
Chapter 8

Fourier Analysis

We all use Fourier analysis every day without even knowing it. Cell phones, disc
drives, DVDs and JPEGs all involve fast finite Fourier transforms. This chapter
discusses both the computation and the interpretation of FFTs.

8.1 Touch-Tone Dialing
Touch-tone telephone dialing is an example of everyday use of Fourier analysis.
The basis for touch-tone dialing is the Dual Tone Multi-Frequency system. The
program touchtone demonstrates how DTMF tones are generated and decoded.
The telephone dialing pad acts as a 4-by-3 matrix. Associated with each row and
column is a frequency. These basic frequencies are

fr = [697 770 852 941];
fc = [1209 1336 1477];

If s is a character that labels one of the buttons on the key pad, the corre-
sponding row index k and column index j can be found with

switch s
case ’*’, k = 4; j = 1;
case ’0’, k = 4; j = 2;
case ’#’, k = 4; j = 3;
otherwise,

d = s-’0’; j = mod(d-1,3)+1; k = (d-j)/3+1;
end

A key parameter in digital sound is the sampling rate.

Fs = 32768

A vector of points in the time interval 0 ≤ t ≤ 0.25 at this sampling rate is

t = 0:1/Fs:0.25

1

2 Chapter 8. Fourier Analysis

1209 1336 1477

697

770

852

941

The tone generated by the button in position (k,j) is obtained by superimposing
the two fundamental tones with frequencies fr(k) and fc(j).

y1 = sin(2*pi*fr(k)*t);
y2 = sin(2*pi*fc(j)*t);
y = (y1 + y2)/2;

If your computer is equipped with a sound card, the Matlab statement

sound(y,Fs)

plays the tone.
Figure 8.1 is the display produced by touchtone for the ’1’ button. The

top subplot depicts the two underlying frequencies and the bottom subplot shows a
portion of the signal obtained by averaging the sine waves with those frequencies.

The data file touchtone.mat contains a recording of a telephone being dialed.
Is it possible to determine the phone number by listening to the signal generated?
The statement

load touchtone

loads both a signal y and a sample rate Fs in the workspace. In order to reduce
file size, the vector y has been saved with 8-bit integer components in the range
−127 ≤ yk ≤ 127. The statement

y = double(y)/128;

rescales the vector and converts it to double precision for later use. The statements

n = length(y);
t = (0:n-1)/Fs

8.1. Touch-Tone Dialing 3

400 600 800 1000 1200 1400 1600
0

0.5

1

f(Hz)

1

0 0.005 0.01 0.015

−1

−0.5

0

0.5

1

t(seconds)

Figure 8.1. The tone generated by the 1 button

reproduce the sample times of the recording. The last component of t is 9.1309,
indicating that the recording lasts a little over nine seconds. Figure 8.2 is a plot of
the entire signal.

1 2 3 4 5 6 7 8 9
−1

0

1

Figure 8.2. Recording of an 11-digit telephone number

This signal is noisy. You can even see small spikes on the graph at the times
the buttons were clicked. It is easy to see that eleven digits were dialed, but on this
scale, it is impossible to determine the specific digits.

Figure 8.3 shows the magnitude of the FFT, the finite Fourier transform, of
the signal, which is the key to determining the individual digits.

The plot was produced with

4 Chapter 8. Fourier Analysis

600 800 1000 1200 1400 1600
0

200

400

600

Figure 8.3. FFT of the recorded signal

p = abs(fft(y));
f = (0:n-1)*(Fs/n);
plot(f,p);
axis([500 1700 0 600])

The x-axis corresponds to frequency. The axis settings limit the display to the
range of the DTMF frequencies. There are seven peaks, corresponding to the seven
basic frequencies. This overall FFT shows that all seven frequencies are present
someplace in the signal, but it does not help determine the individual digits.

The touchtone program also lets you break the signal into eleven equal seg-
ments and analyze each segment separately. Figure 8.4 is the display of the first
segment.

