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Introduction

The least-squares fitting of functions to data can be done in Maple with eleven different
commands from four different packages. The CurveFitting and LinearAlgebra packages each
have a LeastSquares command, the former limited to the fitting of univariate linear models; the
latter, applicable to univariate or multivariate linear models. The Optimization package has the
LSSolve and NLPSolve commands, the former specifically designed to solve least-squares
problems; the latter, capable of minimizing a nonlinear sum-of-squares.

These seven command from the Statistics package can return some measure of regression
analysis (see Table 2): Fit, LinearFit, PolynomialFit, ExponentialFit, LogarithmicFit,
PowerFit, and NonlinearFit. The Fit command passes problems to either LinearFit or
NonlinearFit, as appropriate. The NonlinearFit command invokes Optimization's LSSolve
command, while the remaining commands (implementing a linearization where necessary) make
use of LinearAlgebra's LeastSquares command.

This month's article will explore each of these eleven tools, examine the spectrum of problems to
which they apply, and give examples of their use.

Tools

Table 1 summarizes the eleven least-squares commands available in Maple.

Package Command Comments

Fit a univariate linear model to data
e Exact solutions supported
e Fitting curve can have free parameters

CurveFitting |LeastSguares

LinearAlgebra|LeastSquares |e Fit a univariate or multivariate linear model to data

e Obtain general or minimum-norm least-squares
solution

e Input can be set of linear equations




Exact solutions supported
Fitting curve can have free parameters

Optimization |[LSSolve ] o | < ,
- e Obtain local minimum of 71;(&((“) - %)
e Input: list of residuals g, (u) —y,
e Supports equality and/or inequality constraints, and
bounds on variables
e Both supported methods use differentiation
e Numeric solutions only
NLPSolve ) . n )
e Obtain local minimum of SS:;;('f(Xk) — )
e Input: ss
e Supports equality and/or inequality constraints, and
bounds on variables
e Methods include nonlinear simplex (Nelder-Mead)
for unconstrained multivariate objective functions
e Numeric solutions only
Statistics  |Fit e Passes least-squares fit of a linear model to
LinearFit, and of a nonlinear model to
NonlinearFit
e Accepts model only as an expression
LinearFit e Passes least-squares fit of a linear model to

(numerical) LinearAlgebra
Model input as list or vector of component
expressions or functions

PolynomialFit

Passes least-squares fit of a polynomial to
(numerical) LinearAlgebra

Input: polynomial degree, data, and independent
variable

ExponentialFit

Linearizes the fitting function y=a4¢’* to
In(y) =1In(a) + bx , and passes problem to
(numerical) LinearAlgebra

Input: Data and independent variable

LogarithmicFit

Treats the fitting function y=4 + »1n(x) as linear in
In(x) and passes problem to (numerical)
LinearAlgebra




Input: Data and independent variable

PowerFit e Linearizes the fitting function y=4x" to
In(y) =In(a) + bIn(x) , and passes problem to
(numerical) LinearAlgebra

e Input: Data and independent variable

NonlinearFit

Passes the least-squares fit of a nonlinear model to
the LSSolve command in Optimization, obtaining a
local best-fit

e Input: Model as expression or function, data,
independent variable

Table 1  Maple commands for least-squares fitting

The LeastSquares command in the CurveFitting package fits a univariate linear model to data.
The input data can be a list of points, or separate lists (or vectors) of values for the independent
and dependent variables. The data points can be weighted, and the particular linear model can be
provided as an expression linear in the model parameters. Computations are done in
exact/symbolic form, so the fitting curve can contain free parameters that are not solve for. Both
the Context Menu for a list of lists, and the Curve Fitting Assistant provide an interactive
interface to this command.

The LeastSquares command in the LinearAlgebra package provides a number of additional
functionalities for linear models: the model can be multivariate; the first argument can be a set of
equations; for rank-deficient models both the general and minimum-norm solutions are available;
and the user has control over the name of free parameters in a general solution. Like the
CurveFitting version, this command can also work in exact/symbolic mode, so inputs and
outputs can contain symbolic terms.

When applied to floating-point data, the LeastSquares command in LinearAlgebra will
implement calculations based either on a QR decomposition, or a singular-values decomposition.
Since the QR decomposition does not readily determine the rank of the decomposed matrix,
least-squares fits based on this approach can fail for rank-deficient matrices. Because the default
settings for automatically switching to the more robust singular-values approach can be thwarted
by a given matrix, the safest policy appears to be setting the method option to SVD in all cases.

The LSSolve command in the Optimization package provides a local solution to both linear and
nonlinear least-squares problems. The objective function (a sum of squares of deviations) shown
in Table 1 is minimized, possibly subject to constraints (equality, inequality, bounds on
variables). The input to the command could be a list [y, 4] corresponding to the linear
least-squares problem 4u =y . Alternatively, the input to the command could be a list of residuals
(deviations) of the form g, (u) —y, . If the model is given by the function y = 7(x; u) , where uis a



vector of parameters, then g, (u) =F(xgu) - If the least-squares solution of the (inconsistent)
equations F,(x) =y, k=1....,n , is required, then g (x) = F,(x) , enabling LSSolve to accept what is
essentially a list of equations.

The NLPSolve command in the Optimization package provides a local extreme for a
multivariate function, whether linear or nonlinear. If this function is the sum-of-squares of
deviations, then finding its minimum is equivalent to solving a least-squares problem. This
command is included in Table 1 because it can invoke the Nelder-Mead method (nonlinear
simplex in Maple), which is the only option in Maple that does not use differentiation to find
local extrema of unconstrained multivariate functions. (Additional derivative-free options are
available in Dr. Moiseev's DirectSearch package, the details of which were discussed here.)

All seven regression commands in the Statistics package work in floating-point arithmetic only.
Output for each command can be one or a list of the items in Table 2, or a module containing all
the relevant regression-analysis details shown in the table. The first eight items are available for
the NonlinearFit command; all 16 are available for the other six regression commands. The help
page for these options can be obtained by clicking here, or by executing the command
?Statistics,Regression,Solution.

degreesoffreedom
leastsquaresfunction
parametervalues
parametervector
residuals
residualmeansquare
residualstandarddeviation
residualsumofsquares

AtkinsonTstatistic
condidenceintervals
CookDstatistic
externallystandardizedresiduals
internallystandardizedresiduals
leverages

standarderrors
\variancecovariancematrix

Table 2  Regression analysis
elements

Table 1 indicates that the Fit command is an interface to the LinearFit and NonlinearFit

commands. The LinearFit and PolynomialFit commands invoke the numeric version of the
LeastSquares command in LinearAlgebra, as do the ExponentialFit, LogarithmicFit, and
PowerFit commands (after linearization). The NonlinearFit command invokes the LSSolve



command in Optimization.
Universe of Discourse

Tables 3 and 4 summarize the universe of discourse for the least-squares options in Maple, Table
3 dealing with univariate models; and Table 4, multivariate models. The characteristics of this
universe can be taken as linear/nonlinear, overdetermined/underdetermined/exactly determined,
consistent/inconsistent, univariate/multivariate, provided the notion of "determined” is given a
precise meaning. At first glance, a system can have more equations than unknown parameters,
but if the equations are redundant, there may actually be fewer distinct equations in the system
than unknowns. Such a system would be underdetermined, but by a simple count of equations,
might be called overdetermined. We opt for the former meaning, namely, that the terms
underdetermined, overdetermined, and exactly determined be applied only after all redundancies
have been eliminated.

