
Chapter 1

Introduction to MATLAB

This book is an introduction to two subjects, Matlab and numerical computing.
This first chapter introduces Matlab by presenting several programs that inves-
tigate elementary, but interesting, mathematical problems. If you already have
some experience programming in another language, we hope that you can see how
Matlab works by simply studying these programs.

If you want a more comprehensive introduction, an on-line manual from The
MathWorks is available. Select Help in the toolbar atop the Matlab command
window, then select MATLAB Help and Getting Started. A PDF version is available
under Printable versions. The document is also available from The MathWorks Web
site [10]. Many other manuals produced by The MathWorks are available on line
and from the Web site.

A list of over 600 Matlab based books by other authors and publishers, in sev-
eral languages, is available at [11]. Three introductions to Matlab are of particular
interest here, a relatively short primer by Sigmon and Davis [8], a medium-sized,
mathematically oriented text by Higham and Higham [3], and a large, comprehen-
sive manual by Hanselman and Littlefield [2].

You should have a copy of Matlab close at hand so you can run our sample
programs as you read about them. All of the programs used in this book have been
collected in a directory (or folder) named

NCM

(The directory name is the initials of the book title.) You can either start Matlab
in this directory, or use

pathtool

to add the directory to the Matlab path.

1.1 The Golden Ratio
What is the world’s most interesting number? Perhaps you like π, or e, or 17.
Some people might vote for φ, the golden ratio, computed here by our first Matlab
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statement

phi = (1 + sqrt(5))/2

This produces

phi =
1.6180

Let’s see more digits.

format long
phi

phi =
1.61803398874989

This didn’t recompute φ, it just displayed 15 significant digits instead of five.
The golden ratio shows up in many places in mathematics; we’ll see several

in this book. The golden ratio gets its name from the golden rectangle, shown in
figure 1.1. The golden rectangle has the property that removing a square leaves a
smaller rectangle with the same shape.

φ

φ − 1

1

1

Figure 1.1. The golden rectangle

Equating the aspect ratios of the rectangles gives a defining equation for φ.

1
φ

=
φ− 1

1

This equation says that you can compute the reciprocal of φ by simply subtracting
one. How many numbers have that property?

Multiplying the aspect ratio equation by φ produces a polynomial equation

φ2 − φ− 1 = 0

The roots of this equation are given by the quadratic formula.

φ =
1±√5
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The positive root is the golden ratio.
If you have forgotten the quadratic formula, you can ask Matlab to find

the roots of the polynomial. Matlab represents a polynomial by the vector of its
coefficients, in descending order. So the vector

p = [1 -1 -1]

represents the polynomial

p(x) = x2 − x− 1

The roots are computed by the roots function.

r = roots(p)

produces

r =
-0.61803398874989
1.61803398874989

These two numbers are the only numbers whose reciprocal can be computed by
subtracting one.

You can use the Symbolic Toolbox, which connects Matlab to Maple, to
solve the aspect ratio equation without converting it to a polynomial. The equation
is represented by a character string. The solve function finds two solutions.

r = solve(’1/x = x-1’)

produces

r =
[ 1/2*5^(1/2)+1/2]
[ 1/2-1/2*5^(1/2)]

The pretty function displays the results in a way that resembles typeset mathe-
matics.

pretty(r)

produces

[ 1/2 ]
[1/2 5 + 1/2]
[ ]
[ 1/2]
[1/2 - 1/2 5 ]

The variable r is a vector with two components, the symbolic forms of the two
solutions. You can pick off the first component with

phi = r(1)
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which produces

phi =
1/2*5^(1/2)+1/2

This expression can be converted to a numerical value in two different ways. It can
be evaluated to any number of digits using variable-precision arithmetic with the
vpa function.

vpa(phi,50)

produces 50 digits

1.6180339887498948482045868343656381177203091798058

It can also be converted to double-precision floating-point, which is the principal
way that Matlab represents numbers, with the double function.

phi = double(phi)

produces

phi =
1.61803398874989

The aspect ratio equation is simple enough to have closed form symbolic so-
lutions. More complicated equations have to be solved approximately. The inline
function is a quick way to convert character strings to objects that can be arguments
to the Matlab functions that operate on other functions.

f = inline(’1/x - (x-1)’);

defines f(x) = 1/x− (x− 1) and produces

f =
Inline function:
f(x) = 1/x - (x-1)

A graph of f(x) over the interval 0 ≤ x ≤ 4 is obtained with

ezplot(f,0,4)

The name ezplot stands for “easy plot,” although some of the English-speaking
world would pronounce it “e-zed plot.” Even though f(x) becomes infinite as x → 0,
ezplot automatically picks a reasonable vertical scale.

The statement

phi = fzero(f,1)

looks for a zero of f(x) near x = 1. It produces an approximation to φ that is
accurate to almost full precision. The result can be inserted in the ezplot graph
with
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Figure 1.2. f(φ) = 0

hold on
plot(phi,0,’o’)

The following Matlab program produces the picture of the golden rectangle
shown in figure 1.1. The program is contained in an M-file named goldrect.m, so
issuing the command

goldrect

runs the script and creates the picture.

% GOLDRECT Plot the golden rectangle

phi = (1+sqrt(5))/2;
x = [0 phi phi 0 0];
y = [0 0 1 1 0];
u = [1 1];
v = [0 1];
plot(x,y,’b’,u,v,’b--’)
text(phi/2,1.05,’\phi’)
text((1+phi)/2,-.05,’\phi - 1’)
text(-.05,.5,’1’)
text(.5,-.05,’1’)
axis equal
axis off
set(gcf,’color’,’white’)
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The vectors x and y each contain five elements. Connecting consecutive
(xk, yk) pairs with straight lines produces the outside rectangle. The vectors u
and v each contain two elements. The line connecting (u1, v1) with (u2, v2) sepa-
rates the rectangle into the square and the smaller rectangle. The plot command
draws these lines, the x−y lines in solid blue and the u−v line in dashed blue. The
next four statements place text at various points; the string ’\phi’ denotes the
Greek letter. The two axis statements cause the scaling in the x and y directions
to be equal and then turn off the display of the axes. The last statement sets the
background color of gcf, which stands for get current figure, to white.

A continued fraction is an infinite expression of the form

a0 +
1

a1 + 1
a2+

1
a3+...

If all the ak’s are equal to 1, the continued fraction is another representation of the
golden ratio.

φ = 1 +
1

1 + 1
1+ 1

1+...

The following Matlab function generates and evaluates truncated continued frac-
tion approximations to φ. The code is stored in an M-file named goldfract.m.

function goldfract(n)
%GOLDFRACT Golden ratio continued fraction.
% GOLDFRACT(n) displays n terms.

p = ’1’;
for k = 1:n

p = [’1+1/(’ p ’)’];
end
p

p = 1;
q = 1;
for k = 1:n

s = p;
p = p + q;
q = s;

end
p = sprintf(’%d/%d’,p,q)

format long
p = eval(p)

format short
err = (1+sqrt(5))/2 - p
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The statement

goldfract(6)

produces

p =
1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1))))))

p =
21/13

p =
1.61538461538462

err =
0.0026

The three p’s are all different representations of the same approximation to φ.
The first p is the continued fraction truncated to six terms. There are six

right parentheses. This p is a string generated by starting with a single ’1’ (that’s
goldfract(0)) and repeatedly inserting the string ’1+1/(’ in front and the string ’)’
in back. No matter how long this string becomes, it is a valid Matlab expression.

The second p is an “ordinary” fraction with a single integer numerator and
denominator obtained by collapsing the first p. The basis for the reformulation is

1 +
1
p
q

=
p + q

p

So the iteration starts with
1
1

and repeatedly replaces the fraction
p

q

by

p + q

p

The statement

p = sprintf(’%d/%d’,p,q)

prints the final fraction by formatting p and q as decimal integers and placing a ’/’
between them.

The third p is the same number as the first two p’s, but is represented as
a conventional decimal expansion, obtained by having the Matlab eval function
actually do the division expressed in the second p.
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The final quantity err is the difference between p and φ. With only six terms,
the approximation is accurate to less than three digits. How many terms does it
take to get 10 digits of accuracy?

As the number of terms n increases, the truncated continued fraction gener-
ated by goldfract(n) theoretically approaches φ. But limitations on the size of
the integers in the numerator and denominator, as well as roundoff error in the
actual floating-point division, eventually intervene. One of the exercises asks you
to investigate the limiting accuracy of goldfract(n).

1.2 Fibonacci Numbers
Leonardo Pisano Fibonacci was born around 1170 and died around 1250 in Pisa
in what is now Italy. He traveled extensively in Europe and Northern Africa. He
wrote several mathematical texts that, among other things, introduced Europe to
the Hindu-Arabic notation for numbers. Even though his books had to be tran-
scribed by hand, they were widely circulated. In his best known book, Liber Abaci,
published in 1202, he posed the following problem.

A man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it
is supposed that every month each pair begets a new pair which from the
second month on becomes productive?

