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Introduction 

 

The least-squares fitting of functions to data can be done in Maple with eleven different 

commands from four different packages. The CurveFitting and LinearAlgebra packages each 

have a LeastSquares command, the former limited to the fitting of univariate linear models; the 

latter, applicable to univariate or multivariate linear models. The Optimization package has the 

LSSolve and NLPSolve commands, the former specifically designed to solve least-squares 

problems; the latter, capable of minimizing a nonlinear sum-of-squares. 

 

These seven command from the Statistics package can return some measure of regression 

analysis (see Table 2): Fit, LinearFit, PolynomialFit, ExponentialFit, LogarithmicFit, 

PowerFit, and NonlinearFit. The Fit command passes problems to either LinearFit or 

NonlinearFit, as appropriate. The NonlinearFit command invokes Optimization's LSSolve 

command, while the remaining commands (implementing a linearization where necessary) make 

use of LinearAlgebra's LeastSquares command. 
 

This month's article will explore each of these eleven tools, examine the spectrum of problems to 

which they apply, and give examples of their use. 
 

Tools 

 

Table 1 summarizes the eleven least-squares commands available in Maple. 
 

Package 
 

Command 
 

Comments 
 

CurveFitting 

 
LeastSquares 
 

 Fit a univariate linear model to data 

 Exact solutions supported 

 Fitting curve can have free parameters 

 

LinearAlgebra 

 
LeastSquares 
 

 Fit a univariate or multivariate linear model to data 

 Obtain general or minimum-norm least-squares 

solution 

 Input can be set of linear equations 



 Exact solutions supported 

 Fitting curve can have free parameters 

 

Optimization 

 
LSSolve 
  Obtain local minimum of   

 Input: list of residuals    

 Supports equality and/or inequality constraints, and 

bounds on variables 

 Both supported methods use differentiation 

 Numeric solutions only 

 

NLPSolve 
  Obtain local minimum of   

 Input:  

 Supports equality and/or inequality constraints, and 

bounds on variables 

 Methods include nonlinear simplex (Nelder-Mead) 

for unconstrained multivariate objective functions 

 Numeric solutions only 

 

Statistics 

 
Fit 
 

 Passes least-squares fit of a linear model to 

LinearFit, and of a nonlinear model to 

NonlinearFit 

 Accepts model only as an expression 

 

LinearFit 
 

 Passes least-squares fit of a linear model to 

(numerical) LinearAlgebra 

 Model input as list or vector of component 

expressions or functions 

 

PolynomialFit 
 

 Passes least-squares fit of a polynomial to 

(numerical) LinearAlgebra 

 Input: polynomial degree, data, and independent 

variable 

 

ExponentialFit 
 

 Linearizes the fitting function  to 

, and passes problem to 

(numerical) LinearAlgebra 

 Input: Data and independent variable 

 

LogarithmicFit 
 

 Treats the fitting function  as linear in 

 and passes problem to (numerical) 

LinearAlgebra  



 Input: Data and independent variable 

 

PowerFit 
 

 Linearizes the fitting function  to 

, and passes problem to 

(numerical) LinearAlgebra  

 Input: Data and independent variable 

 

NonlinearFit 
 

 Passes the least-squares fit of a nonlinear model to 

the LSSolve command in Optimization, obtaining a 

local best-fit 

 Input: Model as expression or function, data, 

independent variable 

 

Table 1   Maple commands for least-squares fitting 

 

  
 

The LeastSquares command in the CurveFitting package fits a univariate linear model to data. 

The input data can be a list of points, or separate lists (or vectors) of values for the independent 

and dependent variables. The data points can be weighted, and the particular linear model can be 

provided as an expression linear in the model parameters. Computations are done in 

exact/symbolic form, so the fitting curve can contain free parameters that are not solve for. Both 

the Context Menu for a list of lists, and the Curve Fitting Assistant provide an interactive 

interface to this command. 

 

The LeastSquares command in the LinearAlgebra package provides a number of additional 

functionalities for linear models: the model can be multivariate; the first argument can be a set of 

equations; for rank-deficient models both the general and minimum-norm solutions are available; 

and the user has control over the name of free parameters in a general solution. Like the 

CurveFitting version, this command can also work in exact/symbolic mode, so inputs and 

outputs can contain symbolic terms. 

