
Introduction to Matlab

Graeme Chandler
Mathematics Department

The University of Queensland

February 2000

Contents

1 Introduction. 3
1.1 Learning Matlab . 3
1.2 Further References . 3
1.3 Starting Matlab . 4
1.4 Typing Commands . 5

2 Simple Calculations . 6
2.1 Basic Arithmetic. 6
2.2 Complex Numbers. 7

3 Help in Matlab . 8
3.1 The Help Command . 8
3.2 The Help Window . 9
3.3 The Help Desk . 9

4 Simple Plots of Functions . 10
4.1 2D Plots . 10
4.2 3D Plots. 13

5 Plotting Lines and Data . 15
5.1 Adding a Line . 16
5.2 Hints for Good Graphs . 17

5.2.1 Plot data as points . 17
5.2.2 Choose a good scale . 17

6 Matrices and Vectors . 19
6.1 Solving Equations. 19
6.2 Matrices and Vectors. 20
6.3 Creating Matrices . 21
6.4 Systems of Equations . 22
6.5 Polynomials . 24

7 Graphs . 25
7.1 Component Arithmetic . 25

7.2 Printing Graphs . 26
7.3 Graphs in Reports . 27
7.4 Saving Graphs . 28
7.5 Advanced Graphics . 28

8 3D Graphics . 28
8.1 3D Basics . 28
8.2 Advanced Options . 29

9 Functions . 30
9.1 Writing a Function . 30
9.2 Notes on Functions . 32

9.2.1 Code is private . 32
9.2.2 Use . operators . 32
9.2.3 Other editors . 32

10 Using Functions . 33
10.1 1D Minimization. 33

10.1.1 Accuracy . 34
10.2 Finding Zeros . 35
10.3 Integration. 36

10.3.1 Accuracy . 36
11 Differential Equations. 37
11.1 Scalar ODE’s . 37
11.2 Order 2 ODE’s . 39

12 A Small Assignment . 41
12.1 Model Answer . 42

13 Larger Projects . 43
13.1 M-Files. 43
13.2 Some Programming . 44
13.3 More Programming . 46
13.4 Saving to Floppies. 47

14 Command Summary . 47

2

1. Introduction.

1.1. Learning Matlab

Matlab is one of the fastest and most enjoyable ways to solve problems numeri-
cally. The computational problems arising in most undergraduate courses can be
solved much more quickly with Matlab, than with the standard programming lan-
guages (Fortran, C, Java, etc.). It is particularly easy to generate some results,
draw graphs to look at the interesting features, and then explore the problem
further. By minimizing human time, Matlab is particularly useful in the initial
investigation of real problems; even though they may eventually have to be solved
using more computationally efficient ways on super computers.
This introduction gives a quick way to become familiar with the most im-

portant parts of Matlab. The first five sections emphasize simple arithmetic,
matrix-vector operations (including solving systems of equations), and graphing
functions and data. The later sections describe some more advanced features,
including 3D graphics. There are also some suggestions about using Matlab to do
larger projects, and including Matlab results and graphs in reports.
The best way to used this introduction is to sit down at a computer and type

in the commands as they are described. Look at Matlab’s response, and check
that the answers are what you expect. It is also a good idea to do the small
exercises. It makes sure that the commands become part of an active Matlab
vocabulary. Each lesson should take less than one hour. More information about
any Matlab command can be found by using the on line help features described
in lesson 3.
These notes assume basic familiarity with the Windows interface.. For in-

stance, you need to know about

• cutting and pasting within and between windows,

• editing files, and

• moving between windows and resizing them.

If you are unsure about this, seek help from another student or tutor.

1.2. Further References

The complete Matlab Manuals are available on line in the Mathematics depart-
ment’s PC laboratories. They contain an introductory guide for new users, and
an especially good introduction to Matlab’s graphics.
More information on Matlab can be found in the books

3

1. D.M. Etter; Engineering Problem Solving with Matlab, Prentice–Hall, 1993.

2. Duane C. Hanselman & Bruce Littlefield; Mastering MATLAB 5: A Com-
prehensive Tutorial and Reference, Prentice Hall, 1998

3. Kermit Sigmon, A Matlab Primer, 4th Ed. 1995

or try the Mathworks web site

http://www.mathworks.com

If you wish to use Matlab at home, the student edition of Matlab is available
from bookshops at the cost of about $100.00 (or you can borrow a copy from
the library.) The student version is ‘crippled’ and only works for small problems.
Nevertheless, it should suffice for almost all assignments in undergraduate courses.
It is usually possible to develop a program on the student version and do the final
full size problem on the Mathematics Department’s computers if necessary.

1.3. Starting Matlab

Here we describe the steps needed to start Matlab on the PC’s in the Mathematics
Computer Laboratories (Rooms 519 and 420). On other machines the start-up
procedure will be different. However the Matlab commands are the same on all
machines.

1. First sit down at a PC. If necessary, close any programs left running by a
previous user. The simplest way is to use the Windows ‘Start’ button then
the ‘Shut Down’ option.

2. When prompted, use the [Ctrl]-[Alt]-[Del] combination to bring up the logon
screen. (You will be asked for a name and password, but ignore this and
just press the [Enter] key.)

3. You should now see the standard Windows desktop with a screen of icons.

4. Find the icon labelled ‘Matlab’ and double click on it. After another pause,
the Matlab logo appears briefly, then the ‘MATLAB Command Window’
remains on the screen. It ends with the words:-

To get started, type one of these commands:

helpwin, helpdesk, or demo.

For information on all of the MathWorks products, type tour.

4

>>

Matlab is now ready!

1.4. Typing Commands

All commands to Matlab are typed in after the Matlab prompt, i.e.˙the symbol
>> . They are then sent to Matlab to be implemented by pressing the [Enter]
key.

• Any typing error can be corrected before the [Enter] key is pressed.

– Use the keypad left and right arrows or the mouse to move to the error.

– Use the [Del] key to delete the mistakes, and then type in the correction.

– When the line is correct, just press [Enter] to send the command to
Matlab. (It is not necessary to go to the end of the line.)

Usually errors are not noticed until Matlab beeps and displays an error mes-
sage. However it is not necessary to retype the whole command.

• Previous commands can be corrected and reused to save typing.

– Just press the keypad up arrow and the previous command appears.

– Make the necessary corrections and press [Enter] to run the corrected
command.

Now go on to the first lesson. Type in all the commands as they are shown,
and make sure the Matlab response is what you expect.

Exercise .1. Type in the Matlab command logo . A nice 3D graph of the
Matlab logo should appear. This is produced by advanced use of Matlab’s graphics
capabilities, discussed later.

5

2. Simple Calculations

2.1. Basic Arithmetic.

The simplest way to start with Matlab is to use it for simple calculations. Matlab
has a wide range of functions and is able to use complex numbers as well as reals.
The following simple commands have obvious meanings. Type them in and see
what happens. (In the examples below, all the text after the % is just a comment
or an explanation. You do not have to type it in. It would just be ignored by
Matlab.)

% The words after ‘%’ are comments

% and explanations. Do not type them in.

(-1+2+3)*5 - 2/3 % The four arithmetic operations

2^3 % Means 2 to the power 3

exp(sin(pi/2)) % The usual functions are provided

% log, log10, cos, tan, asin, ...

Like a calculator, Matlab does all calculations correct only to about 16 signifi-
cant decimal digits. This is enough accuracy for most purposes. For convenience,
usually only the first 5 significant digits are displayed on the screen. Some more
examples.

pi

22/7 % pi is not the same as 22/7!

11*(15/11) - 15 % This shows there is roundoff error

% when Matlab uses fractions.

cos(pi/3) % These are familiar trig functions.

sin(pi/6) % Note Matlab always uses radians.

Matlab also uses variables to store intermediate answers. A variable can have
almost any name, but it must begin with a letter. Matlab distinguishes between
upper and lower case letters.

x = 2+3

y = 4+5

result1 = x/y

Sometimes the values of intermediate calculations are not needed and we do
not want them to be displayed. If a semicolon (;) is placed after a command, the
results are not displayed.

6

p = 2+3 ; % The semicolons supress

q = 3+5 ; % unwanted output.

ratio = p/q

A number of commands can be placed on the one line, provided they are separated
by a comma (,) or a semicolon (;). (Use a semicolon, unless you want the answer
displayed.)

p = 2+3 ; q2 = x + 4 , ratio2 = p/q2 % All on one line

Parentheses can be used to make expressions clearer. Thus the last calculation
could have been written as

ratio = (2+3)/(x+4)

Exercise .2. In this exercise, save retyping by using the up arrow to edit the
previous commands! Remember that multiplication is done with a ‘∗’, it is not
enough to put numbers next to each other.

1. Use Matlab to evaluate log(s2 − 2 s cos(π/5) + 1) where s = .5 .

2. Now use Matlab to evaluate log(s2 − 2 s cos(π/5) + 1) where s = .95 .

3. Finally, evaluate log(s2 − 2 s sin(π/5) + 1) when s = 1.

2.2. Complex Numbers.

Matlab handles complex numbers as easily as real numbers. When you start
Matlab the variable i stands for

√
(−1).

x = 2 + 3*i , y = 1 - 1*i

z1 = x - y , z2 = x * y , z3 = x / y

abs(x)

angle(y)

% Matlab quickly calculates the

sin(x) % sin of a complex number.