1 2 3 4 5 6 7 8 9
−1

−0.5

0

0.5

1

600 800 1000 1200 1400 1600
0

100

200

300

0.38 0.385 0.39 0.395 0.4 0.405 0.41 0.415 0.42
−1

−0.5

0

0.5

1

Figure 8.4. The first segment and its FFT

8.2. Finite Fourier Transform 5

For this segment, there are only two peaks, indicating that only two of the
basic frequencies are present in this portion of the signal. These two frequencies
come from the ’1’ button. You can also see that the wave form of a short portion
of the first segment is similar to the wave form that our synthesizer produces for the
’1’ button. So, we can conclude that the number being dialed in touchtones starts
with a 1. An exercise asks you to continue the analysis and identify the complete
phone number.

8.2 Finite Fourier Transform
The finite, or discrete, Fourier transform of a complex vector y with n elements is
another complex vector Y with n elements,

Yk =
n−1∑

j=0

ωjkyj

where ω is a complex nth root of unity,

ω = e−2πi/n

In this chapter, the mathematical notation follows conventions common in signal
processing literature where i =

√−1 is the complex unit, and j and k are indices
that run from 0 to n− 1.

The Fourier transform can be expressed with matrix-vector notation

Y = Fy

where the finite Fourier transform matrix F has elements

fk,j = ωjk

It turns out that F is nearly its own inverse. More precisely, FH , the complex
conjugate transpose of F , satisfies

FHF = nI

so

F−1 =
1
n

FH

This allows us to invert the Fourier transform.

y =
1
n

FHY

Hence

yj =
1
n

n−1∑

k=0

Ykω̄jk

where ω̄ is the complex conjugate of ω:

ω̄ = e2πi/n

6 Chapter 8. Fourier Analysis

We should point out that this is not the only notation for the finite Fourier
transform in common use. The minus sign in the definition of ω after the first equa-
tion sometimes occurs instead in the definition of ω̄ used in the inverse transform.
The 1/n scaling factor in the inverse transform is sometimes replaced by 1/

√
n

scaling factors in both transforms.
In Matlab, the Fourier matrix F could be generated for any given n by

omega = exp(-2*pi*i/n);
j = 0:n-1;
k = j’
F = omega.^(k*j)

The quantity k*j is an outer product, an n-by-n matrix whose elements are the
products of the elements of two vectors. However, the built-in function fft takes
the finite Fourier transform of each column of a matrix argument, so an easier and
quicker way to generate F is

F = fft(eye(n))

The function fft uses a fast algorithm to compute the finite Fourier transform.
The first “f” stands for both “fast” and “finite”. A more accurate name might be
ffft, but nobody wants to use that. We discuss the fast aspect of the algorithm in
a later section.

8.3 fftgui

The GUI fftgui allows you to investigate properties of the finite Fourier transform.
If y is a vector containing a few dozen elements,

fftgui(y)

produces four plots,

real(y) imag(y)
real(fft(y)) imag(fft(y))

You can use the mouse to move any of the points in any of the plots, and the points
in the other plots respond.

Please run fftgui and try the following examples. Each illustrates some
property of the Fourier transform. If you start with no arguments,

fftgui

all four plots are initialized to zeros(1,32). Click your mouse in the upper left-
hand corner of the upper left-hand plot. You are taking the fft of the zeroth unit
vector, with one in the first component and zeros elsewhere. This should produce
figure 8.5.

The real part of the result is constant and the imaginary part is zero. You
can also see this from the definition

Yk =
n−1∑

j=0

yje
−2ijkπ/n, k = 0, . . . , n− 1

8.3. fftgui 7

real(y) imag(y)

real(fft(y)) imag(fft(y))

Figure 8.5. FFT of the first unit vector is constant

real(y) imag(y)

real(fft(y)) imag(fft(y))

Figure 8.6. FFT of the second unit vector is a pure sinusoid

if y0 = 1 and y1 = · · · = yn−1 = 0. The result is

Yk = 1 · e0 + 0 + · · ·+ 0 = 1, for all k

Click y0 again, hold the mouse down, and move the mouse vertically. The
amplitude of the constant result varies accordingly.