According to Table 3, whether a univariate model is linear or nonlinear, if there are more distinct
equations than unknowns (i.e., if the system is truly overdetermined), then the system is
necessarily inconsistent, and a least-squares solution is appropriate. So too for the
underdetermined, inconsistent system - a least-squares solution is appropriate, and will contain
free parameters. The underdetermined, consistent system will also have a general solution
containing free parameters, but here, the least-squares technique need not be invoked.

Underdetermined or exactly determined consistent systems are essentially interpolation
problems; inconsistent systems are the ones requiring least-squares techniques. Underdetermined
linear models will have a parameter-dependent general solution, from which can be extracted a
unique solution of minimum norm (z, ).

Univariate Models

Overdetermined Underdetermined & Underdetermined & Inconsistent
Consistent
Linear |LeastSquares solve LeastSquares (CurveFitting)

(CurveFitting) LinearSolve LeastSquares (LinearAlgebra)
LeastSquares (LinearAlgebra)

(LinearAlgebra) LeastSquares

LSSolve (Optimization) ((CurveFitting)

Fit (Statistics) LeastSquares

LinearFit (Statistics) (LinearAlgebra)
LSSolve' (Optimization)

Nonline [LSSolve (Optimization) [solve’ solve’ (normal equations)
ar NonlinearFit (Statistics) [LsSolve' (Optimization) |Lssolve’ (Optimization)
NLPSolve® (Statistics)




Table 3 Problems and tools for fitting univariate models to data

(1) Local extrema, at best. (2) Can fail for intractable algebra. (3) Minimize sum-of-squares of
deviations.

Table 4 categorizes multivariate linear models, those given as 4u =v , according to the number of
rows (r) and columns (c) in the matrix A. However, this classification is affected by the rank of

4 . Systems that are truly underdetermined have a parameter-dependent general solution, which,
if projected onto the row space of A, becomes the minimum-norm solution. Full-rank matrices A
with at least as many rows as columns have a trivial null space, and hence any associated linear
system has a unique solution, even if it is in the least-squares sense.

Multivariate Linear Models

A Rank of
A

Appropriate Commands

r Full rank

Consistent
(necessarily)

LinearSolve and LeastSquares (LinearAlgebra)

Deficient

Consistent

LinearSolve and LeastSquares (LinearAlgebra)

Inconsistent

LeastSquares (LinearAlgebra)

r=c | Full rank

Consistent
(necessarily)

LinearSolve (LinearAlgebra)

Deficient

Consistent

LinearSolve and LeastSquares (LinearAlgebra)

Inconsistent

LeastSquares (LinearAlgebra)

r Full rank

Consistent

LinearSolve and LeastSquares (LinearAlgebra)
LSSolve (Optimization)

Inconsistent

LinearSolve and LeastSquares (LinearAlgebra)
LSSolve (Optimization)

Deficient

Consistent

LinearSolve and LeastSquares (LinearAlgebra)

Inconsistent

LeastSquares (LinearAlgebra)

Table 4  Problems and tools for fitting multivariate linear models to data




For either of Tables 3 or 4, the bifurcation induced by the exact/floating-point distinction arises
only for invocations of the LeastSquares command in LinearAlgebra, and is dealt with only in
the context of specific examples. Problems that turn out to be consistent and exactly determined
are actually interpolation problems, and not least-squares problems.

The overdetermined nonlinear multivariate model can be solved with the NonlinearFit
command in Statistics, and the LSSolve command in Optimization. Of course, the
sum-of-squares of deviations can be directly minimized by, for example, the NLPSolve
command in Optimization. Underdetermined nonlinear multivariate models pose a special
challenge. None of the tools in LinearAlgebra apply, and the numeric tools in Optimization and
Statistics provide only local solutions, so these tools will not return a general solution. If the
algebra is tractable, it might be possible for the solve command to yield the general solution: for
a consistent system, apply it directly to the equations; for an inconsistent system, to the normal
equations.

Examples

This section contains some 21 examples illustrating the use of the Maple commands in Table 1.
The organization of the examples is based on Table 3 and 4, and the remarks on nonlinear
multivariate systems following Table 4.

Linear Univariate Models

Overdetermined Case

Example 1.

5
Fit /(x) = > b, sin(kx) 1O ten data points along y=+’,0 <x<3.
k=1

Solution
e Define 7, the fitting function. > assign as function
e Context Menu: Assign Function /(x) :k;bksm(kx) f
Define a list of x-values (as floats). X := [seq(3.k/10,k=1
e Form a list of corresponding y-values: ~10)]:
yk:xi Y:= map(x—>x2,X) :

Apply the LeastSquares command from the CurveFitting package.
‘CurveF itting:-LeastSquares( X, Y, x, curve = f(x) )




3.76165223338178 sin(x) — 3.19173112257587 sin(2. x)

+ 2.07663466326689 sin(3.x) — 1.67456333719396 sin(4. x)
+ 1.36994912296017 sin(5. x)

Apply the LeastSquares command from the LinearAlgebra package.
The arguments are a set of equations of the form (%) =¥ » and a set of parameters (the 5, ).

LinearAlgebra:-LeastSquareS( {Equate(f~(X),Y)[ 1}, {seq(bk, k=1

{bl =3.76165223338178, b, = -3.19173112257587, b,
=2.07663466326690, b, = ~1.67456333719396, by
= 1.36994912296018}

Notice that the output is not the fitting function, but a set of equations defining the parameters.

To the problem in the form 4u=v, apply the LeastSquares command from LinearAlgebra.

A, v = LinearAlgebra:-GenerateMatrix( Equate( f~(X), Y),
[seq(bk],k=1.5)]):
LinearAlgebra:-LeastSquares(A4, v)

3.76165223338178 |
-3.19173112257587
2.07663466326689
-1.67456333719396
1.36994912296017

The output is now a vector of values for the parameters.