Today the solution to this problem is known as the Fibonacci sequence, or
Fibonacci numbers. There is a small mathematical industry based on Fibonacci
numbers. A search of the Internet for “Fibonacci” will find dozens of Web sites and
hundreds of pages of material. There is even a Fibonacci Association that publishes
a scholarly journal, the Fibonacci Quarterly.

If Fibonacci had not specified a month for the newborn pair to mature, he
would not have a sequence named after him. The number of pairs would simply
double each month. After n months there would be 2n pairs of rabbits. That’s a
lot of rabbits, but not distinctive mathematics.

Let fn denote the number of pairs of rabbits after n months. The key fact is
that the number of rabbits at the end of a month is the number at the beginning
of the month plus the number of births produced by the mature pairs.

fn = fn−1 + fn−2

The initial conditions are that in the first month there is one pair of rabbits and in
the second there are two pairs.

f1 = 1, f2 = 2

The following Matlab function, stored in the M-file fibonacci.m, produces
a vector containing the first n Fibonacci numbers.

function f = fibonacci(n)
% FIBONACCI Fibonacci sequence
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% f = FIBONACCI(n) generates the first n Fibonacci numbers.
f = zeros(n,1);
f(1) = 1;
f(2) = 2;
for k = 3:n

f(k) = f(k-1) + f(k-2);
end

With these initial conditions, the answer to Fibonacci’s original question about the
size of the rabbit population after one year is given by

fibonacci(12)

This produces

1
2
3
5
8

13
21
34
55
89

144
233

The answer is 233 pairs of rabbits. (It would be 4096 pairs if the number doubled
every month for 12 months.)

Let’s look carefully at fibonacci.m. It’s a good example of a small Matlab
function. The first line is

function f = fibonacci(n)

The first word on the first line says this is a function M-file, not a script. The
remainder of the first line says this particular function produces one output result,
f, and takes one input argument, n. The name of the function specified on the first
line is not actually used, because Matlab looks for the name of the M-file, but it
is common practice to have the two match. The next two lines are comments that
provide the text displayed when you ask for help.

help fibonacci

produces

FIBONACCI Fibonacci sequence
f = FIBONACCI(n) generates the first n Fibonacci numbers.
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The name of the function is in uppercase because historically Matlab was case
insensitive and ran on terminals with only a single font. The use of capital letters
may be confusing to some first-time Matlab users, but the convention persists. It
is important to repeat the input and output arguments in these comments because
the first line is not displayed when you ask for help on the function.

The next line

f = zeros(n,1);

creates an n-by-1 matrix containing all zeros and assigns it to f. In Matlab, a
matrix with only one column is a column vector and a matrix with only one row is
a row vector.

The next two lines,

f(1) = 1;
f(2) = 2;

provide the initial conditions.
The last three lines are the for statement that does all the work.

for k = 3:n
f(k) = f(k-1) + f(k-2);

end

We like to use three spaces to indent the body of for and if statements, but other
people prefer two or four spaces, or a tab. You can also put the entire construction
on one line if you provide a comma after the first clause.

This particular function looks a lot like functions in other programming lan-
guages. It produces a vector, but it does not use any of the Matlab vector or
matrix operations. We will see some of these operations soon.

Here is another Fibonacci function, fibnum.m. Its output is simply the nth
Fibonacci number.

function f = fibnum(n)
% FIBNUM Fibonacci number.
% FIBNUM(n) generates the nth Fibonacci number.
if n <= 1

f = 1;
else

f = fibnum(n-1) + fibnum(n-2);
end

The statement

fibnum(12)

produces

ans =
233
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The fibnum function is recursive. In fact, the term recursive is used in both a
mathematical and a computer science sense. The relationship fn = fn−1 + fn−2 is
known as a recursion relation and a function that calls itself is a recursive function.

A recursive program is elegant, but expensive. You can measure execution
time with tic and toc. Try

tic, fibnum(24), toc

Do not try

tic, fibnum(50), toc

Now compare the results produced by goldfract(6) and fibonacci(7). The
first contains the fraction 21/13 while the second ends with 13 and 21. This is not
just a coincidence. The continued fraction is collapsed by repeating the statement

p = p + q;

while the Fibonacci numbers are generated by

f(k) = f(k-1) + f(k-2);

In fact, if we let φn denote the golden ratio continued fraction truncated at n terms,
then

fn+1

fn
= φn

In the infinite limit, the ratio of successive Fibonacci numbers approaches the golden
ratio.

lim
n→∞

fn+1

fn
= φ

To see this, compute 40 Fibonacci numbers:

n = 40;
f = fibonacci(n);

Then compute their ratios:

f(2:n)./f(1:n-1)

This takes the vector containing f(2) through f(n) and divides it, element by
element, by the vector containing f(1) through f(n-1). The output begins with

2.00000000000000
1.50000000000000
1.66666666666667
1.60000000000000
1.62500000000000
1.61538461538462
1.61904761904762
1.61764705882353
1.61818181818182
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and ends with

1.61803398874990
1.61803398874989
1.61803398874990
1.61803398874989
1.61803398874989

Do you see why we chose n = 40? Use the up arrow key on your keyboard to bring
back the previous expression. Change it to

f(2:n)./f(1:n-1) - phi

and then press the Enter key. What is the value of the last element?
The population of Fibonacci’s rabbit pen doesn’t double every month; it is

multiplied by the golden ratio every month.
It is possible to find a closed-form solution to the Fibonacci number recurrence

relation. The key is to look for solutions of the form

fn = cρn

for some constants c and ρ. The recurrence relation

fn = fn−1 + fn−2

becomes

ρ2 = ρ + 1

We’ve seen this equation before. There are two possible values of ρ, namely φ and
1− φ. The general solution to the recurrence is

fn = c1φ
n + c2(1− φ)n

The constants c1 and c2 are determined by initial conditions, which are now
conveniently written

f0 = c1 + c2 = 1
f1 = c1φ + c2(1− φ) = 1

An exercise will ask you to use the Matlab backslash operator to solve this 2-by-2
system of simultaneous linear equations, but it is actually easier to solve the system
by hand.

c1 =
φ

2φ− 1

c2 = − (1− φ)
2φ− 1

Inserting these in the general solution gives

fn =
1

2φ− 1
(φn+1 − (1− φ)n+1)
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This is an amazing equation. The right-hand side involves powers and quo-
tients of irrational numbers, but the result is a sequence of integers. You can check
this with Matlab, displaying the results in scientific notation.

format long e
n = (1:40)’;
f = (phi.^(n+1) - (1-phi).^(n+1))/(2*phi-1)

The .^ operator is an element-by-element power operator. It is not necessary to
use ./ for the final division because (2*phi-1) is a scalar quantity. The computed
result starts with

f =
1.000000000000000e+000
2.000000000000000e+000
3.000000000000000e+000
5.000000000000001e+000
8.000000000000002e+000
1.300000000000000e+001
2.100000000000000e+001
3.400000000000001e+001

and ends with

5.702887000000007e+006
9.227465000000011e+006
1.493035200000002e+007
2.415781700000003e+007
3.908816900000005e+007
6.324598600000007e+007
1.023341550000001e+008
1.655801410000002e+008

Roundoff error prevents the results from being exact integers, but

f = round(f)

finishes the job.

1.3 Fractal Fern
The M-files fern.m and finitefern.m produce the “Fractal Fern” described by
Michael Barnsley in Fractals Everywhere [1]. They generate and plot a potentially
infinite sequence of random, but carefully choreographed, points in the plane. The
command

fern

runs forever, producing an increasingly dense plot. The command
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finitefern(n)

generates n points and a plot like figure 1.3. The command

finitefern(n,’s’)

shows the generation of the points one at a time. The command

F = finitefern(n);

generates, but does not plot, n points and returns an array of 0’s and 1’s for use
with sparse matrix and image processing functions.

Figure 1.3. Fractal fern

The NCM collection also includes fern.png, a 768-by-1024 color image with
half a million points that you can view with a browser or a paint program. You can
also view the file with

F = imread(’fern.png’);
image(F)
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If you like the image, you might even choose to make it your computer desktop
background. However, you should really run fern on your own computer to see the
dynamics of the emerging fern in high resolution.

The fern is generated by repeated transformations of a point in the plane. Let
x be a vector with two components, x1 and x2, representing the point. There are
four different transformations, all of them of the form

x → Ax + b

with different matrices A and vectors b. These are known as affine transformations.
The most frequently used transformation has

A =
(

.85 .04
−.04 .85

)
, b =

(
0

1.6

)

This transformation shortens and rotates x a little bit, then adds 1.6 to its second
component. Repeated application of this transformation moves the point up and to
the right, heading towards the upper tip of the fern. Every once in a while, one of
the other three transformations is picked at random. These transformations move
the point into the lower subfern on the right, the lower subfern on the left, or the
stem.

Here is the complete fractal fern program.

function fern
%FERN MATLAB implementation of the Fractal Fern
% Michael Barnsley, Fractals Everywhere, Academic Press,1993
% This version runs forever, or until stop is toggled.
% See also: FINITEFERN.

shg
clf reset
set(gcf,’color’,’white’,’menubar’,’none’, ...