Next, try the second unit vector. Use the mouse to set y0 = 0 and y1 = 1.
This should produce figure 8.6. You are seeing the graph of

Yk = 0 + 1 · e−2ikπ/n + 0 + · · ·+ 0

8 Chapter 8. Fourier Analysis

The nth root of unity can also be written

ω = cos δ − i sin δ, where δ = 2π/n

Consequently, for k = 0, · · · , n− 1,

real(Yk) = cos kδ, imag(Yk) = − sin kδ

We have sampled two trig functions at n equally spaced points in the interval
0 ≤ x < 2π. The first sample point is x = 0 and the last sample point is x = 2π−δ.

real(y) imag(y)

real(fft(y)) imag(fft(y))

Figure 8.7. FFT is the sum of two sinusoids

Now set y2 = 1 and vary y4 with the mouse. One snapshot is figure 8.6. We
have graphs of

cos 2kδ + η cos 4kδ and − sin 2kδ − η sin 4kδ

for various values of η = y4.
The point just to the right of the midpoint of the x-axis is particularly impor-

tant. It is known as the Nyquist point. With the points numbered from 0 to n− 1
for even n, it’s the point with index n

2 . If n = 32, it’s point number 16. Figure 8.8
shows that the fft of a unit vector at the Nyquist point is a sequence of alternating
+1’s and −1’s.

Now let’s look at some symmetries in the FFT. Make several random clicks on
the real(y) plot. Leave the imag(y) plot flat zero. Figure 8.9 shows an example.
Look carefully at the two fft plots. Ignoring the first point in each plot, the real
part is symmetric about the Nyquist point and the imaginary part is antisymmetric
about the Nyquist point. More precisely, if y is any real vector of length n and
Y = fft(y), then

real(Y0) =
∑

yj

8.4. Sunspots 9

real(y) imag(y)

real(fft(y)) imag(fft(y))

Figure 8.8. The Nyquist point

real(y) imag(y)

real(fft(y)) imag(fft(y))

Figure 8.9. Symmetry about the Nyquist point

imag(Y0) = 0
real(Yj) = real(Yn−j), j = 1, · · · , n/2

imag(Yj) = −imag(Yn−j), j = 1, · · · , n/2

8.4 Sunspots
For centuries people have noted that the face of the sun is not constant or uniform in
appearance, but that darker regions appear at random locations on a cyclical basis.

10 Chapter 8. Fourier Analysis

This activity is correlated with weather and other economically significant terrestrial
phenomena. In 1848, Rudolf Wolfer proposed a rule that combined the number and
size of these sunspots into a single index. Using archival records, astronomers
have applied Wolfer’s rule to determine sunspot activity back to the year 1700.
Today the sunspot index is measured by many astronomers and the worldwide
distribution of the data is coordinated by the Solar Influences Data Center at the
Royal Observatory of Belgium [3].

The text file sunspot.dat in the Matlab demos directory has two columns
of numbers. The first column is the years from 1700 to 1987 and the second column
is the average Wolfer sunspot number for each year.

load sunspot.dat
t = sunspot(:,1)’;
wolfer = sunspot(:,2)’;
n = length(wolfer);

There is a slight upward trend to the data. A least squares fit gives the trend
line.

c = polyfit(t,wolfer,1);
trend = polyval(c,t);
plot(t,[wolfer; trend],’-’,t,wolfer,’k.’)
xlabel(’year’)
ylabel(’Wolfer index’)
title(’Sunspot index with linear trend’)

1700 1750 1800 1850 1900 1950
0

20

40

60

80

100

120

140

160

180

200

year

W
ol

fe
r

in
de

x

Sunspot index with linear trend

Figure 8.10. Sunspot index

You can definitely see the cyclic nature of the phenomenon. The peaks and
valleys are a little more than 10 years apart.

8.4. Sunspots 11

Now, subtract off the linear trend and take the finite Fourier transform.

y = wolfer - trend;
Y = fft(y);

The vector |Y |2 is the power in the signal. A plot of power versus frequency
is a periodogram. We prefer to plot |Y |, rather than |Y |2, because the scaling is not
so exaggerated. The sample rate for this data is one observation per year, so the
frequency f has units of cycles per year.

