
Chapter 4

Zeros and Roots

This chapter describes several basic methods for computing zeros of functions and
then combines three of the basic methods into a fast, reliable algorithm known as
“zeroin”.

4.1 Bisection
Let’s compute

√
2. We will use interval bisection, which is a kind of systematic trial

and error. We know that
√

2 is between 1 and 2. Try x = 1 1
2 . Because x2 is greater

than 2, this x is too big. Try x = 1 1
4 . Because x2 is less than 2, this x is too small.

Continuing in this way, our approximations to
√

2 are

1
1
2
, 1

1
4
, 1

3
8
, 1

5
16

, 1
13
32

, 1
27
64

, . . .

Here is a Matlab program, including a step counter.

M = 2
a = 1
b = 2
k = 0;
while b-a > eps

x = (a + b)/2;
if x^2 > M

b = x
else

a = x
end
k = k + 1;

end

We are sure that
√

2 is in the initial interval [a,b]. This interval is repeatedly cut
in half and always brackets the answer. The entire process requires 52 steps. Here
are the first few and the last few values:

1

2 Chapter 4. Zeros and Roots

b = 1.50000000000000
a = 1.25000000000000
a = 1.37500000000000
b = 1.43750000000000
a = 1.40625000000000
b = 1.42187500000000
a = 1.41406250000000
b = 1.41796875000000
b = 1.41601562500000
b = 1.41503906250000
b = 1.41455078125000
.....
b = 1.41421356237311
a = 1.41421356237299
a = 1.41421356237305
a = 1.41421356237308
a = 1.41421356237309
b = 1.41421356237310
b = 1.41421356237310

Using format hex, here are the final values of a and b.

a = 3ff6a09e667f3bcc
b = 3ff6a09e667f3bcd

They agree up to the last bit. We haven’t actually computed
√

2, which is irrational
and cannot be represented in floating point. But we have found two successive
floating-point numbers, one on either side of the theoretical result. We’ve come as
close as we can using floating-point arithmetic. The process takes 52 steps because
there are 52 bits in the fraction of an IEEE double-precision number. Each step
decreases the interval length by about one bit.

Interval bisection is a slow but sure algorithm for finding a zero of f(x), a
real-valued function of a real variable. All we assume about the function f(x) is
that we can write a Matlab program that evaluates it for any x. We also assume
that we know an interval [a, b] on which f(x) changes sign. If f(x) is actually a
continuous mathematical function, then there must be a point x∗ somewhere in the
interval where f(x∗) = 0. But the notion of continuity does not strictly apply to
floating-point computation. We might not be able to actually find a point where
f(x) is exactly zero. Our goal is

Find a very small interval, perhaps two successive floating-point num-
bers, on which the function changes sign.

The Matlab code for bisection is

k = 0;
while abs(b-a) > eps*abs(b)

x = (a + b)/2;

4.2. Newton’s Method 3

if sign(f(x)) == sign(f(b))
b = x;

else
a = x;

end
k = k + 1;

end

Bisection is slow. With the termination condition in the above code, it always
takes 52 steps for any function. But it is completely reliable. If we can find a
starting interval with a change of sign, then bisection cannot fail to reduce that
interval to two successive floating-point numbers that bracket the desired result.

4.2 Newton’s Method
Newton’s method for solving f(x) = 0 draws the tangent to the graph of f(x) at any
point and determines where the tangent intersects the x-axis. The method requires
one starting value, x0. The iteration is

xn+1 = xn − f(xn)
f ′(xn)

The Matlab code is

k = 0;
while abs(x - xprev) > eps*abs(x)

xprev = x;
x = x - f(x)/fprime(x)
k = k + 1;

end

As a method for computing square roots, Newton’s method is particularly
elegant and effective. To compute

√
M , find a zero of

f(x) = x2 −M

In this case, f ′(x) = 2x and

xn+1 = xn − x2
n −M

2xn

=
1
2

(
xn +

M

xn

)

The algorithm repeatedly averages x and M/x. The Matlab code is

while abs(x - xprev) > eps*abs(x)
xprev = x;
x = 0.5*(x + M/x);

end

4 Chapter 4. Zeros and Roots

Here are the results for
√

2, starting at x = 1.

1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
1.41421356237309
1.41421356237309

Newton’s method takes only six iterations. In fact, it was done in five, but the sixth
iteration was needed to meet the termination condition.

When Newton’s method works as it does for square roots, it is very effective.
It is the basis for many powerful numerical methods. But, as a general-purpose
algorithm for finding zeros of functions, it has three serious drawbacks.

• The function f(x) must be smooth.

• It might not be convenient to compute the derivative f ′(x).

• The starting guess must be close to the final result.