Apply the LSSolve command from the Optimization package. The input is the list [v, 4] .
Optimization:-LSSolve([v, A])

3.76165223338178 ||
-3.19173112257587
15.4472790754279341, | 2.07663466326690
-1.67456333719395
1.36994912296018

The output is a list, the first member of which is half the sum of the squares of the deviations;



and the second of which is a vector of values for the parameters.

Apply the LinearFit command from the Statistics package.
The arguments are a list of basis functions for the linear model, the data, and the independent
variable for the model.
infolevel[ Statistics] == 5 :
Statistics:-LinearFit([seq(sin(kx), k=1.5)],X, Y, x);
infolevel[ Statistics] == 0 :

In LinearFit (algebraic form)

SVD tolerance set to .10e-11

confidence level set to .95

final value of residual sum of squares: 30.8945581508559

3.76165223338178 sin(x) — 3.19173112257587 sin(2 x)
+ 2.07663466326689 sin(3x) — 1.67456333719396sin(4 x)
+ 1.36994912296018 sin(5 x)

By setting infolevel to 5, additional information about the calculation is printed. The fitting
function is returned.

Apply the Fit command from Statistics; the first argument must now be the model function.
infolevel[ Statistics] == 5 :
Statistics:-Fit( f(x), X, Y, x);
infolevel[ Statistics] == 0 :

In Fit
In LinearFit (algebraic form)
SVD tolerance set to .10e-11
confidence level set to .95
final value of residual sum of squares: 30.8945581508559
3.76165223338178 sin(x) — 3.19173112257587 sin(2 x)
+2.07663466326689 sin(3x) — 1.674563337193965sin(4 x)

+ 1.36994912296018 sin(5 x)

Notice how Fit passed the problem off to LinearFit.

Apply the Fit command from Statistics so as to return m, a module whose exports are the entries
of Table 2.
m = Statistics:-Fit( f(x), X, Y, x, output = solutionmodule) :

Access the exports of module » singly.

m:-Results(residualsumofsquares) = 30.8945581508559
Not recommended: Return all 16 exports in a (poorly formatted) list:  m:-Resuits( )




The following device line-breaks the exports, making them easier to read.

print~(m:-Results( ))
"residualmeansquare” = 6.17891163017118

"residualsumofsquares" = 30.8945581508559
"residualstandarddeviation" = 2.48574166601664
"degreesoffreedom" = 5
"parametervalues" = [bl =3.76165223338178, b, =
-3.19173112257587, by =2.07663466326689, b, =
-1.67456333719396, bs = 1.36994912296018]

[ 3.76165223338178 |
-3.19173112257587
"parametervector" = | 2.07663466326689
-1.67456333719396
1.36994912296018

"leastsquaresfunction" = 3.76165223338178 sin(x)
—3.19173112257587 sin(2 x) + 2.07663466326689 sin(3 x)
— 1.67456333719396 sin(4 x) + 1.36994912296018 sin(5 x)

"standarderrors" = [ 1.08633928624710, 1.08640823324193,
1.08653361917527, 1.08673480293253, 1.08704868015567]

"confidenceintervals"

[ 0.969153050778061 ..6.55415141598549
-5.98440753749473 ..-0.399054707657017
=| -0.716364063585975..4.86963339011976
-4.46807921875607 ..1.11895254436815
-1.42437359850927 ..4.16427184442962

"residuals" = [ -0.651900003011075,0.126282436577216,
0.682282516720525, -0.276512477020958,
-0.774750390140227,0.533532883759732,0.982373145633400,
-1.16534900214506, -1.54200136432816,4.93213034031380]

"leverages" = [0.550782059814024, 0.498868482572188,
0.553198268490694, 0.494886911249347,0.559423632069402,
0.485338818017396,0.575017276356971, 0.457820688982370,
0.637257282710881,0.187406579736728]




"variancecovariancematrix" = [ [ 1.18013304484385,
-0.0000972356594965247,0.000149804711438968,
-0.000207447757466391,0.000272460314586118],
[ -0.0000972356594965247, 1.18028284925586,
-0.000304682378108956, 0.000422262245780442,
-0.000555209310981035],
[0.000149804711438968, -0.000304682378108956,
1.18055530559811, -0.000652439442233279,
0.000859492794283295],

[ -0.000207447757466391,0.000422262245780442,
-0.000652439442233279, 1.18099253190481,
-0.00119864674122283],

[0.000272460314586118, -0.000555209310981035,
0.000859492794283295, -0.00119864674122283,
1.18167483302819]]

-0.391287924113307
0.0717647377427275
0.410630143631415
-0.156518050338247
-0.469564452923559
0.299188222315640
0.606226409874577
-0.636690758151175
-1.02998147810306
2.20111078796061

"internallystandardizedresiduals

[ -0.355463236131498 |
0.0642214164835666
0.373632885928074
-0.140338221430155
-0.429569616429641
0.270030134263448
0.563323182526688
-0.594064378291893
-1.03790786809869
11.1776416023537

"externallystandardizedresiduals




"CookDstatistic" =

"AtkinsonTstatistic" =

0.00102538403057817

0.00480038643762231

0.0375444355399597 |
0.0417539545617528

0.0559938114788459
0.0168827269821086
0.0994510374197327
0.0684604202547037
0.372739081781486
0.223473141178579

[ -0.393600858716140
0.0640762452574915
0.415745997372561
-0.138910361312608
-0.484053496059439
0.262224967280043
0.655258152585124
-0.545895794170522
-1.37567820556700
5.36791891496095

[]

Underdetermined Case
Consistent

Example 2.

Fit f(x) =ax* + bx +c to the data points (1,5) and (2,3) .

Solution

Initialize Maple.

Define the fitting function:
Context Menu: Assign Function

f(x):ax2+bx+c

restart, with(LinearAlgebra) :

assign as function




This is an interpolation problem requiring the solution of two consistent equations in three
unknowns.
It is not necessarily a least-squares problem.

S = solve({f(1) =5,/(2) =3})
e Write and solve two (consistent) [a: AN SRS v A I
equations in three unknowns. 2 27 2 27
C:C}
e Obtain the general solution, a eval( f(x), S)
one-parameter family of interpolating [_l N L") 24 [i
functions. 2 2 2
— % CJ x+c

Use the LeastSquares command from the CurveFitting package:
CurveFitting:-LeastSquares( (1, 2), (5, 3), x, curve = f(x))
TH+2 6+ (-2 -3_4)x +

Although the calculation is passed off to the LeastSquares command in LinearAlgebra, which
has provision for controlling the name of the free parameter, this control is lacking in the
CurveFitting package.