Matlab’s facility with complex numbers is handy, as using complex numbers
often involves complicated arithmetic. Indeed, as the previous example shows,
Matlab will effortlessly work out functions of complex numbers that are difficult
to do from first principles. But be careful about the name used for

√
(−1). When

Matlab starts, the variable i contains
√
(−1). Often the user overrides this and

uses i to stand for another number (in coding
∑n

i=1 for example). In this case
the Matlab command i = (-1)^.5 should be used to reset i to

√
(−1) before it

is used to represent complex numbers.

7

i = 2 ; j = 3 ; i+j % i is used in another calculation.

z = 2 + 3*i % Complex arithmetic no langer works!.

i = (-1)^.5 % reset i

z = 2 + 3*i % Complex numbers can now be used.

Here are two more complex calculations. Matlab can be used to demonstrate
one of the most important relations in Mathematics: that eπi = −1. (At least to
within round off error!).

exp(pi*i) + 1

i^i

Exercise .3.

(a.) The last command showed that according to Matlab, ii is a real number.
Can you explain mathematically why this is this so? (Hint: Use i = eπi/2.)
(b.) If y = ii, what are iy and yi? Can you work this out without Matlab?

3. Help in Matlab

There are three ways to get help in Matlab.

3.1. The Help Command

This is the easiest way to find out more about specific Matlab commands. If
you have forgotten small details, for example. The command help <name> gives
information about the Matlab command <name>.

help sin % Information about sin.

help i % Information about i .

help log % This is enough information about log

% to show log means log to the base e .

why % Provides general answers.

By itself, the command help gives a list of topics in Matlab. Initially, many
of the topics will be mysterious. The most familiar topic from the list is probably
‘elementary functions’. To explore this topic use the command help elfun. In
the most recent versions of Matlab the lookfor command can also be used to
search for relevant information.

help % Gives a list topics.

help elfun % More help in the area ‘elfun’, i.e.

% elementary functions like sin, exp,..

8

help sign % Information about a new command

% from the list in ’elfun’

lookfor logarithm % Gives the name of some

% functions related to logarithms

lookfor legend % Finds former students

The lookfor command is quite useful; however it may be very slow in the Math-
ematics PC lab. This is due to the heavy network traffic. But lookfor should be
quite fast on a single user PC.

3.2. The Help Window

It is also possible to get help by clicking on the ‘Help’ menu above the command
window. From the ‘Help’ menu, select the ‘Help Window’ item (by clicking)
and the list of help topics is displayed. The advantage of this method is that
it is possible to navigate around various topics by double clicking on them. For
example, in the help window double click on elfun to find the same information
given by the help elfun command. This is a good way to explore Matlab’s
commands.

3.3. The Help Desk

Matlab also comes with help documentation that can be read by Web browsers.
This may be used by

– typing the command helpdesk in the command window; or

– using the ‘Help’ menu and selecting the item ‘Help Desk (html)’.

After a slight pause the initial documentation window should come up. Interesting
links to pursue are:-

• Getting Started in Matlab for introductory information

• Documentation Road Mapfor the complete set of manuals online, and

• the ‘search’ box to look for more commands.

Exercise .4.

1. Is the inverse sine function one of Matlab’s elementary functions? (The
inverse sine is also known as sin−1, arcsin, or asin.)

1. How do you find sin−1(.5) in Matlab? Use help to find out.

9

2. If x = .5, is sin(sin−1(x))− x exactly zero in Matlab?

3. If θ = π/3, is sin−1(sin(θ)) − θ exactly zeros in Matlab? What about
θ = 5π/11?

2. Does Matlab have a specialized Mathematical function to calculate the
greatest common divisor? (Use help or lookfor)

1. Use Matlab to find the greatest common divisor of 30 and 24. (Check
the answer the same as the answer calculated manually.)

2. What is the greatest common divisor of 3072 and 288?

3. Does Matlab have a function to convert numbers to base 16, i.e. to hex-
adecimal form? (Hint: Use lookfor to find a way to convert a decimal
number to hexadecimal.) What is 61453 in base 16? Computers almost
always represent numbers internally as hexadecimals.

4. Use the search box in the Help Desk and look for information about loga-
rithms. There are 9 entries, including the last command, logm, for calcu-
lating the log of a matrix!

To wind down, type the Matlab command demo. This brings a menu of demon-
strations and examples to explore.

1. Visit the Gallery to see a number of attractive images.

2. Visit the Games section. Some find the game bubble wrap to be extraordi-
narily relaxing.

4. Simple Plots of Functions

The ezplot commands (ezplot, ezsurf, ezmesh, ...) and fplot allow the user
to plot functions in 2 and 3 dimensions by simply typing in the formula. Matlab
allows the user much more control over colour, style, lighting, and surface texture.
These more complicated commands are introduced later.

4.1. 2D Plots

The ez commands are best shown by example. Suppose we wish to plot the
function sin(x)/(1 + x2). This may be done simply using

ezplot(’sin(x)/(1+x^2)’)

10

If we want to change the range to [0, 5], add a second argument to our command.

ezplot(’sin(x)/(1+x^2)’, [0,5])

Occasionally a function is given implicitly. For example, the circle of radius 2
is defined by the equation x2 + y2 − 4 = 0. This is plotted by

ezplot(’x^2+y^2-4’)

A better graph is produced when the range is restricted to [−2.5, 2.5]× [−2.5, 2.5],
that is with the command

ezplot(’x^2+y^2-4’, [-2.5,2.5],[-2.5,2.5])

Alternatively we may remember the of radius 2 circle is defined parametrically
as the set of points {(2 cos(t), 2 sin(t)) : 0 ≤ t ≤ 2π}. Using this form the circle
is plotted as

ezplot(’2*cos(t)’, ’2*sin(t)’)

Exercise .5. 1. A nice example of a function that would be difficult to graph
without a computer or calculator is

f(x) = x(xx) − (xx)x.

Plot f(x). (Hint:- By itself, ezplot uses the range −2π ≤ x ≤ 2π. This is
inappropriate here: a better choice is to try the range 0 ≤ x ≤ 2.)

2. A Lissajous curve is a curve of the form

x = sin(nt+ c), y = sin(t) (4.1)

Play with small integer values of n = 1, 2, . . . and then find values of n and
c so the Lissajous curve becomes the ABC symbol.

3. And finally graph the implicitly defined function

(y2 − x2)(x− 1)(2x− 3) = 4(x2 + y2 − 2x)2.

The web site

http://mathworld.wolfram.com/topics/GeneralPlaneCurves.html

has a rich collection of interesting curves to draw.

11

Many interesting curves are expressed simply in polar coordinates. As we
follow the curve the radius is given as a simple function of the angle at the origin.
That is, the curve is obtained parametrically as the set of points

(x, y) = (r(θ) cos(θ), r(θ) sin(θ))

for some simple function r(θ). For example, the cochleoid (meaning ‘snail like’)
uses the formula r(θ) = sin(θ)/θ. The resulting curve is plotted in Matlab as

ezpolar(’sin(t)/t’), [-6*pi,6*pi])

Of course we could get the same curve by writing out the x and y coordinates
explicitly. The cochleoid could have been graphed by

ezplot(’(sin(t)/t)*cos(t)’,’(sin(t)/t)*sin(t)’,[-6*pi,6*pi])

The command fplot can also plot functions quickly. For example

fplot(’sin’,[0,pi]) % Plot sin(x) on [0,pi]

fplot(’x-x^3/6’,[0,2]) % Plot a polynomial.

Although parametric curves or polar coordinates may not be used, fplot has the
advantage that two or more functions may appear on the same plot

fplot(’[cos(x), 1-x^2/2, 1-x^2/2+x^4/24]’, [-pi,pi])

Exercise .6. 1. From the help for the fplot command, find out how to change
the range of the y axis on the previous plot. For example, a range of
−1.1 ≤ y ≤ 1.1 looks better.

2. Use fplot to do the following.

1. Plot the function ex between -1 and 1.

2. On the same graph plot ex and the polynomial 1+x between -1 and 1.

3. Finally on the same graph plot ex, 1+x, and 1+x+x2/2+x3/6 between
-1 and 1. Why are these last two polynomials good approximations to
ex?

Now add a title to the graph. Finally find out how to use the command
legend to label the three curves.

12

4.2. 3D Plots.

Curves may exist three dimensions as well as two. If we fly around in a circle of
radius 1 and gain 1 unit of height each circuit we would trace out the curve

(x, y, z) = (sin(2πt), cos(2πt), t) t ≥ 0.

To show the flight path up to the height z = 4, use the command

ezplot3(’cos(2*pi*t)’,’sin(2*pi*t)’,’t’,[0,4])

Exercise .7. 1. Use help ezplot3 to findout how to animate this curve.

2. What is the angle the flight path makes with the horizontal? (This is a
thinking question; there is no simple Matlab command to help!)

3. How would we plot the path if we gained 2 units of height for each circuit?

Plotting surfaces in 3 dimensions is more interesting. To plot the surface
z = f(x, y) where

f(x, y) = xy exp(−(x2 + y2))

use the Matlab command

ezsurf(’x*y*exp(-(x^2+y^2))’)

Some folk prefer to do away with the ugly black lines on the surface. It is also
useful to add a color bar, so that it is possible to determine the height of the
surface from its colour. To make these modifications, add two extra commands
after the ezsurf command.

ezsurf(’x*y*exp(-(x^2+y^2))’) % Plot the surface

shading interp % Remove the black lines

colorbar % Add a colorbar

To see a 3D surface clearly it is necessary to look at it from different angles.
Otherwise key features may be hidden. We can change our viewpoint by clicking
on the surface with the mouse (a blue outline of a box should appear). Then,
without releasing the mouse button, drag the blue outline until the required view
has been obtained. Release the mouse button and the surface will be redrawn
from the new view. Be warned though, it is easy to get lost.

