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1

Introduction

He would keep on trying to do this or that with a grim persistence that
was painful to watch . . .

John Wyndham, ‘The Day of the Triffids’1

Maple is a computer program capable of performing a wide variety of
mathematical operations. It originated in the early 1980s as a computer
algebra system, but today this description doesn’t really do it justice.
Maple has facilities for algebra, calculus, linear algebra, graphics (two-
and three-dimensional plots, and animations), numerical calculations
to arbitrary precision, and many other things besides. It is widely used
in universities across the world, and is particularly useful for tasks
that are tedious and error-prone when performed by humans, such as
manipulating complicated series expansions and solving large sets of
simultaneous equations. Used correctly, Maple can save time and quickly
solve problems that would otherwise be intractable. Used incorrectly, it
can lead to frustration, and the destruction of expensive IT equipment.

At the time of writing, the current version is Maple 2016. Versions
before Maple 2015 were numbered starting from 1; the last of these
was Maple 18. New features introduced in each version from Maple 4.0
onwards can be viewed using the help system (see Section 2.2). For the
most part, recent changes have been relatively minor, at least as far as
the material in this book is concerned. Consequently, all of the examples
work with both Maple 2015 and Maple 2016. In fact, most will work
in older versions as well, though naturally the number of exceptions
increases the further back one goes. Two substantial new features are
the dataplot command, discussed in Section 6.6, and the new rules
concerning terminating characters, described in Appendix B (see also
Section 2.3). Both of these were introduced in Maple 2015.
1 Penguin Books, 1954. Reprinted by permission of Pollinger Limited

(www.pollingerltd.com) on behalf of the Estate of John Wyndham.
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2 Introduction

1.1 Why This Book?

This book is intended for students, teachers and researchers who will
ultimately wish to use Maple for advanced applications. Here, ‘advanced’
means something more complex than evaluating a single integral, but
not necessarily designing and running a simulation of the latest jet
engine. The book is suitable for undergraduates and postgraduates taking
a course in which Maple is used, and for researchers who intend to
use Maple for part of their work. It can also serve as a consolidation
guide for users who already have some knowledge of Maple, but find
themselves unable to decipher and eliminate certain error messages, or
who currently rely on apparently magic recipes for solving problems,
based on commands or operations whose meaning is not clear. There
is no reliance on magic recipes here. Every feature we use is properly
explained, with references to the online documentation where appropriate.
The book is not a comprehensive reference guide (already available via
the help system; see Section 2.2), nor is it a beginner’s guide in the
normal sense. It most certainly is not a ‘guide for dummies’. We start from
the beginning, assuming no prior knowledge of the subject whatsoever,
but where advanced topics are central to understanding Maple they are
tackled head-on, even as early as Chapter 2. In particular, the evaluation
rules are a regular feature throughout. These determine the order in
which input is processed by Maple. In most circumstances they are fairly
simple (Section 8.4 discusses some more complex situations), but they
are absolutely crucial.

Using this book, it is possible to tackle many complex problems without
any additional Maple documentation. Readers can quickly progress to
using packages and commands that have not been discussed, because the
principles introduced apply across the whole system. Where the book
alone is not sufficient, those who have read it will find themselves able
to fully understand Maple’s help pages, which can be rather technical,
and the Maple Programming Guide (see Section 2.2), which is squarely
aimed at very advanced users.

.001
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1.2 The Maple Interface 3

1.2 The Maple Interface

Users may interact with Maple in several different ways. One may proceed
by typing commands, by using interface driven methods based on palettes
and context menus, or by a combination of the two. The advantages and
disadvantages of a particular method are not always obvious, though they
may be hugely significant.

Interface driven methods can be very tempting to new users, because
they may appear to eliminate the need to study a manual. For example,
with the factory setting for input (2-D Math; see Section 2.1) it doesn’t take
much effort to work out how to sum series and evaluate integrals, using
the Calculus and Expression palettes at the sides of the screen (if these are
not visible, they can be revealed by choosing Palettes � Expand Docks

from the View menu). However, most users will eventually want to try
something a little more complicated, in which case things are not quite so
straightforward. For all its power, Maple is only a computer program, and
as such it can only understand mathematical input that is structured in the
correct way. Just as it is possible to type incorrect commands, it is also
possible to use the palettes incorrectly, and construct something that a
human mathematician might understand, but Maple does not. One way or
another, technical issues will sometimes arise, and a solid understanding
of Maple is needed to deal with these effectively. In view of this, interface
driven methods don’t save much time, unless the software is to be used
exclusively for solving elementary problems. There will be no further
discussion of such methods here (search for the User Manual in the help
system for more information on the subject).

This book takes a command driven, or programmatic, approach to
Maple, with the focus on the language rather than the interface. This
has two principal advantages. First, it scales up very easily: the simple
building blocks that make up the Maple language can be assembled
to solve complex problems in an efficient way. This is where the real
power of Maple lies. Second, there is transparency: a Maple worksheet
constructed using a sequence of mouse clicks and menu selections is
opaque in that a user opening it cannot see immediately (if at all) how it
was created, or how it could be modified and adapted to his/her needs.

.001
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4 Introduction

On the other hand, a worksheet composed from typed commands is
100% transparent. It may be that some users who master the Maple
language later decide that more interface driven methods are suitable for
some or all of their work. However, such users will continue to find this
book valuable, because understanding the Maple language makes the
behaviour of its interface far more tractable.

1.3 How to Read This Book

The technical material in this book is intended to be read in order and
in its entirety. Great effort has been expended to keep the content short,
while still covering all of the key points. Time has also been spent
minimising the number of situations in which concepts are used before
they are properly introduced. In a few places, these structural aberrations
turn out to be unavoidable (or the lesser of two evils). Where this is
the case, the simplest possible examples have been used to illustrate
the issue at hand, and a reference to a later section, in which the out of
place concept is dealt with in detail, is always given. At the very least,
every reader should study Chapter 2. Most of this is very basic, but many
fundamental aspects of Maple are described here, and without knowledge
of these its behaviour can seem mysterious at best, and infuriating at
worst. Chapters 3–6 depend heavily on Chapter 2, but less so upon each
other. The majority of users will need the material in Chapters 3 and 4,
which introduce Maple’s symbolic computation facilities. Chapters 7–9
really need to be read in sequence. Without the ideas they contain, solving
some problems will necessitate tedious, repetitive work, such as entering
large numbers of very similar commands, which is not an efficient way
to use Maple.

Throughout the book, items that appear in menus or dialogue boxes
are shown in a rounded box with a grey background, such as Help .
Keystrokes such as return have a sharp-cornered box with a white
background. Icons for toolbar buttons are shown as they appear in
Maple 2016; the Maple 2015 version is also shown or described if it is
significantly different. Small blocks of text marked with the symbol� are
tips. These are useful (often very useful) but not vital pieces of information

.001
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1.3 How to Read This Book 5

or advice. In some cases it is possible to deduce them from other parts of
the book. Input and output is shown in the same style in which it appears in
Maple itself (provided the configuration process explained in Section 2.1
is followed). In particular, Maple commands and statements are shown in
a typewriter typeface. In a few places, Maple statements, or parts
thereof, have been omitted in order to illustrate a larger or more general
structure. Text in italics is used to give an indication as to what is missing.
Output is omitted if showing it requires an inordinate amount of space.
This convention is used extensively in Chapter 6, where plots drawn by
Maple are not shown.

To get the most out of the examples throughout the book, it is necessary
to execute them in Maple, and to experiment by modifying them. To
save time for readers, the relevant files have been made available for
download.2 Typing the examples manually is fine, but it may be necessary
to insert additional restart commands (see Section 2.11) between some
of them to prevent unintended interactions, especially if the ordering
is changed. The online worksheets already contain sufficient restart
commands to ensure that everything works exactly as shown. Copying
and pasting from an electronic version of the book may lead to unexpected
results, and is therefore not recommended.

Please report errors to ian.thompson@liverpool.ac.uk.

2 pcwww.liv.ac.uk/∼itho17/understanding_maple
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2

Getting Started

The quote is not worth two hundred dollars!

The author1

� If Maple appears to freeze, try pressing the interrupt button (the
icon is a white hand inside a red stop sign in Maple 2015 and earlier)
in the worksheet toolbar at the top of the window. You may need to
wait a few seconds for this to take effect.

� Due to the nature of Maple, it is not possible to entirely prevent it
from crashing. This is very rare in modern versions, but you should
still save your work frequently. In particular, the Auto save facility
under Tools � Options (Mac: Maple 2016 � Preferences ) should
always be enabled.

2.1 Configuring the Interface

The Maple engine, that is, the part of the software which processes data
and performs calculations, can be accessed in several different ways. By
far the most widely used is the Standard Worksheet Interface, which is
started by clicking on the Maple icon, or by issuing the terminal command
xmaple on some unix systems. It is probably fair to say that what most
users refer to as ‘Maple’ is in fact the Standard Worksheet Interface
(alongside the engine). However, there is also a Classic Worksheet
Interface for 32-bit Windows machines, which places lower demands on
system resources (in the past there was also a Classic Worksheet Interface
for 32-bit Linux, but support for these platforms ended with Maple 2015).
Finally, there is a command line version of Maple, which is useful for
batch processing, and is briefly discussed in Appendix A. Elsewhere, it is
1 Email to a representative of Pearson Education Inc.
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2.1 Configuring the Interface 7

assumed that the Standard Worksheet Interface is in use, though for the
most part this affects only menus and toolbar buttons; nearly all Maple
commands work in exactly the same way regardless of the interface.

Maple’s Standard Worksheet Interface works with files called work-
sheets (with a lower case ‘w’). Its two modes, Worksheet (with an upper
case ‘W’) and Document, are used to create different types of worksheet.
To add to the confusion, there are different ways to enter mathematical
expressions, and these can be used in either mode. With the factory
settings, mathematical input is generally expected in 2-D Math Notation.
When an expression is typed in 2-D Math Notation, Maple reformats
the input during entry, in an attempt to display mathematics as it would
normally be written. For example, typing 1 followed by / causes a
fraction to appear, and moves the cursor into the denominator. After
entering the denominator, pressing the right arrow key moves the cursor
outside the fraction (you can also use the mouse to reposition the cursor).
Exponents behave in a similar way, so the sequence of keystrokes 2 ^
x → / 3 ^ y → → produces the expression

2x

3y
and moves the cursor outside the fraction, ready for entry of the next
term. Unfortunately, the sequence of keystrokes used to construct a
complex expression is not always evident from the display. When things
go wrong (which they inevitably do in scientific computing — nobody
gets everything right at the first attempt), getting out of trouble without
deleting material and starting again can be very difficult, if it is possible at
all. Therefore 2-D Math input is not recommended. Instead, the examples
in this book are shown in Maple Notation (sometimes called 1-D Math
Input), which is somewhat simpler. When expressions are entered using
Maple Notation, Maple displays exactly what has been typed. The
choice between Document Mode and Worksheet Mode is less important,
but Maple sometimes reverts to 2-D Math input in Document Mode
(regardless of its configuration), so Worksheet Mode is recommended.
Both the File menu and the Default home page offer users the options
of opening a worksheet in either Document Mode or Worksheet Mode.
However, some methods for creating new files will automatically cause

.002
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8 Getting Started

a worksheet to appear in the default mode, which is Document under
the factory settings. To avoid confusion, it is best to change this. The
following steps can be used to make Maple Notation and Worksheet
Mode the default options.

• � On Linux or Windows, choose Options from the Tools menu.
� On a Mac, go to the Maple 2016 menu and select Preferences .

• Select the Display tab.
• From the menu next to Input display , choose Maple Notation .

Since there are no significant drawbacks to displaying results as they
would be written by hand, changing Output display to something
other than 2-D Math Notation is not recommended.
• Now select the Interface tab.
• From the menu next to Default format for new worksheets , select

Worksheet .
• You may also wish to turn off the Default home page, so that a blank

worksheet appears instead when Maple is started. To do this, choose
New, blank from the menu next to Open worksheet at startup .

• Click Apply Globally .

To check that this has worked, hold ctrl (Mac: cmd ) and press N

to open a new worksheet in the default mode. Now type ‘hello’. If the
settings are correct this will appear in an upright (not italic) red or reddish
brown typeface. The above process does not change the mode for any
existing worksheets, so it may be worth quitting and restarting Maple
at this point. Although the Maple language is largely independent of
the input mode, there are some differences between the syntax rules
for Maple Notation and the rules that apply to 2-D Math Notation. In
addition, some menu items, buttons and shortcut keys may behave slightly
differently in Document Mode. To be clear:

Subsequent material in this book is written under the
assumption that Worksheet Mode and Maple Notation
are in use.

.002
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2.2 The Help System 9

It is possible to temporarily change the input mode using the worksheet
toolbar near the top of the window. Pressing Text will switch to Maple
Notation, and pressing Math will activate 2-D Math Mode (alternatively,
press F5 to toggle between the two modes). The effect of this may not
become apparent until some input is typed, though sharp-eyed users will
notice a change in the appearance of the cursor. Adjustments to the input
mode made in this way apply only in the vicinity of the current cursor
location (strictly, they apply to commands entered under the current
prompt; see Section 2.3 for more details). Elsewhere in the worksheet,
the setting made under Input display remains in force.

� To convert existing material from 2-D Math Notation (or any other
form of input) into Maple Notation, highlight it, go to the Format

menu and select Convert To � 1D Math Input .
� Colours and other font attributes can be changed via the style man-

agement dialogue, which is accessed by choosing Styles from the
Format menu. Choose Maple Input or 2-D Output from the list

on the left of the dialogue box and then press Modify to change the
format for input or output, respectively.

2.2 The Help System

Maple has a comprehensive help system, and it is important to learn to use
this effectively. The help system can be accessed by choosing Maple Help

from the Help menu at the top of the window, or by holding ctrl (on a
Mac hold cmd instead) and pressing F1 . The help system has a clickable
table of contents and a search facility. The help pages themselves are
connected by hyperlinks, allowing users to navigate between related
topics easily. A particular help page can be loaded directly by entering a
question mark followed by the command, operator or package with which
assistance is needed. For example, entering ?plot and pressing return

displays the help page for the plot command. To access some help pages
in this way, it is necessary to specify not just a topic, but also a subtopic,
a subsubtopic and even a subsubsubtopic. For example, to find out about
the new features of Maple 2016, one can enter ?updates,Maple2016,
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10 Getting Started

whereas entering ?updates,Maple2016,AdvancedMath leads directly
to details of the new advanced mathematics features. Similar syntax can
be used to show updates from as far back as Maple 8; for earlier versions
execute ?updates,v and use the list of results to the left of the help
page (here v stands for version number, not version 5, which was called
Maple V). Many of Maple’s help pages contain a lot of technical details
at the top, but there are examples at the bottom which can be cut and
pasted into your worksheet.

� Examples on a help page can be displayed in either 2-D Math Notation
or Maple Notation. Press the button marked x ^2

x2 in the context bar at
the top of the help window to toggle between the two options.

Another useful resource is the Programming Guide, which can be accessed
by executing ?ProgrammingGuide or by searching for ‘Programming
Guide’ from within the help system. The Programming Guide is intended
for advanced users. It is very thorough, and contains a lot of information
that is beyond the scope of this book.

2.3 Statements and Execution

When a new worksheet is opened (in Worksheet mode!), the cursor
appears to the right of the prompt symbol >. Here, Maple expects a
statement, a simple example of which is shown below.

> 2 + 2

Once a statement is complete, it can be executed by pressing return .
Maple then displays the result, and the cursor moves down to a new
prompt. A statement can be executed at any time by placing the cursor
on it and pressing return , so if you make a mistake it’s easy to go
back and correct it; there is no need to type anything again. In Maple 18
and earlier, statements require a terminating character, which can be a
colon or a semicolon. This requirement was relaxed in Maple 2015, but
there are still some situations in which terminating characters are needed.
To maintain backwards compatibility as far as possible, terminating
characters will be included in all subsequent examples, even when they
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2.3 Statements and Execution 11

are optional. The rules that determine whether a terminating character is
actually required are given in Appendix B (see also Section 2.7, where
the effect of using a colon to terminate a statement is discussed).

Statements are usually typed, or copied and pasted from elsewhere
in the worksheet, but you can also use the palettes on the sides of the
window to help construct them. For example, clicking the π symbol
under Common Symbols causes Pi to appear at the current cursor position.
Some items in the palettes are not available when the input mode is set to
Maple Notation (see Section 2.1). This is no great loss — the palettes can
be useful for getting started, but later you are likely to find that they slow
you down. Compare the time needed to construct the statement below
using palettes with the time required to type it.

> cos( Pi / 2 ) ;

0

Note the cosine function in this example, which is referred to by its
abbreviated name, as usual. Maple notation for most other elementary
functions is equally self-explanatory, though some care is needed with
logarithms; see Section 2.9 for more details.

� Maple is case sensitive, so pi is not the same as Pi.
� Check for typographical errors if Maple unexpectedly returns a

statement (or part thereof ) unevaluated.

> coz( 0 ) ;

coz(0)

� Sometimes a suggested completion will pop up while you are typing.
Press return to accept this, or continue typing to reject it.

� To insert a prompt, move the cursor to the appropriate position,
hold ctrl ( cmd on a Mac) and press K or J to insert before or
after the current cursor location, respectively. Alternatively, choose
Insert � Execution group � Before/After Cursor with the mouse

(execution groups are discussed in Section 2.5), or press the button
marked in the worksheet toolbar to insert a prompt after the
current cursor position (the icon was in Maple 2015 and earlier).
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12 Getting Started

In general, Maple works with exact arithmetic unless explicitly told to
do otherwise. This includes computations involving large integers and
also fractions, surds, etc.

> 3^100 ;

515377520732011331036461129765621272702107522001

> 2 / ( 17 + 9 ) ;
1
13

> sqrt( 63 ) ;

3
√

7

In processing the last two statements, Maple simplifies 2/(17 + 9) and√
63 to 1/13 and 3

√
7, respectively, but it does not automatically replace

these with numerical approximations. The evalf command coerces
Maple into computing a numerical approximation.