’numbertitle’,’off’,’name’,’Fractal Fern’)
x = [.5; .5];
h = plot(x(1),x(2),’.’);
darkgreen = [0 2/3 0];
set(h,’markersize’,1,’color’,darkgreen,’erasemode’,’none’);
axis([-3 3 0 10])
axis off
stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...

’background’,’white’);
drawnow

p = [ .85 .92 .99 1.00];
A1 = [ .85 .04; -.04 .85]; b1 = [0; 1.6];
A2 = [ .20 -.26; .23 .22]; b2 = [0; 1.6];
A3 = [-.15 .28; .26 .24]; b3 = [0; .44];
A4 = [ 0 0 ; 0 .16];
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cnt = 1;
tic
while ~get(stop,’value’)

r = rand;
if r < p(1)

x = A1*x + b1;
elseif r < p(2)

x = A2*x + b2;
elseif r < p(3)

x = A3*x + b3;
else

x = A4*x;
end
set(h,’xdata’,x(1),’ydata’,x(2));
cnt = cnt + 1;
drawnow

end
t = toc;
s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);
text(-1.5,-0.5,s,’fontweight’,’bold’);
set(stop,’style’,’pushbutton’,’string’,’close’, ...

’callback’,’close(gcf)’)

Let’s examine this program a few statements at a time.

shg

stands for “show graph window.” It brings an existing graphics window forward,
or creates a new one if necessary.

clf reset

resets most of the figure properties to their default values.

set(gcf,’color’,’white’,’menubar’,’none’, ...
’numbertitle’,’off’,’name’,’Fractal Fern’)

changes the background color of the figure window from the default gray to white
and provides a customized title for the window.

x = [.5; .5];

provides the initial coordinates of the point.

h = plot(x(1),x(2),’.’);

plots a single dot in the plane and saves a handle, h, so that we can later modify
the properties of the plot.

darkgreen = [0 2/3 0];
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defines a color where the red and blue components are zero and the green component
is two-thirds of its full intensity.

set(h,’markersize’,1,’color’,darkgreen,’erasemode’,’none’);

makes the dot referenced by h smaller, changes its color, and specifies that the image
of the dot on the screen should not be erased when its coordinates are changed. A
record of these old points is kept by the computer’s graphics hardware (until the
figure is reset), but Matlab itself does not remember them.

axis([-3 3 0 10])
axis off

specifies that the plot should cover the region

−3 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 10

but that the axes should not be drawn.

stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...
’background’,’white’);

creates a toggle user interface control, labeled ’stop’ and colored white, in the
default position near the lower left corner of the figure. The handle for the control
is saved in the variable stop.

drawnow

causes the initial figure, including the initial point, to actually be plotted on the
computer screen.

The statement

p = [ .85 .92 .99 1.00];

sets up a vector of probabilities. The statements

A1 = [ .85 .04; -.04 .85]; b1 = [0; 1.6];
A2 = [ .20 -.26; .23 .22]; b2 = [0; 1.6];
A3 = [-.15 .28; .26 .24]; b3 = [0; .44];
A4 = [ 0 0 ; 0 .16];

define the four affine transformations. The statement

cnt = 1;

initializes a counter that keeps track of the number of points plotted. The statement

tic

initializes a stopwatch timer. The statement

while ~get(stop,’value’)
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begins a while loop that runs as long as the ’value’ property of the stop toggle is
equal to 0. Clicking the stop toggle changes the value from 0 to 1 and terminates
the loop.

r = rand;

generates a pseudorandom value between 0 and 1. The compound if statement

if r < p(1)
x = A1*x + b1;

elseif r < p(2)
x = A2*x + b2;

elseif r < p(3)
x = A3*x + b3;

else
x = A4*x;

end

picks one of the four affine transformations. Because p(1) is 0.85, the first trans-
formation is chosen eighty-five percent of the time. The other three transformations
are chosen relatively infrequently.

set(h,’xdata’,x(1),’ydata’,x(2));

changes the coordinates of the point h to the new (x1, x2) and plots this new point.
But get(h,’erasemode’) is ’none’, so the old point also remains on the screen.

cnt = cnt + 1;

counts one more point.

drawnow

tells Matlab to take the time to redraw the figure, showing the new point along
with all the old ones. Without this command nothing would be plotted until stop
is toggled.

end

matches the while at the beginning of the loop. Finally

t = toc;

reads the timer.

s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);
text(-1.5,-0.5,s,’fontweight’,’bold’);

displays the elapsed time since tic was called, and the final count of the number
of points plotted. Finally,

set(stop,’style’,’pushbutton’,’string’,’close’, ...
’callback’,’close(gcf)’)

changes the uicontrol to a pushbutton that closes the window.
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1.4 Magic Squares
Matlab stands for Matrix Laboratory. Over the years Matlab has evolved into a
general-purpose technical computing environment, but operations involving vectors,
matrices, and linear algebra continue to be its most distinguishing feature.

Magic squares provide an interesting set of sample matrices. The commands
help magic or helpwin magic tell us that

MAGIC(N) is an N-by-N matrix constructed from the integers
1 through N^2 with equal row, column, and diagonal sums.
Produces valid magic squares for all N > 0 except N = 2.

Magic squares were known in China over two thousand years before the birth
of Christ. The 3-by-3 magic square is known as Lo Shu. Legend has it that Lo
Shu was discovered on the shell of a turtle that crawled out of the Lo River in the
twenty-third century B.C. Lo Shu provides a mathematical basis for feng shui, the
ancient Chinese philosophy of balance and harmony. Matlab can generate Lo Shu
with

A = magic(3)

which produces

A =
8 1 6
3 5 7
4 9 2

The command

sum(A)

sums the elements in each column to produce

15 15 15

The command

sum(A’)’

transposes the matrix, sums the columns of the transpose, and then transposes the
results to produce the row sums

15
15
15

The command

sum(diag(A))

sums the main diagonal of A, which runs from upper left to lower right, to produce
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15

The opposite diagonal, which runs from upper right to lower left, is less important
in linear algebra, so finding its sum is a little trickier. One way to do it makes use
of the function that “flips” a matrix “up-down”:

sum(diag(flipud(A)))

produces

15

This verifies that A has equal row, column, and diagonal sums.
Why is the magic sum equal to 15? The command

sum(1:9)

tells us that the sum of the integers from 1 to 9 is 45. If these integers are allocated
to three columns with equal sums, that sum must be

sum(1:9)/3

which is 15.
There are eight possible ways to place a transparency on an overhead projec-

tor. Similarly, there are eight magic squares of order three that are rotations and
reflections of A. The statements

for k = 0:3
rot90(A,k)
rot90(A’,k)

end

display all eight of them.

8 1 6 8 3 4
3 5 7 1 5 9
4 9 2 6 7 2

6 7 2 4 9 2
1 5 9 3 5 7
8 3 4 8 1 6

2 9 4 2 7 6
7 5 3 9 5 1
6 1 8 4 3 8

4 3 8 6 1 8
9 5 1 7 5 3
2 7 6 2 9 4

This is all the magic squares of order three.
Now for some linear algebra. The determinant of our magic square,
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det(A)

is

-360

The inverse,

X = inv(A)

is

X =
0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

The inverse looks better if it is displayed with a rational format.

format rat
X

shows that the elements of X are fractions with det(A) in the denominator.

X =
53/360 -13/90 23/360

-11/180 1/45 19/180
-7/360 17/90 -37/360

The statement

format short

restores the output format to its default.
Three other important quantities in computational linear algebra are matrix

norms, eigenvalues, and singular values. The statements

r = norm(A)
e = eig(A)
s = svd(A)

produce

r =
15

e =
15.0000
4.8990

-4.8990

s =
15.0000
6.9282
3.4641
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The magic sum occurs in all three because the vector of all ones is an eigenvector,
and is also a left and right singular vector.

So far, all the computations in this section have been done using floating-point
arithmetic. This is the arithmetic used for almost all scientific and engineering
computation, especially for large matrices. But for a 3-by-3 matrix, it is easy
to repeat the computations using symbolic arithmetic and the Symbolic Toolbox
connection to Maple. The statement

A = sym(A)

changes the internal representation of A to a symbolic form that is displayed as

A =
[ 8, 1, 6]
[ 3, 5, 7]
[ 4, 9, 2]

Now commands like

sum(A), sum(A’)’, det(A), inv(A), eig(A), svd(A)

produce symbolic results. In particular, the eigenvalue problem for this matrix can
be solved exactly, and

e =
[ 15]
[ 2*6^(1/2)]
[ -2*6^(1/2)]

A 4-by-4 magic square is one of several mathematical objects on display in
Melancolia, a Renaissance etching by Albrect Durer. An electronic copy of the
etching is available in a Matlab data file.

load durer
whos

produces

X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array

The elements of the matrix X are indices into the gray-scale color map named map.
The image is displayed with

image(X)
colormap(map)
axis image

Click the magnifying glass with a “+” in the toolbar and use the mouse to zoom
in on the magic square in the upper right-hand corner. The scanning resolution
becomes evident as you zoom in. The commands
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load detail
image(X)
colormap(map)
axis image

display a higher resolution scan of the area around the magic square.
The command

A = magic(4)

produces a 4-by-4 magic square

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

The commands

sum(A), sum(A’), sum(diag(A)), sum(diag(flipud(A)))

yield enough 34’s to verify that A is indeed a magic square.
The 4-by-4 magic square generated by Matlab is not the same as Durer’s

magic square. We need to interchange the second and third columns.