Use the LeastSquares command from LinearAlgebra. The arguments here will be a set of
equations and a set of parameters. Note the control over the free parameter.
q = LinearAlgebra:-LeastSquares({f(1) =5, f(2) =3}, {a, b, ¢}, free

=5);

eval(f(x), q)

{a=sl,b= -35, —2,¢c=25 -0—7}

S1X2+(—3S1 —2)x+2sl + 7

The LeastSquares command in LinearAlgebra returns a set of equations defining the
parameters, which then have to be transferred to the model to obtain the fitting function. The
appearance of the free parameter is best explained via the matrix formulation of the problem.

Cast the problem in the form gu=v.

e Convert equations to matrix/vector|4, v .= GenerateMatrix([f(1) =5,
form. f(2)=3],[ab,c])




111|]5
4213
e Obtain the general solution. V := LeastSquares(A, v, free = s)

N

1
—3sl -2
2S1 + 7

e Obtain the minimum-norm LeastSquares(A, v, optimize = true)
solution. [ 10 |
7
16

7
29

7

e Project V onto the row space of A. |y := 4%7 .

P = N(NTN) N
PV

The numeric solvers of the Optimization package, being local, will not necessarily find the
minimum-norm solution, and might return any member of the general solution. The numeric
solvers of the Statistics package reject underdetermined problems.

Inconsistent

Example 3.

Fit f(x) =ax> + bx + ¢ to the data point (1,5) and (1,3) .

Solution
e Initialize Maple. restart




e Define the fitting function: () =ax® + bx 4 ¢ —gnasfucton
e Context Menu: Assign Function

Use the LeastSquares command from

the CurveFitting package:

Use the LeastSquares command from the CurveFitting package:
CurveFitting:-LeastSquares( (1, 1), (5, 3), x, curve = f(x))

2
4— 4, — L+ Lx+ By

Use the LeastSquares command from LinearAlgebra. The arguments here will be a set of

equations and a set of parameters.

q = LinearAlgebra:-LeastSquares({f(1) =5, (1) =3}, {a, b, ¢}, free
=5);

eval(f(x),q)

{a:4fs2fs3,b:s2,c:s3}

(4—s2—s3))c2—|-52x—|-s3

The LeastSquares command in LinearAlgebra returns a set of equations defining the
parameters, which then have to be transferred to the model to obtain the fitting function. The
appearance of the free parameter is best explained via the matrix formulation of the problem.

Cast the problem in the form gu=v .
A, v = LinearAlgebra:-GenerateMatrix([ f(1) =5,1(1) =3], [a, b, ]’

o

Obtain the general solution

ParamVect := LinearAlgebra:-LeastSquares(A, v, free = s);
eval( f(x), Equate({a, b, c), ParamVect))

(4—s2—s3))c2—|-52x—|-s3

Obtain the minimum-norm solution



LinearAlgebra:-LeastSquares(A, v, optimize = true)

(U] ENGUCY E W ES

The null space of A is spanned by the vectors {(-1,1,0), (-1,0,1)} .

Nonlinear Univariate Models

Overdetermined Case
Logarithmic Model

Example 4.

Fit y=a + bIn(x) to the 45 data points shown in Figure 1.




124

10+

Figure 1  Data points to be fitted with y=4 + »In(x) . (Data hidden behind table: lists X
and Y of values of the independent and dependent variables, respectively.)

Solution
e Define f, the logarithmic model |f:=x—a + bIn(x) :
function.
e Form ss, the sum of squares of s ,
deviations: S8 = 1;1 (%) — %)

Apply the LogarithmicFit command from Statistics

Statistics:-LogarithmicFit(X, Y, x, output = [ leastsquaresfunction,
residualsumofsquares|)

[2.18326708059312 + 2.73411741365235In(x), 138.348025811279]

Apply the NonlinearFit command from Statistics




Statistics:-NonlinearFit(f (x), X, Y, x, output = [ leastsquaresfunction,
residualsumofsquares|)

[2.18326708944400 + 2.73411741330571 In(x), 138.3480258]

Minimize ss via the Optimization package

Optimization:-Minimize(SS)
[138.34802581127, [a=2.18326708059312, b =2.73411741365235]]

Form and solve the normal equations, then evaluate the resulting ss

Params = fsolve({diff (SS, a), diff (SS, b) }, {a, b});
eval(SS, Params)

{a=2.183267101,5=2.734117401}
138.3480257

The solution obtained by the linearization in LogarithmicFit closely matches the solutions
obtained by methods that do not linearize.

Power Model

Example 5.

Fit y=ax” to the 45 data points shown in Figure 2.
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Figure 2  Data points to be fitted with y =" . (Data hidden behind table: lists X and Y
of values of the independent and dependent variables, respectively.)

Solution _
e Context Menu: Assign o(x) = ax? —2F function g
Function
e Form ss, the sum of squares 45 )
of deviations: SS = 1;1 (&8(X) — %)~

Apply the PowerFit command from Statistics

S = Statistics:-PowerFit(X, Y, x, output = [ leastsquaresfunction,
residualsumofsquares, parametervalues))

2.01022643676392 0.698247370832303 H

,2.13617170057370,
,0-734986123143025 -0.734986123143025




Evaluate ss for the linearized fit

eval(SS, [a=eP p=5[31[2]]) = 9.92674436684541
Apply the NonlinearFit command from Statistics

Statistics:-NonlinearFit(g(x), X, Y, x, output = [ leastsquaresfunction,
residualsumofsquares|

2.06386565178199
x0'71 1979687108144

9.824989264

Minimize ss via the Optimization package

Optimization:-Minimize(SS)
[9.82498926439639142, [a =2.06386575402487, b =
-0.711979619494700]]

Form and solve the normal equations, then evaluate the resulting ss

Params = fsolve({diff (SS, a), diff (SS, b) }, {a, b});
eval(SS, Params)

{a=2.063865652, b= -0.7119796891}
9.824989260

The parameters computed by the linearization in PowerFit differ slightly from those computed
by the other methods which don't linearize. The sum of squares of residuals returned by
PowerFit is for the linearized model, not the nonlinear model; when corrected for the
linearization, it is slightly larger than the value for the nonlinear fits.

Exponential Model

Example 6.

Fit y=ac’* to the 45 data points shown in Figure 3.
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Figure 3  Data points to be fitted with y=4¢"* . (Data hidden behind table: lists X and
Y of values of the independent and dependent variables, respectively.)