13

Exercise .8. Plot the function xy exp(−(x2+y2)) using the following commands
instead of easysurf.
ezsurfc ezmesh ezmeshc ezcontour ezcontourf

(The syntax of these new commands is the same as ezsurf. But a complete de-
scription of the new commands is found using help commands; help ezcontour,

help ezmeshc, ...). Which command and which viewpoint would be best to
determine the height of the peaks?

Exercise .9. (For students of multivariate calculus only.) Produce a nice graph
which demonstrates as clearly as possible the behaviour of the function

xy2/(x2 + y4)

near the point (x, y) = (0, 0). This is surprisingly difficult. Remember, by default,
Matlab plots surfaces on a 60×60 grid, and many of the finer features of a function
are lost. If your computer has enough memory it is possible to increase the number
of grid points for a smoother graph.

Remember a one dimensional curve in 2D may be described parametrically in
the form (x, y) = (x(s), y(s)); that is its two coordinates are a function of the one
variable s. Surfaces may also be described parametrically in the form

(x, y, z) = (x(s, t), y(s, t), z(s, t))

The three coordinates are functions of 2 variables. For example a spiral ramp is
described by

{(s cos(t), s sin(t), t) : .4 ≤ s ≤ 1, 0 ≤ t ≤ 6π}
This is graphed by

ezsurf(’s*cos(t)’, ’s*sin(t)’, ’t’,[.4,1],[0,6*pi])

Exercise .10. Use the floor command to plot a spiral staircase
ezsurf(’s*cos(t)’,’s*sin(t)’,’floor(t)’,[.4,1],[0,6*pi])

Exercise .11. Explain how the Lissajous curve in the previous section, is related
to the curve (x, y, z) = (cos(nt), sin(nt), sin(t)). (Hint: Look at the 3D curve from
different angles.)

Exercise .12. Use the help surf command and look at the very last example.
(It is spread over two lines). Cut and paste these two lines from the help text to
the current command line (i.e. after the last >>) . Now press return and look at

14

the graph. (You could of course type in the whole command; but a cut and paste
is more reliable.)
This formula is very complicated to understand; but the graph is interesting

as a work of Matlab art. You may need to rotate a little to see what is happening
at the origin. I prefer to use the more aesthetic variation. (Note the ... mean
the command is continued on the next line. The ... would be left out if the
command we typed on one long line.)

ezsurf(’(1-s)*(3+cos(t))*cos(4*pi*s)’, ...

’(1-s)*(3+cos(t))*sin(4*pi*s)’, ...

’3*s + (1 - s)*sin(t)’, ...

[0,2*pi/3,0,12],120),

shading interp

Exercise .13. Plot a sphere. (Hint: Use a parametric 3D plot. At height t the
sphere is a circle of radius ... ?)

Exercise .14. Plot a swirl. This is a surface whose height above the point
(x, y) = (r cos θ, r sin θ) is sin(6 cos(r)− nθ).

5. Plotting Lines and Data

This section shows how to produce simple plots of lines and data.
Suppose we wish to plot some points. For example we are given the following

table of experimental results.

xk .5 .7 .9 1.3 1.7 1.8
yk .1 .2 .75 1.5 2.1 2.4

To work with the data in Matlab set up two column vectors x and y.

x = [.5 .7 .9 1.3 1.7 1.8]’

y = [.1 .2 .75 1.5 2.1 2.4]’

(Vectors are discussed in detail in the next lesson; but we can use them to draw
graphs without knowing all the details.) To graph y against x use the plot com-
mand.

plot(x,y,’x’)

15

The graph should now appear. (If not, it may be hidden behind other windows.
Click on the icon ‘Figure No. 1’ on the Windows task bar to bring the graph to
the front.)
This graph marks the points with an ‘x’. Other types of points can be used by

changing the ‘x’ in the plot command. (Use help plot to find out the details.)
From the graph it is clear that the data is approximately linear, whereas this is
not so obvious just from the numbers. Good graphs quickly show what is going
on!
When you have finished looking at the graph, just click on any visible part of

the command window, or on the Matlab icon on the task bar. More commands
can then be typed in.

Exercise .15. 1. Plot the above data with the points shown as circles.

2. Plot the above data with the points joined by lines (use help plot).

3. Plot the points as green stars.

4. Find out how to add a title to the plot. (Hint: Use the command help

plot. At the end of the help output there is a list of related commands.
Find out about one of these with another use of the help command.)

5.1. Adding a Line

From the graph it is clear that the points almost lie on a straight line. Perhaps the
points are off the line because of experimental errors. A course in statistics will
show how to calculate a ‘line of best fit’ for the data. But even without statistics,
the line between the points (.5, 0) and (2, 3) is a good candidate for ‘a line fitting
the data’. Lets add this line to the plot and see how well it approximates the
data. We do this by asking Matlab to plot the points (.5, 0) and (2, 3) joined by
a line.

x_vals = [.5 2]’ % The X-coords of the endpoints.

y_vals = [0 3]’ % The Y-coordinates

plot(x,y,’x’, x_vals,y_vals,’-’)

legend(’Original Data’, ’Line of Best Fit’)

title(’Data Analysis (Graph by Effigy Mounds)’)

Note that x vals contains the x–coordinates, y vals contains the y–coordinates,
and the two points are joined by a line because the final argument in the plot
command is ’-’.

16

file=twoplots.eps,height=8.7491cm,width=11.0578cm

Figure 5.1: Good and Bad Data Plots

5.2. Hints for Good Graphs

There are many opinions on what makes a good graph. From the scientific view-
point a simple test is to see whether we can recover the original data easily from
the graph. A graph is supposed to add something, not remove information. For
example if our data runs from 1 to 1.5 it is a bad idea to use an axis running from
0 to 10, as we will not be able to see the differences between the values. We give
two more subtle recommendations..

5.2.1. Plot data as points

Often people use the very simplest command to plot data and automatically type
just

plot(x, y) % The simplest plot command

This simple command does not present the data here very well. It is hard to see
how many points were in the original data. It is really better to plot just the
points, as the lines between points have no significance; they just help us follow
the set of measurements if there are several data sets on the one graph. If we
insist on joining the points it is important to mark the individual points as well

Exercise .16. Change the above plot command to show the data more clearly
by plotting the data points as small circles joined by dotted lines. (Hint: There
should be a third argument in the plot command containing the symbols for a
line of dots and the marker type circles; and perhaps a color symbol as well!)

5.2.2. Choose a good scale

In the example in this section, it was easy to see the relationship between x and
y from the simple plot of x against y. In more complicated situations, it may
be necessary to use different scales to show the data more clearly. Consider the
following model results

n 3 5 9 17 33 65
sn .257 .0646 .0151 3.96×10−3 9.78×10−4 2.45×10−4 .

17

file=loglog.eps,height=8.9644cm,width=11.0556cm

Figure 5.2: Good Scaling for Plots

A plot of n against sn directly shows no obvious pattern. (Note the dots, ‘...’, in
the next example mean the current line continues on the next line. Do not type
these dots if you want to put the whole command on the one line.

n = [3 5 9 17 33 65]’;

s = [2.57e-1 6.46e-2 1.51e-2 ...

3.96e-3 9.78e-4 2.45e-4]’ ;

plot(n, s, ’x’) % This is a poor plot!!

In fact it is hard to read the values of sn back from the graph. However a plot of
log(n) against log(sn) is much clearer. To produce a plot on a log scale we can
use either of the commands

plot(log10(n), log10(s), ’x’) % Two good plots

loglog(n, s, ’x’) % using log scales!

It reveals there is almost a linear relationship between the logs of these two quan-
tities.

Exercise .17. 1. Add a title to the last plot above and label the X and Y
axes.

2. Using help loglog find a command which will use a log scale only for the
sn data. Is this better or worse then the loglog plot?

3. (A hard exercise.) After allowing for some experimental error, there is a
simple relationship between n and sn. Can you find a mathematical formula
for this?

4. What would be the value of sn when n = 129?

18

6. Matrices and Vectors

Although Matlab is a useful calculator, its main power is that it gives a simple way
of working with matrices and vectors. Indeed we have already seen how vectors
are used in graphs.
Remember to keep typing in the commands as they appear here, and observe

and understand the Matlab response. If you mistype, it is easy to correct using the
arrows and the [Del] key. Try to use the help facility to find out about unfamiliar
commands. Otherwise ask another student or a tutor.

6.1. Solving Equations.

Most people will have seen systems of equations from school. For example, we
may need to find x1, x2, and x3 so that

x1 + 2x2 − x3 = 1

−2x1 − 6x2 + 4x3 = −2
−x1 − 3x2 + 3x3 = 1

Although these problems can be solved manually by eliminating unknowns, this
is unpleasant. Besides errors usually occur.
In first year Mathematics the problem is rewritten in matrix-vector notation.

We introduce a matrix A and a vector b by

A =





1 2 −1
−2 −6 4
−1 −3 3



 , b =





1
−2
1



 .

Now we want to find the solution vector x = [x1, x2, x3] so that

Ax = b.

In spite of the new notation, it is still just as unpleasant to find the solution.
In Matlab, we can set up the equations and find the solution x using simple
commands.

% Set up a system

A = [1 2 -1; -2 -6 4 ; -1 -3 3] % of equations.

b = [1; -2; 1]

x = A\b % Find x with A x = b.

