
Chapter 3

Interpolation

Interpolation is the process of defining a function that takes on specified values at
specified points. This chapter concentrates on two closely related interpolants, the
piecewise cubic spline and the shape-preserving piecewise cubic named “pchip”.

3.1 The Interpolating Polynomial
We all know that two points determine a straight line. More precisely, any two
points in the plane, (x1, y1) and (x2, y2), with x1 6= x2, determine a unique first
degree polynomial in x whose graph passes through the two points. There are
many different formulas for the polynomial, but they all lead to the same straight
line graph.

This generalizes to more than two points. Given n points in the plane,
(xk, yk), k = 1, . . . , n, with distinct xk’s, there is a unique polynomial in x of degree
less than n whose graph passes through the points. It is easiest to remember that n,
the number of data points, is also the number of coefficients, although some of the
leading coefficients might be zero, so the degree might actually be less than n− 1.
Again, there are many different formulas for the polynomial, but they all define the
same function.

This polynomial is called the interpolating polynomial because it exactly re-
produces the given data.

P (xk) = yk, k = 1, . . . , n

Later, we examine other polynomials, of lower degree, that only approximate the
data. They are not interpolating polynomials.

The most compact representation of the interpolating polynomial is the La-
grange form.

P (x) =
∑

k


∏

j 6=k

x− xj

xk − xj


 yk

1

2 Chapter 3. Interpolation

There are n terms in the sum and n − 1 terms in each product, so this expression
defines a polynomial of degree at most n− 1. If P (x) is evaluated at x = xk, all the
products except the kth are zero. Furthermore, the kth product is equal to one, so
the sum is equal to yk and the interpolation conditions are satisfied.

For example, consider the following data set:

x = 0:3;
y = [-5 -6 -1 16];

The command

disp([x; y])

displays

0 1 2 3
-5 -6 -1 16

The Lagrangian form of the polynomial interpolating this data is

P (x) =
(x− 1)(x− 2)(x− 3)

(−6)
(−5) +

x(x− 2)(x− 3)
(2)

(−6) +

=
x(x− 1)(x− 3)

(−2)
(−1) +

x(x− 1)(x− 2)
(6)

(16)

We can see that each term is of degree three, so the entire sum has degree at
most three. Because the leading term does not vanish, the degree is actually three.
Moreover, if we plug in x = 0, 1, 2, or 3, three of the terms vanish and the fourth
produces the corresponding value from the data set.

Polynomials are usually not represented in their Lagrangian form. More fre-
quently, they are written as something like

x3 − 2x− 5

The simple powers of x are called monomials and this form of a polynomial is said
to be using the power form.

The coefficients of an interpolating polynomial using its power form,

P (x) = c1x
n−1 + c2x

n−2 + · · ·+ cn−1x + cn

can, in principle, be computed by solving a system of simultaneous linear equations




xn−1
1 xn−2

1 · · · x1 1
xn−1

2 xn−2
2 · · · x2 1

· · · · · · · · · · · · 1
xn−1

n xn−2
n · · · xn 1







c1

c2
...

cn


 =




y1

y2
...

yn




The matrix V of this linear system is known as a Vandermonde matrix. Its
elements are

vk,j = xn−j
k

3.1. The Interpolating Polynomial 3

The columns of a Vandermonde matrix are sometimes written in the opposite order,
but polynomial coefficient vectors in Matlab always have the highest power first.

The Matlab function vander generates Vandermonde matrices. For our ex-
ample data set,

V = vander(x)

generates

V =
0 0 0 1
1 1 1 1
8 4 2 1

27 9 3 1

Then

c = V\y’

computes the coefficients

c =
1.0000
0.0000

-2.0000
-5.0000

In fact, the example data was generated from the polynomial x3 − 2x− 5.
One of the exercises asks you to show that Vandermonde matrices are nonsin-

gular if the points xk are distinct. But another one of the exercises asks you to show
that a Vandermonde matrix can be very badly conditioned. Consequently, using the
power form and the Vandermonde matrix is a satisfactory technique for problems
involving a few well-spaced and well-scaled data points. But as a general-purpose
approach, it is dangerous.