 

When applied to floating-point data, the LeastSquares command in LinearAlgebra will 

implement calculations based either on a QR decomposition, or a singular-values decomposition. 

Since the QR decomposition does not readily determine the rank of the decomposed matrix, 

least-squares fits based on this approach can fail for rank-deficient matrices. Because the default 

settings for automatically switching to the more robust singular-values approach can be thwarted 

by a given matrix, the safest policy appears to be setting the method option to SVD in all cases. 
 

The LSSolve command in the Optimization package provides a local solution to both linear and 

nonlinear least-squares problems. The objective function (a sum of squares of deviations) shown 

in Table 1 is minimized, possibly subject to constraints (equality, inequality, bounds on 

variables). The input to the command could be a list  corresponding to the linear 

least-squares problem . Alternatively, the input to the command could be a list of residuals 

(deviations) of the form . If the model is given by the function , where u is a 



vector of parameters, then . If the least-squares solution of the (inconsistent) 

equations , is required, then , enabling LSSolve to accept what is 

essentially a list of equations. 
 

The NLPSolve command in the Optimization package provides a local extreme for a 

multivariate function, whether linear or nonlinear. If this function is the sum-of-squares of 

deviations, then finding its minimum is equivalent to solving a least-squares problem. This 

command is included in Table 1 because it can invoke the Nelder-Mead method (nonlinear 

simplex in Maple), which is the only option in Maple that does not use differentiation to find 

local extrema of unconstrained multivariate functions. (Additional derivative-free options are 

available in Dr. Moiseev's DirectSearch package, the details of which were discussed here.) 
 

All seven regression commands in the Statistics package work in floating-point arithmetic only. 

Output for each command can be one or a list of the items in Table 2, or a module containing all 

the relevant regression-analysis details shown in the table. The first eight items are available for 

the NonlinearFit command; all 16 are available for the other six regression commands. The help 

page for these options can be obtained by clicking here, or by executing the command 

?Statistics,Regression,Solution. 

 

degreesoffreedom 

leastsquaresfunction 

parametervalues 

parametervector 

residuals 

residualmeansquare 

residualstandarddeviation 

residualsumofsquares 

 

AtkinsonTstatistic 

condidenceintervals 

CookDstatistic 

externallystandardizedresiduals 

internallystandardizedresiduals 

leverages 

standarderrors 

variancecovariancematrix 

 

Table 2   Regression analysis 

elements 

 

  
 

Table 1 indicates that the Fit command is an interface to the LinearFit and NonlinearFit 

commands. The LinearFit and PolynomialFit commands invoke the numeric version of the 

LeastSquares command in LinearAlgebra, as do the ExponentialFit, LogarithmicFit, and 

PowerFit commands (after linearization). The NonlinearFit command invokes the LSSolve 



command in Optimization. 
 

Universe of Discourse 

 

Tables 3 and 4 summarize the universe of discourse for the least-squares options in Maple, Table 

3 dealing with univariate models; and Table 4, multivariate models. The characteristics of this 

universe  can be taken as linear/nonlinear, overdetermined/underdetermined/exactly determined, 

consistent/inconsistent, univariate/multivariate, provided the notion of "determined" is given a 

precise meaning. At first glance, a system can have more equations than unknown parameters, 

but if the equations are redundant, there may actually be fewer distinct equations in the system 

than unknowns. Such a system would be underdetermined, but by a simple count of equations, 

might be called overdetermined. We opt for the former meaning, namely, that the terms 

underdetermined, overdetermined, and exactly determined be applied only after all redundancies 

have been eliminated. 

 

According to Table 3, whether a univariate model is linear or nonlinear, if there are more distinct 

equations than unknowns (i.e., if the system is truly overdetermined), then the system is 

necessarily inconsistent, and a least-squares solution is appropriate. So too for the 

underdetermined, inconsistent system - a least-squares solution is appropriate, and will contain 

free parameters. The underdetermined, consistent system will also have a general solution 

containing free parameters, but here, the least-squares technique need not be invoked.  

 

Underdetermined or exactly determined consistent systems are essentially interpolation 

problems; inconsistent systems are the ones requiring least-squares techniques. Underdetermined 

linear models will have a parameter-dependent general solution, from which can be extracted a 

unique solution of minimum norm ( ).  