19

Matlab should give the solution




x1

x2

x3



 =





−1
2
2



 .

A sound idea from manual computations is to substitute the computed solution
back into the system, and make sure all equations are indeed satisfied. In Matlab
we can do this by checking that the matrix vector product Ax gives the vector b,
or better still, we check that Ax− b is exactly the zero vector.

A*x % Check that Ax and b are the same.

b

A*x - b ; % So that we do not miss small differences,

% it is better to check that A x - b = 0 .

The vector Ax− b is known as the residual.

Exercise .18.

(a.) Change the middle element of A from -6 to 5 (i.e. a22 = 5.) What is the
solution to this new system? What is the new residual? Why is the residual not
exactly 0? (Hint: In Matlab the number 1.23× 10−5 is displayed as 1.23e-005.
The column vector [1.23× 10−5; 4.44× 10−6] could be displayed as

1.0e-004 *

1.2300e-005

0.1234 or 4.4400e-006

0.0444

The user can control which form is used by the File→Preferences→Numeric
Format item on the Matlab Menu bar.)
(b.) Suppose the middle element is changed from -6 to -5. Can Matlab solve
this third system? Explain what has happened.

6.2. Matrices and Vectors.

Much scientific computation involves solving very large systems of equations with
many millions of unknowns. This section gives practice with the commands that
are needed to work larger matrices.
The following code sets up a 4 × 4 matrix, A, and then finds some of its

important properties. When [] is used to set up matrices, either blanks or
commas (,) can be used to separate entries in a row. Semicolons (;) are used to
begin a new row.

20

A = [1 2 3 4 ; 1 4 9 16 ; 1 8 27 64 ; 1 16 81 256]

A’

det(A)

eig(A)

inv(A)

Even in the simple 4× 4 case, it is tedious to evaluate determinants and inverses.
But in Matlab they can be quickly calculated and used.
Indices can be used to show parts of a larger matrix. For example try

A(2,3), A(1:2,2:4), A(:,2), A(3,:)

In general A(i:j, k:l) means the square sub–block of A between rows i to j and
columns k to l . The ranges can be replaced by just ‘:’ if all rows or columns are
to be included.

Exercise .19.

(a.) How would you display the bottom left 2× 3 corner of A? How would you
find the determinant of the upper left 3× 3 block of A?
(b.) Find the Matlab command to calculate the row echelon form of a matrix.
The row echelon form is never useful in practice, but it is handy for checking
homework in other subjects!!

6.3. Creating Matrices

Matlab also provides quick ways to create special matrices and vectors.

c = ones(4,3)

d = zeros(20,1)

I = eye(5)

D = diag([2 1 0 -1 -2])

L = diag([1 2 3 4], -1)

R = randn(5,5) % R is a 5 x 5 matrix

% of random numbers.

(More information on each of these commands can be found with help.)
Matrix-matrix and matrix-vector multiplication work as expected, provided

the dimensions agree. Matrices and vectors can both be multiplied by scalars. In
the next example, B is another 4× 4 matrix and c is a column vector of length 4
(i.e. a 4× 1 matrix).

21

B = [1 1 0 0

0 2 1 0

0 0 3 1

0 0 0 4] % Rows can be separated by

% making a new line as well as using ‘;‘.

c = [1; 0; 0; -1]

5*B % Multiply scalars and matrices.

B*c % Multiply matrices and vectors.

A*B % Matrix by matrix multiplication.

B*A % Note: AB is not the same as BA !

Some of the following commands do not work. There is no harm in trying
them.

c*c % Wrong dimensions for matrix multiplication.

c*A % Wrong dimensions for matrix multiplication.

c’ % The transpose of c, i.e. a row vector.

c’*A % Now matrix multiplication is permitted.

c*c’ % This multiplies a 4 x 1 by a 1 x 4 matrix.

c’*c % What is this quantity usually called?

Exercise .20.

(a.) Calculate inv(A)*A and A*inv(A). Do they give the expected result? (Use
the help command if you can’t guess what the inv command does.)
(b.) Verify for the matrices A and B above that (AB)−1 = B−1A−1.
(c.) Verify that the Matlab command Aˆ(-1) can also be used to form the inverse
of A.

6.4. Systems of Equations

Consider again the problem of solving the system of equations Ax = b. One
obvious way that appeals to Mathematicians is to calculate A−1b. As in the
previous 3x3 case, we should also check that the solution is correct. We do this by
calculating the residual Ax− b, for our computed solution x. Because of roundoff
errors this residual may not be exactly zero, but all its components should be
small; say less than 1× 10−15.

x = A^(-1)*b % Solve the equation A x = b

A*x , b % Check x is correct by making

% sure it satisfies the equations.

resid = A*x - b % Check the residual is zero,

% at least to within roundoff.

22

In fact it is far quicker, and usually more accurate, to solve equations using
the backslash operator (\) introduced in the first section; rather than calculating
with the inverse A−1. The next lines use the backslash command to the solve the
equations Ax = b, and check that it gives the same answers as those that were
calculated using A−1.

x1 = A \ b % This is the fastest way to solve A x = b

x - x1 % Here both answers are the same.

Exercise .21.

(a.) Solve the system of equations





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 x =





1/4
1/5
1/6





using \. Check that the computed solution does actually satisfy the equations
(i.e. check that Ax− b = 0, apart from rounding errors).
(b.) Use rand to generate a 700 x 700 matrix, A, and a column vector b of length
700. Solve the system of equations Ax = b using the commands x = A \ b and
x = inv(A) * b , timing each command with a watch. Which command is
the faster and why? (Hint: before working with these large matrices use the
clear command to remove all variables from Matlab’s memory. This frees up
enough memory to squeeze in this largish problem. If you have problems, try a
smaller system of equations that fits onto the computer you are using.)
(c.) Use the Matlab command A = hilb(10) to set up the 10 × 10 Hilbert
matrix. Create a right hand side vector b by b = A(:,1). We are now going to
solve the equations Ax = b. This is a common test problem in linear algebra.
(What is the true solution x to the equations Ax = b?)

(i) Solve the equations Ax = b using the backslash command, and then
check that the computed solution satisfies the equations by calculating the resid-
ual, Ax− b.

(ii) Now solve the equations by the command A^(-1)*b and calculate
the residual for this second solution.

(iii) Which gives the better (i.e. smaller) residual?
(iv) Which method gives the smaller error? (Explanation: As b is the first

column of A, you can work out the true value of x without computation. (Explain
this briefly.) The error is the difference between Matlab’s computed solution and
the true solution. (The true solution, the one you work out by abstract thought,
can be typed directly into Matlab.) The size of the error is the largest absolute
value of the components of the error vector.)?

23

(d.) Extend part (c.) by solving a slightly different problem. Let the right hand
side vector b be the first column of A, divided by 3; i.e.b = A(:,1)/3. (What is
the solution to the equation Ax = b with this new right hand side?)

(i) What is the size of the error and the size of the residual when the \ is
used to solve the system with the new right hand side?

(ii) Extend the computation further by letting the right hand side be the
jth column of A divided by 3; i.e. b=A(:,j)/3 for j = 1, 2, 3, . . . , 10. Complete
the following table.

Column j Size of the Residual Size of the Error
1 . .
2 . .
...

...
...

10 . .

What conclusions do you draw? If we are worried about the accuracy of a com-
puted solution is it sufficient to check that the solution satisfies the equations
to within round off errors? (Hint: If x comp and x true are the computed and
true solutions the size of the error can be found from max(abs(x comp - x true

)).

This exercise should show that the backslash operator \ is both

faster and more accurate than the inverse. Clearly it is better to use

the backslash and avoid the calculating inverses in numerical work!

6.5. Polynomials

Knowing about vectors, we can use the Matlab procedures dealing with polyno-
mials. The polynomial amX

m + am−1x
m−1 + . . .+ a1X + a0 is represented by the

Matlab vector [am, am−1, . . . a1, a0], a row vector of length m+1. In the following
example, X2 − 3X − 4 is represented by the vector of coefficients [1 − 3 − 4].
v = [1 -3 -4] % Represents X^2 - 3 X -4

z = roots(v)

z(1)^ 2 -3*z(1) -4 % Two ways to evaluate the poly.

polyval(v,z(1)) % at the first root.

Exercise .22.

(a.) The polynomial X2 − 3X − 4 has real roots, but X2 − 3X + 4 has complex
roots. Find these complex roots with roots.
(b.) Use help to find out how to use Matlab to calculate the derivative of a
polynomial in Matlab. Test this Matlab command by calculating the derivative
of X4 +X3 +X2 +X + 1.

24

7. Graphs

Consider again the problem of graphing the functions, for example the function

f(x) = x|x|/(1 + x2)

over the interval [−5, 5]. Although we can use ezplot or fplot, we wish to
illustrate more powerful methods, and the use of component-wise arithmetic.

7.1. Component Arithmetic

The new method is illustrated in the following lines.

x = (-5:.1:5)’ ;

y = x .* abs(x) ./ (1 + x.^2) ;

plot(x , y , ’-’)

The first command produces a vector of x values from -5 to 5 in steps of .1. That is
the column vector x=[−5,−4.9, · · · , 0, · · · 4.9, 5]′. The vector y contains the values
of f at these x values. As there are so many points the graph of x against y looks
like a smooth curve.
The novelties here are the operators .* , ./ , and .^ in the second command.