In this chapter, we describe several Matlab functions that implement various
interpolation algorithms. All of them have the calling sequence

v = interp(x,y,u)

The first two input arguments, x and y, are vectors of the same length that define
the interpolating points. The third input argument, u, is a vector of points where
the function is to be evaluated. The output, v, is the same length as u and has
elements v(k) = interp(x,y,u(k))

Our first such interpolation function, polyinterp, is based on the Lagrange
form. The code uses Matlab array operations to evaluate the polynomial at all
the components of u simultaneously.

function v = polyinterp(x,y,u)
n = length(x);
v = zeros(size(u));

4 Chapter 3. Interpolation

for k = 1:n
w = ones(size(u));
for j = [1:k-1 k+1:n]

w = (u-x(j))./(x(k)-x(j)).*w;
end
v = v + w*y(k);

end

To illustrate polyinterp, create a vector of densely spaced evaluation points.

u = -.25:.01:3.25;

Then

v = polyinterp(x,y,u);
plot(x,y,’o’,u,v,’-’)

creates figure 3.1.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−10

−5

0

5

10

15

20

25

Figure 3.1. polyinterp

The polyinterp function also works correctly with symbolic variables. For
example, create

symx = sym(’x’)

Then evaluate and display the symbolic form of the interpolating polynomial with

P = polyinterp(x,y,symx)
pretty(P)

3.2. Piecewise Linear Interpolation 5

produces

-5 (-1/3 x + 1)(-1/2 x + 1)(-x + 1) - 6 (-1/2 x + 3/2)(-x + 2)x
-1/2 (-x + 3)(x - 1)x + 16/3 (x - 2)(1/2 x - 1/2)x

This expression is a rearrangement of the Lagrange form of the interpolating poly-
nomial. Simplifying the Lagrange form with

P = simplify(P)

changes P to the power form

P =
x^3-2*x-5

Here is another example, with a data set that is used by the other methods
in this chapter.

x = 1:6;
y = [16 18 21 17 15 12];
disp([x; y])
u = .75:.05:6.25;
v = polyinterp(x,y,u);
plot(x,y,’o’,u,v,’-’);

produces

1 2 3 4 5 6
16 18 21 17 15 12

and figure 3.2.
Already in this example, with only six nicely spaced points, we can begin to

see the primary difficulty with full-degree polynomial interpolation. In between
the data points, especially in the first and last subintervals, the function shows
excessive variation. It overshoots the changes in the data values. As a result, full-
degree polynomial interpolation is hardly ever used for data and curve fitting. Its
primary application is in the derivation of other numerical methods.

3.2 Piecewise Linear Interpolation
You can create a simple picture of the data set from the last section by plotting
the data twice, once with circles at the data points and once with straight lines
connecting the points. The following statements produce figure 3.3.

x = 1:6;
y = [16 18 21 17 15 12];
plot(x,y,’o’,x,y,’-’);

To generate the lines, the Matlab graphics routines use piecewise linear in-
terpolation. The algorithm sets the stage for more sophisticated algorithms. Three
quantities are involved. The interval index k must be determined so that

xk ≤ x < xk+1

6 Chapter 3. Interpolation

1 2 3 4 5 6
10

12

14

16

18

20

22
Full degree polynomial interpolation

Figure 3.2. Full degree polynomial interpolation

The local variable, s, is

s = x− xk

The first divided difference is

δk =
yk+1 − yk

xk+1 − xk

With these quantities in hand, the interpolant is

L(x) = yk + (x− xk)
yk+1 − yk

xk+1 − xk

= yk + sδk (3.1)

This is clearly a linear function that passes through (xk, yk) and (xk+1, yk+1).
The points xk are sometimes called breakpoints or breaks. The piecewise linear

interpolant L(x) is a continuous function of x, but its first derivative, L′(x), is not
continuous. The derivative has a constant value, δk, on each subinterval and jumps
at the breakpoints.

Piecewise linear interpolation is implemented in piecelin.m. The input u
can be a vector of points where the interpolant is to be evaluated. In this case, the
index k is actually a vector of indices. Read this code carefully to understand how
k is computed.

function v = piecelin(x,y,u)
%PIECELIN Piecewise linear interpolation.

3.2. Piecewise Linear Interpolation 7

1 2 3 4 5 6
10

12

14

16

18

20

22
Piecewise linear interpolation

Figure 3.3. Piecewise linear interpolation

% v = piecelin(x,y,u) finds the piecewise linear L(x)
% with L(x(j)) = y(j) and returns v(k) = L(u(k)).