> evalf( Pi ) ;

3.141592654

> evalf( sqrt( 63 ) ) ;

7.937253933

Section 2.8 contains more details about approximations in Maple. Another
important point to note is that parentheses () are used to group terms
in a mathematical expression, and to enclose the argument(s) passed
to a command. Square brackets and braces have different meanings in
Maple and cannot be used in this way (see Sections 2.17 and 2.18).
Consequently, an expression such as[ {sin(4) − 3}2 + 8

4
− cos

(
2
7

)]2

must be entered in Maple notation as follows.

> ( ( ( sin( 4 ) - 3 )^2 + 8 ) / 4 - cos( 2 / 7 ) )^2 ;(
1
4

(sin(4) − 3)2 + 2 − cos
(
2
7

))2
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2.3 Statements and Execution 13

� When a closing delimiter is typed, a box flashes around the corre-
sponding opening delimiter. Use this feature to help match parentheses
in complicated expressions.

� Implied multiplication is not supported in Maple notation. Omitting
an asterisk will usually lead to an error message.
> 2 cos( Pi ) ;
Error, missing operator or `;`

However, in some circumstances Maple will accept the input and
produce a result which is almost certainly not what you want.
> 2( 3 - 1 ) ;

2

Here, 2(3 − 1) is interpreted as a function call, with the 2 referring to
the constant function whose value is 2 for every argument.

Maple applies arithmetic operations in the following order: ! comes
first, followed by ^, then / or *, and finally - or +. In other words, /
and * have the same level of precedence, as do - and +. The remaining
ambiguity is removed by the fact that statements are processed from left
to right unless the rules of precedence tell Maple to do otherwise. In
the next example, the result of the first statement is determined by the
fact that / takes precedence over +. The result of the second statement is
determined by the fact that Maple works from left to right.
> 6 / 2 + 1 ;

4

> 8 / 2 * 2 ;

8

Both of these statements could be disambiguated using the ‘standard’
ordering of arithmetic operators used in mathematics (i.e. / followed by
*, + and finally -), but this fails twice in the next example, which shows
why Maple uses the left to right processing rule.
> 4 / 2 / 2 ;

1
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14 Getting Started

> 5 - 1 - 1 ;

3

As usual, terms in parentheses are evaluated before the parentheses are
removed; this can be used to change the order in which operations are
applied.
> 4 / 2 * 3 ;

6

> 4 / ( 2 * 3 ) ;
2
3

> 3^3! ;

729

> ( 3^3 )! ;

10888869450418352160768000000

Maple provides several mechanisms that can be used to access the
results produced by executing statements. Output can be copied and
pasted, but the copy and paste operations must be repeated manually
if earlier calculations are changed. Moreover, it is easy to forget that
this is necessary when a saved worksheet is reopened some time after
its creation. Therefore copying and pasting output should be avoided.
Undoubtedly, the best method for storing and retrieving results is to
use variables (see Section 2.11), but two other methods are useful in
simple cases. First, the ditto operator % retrieves the last result that Maple
computed.
> cos( Pi / 6 ) ;

1
2
√

3

> %^2 ;
3
4

It is also possible to use %% and %%% to access the penultimate result
and the last but two, respectively. However, it is important to remember
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2.3 Statements and Execution 15

that the last three results are not necessarily the results of the three
statements above the cursor position, and things can go horribly wrong
when new statements are inserted into a worksheet that contains a lot of
ditto operators.

� All ditto operators start off empty when a new worksheet is started,
or a saved worksheet is reloaded.

The second method for retrieving earlier results is provided by the
equation labels. These are the black numbers in parentheses that appear
on the right-hand side of the worksheet when Maple displays a result. To
enter a reference to an equation label, hold ctrl (on a Mac hold cmd

instead) and press L , or choose Label... from the Insert menu,
then type the number and press return . The next example assumes that
the statements are entered at the top of a new worksheet (otherwise the
equation labels might be different).
> 1 / 10 + 1 / 100 ;

11
100

(1)

> (1)^2 ;
121

10000
(2)

In the second statement, the label (1) must be entered as described above;
simply typing ( 1 ) won’t work. The power ^2 is entered in the usual
way. If new statements are inserted amongst existing statements, Maple
will renumber the equation labels and update any references to them auto-
matically. To avoid confusion caused by differing label numbers, this book
does not show or use equation labels in any subsequent sections. Ditto
operators will be used in very simple cases, and variables will be used
elsewhere. Execute ?worksheet,expressions,equationlabels for
more about equation labels. Particular attention should be paid to the
information concerning their behaviour upon restarting Maple.

By default, statements are not executed when a saved worksheet
is reopened, even if the output they generated is still visible. How-
ever, in most cases everything can be restored by executing the whole
worksheet: choose Execute � Worksheet from the Edit menu, or
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16 Getting Started

press the button marked !!! in the toolbar to execute the entire work-
sheet. Worksheets that require their statements to be executed in an
unusual order will cause problems, and should be avoided. There are
also several mechanisms for storing statements in such a way that
they will be executed automatically upon restarting. For more details,
see ?worksheet,reference,initialization, ?autoexecute and
?worksheet,documenting,startupcode.

2.4 Spaces, Line Breaks and Comments

In most situations, spaces in Maple notation are ignored.
> sin ( Pi / 4 ) ;

1
2
√

2

> sin(Pi/4);
1
2
√

2

However, names such as sin and cos and numbers with multiple digits
must be treated as single entities, and cannot include spaces.
> co s( Pi ) ;
Error, missing operator or `;`
> 1 000 000 ;
Error, unexpected number

The same applies to operators, some of which are formed from more
than one character. For example, ** is an alternative notation for powers,
so 4**2 is valid input, but Maple sees 4* *2 as two multiplications with
the middle term missing, so it results in an error.

� Spacing out Maple statements makes complex worksheets easier to
read and debug. Errors such as erroneous minus signs can be difficult
to spot if they are hidden in large blocks of unspaced code.

A line break, produced by holding shift and pressing return is
usually treated in exactly the same way as a space (the end of a comment
is an exception to this rule; see below). This feature can be used to keep
long statements readable and to prevent them from running off the edge
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of the window. In the next example, a line break is inserted after the
first line; pressing return alone at this point causes Maple to attempt
execution, after which it complains about an incomplete statement.
> 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 +

14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 ;

300

Note that no new prompt appears when a line break is inserted.

� Do not write excessively long lines (more than about 100 characters)
of Maple code. Use shift and return to break them up.

After a comment symbol #, Maple ignores material until the end of the
line. Use this facility to make your worksheet easier to understand, by
inserting short explanations for statements whose effect is not obvious.
> # Obtain an approximation to e
> evalf( exp( 1 ) ) ;

2.718281828

Longer comments can be made using (* followed by *). Maple will
ignore anything that appears between these, including line breaks.
> (*

This will be ignored.
So will this.

*)

This feature is particularly useful for temporarily deactivating all or part
of an execution group (see Section 2.5).

� Empty lines can be used to space out worksheets and improve
readability, but Maple doesn’t always preserve these perfectly when
saving and reloading. To ensure that a vertical space between two
statements is maintained, use a line containing a single #.

Text that is more easily distinguishable from Maple statements can be
inserted by choosing Insert � Paragraph � Before/After Cursor or
pressing the button with the T icon in the worksheet toolbar. Formatting
tools such as font choices, justification and colours are available from
the toolbar near the top of the window. If necessary, insert an execution
group (see Section 2.3) to return to the normal input mode.
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2.5 Execution Groups

Immediately to the left of the prompt symbols (>), Maple displays black
square brackets called group ranges. These show how the worksheet is
divided into execution groups: two or more statements are members of the
same group if and only if they are enclosed by the same bracket. Placing
the cursor inside an execution group and pressing return once causes
all of its statements to be executed in sequence. This makes execution
groups ideal for situations in which one statement depends on the result of
another. The simplest way to create an execution group is to place multiple
statements on the same line, separated by colons or semicolons, but better
readability is achieved by putting line breaks between the statements.
Each execution group will usually receive a single equation label, which
refers to the final result displayed when it is executed. The next example
shows a simple execution group. Changing 736 to a different number
and pressing return once will change both the exact and approximate
results.

⎡⎢⎢⎢⎢⎢⎢⎢⎣
> sqrt( 736 ) ;

evalf( % ) ;

4
√

46
27.12931993

Another indication of grouping is provided by the prompt symbols
themselves. If there is no prompt between two statements then they
are members of the same execution group. Throughout the remainder
of this book, group ranges are omitted, and execution groups can be
identified by the absence of prompts. However, it should be noted that it
is possible for more than one prompt to appear in a group. For example,
if a sequence of statements is copied and pasted from another application,
each line will get its own prompt, but the statements will be placed in
the same execution group. Additionally, prompt symbols are not deleted
when existing groups are merged by highlighting and choosing Edit �

Split or Join � Join Execution Groups .
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�Worksheet Section Heading⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣[

> evalf( Pi ) ;
cos( % ) ;

3.141592654
−1.

> 2 + 2 ;

4

Figure 2.1 A worksheet section, containing two execution groups.

2.6 Sections

Worksheets can be divided into sections to aid organisation. To insert
a section select Insert � Section , then type the heading, and move
down to begin entering Maple statements. A section can be expanded
or collapsed by clicking on the grey triangle to the left of the heading.
Thus, a grey triangle pointing to the right � is an indication that a
section has been collapsed, and so some statements may be hidden.
An expanded section is shown in Figure 2.1. A new section can be
created from an execution group by placing the cursor on a statement
inside the group and choosing Format � Indent . Similarly, to move
an execution group outside a section, place the cursor on one of its
statements and choose Format � Outdent . To move an execution group
into an existing section, indent it, then highlight both sections and choose
Edit � Split or Join � Join Sections . Inside a section it is possible

to create further divisions using subsections. Besides the fact that they
cannot appear outside sections, subsections they work in much the same
way and need not be discussed in any detail. Executing a worksheet
(e.g. by pressing !!!) will expand and execute any collapsed sections and
subsections.

2.7 Displayed Results and Return Values

To prevent Maple from displaying the result returned by a statement,
terminate it with a colon. This feature is useful when performing calcula-
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tions where you don’t need to see the result of each intermediate step,
especially in cases where these are very long. It is important to stress
that using a colon does not prevent or delay any computations, it only
affects the display. In particular, the result of a statement terminated by a
colon is still available via a ditto operator (but not an equation label).

> 1000! :
> evalf( % / 2^8525 ) ;

21.08294067

� Unwanted output produced by a statement can be permanently re-
moved by changing the terminating semicolon to a colon and executing
again (if you highlight and delete the output, it will reappear if the
statement is executed again).

There are some statements which do not return results, though they may
display some output. Statements of this type do not affect the values
stored by ditto operators, and the output they display cannot be accessed
using them (if an equation label is generated, this will still work in the
usual way). In the next example, the ditto operator contains the value 12
after π is displayed, because the print command has no return value.

> 3 * 4 ;

12

> print( Pi ) ;

π

> % ;

12

See Section 7.4 for more about the print command. As a general rule, it
is best to think of a return value as something that can be used in a later
calculation, whereas output on the screen is just useful information for
the user’s benefit. For example, since the purpose of the print command
is simply to display a message, adding it to a number doesn’t make sense.

> 12 + print( Pi ) ;
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π

12 + ( )

On the other hand, the cosine function returns a number as its result, so
it can be used in arithmetic expressions.
> 12 + cos( Pi ) ;

11

Where a statement does return a result, terminating with a semicolon
does not necessarily mean that this will be displayed after execution.
Roughly speaking, the result will not be displayed in full if this would
generate an excessive amount of output, such as a huge matrix. This
behaviour can be altered by changing the rtablesize interface variable
(see Section 5.3). There are also situations in which one statement is
placed inside another, and in these circumstances the rules governing
which results are displayed are slightly more complicated. See Section 7.3
for more details. Again, none of this has any bearing on the computations
that take place; only the display is affected.

2.8 Obtaining Approximate Results

A number that includes a decimal point is called a floating point value (or
just float for short). When one of these is present in an arithmetic operation,
it causes an effect called contagion, which means an approximate result
will be produced, even if the other value involved is exact.
> 1.0 / 7 ;

0.1428571429
> 2^0.5 ;

1.414213562

In versions up to Maple 18, π was not affected by contagion, but this
changed in Maple 2015.
> 4 * Pi / 3.0 ;

4.188790204 (Maple 2015 and later)
1.333333333 π (Maple 18 and earlier)
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Unfortunately, this introduces an inconsistency: other mathematical
constants are treated differently. For example, Euler’s constant,

γ = lim
n→∞

(
− ln n +

n∑
j=1

1
j

)

is known to Maple, but contagion cannot be used to reveal its approximate
numerical value.

> 1.0 * gamma ;

1.0 γ

> evalf( gamma ) ;

0.5772156649

Contagion from outside does not cause approximate function evaluations.

> 4.0 * sqrt( 3 ) ;

4.0
√

3

> sin( 3.0 ) / 7 ;

0.02016000116

When the first statement above is executed, the square root does not
‘see’ the factor 4.0; it only knows about its own argument. Since this
is an exact value, Maple leaves

√
3 as it is. When the second statement

is executed, the sine function receives a floating point argument, so an
approximate evaluation is performed. Subsequently, the division operator
receives one exact and one floating point argument, causing contagion,
and an approximate final result. The most robust method for producing
approximate results is the evalf command, which can be applied to all
or part of an expression.

> evalf( sin( Pi / 12 ) ) ;

0.2588190451

> 2 * evalf( sin( 4 ) ) ;

−1.513604991
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By default, Maple performs floating point arithmetic using ten signifi-
cant decimal figures. An individual calculation can be performed using
more digits (or fewer), as shown in the next example.
> evalf[ 100 ]( Pi ) ;

3.14159265358979323846264338327950288419716939937510582\
0974944592307816406286208998628034825342117068

> evalf[ 4 ]( 2 * Pi ) ;

6.284

An older syntax with the same functionality is to provide the number
of digits after the quantity to be evaluated, e.g. evalf( Pi , 100 ).
This is still supported in Maple 2016, though it is no longer mentioned
by the evalf help page. The precision level for the entire worksheet
is controlled by the Digits environment variable. To change this, we
need to use the assignment operator :=, which is discussed in detail in
Section 2.11. A precision setting made in this way remains in force until
Maple is restarted, or until a subsequent assignment is made to Digits.
> Digits := 100 ;

Digits � 100

> evalf( sqrt( 2 ) ) ;

1.41421356237309504880168872420969807856967187537694807\
3176679737990732478462107038850387534327641573

> Digits := 10 ;

Digits � 10

> evalf( sqrt( 2 ) ) ;

1.414213562

� The theoretical maximum number of digits may differ from one
system to another, but on any modern computer it will be very large
indeed. However, setting Digits anywhere near this value will render
Maple so slow as to be unusable.
> kernelopts( maxdigits ) ;

38654705646
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Note the kernelopts command, which is used to query (and in
some cases set) variables that affect Maple’s computation; execute
?kernelopts for more details.

The number of digits used in performing a calculation is not necessarily
the same as the number of correct significant figures in the result, which
is often smaller.

> evalf[ 10 ]( Pi - 3.141 ) ;

0.000592654

Here, Maple evaluates π to ten significant figures, but four of these are
cancelled by subtracting 3.141, so that only six digits are correct in the
result. In general, there is no way to determine how many significant
figures must be retained at intermediate steps in order to produce an
answer with a given level of accuracy. There are also occasions when
Maple returns results with greater precision than might be expected.

> fsolve( x^3 + 1 = 0 , complex ) ;

−1., 0.500000000000000 − 0.866025403784439 I,
0.500000000000000 + 0.866025403784439 I

Here, the fsolve command (see Section 4.3 for more about this) ap-
proximates the roots of the cubic equation x3 + 1 = 0, and the results are
given to 15 significant figures. This happens because Maple opts to use
the arithmetic facilities provided by the CPU, to increase performance. A
detailed discussion of the differences between this hardware arithmetic
and Maple’s own software arithmetic is outside the scope of this book;
execute ?HFloat and ?evalhf for more information. For our purposes,
it is sufficient to note that (unless explicitly told to do so), Maple won’t
use hardware arithmetic if there is a risk that doing so could have a
detrimental effect on accuracy.

2.9 Elementary Functions

Table 2.1 shows a list of Maple commands for elementary functions and
their inverses. Trigonometric and hyperbolic functions are accessed by
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Function Command Inverse

absolute value (modulus) abs( x ) —
cosine cos( x ) arccos( x )
sine sin( x ) arcsin( x )
tangent tan( x ) arctan( x )
hyperbolic cosine cosh( x ) arccosh( x )
hyperbolic sine sinh( x ) arcsinh( x )
hyperbolic tangent tanh( x ) arctanh( x )
natural logarithm log( x ) or ln( x ) exp( x )
base 10 logarithm log10( x ) 10^x or 10**x
base b logarithm log[ b ]( x ) b^x or b**x
square root sqrt( x ) x^2 or x**2

Table 2.1 Maple notation for elementary functions.

typing their abbreviated names (i.e. sin for sine, etc.) and the prefix arc
is used to obtain the inverse.
> cos( Pi / 4 ) ;

1
2
√

2

> evalf( sinh( 2 ) ) ;

3.626860408

> arcsinh( % ) ;

2.000000000

The real domains and ranges for the inverse trigonometric and hyperbolic
functions are shown in Table 2.2, though it should be noted that elementary
functions in Maple can also accept complex arguments and produce
complex results; see Section 2.10. The inverse tangent function has the
special property that it can accept either one or two arguments. With
one real argument, it returns a result in the range (−π/2, π/2). With
two real arguments — a y coordinate followed by an x coordinate — it
returns a result in the range (−π, π]. Generally, arctan( y , x ) is
preferable to arctan( y / x ) because the two-argument form avoids
the possibility of ending up in the wrong quadrant when x < 0, and also
prevents division by zero in cases where x = 0.
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Function Domain Range

arccos [−1, 1] [0, π]
arcsin [−1, 1] [−π/2, π/2]
arctan R (−π/2, π/2)

Function Domain Range

arccosh [1,∞) [0,∞)
arcsinh R R

arctanh (−1, 1) R

Table 2.2 Real domains and corresponding ranges for inverse trigonometric and
hyperbolic functions. In the case of arctan, the range is shown for the single

argument form.