Solutjon _
e Context Menu: Assign h(x) =ae’™ _assign as function
Function
e Form ss, the sum of squares 45 ,
of deviations: S8 1= k;(h(Xk) — Y

Apply the ExponentialFit command from Statistics

S = Statistics:-ExponentialFit( X, Y, x, output = | leastsquaresfunction,
residualsumofsquares, parametervalues))




2.02149034952439 ¢ 0-736048918381843 x 5 3718488848112,

0.703835036169110
-0.736048918381843

Evaluate ss for the linearized fit

eval(SS, [a=eBI b=95[31[2]]) = 1.46492358156090
Apply the NonlinearFit command from Statistics

Statistics:-NonlinearFit(h(x), X, Y, x, output = [ leastsquaresfunction,
residualsumofsquares|

[2.03997327656541 ¢ 0-723787355983985x 1 450953524]

Minimize ss via the Optimization package

Optimization:-Minimize(SS)
[35.1003272108939157, [a = -52.5680106376265, b =
-138.822756507913]]

Form and solve the normal equations, then evaluate the resulting ss

Params = fsolve({diff (SS, a), diff (SS, b) }, {a, b},a=1.3,b=-1
1)
eval(SS, Params)

{a=2.039973278, b= -0.7237873536}
1.450953523

The parameters computed by the linearization in ExponentialFit differ slightly from those
computed by the other methods which don't linearize. The sum of squares of residuals returned
by ExponentialFit is for the linearized model, not the nonlinear model; when corrected for the
linearization, it is slightly larger than the value for the nonlinear fits.

Michaelis-Menten Model

Example 7.

Fit y(s) = b"j , the Michaelis-Menten model, to the 46 data points shown in Figure 4.
S
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Figure 4  Data points to be fitted with ,(5) = &2

b+s
and V of values of the independent and dependent variables, respectively.)

. (Data hidden behind table: lists S

This example is a summary of one that appears in the ebook, Advanced Engineering
Mathematics with Maple, an example that also appears in the Reporter article Nonlinear Fit,
Optimization, and the DirectSearch Package. The fit is obtained with two different
linearizations, and nonlinearly, the outcome being that the linearized solutions provide decidedly
poor fits.

Solution
o Define V(S) . V(S) __as assign as function ;
e Context Menu: Assign Function bts
Define ss, sum of squares of deviations. a6 )
SS i= kzl(v(sk) — )




Linearization 1

Linearization 2

1

Vi

and w, =

The linearization L - L y 2 1 requires [The linearization , -, — Y requires a list
v a a S S
- - 1 . v, .
the computation of the reciprocals - - ~  Df ratios 3 =~k with new independent
k S

k

variable 3 = X .
A

Z = map(x—1/x,S5) :
W= map(x—1/x,V) :

A= zip((x,y) = y/x,8, V) :

Obtain the least-squares r

egression line w=4 + Bz

Here, 4=1/4 and »=B/4 .

Here, «=4 and p=—B.

L, == w=CurveFitting:-
LeastSquares(Z, W, z)

w=0.545885861428528
+ 0.806123612341098 z

L, = w=CurveFitting:-
LeastSquares(A, V, \)

w=2.07808353050660
— 1.92146514300325 A

= l/coe]f(rhs(Ll),Z,O);
a coeﬁ"(rhs(Ll),z, 1)

1.83188477786016
1.47672557452130

= coeﬁ’(rhs(Lz), A, 0);
—coeﬁ’(rhs(Lz), A, 1)

2.07808353050660
1.92146514300325

v, = eval(v(s), [a =a,b= bl])
1.83188477786016 s
1.47672557452130 + s

v, = eval(v(s), [a =a,, b= bz])

2.07808353050660 s
1.92146514300325 + s

Nonlinear Fit

Sol = Statistics:-NonlinearFit(v(s), S, V, s, output

= [ leastsquaresfunction, residualsumofsquares])

3.47770837575172s

8.22462695881459

, 1.622578611
+s5

Optimization:—LSSolve( [seq(v(Sk) —Vek=1 ..46)])




[0.811289305695100, [a = 3.47770839084770, b
= 8.22462704378866]]

0 0
fsolve[ —8§=0,—8S=0¢t,{a,b},a=0.10,b=1 ..10]
Oa 0b

{a=3.477708271, b =8.224627001}

e Sum of Squares for L, : eval(SS,[a=a;,b=b]) = 6.43191745197000

e Sum of Squares for L, : eval(SS, [a=ay,b=b)]) = 4.52689912329230

e Sum of Squares for nonlinear fitting Sol[2] = 1.622578611
function:

The NonlinearFit command from Statistics can return the fitting function, but the Statistics
package's LSSolve command, whose input is a list of deviations (called residuals) returns the
parameter values. In this example, it is even possible to form the normal equation and solve them
numerically.

Figure 5 compares the graphs of the three fitting functions. Both from the graph and from the
values of ss, it should be clear that linearizations do not necessarily provide the best fits to data.



Figure 5 Nonlinear fit (black), , (red), L, (green) superimposed on Figure 4

Underdetermined Case
Consistent

Example 8.
Fit f(x) =¢“* (b + In(c +x)) to the two points (1,3) and (3,1) .

This problem is essentially an interpolation, with the expected result being a one-parameter
family of curves all going through the two given points. If / were a linear function, such an
outcome, and the means to achieve it, would be clear. For this particular £, it is possible to find
this one-parameter family of solutions, but in general, it might not be possible to implement the
requisite manipulations.

Exact Solution
o Restart Maple. restart |




assign as function
%

e Control-drag the equation 7(x) =... F(x) =e**(b+In(c+x))
e Context Menu: Assign Function

Solve for b and c¢ as functions of a. q == solve({f(1)=3,£(3,1)}, {b,
e Obtain the one-parameter family of c}):
solutions.

isimplify(eval(f(x), q))

1

-¢"*|In(2) + In| ———— | —3¢7¢
1+ -3¢74
e

33 _ypxede
—1In
Q43

The LSSolve command in the Optimization package requires at least as many residuals as
parameters; otherwise, an error results. Hence, it really does not apply here.

Inconsistent

Example 9.
Fit 7(x) =¢“* (b + In(c +x)) to the two points (1,3) and (1,5) .

The equations 7(1)=3 and 7(1) =5 would necessarily be inconsistent, so this is not an
interpolation, but a problem of fitting by least squares. A general solution consisting of a
two-parameter family of curves is expected.

General Solution

e If necessary, define 7. fi=x—e""(b+In(c+x)):
e Define S the sum of squares. 5= ((£(1) =3)* + (f(1) —5)?) :
e Obtain and solve the normal = solve[ {L s -4 g d SU
equations. da = db " de
[ _Ih—4 }
°® a
e The parameters a and b are free, a=ab=bc=e ° —1
and c¢=c(a,b) .
e Evaluate the sum of squares for lexpand(eval(S, q)) assumingreal = 2
this solution.




e Obtain the general solution to the _elb—4
underdetermined, inconsistent eval(f(x),q) = ¢ \b+Inle ¢ —1+x
least-squares problem.

Casual inspection shows that every member of the general solution passes through (1, 4) .

As in Example 8, the LSSolve command in the Optimization package requires at least as many
residuals as parameters; otherwise, an error results. Hence, it really does not apply here.