% First divided difference

delta = diff(y)./diff(x);

% Find subinterval indices k so that x(k) <= u < x(k+1)

n = length(x);
k = ones(size(u));
for j = 2:n-1

k(x(j) <= u) = j;
end

% Evaluate interpolant

s = u - x(k);
v = y(k) + s.*delta(k);

8 Chapter 3. Interpolation

3.3 Piecewise Cubic Hermite Interpolation
Many of the most effective interpolation techniques are based on piecewise cubic
polynomials. Let hk denote the length of the kth subinterval,

hk = xk+1 − xk

Then the first divided difference, δk, is

δk =
yk+1 − yk

hk

Let dk denote the slope of the interpolant at xk.

dk = P ′(xk)

For the piecewise linear interpolant, dk = δk−1 or δk, but this is not necessarily true
for higher order interpolants.

Consider the following function on the interval xk ≤ x ≤ xk+1, expressed in
terms of local variables s = x− xk and h = hk

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk +

s2(s− h)
h2

dk+1 +
s(s− h)2

h2
dk

This is a cubic polynomial in s, and hence in x, that satisfies four interpolation
conditions, two on function values and two on the possibly unknown derivative
values.

P (xk) = yk, P (xk+1) = yk+1

P ′(xk) = dk, P ′(xk+1) = dk+1

Functions that satisfy interpolation conditions on derivatives are known as Hermite
or osculatory interpolants, because of the higher order contact at the interpolation
sites. (“Osculari” means “to kiss” in Latin.)

If we happen to know both function values and first derivative values at a
set of data points, then piecewise cubic Hermite interpolation can reproduce that
data. But if we are not given the derivative values, we need to define the slopes
dk somehow. Of the many possible ways to do this, we will describe two, which
Matlab calls pchip and spline.

3.4 Shape Preserving Piecewise Cubic
The acronym pchip abbreviates “piecewise cubic Hermite interpolating polyno-
mial.” Although it is fun to say, the name does not specify which of the many
possible interpolants is actually being used. In fact, spline interpolants are also
piecewise cubic Hermite interpolating polynomials, but with different slopes. Our
particular pchip is a shape-preserving, “visually pleasing” interpolant that was in-
troduced into Matlab fairly recently. It is based on an old Fortran program by

3.4. Shape Preserving Piecewise Cubic 9

1 2 3 4 5 6
10

12

14

16

18

20

22
Shape−preserving Hermite interpolation

Figure 3.4. Shape-preserving piecewise cubic Hermite interpolation

Fritsch and Carlson that is described by Kahaner, Moler, and Nash [2]. Figure 3.4
shows how pchip interpolates our sample data.

The key idea is to determine the slopes dk so that the function values do not
overshoot the data values, at least locally. If δk and δk−1 have opposite signs, or if
either of them is zero, then xk is a discrete local minimum or maximum, so we set

dk = 0

This is illustrated in the first half of figure 3.5. The lower solid line is the piecewise
linear interpolant. Its slopes on either side of the breakpoint in the center have
opposite signs. Consequently, the dashed line has slope zero. The curved line is
the shape-preserving interpolant, formed from two different cubics. The two cubics
interpolate the center value and their derivatives are both zero there. But there is
a jump in the second derivative at the breakpoint.

If δk and δk−1 have the same signs and the two intervals have the same length,
then dk is taken to be the harmonic mean of the two discrete slopes.

1
dk

=
1
2

(
1

δk−1
+

1
δk

)

In other words, at the breakpoint, the reciprocal slope of the Hermite interpolant is
the average of the reciprocal slopes of the piecewise linear interpolant on either side.
This is shown in the other half of figure 3.5. At the breakpoint, the reciprocal slope
of the piecewise linear interpolant changes from 1 to 5. The reciprocal slope of the
dashed line is 3, the average of 1 and 5. The shape-preserving interpolant is formed

10 Chapter 3. Interpolation

from the two cubics that interpolate the center value and that have slope equal to
1/3 there. Again, there is a jump in the second derivative at the breakpoint.

Figure 3.5. Slopes for pchip

If δk and δk−1 have the same signs, but the two intervals have different lengths,
then dk is a weighted harmonic mean, with weights determined by the lengths of
the two intervals.

w1 + w2

dk
=

w1

δk−1
+

w2

δk

where

w1 = 2hk + hk−1, w2 = hk + 2hk−1

This defines the pchip slopes at interior breakpoints, but the slopes d1 and dn

at either end of the data interval are determined by a slightly different, one-sided,
analysis. The details are in pchiptx.m.

3.5 Cubic Spline
Our other piecewise cubic interpolating function is a cubic spline. The term “spline”
refers to an instrument used in drafting. It is a thin, flexible wooden or plastic tool
that is passed through given data points and that defines a smooth curve in be-
tween. The physical spline minimizes potential energy, subject to the interpolation
constraints. The corresponding mathematical spline must have a continuous sec-
ond derivative, and satisfy the same interpolation constraints. The breakpoints of
a spline are also referred to as its knots.