These are the so called component–wise operators. In the above example x is a
column vector of length 101 and abs(x) is the column vector whose ith entry is
|xi|. The formula x*abs(x) would be wrong, as this tries to multiply the 101×1
matrix x by the 101 × 1 matrix abs(x). However the component-wise operation
x.*abs(x) forms another vector of length 101 with entries xi|xi|. Continuing to
evaluate the expression using component-wise arithmetic, we get the vector y of
length 101 whose entries are xi|xi|/(1 + x2

i). More explicitly

x =











−5
−4.9
−4.8
...











, abs(x) =











| − 5|
| − 4.9|
| − 4.8|
...











, x.*abs(x) =











−5× | − 5|
−4.9× | − 4.9|
−4.8× | − 4.8|

...











x.*abs(x)./(1+x.^2) =











−5× | − 5|/(1 + (−5)2)
−4.9× | − 4.9|/(1 + (−4.9)2)
−4.8× | − 4.8|/(1 + (−4.8)2)

...











.

(Of course we should not become overconfident. This rule for dividing by vectors
cannot be used in Mathematics proper.)

25

Note that p.*q and p*q are entirely different. Even if p and q are matrices of
the same size and both products can be legitimately formed, the results will be
different.

Exercise .23.

1. (Easy) Find two 2×2 matrices p and q such that p.*q 6= p*q.

2. (Hard) Find all 2×2 matrices p and q such that p.*q=p*q.

Before more exercises, we show how to add further curves to the graph above.
Suppose we want to compare the function we have already drawn, with the func-
tions x|x|/(5+x2) and x|x|/(1

5
+x2). This is done by the following three additional

commands. (Remember x already contains the x–values used in the plot. These
new commands are most easily entered by editing previous lines.)

y2 = x .* abs(x) ./ (5 + x.^2) ;

y3 = x .* abs(x) ./ (1/5 + x.^2) ;

plot(x,y,’-’, x,y2,’-.’, x,y3,’--’)

Exercise .24. (a.) Use Matlab to graph the functions cos(x), 1/(1 + cos2(x)),
and 1/(3 + cos(1/(1 + x2)) on separate graphs.
(b.) Graph 1/(1 + eαx), for −4 ≤ x ≤ 4 and α = .5, 1, 2, on the one plot. If you
like fine graphics the following command will do a nice label

title(’\it 1/(1+e^{\alpha x})for\alpha=.5,1,2.-4’)

(Use ˆ and for superscripts and subscripts in labels. Get Greek letters by using
their names preceded by \ .)
(c.) Use plot to draw a graph that shows

lim
x→0

sin(x)

x
= 1.

(Hint: Select a suitable range and a set of x values and plot sin(x)/x. If you get
messages about dividing by zero, it means you tried to evaluate sin(x)/x when x
is exactly 0.)

7.2. Printing Graphs

When the graph has been correctly drawn we will usually want to print it. As
many graphs come out on the printer, it is a good idea to label the graph with
your name. To do this use the title command.

26

%Be sure to put quotes

title(’Exercise 3.4 Kim Lee.’) % around the title.

Bring the plot window to the front. The title should appear on the graph. If
everything is okay, click on the ‘file’ menu → ‘print’ item in the graph window.
If everything is set up correctly, the graph will appear on the printer attached to
your computer.
After printing a graph, it is useful to take a pen and label the axes (if that was

not done in Matlab), and perhaps explain the various points or curves in the space
underneath. Alternatively before printing the graph, use the Matlab commands
title, xlabel, ylabeland legend for a more professional appearance.
The most recent versions of Matlab let the user add text, lines and arrows

interactively once the graph is on the screen. Use the ‘tools’ menu, and tick the
‘show toolbar’ option to make the tools appear. You may then add text, arrows
and lines to the plot by pressing the buttons labelled ‘A’,↗ and / .
Another option is to use the print command in Matlab to print the current

graph to a file so that it can be printed later. For example if you have access to
a postscript printer use the command

print -deps mygraph

This will write the current graph to the file mygraph.eps. This file can be stored
on your floppy and printed out later.

7.3. Graphs in Reports

Instead of printing graphs directly, it is sometimes easier to copy Matlab graphs
into a word processor such as Windows Wordpad or MS Word. (A character
editor such as ‘Notepad ’ is not good enough). Then the graph can be included as
a part of a written report.

• The word processor must be open at the same time as we are using Matlab.

• Move to the Matlab plot window, and use the Editmenu → copy sub-
command. (This copies the current graph into a buffer, a special storage
area.)

• Then move to the word processor, place the cursor where graph is to go,
and press Ctrl-V to paste the graph into the word processor.

Several graphs can be saved in a file this way and incorporated into the final
report. Ensure though that the report file is saved on your floppy disk when you
leave, not left on the internal hard drive.

27

If you are working in the computer laboratories, make sure the report file is
small enough to fit on a floppy; and make sure you store the report on the floppy
and take the floppy when you leave.

7.4. Saving Graphs

The easiest way to save a graph is to save the Matlab command you used to create
the graph. These are usually only one or two lines. If the commands are more
than one or two lines long, they should probably be saved in an M-file (see later
chapters.)

7.5. Advanced Graphics

The commands given are sufficient to produce clear, simple graphs that suffice for
most projects. However, may people are moved to do more:- to alter the size and
fonts of labels, to change the thickness of lines etc. If you think this is necessary,
more information is available.

• To demonstrate additional graphics features use the command graf2d. This
program can also be found via the demo command, visiting the language/graphics
area and the Line plotting option).

• A complete tutorial, Using Matlab Graphics is available in the Matlab doc-
umentation. In the Help menu → Help Desk (HTML) item. Look for
the link to Full Documentation Set then the link to Using Matlab Graphics.

8. 3D Graphics

8.1. 3D Basics

We have already seen that Matlab is able spectacular 3 dimensional plots by just
typing in the formula for the surface. To undertake more complicated graphing
tasks we have to be explicit obout the coordinates of our surface. This means we
have to use the component-wise operators and set up matrices for the x and y
coordinates This is only a little more complicated than the 2D case.
To draw the surface of f(x, y) = xy exp(−(xˆ2 + yˆ2)) for −2 ≤ x ≤ 2,

0 ≤ y ≤ 2, use the commands.

x=(-2:.2:2)’ ; y = (0:.2:2)’ ;

[X, Y] = meshgrid(x,y) ;

Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;

surf(X,Y,Z)

28

xlabel(’X’)

ylabel(’Y’) % Label axes to avoid confusion!

zlabel(’Z’)

To let us to ‘walk’ around the plot to see things from different angles give the
command

rotate3d

(or press the rotation button on the figure’s toolbar). Once this command has
been given, click anywhere on the plot without releasing the mouse button. A
box appears. Dragging the mouse rotates the box. When the button is released,
the graph is redrawn from the new angle. Experiment a little!
The following commands draw slightly different mesh plots of the same func-

tion.

surfl(X,Y,Z) , surfc(X,Y,Z)

Instead of showing a complete surface, a‘wire frame’ is often faster to compute.
This is the purpose of the three mesh commands:-

mesh(X,Y,Z) meshz(X,Y,Z) meshc(X,Y,Z)

Exercise .25.

(a.) Draw the above mesh and surface plots with a finer grid. (Use an 80 × 40
grid rather than the 20 × 10 grid above.) Experiment with the three variants of
the mesh commands and the three variants of the surf commands.
(b.) Matlab can vary the colours . Look for a way to draw the surface in cool
colors. How can one spin the map?
(c.) Use the help command or the help window to find out how to draw a curve
in 3-space. (More help will be found under the topic graph3d). Plot the curve
(r(t) sin(t), r(t) cos(t), t), r(t) = 1/(1 + (t/π)2 for 0 ≤ t ≤ 10π. Try not to use
ezplot3.

8.2. Advanced Options

In three dimensions it is more difficult to draw a plot that is pleasing to the eye
and shows all the important features of a function.

• The interactive demonstration graf3d is the best way to show the effects
of shading and coloring a surface. (This demonstration also found following
links after the demo command.)

29

• The tutorial Using Matlab Graphics in the online documentation goes into
further detail (controlling the position and colour of lights for example.)

• The help command with the topics graphics, graph2d, and graph3d pro-
vide more interesting features.

Exercise .26. Use the graf3d interactive demonstration to investigate the func-
tion of two variables calculated by the Matlab peaks command. (Hint: By typ-
ing the command rotate3d into the command box you can rotate the surface
interactively.) From appropriate plots
(a.) Find a plot which shows clearly there are 3 local maxima. Choose a color
scheme that can be used to determine the value of the maxima as accurately as
possible.
(b.) Find another graph that shows as clearly as possible the locations of all local
maxima and minima. (If you are submitting answers to this exercise, show the
tutor your graphs on the screen, and hand in the commands you use to generate
the plots.)

9. Functions

Often we need to work with functions. For example, we may want to find the
minimum of a function, its zeros, or the definite integral of the function. This
section explains how to create functions and work with them in Matlab.

9.1. Writing a Function

To set up functions in Matlab, we need to create a file containing the Matlab code
that evaluates the function. These files are called function files. The name of the
file must always end with the ‘.m’ extension (for example fred.m, funct.m, etc.).
Suppose we need to work with the function

f(x) =
1

(x− .3)2 + .01
+

1

(x− .9)2 + .04
− 6.

As this function has been called ‘f’, we will create the file f.m using the Matlab
editor. To open the editor press the new file icon (the left icon above the command
window). Once in the editor, type the following lines into the file.

% As the function is called ‘f’

% put this code in the file ‘f.m’

function y = f(x)

%

30

% % These are

% This is the test function. % comments.