In principle, the computation of the derivative f ′(x) can be done using a
technique known as tomatic differentiation. A Matlab function, f(x), or a suitable
code in any other programming language, defines a mathematical function of its
arguments. By combining modern computer science parsing techniques with the
rules of calculus, especially the chain rule, it is theoretically possible to generate
the code for another function, fprime(x), that computes f ′(x). However, the actual
implementation of such techniques is quite complicated and has not yet been fully
realized.

The local convergence properties of Newton’s method are very attractive. Let
x∗ be a zero of f(x) and let en = xn − x∗ be the error in the nth iterate. Assume

• f ′(x) and f ′′(x) exist and are continuous.

• x0 is close to x∗.

Then it is possible to prove [2] that

en+1 =
1
2

f ′′(ξ)
f ′(xn)

e2
n

where ξ is some point between xn and x∗. In other words,

en+1 = O(e2
n)

This is called quadratic convergence. For nice, smooth functions, once you are close
enough to the zero, the error is roughly squared with each iteration. The number
of correct digits approximately doubles with each iteration. The results we saw for√

2 are typical.
When the assumptions underlying the local convergence theory are not sat-

isfied, Newton’s method might be unreliable. If f(x) does not have continuous,

4.3. A Perverse Example 5

bounded first and second derivatives, or if the starting point is not close enough to
the zero, then the local theory does not apply and we might get slow convergence,
or even no convergence at all. The next section provides one example of what might
happen.

4.3 A Perverse Example
Let’s see if we can get Newton’s method to iterate forever. The iteration

xn+1 = xn − f(xn)
f ′(xn)

cycles back and forth around a point a if

xn+1 − a = −(xn − a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.1. Newton’s method in an infinite loop

This happens if f(x) satisfies

x− a− f(x)
f ′(x)

= −(x− a)

This is a separable ordinary differential equation.

f ′(x)
f(x)

=
1

2(x− a)

A solution is

f(x) = sign(x− a)
√
|x− a|

The zero of f(x) is, of course, at x∗ = a. A plot of f(x), with a = 2, is
obtained with

6 Chapter 4. Zeros and Roots

ezplot(’sign(x-2)*sqrt(abs(x-2))’,0,4)

If we draw the tangent to the graph at any point, it intersects the x-axis on the
opposite side of x = a. Newton’s method cycles forever, neither converging nor
diverging.

The convergence theory for Newton’s method fails in this case because f ′(x)
is unbounded as x → a. It is also interesting to apply the algorithms discussed in
the next sections to this function.

4.4 Secant Method
The secant method replaces the derivative evaluation in Newton’s method with a
finite difference approximation based on the two most recent iterates. Instead of
drawing a tangent to the graph of f(x) at one point, you draw a secant through
two points. The next iterate is the intersection of this secant with the x-axis.

The iteration requires two starting values, x0 and x1. The subsequent iterates
are given by

sn =
f(xn)− f(xn−1)

xn − xn−1

xn+1 = xn − f(xn)
sn

This formulation makes it clear how Newton’s f ′(xn) is being replaced by the slope
of the secant, sn. The formulation in the following Matlab code is a little more
compact.

while abs(b-a) > eps*abs(b)
c = a;
a = b;
b = b + (b - c)/(f(c)/f(b)-1);
k = k + 1;

end

For
√

2, starting with a = 1 and b = 2, the secant method requires seven iterations,
compared with Newton’s six.

1.33333333333333
1.40000000000000
1.41463414634146
1.41421143847487
1.41421356205732
1.41421356237310
1.41421356237310

The secant method’s primary advantage over Newton’s method is that it does
not require code to compute f ′(x). Its convergence properties are similar. Again,
assuming f ′(x) and f ′′(x) are continuous, it is possible to prove [2] that

en+1 =
1
2

f ′′(ξ)f ′(ξn)f ′(ξn−1)
f ′(ξ)3

enen−1

4.5. Inverse Quadratic Interpolation 7

where ξ is some point between xn and x∗. In other words,

en+1 = O(enen−1)

This is not quadratic convergence, but it is superlinear convergence. It turns out
that

en+1 = O(eφ
n)

where φ is the golden ratio, (1 +
√

5)/2. Once you get close, the number of correct
digits is roughly multiplied by 1.6 with each iteration. That’s almost as fast as
Newton’s method and a whole lot faster than the one bit per step produced by
bisection.

We leave it as an exercise to investigate the behavior of the secant method on
the perverse function from the previous section,

f(x) = sign(x− a)
√
|x− a|

4.5 Inverse Quadratic Interpolation
The secant method uses two previous points to get the next one, so why not use
three?