The world of splines extends far beyond the basic one-dimensional, cubic,
interpolatory spline we are describing here. There are multidimensional, high-order,
variable knot, and approximating splines. A valuable expository and reference text
for both the mathematics and the software is A Practical Guide to Splines by Carl
de Boor [4]. De Boor is also the author of the spline function and the Spline
Toolbox for Matlab.

Figure 3.6 shows how spline interpolates our sample data.

3.5. Cubic Spline 11

1 2 3 4 5 6
10

12

14

16

18

20

22
Spline interpolation

Figure 3.6. Cubic spline interpolation

The first derivative P ′(x) of our piecewise cubic function is defined by different
formulas on either side of a knot, xk. Both formulas yield the same value dk at the
knots, so P ′(x) is continuous.

On the kth subinterval, the second derivative is a linear function of s = x−xk,

P ′′(x) =
(6h− 12s)δk + (6s− 2h)dk+1 + (6s− 4h)dk

h2

If x = xk, s = 0 and

P ′′(xk+) =
6δk − 2dk+1 − 4dk

hk

The plus sign in xk+ indicates that this is a one-sided derivative. If x = xk+1,
s = hk and

P ′′(xk+1−) =
−6δk + 4dk+1 + 2dk

hk

On the (k−1)st interval, P ′′(x) is given by a similar formula involving δk−1, dk and
dk−1. At the knot xk,

P ′′(xk−) =
−6δk−1 + 4dk + 2dk−1

hk−1

Requiring P ′′(x) to be continuous at x = xk means that

P ′′(xk+) = P ′′(xk−)

12 Chapter 3. Interpolation

This leads to the condition

hkdk−1 + 2(hk−1 + hk)dk + hk−1dk+1 = 3(hkδk−1 + hk−1δk)

If the knots are equally spaced, so that hk does not depend on k, this becomes

dk−1 + 4dk + dk+1 = 3δk−1 + 3δk

Like our other interpolants, the slopes dk of a spline are closely related to the
differences δk. In the spline case, they are a kind of running average of the δk’s.

The preceding approach can be applied at each interior knot, xk, k = 2, . . . , n−
1 to give n− 2 equations involving the n unknowns dk. As with pchip, a different
approach must be used near the ends of the interval. One effective strategy is known
as “not-a-knot.” The idea is to use a single cubic on the first two subintervals,
x1 ≤ x ≤ x3, and on the last two subintervals, xn−2 ≤ x ≤ xn. In effect, x2 and
xn−1 are not knots. If the knots are equally spaced with all hk = 1, this leads to

d1 + 2d2 =
5
2
δ1 +

1
2
δ2

and

2dn−1 + dn =
1
2
δn−2 +

5
2
δn−1

The details if the spacing is not equal to one are in splinetx.m.
With the two end conditions included, we have n linear equations in n un-

knowns:

Ad = r

The vector of unknown slopes is

d =




d1

d2
...

dn




The coefficient matrix A is tridiagonal.

A =




h2 h2 + h1

h2 2(h1 + h2) h1

h3 2(h2 + h3) h2

.
hn−1 2(hn−2 + hn−1) hn−2

hn−1 + hn−2 hn−2




The right-hand side is

r = 3




r1

h2δ1 + h1δ2

h3δ2 + h2δ3
...

hn−1δn−2 + hn−2δn−1

rn




3.5. Cubic Spline 13

The two values r1 and rn are associated with the end conditions.
If the knots are equally spaced with all hk = 1, the coefficient matrix is quite

simple.

A =




1 2
1 4 1

1 4 1
.

1 4 1
2 1




The right-hand side is

r = 3




5
6δ1 + 1

6δ2

δ1 + δ2

δ2 + δ3
...

δn−2 + δn−1
1
6δn−2 + 5

6δn−1




In our textbook function, splinetx, the linear equations defining the slopes
are solved with the tridisolve function introduced in the chapter on linear equa-
tions. In the spline functions distributed with Matlab and the Spline Toolbox, the
slopes are computed by the Matlab backslash operator,

d = A\r
Because most of the elements of A are zero, it is appropriate to store A in a sparse
data structure. The backslash operator can then take advantage of the tridiagonal
structure and solve the linear equations in time and storage proportional to n, the
number of data points.

In summary, figure 3.7 shows how the four interpolants handle our example
data.

These figures illustrate the tradeoff between smoothness and a somewhat sub-
jective property that we might call local monotonicity or shape preservation.