A = A(:,[1 3 2 4])

changes A to

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Interchanging columns does not change the column sums or the row sums. It usually
changes the diagonal sums, but in this case both diagonal sums are still 34. So now
our magic square matches the one in Durer’s etching. Durer probably chose this
particular 4-by-4 square because the date he did the work, 1514, occurs in the
middle of the bottom row.

We have seen two different 4-by-4 magic squares. It turns out that there are
880 different magic squares of order four and 275305224 different magic squares of
order five. Determining the number of different magic squares of order six or larger
is an unsolved mathematical problem.

The determinant of our 4-by-4 magic square, det(A), is 0. If we try to compute
its inverse

inv(A)

we get
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Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate.

So, some magic squares represent singular matrices. Which ones? The rank of a
square matrix is the number of linearly independent rows or columns. An n-by-n
matrix is singular if and only if its rank is less than n.

The statements

for n = 1:24, r(n) = rank(magic(n)); end
[(1:24)’ r’]

produce a table of order versus rank.

1 1
2 2
3 3
4 3
5 5
6 5
7 7
8 3
9 9

10 7
11 11
12 3
13 13
14 9
15 15
16 3
17 17
18 11
19 19
20 3
21 21
22 13
23 23
24 3

Look carefully at this table. Ignore n = 2 because magic(2) is not really a magic
square. What patterns do you see? A bar graph makes the patterns easier to see.

bar(r)
title(’Rank of magic squares’)

produces figure 1.4.
The rank considerations show that there are three different kinds of magic

squares:

• Odd order; n is odd.
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Figure 1.4. Rank of magic squares

• Singly even order; n is a multiple of 2, but not 4.

• Doubly even order; n is a multiple of 4.

Odd-ordered magic squares, n = 3, 5, 7, ..., have full rank n. They are nonsingular
and have inverses. Doubly even magic squares, n = 4, 8, 12, ..., have rank three
no matter how large n is. They might be called very singular. Singly even magic
squares, n = 6, 10, 14, ..., have rank n/2 + 2. They are also singular, but have fewer
row and column dependencies than the doubly even squares.

If you have Matlab Version 6 or later, you can look at the M-file that gener-
ates magic squares with

edit magic.m

or

type magic.m

You will see the three different cases in the code.
The different kinds of magic squares also produce different three-dimensional

surface plots. Try the following for various values of n.

surf(magic(n))
axis off
set(gcf,’doublebuffer’,’on’)
cameratoolbar

Double buffering prevents flicker when you use the various camera tools to move
the viewpoint. The following code produces figure 1.5.



26 Chapter 1. Introduction to MATLAB

8 9

10 11

Figure 1.5. Surface plots of magic squares

for n = 8:11
subplot(2,2,n-7)
surf(magic(n))
title(num2str(n))
axis off
view(30,45)
axis tight

end

1.5 Cryptography
This section uses a cryptography example to show how Matlab deals with text and
character strings. The cryptographic technique, which is known as a Hill cipher,
involves arithmetic in a finite field.

Almost all modern computers use the ASCII character set to store basic text.
ASCII stands for American Standard Code for Information Interchange. The char-
acter set uses seven of the eight bits in a byte to encode 128 characters. The first 32
characters are nonprinting control characters, such as tab, backspace, and end-of-
line. The 128th character is another nonprinting character that corresponds to the
Delete key on your keyboard. In between these control characters are 95 printable
characters, including a space, 10 digits, 26 lowercase letters, 26 uppercase letters,
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and 32 punctuation marks.
Matlab can easily display all the printable characters, in the order deter-

mined by their ASCII encoding. Start with

x = reshape(32:127,32,3)’

This produces a 3-by-32 matrix.

x =
32 33 34 ... 61 62 63
64 65 66 ... 93 94 95
96 97 98 ... 125 126 127

The char function converts numbers to characters. The statement

c = char(x)

produces

c =
!"#$%&’()*+,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
‘abcdefghijklmnopqrstuvwxyz{|}~

We have cheated a little bit because the last element of x is 127, which corresponds
to the nonprinting delete character, and we have not shown the last character in c.
You can try this on your computer and see what is actually displayed.

The first character in c is blank, indicating that

char(32)

is the same as

’ ’

The last printable character in c is the tilde, indicating that

char(126)

is the same as

’~’

The characters representing digits are in the first line of c. In fact

d = char(48:57)

displays a ten-character string

d =
0123456789

This string can be converted to the corresponding numerical values with double or
real. The statement
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double(d) - ’0’

produces

0 1 2 3 4 5 6 7 8 9

Comparing the second and third line of c, we see that the ASCII encoding
of the lowercase letters is obtained by adding 32 to the ASCII encoding of the
uppercase letters. Understanding this encoding allows us to use vector and matrix
operations in Matlab to manipulate text.

The ASCII standard is often extended to make use of all eight bits in a byte,
but the characters that are displayed depend on the computer and operating system
you are using, the font you have chosen, and even the country you live in. Try

char(reshape(160:255,32,3)’)

and see what happens on your machine.
Our encryption technique involves modular arithmetic. All the quantities in-

volved are integers and the result of any arithmetic operation is reduced by tak-
ing the remainder or modulus with respect to a prime number p. The functions
rem(x,y) and mod(x,y) both compute the remainder if x is divided by y. They
produce the same result if x and y have the same sign; the result also has that sign.
But if x and y have opposite signs, then rem(x,y) has the same sign as x, while
mod(x,y) has the same sign as y. Here is a table.

x = [37 -37 37 -37]’;
y = [10 10 -10 -10]’;
r = [ x y rem(x,y) mod(x,y)]

produces

37 10 7 7
-37 10 -7 3
37 -10 7 -3

-37 -10 -7 -7

We have chosen to encrypt text that uses the entire ASCII character set, not
just the letters. There are 95 such characters. The next larger prime number is
p = 97, so we represent the p characters by the integers 0:p-1 and do arithmetic
mod p.

The characters are encoded two at a time. Each pair of characters is repre-
sented by a 2-vector, x. For example, suppose the text contains the pair of letters
’TV’. The ASCII values for this pair of letters are 84 and 86. Subtracting 32 to
make the representation start at 0 produces the column vector

x =
(

52
54

)

The encryption is done with a 2-by-2 matrix-vector multiplication over the
integers mod p. The symbol ≡ is used to indicate that two integers have the same
remainder, modulo the specified prime.

y ≡ Ax, mod p
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where A is the matrix

A =
(

71 2
2 26

)

For our example, the product Ax is

Ax =
(

3800
1508

)

If this is reduced mod p the result is

y =
(

17
53

)

Converting this back to characters by adding 32 produces ’1U’.
Now comes the interesting part. Over the integers modulo p, the matrix A is

its own inverse. If

y ≡ Ax, mod p

then

x ≡ Ay, mod p

In other words, in arithmetic mod p, A2 is the identity matrix. You can check this
with Matlab.

p = 97;
A = [71 2; 2 26]
I = mod(A^2,p)

produces

A =
71 2
2 26

I =
1 0
0 1

This means that the encryption process is its own inverse. The same function can
be used to both encrypt and decrypt a message.

The M-file crypto.m begins with a preamble.

function y = crypto(x)
% CRYPTO Cryptography example.
% y = crypto(x) converts an ASCII text string into another
% coded string. The function is its own inverse, so
% crypto(crypto(x)) gives x back.
% See also: ENCRYPT.
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A comment precedes the statement that assigns the prime p.

% Use a two-character Hill cipher with arithmetic
% modulo 97, a prime.
p = 97;

Choose two characters above ASCII 128 to expand the size of the character set from
95 to 97.

c1 = char(169);
c2 = char(174);
x(x==c1) = 127;
x(x==c2) = 128;

The conversion from characters to numerical values is done by

x = mod(real(x-32),p);

Prepare for the matrix-vector product by forming a matrix with two rows and lots
of columns.

n = 2*floor(length(x)/2);
X = reshape(x(1:n),2,n/2);

All this preparation has been so that we can do the actual finite field arithmetic
quickly and easily.

% Encode with matrix multiplication modulo p.
A = [71 2; 2 26];
Y = mod(A*X,p);

Reshape into a single row.

y = reshape(Y,1,n);

If length(x) is odd, encode the last character.

if length(x) > n
y(n+1) = mod((p-1)*x(n+1),p);

end

Finally, convert the numbers back to characters.

y = char(y+32);
y(y==127) = c1;
y(y==128) = c2;

Let’s follow the computation of y = crypto(’Hello world’). We begin with
a character string.

x = ’Hello world’

This is converted to an integer vector.
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x =
40 69 76 76 79 0 87 79 82 76 68

The length(x) is odd, so the reshaping temporarily ignores the last element.