Suppose we have three values, a, b, and c, and corresponding function values,
f(a), f(b), and f(c). We could interpolate these values by a parabola, a quadratic
function of x, and take the next iterate to be the point where the parabola intersects
the x-axis. The difficulty is that the parabola might not intersect the x-axis; a
quadratic function does not necessarily have real roots. This could be regarded as
an advantage. An algorithm known as Muller’s method uses the complex roots of
the quadratic to produce approximations to complex zeros of f(x). But, for now,
we want to avoid complex arithmetic.

Instead of a quadratic in x, we can interpolate the three points with a quadratic
function in y. That’s a “sideways” parabola, P (y), determined by the interpolation
conditions

a = P (f(a)), b = P (f(b)), c = P (f(c))

This parabola always intersects the x-axis, which is y = 0. So, x = P (0) is the next
iterate.

This method is known as inverse quadratic interpolation. We will abbreviate
it with IQI. Here is Matlab code that illustrates the idea.

k = 0;
while abs(c-b) > eps*abs(c)

x = polyinterp([f(a),f(b),f(c)],[a,b,c],0)
a = b;
b = c;
c = x;
k = k + 1;

end

8 Chapter 4. Zeros and Roots

The trouble with this “pure” IQI algorithm is that polynomial interpolation
requires the abscissae, which in this case are f(a), f(b), and f(c), to be distinct.
We have no guarantee that they are. For example, if we try to compute

√
2 using

f(x) = x2 − 2 and start with a = −2, b = 0, c = 2, we are starting with f(a) = f(c)
and the first step is undefined. If we start nearby this singular situation, say with
a = −2.001, b = 0, c = 1.999, the next iterate is near x = 500.

So, IQI is like an immature race horse. It moves very quickly when it is near
the finish line, but its global behavior can be erratic. It needs a good trainer to
keep it under control.

4.6 Zeroin
The idea behind the zeroin algorithm is to combine the reliability of bisection with
the convergence speed of secant and inverse quadratic interpolation. T. J. Dekker
and colleagues at the Mathematical Center in Amsterdam developed the first version
of the algorithm in the 1960s [3]. Our implementation is based on a version by
Richard Brent [1]. Here is the outline:

• Start with a and b so that f(a) and f(b) have opposite signs.

• Use a secant step to give c between a and b.

• Repeat the following steps until |b− a| < ε|b| or f(b) = 0.

• Arrange a, b, and c so that

– f(a) and f(b) have opposite signs.

– |f(b)| ≤ |f(a)|
– c is the previous value of b.

• If c 6= a, consider an IQI step.

• If c = a, consider a secant step.

• If the IQI or secant step is in the interval [a,b], take it.

• If the step is not in the interval, use bisection.

This algorithm is foolproof. It never loses track of the zero trapped in a
shrinking interval. It uses rapidly convergent methods when they are reliable. It
uses a slow, but sure, method when it is necessary.

4.7 fzerotx, feval

The Matlab implementation of the zeroin algorithm is called fzero. It has several
features beyond the basic algorithm. A preamble takes a single starting guess and
searches for an interval with a sign change. The values returned by the function
f(x) are checked for infinities, NaNs, and complex numbers. Default tolerances can

4.7. fzerotx, feval 9

be changed. Additional output, including a count of function evaluations, can be
requested. Our textbook version of zeroin is fzerotx. We have simplified fzero
by removing most of its additional features, while retaining the essential features of
zeroin.

We can illustrate the use of fzerotx with the zeroth order Bessel function of
the first kind, J0(x). This function is available in Matlab as besselj(0,x). Its
first zero is computed, starting with the interval [0, π], by the statement

fzerotx(’besselj(0,x)’,[0 pi])

The result is

ans =
2.4048

You can see from figure 4.2 that the graph of J0(x) is like an amplitude and frequency
modulated version of cos x. The distance between successive zeros is close to π. The
following code fragment produces figure 4.2 (except for the ’x’, which we will add
later).

for n = 1:10
z(n) = fzerotx(’besselj(0,x)’,[(n-1) n]*pi);

end
x = 0:pi/50:10*pi;
y = besselj(0,x);
plot(z,zeros(1,10),’o’,x,y,’-’)
line([0 10*pi],[0 0],’color’,’black’)
axis([0 10*pi -0.5 1.0])

The function fzerotx takes two arguments. The first specifies the function
F (x) whose zero is being sought and the second specifies the interval [a, b] to search.
fzerotx is an example of a Matlab function function, which is a function that takes
another function as an argument. ezplot is another example. Other chapters of
this book — quadrature, ordinary differential equations, and even random numbers
— also describe “tx” and “gui” M-files that are function functions.

A function can be passed as an argument to another function in five different
ways:

• Function handle

• Inline object

• Name of an M-file

• Expression string

• Symbolic expression

The last two of these are available only with the function functions in our NCM
package.