The piecewise linear interpolant is at one extreme. It has hardly any smooth-
ness. It is continuous, but there are jumps in its first derivative. On the other hand,
it preserves the local monotonicity of the data. It never overshoots the data and it
is increasing, decreasing, or constant on the same intervals as the data.

The full-degree polynomial interpolant is at the other extreme. It is infinitely
differentiable. But it often fails to preserve shape, particularly near the ends of the
interval.

The pchip and spline interpolants are in between these two extremes. The
spline is smoother than pchip. The spline has two continuous derivatives, while
pchip has only one. A discontinuous second derivative implies discontinuous cur-
vature. The human eye can detect large jumps in curvature in graphs and in me-
chanical parts made by numerically controlled machine tools. On the other hand,
pchip is guaranteed to preserve shape, but the spline might not.

14 Chapter 3. Interpolation

Piecewise linear interpolation Full degree polynomial interpolation

Shape−preserving Hermite interpolation Spline interpolation

Figure 3.7. Four interpolants

3.6 pchiptx, splinetx
The M-files pchiptx and splinetx are both based on piecewise cubic Hermite
interpolation. On the kth interval, this is

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk +

s2(s− h)
h2

dk+1 +
s(s− h)2

h2
dk

where s = x−xk and h = hk. The two functions differ in the way they compute the
slopes, dk. Once the slopes have been computed, the interpolant can be efficiently
evaluated using the power form with the local variable s.

P (x) = yk + sdk + s2ck + s3bk

where the coefficients of the quadratic and cubic terms are

ck =
3δk − 2dk − dk+1

h

bk =
dk − 2δk + dk+1

h2

Here is the first portion of code for pchiptx. It calls an internal subfunction to
compute the slopes, then computes the other coefficients, finds a vector of interval

3.6. pchiptx, splinetx 15

indices, and evaluates the interpolant. After the preamble, this part of the code for
splinetx is the same.

function v = pchiptx(x,y,u)
%PCHIPTX Textbook piecewise cubic Hermite interpolation.
% v = pchiptx(x,y,u) finds the shape-preserving piecewise
% P(x), with P(x(j)) = y(j), and returns v(k) = P(u(k)).
%
% See PCHIP, SPLINETX.

% First derivatives

h = diff(x);
delta = diff(y)./h;
d = pchipslopes(h,delta);

% Piecewise polynomial coefficients

n = length(x);
c = (3*delta - 2*d(1:n-1) - d(2:n))./h;
b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;

% Find subinterval indices k so that x(k) <= u < x(k+1)

k = ones(size(u));
for j = 2:n-1

k(x(j) <= u) = j;
end

% Evaluate interpolant

s = u - x(k);
v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));

The code for computing the pchip slopes uses the weighted harmonic mean
at interior breakpoints and a one-sided formula at the endpoints.

function d = pchipslopes(h,delta);
% PCHIPSLOPES Slopes for shape-preserving Hermite cubic.
% pchipslopes(h,delta) computes d(k) = P’(x(k)).

n = length(h)+1;
d = zeros(size(h));
k = find(sign(delta(1:n-2)).*sign(delta(2:n-1)) > 0) + 1;
w1 = 2*h(k)+h(k-1);
w2 = h(k)+2*h(k-1);
d(k) = (w1+w2)./(w1./delta(k-1) + w2./delta(k));

16 Chapter 3. Interpolation

% Slopes at endpoints

d(1) = pchipendpoint(h(1),h(2),delta(1),delta(2));
d(n) = pchipendpoint(h(n-1),h(n-2),delta(n-1),delta(n-2));

function d = pchipendpoint(h1,h2,del1,del2)
% Noncentered, shape-preserving, three-point formula.

d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2);
if sign(d) ~= sign(del1)

d = 0;
elseif (sign(del1) ~= sign(del2)) & (abs(d) > abs(3*del1))

d = 3*del1;
end

The splinetx M-file computes the slopes by setting up and solving a tridiag-
onal system of simultaneous linear equations.

function d = splineslopes(h,delta);
% SPLINESLOPES Slopes for cubic spline interpolation.
% splineslopes(h,delta) computes d(k) = S’(x(k)).
% Uses not-a-knot end conditions.