Fs = 1; % Sample rate
f = (0:n/2)*Fs/n;
pow = abs(Y(1:n/2+1));
pmax = 5000;
plot([f; f],[0*pow; pow],’c-’, f,pow,’b.’, ...

’linewidth’,2,’markersize’,16)
axis([0 .5 0 pmax])
xlabel(’cycles/year’)
ylabel(’power’)
title(’Periodogram’)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

cycles/year

po
w

er

Periodogram

Figure 8.11. Periodogram of the sunspot index

The maximum power occurs near frequency = 0.09 cycles/year. We would
like to know the corresponding period in years/cycle. Let’s zoom in on the plot and
use the reciprocal of frequency to label the x-axis.

k = 0:44;
f = k/n;
pow = pow(k+1);
plot([f; f],[0*pow; pow],’c-’,f,pow,’b.’, ...

12 Chapter 8. Fourier Analysis

’linewidth’,2,’markersize’,16)
axis([0 max(f) 0 pmax])
k = 2:3:41;
f = k/n;
period = 1./f;
periods = sprintf(’%5.1f|’,period);
set(gca,’xtick’,f)
set(gca,’xticklabel’,periods)
xlabel(’years/cycle’)
ylabel(’power’)
title(’Periodogram detail’)

144.0 57.6 36.0 26.2 20.6 16.9 14.4 12.5 11.1 9.9 9.0 8.2 7.6 7.0
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

years/cycle

po
w

er

Periodogram detail

Figure 8.12. Detail of periodogram shows 11 year cycle

As expected, there is a very prominent cycle with a length of about 11.1 years.
This shows that over the last 300 years, the period of the sunspot cycle has been
slightly over 11 years.

The code for this section is in the NCM collection, sunspotstx.m. The older
version in toolbox/matlab/demos/sunspots.m uses slightly different notation.

8.5 Periodic Time Series
The tones generated by a touchtone telephone and the Wolfer sunspot index are
two examples of periodic time series, that is functions of time that exhibit periodic
behavior, at least approximately. Fourier analysis allows us to estimate the period
from a discrete set of values sampled at a fixed rate. The following table shows the
relationship between the various quantities involved in this analysis.

8.6. Fast Finite Fourier Transform 13

y data
Fs samples/unit-time
n = length(y) number of samples
t = (0:n-1)/Fs total time
dt = 1/Fs time increment

Y = fft(y) finite Fourier transform
abs(Y) amplitude of FFT
abs(Y).^2 power
f = (0:n-1)*(Fs/n) frequency, cycles/unit-time
(n/2)*(Fs/n) = Fs/2 Nyquist frequency
p = 1./f period, unit-time/cycle

The periodogram is a plot of the FFT amplitude abs(Y), or power abs(Y).^2,
versus the frequency f. You only need to plot the first half because the second half
is a reflection of the first half about the Nyquist frequency.

8.6 Fast Finite Fourier Transform
One-dimensional FFTs with a million points and two-dimensional 1000-by-1000
transforms are common. The key to modern signal and image processing is the
ability to do these computations rapidly.

Direct application of the definition

Yk =
n−1∑

j=0

ωjkyj , k = 0, . . . , n− 1

requires n multiplications and n additions for each of the n components of Y for
a total of 2n2 floating-point operations. This does not include the generation of
the powers of ω. A computer capable of doing one multiplication and addition
every microsecond would require a million seconds, or about 11.5 days, to do a
million-point FFT.

Several people discovered fast FFT algorithms independently, and many peo-
ple have since contributed to their development, but it was a 1965 paper by John
Tukey of Princeton University and John Cooley of IBM Research that is generally
credited as the starting point for the modern usage of the FFT.

Modern fast FFT algorithms have computational complexity O(n log2n) in-
stead of O(n2). If n is a power of 2, a one-dimensional FFT of length n requires
less than 3n log2n floating-point operations. For n = 220, that’s a factor of almost
35,000 faster than 2n2. Even if n = 1024 = 210, the factor is about 70.