An expression string is the easiest to use for simple cases, but the least flexible
for more complicated situations. Examples include

10 Chapter 4. Zeros and Roots

0 5 10 15 20 25 30
−0.5

0

0.5

1

x

J
0
(x)

Figure 4.2. Zeros of J0(x)

’cos(pi*t)’
’z^3-2*z-5’
’besselj(0,x)’

Note the single quotation marks that turn the expressions into strings.
An inline object is a way of defining simple functions without creating new

files. Examples include

F = inline(’cos(pi*t)’)
F = inline(’z^3-2*z-5’)
F = inline(’besselj(0,x)’)

An inline object can be used as an argument to a function function, as in

z = fzerotx(F,[0,pi])

An inline object can also be evaluated directly, as in

residual = F(z)

A function handle uses the ’@’ character preceding the name of a built-in
function or a function defined in an M-file. Examples include

@cos
@humps
@bessj0

where bessj0.m is the two-line M-file

function y = bessj0(x)
y = besselj(0,x)

4.7. fzerotx, feval 11

These handles can then be used as arguments to function functions.

z = fzerotx(@bessj0,[0,pi])

Note that @besselj is also a valid function handle, but for a function of two argu-
ments.

Older versions of Matlab allowed the name of an M-file in quotes to specify
a function argument, e.g.

z = fzerotx(’bessj0’,[0,pi])

It is still possible to use this mechanism in Matlab 6.x, but we recommend that
you use function handles instead.

The function functions in the NCM collection also accept a symbolic expression
involving one free variable as their first argument.

syms x
F = besselj(0,x)
z = fzerotx(F,[0,pi])

Inline objects and functions referenced by function handles can define func-
tions of more than one argument. In this case, the values of the extra arguments can
be passed through fzerotx to the objective function. These values remain constant
during the zero finding iteration. This allows us to find where a particular function
takes on a specified value y, instead of just finding a zero. For example, consider
the equation

J0(ξ) = 0.5

Define an inline object of two or even three arguments:

F = inline(’besselj(0,x)-y’,’x’,’y’)

or

B = inline(’besselj(n,x)-y’,’x’,’n’,’y’)

Then either

xi = fzerotx(F,[0,z],.5)

or

xi = fzerotx(B,[0,z],0,.5)

produces

xi =
1.5211

The point (ξ, J0(ξ)) is marked with an ’x’ in figure 4.2.
These functional arguments are evaluated using feval. The expression

12 Chapter 4. Zeros and Roots

feval(F,x,...)

is the same as

F(x,...)

except that feval allows F to be passed as an argument.
The preamble for fzerotx is:

function b = fzerotx(F,ab,varargin);
%FZEROTX Textbook version of FZERO.
% x = fzerotx(F,[a,b]) tries to find a zero of F(x) between
% a and b. F(a) and F(b) must have opposite signs.
% fzerotx returns one end point of a small subinterval of
% [a,b] where F changes sign.
% Additional arguments, fzerotx(F,[a,b],p1,p2,...),
% are passed on, F(x,p1,p2,..).

The first section of code in fzerotx manipulates the argument F to make it accept-
able to feval.

if ischar(F) & exist(F)~=2
F = inline(F);

elseif isa(F,’sym’)
F = inline(char(F));

end

The next section of code initializes the variables a, b, and c that characterize the
search interval. The function F is evaluated at the end points of the initial interval.

a = ab(1);
b = ab(2);
fa = feval(F,a,varargin{:});
fb = feval(F,b,varargin{:});
if sign(fa) == sign(fb)

error(’Function must change sign on the interval’)
end
c = a;
fc = fa;
d = b - c;
e = d;

Here is the beginning of the main loop. At the start of each pass through the loop
a, b, and c are rearranged to satisfy the conditions of the zeroin algorithm.

while fb ~= 0

% The three current points, a, b, and c, satisfy:
% f(x) changes sign between a and b.
% abs(f(b)) <= abs(f(a)).

4.7. fzerotx, feval 13

% c = previous b, so c might = a.
% The next point is chosen from
% Bisection point, (a+b)/2.
% Secant point determined by b and c.
% Inverse quadratic interpolation point determined
% by a, b, and c if they are distinct.

if sign(fa) == sign(fb)
a = c; fa = fc;
d = b - c; e = d;

end
if abs(fa) < abs(fb)

c = b; b = a; a = c;
fc = fb; fb = fa; fa = fc;

end

This section is the convergence test and possible exit from the loop.

m = 0.5*(a - b);
tol = 2.0*eps*max(abs(b),1.0);
if (abs(m) <= tol) | (fb == 0.0),

break
end

The next section of code makes the choice between bisection and the two flavors of
interpolation.