X =
40 76 79 87 82
69 76 0 79 76

A conventional matrix-vector multiplication A*X produces an intermediate matrix.

2978 5548 5609 6335 5974
1874 2128 158 2228 2140

Then the mod(.,p) operation produces

Y =
68 19 80 30 57
31 91 61 94 6

This is rearranged to a row vector.

y =
68 31 19 91 80 61 30 94 57 6

Now the last element of x is encoded by itself and attached to the end of y.

y =
68 31 19 91 80 61 30 94 57 6 29

Finally, y is converted back to a character string to produce the encrypted result.

y = ’d?3{p]>~Y&=’

If we now compute crypto(y), we get back our original ’Hello world’.

1.6 The 3n+1 Sequence
This section describes a famous unsolved problem in number theory. Start with any
positive integer n. Repeat the following steps:

• If n = 1, stop.

• If n is even, replace it with n/2.

• If n is odd, replace it with 3n + 1.

For example, starting with n = 7 produces

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

The sequence terminates after 17 steps. Note that whenever n reaches a power of
2, the sequence terminates in log2 n more steps.
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The unanswered question is, does the process always terminate? Or is there
some starting value that causes the process to go on forever, either because the
numbers get larger and larger, or because some periodic cycle is generated?

This problem is known as the 3n + 1 problem. It has been studied by many
eminent mathematicians, including Collatz, Ulam, and Kakatani, and is discussed
in a survey paper by Jeffrey Lagarias [5].

The following Matlab code fragment generates the sequence starting with
any specified n.

y = n;
while n > 1

if rem(n,2)==0
n = n/2;

else
n = 3*n+1;

end
y = [y n];

end

We don’t know ahead of time how long the resulting vector y is going to be. But
the statement

y = [y n];

automatically increases length(y) each time it is executed.
In principle, the unsolved mathematical problem is: can this code fragment

run forever? In actual fact, floating-point roundoff error causes the calculation to
misbehave whenever 3n + 1 becomes greater than 253, but it is still interesting to
investigate modest values of n.

Let’s embed our code fragment in a GUI. The complete function is in M-file
threenplus1.m. For example, the statement

threenplus1(7)

produces figure 1.6.
The M-file begins with a preamble containing the function header and the

help information.

function threenplus1(n)
% ‘‘Three n plus 1’’.
% Study the 3n+1 sequence.
% threenplus1(n) plots the sequence starting with n.
% threenplus1 with no arguments starts with n = 1.
% uicontrols decrement or increment the starting n.
% Is it possible for this to run forever?

The next section of code brings the current graphics window forward and resets it.
Two pushbuttons, which are the default uicontrols, are positioned near the bottom
center of the figure at pixel coordinates [260,5] and [300,5]. Their size is 25-by-
22 pixels and they are labeled with ’<’ and ’>’. If either button is subsequently
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Figure 1.6. threenplus1

pushed, the ’callback’ string is executed, calling the function recursively with a
corresponding ’-1’ or ’+1’ string argument. The ’tag’ property of the current
figure, gcf, is set to a characteristic string that prevents this section of code from
being reexecuted on subsequent calls.

if ~isequal(get(gcf,’tag’),’3n+1’)
shg
clf reset
uicontrol( ...

’position’,[260 5 25 22], ...
’string’,’<’, ...
’callback’,’threenplus1(’’-1’’)’);

uicontrol( ...
’position’,[300 5 25 22], ...
’string’,’>’, ...
’callback’,’threenplus1(’’+1’’)’);

set(gcf,’tag’,’3n+1’);
end

The next section of code sets n. If nargin, the number of input arguments, is 0,
then n is set to 1. If the input argument is either of the strings from the pushbutton
callbacks, then n is retrieved from the ’userdata’ field of the figure and decre-
mented or incremented. If the input argument is not a string, then it is the desired
n. In all situations, n is saved in ’userdata’ for use on subsequent calls.

if nargin == 0
n = 1;

elseif isequal(n,’-1’)
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n = get(gcf,’userdata’) - 1;
elseif isequal(n,’+1’)

n = get(gcf,’userdata’) + 1;
end
if n < 1, n = 1; end
set(gcf,’userdata’,n)

We’ve seen the next section of code before; it does the actual computation.

y = n;
while n > 1

if rem(n,2)==0
n = n/2;

else
n = 3*n+1;

end
y = [y n];

end

The final section of code plots the generated sequence with dots connected by
straight lines, using a logarithmic vertical scale and customized tick labels.

semilogy(y,’.-’)
axis tight
ymax = max(y);
ytick = [2.^(0:ceil(log2(ymax))-1) ymax];
if length(ytick) > 8, ytick(end-1) = []; end
set(gca,’ytick’,ytick)
title([’n = ’ num2str(y(1))]);

1.7 Floating-Point Arithmetic
Some people believe that

• Numerical analysis is the study of floating-point arithmetic.

• Floating-point arithmetic is unpredictable and hard to understand.

We intend to convince you that both of these assertions are false. Very little of
this book is actually about floating-point arithmetic. But when the subject does
arise, we hope you will find floating-point arithmetic is not only computationally
powerful, but also mathematically elegant.

If you look carefully at the definitions of fundamental arithmetic operations
like addition and multiplication, you soon encounter the mathematical abstraction
known as the real numbers. But actual computation with real numbers is not very
practical because it involves limits and infinities. Instead, Matlab and most other
technical computing environments use floating-point arithmetic, which involves a
finite set of numbers with finite precision. This leads to the phenomena of roundoff,
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underflow, and overflow. Most of the time, it is possible to use Matlab effectively
without worrying about these details, but every once in a while, it pays to know
something about the properties and limitations of floating-point numbers.

Twenty years ago, the situation was far more complicated than it is today.
Each computer had its own floating-point number system. Some were binary; some
were decimal. There was even a Russian computer that used trinary arithmetic.
Among the binary computers, some used 2 as the base; others used 8 or 16. And
everybody had a different precision. In 1985, the IEEE Standards Board and the
American National Standards Institute adopted the ANSI/IEEE Standard 754-1985
for Binary Floating-Point Arithmetic. This was the culmination of almost a decade
of work by a 92-person working group of mathematicians, computer scientists, and
engineers from universities, computer manufacturers, and microprocessor compa-
nies.

All computers designed since 1985 use IEEE floating-point arithmetic. This
doesn’t mean that they all get exactly the same results, because there is some
flexibility within the standard. But it does mean that we now have a machine-
independent model of how floating-point arithmetic behaves.

Matlab has traditionally used the IEEE double-precision format. There is
a single-precision format that saves space, but that isn’t much faster on modern
machines. Matlab 7 will have support for single-precision arithmetic, but we
will deal exclusively with double-precision in this book. There is also an extended
precision format, which is optional and therefore is one of the reasons for lack of
uniformity among different machines.

Most nonzero floating-point numbers are normalized. This means they can be
expressed as

x = ±(1 + f) · 2e

The quantity f is the fraction or mantissa and e is the exponent. The fraction
satisfies

0 ≤ f < 1

and must be representable in binary using at most 52 bits. In other words, 252f is
an integer in the interval

0 ≤ 252f < 252

The exponent e is an integer in the interval

−1022 ≤ e ≤ 1023

The finiteness of f is a limitation on precision. The finiteness of e is a limitation
on range. Any numbers that don’t meet these limitations must be approximated
by ones that do.

Double-precision floating-point numbers are stored in a 64 bit word, with 52
bits for f , 11 bits for e, and one bit for the sign of the number. The sign of e
is accommodated by storing e + 1023, which is between 1 and 211 − 2. The two
extreme values for the exponent field, 0 and 211 − 1, are reserved for exceptional
floating-point numbers that we will describe later.
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The entire fractional part of a floating-point number is not f , but 1+f , which
has 53 bits. However the leading 1 doesn’t need to be stored. In effect, the IEEE
format packs 65 bits of information into a 64 bit word.

The program floatgui shows the distribution of the positive numbers in a
model floating-point system with variable parameters. The parameter t specifies the
number of bits used to store f . In other words, 2tf is an integer. The parameters
emin and emax specify the range of the exponent, so emin ≤ e ≤ emax. Initially,
floatgui sets t = 3, emin = −4, and emax = 3 and produces the distribution shown
in figure 1.7.

1/16 1/2 1 2 4 8−1/2

||||||||||||||||||||||||| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Figure 1.7. floatgui

Within each binary interval, 2e ≤ x ≤ 2e+1, the numbers are equally spaced,
with an increment of 2e−t. If e = 0 and t = 3, for example, the spacing of the
numbers between 1 and 2 is 1/8. As e increases, the spacing increases.

It is also instructive to display the floating-point numbers with a logarithmic
scale. Figure 1.8 shows floatgui with logscale checked and t = 5, emin = −4 and
emax = 3. With this logarithmic scale, it is more apparent that the distribution in
each binary interval is the same.