Linear Multivariate Models

This section considers linear multivariate models that are cast in the form 4u=v . As per Table 4,
the examples are classified by the properties of the rx ¢ matrix A, and the vector v.

e Initialize Maple. restart; with(LinearAlgebra) :

r<c
Full Rank

Define the full-rank matrix

9 -5 -72 -85
45 47 -79 -19
-10 -54 75 57

Af

for which Rank(4f) = 3.
Consistent

Example 10.
Solve the least-squares problem 4u=v, where 4 =41, and v=(1,2,3) .

Since there are fewer equations than variables, the system 4u=v cannot be inconsistent. Each
row in A represents the left-hand side of a distinct equation, so no matter what appears on the
right, the equations in the system must be consistent.

Solution



e Apply the LeastSquares command, |Ugen := LeastSquares(4f, (1,2,3),
designating s as the free variable free =s)

base-name. 23661 197391

. 76427 | 76427 2
e The result is the general solution

S
containing one free parameter. :
. 14011 | 193352

76427 76427 2

e The solution is u, a vector of

parameter values. (10262 147376
76427 76427 2

e Obtain the minimum-norm LeastSquares(Af, (1, 2, 3), optimize)
least-squares solution. 613579001 |
o 6927264966
e This is the projection of the general 1778379167
solution onto the row space of Af. 20781794898

344638939
10390897449

319439654
10390897449

Obtain P, the matrix that projects onto the row space of A.

e The columns of N are a basis for the |N := Matrix(map(Transpose,
row space. RowSpace(Af )1) ) :
P = N(N?TN) .N7T.

e Project ugen oOnto the row space. 613579001
3 6927264966
e The result is the minimum-norm 1778379167
solution, a vector that lies inthe row |p.Ugen = | 20781794898
space of Af. 344638939
10390897449

319439654

10390897449

Rank-Deficient

Define the rank-deficient matrix



-18 -9 63 72
Ad=| -11 -8 37 33
-3 11223

for which Rank(4d) = 2.
Consistent

Example 11.

Solve the least-squares problem 4u=v, where 4=44,and v=(9,3,4) .

That the system is consistent can be seen from

19 31
10 -—— -=— -1
5 5
ReducedRowEchelonForm({4d{(9, 3,4))) = 3 22
01 = — 1
5 5
00 O 0 0
General solution:
19 31
1+ T 83 + ? 5y
N R -1
LeastSquares(Ad, (9,3, 4), free=s) = TSNS TS %
5
54
Minimum-norm solution:
221
6065
608
LeastSquares(Ad, (9, 3, 4), optimize) = 6065
95
1213
261
1213




Inconsistent

Example 12.

Solve the least-squares problem 4u=v, where 4=44,and v=(1,2,3) .

That the system is inconsistent can be seen from

19 31
10 -— -=—0
5 5
ReducedRowEchelonForm({Ad|(1,2,3))) = 3 22
01T — —/—/— 0
5 5
00 0 0 1
General solution:
344 19 31
1055 T 5 BTSN
_ 423 3 22
LeastSquares(Ad, (1,2, 3), free=s) = T055 55 5 %4
53
S4
Minimum-norm solution:
26881
1279715
63113
LeastSquares(Ad, (1,2, 3), optimize) = | 1279715
12856
255943
22207
255943

r=c¢

Full Rank



A full-rank matrix in a square system must necessarily be consistent, and therefore have a unique
solution. There cannot be a least-squares problem in this case.

Rank-Deficient

Define the rank-deficient matrix

-6 42 30 -24
22 6 2 32
30 -50 -38 64
-14 -2 0 -21

Bd =

for which Rank(Ba) = 2.

Consistent

Example 13.
Solve the least-squares problem 4u=v , where 4 =4, and v=(3,2,-2,-9/8) .

That the system is consistent can be seen from

1 31 11 |
10 —~— 2- —
10 20 160
ReducedRowEchelonForm((Bd|(3,2,-2,-9/8))) = | o 1 7.7 13
10 20 160
00 O 0 0
00 O 0 0
General solution:
3 31
7T T
LeastSquares(Bd, (3,2,-2,-9/8), free=s) = %2
53
20 13
7 ht2%T 5

Minimum-norm solution:




257
8204
7 0.03132618235
ey t 10 digit:
LeastSquares(Bd, (3,2,-2,-9/8), optimize) = 1172 LR, | 0.06228668942
33 0.04046806436
2051 0.02675524135
439
16408

Because this system is essentially just an underdetermined one, a general solution is available
with the LinearSolve command in the LinearAlgebra package.

51
7s, + 9 _ 2L 5
LinearSolve(Bd, (3,2,-2,-9/8), free=s) = 16 2
11 , 31
10 s — ﬁ + T 5y
Sy
Seek a least-squares solution numerically:
0.940625000000000
Un := LeastSquares(evalf(Bd), evalf((3,2,-2,-9/8))) = -0.115625000000000
0.
-0.562500000000000

That this is a member of the general solution can be seen by projecting it onto the row space of
Bd.

e The columns of N are a basis for the|N := Matrix(map(Transpose,
row space. RowSpace(Bd)l) ) :
P = N(N?TN) .N7T.

e Project un onto the row space. 0.447222343907994
— | -0.306663521498669

. .. P.Un =
The result is the minimum-norm —0.483306687542500

solution, a vector that lies in the row|

-0.194115879932644
space of Bd.




However, to obtain the minimum-norm solution numerically, specify that the calculation is to be
based on the singular value decomposition, rather than on the default QR decomposition.

0.0313261823500731
0.0622866894197952
0.0404680643588493
0.0267552413456850

LeastSquares(evalf (Bd), evalf((3, 2,-2,-9/8) ), method = SVD) =

Inconsistent

Example 14.
Solve the least-squares problem 4u=v, where 4=B4,and v=(1,2,3,4) .

That the system is inconsistent can be seen from

9790 20
ReducedRowEchelonForm((Bd|(1,2,3,4))) = |0 1 % _% 0

General solution:

404 31
19341 7 2 3
_ S,
LeastSquares(Bd, (1,2,3,4), free=s) = 2
S
3
20 668
_ 2 -
7 52725 T o341

Minimum-norm solution:



49996
5666913
3356 0.008822440013
- t 10 digit: _
LeastSquares(Bd, (1,2, 3, 4), optimize) = 809559 L, 0.004145466853
7148 ~0.003784070798
1888971 0.01512569542
9524
629657
Seek a least-squares solution numerically:
6.80441594719296 10"
14
LeastSquares(evalf (Bd), evalf((1,2,3,4))) = ~6.76082606329234 10
~1.27011194448307 10"
-4.4718884784782410"°

The default method, based on a QR decomposition, utterly fails because this decomposition does
not have an efficient way to determine rank. For problems such as this (and Example 13), specify
the method as the one based on the singular value decomposition.