> arctan( 1 / sqrt( 3 ) ) ;
1
6
π

> arctan( 1 , sqrt( 3 ) ) ;
1
6
π

> arctan( -1 , -1 ) ;

− 3
4
π

> arctan( 1 , 0 ) ;
1
2
π

Both ln( x ) and log( x ) refer to the natural (base e) logarithm
of x. The latter will also accept an index in square brackets, which can
be used to change the base.
> log( 10.0 ) ;

2.302585093

> log[ 2 ]( 128 ) ;

7

The letter e does not represent the exponential function in Maple notation;
the correct syntax for ex is exp( x ). Indeed, sharp-eyed users will
observe that e produces an italic e in the output, whereas exp( 1 )
produces an upright version. As the next example shows, these are not
the same entity.
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> e ;

e

> log( % ) ;

ln(e)

> exp( 1 ) ;

e

> log( % ) ;

1

There is a temptation to define e as a shorthand for exp(1) using the
macro command, to save typing (an assignment to the variable e could
also be used; see Section 2.11). As the following example shows, this
has unfortunate side effects.
> macro( e = exp( 1 ) ) : # Don't do this!
> evalf( e^20 ) ;

4.851651938 108

> evalf( exp( 20 ) ) ;

4.851651954 108

The last two digits in the first result are wrong, as can be shown by
increasing precision and repeating the calculations (see Section 2.8).
Raising e to the power x is often not the most accurate or efficient way to
compute ex , but this is exactly what storing and exponentiating exp(1)
forces Maple to do.

� In addition to elementary functions, Maple can work with standard
special functions, as well as many more esoteric functions. To see
the complete list, execute ?initialfunctions.

2.10 Complex Numbers

The imaginary unit is obtained using a capital I, and complex numbers
are constructed by simply adding together their real and imaginary parts.
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> I^2 ;

−1
> ( 3 + I ) * ( 1 - 2 * I ) ;

5 − 5 I

Not surprisingly, the conjugate command computes complex conju-
gates.
> conjugate( 2 + I ) ;

2 − I

Maple allows complex numbers to appear in any mathematical operation
where they make sense.
> sin( I * log( 2 ) ) ;

3
4

I

> evalf( cosh( 1 + I ) ) ;

0.8337300251 + 0.9888977058 I

The Re and Im commands are used to extract the real and imaginary
parts of a complex number, and abs and argument can be used to
compute the modulus and argument, with the argument taken to lie in
the interval (−π, π].
> Re( 2 + I ) ;

2
> Im( sin( 2 + I ) ) ;

cos(2) sinh(1)

> abs( 1 - I ) ; √
2

> argument( 1 - I ) ;

− 1
4
π

The convert command can be used to convert a complex number into
polar form.
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> convert( 1 + I , polar ) ;

polar
(√

2,
1
4
π

)

The polar command can be used to construct complex numbers from
their modulus and argument, but evalc (evaluate to complex) is needed
to obtain a Cartesian result.
> polar( 1 , Pi / 2 ) ;

polar
(
1,

1
2
π

)

> evalc( % ) ;

I

The evalc command can also be used to evaluate square roots and other
fractional powers where the result is a complex quantity. This happens
automatically in some cases, but not all.
> sqrt( 3 + 4 * I ) ;

2 + I

> sqrt( 1 + I ) ; √
1 + I

> evalc( % ) ;
1
2

√
2 + 2

√
2 +

1
2

I
√
−2 + 2

√
2

> (-1)^(1/2) ;

I

> (-1)^(1/3) ;

(−1)1/3

> evalc( % ) ;
1
2
+

1
2

I
√

3

Note that Maple uses the principal branch for fractional powers, so

z1/n = n
√|z | ei arg(z)/n, n ∈ N.
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� Where such a result exists, a real root of a real number can be obtained
using the surd command. To compute n√x (which has the same sign
as x), use surd( x , n ).
> surd( -8 , 3 ) ;

−2

To avoid the need for evalc in obtaining a Cartesian result from input in
polar form, use exponentials.
> exp( I * Pi ) ;

−1
> 4 * exp( I * Pi / 3 ) ;

2 + 2 I
√

3

When Maple does not simplify a complex exponential it may be useful to
convert it into trigonometric form. This can be achieved using the trig
option for the convert command. There is also an exp option which
performs the reverse process.
> convert( exp( 2 * I ) , trig ) ;

cos(2) + I sin(2)

> convert( cos( 2 ) , exp ) ;
1
2

e2I +
1
2

e−2I

Maple allows users to change the notation it uses for the imaginary
unit. Most mathematicians prefer a lower case i, and many engineers
use j. The interface command can be used for this purpose.
> interface( imaginaryunit = i ) ;

I

> i^2 ;

−1

This change remains in force until Maple is restarted, and leaves the
symbol I free to be used for another purpose. To avoid any confusion, the
default Maple notation will be used in subsequent examples involving
complex numbers. A final note concerns the result of the interface
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command. When interface is used to change a variable, the old value
(I in the above example) is returned. Displaying this is rarely useful, so it
is usual to terminate statements of this type with a colon.

2.11 Variables

Variables are used to store data, and to retrieve the results of previous
calculations. The assignment operator := is used to assign a value to a
variable.
> a := 27 ;

a � 27

> b := 4 ;

b � 4

> c := a + b ;

c � 31

Assignments are not equations. The expression to the right of the as-
signment operator is computed, and associated with the name on the
left (names are discussed in more detail in Section 2.12). This means
assignments can reference the variable that is being assigned.
> k := 3 ;

k � 3

> k := k + 1 ;

k � 4

On its own, the symbol = represents a relational operator (see Section 2.15
for more about these) which asserts that two quantities are equal. It cannot
be used to make assignments.
> s = 3 ;

s = 3

> s ;

s
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> u := 1 ;

u � 1

> u = u + 1 ;

1 = 2

� If a Maple statement produces an unexpected (or nonsensical) result,
check that all assignments have been made using :=, and not =, which
doesn’t work.

To delete the value of a variable, use the unassign command.
> a := 27 ;

a � 27

> unassign( 'a' ) ;
> a ;

a

Note the single right quotes around a in the argument to unassign.
These prevent Maple from substituting 27 for a before attempting the
unassignment, which would lead to an error. See Section 2.13 for more
details, and also a useful shortcut for unassignment. The restart
command is used to clear all variables and other definitions in Maple’s
memory, including values stored in ditto operators. It negates the effect
of almost all statements. Execute ?restart for a list of exceptions.
> m := 27 ;

m � 27

> n := 10 ;

n � 10

> restart ;
> m ;

m

> n ;

n

The Describe command can be used to make an enquiry about the
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current status of a variable. Generally this reveals more information than
simply evaluating its name.
> k := 27 ;

k � 27
> k ;

27
> Describe( k ) ;

k::integer = 27

� It is a good idea to include a restart command before starting work
on a new problem. This includes the beginning of the worksheet;
re-executing without a restart at the top may have unfortunate
effects.

� Values assigned to variables are not stored when a worksheet is saved.
To restore them, it is necessary to execute the statements in which
the assignments were made, for example by pressing the execute
worksheet button (!!!). See Section 2.3 for more details.

Maple allows multiple assignments to be made in a single statement.
This feature provides a neat shortcut for swapping the values of two
variables. In the next example, the values of j and p are first swapped
using a temporary, or scratch, variable called t, which is subsequently
discarded. This is the standard technique in many programming languages.
The change is then reversed in a single statement.
> j := 22 ;

j � 22
> p := 49 ;

p � 49
> t := j ; # Swap by 'standard' method

t � 22
> j := p ;

j � 49
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> p := t ;

p � 22
> unassign( 't' ) :

> j , p := p , j : # Reverse swap using neat shortcut
> j ;

22
> p ;

49

Variables can be used to store strings (sequences of characters) and
algebraic expressions as well as numbers. Strings are formed using string
quotes ".
> s := "abc" ;

s � "abc"
> t := "def" ;

t � "def"
> p := x^2 + 4 * x + 4 ;

x2 + 4x + 4
> q := x^2 - 7 * x - 1 ;

x2 − 7x − 1
> p + q ;

2x2 − 3x + 3

See Chapter 3 for more about algebra in Maple.

2.12 Names

Up to this point, simple names such as a, b and c have been used for
variables. Longer names are possible as well.
> weasels := 5 :
> stoats := 7 :
> weasels + stoats ;

12
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Single left quotes ` are called name quotes in Maple. These can be used
to create names that begin with a number, or that contain spaces.
> `Number of the beast` := 666 ;

Number of the beast � 666

Name quotes can be used to create names containing any character, and
even names that consist solely of numbers. However, the result of this is
likely to be rather confusing.
> `12` := 13 ;

12 � 13

> `13` := -13 ;

13 � −13

> `12` + `13` ;

0

Some names are replaced by corresponding symbols when they appear
in the output from a Maple statement. These include Greek letters and
the Hebrew letter aleph.
> aleph := 1 ;

ℵ � 1

> alpha := Gamma ;

α � Γ

The last statement illustrates a general rule. If the first letter in the name
of a Greek letter is capitalised, the corresponding upper case Greek letter
is produced in the output. The letter π is an exception. In this case there
are three forms: the lower case letter π, the number π and the upper case
letter Π. The last of these is obtained using PI.
> evalf( pi ) ;

π

> evalf( Pi ) ;

3.141592654
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> evalf( PI ) ;

Π

Most of Maple’s own names are protected, so that trying to make
assignments to them results in an error.

> Pi := 3.0 ;
Error, attempting to assign to `Pi` which is protected.
Try declaring `local Pi`; see ?protect for details.

Forcing the issue is unlikely to lead to good results, but it is possible.

> unprotect( Pi ) ;
> Pi := 3.0 ;

π � 3.0

> sin( Pi ) ;

0.1411200081

The same mechanism can be used to protect important user-defined
variables. As with the unassign command discussed in Section 2.11,
single right quotes are needed to prevent Maple from replacing the
variable with its value before applying the protection.

> bank_balance := 1000000 :
> protect( 'bank_balance' ) :
> bank_balance := 0 ;
Error, attempting to assign to `bank_balance` which is
protected. Try declaring `local bank_balance`; see
?protect for details.

� To display all names that have been assigned a value (omitting those
that are assigned by Maple itself), use the anames command with the
user option.

> c := 1 :
> d := 2 :
> anames( user ) ;

d, c
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2.13 Automatic Simplification and Evaluation

Maple usually performs two steps when it processes an expression:
automatic simplification and then evaluation. Roughly speaking, auto-
matic simplification performs simple operations, whereas complicated
calculations must wait until the evaluation stage. There is no way to
prevent automatic simplification, but evaluation of an expression can
be prevented by enclosing it in single right quotes '. These are called
unevaluation quotes in Maple.

> '1 + 1' ;

2

> x := 1 ;

x � 1

> '1 + x' ;

1 + x

> % ;

2

When the first of the above statements is processed, 1+ 1 is automatically
simplified to 2, so that the unevaluation quotes have no effect (note that
they are removed by evaluation). However, variables are not replaced
by their values during automatic simplification, so 1 + x is returned
unevaluated in the result of the second statement. Only when the last
statement is executed is 1 + x itself evaluated. In contrast, ditto operators
are resolved by automatic simplification.

> x := 3 :
> 27 ;

27

> 'x + % + 4' ;

x + 31

> %

34
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Apart from performing basic arithmetic operations, automatic simplifica-
tion also reduces fractions to their lowest terms, removes unnecessary
parentheses, computes integer powers and approximates fractional powers
of floating point values.

> '( 1 + 1 ) / 4' ;
1
2

> '4^2' ;

16

> '9.0^(1/2)' ;

3.000000000

We have already encountered two applications for unevaluation quotes:
deleting an assigned value for a variable in Section 2.11, and protecting
user-assigned values in Section 2.12. There is a clever shortcut for
unassignment.

> a := 27 ;

a � 27

> a := 'a' : # Same effect as unassign( 'a' ) :
> a ;

a

This requires some explanation. The effect of evaluating 'a' is just to
remove the unevaluation quotes, so, after executing a := 'a', the name
a evaluates to itself.

Understanding when evaluation will occur and what its consequences
are is the key to avoiding many of the most common pitfalls with Maple.
In particular, in most situations, arguments undergo evaluation before
being passed to commands. We will refer to this as prior evaluation. In
the next example, π/2 is substituted for x before the sine function is
invoked, which seems entirely sensible.

> x := Pi / 2 :
> sin( x ) ;

1
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However, there are situations where this behaviour is not desirable.
> x := 2 :
> limit( sin( x ) / x , x = 0 ) ;
Error, invalid input: limit expects its 2nd argument, p,
to be of type Or(name = algebraic, set(name =
algebraic)), but received 2 = 0

Here, the limit command is apparently used to evaluate

lim
x→0

sin x
x

(see Section 3.5 for more about limit), but this is derailed by the fact
that the name x has been assigned the value 2 earlier in the worksheet.
Consequently, after the arguments have been evaluated, what’s left is a
request to evaluate sin(2)/2 as 2→ 0, which is nonsense. A well-placed
restart command can be used to avoid this, but it will delete the values
of all assigned variables. Alternatively, x can be unassigned individually
(see Section 2.11), or a different symbol can be used. To work with the
symbol x, regardless of whether it has already been assigned a value, use
unevaluation quotes.
> x := 2 :
> limit( 'sin( x ) / x' , 'x' = 0 ) ;

1

Now the prior evaluation simply strips off the unevaluation quotes, so
that the limit command receives a request to take the limit x → 0 in the
expression sin(x)/x. It is important to keep in mind that x still has the
value 2 at the end of the calculation, and will be evaluated if it appears
again. Consider the following example.
> x := 0 :
> s := expand( ( 1 + 'x' )^2 ) ;

s � x2 + 2x + 1

> s ;

1

Here, the expand command (see Section 3.1) is used to multiply out a
bracket. Unevaluation quotes are used to prevent Maple from substituting 0
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abc 32

Figure 2.2 An assignment chain.

for x before carrying out the expansion. However, the result involves x,
so s evaluates to 1 when the final statement is executed.

� When a command produces an error, or an unexpected result, consider
the effect that prior evaluation has on the argument(s), and use
unevaluation quotes to prevent this where appropriate.

There are several types of evaluation in Maple, of which the most
common is full recursive evaluation. This follows chains of assignments
until their end. Consider the following example.
> c := b ;

c � b

> b := a ;

b � a

> a := 32 ;

a � 32
> c ;

32

Executing the first three statements creates an assignment chain, which is
illustrated graphically in Figure 2.2. When the last statement is executed,
c evaluates to b, then b evaluates to a and finally a evaluates to 32. This
is the end of the assignment chain.

The eval command can be used to perform n-level evaluation. The
next example again uses the assignment chain in Figure 2.2, and illustrates
the result of applying one-, two- and three-level evaluation to c.
> c := b :
> b := a :
> a := 32 :
> eval( c , 1 ) ;
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b

> eval( c , 2 ) ;

a

> eval( c , 3 ) ;

32

It is also important to understand how evaluation is influenced by
unevaluation quotes. A full recursive evaluation removes one pair of
quotes, and then stops. On the other hand, an n-level evaluation removes
one pair of quotes at each step, but it stops if all pairs have been removed,
even if n exceeds the number of quote pairs.
> ''sin( Pi )'' ; # The first ...

'sin(π)'

> % ; # The second ...

sin(π)

> % ; # The third ...

0

> eval( ''sin( Pi )'' , 1 ) ;

'sin(π)'

> eval( ''sin( Pi )'' , 3 ) ;

sin(π)

Note that the double quotes in the above example are produced by
pressing ’ twice; they are not string quotes. Only the eval command
without a second argument is strong enough to remove a set of quotes
and perform the final evaluation.

> eval( 'sin( Pi )' ) ;

0

If it encounters multiple sets of unevaluation quotes, the eval command
with no second argument removes two pairs, after which evaluation stops.

Two other forms of evaluation are worthy of brief mentions here, the

.002
 14:32:48, subject to the Cambridge Core terms



42 Getting Started

first of which is evaluation to a name. In this process, Maple ceases
evaluation when it reaches a valid name. By far the most prevalent case of
evaluation to a name occurs on the left-hand side of assignments, where
it is applied automatically. In many situations, the object on the left-hand
side of an assignment is already a name, and nothing happens. However,
there are cases (particularly those involving names with indices; see
Section 2.18) in which this process is crucially important. Evaluation to
a name can be applied to any object using the evaln command, though
this is rarely needed.

> x := 35 ;

x � 35

> evaln( x ) ;

x

Finally, there is last name evaluation. There is no command to invoke this
process; rather it is a property that certain objects possess. Formally, if
an object is subject to last name evaluation rules, then any name assigned
to that object will evaluate to itself. The effect of this is to create a
barrier which stops evaluation one step earlier than might otherwise be
expected. It is not possible to compose an instructive example of this
based on material introduced so far, so we must content ourselves with a
hypothetical example on the basis of Figure 2.2. If the number 32 were
subject to last name evaluation rules, a full recursive evaluation of b, c
or a would result in a (the last name in the chain). The barrier created
by last name evaluation can be broken using eval. In our hypothetical
example, applying eval to a, b or c (without a second argument) would
return the result 32.

2.14 Concatenation

Objects such as names and strings can be joined together (concatenated)
using the cat command. The simplest case involves concatenation of
two strings.