 

Univariate Models 
 

 

 

Overdetermined 

 

Underdetermined & 

Consistent 

 

Underdetermined & Inconsistent 

 

Linear 

 
LeastSquares 
(CurveFitting) 

LeastSquares 
(LinearAlgebra) 

LSSolve (Optimization) 

Fit (Statistics) 

LinearFit (Statistics) 

 

solve 

LinearSolve 
(LinearAlgebra) 

LeastSquares 
(CurveFitting) 

LeastSquares 
(LinearAlgebra) 

 (Optimization) 

 

LeastSquares (CurveFitting) 

LeastSquares (LinearAlgebra) 

 

 

Nonline

ar 

 

LSSolve (Optimization) 

NonlinearFit (Statistics) 

 (Statistics) 

 

 

 (Optimization) 

 

 (normal equations) 

 (Optimization)  

 



Table 3   Problems and tools for fitting univariate models to data 

 

  

(1) Local extrema, at best.  (2) Can fail for intractable algebra. (3) Minimize sum-of-squares of 

deviations. 
 

Table 4 categorizes multivariate linear models, those given as , according to the number of 

rows (r) and columns (c) in the matrix A. However, this classification is affected by the rank of 

. Systems that are truly underdetermined have a parameter-dependent general solution, which, 

if projected onto the row space of A, becomes the minimum-norm solution. Full-rank matrices A 

with at least as many rows as columns have a trivial null space, and hence any associated linear 

system has a unique solution, even if it is in the least-squares sense. 
 

Multivariate Linear Models 
 

 

 

Rank of 
  

 

 

 

Appropriate Commands 

 

 

 

Full rank 

 

Consistent 

(necessarily) 

 

LinearSolve and LeastSquares (LinearAlgebra) 

 

Deficient 

 

Consistent 

 

LinearSolve and LeastSquares (LinearAlgebra) 

 

Inconsistent 

 

LeastSquares (LinearAlgebra) 

 

 

 

Full rank 

 

Consistent 

(necessarily) 

 

LinearSolve (LinearAlgebra) 

 

Deficient 

 

Consistent 

 

LinearSolve and LeastSquares (LinearAlgebra) 

 

Inconsistent 

 

LeastSquares (LinearAlgebra) 

 
 

 

Full rank 

 

Consistent 

 

LinearSolve and LeastSquares (LinearAlgebra) 

LSSolve (Optimization) 

 

Inconsistent 

 

LinearSolve and LeastSquares (LinearAlgebra) 

LSSolve (Optimization) 

 

Deficient 

 

Consistent 

 

LinearSolve and LeastSquares (LinearAlgebra) 

 

Inconsistent 

 

LeastSquares (LinearAlgebra) 

 

Table 4   Problems and tools for fitting multivariate linear models to data 

 

  
 



For either of Tables 3 or 4, the bifurcation induced by the exact/floating-point distinction arises 

only for invocations of the LeastSquares command in LinearAlgebra, and is dealt with only in 

the context of specific examples. Problems that turn out to be consistent and exactly determined 

are actually interpolation problems, and not least-squares problems. 
 

The overdetermined nonlinear multivariate model can be solved with the NonlinearFit 

command in Statistics, and the LSSolve command in Optimization. Of course, the 

sum-of-squares of deviations can be directly minimized by, for example, the NLPSolve 

command in Optimization. Underdetermined nonlinear multivariate models pose a special 

challenge. None of the tools in LinearAlgebra apply, and the numeric tools in Optimization and 

Statistics provide only local solutions, so these tools will not return a general solution. If the 

algebra is tractable, it might be possible for the solve command to yield the general solution: for 

a consistent system, apply it directly to the equations; for an inconsistent system, to the normal 

equations.  

 

Examples 

 

This section contains some 21 examples illustrating the use of the Maple commands in Table 1. 

The organization of the examples is based on Table 3 and 4, and the remarks on nonlinear 

multivariate systems following Table 4. 
 

Linear Univariate Models 

Overdetermined Case 
 

Example 1. 

Fit  to ten data points along .  

 

  
 

Solution 

 Define , the fitting function. 

 Context Menu: Assign Function 

 

 

Define a list of x-values (as floats). 