0.00882244001275476
-0.00414546685294091
-0.00378407079833411

0.0151256954182992

LeastSquares(evalf (Bd), evalf ({1, 2, 3, 4)), method = SVD) =

Alternatively, use the LinearFit command from the Statistics package. Although this command

is based on the LeastSquares from LinearAlgebra, there is an additional wrapper that attempts

to deal with the issues raised by numeric calculations.

Statistics:-LinearFit([x, y, z, w], evalf (Bd), evalf({1,2,3,4)), [x, , z,

w])

Warning, model is not of full rank

0.00882244001275474x — 0.00414546685294091 y
—0.00378407079833411z 4+ 0.0151256954182992 w

The deficiency in rank of the matrix g4 has been detected, and the calculation is based on the
singular value decomposition. The control is via the ratio of the smallest to the largest singular
values, which is the reciprocal of an estimated condition number for the input matrix. If this ratio



is smaller than the default threshold 1072, the matrix is deemed to be ill-conditioned, and the
least-squares calculation is based on the singular value decomposition. This default threshold is
modified with the svdtolerance parameter.

S = SingularValues(evalf(Bd)) :
ReciprocalEstimatedConditionNumber = S[4]/S[ 1]

ReciprocalEstimatedConditionNumber =1.11657249978031 1077

infolevel| Statistics] == 5 :
Statistics:-LinearFit([x, y, z, w], evalf (Bd), evalf ({1, 2, 3,4)), [x, 1, 2,
w])

In LinearFit (algebraic form)

SVD tolerance set to .10e-11

confidence level set to .95

Warning, model is not of full rank

rank =

final value of residual sum of squares: 26.3923271806008
0.00882244001275474x — 0.00414546685294091 »

—0.00378407079833411z + 0.0151256954182992 w

Statistics:-LinearFit([x, y, z, w], evalf (Bd), evalf ((1, 2, 3,4)), [x, , z,
w], svdtolerance=1le—17);
infolevel| Statistics] = 0 :
In LinearFit (algebraic form)
SVD tolerance set to .le-16
confidence level set to .95
Warning, model is not of full rank
rank =
final value of residual sum of squares: 18.6547034958714

1.76749781558234 10" x — 2.56320475960509 10" »
—2.10788093061934 10'3 z — 1.15392040315389 10" w

The reciprocal of the estimated condition number is slightly larger than 1077, but that is well
below the default threshold of 10712, so the first least-squares calculation is based on the
singular value decomposition; in the second where the reciprocal of the estimated condition
number is slightly larger than the threshold, the calculation is based on the default QR
decomposition, and consequently fails.

r>c
Full Rank

Define the full-rank matrix



-74 -60 35
13 51 -54
32 20 -17
48 -46 -25

Cf=

for which Rank(cr) = 3.
Consistent

Example 15.
Solve the least-squares problem 4u=v, where 4=cr, and v= (1,30, 1, 50091/13319) .

That the system is consistent can be seen from

’ 3966
R TEIT)
010 454
ReducedRowEchelonForm({Cf|(1, 30, 1,50091/13319))) = " 13319
8783
001 "T5509
000 0

Consequently, this is not a least-squares problem, but a properly determined system with a
unique solution, obtainable for example, by LinearSolve in LinearAlgebra.

3966
13319

LinearSolve(CY, (1,30, 1,50091/13319)) = | __454
13319

8783
13319

Inconsistent
Inconsistent

Example 16.
Solve the least-squares problem 4u=v, where 4=cf, and v=(1,2,3,4) .




That the system is inconsistent can be seen from

1000
0100
0010
0001

ReducedRowEchelonForm({Cf1(1,2,3,4))) =

Because the matrix is full-rank, the null space is empty, and the least-squares solution is unique.

92649103
54194075900 Codie | ~0-001709579903
a 1g11S
U = LeastSquares(Cf, (1,2,3,4)) = _ 2590616723 S, -0.04780258137
54194075900
-0.08425778110
1141568146
13548518975
In general, the sum-of-squares of residuals is given by ||4u — v||§ .
In general, the sum-of-squares of residuals is given by ||4u — v||§ .
t 10 digit:
ICAU — (1,2,3,4)))2 = 206391215809 °_Z 2285, 5 616744538
27097037950

Alternatively, the solution can also be found with the LSSolve command in the Optimization
package.
S := Optimization:-LSSolve([ (1,2, 3,4), Cf])

-0.00170957990262550
3.80837226913578464, | -0.0478025813703376
-0.0842577810981735

The first member of the output list is half the sum-of-squares of the residuals; doubling this
number gives 25, = 7.616744538 .

Rank-Deficient

Define the rank-deficient matrix



-84
-41
67
70

-11 77
80 46
13 -61
21 -63

for which Rank(cd) = 2.
Consistent

Example 17.

Solve the least-squares problem 4u=v, where 4=cq,and v= (101, 101,-78,-77) .

That the system is consistent can be seen from

66 91
T
ReducedRowEchelonForm((Cd|(101,101,-78,-77))) = |0 1 7i1 ‘7‘_?
00 O 0
00 O 0
General solution:
366
7 7 72
LeastSquares(Cd, (101, 101,-78,-77), free=s) = s,
s
7 2 7
Minimum-norm solution:
[ 3122 |
4723
LeastSquares(Cd, (101, 101,-78,-77), optimize) = | 5099
9446
6307
9446




The general solution of an overdetermined but consistent system can also be found with the
LinearSolve command from LinearAlgebra.

Gl
, B _ 7 31
LinearSolve( Cd, (101, 101,-78,-77), free=c) = 73 o, + 73
RIS
66 1 66

It is left to the reader to show that by appropriately redefining the free parameter in one general
solution, the other will be obtained.

Inconsistent

Example 18.
Solve the least-squares problem 4u=v, where 4=cd,and v=1(1,2,3,4) .

That the system is inconsistent can be seen from

[ 66
10-—0
71
ReducedRowEchelonForm((Cd|(1,2,3,4))) = |0 1 7 0
71
00 0 1
00 0 O
General solution:
22579 ﬁs
59829 7 2
LeastSquares(Cd, (1,2,3,4), free=s) = 55
71 7723
7 %27 79043

Minimum-norm solution:



454084
40367481 [ 001124875738
o _ 1045071 at 10 digits
LeastSquares(Cd, (1, 2, 3, 4), optimize) = 56911654 0.03883339909
178360 -0.006627946391
26911654

Numeric linear algebra:

-1.45011918329997 10

LeastSquares(evalf( Cd), evalf( <1, 2, 3, 4> ) ) 1.53800519440906 1013

-1.55997669718633 10"

This calculation fails because the default QR-based method does not recognize that the
rank-deficiency of the matrix. The more robust SVD-based method must be invoked.