% Diagonals of tridiagonal system

n = length(h)+1;
a = zeros(size(h)); b = a; c = a; r = a;
a(1:n-2) = h(2:n-1);
a(n-1) = h(n-2)+h(n-1);
b(1) = h(2);
b(2:n-1) = 2*(h(2:n-1)+h(1:n-2));
b(n) = h(n-2);
c(1) = h(1)+h(2);
c(2:n-1) = h(1:n-2);

% Right-hand side

r(1) = ((h(1)+2*c(1))*h(2)*delta(1)+h(1)^2*delta(2))/c(1);
r(2:n-1) = 3*(h(2:n-1).*delta(1:n-2)+ ...

h(1:n-2).*delta(2:n-1));
r(n) = (h(n-1)^2*delta(n-2)+ ...

(2*a(n-1)+h(n-1))*h(n-2)*delta(n-1))/a(n-1);

% Solve tridiagonal linear system

d = tridisolve(a,b,c,r);

3.7. interpgui 17

3.7 interpgui

The M-file interpgui allows you to experiment with the four interpolants discussed
in this chapter.

• Piecewise linear interpolant

• Full-degree interpolating polynomial

• Piecewise cubic spline

• Shape-preserving piecewise cubic

The program can be initialized in several different ways.

• With no arguments, interpgui starts with six zeros.

• With a scalar argument, interpgui(n) starts with n zeros.

• With one vector argument, interpgui(y) starts with equally spaced x’s.

• With two arguments, interpgui(x,y) starts with a plot of y vs. x.

After initialization, the interpolation points can be varied with the mouse. If x
has been specified, it remains fixed. Figure 3.8 is the initial plot generated by our
example data.

Exercises
3.1. Reproduce figure 3.7, with four subplots showing the four interpolants dis-

cussed in this chapter.
3.2. Tom and Ben are twin boys born on October 27, 2001. Here is a table of

their weights, in pounds and ounces, over their first few months.

% Date Tom Ben
W = [10 27 2001 5 10 4 8

11 19 2001 7 4 5 11
12 03 2001 8 12 6 4
12 20 2001 10 14 8 7
01 09 2002 12 13 10 3
01 23 2002 14 8 12 0
03 06 2002 16 10 13 10];

You can use datenum to convert the date in the first three columns to a serial
date number measuring time in days.

t = datenum(W(:,[3 1 2]));

18 Chapter 3. Interpolation

0 1 2 3 4 5 6

8

10

12

14

16

18

20

22

24

Interpolation

Figure 3.8. interpgui

Make a plot of their weights versus time, with circles at the data points and
the pchip interpolating curve in between. Use datetick to relabel the time
axis. Include a title and a legend. The result should look something like
figure 3.9.

3.3. (a) Interpolate this data by each of the four interpolants discussed in this
chapter, piecelin, polyinterp, splinetx, and pchiptx. Plot the results
for −1 ≤ x ≤ 1.

x y
-1.00 -1.0000
-0.96 -0.1512
-0.65 0.3860
0.10 0.4802
0.40 0.8838
1.00 1.0000

(b) What are the values of each of the four interpolants at x = −.3? Which
of these values do you prefer? Why?
(c) The data was actually generated from a low-degree polynomial with in-
teger coefficients. What is that polynomial?

3.4. Make a plot of your hand. Start with

Exercises 19

Nov01 Dec01 Jan02 Feb02 Mar02

4

6

8

10

12

14

16

18
Twins’ weights

P
o

u
n

d
s

Tom
Ben

Figure 3.9. Twins’ weights

figure(’position’,get(0,’screensize’))
axes(’position’,[0 0 1 1])
[x,y] = ginput;

Place your hand on the computer screen. Use the mouse to select a few
dozen points outlining your hand. Terminate the ginput with a carriage
return. You might find it easier to trace your hand on a piece of paper and
then put the paper on the computer screen. You should be able to see the
ginput cursor through the paper. (Save this data. We will refer to it in other
exercises later in this book.)
Now think of x and y as two functions of an independent variable that goes
from one to the number of points you collected. You can interpolate both
functions on a finer grid and plot the result with

n = length(x);
s = (1:n)’;
t = (1:.05:n)’;
u = splinetx(s,x,t);
v = splinetx(s,y,t);
clf reset
plot(x,y,’.’,u,v,’-’);

20 Chapter 3. Interpolation

Figure 3.10. A hand

Do the same thing with pchiptx. Which do you prefer?
Figure 3.10 is the plot of my hand. Can you tell if it is done with splinetx
or pchiptx?