With Matlab 6.5 and a 700 MHz Pentium laptop, the time required for
fft(x) if length(x) is 220 = 1048576 is about one second. The built-in fft func-
tion is based on FFTW, “The Fastest Fourier Transform in the West,” developed
at MIT by Matteo Frigo and Steven G. Johnson [1].

The key to the fast FFT algorithms is the fact that the square of the 2n-th
root of unity is the n-th root of unity. Using complex notation

ω = ωn = e−2πi/n

14 Chapter 8. Fourier Analysis

we have

ω2
2n = ωn

The derivation of the fast algorithm starts with the definition of the finite
Fourier transform.

Yk =
n−1∑

j=0

ωjkyj , k = 0, . . . , n− 1

Assume that n is even and that k ≤ n/2− 1. Divide the sum into terms with even
subscripts and terms with odd subscripts.

Yk =
∑

even j

ωjkyj +
∑

odd j

ωjkyj

=
n/2−1∑

j=0

ω2jky2j + ωk

n/2−1∑

j=0

ω2jky2j+1

The two sums on the right are components of the FFTs of length n/2 of the portions
of y with even and odd subscripts. In order to get the entire FFT of length n, we
have to do two FFTs of length n/2, multiply one of these by powers of ω, and
concatenate the results.

The relationship between an FFT of length n and two FFTs of length n/2 can
be expressed compactly in Matlab. If n = length(y) is even,

omega = exp(-2*pi*i/n);
k = (0:n/2-1)’;
w = omega .^ k;
u = fft(y(1:2:n-1));
v = w.*fft(y(2:2:n));

then

fft(y) = [u+v; u-v];

Now, if n is not only even, but actually a power of 2, the process can be
repeated. The FFT of length n is expressed in terms of two FFTs of length n/2,
then four FFTs of length n/4, then eight FFTs of length n/8 and so on until we
reach n FFTs of length one. An FFT of length one is just the number itself. If
n = 2p, the number of steps in the recursion is p. There is O(n) work at each step,
so the total amount of work is

O(np) = O(n log2n)

If n is not a power of 2, it is still possible to express the FFT of length n in
terms of several shorter FFTs. An FFT of length 100 is two FFTs of length 50,
or four FFTs of length 25. An FFT of length 25 can be expressed in terms of five
FFTs of length 5. If n is not a prime number, an FFT of length n can be expressed

8.7. ffttx 15

in terms of FFTs whose lengths divide n. Even if n is prime, it is possible to embed
the FFT in another whose length can be factored. We do not go into the details of
these algorithms here.

The fft function in older versions of Matlab used fast algorithms if the
length was a product of small primes. Beginning with Matlab 6, the fft function
uses fast algorithms even if the length is prime. (See [1].)

8.7 ffttx

Our textbook function ffttx combines the two basic ideas of this chapter. If n is
a power of 2, it uses the O(n log2n) fast algorithm. If n has an odd factor, it uses
the fast recursion until it reaches an odd length, then sets up the discrete Fourier
matrix and uses matrix-vector multiplication.

function y = ffttx(x)
%FFTTX Textbook Fast Finite Fourier Transform.
% FFTTX(X) computes the same finite Fourier transform
% as FFT(X). The code uses a recursive divide and conquer
% algorithm for even order and matrix-vector multiplication
% for odd order. If length(X) is m*p where m is odd and
% p is a power of 2, the computational complexity of this
% approach is O(m^2)*O(p*log2(p)).

x = x(:);
n = length(x);
omega = exp(-2*pi*i/n);

if rem(n,2) == 0
% Recursive divide and conquer
k = (0:n/2-1)’;
w = omega .^ k;
u = ffttx(x(1:2:n-1));
v = w.*ffttx(x(2:2:n));
y = [u+v; u-v];

else
% The Fourier matrix.
j = 0:n-1;
k = j’;
F = omega .^ (k*j);
y = F*x;

end

8.8 fftmatrix

The n-by-n matrix F generated by the Matlab statement

F = fft(eye(n,n))

16 Chapter 8. Fourier Analysis

is a complex matrix whose elements are powers of the nth root of unity,

ω = e−2πi/n

The statement

plot(fft(eye(n,n)))

connects the elements of each column of F and thereby generates a subgraph of the
graph on n points. If n is prime, connecting the elements of all columns generates
the complete graph on n points. If n is not prime, the sparsity of the graph of all
columns is related to the speed of the FFT algorithm. The graphs for n = 8, 9, 10,
and 11 are shown in figure 8.13.

