Chapter 6

Fractal Fern

The fractal fern involves 2-by-2 matrices.

The programs fern and finitefern in the exm toolbox produce the Fractal
Fern described by Michael Barnsley in Fractals Everywhere [?]. They generate and
plot a potentially infinite sequence of random, but carefully choreographed, points
in the plane. The command

fern

runs forever, producing an increasingly dense plot. The command
finitefern(n)

generates n points and a plot like Figure 6.1. The command
finitefern(n,’s’)

shows the generation of the points one at a time. The command
F = finitefern(n);

generates, but does not plot, n points and returns an array of zeros and ones for
use with sparse matrix and image-processing functions.

The exm toolbox also includes fern. jpg, a 768-by-1024 color image with half
a million points that you can view with a browser or a paint program. You can also
view the file with

F = imread(’fern.png’);
image (F)
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Figure 6.1. Fractal fern.

If you like the image, you might even choose to make it your computer desktop
background. However, you should really run fern on your own computer to see the
dynamics of the emerging fern in high resolution.

The fern is generated by repeated transformations of a point in the plane. Let
x be a vector with two components, x; and x5, representing the point. There are
four different transformations, all of them of the form

r — Ax + b,

with different matrices A and vectors b. These are known as affine transformations.
The most frequently used transformation has

0.85 0.04 0
A= (—0.04 0.85) » b= (1.6) ’
This transformation shortens and rotates x a little bit, then adds 1.6 to its second
component. Repeated application of this transformation moves the point up and to

the right, heading toward the upper tip of the fern. Every once in a while, one of
the other three transformations is picked at random. These transformations move



the point into the lower subfern on the right, the lower subfern on the left, or the
stem.
Here is the complete fractal fern program.

function fern

%FERN MATLAB implementation of the Fractal Fern

%#Michael Barnsley, Fractals Everywhere, Academic Press, 1993
%This version runs forever, or until stop is toggled.

%See also: FINITEFERN.

shg

clf reset

set(gcf,’color’,’white’, ’menubar’, ’none’, ...
‘numbertitle’,’off’,’name’,’Fractal Fern’)

x=1[.5; .5];

h=plot(x(1),x(2),’.%);

darkgreen = [0 2/3 0] ;

set (h, ‘markersize’,1,’color’,darkgreen, ’erasemode’, ’none’) ;

axis([-3 30 10])

axis off

stop = uicontrol(’style’,’toggle’,’string’,’stop’, ...
’background’,’white’);

drawnow

p=[.8 .92 .99 1.00];

A1=1[.85 .04; -.04 .85]; bl=[0;1.6];
A2=[.20-.26; .23 .22]; b2=[0; 1.6];
A3=[-.15 .28; .26 .24]; b3 =[0; .44];
AM=[0 0; 0 .16];

cnt =1;
tic
while “get(stop, *value’)
r = rand;
if r<p(1)
x =Al*x + bl;
elseif r < p(2)
x = A2*x + b2;
elseif r < p(3)
x = A3xx + b3;
else
X = Ad*x;
end
set (h, ’xdata’,x(1),’ydata’,x(2));
cnt =cnt +1;
drawnow
end
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t =toc;

s = sprintf (’%8.0f points in %6.3f seconds’,cnt,t);

text(-1.5,-0.5,s, fontweight’, ’bold’);

set(stop,’ style’,’pushbutton’,’string’,’close’, ...
’callback’,’close(gct)’)

Let’s examine this program a few statements at a time.
shg

stands for “show graph window.” It brings an existing graphics window forward,
or creates a new one if necessary.

clf reset
resets most of the figure properties to their default values.

set(gcf,’color’,’white’, ’menubar’, ’none’,
’numbertitle’,’off’,’name’,’Fractal Fern’)

changes the background color of the figure window from the default gray to white
and provides a customized title for the window.

x = [.5; .5];
provides the initial coordinates of the point.
h = plot(x(1),x(2),’.7);

plots a single dot in the plane and saves a handle, h, so that we can later modify
the properties of the plot.

darkgreen = [0 2/3 0];

defines a color where the red and blue components are zero and the green component
is two-thirds of its full intensity.

set (h, ‘markersize’,1,’color’,darkgreen, ’erasemode’, ’none’) ;

makes the dot referenced by h smaller, changes its color, and specifies that the image
of the dot on the screen should not be erased when its coordinates are changed. A
record of these old points is kept by the computer’s graphics hardware (until the
figure is reset), but MATLAB itself does not remember them.

axis([-3 3 0 10])
axis off

specifies that the plot should cover the region
—3<z; <3, 0< 22 <10,

but that the axes should not be drawn.