3.5. The previous exercise uses the data index number as the independent variable
for two-dimensional parametric interpolation. This exercise uses, instead, the
angle θ from polar coordinates. In order to do this, the data must be centered
so that it lies on a curve that is starlike with respect to the origin, that is every
ray emanating from the origin meets the data only once. This means that
you must be able to find values x0 and y0 so that the Matlab statements

x = x - x0
y = y - y0
theta = atan2(y,x)
r = sqrt(x.^2 + y.^2)
plot(theta,r)

produce a set of points that can be interpolated with a single-valued function,
r = r(θ). For the data obtained by sampling the outline of your hand, the
point (x0, y0) is located near the base of your palm. See the small circle in
figure 3.10. Furthermore, in order to use splinetx and pchiptx, it is also
necessary to order the data so that theta is monotonically increasing.
Choose a subsampling increment, delta, and let

t = (theta(1):delta:theta(end))’;

Exercises 21

p = pchiptx(theta,r,t);
s = splinetx(theta,r,t);

Examine two plots,

plot(theta,r,’o’,t,[p s],’-’)

and

plot(x,y,’o’,p.*cos(t),p.*sin(t),’-’,s.*cos(t),s.*sin(t),’-’)

Compare this approach with the one used in the previous exercise. Which do
you prefer? Why?

3.6. This exercise requires the Symbolic Toolbox.
(a) What does vandal(n) compute and how does it compute it?
(b) Under what conditions on x is the matrix vander(x) nonsingular?

3.7. Prove that the interpolating polynomial is unique. That is, if P (x) and Q(x)
are two polynomials with degree less than n that agree at n distinct points,
then they agree at all points.

3.8. Give convincing arguments that each of the following descriptions defines
the same polynomial, the Chebyshev polynomial of degree five, T5(x). Your
arguments can involve analytic proofs, symbolic computation, numeric com-
putation, or all three. Two of the representations involve the golden ratio,

φ =
1 +

√
5

2

(a) Power form basis

T5(x) = 16x5 − 20x3 + 5x

(b) Relation to trigonometric functions

T5(x) = cos (5 cos−1 x)

(c) Horner representation

T5(x) = ((((16x + 0)x− 20)x + 0)x + 5)x + 0

(d) Lagrange form

x1, x6 = ±1
x2, x5 = ±φ/2
x3, x4 = ±(φ− 1)/2

yk = (−1)k, k = 1, . . . , 6

T5(x) =
∑

k


∏

j 6=k

x− xj

xk − xj


 yk

22 Chapter 3. Interpolation

(e) Factored representation

z1, z5 = ±
√

(2 + φ)/4

z2, z4 = ±
√

(3− φ)/4
z3 = 0

T5(x) = 16
5∏
1

(x− zk)

(f) Three term recurrence

T0(x) = 1
T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), for n = 2, . . . , 5

3.9. The M-file rungeinterp.m provides an experiment with a famous polynomial
interpolation problem due to Carl Runge. Let

f(x) =
1

1 + 25x2

and let Pn(x) denote the polynomial of degree n − 1 that interpolates f(x)
at n equally spaced points on the interval −1 ≤ x ≤ 1. Runge asked whether
as n increases, does Pn(x) converge to f(x)? The answer is yes for some x,
but no for others.
(a) For what x does Pn(x) → f(x) as n →∞?
(b) Change the distribution of the interpolation points so that they are not
equally spaced. How does this affect convergence? Can you find a distribution
so that Pn(x) → f(x) for all x in the interval?

3.10. We skipped from piecewise linear to piecewise cubic interpolation. How far
can you get with the development of piecewise quadratic interpolation?

3.11. Modify splinetx and pchiptx so that, if called with two output arguments,
they produce both the value of the interpolant and its first derivative. That
is,

[v,vprime] = pchiptx(x,y,u)

and

[v,vprime] = splinetx(x,y,u)

compute P (u) and P ′(u).
3.12. Modify splinetx and pchiptx so that, if called with only two input argu-

ments, they produce PP, the piecewise polynomial structure produced by the
standard Matlab functions spline and pchip and used by ppval.

3.13. (a) Create two functions perpchip and perspline by modifying pchiptx
and splinetx to replace the one-sided and not-a-knot end conditions with
periodic boundary conditions. This requires that the given data has

yn = y1

Exercises 23

and that the resulting interpolant is periodic. In other words, for all x,

P (x + ∆) = P (x)

where

∆ = xn − x1

The algorithms for both pchip and spline involve calculations with yk, hk,
and δk to produce slopes dk. With the periodicity assumption, all of these
quantities become periodic functions, with period n − 1, of the subscript k.
In other words, for all k,

yk = yk+n−1

hk = hk+n−1

δk = δk+n−1

dk = dk+n−1

This makes it possible to use the same calculations at the endpoints that
are used at the interior points in the nonperiodic situation. The special case
code for the end conditions can be eliminated and the resulting M-files are
actually much simpler.
For example, the slopes dk for pchip with equally spaced points, are given by

dk = 0, if sign(δk−1) 6= sign(δk),

1
dk

=
1
2

(
1

δk−1
+

1
δk

)
, if sign(δk−1) = sign(δk),

With periodicity these formulas can also be used at the end points where
k = 1 and k = n because

δ0 = δn−1, and δn = δ1.