1/16 1/8 1/4 1/2 1 2 4 8 16−1/4

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Figure 1.8. floatgui(log scale)

A very important quantity associated with floating-point arithmetic is high-
lighted in red by floatgui. Matlab calls this quantity eps, which is short for
machine epsilon.

eps is the distance from 1 to the next larger floating-point number.

For the floatgui model floating-point system, eps = 2^(-t).
Before the IEEE standard, different machines had different values of eps.

Now, for IEEE double-precision,

eps = 2^(-52)
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The approximate decimal value of eps is 2.2204 ·10−16. Either eps/2 or eps can be
called the roundoff level. The maximum relative error incurred when the result of
an arithmetic operation is rounded to the nearest floating-point number is eps/2.
The maximum relative spacing between numbers is eps. In either case, you can say
that the roundoff level is about 16 decimal digits.

A frequent instance of roundoff occurs with the simple Matlab statement

t = 0.1

The mathematical value t stored in t is not exactly 0.1 because expressing the
decimal fraction 1/10 in binary requires an infinite series. In fact,

1
10

=
1
24

+
1
25

+
0
26

+
0
27

+
1
28

+
1
29

+
0

210
+

0
211

+
1

212
+ ...

After the first term, the sequence of coefficients 1, 0, 0, 1 is repeated infinitely often.
Grouping the resulting terms together four at a time expresses 1/10 in a base 16,
or hexadecimal, series.

1
10

= 2−4 · (1 +
9
16

+
9

162
+

9
163

+
9

164
+ . . .)

Floating-point numbers on either side of 1/10 are obtained by terminating the
fractional part of this series after 52 binary terms, or 13 hexadecimal terms, and
rounding the last term up or down. Thus

t1 < 1/10 < t2

Where

t1 = 2−4 · (1 +
9
16

+
9

162
+

9
163

+ ... +
9

1612
+

9
1613

)

t2 = 2−4 · (1 +
9
16

+
9

162
+

9
163

+ ... +
9

1612
+

10
1613

)

It turns out that 1/10 is closer to t2 than to t1, so t is equal to t2. In other words,

t = (1 + f) · 2e

where

f =
9
16

+
9

162
+

9
163

+ ... +
9

1612
+

10
1613

e = −4

The Matlab command

format hex

causes t to be displayed as

3fb999999999999a
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The characters a through f represent the hexadecimal “digits” 10 through 15. The
first three characters, 3fb, give the hexadecimal representation of decimal 1019,
which is the value of the biased exponent, e + 1023, if e is −4. The other 13
characters are the hexadecimal representation of the fraction f .

In summary, the value stored in t is very close to, but not exactly equal to,
0.1. The distinction is occasionally important. For example, the quantity

0.3/0.1

is not exactly equal to 3 because the actual numerator is a little less than 0.3 and
the actual denominator is a little greater than 0.1.

Ten steps of length t are not precisely the same as one step of length 1.
Matlab is careful to arrange that the last element of the vector

0:0.1:1

is exactly equal to 1, but if you form this vector yourself by repeated additions of
0.1, you will miss hitting the final 1 exactly.

What does the floating-point approximation to the golden ratio look like?

format hex
phi = (1 + sqrt(5))/2

produces

phi =
3ff9e3779b97f4a8

The first hex digit, 3, is 0011 in binary. The first bit is the sign of the floating-
point number; 0 is positive, 1 is negative. So phi is positive. The remaining bits
of the first three hex digits contain e + 1023. In this example, 3ff in base 16 is
3 · 162 + 15 · 16 + 15 = 1023 in decimal. So

e = 0

In fact, any floating-point number between 1.0 and 2.0 has e = 0, so its hex output
begins with 3ff. The other 13 hex digits contain f . In this example,

f =
9
16

+
14
162

+
3

163
+ ... +

10
1612

+
8

1613

With these values of f and e

(1 + f) · 2e ≈ φ

Another example is provided by the following code segment.

format long
a = 4/3
b = a - 1
c = 3*x
e = 1 - e
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With exact computation, e would be 0. But with floating-point, the output pro-
duced is

a =
1.33333333333333

b =
0.33333333333333

c =
1.00000000000000

e =
2.220446049250313e-016

It turns out that the only roundoff occurs in the division in the first statement.
The quotient cannot be exactly 4/3, except on that Russian trinary computer.
Consequently the value stored in a is close to, but not exactly equal to, 4/3. The
subtraction b = a - 1 produces a b whose last bit is 0. This means that the
multiplication 3*b can be done without any roundoff. The value stored in c is
not exactly equal to 1 and so the value stored in e is not 0. Before the IEEE
standard, this code was used as a quick way to estimate the roundoff level on
various computers.

The roundoff level eps is sometimes called “floating-point zero,” but that’s a
misnomer. There are many floating-point numbers much smaller than eps. The
smallest positive normalized floating-point number has f = 0 and e = −1022. The
largest floating-point number has f a little less than 1 and e = 1023. Matlab
calls these numbers realmin and realmax. Together with eps, they characterize
the standard system.

Binary Decimal
eps 2^(-52) 2.2204e-16
realmin 2^(-1022) 2.2251e-308
realmax (2-eps)*2^1023 1.7977e+308

If any computation tries to produce a value larger than realmax, it is said to
overflow. The result is an exceptional floating-point value called infinity or Inf. It
is represented by taking e = 1024 and f = 0 and satisfies relations like 1/Inf = 0
and Inf+Inf = Inf.

If any computation tries to produce a value that is undefined even in the real
number system, the result is an exceptional value known as Not-a-Number, or NaN.
Examples include 0/0 and Inf-Inf. NaN is represented by taking e = 1024 and f
nonzero.

If any computation tries to produce a value smaller than realmin, it is said to
underflow. This involves one of the optional, and controversial, aspects of the IEEE
standard. Many, but not all, machines allow exceptional denormal or subnormal
floating-point numbers in the interval between realmin and eps*realmin. The
smallest positive subnormal number is about 0.494e-323. Any results smaller than
this are set to 0. On machines without subnormals, any results less than realmin
are set to 0. The subnormal numbers fill in the gap you can see in the floatgui
model system between 0 and the smallest positive number. They do provide an
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elegant way to handle underflow, but their practical importance for Matlab style
computation is very rare. Denormal numbers are represented by taking e = −1023,
so the biased exponent e + 1023 is 0.

Matlab uses the floating-point system to handle integers. Mathematically,
the numbers 3 and 3.0 are the same, but many programming languages would use
different representations for the two. Matlab does not distinguish between them.
We sometimes use the term flint to describe a floating-point number whose value is
an integer. Floating-point operations on flints do not introduce any roundoff error,
as long as the results are not too large. Addition, subtraction, and multiplication of
flints produce the exact flint result, if it is not larger than 253. Division and square
root involving flints also produce a flint if the result is an integer. For example,
sqrt(363/3) produces 11, with no roundoff.

Two Matlab functions that take apart and put together floating-point num-
bers are log2 and pow2.

help log2
help pow2

produces

[F,E] = LOG2(X) for a real array X, returns an array F
of real numbers, usually in the range 0.5 <= abs(F) < 1,
and an array E of integers, so that X = F .* 2.^E.
Any zeros in X produce F = 0 and E = 0.

X = POW2(F,E) for a real array F and an integer array E
computes X = F .* (2 .^ E). The result is computed quickly
by simply adding E to the floating-point exponent of F.

The quantities F and E used by log2 and pow2 predate the IEEE floating-point
standard and so are slightly different from the f and e we are using in this section.
In fact, f = 2*F-1 and e = E-1.

[F,E] = log2(phi)

produces

F =
0.80901699437495

E =
1

Then

phi = pow2(F,E)

gives back

phi =
1.61803398874989
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As an example of how roundoff error affects matrix computations, consider
the two-by-two set of linear equations

17x1 + 5x2 = 22
1.7x1 + 0.5x2 = 2.2

The obvious solution is x1 = 1, x2 = 1. But the Matlab statements

A = [17 5; 1.7 0.5]
b = [22; 2.2]
x = A\b

produce

x =
-1.0588
8.0000

Where did this come from? Well, the equations are singular, but consistent. The
second equation is just 0.1 times the first. The computed x is one of infinitely
many possible solutions. But the floating-point representation of the matrix A is
not exactly singular because A(2,1) is not exactly 17/10.

The solution process subtracts a multiple of the first equation from the second.
The multiplier is mu = 1.7/17, which turns out to be the floating-point number
obtained by truncating, rather than rounding, the binary expansion of 1/10. The
matrix A and the right-hand side b are modified by

A(2,:) = A(2,:) - mu*A(1,:)
b(2) = b(2) - mu*b(1)

With exact computation, both A(2,2) and b(2) would become zero, but with
floating-point arithmetic, they both become nonzero multiples of eps.