% Choose bisection or interpolation
if (abs(e) < tol) | (abs(fc) <= abs(fb))

% Bisection
d = m;
e = m;

else
% Interpolation
s = fb/fc;
if (a == c)

% Linear interpolation (secant)
p = 2.0*m*s;
q = 1.0 - s;

else
% Inverse quadratic interpolation
q = fc/fa;
r = fb/fa;
p = s*(2.0*m*q*(q - r) - (b - c)*(r - 1.0));
q = (q - 1.0)*(r - 1.0)*(s - 1.0);

end;
if p > 0, q = -q; else p = -p; end;
% Is interpolated point acceptable

14 Chapter 4. Zeros and Roots

if (2.0*p < 3.0*m*q - abs(tol*q)) & (p < abs(0.5*e*q))
e = d;
d = p/q;

else
d = m;
e = m;

end;
end

The final section evaluates F at the next iterate.

% Next point
c = b;
fc = fb;
if abs(d) > tol

b = b + d;
else

b = b - sign(b-a)*tol;
end
fb = feval(F,b,varargin{:});

end

4.8 fzerogui

The M-file fzerogui demonstrates the behavior of zeroin and fzerotx. At each
step of the iteration, you are offered a chance to choose the next point. The choice
always includes the bisection point, shown in red on the computer screen. When
there are three distinct points active, a, b, and c, the IQI point is shown in blue.
When a = c, so there are only two distinct points, the secant point is shown in
green. A plot of f(x) is also provided as a dotted line, but the algorithm does not
“know” these other function values. You can choose any point you like as the next
iterate. You do not have to follow the zeroin algorithm and choose the bisection or
interpolant point. You can even cheat by trying to pick the point where the dotted
line crosses the axis.

We can demonstrate how fzerogui behaves by seeking the first zero of the
Bessel function. It turns out that the first local minimum of J0(x) is located near
x = 3.83. So here are the first few steps of

fzerogui(’besselj(0,x)’,[0 3.83])

Initially, c = b, so the two choices are the bisection point and the secant point.
If you choose the secant point, then b moves there and J0(x) is evaluated at

x = b. We then have three distinct points, so the choice is between the bisection
point and the IQI point.

If you choose the IQI point, the interval shrinks, the GUI zooms in on the
reduced interval, and the choice is again between the bisection and secant points,
which now happen to be close together.

4.8. fzerogui 15

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a b

c

Figure 4.3. Initially, choose secant or bisection

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

a b c

Figure 4.4. Choose IQI or bisection

You can choose either point, or any other point close to them. After two more
steps, the interval shrinks again and the following situation is reached. This is the
typical configuration as we approach convergence. The graph of the function looks
nearly like a straight line and the secant or IQI point is much closer to the desired
zero than the bisection point. It now becomes clear that choosing secant or IQI will
lead to much faster convergence than bisection.

After several more steps, the length of the interval containing a change of sign
is reduced to a tiny fraction of the original length and the algorithm terminates,
returning the final b as its result.

16 Chapter 4. Zeros and Roots

2.2 2.3 2.4 2.5 2.6 2.7

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ab

c

Figure 4.5. Secant and bisection points nearly coincide

2.15 2.2 2.25 2.3 2.35 2.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

a b c

Figure 4.6. Nearing convergence

4.9 Value Finding and Reverse Interpolation
These two problems look very similar.

• Given a function F (x) and a value η, find ξ so that F (ξ) = η.

• Given data (xk, yk) that samples an unknown function F (x), and a value η,
find ξ so that F (ξ) = η.

For the first problem, we are able to evaluate F (x) at any x, so we can use a
zero finder on the translated function f(x) = F (x)− η. This gives us the desired ξ
so that f(ξ) = 0, and hence F (ξ) = η.

4.10. Optimization and fmintx 17

For the second problem, we need to do some kind of interpolation. The most
obvious approach is to use a zero finder on f(x) = P (x) − η, where P (x) is some
interpolant, such as pchiptx(xk,yk,x) or splinetx(xk,yk,x). This often works
well, but it can be expensive. The zero finder calls for repeated evaluation of
the interpolant. With the implementations we have in this book, that involves
repeated calculation of the interpolant’s parameters, and repeated determination of
the appropriate interval index.

A sometimes preferable alternative, known as reverse interpolation, uses pchip
or spline with the roles of xk and yk reversed. This requires monotonicity in the
yk, or at least in a subset of the yk around the target value η. A different piecewise
polynomial, say Q(y), is created with the property that Q(yk) = xk. Now it is not
necessary to use a zero finder. We simply evaluate ξ = Q(y) at y = η.

The choice between these two alternatives depends on how the data is best
approximated by piecewise polynomials. Is it better to use x or y as the independent
variable?

