, and so forth, and can be used just as conveniently. For example, here is the graph of J0:

In[628]:= Plot[BesselJ[0, x], {x, 0, 10}]

Out[628]=

2 4 6 8 10

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

(Notice that the first argument to BesselJ is the index n.) As an example, we compute the smallest roots s01, s02, and s03 of

mathtut2Open.nb 95

(Notice argument .) example, compute
J0. The above graph shows that these roots are about 2.5, 5.5, and 8.5, respectively.

In[629]:= FindRoot[BesselJ[0, x] ⩵ 0, {x, 2.5}]

Out[629]= {x → 2.40483}

In[630]:= FindRoot[BesselJ[0, x] ⩵ 0, {x, 5.5}]

Out[630]= {x → 5.52008}

In[631]:= FindRoot[BesselJ[0, x] ⩵ 0, {x, 8.5}]

Out[631]= {x → 8.65373}

Graphics on the disk

Functions defined on a disk are naturally described by cylindrical coordinates, that is, as z=f(r,θ), where (r,θ) are polar
coordinates. We must use a special command to draw the surface of such a function: ParametricPlot3D. This command
will graph any surface parametrized by two variables. As an example, we will use it to graph a surface z=f(r,θ), thinking of
r and θ as the parameters. ParametricPlot3D requires that we also parametrize the other cartesian coordinates, x and y.
We do this using the standard relationships x = r cos(θ) and y = r sin(θ).

For example, consider the eigenfunction ϕ11
(1)(r, θ) = J1 (s11 r) cos(θ) of the Laplacian on the unit disk. First, we must

compute the root s11 of J1:

In[632]:= Plot[BesselJ[1, x], {x, 0, 10}]

Out[632]=

2 4 6 8 10

-0.2

0.2

0.4

0.6

In[633]:= FindRoot[BesselJ[1, x], {x, 4.}]

Out[633]= {x → 3.83171}

In[634]:= s11 = (x /. %)

Out[634]= 3.83171

96 mathtut2Open.nb

In[635]:= ClearAllr, t, phi

phi[r_, t_] = BesselJ[1, s11 r] Cos[t]

Out[636]= BesselJ[1, 3.83171 r] Cos[t]

Here is the plot of the parametrized surface:

In[637]:= ParametricPlot3Dr Cos[t], r Sin[t], phi[r, t], {r, 0, 1}, t, 0, 2 Pi

Out[637]=

Chapter 12: More about Fourier series

■ Section 12.1: The complex Fourier series

It is no more difficult to compute complex Fourier series than the real Fourier series discussed earlier. You should recall
that the imaginary unit -1 is represented by I in Mathematica. As an example, we compute the complex Fourier series
of the function f (x) = x2 on the interval [-1,1].

mathtut2Open.nb 97

In[638]:= $Assumptions = Element[{m, n}, Integers]

Out[638]= (m n) ∈ Integers

In[639]:= ClearAll[f, x, c, n]

f[x_] = x^2

c[n_] = Simplify(1 / 2) Integratef[x] Exp-I Pi n x, {x, -1, 1}

Out[640]= x2

Out[641]=
2 (-1)Abs[n]

n2 π2

The foregoing formula obviously does not hold for n=0, and so we need to compute the coefficient c0 separately:

In[642]:= c[0] = Simplify[(1 / 2) Integrate[f[x], {x, -1, 1}]]

Out[642]=
1

3

Now we can define the partial Fourier series. Recall from Section 12.1 of the text that, since f is real-valued, the following
partial Fourier series is also real-valued:

In[643]:= ClearAll[S, x, M, n]

S[x_, M_] :=

c[0] + Sumc[n] ExpI n Pi x, {n, -M, -1} + Sumc[n] ExpI n Pi x, {n, 1, M}

We check the computation with a graph:

In[645]:= Plot[S[x, 10], {x, -1, 1}]

Out[645]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

The approximation is not bad, as the following graph of the error shows:

98 mathtut2Open.nb

In[646]:= Plot[f[x] - S[x, 10], {x, -1, 1}]

Out[646]=
-1.0 -0.5 0.5 1.0

-0.010

-0.005

0.005

0.010

■ Section 12.2: Fourier series and the FFT

Mathematica implements the fast Fourier transform in the command Fourier. As mentioned in Section 12.2.3 in the text,
there is more than one way to define the FFT (although all are essentially equivalent), and Mathematica does not adopt the
same definition as in the text. However, the Fourier command has an option called FourierParameters that allows you to
select the definition of the FFT used. You can consult the documentation on Fourier for a complete description of the
possibilities for FourierParameters, but, for our purposes, it is enough to know that FourierParameters->{-1,-1} gives
the same definition of the FFT as is used in the textbook.