% from section 9.

%

term1 = 1 ./((x-.3).^2 + .01) ;

term2 = 1 ./((x-.9).^2 + .04) ;

y = term1 + term2 - 6 ;

After the lines have been typed in, save the file (by pressing the disk icon). You
will be asked for a name; in this case use f.m. Then return to the command
window.
If the code has been typed into the file correctly, we should be able to use f

the same way we use standard functions like sin and cos etc. For instance, can
evaluate f(.3), f(.9), and plot f .

f(.3) % Check the code gives the correct answers

f(.9) % at two test points.

x = (-1 : .05 : 2)’; % Plot f between -1 and 2 .

plot(x , f(x)) ;

To guard against errors in the code we should check the answers. Pencil and
paper shows

f(.3) =
1

02 + .01
+

1

(−.6)2 + .04
− 6 = 100 + 1

.4
− 6 = 96.5 ;

and similarly f(.9) = 21.7027. The Matlab answers should be the same. If these
commands do not work or give wrong answers, there is probably a typing error.
If so, go back into the file and correct the error. Save the file then try to use the
function in Matlab again.
Sometimes Matlab does not notice the changes to the code and continues

to report errors after we have corrected them. This is usually because we have
forgotten to save the file to disk. Annother common cause is that we are editing
a file in one directory and Matlab is reading the file in another directory. But
occasionally this is due to a Matlab installation bug. To correct this bug, after
changing code give the command

clear functions

31

9.2. Notes on Functions

9.2.1. Code is private

Let us look at the structure of ‘f.m’.

1. The first line (apart from comments) is the header. It declares that the
value of x comes from the main Matlab program (it is the input argument).

2. The value of y is calculated by the code in ‘f.m’ and returned to the main
program (it is the output argument).

3. The code in the ‘f.m’ is kept separate from the main Matlab command
window, so that term1 in the code for f is different to a variable term1 used
in the main program. More pessimistically, the function does not know
the value of a variable in the main program unless it is one of the input
arguments.

9.2.2. Use . operators

It is best to use the component-wise operators in the code. (We used ./ rather
than / for example.) This allows Matlab to correctly evaluate f(x), even when
x is a vector. Otherwise plot commands will not work for our function.

9.2.3. Other editors

It is possible to use your favourite editor not just the inbuilt Matlab editor. To
use the windows notepad editor use the command

!notepad f.m & % Call the ’’Notepad’’ editor

% to edit the file f.m .

% Remember the & at the end.

(If you do not remember the ‘&’ at the end of this command, Matlab will refuse
to run until you quit notepad.)

Exercise .27. Write an M-file to code the function

g(x) = (1− 2x2) exp(−x2).

(a.) Test your function by evaluating it at x = 1 and x = −2.
(b.) Test that your function works correctly when x is a vector by evaluating g
for the vector

x =

[

1
−2

]

.

32

(c.) Plot your function for −3 ≤ x ≤ 3 using both fplot and the plot com-
mand.

We will now use our function f(x) to demonstrate minimization, zero finding,
and numerical integration in Matlab.

10. Using Functions

We continue to work with the function

f(x) =
1

(x− .3)2 + .01
+

1

(x− .9)2 + .04
− 6.

coded in the previous section.

10.1. 1D Minimization.

Matlab can find maxima and minima, but first we should read off the answers
from a graph.

Exercise .28. From the graph of f , write down the values of x which give
(a.) the minimum of f on the interval [.25, 1],
(b.) the minimum of f on the interval [.5, 1],
(c.) the maximum of f on the interval [0, .5], and
(d.) the maximum of f on the interval [0, 4].

The point at which f takes its minimum is found using the function fmin.

xmin = fmin(’f’, .25, 1) , ymin = f(xmin)

This asks for the minimum of ‘f’ in the interval [.25, 1]. The answer coincides with
the value expected from the graph. The procedure fmin uses a numerical method
to find the minimum. It repeatedly evaluates the function until it is confident the
minimum has been found to the required accuracy. In the above call to fmin the
user did not specify the accuracy required, so the standard (or default) accuracy
was used. Reading the information in help fmin tells us the default is a relative
error of ≤ 1× 10−4.

33

10.1.1. Accuracy

A better answer can be found by specifying the required accuracy in an extra
argument in fmin.

xmin_8 = fmin(’f’, .25,1, [0,1.e-8]), ymin_8 = f(xmin_8)

(1.e-8 is shorthand for 1×10−8.) With this call to fmin, xmin 8 should be accurate
to within a relative error of ±1 × 10−8; that is to about 8 significant digits.
However, we cannot see this extra accuracy at the moment, as answers are only
displayed to 4 or 5 digits. To see the answer fully we must change the display
format. (That is the way Matlab displays numbers.) This can be done two ways:-

• choose the ‘File’ menu→‘Preferences’ item in the Command Window,
and then check any of the long formats, or

• by use the command format long e.

Now Matlab displays enough significant digits in the numbers to see that the
answers are different.

[xmin ; xmin_8] % Compare the two answers

Displayed in the long format, we see the two answers differ after the 6th decimal
place, showing fmin has done more computations in the second case to get a
slightly better answer.

It is important to realise that format does not change the accuracy

of the numbers or the calculations: it just changes the number of digits

displayed on the screen. Our first answer xmin is still only accurate

to about 6 significant figures, even though it may be displayed to 15

figures.

Exercise .29. There are two ways to verify our answer
(1.) Evaluate f at xmin and xmin 8 and see which answer gives the smaller value
of f .
(2.) Evaluate f at xmin 8-1.e-8 and xmin 8+1.e-8. The values either side
of the computed minimum should be larger.

To save space on the screen, we can change back to the short display using
the ‘options’ menu or the ‘format short e’ command. Other useful formats are
long f and short f. Do not use the rational format for serious computations.
The fractions displayed are only approximations to the numerical answers.

34

Exercise .30.

(1.) Find the minimum of f on [.5, 1]. Choose an error tolerance so that the
minimum is correct to ±10−6. What is the value of f at this point? If x∗ denotes
the computed solution, check the accuracy of the answer by evaluating f at x∗ +
10−6 and x∗ − 10−6. f should be larger at both these neighbouring points. This
shows the true minimum should lie between x∗ − 10−6 and x∗ + 10−6

(2.) Use fmin to find the maximum of f(x). (Hint: There is no function fmax!
Instead, to find the maximum of f(x), we can find the minimum of −f(x). This
means altering the code in the file ‘f.m’ so that it calculates −f(x) rather than
f(x).) Use [0, .5] as the original interval. Find the maximum point and the value
of f at the maximum correct to ±1× 10−6.
(3.) Repeat the previous part and find the maximum of f(x) in the wider interval
[0, 4]. How accurate is the answer? Explain by looking at the graph of f ! (It is
useful to graph a function before looking for a maximum or minimum!!)

10.2. Finding Zeros

Matlab also finds the zeros of functions; that is values of x for which

f(x) = 0.

For example, to find a zero of the function f near the point x = −1 use the
command

xzero = fzero(’f’ , -1)

The answer should be accurate to at least the default tolerance. (Which is in fact
around 1× 10−16, even though the help file claims it is 1× 10−4!!) The command
help fzero gives more information about changing the default tolerance.

Exercise .31.

(1.) Check the previous result from fzero by

1. Checking the answer is approximately true from the graph of f ,

2. Checking f is approximately 0 at xzero.

3. Checking f is negative at xzero-10−4 and positive at xzero+10−4.
This shows that f crosses the axis somewhere in the small interval
between xzero-10−4 and xzero+10−4.

(2.) Find the zero of f near x = 1 using the default tolerance. What answer is
given when the default tolerance is changed to 1 × 10−6 and then to 1 × 10−12.
Check carefully to find which answer is the most accurate.

35

10.3. Integration.

Matlab also uses functions when it evaluates definite integrals numerically. This is
known as quadrature or numerical integration. Suppose we want to evaluate
the integral of f over [−1, 2], that is to find

∫ 2

−1

f(x) dx. (10.1)

(Or equivalently the area under the curve f between x = −1 and x = 2.) This is
done by the function quad8; for example.

integral1 = quad8(’f’, -1,2)

This command used quad8 to compute the answer to within the default accuracy.
For quad8 this is a relative accuracy of ±1 × 10−3, or ±.1%. It is always wise
to check, so we can now get quad8 to do more work and try to achieve a relative
accuracy of 1×10−8. The two answers can then be compared, either by displaying
them in a long format or by dinding the difference between them.

integral2 = quad8(’f’, -1,2, 1.e-8)

[integral1 ; integral2] % Use a long formats

% to show the difference

(integral2-integral1)/integral2

The relative difference between these two answers is 8.5×10−9, suggesting the
first answer was much more accurate than expected! (Of course they could both
be wrong; but this is unusual.)

10.3.1. Accuracy

It is hard to check the accuracy of Matlab’s integration routine. One way is to
code up a simple method of numerical integration in Matlab. In this case we use
the midpoint rule. We divide the interval [−1, 2] up into 15 smaller subintervals
using the grid points

−1,−.8,−.6, . . . , 1.6, 1.8, 2.
The area under the curve on each intervalis approximated by

width of the interval × f(midpoint of the interval)

These individual approximations are then summed to get the overall area. That
is we approximate the area under f by

∫ 2

−1

f(x) dx ≈ 2−(−1)
15

(f(−.9) + f(−.7) + f(−.5) . . .+ f(1.7) + f(1.9))

This rule is concisely coded in Matlab by

36

file=midpoint.eps,height=8.6481cm,width=11.0578cm

Figure 10.1: The Midpoint Rule.

x = (-.9 : .2 : 1.9)’ ; fx = f(x) ;

integral = sum(fx) * 3 / 15

This crude approximation is not as accurate as that computed by quad8.
However it is an independent way to show us that our answer is approximately
correct.