 Form a list of corresponding y-values: 

 

 

 

 

  
 

Apply the LeastSquares command from the CurveFitting package. 

 



 

 

  

 

Apply the LeastSquares command from the LinearAlgebra package.  

The arguments are a set of equations of the form , and a set of parameters (the ). 

 

 

 

  

Notice that the output is not the fitting function, but a set of equations defining the parameters. 

 

To the problem in the form , apply the LeastSquares command from LinearAlgebra. 
 

 

 

  

The output is now a vector of values for the parameters. 
 

Apply the LSSolve command from the Optimization package. The input is the list . 

 

 

 

  

The output is a list, the first member of which is half the sum of the squares of the deviations; 



and the second of which is a vector of values for the parameters. 
 

Apply the LinearFit command from the Statistics package. 

The arguments are a list of basis functions for the linear model, the data, and the independent 

variable for the model. 
 

In LinearFit (algebraic form) 
SVD tolerance set to .10e-11 

confidence level set to .95 

final value of residual sum of squares: 30.8945581508559 
 

 

  

By setting infolevel to 5, additional information about the calculation is printed. The fitting 

function is returned. 

 

Apply the Fit command from Statistics; the first argument must now be the model function. 
 

In Fit 
In LinearFit (algebraic form) 

SVD tolerance set to .10e-11 

confidence level set to .95 

final value of residual sum of squares: 30.8945581508559 
 

 

  

Notice how Fit passed the problem off to LinearFit. 
 

Apply the Fit command from Statistics so as to return m, a module whose exports are the entries 

of Table 2. 

 

 

Access the exports of module  singly. 

 

 =  

Not recommended: Return all 16 exports in a (poorly formatted) list:    



The following device line-breaks the exports, making them easier to read. 

 

 

 

 

 

 
 

 

 

 

 

 

 



 

 

 



 

 

 

 

  
 

Underdetermined Case 

Consistent 
 

Example 2.  

Fit  to the data points  and . 

 

  
 

Solution 

 Initialize Maple. 

 

 

 

 Define the fitting function: 

 Context Menu: Assign Function 

 

 

  

 

 



This is an interpolation problem requiring the solution of two consistent equations in three 

unknowns.  

It is not necessarily a least-squares problem. 

 

 

 Write and solve two (consistent) 

equations in three unknowns. 

 

 

 

 

 Obtain the general solution, a 

one-parameter family of interpolating 

functions. 

 

 

 

 

  
 

Use the LeastSquares command from the CurveFitting package: 

 

 

 

  

Although the calculation is passed off to the LeastSquares command in LinearAlgebra, which 

has provision for controlling the name of the free parameter, this control is lacking in the 

CurveFitting package. 

 

Use the LeastSquares command from LinearAlgebra. The arguments here will be a set of 

equations and a set of parameters. Note the control over the free parameter. 
 

 

 

 

  

The LeastSquares command in LinearAlgebra returns a set of equations defining the 

parameters, which then have to be transferred to the model to obtain the fitting function. The 

appearance of the free parameter is best explained via the matrix formulation of the problem. 

 

Cast the problem in the form . 

 Convert equations to matrix/vector 

form. 

 



 
 

 

 Obtain the general solution. 

 

 

 

 

 Obtain the minimum-norm 

solution. 

 

 

 

 

 Project V onto the row space of A. 

 

 

 

 

  

 

The numeric solvers of the Optimization package, being local, will not necessarily find the 

minimum-norm solution, and might return any member of the general solution. The numeric 

solvers of the Statistics package reject underdetermined problems.  

 

Inconsistent 
 

Example 3. 

Fit  to the data point  and . 

 

  
 

Solution 

 Initialize Maple. 

 

 

 



 Define the fitting function: 

 Context Menu: Assign Function 

 

 

  

 

Use the LeastSquares command from 

the CurveFitting package: 

Use the LeastSquares command from the CurveFitting package: 

 

 

 

  

 

Use the LeastSquares command from LinearAlgebra. The arguments here will be a set of 

equations and a set of parameters.  
 

 

 

 

  

The LeastSquares command in LinearAlgebra returns a set of equations defining the 

parameters, which then have to be transferred to the model to obtain the fitting function. The 

appearance of the free parameter is best explained via the matrix formulation of the problem. 

 

Cast the problem in the form . 