To illustrate the use of the FFT in Mathematica, here is part of Example 12.3 from Section 12.2. We begin with the
sequence f-3, f-2, f-1, f0, f1, f2 as follows:

In[647]:= ClearAll[f]

f = N[{0, -(2 / 3)^3, -(1 / 3)^3, 0, (1 / 3)^3, (2 / 3)^3}]

Out[648]= {0., -0.296296, -0.037037, 0., 0.037037, 0.296296}

We then rearrange the sequence as explained in Section 12.2.2:

In[649]:= ClearAll[f1]

f1 = {f[[4]], f[[5]], f[[6]], f[[1]], f[[2]], f[[3]]}

Out[650]= {0., 0.037037, 0.296296, 0., -0.296296, -0.037037}

Now we find the FFT of f1. You should note the use of FourierParameters in this command; without it, Mathematica will
use a slightly different definition of the FFT, and the results will be unexpected.

In[651]:= ClearAll[F1]

F1 = Fourierf1, FourierParameters → {-1, -1}

Out[652]= {0. + 0. ⅈ, 0. - 0.096225 ⅈ, 0. + 0.0748417 ⅈ, 0. + 0. ⅈ, 0. - 0.0748417 ⅈ, 0. + 0.096225 ⅈ}

mathtut2Open.nb 99

Finally, we rearrange F1 to find the desired sequence F:

In[653]:= ClearAll[F]

F = {F1[[4]], F1[[5]], F1[[6]], F1[[1]], F1[[2]], F1[[3]]}

Out[654]= {0. + 0. ⅈ, 0. - 0.0748417 ⅈ, 0. + 0.096225 ⅈ, 0. + 0. ⅈ, 0. - 0.096225 ⅈ, 0. + 0.0748417 ⅈ}

The results are the same as in Example 12.3, up to round-off error.

When using the FFT to perform Fourier series computations, it is necessary to swap the first and second halves of a
sequence, as demonstrated in the above example. Using the Take and Flatten commands, this can easily be done. Take
extracts a sublist from a list; Take[f,{m,n}] creates a list whose entries are entries m,m+1,...,n from list f. You should recall
that Flatten creates a single list from a nested list. Thus

In[655]:= Flatten[{Take[f, {4, 6}], Take[f, {1, 3}]}]

Out[655]= {0., 0.037037, 0.296296, 0., -0.296296, -0.037037}

gives the same result as

In[656]:= {f[[4]], f[[5]], f[[6]], f[[1]], f[[2]], f[[3]]}

Out[656]= {0., 0.037037, 0.296296, 0., -0.296296, -0.037037}

If you are going to do this manipulation often, it makes sense to create a command to do it:

In[657]:= ClearAllshift

shift[f_] := Module[{F, n},

n = Length[f];

F = Flatten[{Take[f, {n / 2 + 1, n}], Take[f, {1, n / 2}]}];

F]

In[659]:= shift[f]

Out[659]= {0., 0.037037, 0.296296, 0., -0.296296, -0.037037}

By the way, we can also define a command to reduce the typing associated with the Fourier command:

In[660]:= ClearAll[fft]

fft[f_] := Fourierf, FourierParameters → {-1, -1}

Here is the calculation from Example 12.3, condensed to a single line!