> s := "abc" ;
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s � "abc"
> t := cat( s , "def" ) ;

t � "abcdef"

The cat command can also append numbers to strings.
> cat( "The approximate value of pi is " , evalf( Pi ) ) ;

"The approximate value of pi is 3.141592654"

The empty string can be used to convert a number into a string.
> cat( "" , 123 ) ;

"123"

Note that the result of concatenating two numbers is a symbol (a type of
name), not a number.
> s := cat( 1 , 2 ) ;

s � 12
> Describe( s ) ;

s::symbol = `12`

> s + 1 ;

12 + 1

The concatenation operator || provides an alternative syntax for con-
catenating objects. It has the rather unusual property that its left operand
undergoes evaluation to a name, but not a full evaluation. In the next
example, cat( a , b ) forms the name 5b, because a is evaluated to 5
before concatenation. On the other hand, a || b produces ab, because
a is a valid name, so evaluation to a name has no effect.
> a := 5 ;

a � 5
> cat( a , b ) ;

5b
> a || b ;

ab
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Another difference between || and cat is that a name created by ||
undergoes an immediate evaluation, whereas this does not happen to
names formed using cat.
> cd := 55 ;

cd � 55
> c || d ;

55
> cat( c , d ) ;

cd

> % ; # Extra evaluation

55

Creating names by concatenating letters and numbers was common
practice in early versions of Maple. In the next example, r || j evaluates
to the name r5, and this variable is then assigned the value 36.
> j := 5 :
> r || j := 36 ;

r5 � 36
> r5 ;

36

Updates introduced in Maple 4.0 rendered this technique largely obsolete.
In modern versions, indexed data structures such as arrays and tables are
more flexible and easier to use (see Sections 7.5 and 7.6, respectively).
Use of the concatenation operator itself is also now discouraged; its own
help page (?||) recommends that the cat command should be used
instead, wherever possible.

2.15 Relational Operators

The relational operators shown in Table 2.3 are used to form equations
and inequalities. The left- and right-hand sides of such expressions can
be extracted using the commands lhs and rhs.
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Name Operator

equal to =
greater than >
less than <

Name Operator

not equal to <>
greater than or equal to >=
less than or equal to <=

Table 2.3 Maple notation for relational operators.

> eqn := e = m * c^2 ;

eqn � e = mc2

> lhs( eqn ) ;

e

> rhs( eqn ) ;

mc2

When using lhs and rhs with inequalities, it is important to keep in mind
that expressions involving > and ≥ are replaced by equivalent expressions
using < and ≤ during automatic simplification. A good mnemonic here
is that the left-hand side is always lower.

> a > b ;

b < a

> lhs( a > b ) ;

b

Methods for solving equations are discussed in Chapter 4. Here we
introduce evalb, which tells Maple to evaluate an equation or inequality
to a boolean value (i.e. true or false) if it can.

> evalb( 3 > 4 ) ;

false

> evalb( 0! = 1 ) ;

true

Any expression that can be evaluated to true or false is called a conditional
expression, and can be used as the argument to evalb. This includes
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compound expressions formed using boolean operators such as and, not
and or.

> a := 1 :
> b := 2 :
> c := 3 :
> evalb( b > a and b > c ) ;

false

> evalb( not a = b ) ;

true

> evalb( b > a or b > c ) ;

true

Some care is needed with constants such as π, and elementary function
expressions that cannot be evaluated exactly. Tests for (in)equality will
work, but otherwise exact symbolic quantities must be approximated
before being used with evalb.

> evalb( Pi = sqrt( 2 ) ) ;

false

> evalb( 3 <> Pi ) ;

true

> evalb( sqrt( 2 ) > 0 ) ;

0 <
√

2

> evalb( evalf( sqrt( 2 ) ) > 0 ) ;

true

A potential pitfall with this occurs when values are close together. In this
case, cancellation of leading digits can lead to incorrect results.

> evalb( evalf( 1 - exp( -25 ) ) < 1 ) ;

false

Here, 1 − exp(−25) evaluates to 1, which is correct to ten significant
figures, so the test wrongly returns false. Problems of this type can
sometimes be avoided by a more careful construction of the statement
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or inequality. In the above example, applying evalf to the whole in-
equality allows automatic simplification to remove 1 from both sides
before any approximation occurs. Subsequently, − exp(−25) evaluates to
−1.388794386 × 10−11, which is clearly negative.
> evalb( evalf( 1 - exp( -25 ) < 1 ) ) ;

true

However, there are cases in which values are very close together and
no simplification is possible. One way around this is to use increased
precision (see Section 2.8), but the number of digits needed may not be
obvious. The best approach is to use the is command, which guarantees
the correct answer.
> p := sqrt( 2 ) * 2510613731736 / 1130173253125 ;

p �
2510613731736
1130173253125

√
2

> evalf[ 20 ]( p - Pi ) ;

6.395 10−16

> evalb( evalf( p > Pi ) ) ;

false

> is( p > Pi ) ;

true

In fact, is can be used in place of evalb in most situations. However,
evalb is more efficient in cases where both commands can be used. In
addition, is returns false when names about which nothing is known are
compared, which is potentially misleading, whereas evalb does nothing.

> is( f > 0 ) ;

false

> is( f <= 0 ) ;

false

> evalb( f > 0 ) ;

0 < f
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> evalb( f <= 0 ) ;

f ≤ 0

In the above example, evaluation to a boolean would become possible
later if f were to be assigned a numeric value. Both evalb and is return
FAIL if they are applied to an expression that had no possibility of ever
evaluating to a boolean.
> evalb( 1 + I > 1 - I ) ;

FAIL

> is( 1 + I > 1 - I ) ;

FAIL

2.16 Sequences

A collection of objects separated by commas is called a sequence in
Maple. These often appear when a statement returns multiple results.
> solve( x^2 - 3 * x + 2 = 0 ) ;

2, 1

See Chapter 4 for more information about the solve command. No new
Maple commands are needed to join sequences together, or to append
new elements to the ends of an existing sequence. We need only consider
the evaluation rules.
> s := a , b , c ;

s � a, b, c

> t := 1 , 2 , 3 ;

t � 1, 2, 3

> u := beta , s , t ;

u � β, a, b, c, 1, 2, 3

When the last statement is executed, s and t evaluate to a, b, c and 1, 2, 3
before the assignment is made, so that the value associated with the
name u is the sequence β, a, b, c, 1, 2, 3. Attempting to pass sequences as
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arguments to commands leads to a subtlety. A few commands, such as
max and min, work in the obvious way, but many others will fail.

> r := 2 , 4 , 7 , 1 ;

2, 4, 7, 1

> max( r ) ;

7

> min( r ) ;

1

> member( 1 , r )
Error, invalid input: member expects 2 or 3 arguments, but
received 5

When the last three statements are processed, prior evaluation causes
r to be replaced with 2, 4, 7, 1 before the command is invoked. This
doesn’t cause a problem for max and min; these are very flexible and
work with many structures, including sequences, and also sets and lists
(Section 2.17), matrices and vectors (Chapter 5) and arrays (Section 7.5).
However, the attempt to determine whether 1 is a member of the sequence
r fails, because the member command actually receives the sequence
of arguments 1, 2, 7, 4, 1, which doesn’t make any sense. Trying to get
around this problem by placing r in unevaluation quotes won’t work, but
a simple remedy is shown at the end of the next section.

2.17 Sets and Lists

Enclosing a sequence in braces {} produces a set. In the next example, E
is assigned the empty set as its value, and S is assigned the set containing
the elements apple, orange and pear.

> E := {} ;

E � { }
> S := { apple , orange , pear } ;

S � {apple, orange, pear}

.002
 14:32:48, subject to the Cambridge Core terms



50 Getting Started

Maple may rearrange the entries in a set, and will delete repeated elements.

> T := { 2 , 3 , 1 , 3 , 2 , 1 } ;

T � {1, 2, 3}
Set-theoretic operations can be performed using union, intersect and
minus to represent ∪, ∩ and \, respectively.
> S := { 1 , 2 , 3 } :
> T := { 3 , 4 , 5 } :
> S union T ;

{1, 2, 3, 4, 5}
> S intersect T ;

{3}
> S minus { 2 } ;

{1, 3}
Some care is needed with tests for subsets, because the subset keyword
actually represents ⊆, rather than ⊂.
> S := { 1 , 2 } :
> { 2 } subset S ;

true

> { 1 , 2 } subset S ;

true

A test for a proper subset (i.e. ⊂) can be applied as follows.
> S := { 1 , 2 } :
> ( { 1 , 2 } subset S ) and not ( { 1 , 2 } = S ) ;

false

Excessive typing can be avoided by defining a functional operator to
perform this test (see Section 3.4) if it is needed frequently.

� Under some circumstances, repeated elements will not be deleted
from a set of vectors, matrices, arrays or tables. See Section 5.8 for
an explanation.
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Square brackets [ ] can be used to construct lists; an empty pair of
square brackets produces the empty list. The order of entries in a list is
preserved, and repeated elements are not deleted.
> A := [ 4 , 7 , 2 , 17 , 12 , 7 ] ;

A � [4, 7, 2, 17, 12, 7]

Lists have many uses in Maple, but they are immutable, meaning they
cannot be changed after they have been created. Any apparently successful
attempt to change a list actually creates a new list. Where changes to
entries are needed, arrays (see Section 7.5) offer much greater efficiency.

� Sequences, lists and sets can contain entries which are themselves lists
or sets. For example, lists of lists can be used to construct matrices
(see Chapter 5) and in creating certain types of plot (see Chapter 6).

Most statements (but not assignments) can be enclosed in braces or
square brackets. The result is then a set or a list, respectively.
> { Pi , evalf( Pi ) } ;

{3.141592654, π}
> [ cos( 0 ) , cos( Pi / 2 ) , cos( Pi ) ] ;

[1, 0,−1]
> { solve( x^2 + 4 * x + 4 = 0 ) } ;

{−2}
> [ solve( x^2 + 4 * x + 4 = 0 ) ] ;

[−2,−2]

The last two statements each determine the roots of the quadratic equation
x2 +4x +4 = 0 using the solve command (see Chapter 4 for more about
this). When the result is converted into a set, one instance of the repeated
root at x = −2 is deleted.

The sequence of entries (operands) can be extracted from a list or set
using the op command (an empty selection operator can also be used;
see Section 2.18).
> S := { a , b , c } :
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> op( S ) ;

a, b, c

> L := [ 1 , 2 , 3 ] :
> op( L ) ;

1, 2, 3

There are many Maple commands that perform operations on sets and
lists. For example, numelems counts the number of elements, and member
determines whether a list or set contains a particular object.
> s := { a , b , c } :
> numelems( s ) ;

3

> member( a , s ) ;

true

> L := [ 1 , 0 , 3 , 2 ] :
> numelems( L ) ;

4

> member( 4 , L ) ;

false

An alternative way to check membership is to use the in operator with
evalb.
> G := [ 5 , 6 , 2 ] :
> evalb( 5 in G ) ;

true

To make these commands work with sequences, simply convert to lists
using square brackets.
> Q := alpha , beta , gamma :
> numelems( [ Q ] ) ;

3

> member( beta , [ Q ] ) ;

true
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> evalb( delta in [ Q ] ) ;

false

Section 2.19 explains how to apply operations to each entry in a sequence,
set or list individually.

2.18 Indices

Indices can be denoted using square brackets, so where we might write Aj

to mean ‘the jth entry in the sequence A’, in Maple notation we use A[j].

> A := 1 , 8 , 27 , 64 , 125 ;

A � 1, 8, 27, 64, 125

> A[3] ;

27

The same syntax also works with lists and sets.
> L := [ 4 , 7 , 2 , 17 , 12 , 7 ] :
> L[4] ;

17

> S := { orange , apple , pear } ;

S � {apple, orange, pear}
> S[1] ;

apple

Attempting to access an element that is out of range results in an error.
> A := { 4 , 7 , 2 } :
> A[4] ;
Error, invalid subscript selector

Indices can also be used to access characters in a string.
> s := "abc" :
> s[3] ;

"c"
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In this case, using an out of range index produces an empty string.
> s := "def" ;

s � "def"
> s[4] ;

""

Naively, it may appear that assignments can be made to the entries in a
short list using indices.
> L := [ 1 , 2 , 3 ] ;

L � [1, 2, 3]
> L[2] := a :
> L ;

[1, a, 3]

However, the effect of this is to create a new list which replaces the old
one, so such operations are very inefficient. For this reason, using indices
to change the entries in a long list is forbidden, and will result in an error.
In situations where changes to entries are needed, arrays should be used
instead (see Section 7.5).

An index undergoes full evaluation, even in the context of evaluation
to a name. This includes indices that appear on the left-hand side of
assignments. In the next example, A[j] refers to the third entry in the
list A, despite the fact that Aj is itself a valid name.
> A := [ 4 , 7 , 2 , 17 , 12 , 7 ] :
> j := 3 :
> evaln( A[j] ) ; # Evaluate to a name

A3

> % ;

2
> A[j] := 43 :
> A ;

A := [4, 7, 43, 17, 12, 7] :

A sequence of indices can be used to access the individual elements in
a list of lists (or set of sets, etc.).
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> L := [ [ 0 , 1 ] , [ a , b ] , [ pi , eta , mu ] ] ;

L �
[
[0, 1], [a, b], [π, η, μ]

]
> L[2] ;

[a, b]
> L[2,1] ;

a

The range operator .. can be used to access multiple consecutive
elements of a list, set, sequence or string. The result of such an operation
has the same type as the original object, so using a range to access part
of a list produces a new list, etc.
> A := [ 4 , 7 , 2 , 17 , 12 , 7 ] :
> A[1..3] ;

[4, 7, 2]
> s := "abcdef" ;

s � "abcdef"
> s[2..4] ;

"bcd"

Omitting the beginning of the range causes Maple to start from the first
element, and omitting the last causes it to continue until the end.
> A := [ 4 , 7 , 2 , 17 , 12 , 7 ] :
> A[..4] ;

[4, 7, 2, 17]
> A[2..] ;

[7, 2, 17, 12, 7]

Consequently, A[..] returns a copy of A. This is not very useful with
lists or sets but it can be used to extract a whole row or column from a
matrix (see Section 5.2). In contrast, an empty selection operator extracts
the elements of a set or list, returning the entries in a sequence.
> C := { larch , chestnut , birch } ;

C � {birch, chestnut, larch}
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> C[] ;

birch, chestnut, larch

Maple also permits the use of negative indices. For a list, set or se-
quence L, L[-1] always refers to the last entry, L[-2] to the penultimate
entry, etc.
> L := [ a , b , c , d ] :
> L[-1] ;

d

Negative indices can appear in ranges, but the entries must still be
traversed from left to right. Trying to go in the opposite direction will
result in an empty structure, or an error. In the next example, L[-2..2]
attempts to access the entries of the list L in the wrong direction,
but L[2..-2] works because it selects from the second entry to the
penultimate entry.
> L := [ sheep , pig , cow , llama , goat ] ;

L � [sheep, pig, cow, llama, goat]
> L[-2..2] ;
Error, invalid subscript selector
> L[2..-2] ;

[ pig, cow, llama]

Negative indices can be used in the same way with matrices and vectors,
but some care is needed if they are used with arrays (see Section 7.5).

2.19 Element-wise Operations

Maple allows operations to be applied to each element of a list or set
in a single statement. This also applies to matrices and vectors (see
Chapter 5), arrays (Section 7.5) and tables (Section 7.6). Element-wise
operations are indicated by appending a tilde symbol ~ to an operator
or command. In the next example, L2 refers to the square of the list L
(whatever that means), but the tilde symbol in the last statement causes
each individual element to be squared and placed in a new list.
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> L := [ 1 , 2 , 3 ] :
> L^2 ;

[1, 2, 3]2

> L^~ 2 ;

[1, 4, 9]

Similarly, one cannot take the cosine of a list, but it is possible to take
the cosine of each individual element.
> S := [ 0 , Pi / 2 , Pi ] :
> cos( S )
Error, invalid input: cos expects its 1st argument, x, to
be of type algebraic, but received [0, (1/2)*Pi, Pi]
> cos~( S ) ;

[1, 0,−1]

An element-wise operation can also be used to perform arithmetic
operations on corresponding entries in two lists or sets of equal size.
> L := [ 1 , 2 , 3 ] :
> M := [ 4 , 6 , 8 ] :
> M *~ L ;

[4, 12, 24]

Some element-wise operations don’t actually require a tilde symbol, but
they still work if it is present.
> L := [ 0 , Pi / 2 , Pi ] :
> evalf( L ) ;

[0., 1.570796327, 3.141592654]
> evalf~( L ) ;

[0., 1.570796327, 3.141592654]

Unfortunately, there doesn’t seem to be any underlying logic that deter-
mines which commands work without a tilde symbol, and which don’t.
Therefore, as a general rule it is best to always include the tilde to indi-
cate an element-wise operation, unless the operation is mathematically
defined in an element-wise fashion (e.g. vector and matrix addition, and
multiplication by scalars). In this case Maple respects the definition
without a tilde symbol; to do otherwise would be absurd.
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It is possible to apply some, but not all, element-wise operations
to sequences. Typically, only arithmetic operators will work. This is
because commands generally expect a sequence of arguments, and when
combined with an element-wise operation this leads to ambiguity.
> S := -Pi , 0 , Pi :
> S^~ 2 ;

π2, 0, π2

> y := 1 :
> x := 0 , 1 , sqrt( 3 ) :
> arctan~( y , x ) ;
Error, (in arctan) expecting 1 or 2 arguments, got 4

Trying to allow for element-wise operations with sequences in cases such
as this would be more trouble than it is worth; the simple remedy is to
convert the sequence into a list using square brackets.
> y := 1 :
> x := 0 , 1 , sqrt( 3 ) :
> arctan~( y , [ x ] ) ;[

1
2
π,

1
4
π,

1
6
π

]
� Maple allows names to start with a tilde symbol (without name quotes),

so a statement such as M *~L is potentially misleading; it actually
means M *~ L, but it could be mistaken for M * ~L. Parentheses can
be used to disambiguate such constructions, but spaces are usually
sufficient.

� In older versions of Maple, it was necessary to use the map and map2
commands for element-wise operations. For most purposes the tilde
symbol is simpler and clearer, but map and map2 still have some uses,
because their behaviour is different from ~ in certain cases. Execute
?map for more details (see also ?elementwise).