0.0112487573846879
LeastSquares(evalf (Cd), evalf ({1, 2, 3,4)), method = SVD) = | (.0388333990917095

-0.00662794639080900

The LSSolve command from the Optimization package can find only a local solution, that is, one
member of the general solution family.

S = Optimization:-LSSolve([evalf ({1, 2,3,4)), evalf(Cd)])
0.0174099469874118
7.06546156546156556, | 0.0381799395883903
0.

Project this solution onto the row space of ¢4

e The columns of N are a basis for  |N :== Matrix(map(Transpose,

the row space; P projects onto the RowSpace(Ca_l)l)) :
row space. P = N(N?TN) .N7T:

e The projection is the 0.0112487573846879
minimum-norm solution. P.S, = | 0.0388333990917095

-0.00662794639080898




In this example, the LinearFit command from the Statistics package finds the minimum-norm
solution, but this outcome is dependent on the relative values of the default setting of the
svdtolerance parameter, and the reciprocal of the approximate condition number computed for
Cd -

Statistics:-LinearFit([x, y, z], evalf (Cd), evalf ({1, 2, 3, 4)), [x, », z])
Warning, model is not of full rank
0.0112487573846879 x + 0.0388333990917095 y

— 0.00662794639080898

e The rank-deficiency of ¢4 had been detected, and the SVD-based method invoked.
The minimum-norm solution is returned.
e The reciprocal of the approximate condition number of ¢cq :

183.938056091007
84.6096420123703

1.03565630293946 1071
0.

SV := SingularValues(evalf(Cd)) =

ReciprocalConditionNumber = SV{[4]/SV[1]
ReciprocalConditionNumber = 0.

e This value is smaller than 107'?, the default svdtolerance parameter, so the more
robust SVD-based method is invoked.

Nonlinear Multivariate Fit

Overdetermined Case
The first two columns of the matrix

[ 2.2467 5.2219 6.5622 |
2.0083 6.0656 6.3261
M:=| 5.8386 1.1084 11.942
77071 5.9855 32.096
4.6193 4.6921 15.297

are the abscissas and ordinates, respectively, of five data points (X 2y ) k=105 . The numbers
in the third column are five corresponding observations z, =/ (%) -

Example 19.



Fit the function 7(x,y) =ax¢ to the data in M.

Since rank(M) = 3, these data points generate a set of overdetermined nonlinear equations that
are necessarily inconsistent. In contrast to the linear case, there is no functionality for obtaining a
least-squares fit for nonlinear equations. The tools of Statistics and Optimization are the only
ones that apply.

Solution
e Specify the nonlinear model: define the = (x,y) —ax)*:
function .
e Form ss, the sum of squares of SS = add( (f(M - M, ,)
residuals. PR
— M ;)% k=1.5)

Apply the NonlinearFit command from Statistics

Statistics:-NonlinearFit(f (x, y), M, [x, y], output
= [leastsquaresfunction, residualsumofsquares|)

[ 1.28883204859941 x1.23745 132612891 y0.383635147679040

>

0.09674158460]

Apply the LSSolve command from Optimization

S = Optimization:—LSSolve( [seq(f(Mk M, 2) — M, k=1 ..5) ])
[0.0483707922990616, [a = 1.28883204859941, b
=1.23745132612891, ¢=0.383635147679040] ]

e Half the sum of squares is given by s, . 25, = 0.09674158460
e Double it to get the minimized ss .

Apply the Minimize command from Optimization

Optimization:-Minimize(SS, iterationlimit = 2000)
[0.0967415845997482982, [a = 1.28883182832959, b
=1.23745142926965, ¢ = 0.383635132900081]]

The results from all three approaches are fairly consistent.



Underdetermined Case
Consistent

The first two columns of the matrix

| 22467 52219 6.5622
"] 2.0083 6.0656 6.3261 |

are the abscissas and ordinates, respectively, of two data points (% 2e) k=1,2 - The numbers in

the third column are two corresponding observations z, =f(x,.»,) -

Example 20.

Fit the function £(x, ) =ax”¢ to the data in M.

Since the data generate a set of two equations in three unknown parameters, this is an
interpolation problem in which rank(m) = 2 suggests there will be a general solution with one
free parameter. In the nonlinear case, there is no theory by which a (unique) minimum-norm

solution is extracted.

Solution

e Specify the nonlinear model by defining
f.

= (xy)—axy:

e From the two given data points, form
two equations in the three unknown
parameters.

q =S(My . M, 5) =M, 5

0 =1(My s My 5) =M, 5
a 2.2467b 5.2219°=6.5622
a 2.0083]) 6.0656° = 6.3261

e Solve two equations for any two
parameters in terms of the third. Here, 4
is the free parameter.

S = solve({ql, qz}, {b, C})

{b=
-5.878610145
In(0.1523879187 a)
+ 5.390184700
In(0.1580752754a), c =
~2.639756998
In(0.1580752754 a)
+2.273944135
In(0.1523879187a)}




e The general solution is a fitting function dependent on one free parameter:

'F'(x, y) = simplify(eval( f(x,y),S)) assuminga :: real,x > 0,y > 0

F(x,y)
558197239 591487297

—ax 500000000 a—0.4884254450 In(x) —0.3658128630 In(y) y 1000000000

Numeric solutions that seek to minimize a sum-of-squares of residuals return, at best, individual

members of this family of solutions.
Inconsistent

Example 21.

Fit £(x,y) =ax’ to the two points (2.2467,5.2219, 6.5622) and (2.2467,5.2219, 6.3261) .

The data determines two inconsistent equations in the three unknown parameters {q, 5, ¢}
no longer an interpolation; it is a least-squares problem.

. This is

Solution
e Specify the nonlinear model by = (x,y) —>ax’y:
defining 7.
e Define P and Q, the two data points. [P := [2.2467,5.2219, 6.5622] :
Q = [2.2467,5.2219,6.3261] :
e FormS§S, the sum of squares of SS = (f(Pp.Py) P3)2
residuals.

+ (/(2r Q) —03)*

Form and solve the three normal equations.

d co_ng 9 co_n 9 oo
q = solve({da S§=0, ab S§=0, de SS 0}]

{a =a,b=5b,¢=0.6050114354 ln( M)

— 0.4897340527 b}

e The general solution is a fitting function dependent on two free parameters:

'F'(x,y) =eval(f(x,y), q)




0.6050114354 In —0.4897340527 b

[ 6.444150000 )
F(x,y)=ax"y ¢

Numeric solutions that seek to minimize ss return, at best, individual members of this family of
solutions.
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