4.10 Optimization and fmintx

The task of finding maxima and minima of functions is closely related to zero finding.
In this section we describe an algorithm similar to zeroin that finds a local minimum
of a function of one variable. The problem specification involves a function f(x) and
an interval [a, b]. The objective is to find a value of x that gives a local minimum
of f(x) on the given interval. If the function is unimodular, that is, has only one
local minimum on the interval, then that minimum will be found. But if there is
more than one local minimum, only one of them will be found, and that one will
not necessarily be minimum for the entire interval. It is also possible that one of
the end points is a minimizer.

Interval bisection cannot be used. Even if we know the values of f(a), f(b),
and f((a + b)/2), we cannot decide which half of the interval to discard and still
keep the minimum enclosed.

Interval trisection is feasible, but inefficient. Let h = (b − a)/3, so u = a + h
and v = b − h divide the interval into three equal parts. Assume we find that
f(u) < f(v). Then we could replace b by v, thereby cutting the interval length by a
factor of two-thirds, and still be sure that the minimum is in the reduced interval.
However, u would be in the center of the new interval and would not be useful in
the next step. We would need to evaluate the function twice each step.

The natural minimization analog of bisection is golden section search. The
idea is illustrated for a = 0 and b = 1 in figure 4.7. Let h = ρ(b − a) where ρ is
a quantity a little bit larger than 1/3 that we have yet to determine. Then the
points u = a+h and v = b−h divide the interval into three unequal parts. For the
first step, evaluate both f(u) and f(v). Assume we find that f(u) < f(v). Then
we know the minimum is between a and v. We can replace b by v and repeat the
process. If we choose the right value for ρ, the point u is in the proper position to
be used in the next step. After the first step, the function has to be evaluated only
once each step.

18 Chapter 4. Zeros and Roots

ρ 1−ρ

u v0 1

uv’0 1−ρ

Figure 4.7. Golden section search

The defining equation for ρ is

ρ

1− ρ
=

1− ρ

1
or

ρ2 − 3ρ + 1 = 0

The solution is

ρ = 2− φ = (3−
√

5)/2 ≈ .382

Here φ is the golden ratio that we used to introduce Matlab in the first chapter
of this book.

With golden section search, the length of the interval is reduced by a factor
of φ− 1 ≈ .618 each step. It would take

−52
log2(φ− 1)

≈ 75

steps to reduce the interval length to roughly eps, the size of IEEE double-precision
roundoff error, times its original value.

After the first few steps, there is often enough history to give three distinct
points and corresponding function values in the active interval. If the minimum
of the parabola interpolating these three points is in the interval, then it, rather
than the golden section point, is usually a better choice for the next point. This
combination of golden section search and parabolic interpolation provides a reliable
and efficient method for one-dimensional optimization.

The proper stopping criteria for optimization searches can be tricky. At a
minimum of f(x), the first derivative f ′(x) is zero. Consequently, near a minimum,
f(x) acts like a quadratic with no linear term,

f(x) ≈ a + b(x− c)2 + . . .

The minimum occurs at x = c and has the value f(c) = a. If x is close to c, say
x ≈ c + δ for small δ, then

f(x) ≈ a + bδ2

4.10. Optimization and fmintx 19

Small changes in x are squared when computing function values. If a and b are com-
parable in size, and nonzero, then the stopping criterion should involve sqrt(eps)
because any smaller changes in x will not affect f(x). But if a and b have different
orders of magnitude, or if either a or c is nearly zero, then interval lengths of size
eps, rather than sqrt(eps), are appropriate.

Matlab includes a function function fminbnd that uses golden section search
and parabolic interpolation to find a local minimum of a real-valued function of a
real variable. The function is based upon a Fortran subroutine by Richard Brent
[1]. Matlab also includes a function function, fminsearch, that uses a technique
known as the Nelder Mead simplex algorithm to search for a local minimum of
a real-valued function of several real variables. The Matlab Optimization Tool-
box is a collection of programs for other kinds of optimization problems, including
constrained optimization, linear programming, and large-scale, sparse optimization.

Our NCM collection includes a function fmintx that is a simplified textbook
version of fminbnd. One of the simplifications involves the stopping criterion. The
search is terminated when the length of the interval becomes less than a specified
parameter tol. The default value of tol is 10−6. More sophisticated stopping
criteria involving relative and absolute tolerances in both x and f(x) are used in
the full codes.