8 9

10 11

Figure 8.13. Graphs of FFT matrix

Because n = 11 is prime, the corresponding graph shows all possible connections.
But the other three values of n are not prime. Some of the links in their graphs
are missing, indicating that the FFT of a vector with that many points can be
computed more quickly.

The program fftmatrix allows you to investigate these graphs.

fftmatrix(n)

plots all the columns of the FFT matrix of order n.

fftmatrix(n,j)

plots only the j+1st column.

fftmatrix

defaults to fftmatrix(10,4). In all cases, uicontrols allow you to change n, j, and
the choice between one or all columns.

8.9. Other Fourier Transforms and Series 17

8.9 Other Fourier Transforms and Series
We have been studying the finite Fourier transform, which converts one finite se-
quence of coefficients into another sequence of the same length, n. The transform
is

Yk =
n−1∑

j=0

yje
−2ijkπ/n, k = 0, . . . , n− 1

The inverse transform is

yj =
1
n

n−1∑

k=0

Yke2ijkπ/n, j = 0, . . . , n− 1

The Fourier integral transform converts one complex function into another.
The transform is

F (µ) =
∫ ∞

−∞
f(t)e−2πiµtdt

The inverse transform is

f(t) =
∫ ∞

−∞
F (µ)e2πiµtdµ

The variables t and µ run over the entire real line. If t has units of seconds, then µ
has units of radians per second. Both functions f(t) and F (µ) are complex valued,
but in most applications the imaginary part of f(t) is zero.

Alternative units use ν = 2πµ, which has units of cycles or revolutions per
second. With this change of variable, there are no factors of 2π in the exponen-
tials, but there are factors of 1/

√
2π in front of the integrals, or a single factor of

1/(2π) in the inverse transform. Maple and the Matlab Symbolic Toolbox use this
alternative notation with the single factor in the inverse transform.

A Fourier series converts a periodic function into an infinite sequence of Fourier
coefficients. Let f(t) be the periodic function and let L be its period, so

f(t + L) = f(t) for all t

The Fourier coefficients are given by integrals over the period

cj =
1
L

∫ L/2

−L/2

f(t)e−2πijtdt, j = . . . ,−1, 0, 1, . . .

With these coefficients, the complex form of the Fourier series is

f(t) =
∞∑

j=−∞
cje

2πijt/L

A discrete-time Fourier transform converts an infinite sequence of data values
into a periodic function. Let xk be the sequence, with the index k taking on all
integer values, positive and negative.

18 Chapter 8. Fourier Analysis

The discrete-time Fourier transform is the complex-valued periodic function

X(eiω) =
∞∑

k=−∞
xkeikω

The sequence can then be represented

xk =
1
2π

∫ π

−π

X(eiω)e−ikωdω, k = . . . ,−1, 0, 1, . . .

The Fourier integral transform involves only integrals. The finite Fourier trans-
form involves only finite sums of coefficients. Fourier series and the discrete-time
Fourier transform involve both integrals and sequences. It is possible to “morph”
any of the transforms into any of the others by taking limits or restricting domains.

Start with a Fourier series. Let L, the length of the period, become infinite
and let j/L, the coefficient index scaled by the period length, become a continuous
variable, µ. Then the Fourier coefficients cj become the Fourier transform F (µ).

Again, start with a Fourier series. Interchanging the roles of the periodic
function and the infinite sequence of coefficients leads to the discrete-time Fourier
transform.

Start with a Fourier series a third time. Now restrict t to a finite number
of integral values, k, and restrict j to the same finite number of values. Then the
Fourier coefficients become the finite Fourier transform.