 

 

 

Obtain the general solution 

 
 

 

 

 

Obtain the minimum-norm solution 



 

 

 

 

  

The null space of A is spanned by the vectors .  

 

Nonlinear Univariate Models 

Overdetermined Case 

Logarithmic Model 
 

Example 4. 

Fit  to the 45 data points shown in Figure 1. 

 

  

 



 
 

Figure 1   Data points to be fitted with . (Data hidden behind table: lists X 

and Y of values of the independent and dependent variables, respectively.) 

 

  
 

Solution 

 Define f, the logarithmic model 

function. 

 

 

 

 Form , the sum of squares of 

deviations: 

 

 

 

Apply the LogarithmicFit command from Statistics 

 
 

 

 

Apply the NonlinearFit command from Statistics 



 
 

 

 

Minimize  via the Optimization package 

 

 

 

 

Form and solve the normal equations, then evaluate the resulting   

 
 

 

 

 

  
 

The solution obtained by the linearization in LogarithmicFit closely matches the solutions 

obtained by methods that do not linearize. 
 

Power Model 
 

Example 5. 

Fit  to the 45 data points shown in Figure 2. 

 

  
 



 
 

Figure 2   Data points to be fitted with . (Data hidden behind table: lists X and Y 

of values of the independent and dependent variables, respectively.) 

 

  
 

Solution 

 Context Menu: Assign 

Function 

 

 

 

 Form , the sum of squares 

of deviations: 

 

 

 

Apply the PowerFit command from Statistics 

 
 

 

 



Evaluate  for the linearized fit 

 

 =  

Apply the NonlinearFit command from Statistics 

 
 

 

 

Minimize  via the Optimization package 

 

 
 

 

Form and solve the normal equations, then evaluate the resulting   

 
 

 

 

 

  
 

The parameters computed by the linearization in PowerFit differ slightly from those computed 

by the other methods which don't linearize. The sum of squares of residuals returned by 

PowerFit is for the linearized model, not the nonlinear model; when corrected for the 

linearization, it is slightly larger than the value for the nonlinear fits. 
 

Exponential Model 
 

Example 6. 

Fit  to the 45 data points shown in Figure 3. 

 

  
 



 
 

Figure 3   Data points to be fitted with . (Data hidden behind table: lists X and 

Y of values of the independent and dependent variables, respectively.) 

 

  
 

Solution 

 Context Menu: Assign 

Function 

 

 

 

 Form , the sum of squares 

of deviations: 

 

 

 

Apply the ExponentialFit command from Statistics 

 
 



 

 

Evaluate  for the linearized fit 

 

 =  

Apply the NonlinearFit command from Statistics 

 
 

 

 

Minimize  via the Optimization package 

 

 
 

 

Form and solve the normal equations, then evaluate the resulting   

 
 

 

 

 

  
 

The parameters computed by the linearization in ExponentialFit differ slightly from those 

computed by the other methods which don't linearize. The sum of squares of residuals returned 

by ExponentialFit is for the linearized model, not the nonlinear model; when corrected for the 

linearization, it is slightly larger than the value for the nonlinear fits. 
 

Michaelis-Menten Model 
 

Example 7. 

Fit , the Michaelis-Menten model, to the 46 data points shown in Figure 4. 

 



  
 

 
 

Figure 4   Data points to be fitted with . (Data hidden behind table: lists S 

and V of values of the independent and dependent variables, respectively.) 

 

  

This example is a summary of one that appears in the ebook, Advanced Engineering 

Mathematics with Maple, an example that also appears in the Reporter article  Nonlinear Fit, 

Optimization, and the DirectSearch Package. The fit is obtained with two different 

linearizations, and nonlinearly, the outcome being that the linearized solutions provide decidedly 

poor fits. 
 

Solution 

 Define : 

 Context Menu: Assign Function 

 

 

Define , sum of squares of deviations. 

  

 



Linearization 1 

 

Linearization 2 

 

The linearization  requires 

the computation of the reciprocals  

and . 

 

The linearization  requires a list 

of ratios  with new independent 

variable . 

 
 

 

 

 

 

Obtain the least-squares regression line  

 

Here,  and . 