stop = uicontrol(’style’,’toggle’,’string’,’stop’,
’background’,’white’);

creates a toggle user interface control, labeled ’stop’ and colored white, in the
default position near the lower left corner of the figure. The handle for the control
is saved in the variable stop.

drawnow

causes the initial figure, including the initial point, to actually be plotted on the
computer screen.
The statement

p =1[.8 .92 .99 1.00];

sets up a vector of probabilities. The statements

Al = [ .85 .04; -.04 .85]; bl = [0; 1.6];
A2 = [ .20 -.26; .23 .22]; b2 = [0; 1.6];
A3 = [-.15 .28; .26 .24]; b3 = [0; .44];

Ad 0 0 ; 0 .16]1;

define the four affine transformations. The statement
cnt = 1;

initializes a counter that keeps track of the number of points plotted. The statement
tic

initializes a stopwatch timer. The statement
while “get(stop,’value’)

begins a while loop that runs as long as the >value’ property of the stop toggle is
equal to 0. Clicking the stop toggle changes the value from 0 to 1 and terminates
the loop.

r = rand;
generates a pseudorandom value between 0 and 1. The compound if statement

if r < p(D)

x = Al*x + bil;
elseif r < p(2)

x = A2*%x + b2;
elseif r < p(3)

x = A3*x + Db3;
else

X = Ad*x;
end
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picks one of the four affine transformations. Because p(1) is 0.85, the first trans-
formation is chosen 85% of the time. The other three transformations are chosen
relatively infrequently.

set(h,’xdata’,x(1),’ydata’,x(2));

changes the coordinates of the point h to the new (x1,x2) and plots this new point.
But get (h, ’erasemode’) is ’none’, so the old point also remains on the screen.

cnt = cnt + 1;
counts one more point.
drawnow

tells MATLAB to take the time to redraw the figure, showing the new point along
with all the old ones. Without this command, nothing would be plotted until stop
is toggled.

end

matches the while at the beginning of the loop. Finally,
t = toc;

reads the timer.

s = sprintf(’%8.0f points in %6.3f seconds’,cnt,t);
text(-1.5,-0.5,s, ’fontweight’, ’bold’);

displays the elapsed time since tic was called and the final count of the number of
points plotted. Finally,

set(stop, ’style’, ’pushbutton’,’string’,’close’,
’callback’,’close(gcf) ’)

changes the control to a push button that closes the window.

Exercises

6.1 Fern color. Change the fern color scheme to use pink on a black background.
Don’t forget the stop button.

6.2 Flip the fern. Flip the fern by interchanging its z- and y-coordinates.

6.3 Erase mode.
(a) What happens if you resize the figure window while the fern is being generated?
Why?



(b) The M-file finitefern.m can be used to produce printed output of the fern.
Explain why printing is possible with finitefern.m but not with fern.m.

6.4 Fern stem.

(a) What happens to the fern if you change the only nonzero element in the matrix
A4?

(b) What are the coordinates of the lower end of the fern’s stem?

6.5 Fern tip. The coordinates of the point at the upper tip end of the fern can
be computed by solving a certain 2-by-2 system of simultaneous linear equations.
What is that system and what are the coordinates of the tip?

6.6 Trajectories. The fern algorithm involves repeated random choices from four
different formulas for advancing the point. If the kth formula is used repeatedly
by itself, without random choices, it defines a deterministic trajectory in the (z,y)
plane. Modify finitefern.m so that plots of each of these four trajectories are
superimposed on the plot of the fern. Start each trajectory at the point (—1,5).
Plot o’s connected with straight lines for the steps along each trajectory. Take as
many steps as are needed to show each trajectory’s limit point. You can superimpose
several plots with

plot(...)
hold on

plot(...)
plot(...)
hold off

6.7 JPEG. Use the following code, available in fernjpeg.m, to make your own JPEG
file from the fern. Then compare your image with one obtained from exm/fern. jpg.

bg = [0 0 85]; % Dark blue background
fg [255 255 255]; 7 White dots
sz = get(0,’screensize’);

rand (’state’,0)

X = finitefern(500000,sz(4),sz(3));
= fg - bg;

= uint8(bg(1) + d(1)*X);
uint8(bg(2) + d(2)*X);

= uint8(bg(3) + d(3)*X);

= cat(3,R,G,B);

imwrite(F, ’myfern.jpg’,’jpg’);
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6.8 Sierpinski’s triangle. Modify fern.m or finitefern.m so that it produces Sier-
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pinski’s triangle. Start at

- (2)

At each iterative step, the current point z is replaced with Az + b, where the matrix
A is always

A= (162 1(/)2)

and the vector b is chosen at random with equal probability from among the three
vectors

- (0) () ()