In the Fourier integral transform context, Parseval’s theorem says
∫ +∞

−∞
|f(t)|2dt =

∫ +∞

−∞
|F (µ)|2dµ

This quantity is known as the total power in a signal.

8.10 Further Reading
VanLoan [4] describes the computational framework for the fast transforms. A page
of links at the FFTW Web site [2] provides useful information.

Exercises
8.1. What is the telephone number recorded in touchtone.mat and analyzed by

touchtone.m?
8.2. Modify touchtone.m so that it can dial a telephone number specified by an

input argument, such as touchtone(’1-800-555-1212’)
8.3. Our version of touchtone.m breaks the recording into a fixed number of

equally spaced segments, each corresponding to a single digit. Modify touchtone
so that it automatically determines the number and the possibly disparate
lengths of the segments.

Exercises 19

8.4. Investigate the use of the Matlab functions audiorecorder and audioplayer,
or some other system for making digital recordings. Make a recording of a
phone number and analyze it with your modified version of touchtone.m.

8.5. Recall that the Fourier matrix F is the n-by-n complex matrix with elements

fk,j = ωjk

where

ω = e−2πi/n

Show that 1√
n
F is unitary. In other words, show that FH , the complex

conjugate transpose of F , satisfies

FHF = nI

The notation here is a little unusual for matrices because the subscripts j
and k run from 0 to n− 1, instead of from 1 to n.

8.6. What relationship between n and j causes fftmatrix(n,j) to produce a
five-point star? What relationship produces a regular pentagon?

8.7. . The climatological phenomenon el Niño results from changes in atmo-
spheric pressure in the southern Pacific ocean. The “Southern Oscillation
Index” is the difference in atmospheric pressure between Easter Island and
Darwin, Australia, measured at sea level at the same moment. The text file
elnino.dat contains values of this index measured on a monthly basis over
the 14 year period 1962 through 1975.
Your assignment is to carry out an analysis similar to the sunspot example
on the el Niño data. The unit of time is one month instead of one year. You
should find there is a prominent cycle with a period of 12 months, and a
second, less prominent, cycle with a longer period. This second cycle shows
up in about three of the Fourier coefficients, so it is hard to measure its
length, but see if you can make an estimate.

8.8. Train whistle. The Matlab demos directory contains several sound samples.
One of them is a train whistle. The statement

load train

gives you a long vector y and a scalar Fs whose value is the number of samples
per second. The time increment is 1/Fs seconds.
If your computer has sound capabilities, the statement

sound(y,Fs)

plays the signal, but you don’t need that for this problem.
The data does not have a significant linear trend. There are two pulses of
the whistle, but the harmonic content of both pulses is the same.
(a) Plot the data with time in seconds as the independent variable.
(b) Produce a periodogram with frequency in cycles/second as the indepen-
dent variable.

20 Chapter 8. Fourier Analysis

(c) Identify the frequencies of the six peaks in the periodogram. You should
find that ratios between these six frequencies are close to ratios between
small integers. For example, one of the frequencies is 5/3 times another. The
frequencies that are integer multiples of other frequencies are overtones. How
many of the peaks are fundamental frequencies and how many are overtones?

8.9. Bird chirps. Analyze the chirp sound sample from the Matlab demos di-
rectory. By ignoring a short portion at the end, it is possible to segment the
signal into eight pieces of equal length, each containing one chirp. Plot the
magnitude of the FFT of each segment. Use subplot(4,2,k) for k = 1:8
and the same axis scaling for all subplots. Frequencies in the range from
roughly 400 Hz to 800 Hz are appropriate. You should notice that one or two
of the chirps have distinctive plots. If you listen carefully, you should be able
to hear the different sounds.

Bibliography

[1] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for
the FFT, Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
3 (1998), pp. 1381–1384.
http://www.fftw.org

[2] M. Frigo and S. G. Johnson, Links to FFT-related resources.
http://www.fftw.org/links.html

[3] Solar Influences Data Center.
http://sidc.oma.be

[4] C. Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM Publications, Philadelphia, PA., 1992, 273 pages.

21