 

Here,  and . 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

  
 

Nonlinear Fit 

 
 

 

 
 



 

 

 

 

 

 Sum of Squares for : 

 

 =  

 

 Sum of Squares for : 

 

 =  

 

 Sum of Squares for nonlinear fitting 

function: 

 

 =  

 

  

The NonlinearFit command from Statistics can return the fitting function, but the Statistics 

package's  LSSolve command, whose input is a list of deviations (called residuals) returns the 

parameter values. In this example, it is even possible to form the normal equation and solve them 

numerically. 
 

Figure 5 compares the graphs of the three fitting functions. Both from the graph and from the 

values of , it should be clear that linearizations do not necessarily provide the best fits to data. 

 



 
 

Figure 5   Nonlinear fit (black),  (red),  (green) superimposed on Figure 4 

 

  
 

Underdetermined Case 

Consistent 
 

Example 8. 

Fit  to the two points  and . 

 

  

 

This problem is essentially an interpolation, with the expected result being a one-parameter 

family of curves all going through the two given points. If  were a linear function, such an 

outcome, and the means to achieve it, would be clear. For this particular , it is possible to find 

this one-parameter family of solutions, but in general, it might not be possible to implement the 

requisite manipulations. 

 

Exact Solution 

 Restart Maple.  



  

 Control-drag the equation   

 Context Menu: Assign Function 

 

 

Solve for b and c as functions of a. 

 Obtain the one-parameter family of 

solutions. 

 

 

 

 

 

 

  
 

The LSSolve command in the Optimization package requires at least as many residuals as 

parameters; otherwise, an error results. Hence, it really does not apply here. 
 

Inconsistent 
 

Example 9. 

Fit  to the two points  and . 

 

  

 

The equations  and  would necessarily be inconsistent, so this is not an 

interpolation, but a problem of fitting by least squares. A general solution consisting of a 

two-parameter family of curves is expected. 

 

General Solution 

 If necessary, define . 

 

 
 

 Define S the sum of squares. 

 

 
 

 Obtain and solve the normal 

equations. 

  

 The parameters a and b are free, 

and . 

 

 

 

 

 Evaluate the sum of squares for 

this solution. 

 =  

 



 

 Obtain the general solution to the 

underdetermined, inconsistent 

least-squares problem. 

 

 =  

 

  

Casual inspection shows that every member of the general solution passes through . 

 

As in Example 8, the LSSolve command in the Optimization package requires at least as many 

residuals as parameters; otherwise, an error results. Hence, it really does not apply here. 

 

Linear Multivariate Models 

 

This section considers linear multivariate models that are cast in the form . As per Table 4, 

the examples are classified by the properties of the r× c matrix A, and the vector v. 
 

 Initialize Maple. 

 

 

 

  
 

 

Full Rank 
 

Define the full-rank matrix  

 

 

 

for which  = .  

 

Consistent 
 

Example 10. 

Solve the least-squares problem , where , and . 

 

  
 

Since there are fewer equations than variables, the system  cannot be inconsistent. Each 

row in A represents the left-hand side of a distinct equation, so no matter what appears on the 

right, the equations in the system must be consistent. 

 

Solution 



 Apply the LeastSquares command, 

designating s as the free variable 

base-name. 

  

 The result is the general solution 

containing one free parameter. 

  

 The solution is u, a vector of 

parameter values. 

 

 

 

 

 

 

 Obtain the minimum-norm 

least-squares solution.  

  

 This is the projection of the general 

solution onto the row space of Af. 

 

 

 

 

Obtain P, the matrix that projects onto the row space of A. 

 

 The columns of N are a basis for the 

row space. 

 

 

 

 Project  onto the row space.  

  

 The result is the minimum-norm 

solution, a vector that lies in the row 

space of Af. 

 

 =  

 

  
 

Rank-Deficient 
 

Define the rank-deficient matrix 

 



 

 

for which  = . 

 

Consistent 
 

Example 11. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is consistent can be seen from  

 

 =  

 

  
 

General solution: 

 =  

 

  
 

Minimum-norm solution: 

 =  

 



  
 

Inconsistent 
 

Example 12. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is inconsistent can be seen from  

 

 =  

 

  
 

General solution: 

 =  

 

  
 

Minimum-norm solution: 

 =  

 

  
 

 

Full Rank 
 



A full-rank matrix in a square system must necessarily be consistent, and therefore have a unique 

solution. There cannot be a least-squares problem in this case. 
 