A(2,2) = (1/4)*eps
= 5.5511e-17

b(2) = 2*eps
= 4.4408e-16

Matlab notices the tiny value of the new A(2,2) and displays a message
warning that the matrix is close to singular. It then computes the solution of the
modified second equation by dividing one roundoff error by another.

x(2) = b(2)/A(2,2)
= 8

This value is substituted back into the first equation to give

x(1) = (22 - 5*x(2))/17
= -1.0588
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Figure 1.9. Is this a polynomial?

The details of the roundoff error lead Matlab to pick out one particular solution
from among the infinitely many possible solutions to the singular system.

Our final example plots a seventh-degree polynomial.

x = 0.988:.0001:1.012;
y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;
plot(x,y)

The resulting plot doesn’t look anything like a polynomial. It isn’t smooth.
You are seeing roundoff error in action. The y-axis scale factor is tiny, 10−14. The
tiny values of y are being computed by taking sums and differences of numbers as
large as 35 · 1.0124 . There is severe subtractive cancellation. The example was
contrived by using the Symbolic Toolbox to expand (x− 1)7 and carefully choosing
the range for the x-axis to be near x = 1. If the values of y are computed instead
by

y = (x-1).^7;

then a smooth (but very flat) plot results.

1.8 Further Reading
Additional information about floating-point arithmetic and roundoff error can be
found in Higham [4] and Overton [6].
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Exercises

1.1. Which of these familiar rectangles is closest to a golden rectangle? Use Mat-
lab to do the calculations with an element-by-element vector division, w./h.

• 3-by-5 inch index card

• 8.5-by-11 inch US letter paper

• 8.5-by-14 inch US legal paper

• 9-by-12 foot rug

• 9:16 “letterbox” TV picture

• 768-by-1024 pixel computer monitor

1.2. ISO standard A4 paper is commonly used throughout most of the world,
except in the United States. Its dimensions are 210 by 297 millimeters. This
is not a golden rectangle, but the aspect ratio is close to another familiar
irrational mathematical quantity. What is that quantity? If you fold a piece
of A4 paper in half, what is the aspect ratio of each of the halves? Modify
the M-file goldrect.m to illustrate this property.

1.3. How many terms in the truncated continued fraction does it take to approx-
imate φ with an error less than 10−10? As the number of terms increases
beyond this, roundoff error eventually intervenes. What is the best accuracy
you can hope to achieve with double-precision floating-point arithmetic and
how many terms does it take?

1.4. Use the Matlab backslash operator to solve the 2-by-2 system of simultane-
ous linear equations

c1 + c2 = 1
c1φ + c2(1− φ) = 1

for c1 and c2. You can find out about the backslash operator by taking a
peek at the next chapter of this book, or with the commands

help \
help slash

1.5. The statement

semilogy(fibonacci(18),’-o’)

makes a logarithmic plot of Fibonacci numbers versus their index. The graph
is close to a straight line. What is the slope of this line?
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1.6. How does the execution time of fibnum(n) depend on the execution time
for fibnum(n-1) and fibnum(n-2)? Use this relationship to obtain an ap-
proximate formula for the execution time of fibnum(n) as a function of n.
Estimate how long it would take your computer to compute fibnum(50).
Warning: you probably do not want to actually run fibnum(50).

1.7. What is the index of the largest Fibonacci number that can be represented
exactly as a Matlab double-precision quantity without roundoff error? What
is the index of the largest Fibonacci number that can be represented approx-
imately as a Matlab double-precision quantity without overflowing?

1.8. Enter the statements

A = [1 1; 1 0]
X = [1 0; 0 1]

Then enter the statement

X = A*X

Now repeatedly press the up arrow key, followed by the Enter key. What
happens? Do you recognize the matrix elements being generated? How many
times would you have to repeat this iteration before X overflows?

1.9. Change the fern color scheme to use pink on a black background. Don’t forget
the stop button.

1.10. (a) What happens if you resize the figure window while the fern is being
generated? Why?
(b) The M-file finitefern.m can be used to produce printed output of the
fern. Explain why printing is possible with finitefern.m, but not with
fern.m.

1.11. Flip the fern by interchanging its x- and y-coordinates.

1.12. What happens to the fern if you change the only nonzero element in the
matrix A4?

1.13. What are the coordinates of the lower end of the fern’s stem?

1.14. The coordinates of the point at the upper tip end of the fern can be computed
by solving a certain 2-by-2 system of simultaneous linear equations. What is
that system and what are the coordinates of the tip?

1.15. The fern algorithm involves repeated random choices from four different for-
mulas for advancing the point. If the kth formula is used repeatedly by itself,
without random choices, it defines a deterministic trajectory in the (x, y)
plane. Modify finitefern.m so that plots of each of these four trajectories
are superimposed on the plot of the fern. Start each trajectory at the point
(−1, 5). Plot o’s connected with straight lines for the steps along each trajec-
tory. Take as many steps as are needed to show each trajectory’s limit point.
You can superimpose several plots with
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plot(...)
hold on
plot(...)
plot(...)
hold off

1.16. Use the following code to make your own Portable Network Graphics file from
the fern. Then compare your image with one obtained from ncm/fern.png.

bg = [0 0 85]; % Dark blue background
fg = [255 255 255]; % White dots
sz = get(0,’screensize’);
rand(’state’,0)
X = finitefern(500000,sz(4),sz(3));
d = fg - bg;
R = uint8(bg(1) + d(1)*X);
G = uint8(bg(2) + d(2)*X);
B = uint8(bg(3) + d(3)*X);
F = cat(3,R,G,B);
imwrite(F,’myfern.png’,’png’,’bitdepth’,8)

1.17. Modify fern.m or finitefern.m so that it produces Sierpinski’s triangle.
Start at

x =
(

0
0

)

At each iterative step the current point x is replaced by Ax + b where the
matrix A is always

A =
(

1/2 0
0 1/2

)

and the vector b is chosen at random with equal probability from among the
three vectors

b =
(

0
0

)
, b =

(
1/2
0

)
, or b =

(
1/4√
3/4

)

1.18. greetings(phi) generates a seasonal holiday fractal that depends upon the
parameter φ. The default value of φ is the golden ratio. What happens for
other values of φ? Try both simple fractions and floating point approxima-
tions to irrational values.

1.19. A = magic(4) is singular. Its columns are linearly dependent. What do
null(A), null(A,’r’), null(sym(A)), and rref(A) tell you about that de-
pendence?
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1.20. Let A = magic(n) for n = 3, 4, or 5. What does

p = randperm(n); q = randperm(n); A = A(p,q);

do to

sum(A)
sum(A’)’
sum(diag(A))
sum(diag(flipud(A)))
rank(A)

1.21. The character char(7) is a control character. What does it do?

1.22. What does char([169 174]) display on your computer?

1.23. What fundamental physical law is hidden in this string?

s = ’/b_t3{$H~MO6JTQI>v~#3GieW*l(p,nF’

1.24. Find the two files encrypt.m and gettysburg.txt. Use encrypt to encrypt
gettysburg.txt. Then decrypt the result. Use encrypt to encrypt itself.

1.25. With the NCM directory on you path, you can read the text of Lincoln’s
Gettysburg address with

fp = fopen(’gettysburg.txt’);
G = char(fread(fp))’
fclose(fp);

(a) How many characters are in the text?
(b) Use the unique function to find the unique characters in the text.
(c) How many blanks are in the text? What punctuation characters, and how
many of each, are there?
(d) Remove the blanks and the punctuation and convert the text to all upper
or lower case. Use the histc function to count the number of letters. What
is the most frequent letter? What letters are missing?
(e) Use the bar function as described in help histc to plot a histogram of
the letter frequencies.
(f) Use get(gca,’xtick’) and get(gca,’xticklabel’) to see how the x-
axis of the histogram is labeled. Then use

set(gca,’xtick’,...,’xticklabel’,...)

to relabel the x-axis with the letters in the text.

1.26. If x is the character string consisting of just two blanks,

x = ’ ’
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then crypto(x) is actually equal to x. Why does this happen? Are there
any other two-character strings that crypto does not change?

1.27. Find another 2-by-2 integer matrix A for which

mod(A*A,97)

is the identity matrix. Replace the matrix in crypto.m with your matrix and
verify that the function still works correctly.

1.28. The function crypto works with 97 characters instead of 95. It can produce
output, and correctly handle input, that contains two characters with ASCII
values greater than 127. What are these characters? Why are they necessary?
What happens to other characters with ASCII values greater than 127?

1.29. Create a new crypto function that works with just 29 characters, the 26
lowercase letters, plus blank, period, and comma. You will need to find a
2-by-2 integer matrix A for which mod(A*A,29) is the identity matrix.

1.30. The graph of the 3n + 1 sequence has a particular characteristic shape if the
starting n is 5, 10, 20, 40, . . ., that is, n is five times a power of 2. What is
this shape and why does it happen?

1.31. The graphs of the 3n+1 sequences starting at n = 108, 109, and 110 are very
similar to each other. Why?

1.32. Let L(n) be the number of terms in the 3n + 1 sequence that starts with n.
Write a Matlab function that computes L(n) without using any vectors or
unpredictable amounts of storage. Plot L(n) for 1 ≤ n ≤ 1000. What is the
maximum value of L(n) for n in this range, and for what value of n does it
occur? Use threenplus1 to plot the sequence that starts with this particular
value of n.