Exercise .32.

(a.) Find the value of
1√
2π

∫ 3

−3

e−x
2/2 dx

to a relative accuracy of .01% using quad8.
(b.) Check the answer using the midpoint rule with 30 points. (Hint: Eval-

uate f at the points x=(-2.9:.2:2.9). Use a 60 point midpoint rule to give a
better answer.

11. Differential Equations.

11.1. Scalar ODE’s

The final application is the solution of ordinary differential equations. Suppose
we want to find the solution u(t) of the ordinary differential equation

du

dt
= k u(t) (1− u(t)), t ≥ 0; (11.1)

This equation is a simple model for the spread of a disease. Consider a herd of
P animals, and let u(t) be the proportion of animals infected by the disease after
t days. Thus 1 − u(t) is the proportion of uninfected animals. New infections
occur when infected and uninfected animals meet. The number of such meetings
is proportional to u(t) (1 − u(t)). Thus a simple model for the spread of the
disease is that the new infections per day, du/dt, is proportional u(t) (1 − u(t)).
That is we obtain equation (11.1), where the constant k depends on the density of
the animals and the infectiousness of the disease. For definiteness, suppose here
P = 10000 animals and k = .2. Initially at time t = 0 there is just one infectious
animal, and so we add the initial condition

u(0) = 1/1000. (11.2)

37

We want to find how many individuals will be infected over the next 100 days,
that is to plot u(t) from t = 0 to t = 100. To solve this problem we need to define
a function to calculate the right hand side of (11.1), and then use the Matlab
program ode45. Use the editor to put the following code into the file ‘disease.m’.

function u_dot = disease(t , u) % Place this code in

% % file disease.m

% Evaluates the rhs of the ode

k = .2 ;

u_dot = k * u * (1 - u) ;

(Although t is not used in calculating u dot, ode45 requires the function disease
to have two input arguments (in the correct order). Use help ode45 for more
information.)
Having set up the problem, the differential equation is solved and graphed in

just one Matlab one line!

[t, u] = ode45(’disease’, [0,100] , 1/10000);

plot(t,u,’x’)

The function ode45 also has parameters which can be adjusted to control the
accuracy of the computation. Mostly, these are not necessary for just plotting the
solution to ordinary problems. However ode45 does not guarantee its accuracy,
and it is always a good idea to check our original solution by resolving the problem
with higher accuracy requirements. For example, we can use ode45 so that the
estimated absolute and relative errors are kept less than 1× 10−9. Also to ensure
a very smooth graph, values of the solution are computed every half day. This is
done with the commands

options = odeset(’abstol’,1.e-9,’reltol’, 1.e-9) ;

[tt,uu] = ode45(’disease’, [0:.5:100], 1/10000, options);

plot(t,u,’x’, tt,uu,’-’)

We immediately see that the solution computed in the first call to ode45 lies
on top of the more accurate solution curve. That is the two solutions coincide to
graphical accuracy.
For this simple model it is possible to find an analytic formula for u(t). In fact

u(t) =
1

1 + c exp(−kt) where c = P − 1 . (11.3)

We can add this formula to the above graph as a final check.

38

t0 = (0:.5:100)’ ;

c = 10000-1 ; k = .2 ; u0 = 1 ./ (1 + c*exp(-k*t0)) ;

plot(t,u,’x’, tt,uu,’-’, t0,u0,’--’)

The exact formula gives a curve that is the same as the numerical solution. In
fact the difference between the two solutions is at most 2.5×10−7. So we can be
confident in using ode45 to solve the problems below.

Exercise .33.

(a.) Check that (11.3) is a solution to (11.1). That is, when we differentiate this
formula for u(t) we get the right side of (11.1). And this formula satisfies (11.2)
(b.)From the graph of u(t), estimate how many days are needed for half the
population to be infected? (Hint: The command grid will make this easier to
answer.)
(c.) Suppose now that after the infection is noted at day t = 0, an inoculation
program is started from day 5, and 200 of the uninfected animals are inoculated
per day. After t days, the proportion of animals inoculated per day is 200 (t −
5)+/10000. ((t− 5)+ means max{t− 5, 0}. This could be coded in Matlab as t5
= max([t-5,0]) for example.) These inoculated animals cannot be infected, an
new infections occur when an uninfected, uninoculated animal meets an infected
animal. Thus the rate of increase of u is now modelled by the differential equation

du

dt
= k u(t) (1− u(t)− .02 (t− 5)+)+ ;

Now, how many animals are uninfected after 100 days with the inoculation pro-
gram?
(d.) How many animals would be uninfected if only 100 animals could be inoc-
ulated each day from day 5? How many animals would have been saved if 100
animals per day were inoculated from day 0?

This simple model problem also has a formula for the exact solution. However
in Matlab it is very easy to get a numerical solution; and this can be done even
in complicated problems when there is no simple formulae for the solution. Using
Matlab we can simply explore the model by altering the parameters and plotting
the solutions!

11.2. Order 2 ODE’s

As a second example, consider the ordinary differential equation

d2u

dt2
+ sin(u(t)) = 0 (11.4)

u(0) = π/4 ,
du

dt
(0) = 0 (11.5)

39

This is a more complicated example because the second derivative of u appears,
not just the first derivative. (This is called a second order ODE.) The Matlab
ODE solvers cannot use second derivatives directly as they only work with first
derivatives. However a sneaky trick can be used. If we keep track of both u(t)
and du/dt, then second derivatives of u(t) are just first derivatives of du/dt. More
formally, let v(t) denote the value of du/dt. Then (13.2) is equivalent to the two
equations

du

dt
= v(t) , and

dv

dt
= − sin(u(t))

Even more elegantly, we let Y (t) be a vector with the two components

Y (t) =

[

Y1(t)
Y2(t)

]

=

[

u(t)
v(t)

]

,

and so
dY

dt
=

[

du/dt
dv/dt

]

=

[

v(t)
− sin(u(t))

]

=

[

Y2(t)
− sin(Y1(t))

]

This is now in the form
dY

dt
= F (t, Y (t)),

where for any vector Y , F (t, Y) is defined by

F (t, Y) =

[

Y2

− sin(Y1)

]

Thus to solve (13.2) and plot u(t) against t we place the following code in the
file F.m

function Y_dot = F(t,Y)

% % Note Y(2) is the Matlab

% RHS for the 2nd order ODE % notation for the second

% % compontent of Y. It does

% % not mean Y(t) at time t=2

Y_dot = [Y(2) ; -sin(Y(1))] ;

Then we use the command

[t,Y] = ode45(’F’, [0:.25:20], [pi/4;0]); % Solve ODE and plot

u = Y(:,1) ; plot(t, u,’-’) % u(t).

Note that ode45 stores the first and second components of the solution in the first
and second columns of the output.

40

Exercise .34. In the equation (13.2) , u(t) is the angle a swinging pendulum
makes with the vertical axis at time t. If the pendulum is of length 1, the weight
of the pendulum is at (x, y) = (sin(u(t)),− cos(u(t)). (The pendulum is swinging
from the origin and is at position (0,−1) when it is at rest.)
(a.) From the graph, what is the period of the pendulum?
(b.) Draw a graph of the pendulum’s path in the (x, y) plane.
(c.) Often when the pendulum swings through small angles, the equation (13.2)
is approximated by

d2u

dt2
+ u(t) = 0,

u(0) = π/4 ,
du

dt
(0) = 0

How different is the solution to this linear approximation to the exact solution?
Are the periods the same?

12. A Small Assignment

All numbers on a computer are stored as binary numbers. (These are like decimals,
except each digit is in base 2). So fractions like 1/3 cannot be stored exactly, but
will have to be rounded to the nearest number that can be stored. The accuracy
depends on the number of digits used to store numbers on the computer. Typically
each number is stored so the accuaracy is at least 16 decimal digits. The relative
error will be less than 2.2×10−16. As the details of binary arithmetic vary among
computers, the accuracy expected on a particular machine is summarised by the
easily computed quantity machine epsilon. Machine epsilon is defined as

machine epsilon := min{2−k : (1 + 2−k)− 1 > 0, k = 1, 2, . . .},

where here (1 + 2−k)− 1 means the value computed by the machine under inves-
tigation. Mathematically, (1+2−k)− 1 is always positive, but when k is large the
computer will not have enough digits to store (1 + 2−k) exactly, and eventually it
will have to be rounded it down to 1. Then the computed value of (1 + 2−k)− 1
will then be 0. The model assignment question we will do here is

Question: Use Matlab to calculate machine epsilon on the Mathe-
matics Department’s computers. (Hint: Evaluate (1 + 2−k) − 1 for k
= 50, 51, . . . , 55 .)

In principle, we can just type in the commands to get Matlab to evaluate
(1+ 2−50)− 1, (1+ 2−51)− 1, . . . (1+ 2−55)− 1 one after the other. A better way
is the remember the component-wise operations and use the following commands.