Rank-Deficient 
 

Define the rank-deficient matrix 

 

 

 

for which  = . 

 

 

Consistent 
 

Example 13. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is consistent can be seen from  

 

 =  

 

  
 

General solution: 

 =  

 

  
 

Minimum-norm solution: 



 =  

 

  

 

Because this system is essentially just an underdetermined one, a general solution is available 

with the LinearSolve command in the LinearAlgebra package. 

 =  

 

  
 

Seek a least-squares solution numerically: 

 =  

  

That this is a member of the general solution can be seen by projecting it onto the row space of 

Bd. 

 

 The columns of N are a basis for the 

row space. 

 

 

 

 Project  onto the row space.  

 

The result is the minimum-norm 

solution, a vector that lies in the row 

space of Bd. 

 

 =  

 

  

 



However, to obtain the minimum-norm solution numerically, specify that the calculation is to be 

based on the singular value decomposition, rather than on the default QR decomposition.  

 =  

 

  
 

Inconsistent 
 

Example 14. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is inconsistent can be seen from  

 

 =  

 

  
 

General solution: 

 =  

 

  
 

Minimum-norm solution: 



 =  

 

  
 

Seek a least-squares solution numerically: 

 =  

  

The default method, based on a QR decomposition, utterly fails because this decomposition does 

not have an efficient way to determine rank. For problems such as this (and Example 13), specify 

the method as the one based on the singular value decomposition. 

 

 =  

 

  
 

Alternatively, use the LinearFit command from the Statistics package. Although this command 

is based on the LeastSquares from LinearAlgebra, there is an additional wrapper that attempts 

to deal with the issues raised by numeric calculations. 
 

Warning, model is not of full rank 
 

 

  
 

The deficiency in rank of the matrix  has been detected, and the calculation is based on the 

singular value decomposition. The control is via the ratio of the smallest to the largest singular 

values, which is the reciprocal of an estimated condition number for the input matrix. If this ratio 



is smaller than the default threshold , the matrix is deemed to be ill-conditioned, and the 

least-squares calculation is based on the singular value decomposition. This default threshold is 

modified with the svdtolerance parameter. 
 

 

 
 

In LinearFit (algebraic form) 
SVD tolerance set to .10e-11 

confidence level set to .95 
Warning, model is not of full rank 

rank =  

final value of residual sum of squares: 26.3923271806008 
 

 
 

In LinearFit (algebraic form) 

SVD tolerance set to .1e-16 

confidence level set to .95 
Warning, model is not of full rank 

rank =  

final value of residual sum of squares: 18.6547034958714 
 

 

  
 

The reciprocal of the estimated condition number is slightly larger than , but that is well 

below the default threshold of , so the first least-squares calculation is based on the 

singular value decomposition; in the second where the reciprocal of the estimated condition 

number is slightly larger than the threshold, the calculation is based on the default QR 

decomposition, and consequently fails. 
 

 

Full Rank 
 

Define the full-rank matrix 



 

 

 

for which  = . 

 

Consistent 
 

Example 15. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is consistent can be seen from  

 

 =  

 

  
 

Consequently, this is not a least-squares problem, but a properly determined system with a 

unique solution, obtainable for example, by LinearSolve in LinearAlgebra. 

 =  

  

 

Inconsistent 

Inconsistent 
 

Example 16. 

Solve the least-squares problem , where , and . 

 

  



 

That the system is inconsistent can be seen from  

 

 =  

 

  
 

Because the matrix is full-rank, the null space is empty, and the least-squares solution is unique. 

 =  

  

 

In general, the sum-of-squares of residuals is given by . 

In general, the sum-of-squares of residuals is given by . 

 =  

 

  
 

Alternatively, the solution can also be found with the LSSolve command in the Optimization 

package. 

 

 

 

  

The first member of the output list is half the sum-of-squares of the residuals; doubling this 

number gives  = . 

 

Rank-Deficient 
 

Define the rank-deficient matrix 

 



 

 

for which  = . 

 

Consistent 
 

Example 17. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is consistent can be seen from  

 

 =  

 

  

 

General solution: 

 =  

 

  
 

Minimum-norm solution: 

 =  

 

  
 



The general solution of an overdetermined but consistent system can also be found with the 

LinearSolve command from LinearAlgebra. 