In[662]:= shiftfftshift[f]

Out[662]= {0. + 0. ⅈ, 0. - 0.0748417 ⅈ, 0. + 0.096225 ⅈ, 0. + 0. ⅈ, 0. - 0.096225 ⅈ, 0. + 0.0748417 ⅈ}

100 mathtut2Open.nb

Chapter 13: More about finite element methods

■ Section 13.1: Implementation of finite element methods

In this section, we do more than just explain Mathematica commands, as has been our policy up to this point. We define a
collection of Mathematica functions that implement piecewise linear finite elements on polygonal domains. The interested
reader can experiment with and extend these functions to see how the finite element method works in practice. The
implementation of the finite element method follows closely the explanation given in Section 13.1 of the text, although the
data structure has been extended to allow the code to handle inhomogeneous boundary conditions. (However, the code
itself has not been extended to handle inhomogeneous boundary conditions. This extension has been left as an exercise.)

The finite element code provided consists of about a dozen commands, all of which are defined in the file fempack. There-
fore, before using these commands, you must read in the file (recall the earlier comments about the Directory and SetDirec-
tory commands):

In[663]:= SetDirectory"/Users/msgocken/books/pdebook2/tutorial/mathematica"

Out[663]= /Users/msgocken/books/pdebook2/tutorial/mathematica

In[664]:= << fempack

Each command is documented using the "usage" mechanism. This mechanism defines a message that will be displayed
when the ? operator is used. Here is a simple example:

In[665]:= ClearAll[f]

f[x_] = Sin[x]

f::usage = "f is another name for the sine function."

Out[666]= Sin[x]

Out[667]= f is another name for the sine function.

In[668]:= ? f

f is another name for the sine function.

Describing a mesh

The main commands are stiffness and load, which assemble the stiffness and load vectors for the BVP

-∇ · (a (x, y) ∇u) = f (x, y) in Ω,

u = 0 on Γ1,

∂u

∂n
= 0 on Γ2,

where Γ1 and Γ2 partition the boundary of Ω. However, before any computation can be done, the mesh must be described.
Three routines are provided for creating meshes: rectangleMeshD, rectangleMeshN, and rectangleMeshTopD (these
routines differ in the boundary conditions that are assumed). The data structure is described by the dummy command mesh
(mesh is not actually defined, but it does have a usage message):

mathtut2Open.nb 101

In[669]:= ? mesh

A triangulation of a planar, polygonal region is described by the following
arrays, which are stored together in a structure T:

T[NodeList]: An Mx2 array of real numbers, the coordinates of the
nodes in the mesh.

T[NodePtrs]: An Mx1 array of integers; the ith entry equals the index of
the ith node in T[FNodePtrs] if the node is free, and the negative of
its index in T[CNodePtrs] if the node is constrained.

T[FNodePtrs]: An NNx1 array of integers, where NN is the number of free
nodes. T[FNodePtrs][[i]] is the index of the ith free node in T[NodePtrs].

T[CNodePtrs]: An Kx1 array of integers, where K is the number of
constrained nodes. T[CNodePtrs][[i]] is the index of the ith constrained
node in T[NodePtrs].

T[ElList]: An Lx3 array of integers, where L is the number of triangular
elements. Each row corresponds to one element and contains pointers to
the nodes of the triangle in T[NodeList].

T[ElEdgeList]: An Lx3 matrix. Each row contains flags indicating whether
each edge of the corresponding element is on the boundary (flag is -1
if the edge is a constrained boundary edge, otherwise it equals the
index of the edge in FBndyList) or not (flag is 0). The edges of the
triangle are, in order, those joining vertices 1 and 2, 2 and 3, and
3 and 1.

T[FBndyList]: A Bx2 matrix, where B is the number of free boundary edges
(i.e. those not constrained by Dirichlet conditions). Each row
corresponds to one edge and contains pointers into T[NodeList], yielding
the two vertices of the edge.

For more details, see Section 13.1.1 of 'Partial Differential Equations:
Analytical and Numerical Methods' by Mark S. Gockenbach.

102 mathtut2Open.nb

The command rectangleMeshD creates a regular triangulation of a rectangle of the form [0, lx] x [0, ly], assuming Dirichlet

conditions on the boundary.

In[670]:= ? rectangleMeshD

T=rectangleMeshD[nx,ny,lx,ly] creates a regular triangulation of the
rectangle [0,lx]x[0,ly], with nx and ny subdivisions in the x and y
directions, respectively. Dirichlet conditions are assumed on the
boundary.
For a description of the data structure for T, see ?mesh.