2.20 The seq, add and mul Commands

The seq command is used to generate sequences. Often this is more
concise than manually entering the terms.
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> seq( j^2 , j = 1 .. 10 ) ;

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

> seq( x^p , p = 1 .. 5 ) ;

x, x2, x3, x4, x5

> L := [ 2, 4, 6, 8, 10 ] ;

L � [2, 4, 6, 8, 10]

> seq( L[q] , q = 3 .. 5 ) ;

6, 8, 10

> seq( j , j = 0 .. 10 , 2 ) ;

0, 2, 4, 6, 8, 10

Note the third argument used to obtain a non-unit step size in the last
statement (seq( 2 * j , j = 0 .. 5) could also be used). It is also
possible to generate a sequence of letters from the alphabet. The default
behaviour is then to step forward one letter at a time, but a third argument
can be used to request a different increment, as before.
> seq( c , c = "a" .. "g" ) ;

"a", "b", "c", "d", "e", "f", "g"

> seq( c , c = "g" .. "a" , -1 ) ;

"g", "f", "e", "d", "c", "b", "a"

> seq( c , c = "a" .. "z" , 3 ) ;

"a", "d", "g", "j", "m", "p", "s", "v", "y"

In versions up to Maple 18, the in operator was used to generate a
sequence of all the elements contained in a larger object, such as a
sequence, string, vector or matrix (see Chapter 5), or an array (see
Section 7.5). However, this is rarely needed in Maple 2015 and later.
> seq( "pig" ) ; # Maple 2015 & later

"p", "i", "g"

> seq( u , u in "pig" ) ;

"p", "i", "g"
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> v := < 2 , 0 , 9 > ; # Creates a vector

v �

⎡⎢⎢⎢⎢⎢⎢⎣
2
0
9

⎤⎥⎥⎥⎥⎥⎥⎦
> seq( v ) ; # Maple 2015 & later

2, 0, 9
> seq( x , x in v ) ;

2, 0, 9

In the next example, the in operator is used to obtain a sequence by
squaring all the entries in the list L.
> L := [ 6 , 2 , 5 , 7 ] :
> seq( c^2 , c in L ) ;

36, 4, 25, 49

In Maple 2015 and later, this can also be achieved using an element-wise
operation (see Section 2.19).
> L := [ 6 , 2 , 5 , 7 ] :
> seq( L^~ 2 ) ; # Maple 2015 & later

36, 4, 25, 49

The add command can be used to sum a finite number of numerical
values. It has much the same syntax as seq, and should not be confused
with the sum command, which attempts summation of series using
analytic and approximate methods (see Section 3.6).
> add( j^2 , j = 1 .. 10 ) ;

385
> L := [ 1 , 2 , 3 , 4 , 5 ] ;

L � [1, 2, 3, 4, 5];
> add( L[j] , j = 3 .. 5 ) ;

12
> add( L ) ; # Maple 2015 & later

15
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> add( p , p in L ) ;

15

Similarly, the mul command can be used to multiply a sequence of values.

> mul( j^2 , j = 2 .. 10 ) ;

13168189440000
> S := 4 , 7 , 2 , 9 ;

S � 4, 7, 2, 9
> mul( S[j] , j = 1 .. 3 )

56
> mul( S^~ 2 ) ; # Maple 2015 & later

254016
> mul( c^2 , c in S ) ;

254016

Arguments passed to seq, add and mul are subject to special evaluation
rules. The index is not affected by prior assignments, and has its old
value (if any) restored after the command has been executed.
> q := Pi :
> seq( q^3 , q = 1 .. 5 ) ;

1, 8, 27, 64, 125
> q ;

π

> L := [ 27 , 42 , 99 , -1 , 17 ] :
> add( q , q in L ) ;

184
> q ;

π

The process of executing a seq, add or mul command with two or
three arguments is as follows. First, Maple determines the index variable
and assigns its initial value, using the second argument (parts of which
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may need to be evaluated). Only now is the first argument evaluated.
Subsequent terms are generated by updating the index (using the third
argument if it is present), and evaluating the first argument again. This
is illustrated by the next example, which works because j is assigned
a value from the range 1, . . . , 5 before Maple attempts to evaluate
evalf[ j ]( Pi ).
> seq( evalf[ j ]( Pi ) , j = 1 .. 5 ) ;

3., 3.1, 3.14, 3.142, 3.1416

Using a symbol to specify the number of significant digits required would
result in an error.

2.21 Types

When performing simple mathematical calculations with Maple, it is
rarely necessary to distinguish between different types of data such as
real and complex numbers. However, there are many situations where this
is important. A complete list of the types available can be obtained by
executing ?type, and the whattype command can be used to determine
the type of a given object.
> whattype( 1 ) ;

integer

> whattype( 3.2 ) ;

float

The result returned by whattype is the basic type of the argument, but it
should be noted that objects in Maple can also have one or more subtypes.
The type command can be used to test whether an expression is of a
given type.
> type( 1 , integer ) ;

true

> type( 1 , numeric ) ;

true
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> type( 1 , complex ) ;

true

For lists and sets, we can check either the type of the container object,
or the types of both the container and its elements. In the latter case, the
test will return true only if all of the elements match the specified type.
> L := [ 1 , 2 , 3 ] :
> S := { a , 2 , 3 } :
> type( L , list ) ;

true
> type( L , list( numeric ) ) ;

true
> type( S , set( numeric ) ) ;

false

However, this does not work with sequences.
> s := 1 , 2 , 3 :
> whattype( s ) ;

exprseq
> type( s , exprseq ) ;
Error, invalid input: type expects 2 arguments, but
received 4

When the last statement is executed, s is evaluated to 1, 2, 3 before being
passed to type, which expects only two arguments but now receives four.
Attempting to avoid this problem using unevaluation quotes fails because
there is actually no sequence type in Maple.
> s := 1 , 2 , 3 :
> type( 's' , exprseq ) ;
Error, type `exprseq` does not exist

Another technical issue arises when a type shares its name with a
command. For example, there is a Matrix type, and a command Matrix,
which can be used to construct matrices (see Chapter 5 for details).
> M := Matrix( 2 , 2 ) ;

M �
[
0 0
0 0

]
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> type( M , Matrix ) ;

true

> type( M , Matrix( numeric ) ) ;
Error, (in Matrix) dimension parameters are required for
this form of initializer

Here, the test to determine whether M is a matrix succeeds, but the
second test fails because arguments undergo prior evaluation before being
passed to the type command, and Matrix( numeric ) is not a valid
use of the Matrix command. The solution is to use unevaluation quotes.

> M := Matrix( 2 , 2 ) ;

M �
[
0 0
0 0

]

> type( M , 'Matrix( numeric )' ) ;

true

The same issue affects vectors and also arrays (Section 7.5).
An alternative syntax for testing types uses the type operator ::. This

is similar to a relational operator in that evalb must be used to cause the
query to evaluate to either true or false.

> evalb( I :: integer ) ;

false

> evalb( I :: complex ) ;

true

> evalb( [ 1 , 2 , 3 ] :: list( numeric ) ) ;

true

> M := Matrix( 2 , 2 ) ;

M �
[
0 0
0 0

]

> evalb( M :: 'Matrix( numeric )' ) ;

true
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2.22 Packages

Maple’s facilities can be extended by loading packages, which define
additional commands. The packages discussed here are provided as
standard with Maple. There are also paid-for add-on products called
toolboxes, which should not be confused with packages. To load a
package, use the with command.

> with( LinearAlgebra ) :

In general, each package need only be loaded once in a worksheet, but
issuing a restart command (or closing and reopening) will remove any
packages that have been loaded. Packages can also be removed using
unwith.

> unwith( LinearAlgebra ) :

It is possible to access package commands without loading via with.
The next example shows two methods that can be used to obtain all
possible permutations of the list [a, b, c], without the need to load the
combinat package, which provides the necessary command. The first
syntax is universal, whereas the member selection operator :- does not
work with some older packages.

> combinat[ permute ]( [ a , b , c ] ) ;

[[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]]

> combinat :- permute( [ a , b , c ] ) ;

[[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]]

One reason to use this method is to avoid situations in which packages
conflict with each other by creating commands with identical names,
but different behaviour. This is relatively rare, but an example occurs in
Section 5.5.

Some packages contain subpackages, which can be accessed by loading
the parent package first. The next example loads EscapeTime, which is
a subpackage of the Fractals package.

> with( Fractals ) :
> with( EscapeTime ) :
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Alternatively, a subpackage can be loaded directly, without loading
anything else from the parent package. Executing the following statement
loads the Basics component of the Student package only.
> with( Student[ Basics ] ) :

� To see a list of commands and subpackages provided by a package,
use a semicolon to terminate the with command.

� If Maple unexpectedly returns a statement unevaluated, check that all
necessary packages have been loaded.
> fibonacci( 10 ) ; # 10th Fibonacci number

fibonacci(10)

> with( combinat ) : # Load the combinatorics package
> fibonacci( 10 ) ; # Try again...

55

� To open the help page for a package command, it is sometimes
necessary to give the package name as the topic and the command
as the subtopic (see Section 2.2). For example ?point leads to a
mathematical definition of a point in Maple 18, and to a description
of different units used for measuring angles in Maple 2015 and 2016.
On the other hand ?plottools,point leads to the help page for the
point command, which is part of the plottools package.

Many of the packages provided with Maple are likely to be useful to
small subsets of users, and some are intended for advanced users only.
Nevertheless, it is important to be aware that a very wide range of features
is available. To give an indication of this, a selection of the most widely
used packages is listed here, along with brief details of what each of them
contains. We also mention some more esoteric packages that offer features
one might not expect to find in Maple. A small number of packages
have been deprecated, and replaced by newer packages. These include
group, linalg, networks, numtheory, stats and student (with a
lower case ‘s’). A complete list of all available packages, along with
details of deprecated packages and their replacements can be obtained
using ?index,package.
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Mathematical Extensions
• combinat

Combinatoric functions, including permutations, combinations and
partitions.
• CurveFitting

Commands for fitting functions through (or close to) data.
• DETools

Extends the features available for working with ordinary differential
equations.
• GraphTheory

Commands for creating and manipulating graphs, meaning sets of
vertices (or nodes) connected by edges. For graphs of functions or
data, see Chapter 6.
• LinearAlgebra

Extends the facilities available for working with vectors and matrices.
See Chapter 5 for details of some features provided by this package.
• NumberTheory

Provides commands for investigating the properties of natural numbers
and integers.
• PDETools

Commands for analytically solving partial differential equations.
• SolveTools

Commands for solving systems of equations. This package is used
internally by the solve command (see Chapter 4) but it can also be
used directly to instruct Maple to use a particular solving method. This
can lead to greater efficiency in some cases (e.g. where a system of
equations is known to be linear). However, direct use of SolveTools
is recommended only for advanced users.
• Statistics

Commands for statistics and data analysis.
• SumTools

Commands for summing series. This package is used internally by the
sum command (see Section 3.6). Beyond this its facilities are largely
intended for advanced users. However, the Telescoping command
(which is part of the DefiniteSum subpackage) is used in Section 3.6.
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• VectorCalculus
Vector calculus operations such as divergence and curl, and line and
surface integrals.

Graphics Extensions
• Fractals

Commands for creating and manipulating fractals.
• ImageTools

Advanced commands for image processing.
• plots

Extends the features available for visualising mathematical structures.
See Chapter 6 for a discussion of some features provided by this
package.
• plottools

Facilities for drawing basic graphical objects such as arrows, circles
and spheres. See Sections 6.5 and 6.7 for examples that use this
package.

Programming Facilities
• CodeTools

Facilities for optimising Maple code.
• FileTools

Commands for manipulating external files.
• Grid

Facilities for parallel programming, using a cluster or network.
• LibraryTools

Enables storage of Maple code in user-defined libraries. Code stored
in this way can be used from different worksheets without the need to
create multiple copies. This is very useful for large projects.
• Threads

Commands for parallel programming, using a computer with multiple
CPUs.
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Interacting with Other Software and Languages
• CodeGeneration

Translation tools for converting Maple code into other programming
languages, including C, Fortran, Matlab, Perl and Python.
• ExcelTools

Import and export facilities for reading from, and writing to, Excel
spreadsheets.
• Matlab

Provides a set of commands that form the ‘Matlab link’. These send
commands and other information from Maple to Matlab (provided this
is available) and retrieve results. Also provides facilities for translating
Matlab code into Maple code.
• MMaTranslator

Translation tools for converting Mathematica expressions and files
into their Maple equivalents.

Programming the Maple Interface
• ContextMenu

Allows users to customise the effect of right-clicking on a Maple
expression.
• DocumentTools

Commands for programming embedded objects such as buttons,
palettes and slider bars in Maple worksheets.
• Maplets

Commands for creating graphical user interface elements such as
message windows and dialogue boxes. Using this package, it is possible
to create demonstration worksheets that users can operate without the
need for expertise in Maple.

Miscellaneous
• AudioTools

Facilities for reading and writing WAVE audio files, and for performing
basic audio processing.
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• CUDA
Enables the use of graphics hardware to accelerate linear algebra
routines. At the time of writing, this seems to be at an early stage
of development, and only one operation (matrix multiplication) is
supported. The external_calling command, which can be used to
invoke procedures written in C or Fortran from within Maple, is likely
to provide a better option for dealing with very large linear systems
containing numerical data.
• Student

Designed to assist students in learning standard undergraduate math-
ematics, this package provides facilities for displaying step by step
calculations and visualising mathematical concepts.
• Units

Commands for converting physical quantities between different unit
systems.
• URL

Commands for sending and receiving data over a network using
universal resource locators (URLs).
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Algebra and Calculus

This chapter introduces some of Maple’s symbolic computation facilities.
Many of the commands discussed have apparently self-explanatory pur-
poses; for example simplify simplifies its argument, expand expands
and factor factorises. However, a word of warning is in order here:
commands may not always produce the result you expect. This is because
the precise meaning of terms such as ‘factorise’ can be ambiguous: should
quadratic terms with complex roots be factorised, or left as they are? Are
approximate roots acceptable? If so, how accurate do they need to be?
What if the exact expressions for the roots are more than a page long? The
answers to questions such as these may be obvious to you (and perhaps
to other human mathematicians), but they usually come from the wider
context of the problem, about which Maple knows nothing. Consequently,
it is often necessary to supply algebraic manipulation commands with
optional arguments to coerce Maple into producing the results you need.

� Always tell Maple exactly what you want. Otherwise you may end up
with something different.

� It is possible to perform some operations by right-clicking on Maple
output and selecting an option from the resulting context menu. Maple
will automatically insert the appropriate command and will reference
the output using an equation label (see Section 2.3).

� Do not rely on a context menu if the statement it produces is unfamiliar.
Doing so can lead to extreme frustration if the operation fails or
produces an unexpected result.

3.1 Manipulating Expressions

The factor command is used to factorise polynomials. By default,
Maple factorises in terms of coefficients of the same type as those in

71



72 Algebra and Calculus

the original expression. In the next example, the polynomial has integer
coefficients, so only one root (the integer) is obtained.
> factor( x^3 - x^2 + 3 * x + 5 ) ;

(x + 1)
(
x2 − 2x + 5

)
A second argument can be provided to extend the field over which the
factorisation is sought.
> factor( x^3 - x^2 + 3 * x + 5 , I ) ;

−(x + 1) (−x + 1 + 2 I) (x − 1 + 2 I)

More than one such extension can be supplied in a list or a set.
> factor( x^2 + 2 , [ sqrt( 2 ) , I ] ) ;

−
(
I
√

2 − x
) (

I
√

2 + x
)

Another possibility is to supply the complex option to the factor
command. This causes Maple to factorise fully, but it will produce a
floating point result, even if all of the roots are actually integers.
> factor( x^3 - x^2 + 3 * x + 5 , complex ) ;

(x + 1.00000000000000) (x − 1. + 2. I) (x − 1. − 2. I)
> factor( x^3 - 6 * x^2 + 11 * x - 6 , complex ) ;

(x − 1.00000000000000) (x − 2.00000000000000)
(x − 3.00000000000000)

Here Maple has switched to hardware arithmetic (see Section 2.8), so
the answer is displayed with 15 significant digits. Obtaining an exact
factorisation without knowing which extensions to supply requires some
trickery, but it is possible; see Section 4.1.

The expand command is used to expand out brackets (for series
expansions, see Section 3.9). It can also be used to apply well-known
mathematical rules such as addition formulae and double angle formulae.

> expand( ( x + 1 )^2 ) ;

x2 + 2x + 1
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> expand( sin( x + y ) ) ;

sin(x) cos(y) + cos(x) sin(y)

> expand( tanh( 2 * x ) ) ;
2 sinh(x) cosh(x)

2 cosh(x)2 − 1
To prevent one or more subexpressions from being expanded, a sequence
of optional arguments can be passed to expand. In the next example,
it is obvious that expanding the brackets in the first term will lead to
simplification, but nothing is gained by applying addition formulae to
sin(x + y) and ex−y , so this is prevented.
> S := ( ( x - 1 )^2 - ( x + 1 )^2 )

* sin( x + y ) * exp( x - y ) ;

S �
(
(x − 1)2 − (x + 1)2) sin(x + y)ex−y

> expand( S , x + y , x - y ) ;

−4 sin(x + y)ex−y x

The little known command frontend can be used to multiply out brackets
but perform no other expansions. Full details of frontend are beyond
the scope of this book (see ?frontend), but the syntax for expansion is
shown in the next example.
> S := ( ( x - y )^2 - ( x + y )^2 )

* sin( x + y ) * exp( x - y ) ;

S �
(
(x − y)2 − (x + y)2) sin(x + y)ex−y

> frontend( expand , [ S ] ) ;

−4 sin(x + y)ex−y xy

Note the difference between this and the previous example: preventing
expansion of sin(x + y) and ex−y by passing the optional arguments
x + y and x - y to expand would also prevent expansion of (x − y)2

and (x + y)2 (of course sin( x + y ) and exp( x - y ) could be
used as the optional arguments instead).

� Commands can be combined to reduce the need for ditto operators
(or temporary variables) at intermediate steps.
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> f := ( x - sqrt( 1 + x ) )^4
+ ( x + sqrt( 1 + x ) )^4 - 2 ;

f �
(
x − √1 + x

)4
+

(
x +
√

1 + x
)4 − 2

> expand( f ) ; # or expand( % )

2x4 + 12x3 + 14x2 + 4x

> factor( % ) ;

2x (x + 1) (x2 + 5x + 2)

> factor( expand( f ) ) ; # Do it all at once

2x (x + 1) (x2 + 5x + 2)

In most cases, Maple simplifies expressions without assistance, but it
does miss some possibilities. The simplify command encourages it to
try harder.
> ( 1 + t )^5 - ( 1 - t )^5 ;

(1 + t)5 − (1 − t)5

> simplify( % ) ;

2t5 + 20t3 + 10t

> cos( x )^2 + sin( x )^2 ;

cos(x)2 + sin(x)2

> simplify( % ) ;

1
> 4^(1/2) ; √

4
> simplify( % ) ;

2

� sqrt( 4 ) evaluates to 2 without the simplify command. This is
one reason to prefer sqrt over ^(1/2).