 =  

 

  

It is left to the reader to show that by appropriately redefining the free parameter in one general 

solution, the other will be obtained. 
 

Inconsistent 
 

Example 18. 

Solve the least-squares problem , where , and . 

 

  
 

That the system is inconsistent can be seen from  

 

 =  

 

  

 

General solution: 

 =  

 

  
 

Minimum-norm solution: 



 =  

 

  
 

Numeric linear algebra: 

 =  

 

This calculation fails because the default QR-based method does not recognize that the 

rank-deficiency of the matrix. The more robust SVD-based method must be invoked. 

 

 =  

 

  

 

The LSSolve command from the Optimization package can find only a local solution, that is, one 

member of the general solution family. 

 

 

 

Project this solution onto the row space of   

 

 The columns of N are a basis for 

the row space; P projects onto the 

row space. 

 

 

 

 The projection is the 

minimum-norm solution. 

 

 =  

 

  

 



In this example, the LinearFit command from the Statistics package finds the minimum-norm 

solution, but this outcome is dependent on the relative values of the default setting of the 

svdtolerance parameter, and the reciprocal of the approximate condition number computed for 

. 

 

Warning, model is not of full rank 
 

 

 The rank-deficiency of  had been detected, and the SVD-based method invoked. 

The minimum-norm solution is returned. 

 The reciprocal of the approximate condition number of : 

 

 =  

 

 

 

 

 This value is smaller than , the default svdtolerance parameter, so the more 

robust SVD-based method is invoked. 

 

  
 

Nonlinear Multivariate Fit 

Overdetermined Case 
 

The first two columns of the matrix 

 

 

 

are the abscissas and ordinates, respectively, of five data points . The numbers 

in the third column are five corresponding observations .  

 

Example 19. 



Fit the function  to the data in M. 

 

  

Since  = , these data points generate a set of overdetermined nonlinear equations that 

are necessarily inconsistent. In contrast to the linear case, there is no functionality for obtaining a 

least-squares fit for nonlinear equations. The tools of Statistics and Optimization are the only 

ones that apply. 

 

Solution 

 Specify the nonlinear model: define the 

function . 

 

 

 

 Form , the sum of squares of 

residuals. 

 

 

 

Apply the NonlinearFit command from Statistics  

 
 

 

 

Apply the LSSolve command from Optimization  

 
 

 

 

 Half the sum of squares is given by . 

 Double it to get the minimized . 

 

 =  

 

Apply the Minimize command from Optimization  

 

 
 

 

  
 

The results from all three approaches are fairly consistent. 



 

Underdetermined Case 

Consistent 
 

The first two columns of the matrix  

 

 

 

are the abscissas and ordinates, respectively, of two data points . The numbers in 

the third column are two corresponding observations .  

 

Example 20. 

Fit the function  to the data in M. 

 

  

Since the data generate a set of two equations in three unknown parameters, this is an 

interpolation problem in which  =  suggests there will be a general solution with one 

free parameter. In the nonlinear case, there is no theory by which a (unique) minimum-norm 

solution is extracted. 

 

Solution 

 Specify the nonlinear model by defining 

. 

 

 
 

 From the two given data points, form 

two equations in the three unknown 

parameters. 

 

 

 

 

 

 Solve two equations for any two 

parameters in terms of the third. Here,  

is the free parameter. 

 

 
 

 



 The general solution is a fitting function dependent on one free parameter: 

 

 
 

 

  

Numeric solutions that seek to minimize a sum-of-squares of residuals return, at best, individual 

members of this family of solutions. 
 

Inconsistent 
 

Example 21. 

Fit  to the two points  and . 

 

  

The data determines two inconsistent equations in the three unknown parameters . This is 

no longer an interpolation; it is a least-squares problem. 

 

Solution 

 Specify the nonlinear model by 

defining . 

 

 
 

 Define P and Q, the two data points. 

 

 

 

 Form SS, the sum of squares of 

residuals. 

 

 

 

 Form and solve the three normal equations. 

 

 

 

 

 The general solution is a fitting function dependent on two free parameters: 

 

 



 

 

  

Numeric solutions that seek to minimize  return, at best, individual members of this family of 

solutions. 
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