The Matlab demos directory includes a function named humps that is in-
tended to illustrate the behavior of graphics, quadrature, and zero-finding routines.
The function is

h(x) =
1

(x− 0.3)2 + .01
+

1
(x− 0.9)2 + .04

The statements

F = inline(’-humps(x)’);
fmintx(F,-1,2,1.e-4)

takes the steps shown in figure 4.8 and in the following output. We see that golden
section search is used for the second, third, and seventh steps, and that parabolic
interpolation is used exclusively once the search nears the minimizer.

step x f(x)
init: 0.1458980337 -25.2748253202
gold: 0.8541019662 -20.9035150009
gold: -0.2917960675 2.5391843579
para: 0.4492755129 -29.0885282699
para: 0.4333426114 -33.8762343193
para: 0.3033578448 -96.4127439649
gold: 0.2432135488 -71.7375588319
para: 0.3170404333 -93.8108500149
para: 0.2985083078 -96.4666018623
para: 0.3003583547 -96.5014055840
para: 0.3003763623 -96.5014085540
para: 0.3003756221 -96.5014085603

20 Chapter 4. Zeros and Roots

−1 −0.5 0 0.5 1 1.5 2

−100

−80

−60

−40

−20

0

x

−humps(x)

Figure 4.8. Finding the minimum of -humps(x)

Exercises
4.1. Use fzerogui to try to find a zero of each of the following functions in the

given interval. Do you see any interesting or unusual behavior?

x3 − 2x− 5 [0, 3]
sin x [1, 4]
x3 − .001 [−1, 1]
log (x + 2/3) [0, 1]
sign(x− 2)

√
|x− 2| [1, 4]

atan(x)− π/3 [0, 5]
1/(x− π) [0, 5]

4.2. Here is a little footnote to the history of numerical methods. The polynomial

x3 − 2x− 5

was used by Wallis when he first presented Newton’s method to the French
Academy. It has one real root, between x = 2 and x = 3, and a pair of
complex conjugate roots.
(a) Use the Symbolic Toolbox to find symbolic expressions for the three roots.
Warning: the results are not pretty. Convert the expressions to numerical
values.
(b) Use the roots function in Matlab to find numerical values for all three
roots.
(c) Use fzerotx to find the real root.

Exercises 21

(d) Use Newton’s method starting with a complex initial value to find a
complex root.
(e) Can bisection be used to find the complex root? Why or why not?

4.3. Here is a cubic polynomial with three closely spaced real roots.

p(x) = 816x3 − 3835x2 + 6000x− 3125

(a) What are the exact roots of p?
(b) Plot p(x) for 1.43 ≤ x ≤ 1.71. Show the location of the three roots.
(c) Starting with x0 = 1.5, what does Newton’s method do?
(d) Starting with x0 = 1 and x1 = 2, what does the secant method do?
(e) Starting with the interval [1,2], what does bisection do?
(f) What is fzerotx(p,[1,2])? Why?

4.4. What causes fzerotx to terminate?
4.5. (a) How does fzerotx choose between the bisection point and the interpolant

point for its next iterate?
(b) Why is the quantity tol involved in the choice?

4.6. Derive the formula that fzerotx uses for inverse quadratic interpolation.
4.7. Hoping to find the zero of J0(x) in the interval 0 ≤ x ≤ π, we might try the

statement

z = fzerotx(@besselj,[0 pi],0)

This is legal usage of a function handle, and of fzerotx, but it produces
z = 3.1416. Why?

4.8. Investigate the behavior of the secant method on the function

f(x) = sign(x− a)
√
|x− a|

4.9. Find the first ten positive values of x for which x = tanx.
4.10. (a) Compute the first ten zeros of J0(x). You can use our graph of J0(x) to

estimate their location.
(b) Compute the first ten zeros of Y0(x), the zeroth-order Bessel function of
the second kind.
(c) Compute all the values of x between 0 and 10π for which J0(x) = Y0(x).
(d) Make a composite plot showing J0(x) and Y0(x) for 0 ≤ x ≤ 10π, the
first ten zeros of both functions, and the points of intersection.

4.11. The gamma function is defined by an integral,

Γ(x + 1) =
∫ ∞

0

txe−tdt

Integration by parts shows that when evaluated at the integers, Γ(x) inter-
polates the factorial function

Γ(n + 1) = n!

Γ(x) and n! grow so rapidly that they generate floating point overflow for
relatively small values of x and n. It is often more convenient to work with
the logarithms of these functions.

22 Chapter 4. Zeros and Roots

The Matlab functions gamma and gammaln compute Γ(x) and log Γ(x) re-
spectively. The quantity n! is easily computed by the expression

prod(1:n)

but many people expect there to be a function named factorial, so Matlab
has such a function.
(a) What is the largest value of n for which Γ(n + 1) and n! can be exactly
represented by a double-precision floating-point number?
(b) What is the largest value of n for which Γ(n + 1) and n! can be approxi-
mately represented by a double-precision floating-point number that does not
overflow?