Maple is careful when it performs simplifications involving square roots.
> simplify( sqrt( x^2 ) ) ;

csgn(x) x
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Here the complex sign function, which is defined as

csgn(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if − π
2
< arg(x) ≤ π

2
,

−1 otherwise,

appears because x could be complex (or negative). To ignore such
possibilities, use the symbolic option.
> simplify( sqrt( x^2 ) , symbolic ) ;

x

Another method is to instruct Maple to make an assumption.
> sqrt( x^2 ) assuming( x > 0 ) ;

x

See Section 3.10 for more about assumptions.
In many cases, there is no accepted ‘simplest’ form of an expression;

different forms may be easier to use for different tasks. In these circum-
stances, commands with precisely defined effects are to be preferred.
For example, normal puts an expression over a common denominator.
With the expanded option, it also multiplies out the brackets in the
denominator.
> P := 1 / ( 1 + x ) - 1 / ( 1 - x ) ;

P �
1

1 + x
− 1
−x + 1

> normal( P ) ;
2x

(1 + x)(x − 1)

> normal( P , expanded ) ;
2x

x2 − 1
The convert command can be used to go in the opposite direction, and
split expressions into partial fractions.
> convert( 1 / ( x^2 - 1 ) , parfrac ) ;

1
2(x − 1)

− 1
2(x + 1)
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> Q := ( tan( x ) + x ) / ( x * tan( x ) ) ;

Q �
tan(x) + x

x tan(x)

> convert( Q , parfrac ) ;
1
x
+

1
tan(x)

� It is sometimes necessary to apply the simplify or expand command
before checking whether two expressions are equal.
> evalb( ( a + b )^2 = a^2 + b^2 + 2 * a * b ) ;

false
> evalb( expand( ( a + b )^2 )

= a^2 + b^2 + 2 * a * b ) ;

true
> evalb( ( a + b )^2 - ( a^2 + b^2 + 2 * a * b ) = 0 ) ;

false
> evalb( simplify( ( a + b )^2

- ( a^2 + b^2 + 2 * a * b ) ) = 0 ) ;

true

� It can be difficult to force Maple to display an expression in a particular
form. To check your own answer to a problem it is usually best to
subtract it from Maple’s answer and apply simplify to the result.

3.2 Extracting Parts of an Expression

The collect command is used to arrange an expression into coefficients
multiplied by powers of a given quantity. Subsequently, the coeff
command can be used to extract the coefficients. In the next example,
an expression is arranged into powers of x, and the coefficient of each
power is obtained.
> p := expand( ( x + y + z )^2 ) ;

p � x2 + 2xy + 2xz + y2 + 2yz + z2

> q := collect( p , x ) ;
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q � x2 + (2y + 2z)x + 2yz + z2 + y2

> coeff( q , x , 2 ) ;

1

> coeff( q , x , 1 ) ;

2y + 2z

> coeff( q , x , 0 ) ;

2yz + z2 + y2

It is also possible the collect the coefficients of more complex expressions.

> f := 2 * exp( x ) + 4 + x * exp( x ) ;

f � 2ex + 4 + xex

> collect( f , exp( x ) ) ;

4 + (x + 2)ex

> coeff( % , exp( x ) , 1 ) ;

x + 2

The numer and denom commands can be used to extract the numerator
and denominator from a fraction.
> f := ( x + 1 ) / ( x - 1 ) ;

f �
x + 1
x − 1

> numer( f ) ;

x + 1

A note of caution: the terms ‘numerator’ and ‘denominator’ are not
well-defined for an expression that does not consist of a single fraction.
Using numer and denom in such cases can have surprising results.
> a := 1 / x - ( 2 * x + 1 ) / x^2 ;

a �
1
x
− 2x + 1

x2

> numer( a ) ;

−x − 1
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> denom( a ) ;

x2

Here, Maple puts the expression over a common denominator and
simplifies as far as possible before finding the numerator and denominator.
However, it won’t always do this. In the next example, the results share a
common factor of x, which one might reasonably expect to be cancelled.

> b := 1 / x^3 - ( 1 - x + x^2 ) / x^3 ;

b �
1
x3 −

1 − x + x2

x3

> numer( b ) ;

−x(x − 1)

> denom( b ) ;

x3

In general, the safest approach is to apply the normal command to an
expression before using numer or denom.

> b := normal( 1 / x^3 - ( 1 - x + x^2 ) / x^3 ) ;

− x − 1
x2

> numer( b ) ;

−x + 1

> denom( b ) ;

x2

The op command can be used to select a particular operand (term) from
an arbitrary expression. This must be used with extreme care, because
the order in which terms appear can vary, and exactly what constitutes a
‘term’ is not obvious in all cases.

> f := a + b + c :
> op( 1 , f ) ;

a

> p := ( x + 2 ) * ( x - 1 ) * ( x - 2 ) :
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> op( 2 , p ) ;

x − 1

> q := ( 2 * x ) * ( x + 2 ) :
> op( 1 , q ) ;

2

The last result arises because the parentheses around 2 ∗ x are removed
during automatic simplification (which does not change the expression).
Consequently, Maple considers the first operand of q to be 2.

� Only use op to select terms if you can see the result it produces; do
not use this method in an automated worksheet.

3.3 Substitutions

There are two main commands for performing substitutions in expressions.
The subs command performs literal replacements. Multiple substitutions
can be given in a set or a list.
> A := ( x^2 + y^2 ) / ( 3 * x + k ) ;

A �
x2 + y2

3x + k
> subs( x = k , A ) ;

1
4

k2 + y2

k
> subs( { x = k , y = k } , A ) ;

1
2

k

> subs( [ x = c , y = c , k = c^2 - 3 * c ] , A ) ;

2

The algsubs command performs only one replacement, but it tries to
rearrange expressions so that the substitution can be applied in more
places. In the next example, subs finds a single instance of 1 + x2 and
replaces it with k, so that the result contains both x and k. The algsubs
command expresses the result in terms of k only.
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> R := ( x^2 + 1 ) / ( x^6 + x^4 + 2 ) ;

R �
x2 + 1

x6 + x4 + 2

> subs( 1 + x^2 = k , R ) ;
k

x6 + x4 + 2

> algsubs( 1 + x^2 = k , R ) ;
k

k3 − 2k2 + k + 2

There is an automatic simplification, but no evaluation (see Section 2.13)
after a substitution. Consequently, to insert a numerical value, it is best
to use eval.

> H := sin( 1 - t ) / cos( 1 - t ) ;

H � − sin(−1 + t)
cos(−1 + t)

> subs( t = 1 , H ) ; # No evaluation!

− sin(0)
cos(0)

> % ; # Causes an evaluation

0

> eval( H , t = 1 ) ; # Set t = 1 and evaluate

0

The eval command can also insert multiple values from a set or a list.

> B := cos( x ) + tan( y ) ;

B � cos(x) + tan(y)

> eval( B , [ x = Pi / 3 , y = Pi / 4 ] ) ;
3
2
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3.4 Functions

Mathematical functions are represented by functional operators in Maple.
These can be defined using arrow notation (- followed immediately by >).

> f := x -> 2 * x ;

f � x → 2x

> f( 1 ) ;

2

> f( a + b ) ;

2a + 2b

It is important to understand the difference between operator definitions
and ordinary assignments. This is illustrated by the following example.
> y := x^2 :
> x := 5 :
> y ;

25

> f := z -> z^2 ;

f � z → z2

> z := 5 :
> f ;

f

> f( 3 ) ;

9

Executing the first statement causes y to depend upon x, and the second
assigns the value 5 to x. When the third statement is executed, y evaluates
to x2, and then x evaluates to 5, so that the result is 25. On the other
hand, f is defined as an operator which takes one argument and returns
the square of that argument as its result. The symbol z plays the role of a
dummy variable, and assignments to z have no effect on f . The same
operator could be defined using any other name in place of z.
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> f := tomato -> tomato^2 ;

f � tomato→ tomato2

> f( 3 ) ;

9

� If Maple unexpectedly returns an expression unevaluated, check that
all necessary operator definitions have been executed.
> g := x -> x^5 + 4 :
> restart :
> g( 2 ) ; # restart deletes the definition of g

g(2)

� If Maple returns an unexpected result, check that variables and arrows
have not been omitted from operator definitions.
> h := x^2 :
> h( 2 ) ; # h isn't a functional operator...

x(2)2

Operators that depend on more than one variable can also be created
using arrow notation. In this case, parentheses are needed around the
variables before the arrow.
> g := ( x , y ) -> sin( x + y ) :
> g( 3.1 , 1.2 ) ;

−0.9161659367

Structures such as lists and sets can be used as arguments. The next
example defines a functional operator that tests for proper subsets (i.e. ⊂
as opposed to ⊆; see Section 2.17).
> proper_subset := ( A , B )

-> evalb( A subset B and not A = B ) ;

proper_subset � (A, B) → evalb(A ⊆ B and not A = B)

> proper_subset( { 1 } , { 1 , 2 } ) ;

true

> proper_subset( { a , b } , { a , b } ) ;

false
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Functions with piecewise definitions can be created using piecewise
along with the relational operators introduced in Section 2.15. In its basic
form, piecewise takes pairs of arguments. The first argument in each
pair describes a range and the second is a mathematical expression which
is used on this range. For example, the function

f (x) =
⎧⎪⎨⎪⎩
−1 if x ≤ 0,
x2 if x > 0,

can be defined and used in Maple as follows.

> f := x -> piecewise( x <= 0 , -1 , x > 0 , x^2 ) ;

f � x → piecewise(x ≤ 0,−1, 0 < x, x2)

> f( 1 / 2 ) ;
1
4

> f( -1 ) ;

−1

The boolean operators and and or can be used to set more than one
condition or to apply a definition on more than one range.

> g := x -> piecewise( x >= -2 and x <= 2 , 0 ,
x < -2 or x > 2 , x^2 ) :

> g( y ) ; ⎧⎪⎨⎪⎩
0 −2 ≤ y and y ≤ 2
y2 y < −2 or 2 < y

If an odd number of arguments is passed to piecewise, the last is
interpreted as an ‘elsewhere’ or ‘otherwise’ clause, meaning it is used
outside the ranges specified by the preceding arguments.

> g := x -> piecewise( x < -1 , x^2 , x > 1 , x , 1 ) :
> g( y ) ; ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y2 y < −1
y 1 < y

1 otherwise
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To define a functional operator using the result of an earlier calculation,
use the unapply command.

> expand( ( ( 1 + t )^3 - ( 1 + t + t^2 )^3 ) / t^2 ) ;

−t4 − 3t3 − 6t2 − 6t − 3

> f := unapply( % , t ) ;

f � t → −t4 − 3t3 − 6t2 − 6t − 3

> f( 0 ) ;

−3

Multiple variables can be given separately, or in a list.

> A := expand( sin( x + y ) - sin( x - y ) ) ;

A � 2 cos(x) sin(y)

> g := unapply( A , x , y ) ;

g � (x, y) → 2 cos(x) sin(y)

> g( Pi , Pi / 2 ) ;

−2

> h := unapply( A , [ x , y ] ) ;

h � (x, y) → 2 cos(x) sin(y)

> evalf( h( 0 , 1 ) ) ;

1.682941970

When an operator is defined using arrow notation, the expression to
the right of the arrow undergoes a partial automatic simplification in
which no approximate calculations are performed, and the meaning of
ditto operators is not resolved (so something like f := x -> % will
never work — use unapply). There is no evaluation on either side of the
arrow. Therefore dummy variables are not affected by prior assignments.
Similarly, a value assigned to a name is not affected if the same name is
used as a dummy variable in an operator definition. In the next example,
the fact that x has the value 4 has no effect when f is defined, and x still
has the value 4 afterwards.
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> x := 4 : # Doesn't affect f
> f := x -> 2 * exp( x ) ; # Doesn't affect x

f � x → 2ex

> f( 1 ) ;

2e
> x ;

4

Another consequence of the evaluation rules for arrow notation is that
commands in an operator definition are not executed until the operator is
used. In most circumstances this is the desired behaviour: Maple waits
until values have been provided for dummy variables before attempting
to apply the operation. However, a very common mistake is to expect
Maple to perform some manipulations on the expression to the right of
the arrow, as shown in the next example.
> g := x -> numer( ( x + 1 ) / ( x - 1 ) ) ;

g � x → numer
(

x + 1
x − 1

)

> g( 1 ) ;
Error, (in g) numeric exception: division by zero

Here, numer does not act until after the value 1 has been substituted for
x, and the division has been attempted, leading to a disaster. To correctly
define g using the result of the numer command, we should use unapply.

> g := unapply( numer( ( x + 1 ) / ( x - 1 ) ) , x ) ;

g � x → x + 1
> g( 1 ) ;

2

The same technique can be used to replace parameters by their values
before an operator is defined. In the next example, f (x) and g(x) depend
on the parameter a. Arrow notation is used to apply the definition
f (x) = ax + 1. Subsequently, when f (4) is evaluated, a has the value 2,
so the result returned is 9. When the value of a is changed to 0, this

.003
 14:32:51, subject to the Cambridge Core terms



86 Algebra and Calculus

affects the definition of f , so that f (4) now evaluates to 1. On the other
hand, g is defined using the unapply command. Prior evaluation of the
arguments causes a to be replaced by 2 before the definition is made.
Hence, g(x) = 2x + 1, which does not change when a is set to 0.
> a := 2 :
> f := x -> a * x + 1 ;

f � x → ax + 1

> g := unapply( a * x + 1 , x ) ;

g � x → 2x + 1

> f(4) ;

9

> g(4) ;

9

> a := 0 :
> f( 4 ) ;

1

> g( 4 ) ;

9

Before moving on, it’s worth mentioning that Maple’s terminology with
regard to functions is somewhat unusual. For example, in mathematics
there is a tangent function, which is generally represented by the notation
tan. However, in Maple the tangent function is implemented using a
procedure (see Chapter 8 for more about these) called tan. The functional
operators introduced in this section are all members of a special class
of procedure. What Maple calls a function would usually be referred
to as a function call, especially in computer science. Mathematically,
an expression such as tan(1.2) is actually just a number, but when we
enter this into Maple, we are instructing it to invoke its mechanism for
computing tangents, hence the term function call.
> whattype( tan( 1.2 ) ) ;

float
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> whattype( 'tan( 1.2 )' ) ;

function

> whattype( eval( tan ) ) ;

procedure

The need for eval in the last statement arises because procedures use last
name evaluation. See Section 8.10 for more about the effect of applying
eval to procedure names.

In this book, the term function is used in its usual mathematical sense.
On the rare occasions when this is necessary, we will refer to function
calls to avoid using the word function with two different meanings. We
will use the term functional operator (or in some cases procedure) to
refer to a Maple implementation of a mathematical function. The main
thing to keep in mind to avoid any confusion is that the term functional
operator refers to an object that most mathematicians would just think of
as a function.

3.5 Limits

Limits can be computed using the limit command.
> limit( sin( x ) / x , x = 0 ) ;

1

The arguments undergo evaluation before Maple attempts to compute
the limit itself, which can cause errors if the dummy variable has been
used earlier in the worksheet.
> x := 5 :
> limit( x * exp( -x ) , x = infinity ) ;
Error, invalid input: limit expects its 2nd argument, p, to
be of type Or(name = algebraic, set(name = algebraic)), but
received 5 = infinity

As noted in Section 2.13, the unwanted prior evaluation can be prevented
without the need to unassign x, or make any other changes, by using
unevaluation quotes (in which case x will still have the value 5 after the
limit is computed).
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> x := 5 :
> limit( 'x * exp( -x )' , 'x' = infinity ) ;

0

> x ;

5

The inert form of the limit command, which begins with a capital letter,
is useful for checking for prior assignments and other potential problems
such as typographical errors. This places the operator ‘on hold’, but the
rest of the expression still undergoes evaluation.

> a := -1 :
> Limit( arctan( a * t ) , t = infinity ) ;

lim
t→∞

(− arctan(t)
)

Notice that the value for a has been substituted into the limit, and that
Maple shows the lim operator in grey, to indicate that it is inert. Once it is
clear that there are no problems with the input, the limit can be evaluated
by changing the upper case L to lower case and executing again, or by
using the value command.

> a := -1 :
> Q := Limit( arctan( a * t ) , t = infinity ) ;

Q � lim
t→∞

(− arctan(t)
)

> value( Q ) ;

− 1
2
π

A similar effect can be achieved using unevaluation quotes, but this results
in a temporary hold; the limit will be calculated after n + 1 evaluations,
where n is the number of quote pairs.