1.33. Modify floatgui.m by changing its last line from a comment to an executable
statement and changing the question mark to a simple expression that counts
the number of floating-point numbers in the model system.

1.34. Explain the output produced by

t = 0.1
n = 1:10
e = n/10 - n*t

1.35. What does each of these programs do? How many lines of output does each
program produce? What are the last two values of x printed?

x = 1; while 1+x > 1, x = x/2, pause(.02), end

x = 1; while x+x > x, x = 2*x, pause(.02), end

x = 1; while x+x > x, x = x/2, pause(.02), end
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1.36. Which familiar real numbers are approximated by floating-point numbers
that display the following values with format hex?

4059000000000000
3f847ae147ae147b
3fe921fb54442d18

1.37. Let F be the set of all IEEE double-precision floating-point numbers, except
NaNs and Infs, which have biased exponent 7ff(hex), and denormals, which
have biased exponent 000(hex).
(a) How many elements are there in F?
(b) What fraction of the elements of F are in the interval 1 ≤ x < 2?
(c) What fraction of the elements of F are in the interval 1/64 ≤ x < 1/32?
(d) Determine by random sampling approximately what fraction of the ele-
ments x of F satisfy the Matlab logical relation

x*(1/x) == 1

1.38. The classic quadratic formula says that the two roots of the quadratic equa-
tion

ax2 + bx + c = 0

are

x1, x2 =
−b±√b2 − 4ac

2a

Use this formula in Matlab to compute both roots for

a = 1, b = −100000000, c = 1

Compare your computed results with

roots([a b c])

What happens if you try to compute the roots by hand or with a hand
calculator?
You should find that the classic formula is good for computing one root, but
not the other. So use it to compute one root accurately and then use the fact
that

x1x2 =
c

a

to compute the other.

1.39. The power series for sin x is

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ ...

This Matlab function uses the series to compute sin x.
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function s = powersin(x)
% POWERSIN. Power series for sin(x).
% POWERSIN(x) tries to compute sin(x) from a power series
s = 0;
t = x;
n = 1;
while s+t ~= s;

s = s + t;
t = -x.^2/((n+1)*(n+2)).*t;
n = n + 2;

end

What causes the while loop to terminate?
Answer the following questions for x = π/2, 11π/2, 21π/2, and 31π/2 :

How accurate is the computed result?

How many terms are required?

What is the largest term in the series?

What do you conclude about the use of floating-point arithmetic and power
series to evaluate functions?

1.40. Steganography is the technique of hiding messages or other images in the low
order bits of the data for an image. The Matlab image function has a
hidden image that contains other hidden images. To see the top level image,
just execute the single command,

image

Then, to improve its appearance,

colormap(gray(32))
truesize
axis ij
axis image
axis off

But that’s just the beginning. The NCM program stegano helps you continue
the investigation.
(a) How many images are hidden in the cdata for the default image?
(b) What does this have to do with the structure of floating-point numbers?

1.41. Prime spirals. A Ulam prime spiral is a plot of the location of the prime
numbers using a numbering scheme that spirals outward from the center of
a grid. Our NCM file primespiral(n,c) generates an n-by-n prime spiral,
starting with the number c in the center. The default is c = 1. Figure 1.10
is primespiral(7) and figure 1.11 is primespiral(250).
The concentration of primes on some diagonal segments is remarkable, and
not completely understood. The value of the element at position (i, j) is a
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43 44 45 46 47 48 49

42 21 22 23 24 25 26

41 20 7 8 9 10 27

40 19 6 1 2 11 28

39 18 5 4 3 12 29

38 17 16 15 14 13 30

37 36 35 34 33 32 31

Figure 1.10. primespiral(7)

piecewise quadratic function of i and j, so each diagonal segment represents
a little mini-theorem about the distribution of primes. The phenomenon
was discovered by Stanislaw Ulam in 1963 and appeared on the cover of
Scientific American in 1964. There are a number of interesting Web
pages devoted to prime spirals. Start with [7] and [9].
(a) The Matlab demos directory contains an M-file spiral.m. The integers
from 1 to n2 are arranged in a spiral pattern, starting in the center of the
matrix. The code in demos/spiral.m is not very elegant. Here is a better
version.

function S = spiral(n)
%SPIRAL SPIRAL(n) is an n-by-n matrix with elements
% 1:n^2 arranged in a rectangular spiral pattern.
S = [];
for m = 1:n

S = rot90(S,2);
S(m,m) = 0;
p = ???
v = (m-1:-1:0);
S(:,m) = p-v’;
S(m,:) = p+v;

end
if mod(n,2)==1

S = rot90(S,2);
end

What value should be assigned to p each time through the loop so that this
function generates the same matrices as the spiral.m in the demos directory?
(b) Why do half of the diagonals of spiral(n) contain no primes?
(c) Let S = spiral(2*n) and let r1 and r2 be rows that go nearly halfway
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Figure 1.11. primespiral(250)

across the middle of the matrix
r1 = S(n+1,1:n-2)
r2 = S(n-1,n+2:end).

Why do these rows contain no primes?
(d) What is particularly remarkable about

primespiral(17,17)
primespiral(41,41)

(e) Find values of n and c, both less than 50, and not equal to 17 or 41, so
that

[S,P] = primespiral(n,c)
contains a diagonal segment with 8 or more primes.

1.42. Triangular numbers are integers of the form n(n + 1)/2. The term comes
from the fact that a triangular grid with n points on a side has a total
of n(n + 1)/2 points. Write a function trinums(m) that generates all the
triangular numbers less than or equal to m. Modify primespiral to use your
trinums and become trinumspiral.
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1.43. Here is a puzzle that does not have much to do with this chapter, but you
might find it interesting nevertheless. What familiar property of the integers
is represented by the following plot?

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

1.44. In the Gregorian calendar, a year y is a leap year if and only if

(mod(y,4) == 0) & (mod(y,100) ~= 0) | (mod(y,400) == 0)

Thus, 2000 was a leap year, but 2100 will not be a leap year. This rule implies
that the Gregorian calendar repeats itself every 400 years. In that 400 year
period, there are 97 leap years, 4800 months, 20871 weeks and 146097 days.
The Matlab functions datenum, datevec, datestr, and weekday use these
facts to facilitate computations involving calendar dates. For example, either
of the statements

[d,w] = weekday(’Aug. 17, 2003’)

or

[d,w] = weekday(datenum([2003 8 17]))

tells me that my birthday was on a Sunday in 2003.
Use Matlab to answer the following questions.
(a) On which day of the week were you born?
(b) In a 400 year Gregorian calendar cycle, which week day is the most likely
for your birthday?
(c) What is the probability that the 13th of any month falls on a Friday?
The answer is close to, but not exactly equal to, 1/7.

1.45. Biorhythms were very popular in the ’60’s. You can still find many Web sites
today that offer to prepare personalized biorhythms, or that sell software to
compute them.
Biorhythms are based on the notion that three sinusoidal cycles influence our
lives. The physical cycle has a period of 23 days, the emotional cycle has a
period of 28 days, and the intellectual cycle has a period of 33 days. For any
individual, the cycles are initialized at birth. Figure 1.12 is my biorhythm,
which begins on Aug. 17, 1939, plotted for a eight-week period centered
around the date this is being written, Oct. 19, 2003. It shows that my
intellectual power reached a peak yesterday, that my physical strength and
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emotional well-being will reach their peaks within six hours of each other on
the same day next week, and that all three cycles will be at their low point
within a few days of each other early in November.

09/21 09/28 10/05 10/12 10/19 10/26 11/02 11/09 11/16
−100

−50

0

50

100

10/19/03

birthday: 08/17/39

Physical
Emotional
Intellectual

Figure 1.12. My biorhythm

The date and graphics functions in Matlab make the computation and dis-
play of biorhythms particularly convenient. Dates are represented by their
date number, which is the number of days since the zeroth day of a theoretical
calendar year zero. The function datenum returns the date number for any
given date and time. For example, datenum(’Oct. 19, 2003’) is 731873.
The expression fix(now) returns the date number of the current date.
The following code segment is part of a program that plots a biorhythm for
an eight week period centered on the current date.

t0 = datenum(mybirthday);
t1 = fix(now);
t = (t1-28):1:(t1+28);
y = 100*[sin(2*pi*(t-t0)/23)

sin(2*pi*(t-t0)/28)
sin(2*pi*(t-t0)/33)];

plot(t,y)

(a) Complete this program, using your own birthday, and the line, datetick,
title, datestr, and legend functions. Your program should produce some-
thing like figure 1.12.
(b) All three cycles started at zero when you were born. How long does it
take until all three simultaneously return to that initial condition? How old
were you, or will you be, on that date? Plot your biorhythm near that date.
You should find the lcm function helpful.
(c) Is it possible for all three cycles to reach their maximum or minumum at
exactly the same time?
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