The commands rectangleMeshN and rectangleMeshTopD create the same mesh, but assuming Neumann conditions on
the entire boundary, and mixed boundary conditions (Dirichlet on the top edge, Neumann elsewhere), respectively.

Thus we only provide the means to deal with a single domain shape, a rectangle, and only under three combinations of
boundary conditions. To use this code to solve BVPs on other domains, you will have to write code to generate the mesh
yourself.

Here is a mesh:

In[671]:= T = rectangleMeshD[4, 4, 1.0, 1.0];

This mesh is shown in Figure 13.1 in the text. The showMesh command displays the mesh:

In[672]:= ? showMesh

showMesh[T] graphs the mesh T. For a description of the data
structure for T, see ?mesh.

mathtut2Open.nb 103

In[673]:= showMesh[T]

Out[673]=

Computing the stiffness matrix and the load vector

Here are the main commands:

In[674]:= ? stiffness

K=stiffness[T,a] assembles the stiffness matrix for the BVP
-div(a(x,y)grad u)=f(x,y) in Omega, subject to some combination of
homogeneous Dirichlet and Neumann conditions. Omega and the boundary
conditions are defined by the mesh T. For a description of the
data structure for T, see ?mesh.

104 mathtut2Open.nb

In[675]:= ? load

F=load[T,f] assembles the load vector for the BVP
-div(a(x,y)grad u)=f(x,y) in Omega, subject to some combination of
homogeneous Dirichlet and Neumann conditions. Omega and the boundary
conditions are defined by the mesh T. For a description of the
data structure for T, see ?mesh.

Thus, to apply the finite element method to solve the BVP given above, it is necessary to define the coefficient a and the
forcing function f . As an example, we reproduce the computations from Example 11.10 from the text, in which case
a(x,y)=1 and f(x,y)=x:

In[676]:= ClearAll[a, f, x, y]

a[x_, y_] = 1

f[x_, y_] = x

Out[677]= 1

Out[678]= x

Here is the computation of the stiffness matrix:

In[679]:= ClearAll[K]

K = stiffness[T, a];

MatrixForm[K]

Out[681]//MatrixForm=

4. -1. 0. -1. 0. 0. 0. 0. 0.
-1. 4. -1. 0. -1. 0. 0. 0. 0.
0. -1. 4. 0. 0. -1. 0. 0. 0.
-1. 0. 0. 4. -1. 0. -1. 0. 0.
0. -1. 0. -1. 4. -1. 0. -1. 0.
0. 0. -1. 0. -1. 4. 0. 0. -1.
0. 0. 0. -1. 0. 0. 4. -1. 0.
0. 0. 0. 0. -1. 0. -1. 4. -1.
0. 0. 0. 0. 0. -1. 0. -1. 4.

Next, we compute the load vector:

mathtut2Open.nb 105

In[682]:= ClearAll[F]

F = load[T, f];

MatrixForm[F]

Out[684]//MatrixForm=

0.015625
0.03125
0.046875
0.015625
0.03125
0.046875
0.015625
0.03125
0.046875

Finally, we solve the system Ku=F to get the nodal values:

In[685]:= ClearAll[u]

u = LinearSolve[K, F];

MatrixForm[u]

Out[687]//MatrixForm=

0.015904
0.0273437
0.0270647
0.0206473
0.0351563
0.0340402
0.015904
0.0273438
0.0270647

Given the vector of nodal values (and the mesh), you can graph the computed solution using the showPWLinFcn
command:

In[688]:= ? showPWLinFcn

showPWLinFcn[T,u] graphs the piecewise linear function defined by the
mesh T and the nodal values u. For a description of the data structure
for the mesh T, see ?mesh. u must be a vector of N real numbers, where
N is the number of free nodes in the mesh T. The nodal values at the
constrained nodes are taken to be zero.