> L := 'limit'( exp( t ) / cosh( t ) , t = infinity ) ;

L � lim
t→∞

et

cosh(t)

> L ;

2
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3.6 Summing Series

The sum command can be used to find the sum of a series.
> sum( 1 / j^2 , j = 1 .. infinity ) ;

1
6
π2

As with limits, there is an inert form which is useful for detecting
problems with the input.
> Sum( j^2 , j = 1 .. m ) ;

m∑
j=1

j2

> value( % ) ;
1
3

(m + 1)3 − 1
2

(m + 1)2 +
1
6

m +
1
6

For finite series, the sum command may cause Maple to simply add the
terms directly.
> sum( sin( j ) , j = 1 .. 8 ) ;

sin(1) + sin(2) + sin(3) + sin(4) + sin(5) + sin(6) + sin(7) + sin(8)

However, it will try summation by analytic methods if the number of
terms is large (though of course this may not be possible).
> sum( sin( j ) , j = 1 .. 1000 ) ;

1
2

sin(1) cos(1001)
cos(1) − 1

− 1
2

sin(1001) − 1
2

sin(1) cos(1)
cos(1) − 1

+
1
2

sin(1)

It is also possible to try certain methods used by the sum command
individually (execute ?sum,details for full details). The most useful
command of this type (at least with simple series) is Telescoping. This
is contained in the DefiniteSum package, which is a subpackage of
SumTools. The term telescoping refers to the manner in which naval
telescopes can be collapsed down toward their ends; one can see the
motivation for this nomenclature by multiplying the geometric series

Sn = 1 + a + · · · + an

by (1 − a)/(1 − a) (assuming that a � 1).
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> with( SumTools[ DefiniteSum ] ) :
> Telescoping( a^j , j = 1 .. 10 ) ;

a11

a − 1
− a

a − 1
> simplify( Telescoping( sin( j ) , j = 1 .. 8 ) ) ;

1
2

sin(1) cos(9) − sin(9) cos(1) + sin(9) − sin(1)
cos(1) − 1

Whilst Telescoping produces more concise results than sum in certain
circumstances, it works with a narrower class of series, and fails in many
cases.
> with( SumTools[ DefiniteSum ] ) :
> Telescoping( cos( j^2 ) , j = 1 .. 10000 ) ;

FAIL

By contrast, sum always evaluates finite series with known limits explicitly,
though the result may not be useful unless evalf is applied.
> sum( cos( j^2 ) , j = 1 .. 10000 ) ;

# Generates a very large expression
> evalf( % ) ;

−7.818387626

Note that the order in which the terms in a series are summed can vary,
leading to different rounding errors, and slightly different results. In cases
where adding terms is known to be the best (or only) option, the add
command is generally recommended, since it does not attempt summation
by analytic means (see Section 2.20). In particular, add, and not sum,
should be used to add together the elements of a container structure such
as a list or set.
> add( 1 / j , j = 1 .. 10 ) ;

7381
2520

> L := [ 1 , 2 , 3 , 4 ] :
> add( L ) ; # Maple 2015 & later

10
> add( L[j] , j = 1 .. 4 ) ;

10
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If one of the limits of a sum is symbolic or infinite, sum may return
the series unevaluated. Further evaluation may be possible later.
> s := sum( cos( j^2 ) , j = 1 .. m ) ;

s �
m∑
j=1

cos( j2)

> m := 3 :
> s ;

cos(1) + cos(4) + cos(9)

Approximate values for infinite series can be obtained using evalf, even
when exact evaluation is not possible.
> sum( exp( -j^2 ) / j , j = 1 .. infinity ) ;

∞∑
j=1

e− j2

j

> evalf( % ) ;

0.3770784254

� Summing all terms in an infinite series is clearly impossible, so add
cannot be used in such cases.

Applying evalf to the inert command Sum prevents Maple from
attempting to sum an infinite series by analytic means, so that it uses
approximate methods from the outset.
> evalf( Sum( exp( -j^2 ) / j , j = 1 .. infinity ) ) ;

0.3770784254

However, it usually doesn’t take Maple very long to decide that summation
by analytic means cannot be achieved, and there are some cases (typically
involving slowly convergent series) where Maple’s analytical methods
work, but its approximate methods fail.
> evalf( Sum( sin( j ) / j , j = 1 .. infinity ) ) ;

∞∑
j=1

sin( j)
j
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> evalf( sum( sin( j ) / j , j = 1 .. infinity ) ) ;

1.070796327

For this reason, evalf( sum( . . . ) ) is preferable to the form with
Sum in most cases.

3.7 Differentiation

Expressions can be differentiated using diff.
> diff( x^2 + 1 , x ) ;

2x

The diff command can also be used to differentiate more than once.
> f := x -> x^4 :
> diff( f( x ) , x , x ) ;

12x2

> diff( f( x ) , x , x , x ) ;

24x

The sequence operator $ can be used to make repeated differentiations
more concise. For example, x$3 and y$2 evaluate to x, x, x and y, y,
respectively, and we can exploit this as follows.
> f := ( x , y ) -> cos( x^3 * y ) :
> diff( f( x , y ) , x$3 , y$2 ) ;

−27 sin(x3y)x12y3 + 216 cos(x3y)x9y2 + 384 sin(x3y)x6y

−120 cos(x3y)x3

There is an inert form of the differentiation command, Diff.
> f := ( x , y ) -> ( y^2 + x^2 ) * exp( x ) :
> Diff( f( x , y ) , x$5 , y$2 ) ;

∂7

∂y2∂x5
(
(y2 + x2)ex

)
> value( % ) ;

2ex

Maple also has the differential operator D. The main difference between
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D and diff is that the former differentiates operators, whereas the latter
acts on expressions.
> D( arctan ) ;

z → 1
z2 + 1

> diff( arctan( x ) , x ) ;
1

x2 + 1
> D( arctan( x ) ) ; # Wrong!

D(arctan(x))

> diff( arctan , x ) ; # Wrong!

0

The differentiation operator can be used to conveniently obtain the value
of a derivative at a point.
> D( sin )( Pi ) ;

−1

Here, Maple differentiates the sine function and then passes the argu-
ment π to the resulting cosine function. The same result can be obtained
using diff and eval.
> eval( diff( sin( x ) , x ) , x = Pi ) ;

−1

The short form with D is used in specifying boundary and initial conditions
for differential equations (see Section 4.4). The D operator also provides
a shortcut to avoid using unapply with derivatives.
> f := x -> x^2 :
> g := D( f ) ;

g � x → 2x

To achieve the same effect using diff we need the following.
> f := x -> x^2 :
> g := unapply( diff( f( x ) , x ) , x ) ;

g � x → 2x
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3.8 Integration

To integrate an expression, use int.
> int( 2 * x , x ) ;

x2

Note that this does not create a constant of integration. Definite integrals
can be evaluated by providing a range for the integration variable.
> int( exp( -x ) , x = 0 .. 1 ) ;

1 − e−1

> int( exp( -x^2 ) , x = -infinity .. infinity ) ;√
π

The inert integration command Int is particularly useful for checking
that the input is correct. As usual, the operator can be activated using
value.
> Int( ( 6 - cos( x )^2 + cos( x )^4 ) * tan( x )

/ cos( x )^3 , x = 0 .. Pi / 4 ) ;∫ 1
4 π

0

(
6 − cos(x)2 + cos(x)4) tan(x)

cos(x)3 dx

> value( % ) ;
5
2
√

2

Maple is very good at evaluating integrals exactly, but in some cases it
produces long expressions, or expressions that involve esoteric functions,
both of which can be difficult for a human to interpret. To obtain a
numerical result for a definite integral, use evalf.
> int( 1 / sqrt( 2 - sin( t )^2 ) , t = 0 .. 1 ) ;

1
2
√

2 EllipticF
(
sin(1),

1
2
√

2
)

> evalf( % ) ;

0.7659499255

If int is unable to evaluate an integral, it will be returned unevaluated,
but evalf still works.
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> int( 1 / ( sin( x ) + x ) , x = 1 .. 2 ) ;∫ 2

1

1
sin(x) + x

dx

> evalf( int( 1 / ( sin( x ) + x ) , x = 1 .. 2 ) ) ;

0.4140851550

Combining evalf with int in this way causes Maple to try analytic
methods, and then resort to numerical approximations if these fail. On the
other hand, using the inert form prevents exact evaluation of the integral,
so that numerical approximations are used from the outset. In contrast to
the case of series summation (Section 3.6), this is often much faster.
> evalf( Int( 1 / ( cos( x ) + x ) , x = 1 .. 2 ) ) ;

0.6378460922

� Use unapply to define a functional operator using a previously
calculated integral.
> int( 1 / sqrt( 1 - x^2 ) , x ) ;

arcsin(x)

> f := unapply( % , x ) ;

f � x → arcsin(x)

> f( 1 ) ;
1
2
π

Double and triple integrals can be entered as nested single integrals,
or by specifying the integration variables and ranges in a list. In the
following example, the inert form is used to check the input before the
integrals are evaluated using value.
> Int( Int( x^2 , x = 0 .. y ) , y = 0 .. 1 ) ;∫ 1

0

∫ y
0

x2 dxdy

> value( % ) ;
1
12
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> Int( exp( -x^2 - y^2 ) ,
[ x = 0 .. infinity , y = 0 .. infinity ] ) ;∫∞

0

∫∞
0

e−x
2−y2

dxdy

> value( % ) ;
1
4
π

Apart from being slightly shorter, the form with a single integration
command has the advantage that it enables Maple to use the limits in the
outer integral to make assumptions when evaluating the inner integral.
For example, consider the double integral∫ 2

1

∫ ∞

y

1
x2 dxdy.

With the nested form, Maple will evaluate the inner integral without
reference to the range for y (this is the effect of prior evaluation on the
first argument to the outer int command). The fact that the inner integral
does not exist if y ≤ 0 generates a warning. Using a single int with a
list of variables and ranges avoids this.
> int( int( 1 / x^2 , x = y .. infinity ) , y = 1 .. 2 ) ;
Warning, unable to determine if 0 is between y and infinity;
try to use assumptions or use the AllSolutions option

ln(2)

> int( 1 / x^2 , [ x = y .. infinity , y = 1 .. 2 ] ) ;

ln(2)

There are also cases where assumptions on the outer variable cause the
single int form to evaluate much more quickly.

� The VectorCalculus package provides commands for surface, line
and path integrals. Execute ?VectorCalculus,details for more
information.
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3.9 Series Expansions

Series expansions can be obtained using the series command.
> series( cosh( x ) , x ) ;

1 +
1
2

x2 +
1
24

x4 +O(x6)

> series( 1 / ( 1 - 2 * x ) , x ) ;

1 + 2x + 4x2 + 8x3 + 16x4 + 32x5 +O(x6)

To remove the error term from a series expansion, use the polynom
option for convert.
> convert( series( arctan( x ) , x ) , polynom ) ;

x − 1
3

x3 +
1
5

x5

It is also possible to perform a series expansion about an arbitrary point.
> series( log( x ) , x = 3 ) ;

ln(3) +
1
3

(x − 3) − 1
18

(x − 3)2 +
1
81

(x − 3)3 − 1
324

(x − 3)4

+
1

1215
(x − 3)5 +O

(
(x − 3)6)

The order at which terms are discarded from a series expansion is
determined by the value of the Order environment variable, the default
value of which is 6.
> series( exp( x ) , x ) ;

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +O(x6)

> Order := 8 :
> series( exp( x ) , x ) ;

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6 +
1

5040
x7 +O(x8)

Alternatively, a third argument can be passed to the series command to
obtain more (or fewer) terms.
> series( arccos( x ) , x , 11 ) ;

1
2
π − x − 1

6
x3 − 3

40
x5 − 5

112
x7 − 35

1152
x9 +O(x11)
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As with Order, the 11 here tells Maple to discard terms of order 11 or
higher, not to retain terms up to x11.

� Maple will allow the assignment
> Order := infinity :

but this really isn’t a good idea.

It should be noted that the order at which terms are discarded applies
to intermediate calculations, and may be different from the leading
order error in the answer. In the next example, Maple expands ex − 1,
retaining terms up to x4, so that the error is O(x5). However, the result is
subsequently divided by x, so ultimately the answer has an O(x4) error.
> series( ( exp( x ) - 1 ) / x , x , 5 ) ;

1 +
1
2

x +
1
6

x2 +
1
24

x3 +O(x4)

In some cases, the error in the answer has a higher order than the error at
intermediate steps.
> series( sin( x ) * sinh( x ) , x , 5 ) ;

x2 +O(x6)

Here, sin(x) and sinh(x) are expanded up to the terms in x3. There are
no terms in x4, and the O(x5) terms are discarded. However, the leading
term in both series is x, so the error goes from O(x5) to O(x6) when they
are multiplied together. In some similar cases, Maple will underestimate
the order of the error.
> series( log( 1 + x ) * log( 1 - x ) , x , 5 ) ;

−x2 − 5
12

x4 +O(x5)

> series( log( 1 + x ) * log( 1 - x ) , x , 8 ) ;

−x2 − 5
12

x4 − 47
180

x6 +O(x8)

The second expansion clearly shows that the error in the first is O(x6).
Interestingly, Maple remembers the outcome of series expansions, so if
the order of the above statements is reversed, it uses the more accurate
expansion to obtain the correct error when O(x5) terms are discarded.
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> series( log( 1 + x ) * log( 1 - x ) , x , 8 ) ;

−x2 − 5
12

x4 − 47
180

x6 +O(x8)

> series( log( 1 + x ) * log( 1 - x ) , x , 5 ) ;

−x2 − 5
12

x4 +O(x6)

In complicated cases, it is difficult to predict how many terms will be
present in the final result on the basis of the number of terms used in
intermediate calculations.

3.10 Assumptions

Some operations do not make sense unless assumptions are made about
parameters involved. This is often the case for integration; for example,
the integral ∫∞

0

dx
(x + a)2(x + b)

does not exist if a ≤ 0 or b ≤ 0. Attempting to evaluate such integrals
using int will often produce unhelpful results such as ‘undefined’ or
bizarre expressions involving arithmetic with infinity. To avoid this,
assumptions can be specified at the end of a statement.
> Q := 1 / ( ( x + a )^2 * ( x + b ) ) :
> int( Q , x = 0 .. infinity ) assuming( a > 0 and b > 0 ) ;

− ln(b)a − ln(a)a + a − b
a(a2 − 2ab + b2)

Note the use of and here to apply multiple assumptions. Assumptions
made using assuming are discarded after the statement to which they
are attached has been executed. On the other hand, assumptions made
using the assume command remain in force until the variable in question
has been unassigned.
> assume( a > 0 ) :
> limit( exp( -a * t ) , t = infinity ) ;

0
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> int( exp( -a * t ) , t = 0 .. infinity ) ;
1

a~
Here, Maple displays a~ to show that a is subject to an assumption. It is
possible to prevent the tilde symbol from appearing, but doing so can
produce misleading results, as demonstrated by the example at the end of
this section. To enquire about assumptions on a variable, use the about
command.
> assume( b :: integer ) ;
> about( b ) ;
Originally b, renamed b~:

is assumed to be: integer

The evalb command introduced in Section 2.15 is not aware of assump-
tions. The is command can be used instead.
> assume( y > 0 ) ;
> evalb( y > 0 ) ;

0 < y~

> is( y > 0 ) ;

true

We conclude this section by examining the effect of assumptions in
more detail. When the assume command is executed, a new variable
is created with a tilde symbol ~ as the last character in its name, and
this is assigned as the value of the original variable. The new variable
is rather unusual. It is called an escaped local variable (see Section 8.3
for more about these), and access to this is only possible through its
association with the original variable. It cannot be accessed using name
quotes. Consider the following example.
> assume( n > 0 ) ;
> L := int( x^n , x = 0 .. 1 ) ;

L �
1

n~ + 1
> n := 1 ;

n � 1
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> L ;
1

n~ + 1
> `n~` := 1 ;

n~ � 1

> L ;
1

n~ + 1
Here, assume( n > 0 ) creates an escaped local variable n~, and
Maple assigns this as the value of n. After the second statement has been
executed, the expression L includes a reference to the escaped local. The
assignment n := 1 then breaks the association between n and n~, but
it has no effect on L, because L does not contain a reference to n. The
attempt to rectify the situation using name quotes in the penultimate
statement fails, because this creates a new variable; it is not the same as
the escaped local created by assume, despite the fact that it has the same
name. The only way in which the escaped local n~ can now be accessed
is through L itself (for example denom( L ) - 1). There are two ways
around this horrible situation. One possibility is to substitute a value for
n into L using eval.
> assume( n > 0 ) ;
> L := int( x^n , x = 0 .. 1 ) ;

L �
1

n~ + 1
> L := eval( L , n = 1 ) ;

L �
1
2

When the last statement is executed, n evaluates to the escaped local n~
before being passed to eval. Using a slightly more elaborate construction,
the escaped local can be replaced with n itself, thereby allowing us to
continue working with L as an expression involving n.
> assume( n > 0 ) ;
> L := int( x^n , x = 0 .. 1 ) ;

L �
1

n~ + 1
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> L := subs( n = 'n' , L ) ;

L �
1

n + 1
> unassign( 'n' ) ;
> L ;

1
n + 1

Here, the left-hand n in the first argument to subs undergoes prior
evaluation to the escaped local n~, but the unevaluation quotes block
prior evaluation of the right-hand n. Hence subs now replaces n~ with n.
The assumption on n must be removed by breaking its association with
n~ using unassign before L is evaluated again, or else n will evaluate
to the escaped local! The display of tilde symbols on variables with
assumptions can be prevented by using the interface command to set
showassumed to 0. This does not prevent the creation of escaped local
variables, but these now have the same names as the original variables,
which can be rather confusing.
> interface( showassumed = 0 ) :
> assume( a > 0 ) ;
> a ;

a

> b := a :
> a := 1 ;

a � 1
> b ;

a

Here, the assume command creates an escaped local variable called a,
and the original a is assigned this as its value. When b is assigned the
value a, the original a evaluates to the escaped local, but this doesn’t
happen on the left-hand side of the penultimate statement. Hence, when
the final statement is reached, the original a has the value 1, but b
evaluates to the escaped local a, which itself has no value. Clear?
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Solving Equations

This chapter introduces three commands for solving equations: solve,
which is used to solve one or more algebraic equations by exact methods,
fsolve, which uses approximate methods, and dsolve, for solving
differential equations. These share some important common properties.

• If no right-hand side is given, Maple will assume that this is zero.
> solve( x^2 + 4 * x + 3 ) ;

−1,−3

• Sometimes Maple won’t return anything at all if it finds no solutions.
There are two possible causes for this: there really are no solutions, or
they do exist, but Maple is unable to find them.
> solve( exp( 1 / x ) = 0 ) ; # No solutions exist

• When solving multiple equations, it is usual to specify these in a set
(see Section 2.17). Independent variables, and corresponding initial
estimates or search ranges, can also be given in sets. In some cases lists
can be used instead. To avoid undue complications, sets will be used
throughout this chapter, except for one example in Section 4.3, where
ordering of elements is crucial, and therefore sets cannot be used.

The LinearSolve command, which is used to solve linear systems of
equations in matrix form, is considered in Section 5.7.