For spline, the slopes satisfy a system of simultaneous linear equations, for
k = 2, . . . , n− 1.

hkdk−1 + 2(hk−1 + hk)dk + hk−1dk+1 = 3(hkδk−1 + hk−1δk)

With periodicty, at k = 1 this becomes

h1dn−1 + 2(hn−1 + h1)d1 + hn−1d2 = 3(h1δn−1 + hn−1δ1)

and at k = n,

hndn−1 + 2(hn−1 + h1)dn + hn−1d2 = 3(h1δn−1 + hn−1δ1)

The resulting matrix has two nonzero elements outside the tridiagonal struc-
ture. The additional nonzero elements in the first and last rows are A1,n−1 =
h1 and An,2 = hn−1

(b) Once you have perchip and perspline, you can use the NMC mfile
interp2dgui to investigate closed curve interpolation in two dimensions.
You should find that the periodic boundary conditions do a better job of
reproducing symmetries of closed curves in the plane.

24 Chapter 3. Interpolation

3.14. (a) Modify splinetx so that it forms the full tridiagonal matrix

A = diag(a,-1) + diag(b,0) + diag(c,1)

and uses backslash to compute the slopes.
(b) Monitor condest(A) as the spline knots are varied with interpgui. What
happens if two of the knots approach each other? Find a data set that makes
condest(A) large.

3.15. Modify pchiptx so that it uses a weighted average of the slopes instead of
the weighted harmonic mean.

3.16. (a) Consider

x = -1:1/3:1
interpgui(1-x.^2)

Which, if any, of the four interpolants linear, spline, pchip, and polynomial
are the same? Why?
(b) Same questions for

interpgui(1-x.^4)

3.17. Why does interpgui(4) show only three graphs, not four, no matter where
you move the points?

3.18. Use the Symbolic Toolbox to study the key properties of P (x), the function
used section 3.3 on piecewise cubic Hermite interpolation. You should verify
the equations given for P ′′(x) and for the values of P (x), P ′(x), and P ′′(x)
at the breakpoints xk. You might start with something like

syms x s h y1 y0 d1 d0
P = (3*h*s^2-2*s^3)/h^3*y1 + (h^3-3*h*s^2+2*s^3)/h^3*y0 ...

+ s^2*(s-h)/h^2*d1 + s*(s-h)^2/h^2*d0

and then look at expressions such as

subs(P,s,0)
subs(diff(P,s,2),s,h)

The symbolic functions simplify and pretty might come in handy.
Demonstrate that your new functions work correctly on

x = [0 2*sort(rand(1,6))*pi 2*pi];
y = cos(x + 2*rand*pi);
u = 0:pi/50:2*pi;
v = your_function(x,y,u);
plot(x,y,’o’,u,v,’-’)

3.19. (a) If you want to interpolate census data on the interval 1900 ≤ t ≤ 2000
with a polynomial,

P (t) = c1t
10 + c2t

9 + . . . + c10t + c11

you might be tempted to use the Vandermonde matrix generated by

Exercises 25

t = 1900:10:2000
V = vander(t)

Why is this a really bad idea?
(b) Investigate centering and scaling the independent variable. If you are
using Matlab 6, plot some data, pull down the Tools menu on the figure
window, select Basic Fitting, and find the check box about centering and
scaling. What does this check box do?
(c) Replace the variable t by

s =
t− µ

σ

This leads to a modified polynomial P̃ (s). How are its coefficients related to
those of P (t)? What happens to the Vandermonde matrix? What values of
µ and σ lead to a reasonably well conditioned Vandermonde matrix? One
possibility is

mu = mean(t)
sigma = std(t)

but are there better values?

26 Chapter 3. Interpolation

Bibliography

[1] G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Math-
ematical Computations, Prentice Hall, Englewood Cliffs, 1977.

[2] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software,
Prentice Hall, Englewood Cliffs, 1989.

[3] The MathWorks, Inc., Numerical Computing with MATLAB,
http://www.mathworks.com/moler

[4] C. de Boor, A Practical Guide to Splines, Springer Verlag, New York, 1978.

27