106 mathtut2Open.nb

In[689]:= showPWLinFcn[T, u]

Out[689]=

The above solution does not look very good (not smooth, for instance); this is because the mesh is rather coarse. We repeat
the calculation on a finer mesh:

mathtut2Open.nb 107

In[690]:= T = rectangleMeshD[16, 16, 1.0, 1.0];

showMesh[T]

Out[691]=

108 mathtut2Open.nb

In[692]:= ClearAll[K, F, u]

K = stiffness[T, a];

F = load[T, f];

u = LinearSolve[K, F];

showPWLinFcn[T, u]

Out[696]=

For the sake of illustrating mixed boundary conditions, we solve the same PDE with mixed boundary conditions:

mathtut2Open.nb 109

In[697]:= ClearAll[T1, K1, F1, u1]

T1 = rectangleMeshTopD[16, 16, 1.0, 1.0];

K1 = stiffness[T1, a];

F1 = load[T1, f];

u1 = LinearSolve[K1, F1];

showPWLinFcn[T1, u1]

Out[702]=

Testing the code

To see how well the code is working, we solve a problem whose solution is known, and compare the computed solution
with the exact solution. We can easily create a problem with a known solution; we just choose a(x,y) and any u(x,y)
satisfying the boundary conditions, and then compute

-∇ · (a (x, y) ∇u)

to get the right-hand side function f(x,y). For example, suppose we choose the following functions a and u:

110 mathtut2Open.nb

In[703]:= ClearAll[a, u, x, y]

a[x_, y_] = 1 + x^2

u[x_, y_] = x (1 - x) SinPi y

Out[704]= 1 + x2

Out[705]= (1 - x) x Sin[π y]

(notice that u satisfies homogeneous Dirichlet conditions on the unit square). Then we compute f as follows:

In[706]:= ClearAll[f, x, y]

f[x_, y_] = Simplify[-D[a[x, y] × D[u[x, y], x], x] - D[a[x, y] × D[u[x, y], y], y]]

Out[707]= --2 - -2 + π2 x + -6 + π2 x2 - π2 x3 + π2 x4 Sin[π y]

Now we create a coarse mesh and compute the finite element approximate solution:

mathtut2Open.nb 111

In[708]:= ClearAll[T, K, F, U]

T = rectangleMeshD[2, 2, 1.0, 1.0];

K = stiffness[T, a];

F = load[T, f];

U = LinearSolve[K, F];

showPWLinFcn[T, U]

Out[713]=

(The mesh is so coarse that there is only one free node!)

For comparison purposes, let us compute the nodal values of the exact solution on the same mesh. The command nodalVal-
ues does this:

112 mathtut2Open.nb

In[714]:= ? nodalValues

v=nodalValues[T,f] sets v equal to the vector of values of f at
the free nodes of the mesh T. See ?mesh for a description of the
data structure for T.

In[715]:= ClearAll[V]

V = nodalValues[T, u];

showPWLinFcn[T, V]

Out[717]=

To compare the two more directly, we plot the difference:

mathtut2Open.nb 113

In[718]:= showPWLinFcn[T, V - U]

Out[718]=

(Notice the scale on the vertical axis.)

We now repeat with a series of finer meshes:

114 mathtut2Open.nb

In[719]:= ClearAll[T, K, F, U, V]

T = rectangleMeshD[4, 4, 1.0, 1.0];

K = stiffness[T, a];

F = load[T, f];

U = LinearSolve[K, F];

V = nodalValues[T, u];

showPWLinFcn[T, V - U]

Out[725]=

mathtut2Open.nb 115

In[726]:= ClearAll[T, K, F, U, V]

T = rectangleMeshD[8, 8, 1.0, 1.0];

K = stiffness[T, a];

F = load[T, f];

U = LinearSolve[K, F];

V = nodalValues[T, u];

showPWLinFcn[T, V - U]

Out[732]=

116 mathtut2Open.nb

In[733]:= ClearAll[T, K, F, U, V]

T = rectangleMeshD[16, 16, 1.0, 1.0];

K = stiffness[T, a];

F = load[T, f];

U = LinearSolve[K, F];

V = nodalValues[T, u];

showPWLinFcn[T, V - U]

Out[739]=

These plots show that the solution becomes increasingly accurate as the mesh is refined (be sure to compare the vertical
scaled on the plots).