41

format short e

k = (50:55)’ ; e = 2 .^(-k) ; er = (1+e) -1 ; tab = [k e er]

Here k is the vector of integers 50 . . . 55, and er contains the results of (1 +
2−k) − 1. The table tab neatly summarises the computations. (Be sure to use
the format short e to display the results at the terminal. The fixed point format
short f is not suitable for answering this question, as some important small
numbers will be displayed as 0.)
The computed results in tab are enough to answer this model assignment

question, and we will need to hand up tab with the assignment. This could be
done by just copying numbers from the terminal screen, but it is quicker to cut
and paste these numbers to a word processor. Then we can neaten the table a
little. Finally add some explanation to make it into our answer to the question.
(Please ask for a demonstration if you do not know how to cut and paste numbers
from the Matlab command window to your favourite editor or word processor.)

12.1. Model Answer

The matlab code below computes the value of (1+2−k)−1 for k=50,51,...,55. The
results are shown in the table. The smallest value of 2−k for which (1+2−k)−1 > 0
is 2−52 = 2.22× 10−16. Thus machine epsilon is 2.2× 10−16

Results for the Machine Epsilon Computations

k 2^(-k) (1 + 2^(-k))-1

-- --------- ---------

50 8.8818e-16 8.8818e-16

51 4.4409e-16 4.4409e-16

52 2.2204e-16 2.2204e-16

53 1.1102e-16 0

54 5.5511e-17 0

55 2.7756e-17 0

Matlab Code Used

k = (50:55)’ ; e = 2 .^(-k) ;

er = (1+e) -1 ; tab = [k e er]

42

This question is very short. But it does illustrate some important points which
hold for longer and more complicated problems.

• The question posed is answered in sentences

• Results are presented in tables (or graphs).

• Code is included, but it is usually not necessary to discuss it.

13. Larger Projects

In this section we show how Matlab is best used to do a more complicated assign-
ment. It contains the following new ideas.

• Running longer code from files, rather than typing a long string of commands
into the command window.

• Some simple programming in Matlab, using the for and break statements.

13.1. M-Files.

Script M-file or just M-files are plain text files containing Matlab code. For
example, we may have 10 lines of Matlab code which computes results and then
graphs the output. It is tedious to type in these 10 lines as we develop and change
the code (even if we use the up arrow). However if we store the code in an M-file,
say ass.m, then all the code in the file can be run by just typing in the file’s
name.
For example, let us place the following code from the 3D graphics section in the

file ass.m. (Open the Matlab editor and type in the code. If you are reading
the introduction on line, cut and paste the commands from the browser window
to the editor. Save the file using the name ass.m.)

% This code goes

% in the file ass.m .

x=(-2:.1:2)’ ; y = (-2:.1:2)’ ;

X, Y] = meshgrid(x,y) ;

Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;

surf(X,Y,Z)

xlabel(’X’); ylabel(’Y’); zlabel(’Z’)

Now this code will be run by the single Matlab command

43

ass % Run the code in the file ass.m

If there are errors (there always are), we can quickly make corrections with
our editor and run the code again. This is faster than repeatedly typing in the
individual commands. M-files should be used if our task needs more than about
6 lines of Matlab.
Script M-files are similar to function files, but they do not contain the function

statement at the beginning. Moreover, all the variables in the script M-file are
the same as any variables appearing in the main Matlab command window. Thus
running an M-file gives exactly the same result as if the code had been typed in
from the keyboard. The names of these files must have the ‘.m’ extension (e.g.
‘ass.m’).

13.2. Some Programming

If x is an approximate square root of a, then it has long been known that

x′ =
1

2

(

x+
a

x

)

is general a better approximation. For example, starting with 1 and working with
pencil and paper we have the following rational approximations to

√
2

1,
3

2
,
17

12
,
577

408
, · · ·

If we decide to stop after 20 approximations, this computation may be written
formally as

x = 1

for k = 1, 2, 3, · · · , 20
x = (x+

a

x
)/2 (13.1)

end

The third line in (13.1) does not mean x equals (x + a/x)/2, rather that the old
value of x should be replaced with the new value (x+ a/x)/2.
In practice we may have an accurate answer before we have computed all 20

new values of x. We could perhaps stop if x2 − a is sufficiently small; but this is
extra computation. Instead, we will stop when the new value of x is sufficiently
close to the previous value, that is if the calculations are not changing the answer
very much. Hopefully this means we are close to the true answer.

44

Formally our method becomes

x = 1

for k = 1, 2, 3 · · · , 20
x′ = (x+

a

x
)/2

if |x− x′| ≤ 10−14 stop (13.2)

x = x′

end

This can be coded in Matlab with a for statement, an if statement, and a
break statement.

% Code to find sqrt(a)

x=1

for k=1:20

xnew = (x+a/x)/2

if abs(x-xnew)<=1.e-14, break, end

x = xnew

end

This code can go in the file mysqrt.m

Once we have typed the code into the file mysqrt.m, we can test the code in
Matlab with the command

a = 2 ; mysqrt % Run ysqrt with a=2

xnew, k % The approximation to 2^.5 was found

% after k steps.

xnew-sqrt(a) % Check accuracy.

Because mysqrt is not a function, the value of a can be used by the commands
in mysqrt. The results of the calculation can be found by looking at the values of
k and xnew in the main Matlab command window. This is particularly useful in
finding out what has gone wrong if something does not work.

Exercise .35. (a.) Adjust the code so that no intermediate results are printed
out.
(b.) Run mysqrt with various values of a to complete the following table

45

a Computed
√

Steps needed Error in the approximation

2
3
4
20
1000

Hint: To avoid retyping, use the following code.

tab = [] ; % tab contains the table of results
for a = [2 3 4 10 100 1000]

mysqrt

err = xnew - sqrt(a);

tab = [tab ; a xnew k err]; % The new results are added
end % at the end of the table.

(c.) Add a new first line to mysqrt to change it to a function m-file. The
input argument should be the number a, the output argument should be the
computed square root, xnew
(d.) Alter the code so that mysqrt forms a table of values of k and xnew. Al-
ter the function statement so that the function returns this table as a second
output value.

13.3. More Programming

Matlab contains the usual variety of statements to control the flow of programs.
Details of these may be found in the online documentation. From the Help Desk
follow the link Getting Started then read about Flow Control.
In Matlab, traditional programming ideas using loops should be avoided. Sup-

pose I wish to graph a function on [0, 2]. Following the ideas of standard programs
we could use the code

for i = 0:200

x(i+1) = i/100 ;

y(i+1) = cos(x(i)*pi) ;

end

plot(x,y,’-’)

This is very, very slow, as well as being ugly and cumbersome. The elegant
Matlab solution using component-wise operations is much nicer.

x = (0:.01:2)’ ; plot(x, cos(x*pi), ’x’)

46

13.4. Saving to Floppies.

To complete a big assignment you will need a number of sessions on the computer,
and it is essential to keep a permanent copy of your programs and results from
one day to the next. For this you will need at least one ‘double sided, high density,
3.5 inch’ floppy disk; that is, one that can contain up to 1.44 Meg. These are
obtainable at a number of shops on campus. (It is cheapest to buy a box of ten
with 2 or 3 friends.) Please take sensible precautions against loosing your disks.
When Matlab is started the default directory is D:\TEMP, that is a directory

on the internal hard disk. This means all files and results saved from within
Matlab will be stored in this directory. Similarly Matlab looks for all M-files in
this direcory. Unfortunately this directory is cleared when a new user logs on,
and all work will be lost unless you remember to copy all files from D:\TEMP to
your floppy. It is easy to forget to do this.
Thus it is better to make your floppy the default directory. Make your very

first command in Matlab

cd a:\ % This should be the first Matlab command

% Your floppy is now the default directory.

Then you always have a copy of your work on your disk. Now you only have to
remember to take your floppy our of the drive before you go.

14. Command Summary

The following Matlab examples illustrate some commonly used Matlab syntax.
Consult this list if you need to know small details (where punctuation occurs for
example).

x = (22/7 -16 + 1.9)*3^2 ;

y = exp(-pi*i) ;

ezplot(’x^2/(1+x^2)’)

ezplot(’x^2+y^2-4’,[0,2],[0,2])

ezplot(’cos(t)’,’sin(t)’,[0,2*pi])

fplot(’[sin(x), x-x^3]’,[0,pi])

ezsurf(’xy^2 / (x^2+y^4)’)

ezsurf(’sqrt(1-t^2)*cos(s*pi)’, ...

’sqrt(1-t^2)*sin(s*pi)’, ’t’, [-1,1])

x = 0:.05:1 ;

47

fx = (1 + x) .* cos(x) ./ (3 - x.^2) ;

plot(x,fx,’--’) ;

x = -2:.2:2 ; y = 0:.2:2 ;

[X , Y] = meshgrid(x,y) ;

Z = X .* Y .* exp(-(X.^2 + Y.^2)) ;

surf(X,Y,Z)

A = [2 3 4; 5 6 7; -1 -1 1] ;

col1 = A(:,1) ; row2 = A(2,:) ;

A_lower = A(2:3,2:3) ;

odd = 1:2:9 ; odd = odd’ ;

b = [1;2;3] ; x = A \ b ; % Solve A x = b

[U,Lam] = eig(A) ; % Find eigenvalues

% & eigenvectors.

I = eye(3) ; % Set up special matrices

S = rand(4,1) ;

T = diag(ones(4,1),-1) ...

+ diag(-2*ones(5,1)) ...

+ diag(ones(4,1),1);

x = 3 ;

for k = 1:30

x_new = (x + 3/x)/2 ;

if abs(x - x_new) < 1.e-12 , break , end

x = x_new ;

end

% A new function ff .

function yp = ff(t,y) % This code must be in

yp = y / (1+ t^2) ; % the m-file ff.m

%

48