4.12. Stirling’s approximation is a classical estimate for log Γ(x + 1).

log Γ(x + 1) ∼ x log(x)− x +
1
2

log(2πx)

Bill Gosper [4] has noted that a better approximation is

log Γ(x + 1) ∼ x log(x)− x +
1
2

log(2πx + π/3)

The accuracy of both approximations improves as x increases.
(a) What is the relative error in Stirling’s approximation and in Gosper’s
approximation when x = 2?
(b) How large must x be for Stirling’s approximation and for Gosper’s ap-
proximation to have a relative error less than 10−6?

4.13. The statements

y = 2:.01:10;
x = gammaln(y);
plot(x,y)

produce a graph of the inverse of the log Γ function.
(a) Write a Matlab function gammalninv that evaluates this function for
any x. That is, given x,

y = gammalninv(x)

computes y so that gammaln(y) is equal to x.
(b) What are the appropriate ranges of x and y for this function?

4.14. Here is a table of the distance, d, that a hypothetical vehicle requires to stop
if the brakes are applied when it is traveling with velocity v.

v d
0 0

10 5
20 20
30 46
40 70
50 102
60 153

Exercises 23

What is the speed limit for this vehicle if it must be able to stop in at most
60 meters? Compute the speed three different ways.
(a) Piecewise linear interpolation
(b) Piecewise cubic interpolation with pchiptx
(c) Reverse piecewise cubic interpolation with pchiptx
Because this is well behaved data, the three values are close to each other,
but not identical.

4.15. Kepler’s model of planetary orbits includes a quantity E, the eccentricity
anomaly, that satisfies the equation

M = E − e sin E

where M is the mean anomaly, and e is the eccentricity of the orbit. For this
exercise, take M = 24.851090 and e = 0.1.
(a) Use fzerotx to solve for E. You should create an inline function with
three parameters,

F = inline(’E - e*sin(E) - M’,’E’,’M’,’e’)

and provide M and e as extra arguments to fzerotx.
(b) An “exact” formula for E is known.

E = M + 2
∞∑

m=1

1
m

Jm(me)sin(mM)

where Jm(x) is the Bessel function of the first kind of order m. Use this
formula, and the besselj(m,x) in Matlab to compute E. How many terms
are needed? How does this value of E compare to the value obtained with
fzerotx?

4.16. Utilities must avoid freezing water mains. If we assume uniform soil condi-
tions, the temperature T (x, t) at a distance x below the surface and time t
after the beginning of a cold snap is given approximately by

T (x, t)− Ts

Ti − Ts
= erf

(
x

2
√

αt

)

Here Ts is the constant surface temperature during the cold period, Ti is the
initial soil temperature before the cold snap, and α is the thermal conductivity
of the soil. If x is measured in meters and t in seconds, then α = 0.138 ·
10−6m2/s. Let Ti = 20◦C, Ts = −15◦C, and recall that water freezes at
0◦C. Use fzerotx to determine how deep a water main should be buried so
that it will not freeze until at least 60 days exposure under these conditions.

4.17. Modify fmintx to provide printed and graphical output similar to that at the
end of section 4.10. Reproduce the results shown in figure 4.8 for -humps(x).

4.18. Let f(x) = 9x2 − 6x + 2. What is the actual minimizer of f(x)? How close
to the actual minimizer can you get with fmintx? Why?

4.19. Theoretically fmintx(@cos,2,4,eps) should return pi. How close does it
get? Why? On the other hand, fmintx(@cos,0,2*pi) does return pi. Why?

24 Chapter 4. Zeros and Roots

4.20. If you use tol = 0 with fmintx(@F,a,b,tol), does the iteration run forever?
Why or why not?

4.21. Derive the formulas for minimization by parabolic interpolation used in the
following portion of fmintx.

r = (x-w)*(fx-fv);
q = (x-v)*(fx-fw);
p = (x-v)*q-(x-w)*r;
q = 2.0*(q-r);
if q > 0.0, p = -p; end
q = abs(q);
r = e;
e = d;
% Is the parabola acceptable?
para = ((abs(p)<abs(0.5*q*r)) & (p>q*(a-x)) & (p<q*(b-x)));
if para

d = p/q;
end

Bibliography

[1] R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice Hall,
Englewood Cliffs, 1973.

[2] G. Dahlquest and A. Björck, Numerical Methods, Prentice Hall, Englewood
Cliffs, 1974.

[3] T. J. Dekker, Finding a Zero by Means of Successive Linear Interpolation,
Constructive Aspects of the Fundamental Theorem of Algebra, B. Dejon and P.
Henrici (editors), Wiley-Interscience, New York, 1969.

[4] Eric Weisstein, World of Mathematics Stirling’s Approximation,
http://mathworld.wolfram.com/StirlingsApproximation.html

25