Using the code

The purpose of providing this code is so that you can see how finite element methods are implemented in practice. To
really benefit from the code, you should study it and extend its capabilities. By writing some code yourself, you will learn
how such programs are written. Here are some projects you might undertake, more or less in order of difficulty:

1. Write a command called mass that computes the mass matrix. The calling sequence should be simply M=mass[T],
where T is the triangulation.

mathtut2Open.nb 117

 triangulation.

2. Choose some other geometric shapes and/or combinations of boundary conditions and write mesh generation
routines analogous to rectangleMeshD and rectangleMeshTopD.

3. Extend the code to handle inhomogeneous Dirichlet conditions. Recall that such boundary conditions change the
load vector, so the routine load must be modified.

4. Extend the code to handle inhomogeneous Neumann conditions. Like inhomogeneous Dirichlet conditions, the
load vector is affected.

5. (Hard) Write a routine to refine a given mesh, according to the standard method suggested in Exercise 13.1.4 of the
textbook.

As mentioned above, the mesh data structure described in mesh includes the information necessary to solve exercises 3, 4,
and 5.

■ Section 13.2: Solving sparse linear systems

In this section, we briefly mention Mathematica’s functionality for working with sparse matrices; specifically, it has a data
structure for representing a sparse matrix and its linear algebra commands can be applied to sparse matrices. A sparse
matrix is stored as a SparseArray object.

Representing a sparse matrix

One way to create a sparse matrix is by converting an ordinary matrix to sparse format:

In[740]:= ClearAll[A, B]

A = {{1, 0, 0, 0}, {1, 2, 0, 0}, {0, 0, 3, 4}, {0, 0, 0, 4}};

B = SparseArray[A]

Out[742]= SparseArray
Specified elements: 6
Dimensions: {4, 4} 

In[743]:= MatrixForm[B]

Out[743]//MatrixForm=

1 0 0 0
1 2 0 0
0 0 3 4
0 0 0 4

Another way to define a sparse matrix is to specify its nonzero entries using transformation rules of the form (i, j) -> aij.

118 mathtut2Open.nb

In[744]:= ClearAll[M]

M =

SparseArray[{{1, 1} → 1, {2, 1} → 1, {2, 2} → 2, {3, 3} → 3, {3, 4} → 4, {4, 4} → 4}]

MatrixForm[M]

Out[745]= SparseArray
Specified elements: 6
Dimensions: {4, 4} 

Out[746]//MatrixForm=

1 0 0 0
1 2 0 0
0 0 3 4
0 0 0 4

There are more ways to create sparse matrices in Mathematica; see the documentation for SparseArray for more
information.

Solving a sparse system

Mathematica's LinearSolve command will solve a sparse linear system:

In[747]:= ClearAll[b, x]

b = {1, -1, 2, 4}

x = LinearSolve[B, b]

Out[748]= {1, -1, 2, 4}

Out[749]= 1, -1, -
2

3
, 1

In[750]:= B.x - b

Out[750]= {0, 0, 0, 0}

Other linear algebra commands also work on sparse matrices:

In[751]:= {evals, evecs} = Eigensystem[B]

Out[751]= {{4, 3, 2, 1}, {{0, 0, -4, -1}, {0, 0, 1, 0}, {0, -1, 0, 0}, {-1, 1, 0, 0}}}

In[752]:= Det[B]

Out[752]= 24

In[753]:= B[[1, 1]]

Out[753]= 1

Some projects

You may want to do one of the following projects to explore the advantages of sparsity:

1. Write a command to create a sparse, nonsingular matrix with random entries. The command should return the same
matrix stored in both dense matrix form (i.e. as a list of row vectors, not taking advantage of the fact that many

mathtut2Open.nb 119

 (i.e. taking advantage many
entries are zero) and sparse matrix form (i.e. as a list of transformation rules, listing the nonzeros entries). Then
compare the efficiency of LinearSolve when applied to the same matrix in the different formats.

2. Rewrite the stiffness command in the fempack code to create the stiffness matrix in sparse format rather than dense
form.

120 mathtut2Open.nb