4.1 Solving Single Equations

Unsurprisingly, the basic command for solving equations is solve.
> solve( 3 * x + 2 = 0 , x ) ;

− 2
3

103



104 Solving Equations

Here, the second argument tells Maple to solve for the independent
variable x. This can be omitted in simple cases (a drawback to doing so
is discussed at the end of this section). However, in the next example, the
second argument is needed to tell Maple to solve for y and not k.
> solve( exp( 3 * y ) - k = 0 , y ) ;

1
3

ln(k)

Note that y is not assigned the value ln(k)/3 by the solve command
(likewise x and −2/3 in the first example). To make the assignment, we
can use y := % as the next statement, or solve and assign in a single step
as follows.
> y := solve( exp( 3 * y ) - k = 0 , y ) ;

y �
1
3

ln(k)

When solve finds more than one solution, it returns these as a sequence
(see Section 2.16). An index in square brackets can be used to access the
individual results, but in general it is a good idea to enclose the entire
solve command in square brackets to create a list. This accounts for
situations where a single solution is returned, which could otherwise
cause problems in an automated worksheet.
> sols := solve( x^2 + 4 * x + 3 = 0 , x ) ;

sols � −1,−3

> sols[1] ; # OK

−1

> sols[2] ; # OK

−3

> sols := solve( 2 * y - 7 = 0 , y ) ;

sols �
7
2

> sols[1] ; # Disaster (7
2

)
1
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> sols := [ solve( 2 * y - 7 = 0 , y ) ] ; # Try again

sols �
[
7
2

]
> sols[1] ;

7
2

� In conjunction with mul (see Section 2.20), the solve command can
be used to form a factorisation of a polynomial with complex and/or
radical roots without the need to provide a list of trial candidates (cf.
factor in Section 3.1).
> p := x^4 + 4 * x^3 + 8 * x^2 + 12 * x + 15 :
> R := [ solve( p = 0 , x ) ] :
> mul( x - r , r in R ) ;(

x − I
√

3
) (

x + I
√

3
)
(x + 2 + I)(x + 2 − I)

Sometimes Maple won’t give solutions explicitly.
> solve( x^4 - 3 * x^3 + 2 * x^2 + x + 1 = 0 , x ) ;

RootOf (_Z4 − 3_Z3 + 2_Z2 + _Z + 1, index = 1),
RootOf (_Z4 − 3_Z3 + 2_Z2 + _Z + 1, index = 2),
RootOf (_Z4 − 3_Z3 + 2_Z2 + _Z + 1, index = 3),
RootOf (_Z4 − 3_Z3 + 2_Z2 + _Z + 1, index = 4)

The explicit option can be used to coerce it into displaying roots in
terms of radicals wherever possible, but the result may be very long.
Using evalf may produce more tractable results, but it should be noted
that solving approximately with fsolve (see Section 4.3) is usually more
efficient than solving exactly and then approximating the results.
> solve( x^4 - 3 * x^3 + x^2 + x + 1 = 0 , x ,

explicit = true ) ; # Produces a very long result.

> evalf( solve( x^4 - 3 * x^3 + x^2 + x + 1 = 0 , x ) ) ;

1.389390683, 2.288794992,−0.3390928378 + 0.4466301000 I,
−0.3390928378 − 0.4466301000 I

Here, explicit = true can be abbreviated to just explicit, with the
same effect.
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� Commands that accept an optional argument in the form ‘key-
word = value’, where value can be either true or false, often allow
= true to be omitted. Apart from the explicit option to solve
shown above, examples include the discont option for the plot
command and the filledregions option for the contourplot
command (see Chapter 6).

If the second argument to solve is omitted, Maple solves for all
variables that remain in the first argument after it has undergone prior
evaluation.
> solve( x + y = 0 ) ; # Solve for both x and y

{x = −y, y = y}
> x := 2 :
> solve( x + y = 0 ) ; # Solve for y (x evaluates to 2)

−2

In general, it is best to explicitly specify the variable(s) for which to solve,
even when this is obvious. Failing to do so can lead to misleading results
if an independent variable used in a solve command has been assigned
a value earlier in the worksheet.
> x := 7 :
> solve( 4 * x + 3 = 0 ) ; # Produces no output

No output is produced by the above example, because the left-hand side
evaluates to 31 before the solve command is invoked, so no solutions are
found. With the second argument included, Maple detects the problem.
> x := 7 ;

x � 7

> solve( 4 * x + 3 = 0 , x ) ;
Warning, solving for expressions other than names or
functions is not recommended.
Error, (in solve) a constant is invalid as a variable, 7

This issue can be avoided by using a new symbol as the independent
variable, by unassigning x before invoking solve (see Section 2.11), or
by using unevaluation quotes.
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> x := 7 :
> solve( '4 * x + 3 = 0' , 'x' ) ;

− 3
4

� If an equation (or system of equations) is known to be linear, the
Linear command from the SolveTools package will obtain the
solution more rapidly than the generic solve command. Execute
?SolveTools,Linear for more details.

4.2 Solving Multiple Equations

The solve command can be used with simultaneous equations.
> eqn1 := x + y + z = 3 ;

eqn1 � x + y + z = 3
> eqn2 := 2 * x + 9 * y - 4 * z = 7 ;

eqn2 � 2x + 9y − 4z = 7
> eqn3 := 5 * x + 3 * y - z = 1 ;

eqn3 � 5x + 3y − z = 1
> solve( { eqn1 , eqn2 , eqn3 } , { x , y , z } ) ;{

x = − 4
9
, y =

5
3
, z =

16
9

}

Remember that braces {} are used to create sets (see Section 2.17);
Maple solves a set of equations for a set of unknowns, and it returns a
set of equations as its result. A very useful command in this situation is
assign, which converts equations into assignments, making the solutions
available for use later.
> eqn1 := 3 * w * t = 1 :
> eqn2 := 5 * w * t^2 = 1 :
> solve( { eqn1 , eqn2 } , { w , t } ) ;{

t =
3
5
,w =

5
9

}

> w ;

w
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> assign( solve( { eqn1 , eqn2 } , { w , t } ) ) :
> w ;

5
9

As with single equations, omitting the second argument to solve causes
Maple to solve for all variables remaining in the first argument after
any prior evaluations have been carried out. In the next example, q is
assigned a value before solve is used, so Maple solves for x and y.

> q := 2 :
> eqn1 := x + y + q = 1 :
> eqn2 := x + 2 * y - q = 3 :
> solve( { eqn1 , eqn2 } ) ;

{x = −7, y = 6}
However, misleading results may be produced if an independent variable
has been assigned a value earlier in the worksheet (as in the final paragraph
of Section 4.1), so it is usually best to explicitly state the variables for
which to solve.

Under some circumstances, the solutions to a system of equations are
returned using RootOf notation with no index. In this case the allvalues
command can be used to obtain all possible solutions. Alternatively, the
explicit option for the solve command can be used.

> eqn1 := x^2 + y^2 = 1 :
> eqn2 := x - y = 2 :
> solve( { eqn1 , eqn2 } , { x , y } ) ;{

x = RootOf (2_Z2 + 4_Z + 3) + 2, y = RootOf (2_Z2 + 4_Z + 3)
}

> allvalues( % ) ;{
x = 1 +

1
2

I
√

2, y = −1 +
1
2

I
√

2
}
,
{

x = 1 − 1
2

I
√

2, y = −1 − 1
2

I
√

2
}

> solve( { eqn1 , eqn2 } , { x , y } , explicit ) ;{
x = 1 +

1
2

I
√

2, y = −1 +
1
2

I
√

2
}
,
{

x = 1 − 1
2

I
√

2, y = −1 − 1
2

I
√

2
}

A particular set of solutions can be selected using an index in square
brackets (cf. single equations with multiple solutions in Section 4.1).
However, to account for situations in which only one solution is present,
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it is best to enclose the entire solve command in square brackets, to
create a list.
> eq1 := x^2 + y^2 = 1 :
> eq2 := y = 2 * x :
> sols := [ solve( { eq1 , eq2 } , explicit ) ] ;

sols �
[{

x =
1
5
√

5, y =
2
5
√

5
}
,
{

x = − 1
5
√

5, y = − 2
5
√

5
}]

> assign( sols[2] ) :
> x , y ;

− 1
5
√

5, − 2
5
√

5

4.3 Solving Approximately

Equations can be solved approximately using fsolve.
> fsolve( x^3 + x - sin( x ) + 2 = 0 , x ) ;

−1.200814175

As with solve, the second argument specifies the variable(s) for which
to solve. In general, fsolve tries to locate one solution to an equation
or system of equations. A single polynomial in a single variable is an
exception to this; in this case all the real roots are returned.
> fsolve( x^4 - 12 * x^3 + 10 * x^2 + 1 , x ) ;

1., 11.09822334

To obtain all complex solutions, use fsolve with the complex option.
> fsolve( x^4 - 12 * x^3 + 10 * x^2 + 1 , x , complex ) ;

−0.0491116676638473 − 0.296129289849573 I,
−0.0491116676638473 + 0.296129289849573 I, 1.,

11.0982233353277

Here Maple has switched to hardware arithmetic (see Section 2.8 for an
explanation) so that 15 significant figures are shown in the results.

The fsolve command accepts a search range or an initial estimate as
its second argument. These are useful if you already have some idea for
where to look for a root.
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> f := x -> x * sin( x ) + 10 * x^3 - 20 * x^2 + 4 :
> evalf( f( -1 ) ) ;

−25.15852902
> evalf( f( 0 ) ) ;

4.
> # There must be a root between -1 and 0, so...
> fsolve( f( x ) , x = -1 .. 0 ) ;

−0.4153853154
> # Now look elsewhere...
> f( 1.8 ) ;

−0.72707426
> # Quite small; maybe there is a root nearby.
> fsolve( f( x ) , x = 1.8 ) ;

1.827263041

A system of equations or expressions contained in a set can be used as
the first argument to fsolve. The variables for which to solve can also
be given in a set.
> eqn1 := x^2 - y^3 + z = 0 :
> eqn2 := sin( x ) + exp( -y ) - z^2 = 0 :
> eqn3 := cos( x ) - z = 0 :
> fsolve( { eqn1 , eqn2 , eqn3 } , { x , y , z } ) ;

{x = −10.08561146, y = 4.655934577, z = −0.7894809220}
Similarly, a set of ranges or initial guesses can be provided when solving
simultaneous equations.
> eq1 := x^2 + y^2 = 1 :
> eq2 := y = x^3 :
> fsolve( { eq1 , eq2 } , { x = 0 .. 1 , y = 0 .. 1 } ) ;

{x = 0.8260313577, y = 0.5636241622}
> fsolve( { eq1 , eq2 } , { x = -0.8 , y = -0.5 } ) ;

{x = −0.8260313577, y = −0.5636241622}
The fsolve command can accept a functional operator (more generally,

a procedure) as its first argument, in which case it looks for an argument
which causes this to evaluate to zero.
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> g := x -> cos( x ) - x :
> fsolve( g ) ;

0.7390851332

As before, an initial estimate for the root or a search range can be provided
as a second argument.
> y := x -> 4 * x * cos( x ) - x^3 + 1 :
> fsolve( y , -1 ) ; # N.B. no x = before -1

−1.036025382

> fsolve( y , 1 .. 2 ) ; # N.B. no x = before 1 .. 2

1.321111087

More than one functional operator can be provided as the first argument to
fsolve in a set or list, but in this case search ranges and initial estimates
must be contained in lists, because the ordering of the entries is used to
determine which range or estimate is to be used for which variable. The
next example finds two solutions to the equations

(x − 1)2 + 4y2 = 4 and (x − 2)2 + (y − 2)2 = 9,

using fsolve. The operators f and g are defined to represent the
differences between the left- and right-hand sides, so that they evaluate
to zero at the points where solutions occur.
> f := ( x , y ) -> ( x - 1 )^2 + 4 * y^2 - 4 ;

f � (x, y) → (x − 1)2 + 4y2 − 4

> g := ( x , y ) -> ( x - 2 )^2 + ( y - 2 )^2 - 9 ;

g � (x, y) → (x − 2)2 + (y − 2)2 − 9

> fsolve( [ f , g ] , [ 1 , -1 ] ) ; # Use initial guesses

[1.5343725608635682,−0.96364489909355512]

> fsolve( [ f , g ] , [ -1 .. 0 , 0 .. 1 ] ) ; # Use ranges

[−0.63894206052515499, 0.57312060734228515]

Note that Maple has switched to hardware arithmetic, and provided
answers to 15 significant figures (see Section 2.8).

If the second argument to fsolve is omitted, Maple will solve for
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all variables remaining in the first argument after prior evaluations have
been carried out.
> r := 2 :
> fsolve( x^3 - r = 0 ) ; # Automatically solves for x

1.259921050

> f := ( x , y ) -> ( x - 1 )^3 + 4 * y^2 - 4 ;

f � (x, y) → (x − 1)3 + 4y2 − 4

> y := 0.1 :
> fsolve( f( x , y ) = 0 ) ; # Automatically solves for x

2.582091979

In fact the second argument usually can be omitted if no initial estimate
or search range is to be specified, because (unlike solving exactly) solving
for all variables is invariably the desired behaviour. Indeed, attempting
to numerically solve an equation involving fixed symbolic parameters
does not make sense, and leads to an error.
> fsolve( x^2 + k * x - 3 = 0 , x ) ;
Error, (in fsolve) k is in the equation, and is not
solved for

As the next example demonstrates, specifying the variable(s) for which to
solve helps to detect problems caused by assignments made earlier in the
worksheet, as it does when solving exactly (Section 4.1), but the usual
remedy using unevaluation quotes doesn’t always work with fsolve.
> x := 0 :
> fsolve( x^3 - exp( x ) - 1 = 0 ) ; # Produces no output

> fsolve( x^3 - exp( x ) - 1 = 0 , x ) ;
Error, (in fsolve) invalid arguments
> fsolve( 'x^3 - exp( x ) - 1 = 0' , 'x' ) ;
Error, (in fsolve) invalid arguments

Here, x evaluates to 0 before being passed to fsolve, so that no solutions
are found at the first attempt. In the second attempt, prior evaluation of the
second argument results in Maple being told to use 0 as the independent
variable, causing an error, which is preferable to a misleading lack of
results. In the last statement, prior evaluation is blocked, but an error
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occurs because x undergoes evaluation at some time after being passed
to fsolve, which is rather unusual behaviour for a Maple command. The
best way to avoid this is to use functional operators (or more generally,
procedures), rather than equations or expressions.
> x := 0 :
> g := x -> x^3 - exp( x ) - 1 :
> fsolve( g ) ; # But not fsolve( g( x ) ) ;

2.081116467
> fsolve( g , 4 .. 5 ) ; # Use a search range

4.503671127

4.4 Differential Equations

The dsolve command is used to solve ordinary differential equations
(ODEs).
> diff( y( x ) , x ) + A * y( x ) = 0 ;

d
dx

y(x) + Ay(x) = 0

> dsolve( % , y( x ) ) ;

y(x) = _C1e−Ax

Maple uses the notation _C1, _C2, . . . to represent arbitrary constants in
the solution. The second argument to dsolve tells Maple what function
it should solve for. This can be omitted in most cases. Provided that the
first argument contains derivatives of only one function there can be no
ambiguity, and Maple will work out what to do automatically.
> dsolve( x * diff( y( x ) , x ) + y( x ) = x ) ;

y(x) =
1
2

x +
_C1

x
However, it can’t do this if the first argument to dsolve contains deriva-
tives of more than one function.
> dsolve( diff( y( x ) , x , x )

= diff( z( x ) , x ) , y( x ) ) ;

y(x) =
∫

z(x)dx + _C1x + _C2
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> dsolve( diff( y( x ) , x , x )
= diff( z( x ) , x ) , z( x ) ) ;

z(x) =
d
dx

y(x) + _C1

> dsolve( diff( y( x ) , x , x ) = diff( z( x ) , x ) ) ;
Error, (in dsolve) Required a specification of the
indeterminate function

Boundary and initial conditions can also be given; here one must use D to
denote differentiation, as described in Section 3.7. In the next example,
the first ODE is solved subject to the boundary conditions y(0) = 0
and y(1) = 1, and the second is solved subject to the initial conditions
z(0) = 0 and z′(0) = 1.
> ode1 := diff( y( x ) , x , x ) + diff( y( x ) , x )

- 2 * y( x ) = 0 ;

ode1 �
d2

dx2 y(x) +
d
dx

y(x) − 2y(x) = 0

> dsolve( { ode1 , y( 0 ) = 0 , y( 1 ) = 1 } ) ;

y(x) = − ex

e−2 − e
+

e−2x

e−2 − e
> ode2 := diff( z( t ) , t , t ) + z( t ) = 0 ;

ode2 �
d2

dt2 z(t) + z(t) = 0

> dsolve( { ode2 , z( 0 ) = 0 , D( z )( 0 ) = 1 } ) ;

z(t) = sin(t)

Note that the ODE and boundary or initial conditions are enclosed in
braces, to create a set. Defining a functional operator using the solution to
a differential equation requires some contortions. It is tempting to think
that assign might be useful here, but it is not so: in the last example,
this would convert z(t) = sin(t) into z(t) � sin(t), which is not what
we require. Instead, use rhs to extract the right-hand side and then use
unapply.
> ode := diff( z( t ) , t , t ) + z( t ) = 0 :
> dsolve( { ode , z( 0 ) = 0 , D( z )( 0 ) = 1 } ) ;

z(t) = sin(t)
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> z := unapply( rhs( % ) , t ) ;

z � t → sin(t)

> z( Pi ) ;

0

Coupled systems can also be solved using dsolve. In this case, Maple
solves a set of equations and conditions for a set of unknown functions.
> eqn1 := diff( A( t ) , t ) = A( t ) + 4 * B( t ) ;

eqn1 �
d
dt

A(t) = A(t) + 4B(t)

> eqn2 := diff( B( t ) , t ) = A( t ) - 2 * B( t ) ;

eqn2 �
d
dt

B(t) = A(t) − 2B(t)

> ics := A( 0 ) = 0 , B( 0 ) = 1 ;

ics � A(0) = 0, B(0) = 1

> dsolve( { eqn1 , eqn2 , ics } , { A( t ) , B( t ) } ) ;{
A(t) =

4
5

e2t − 4
5

e−3t, B(t) =
1
5

e2t +
4
5

e−3t
}

There are many differential equations that cannot be solved exactly in
terms of known functions. One possibility for this situation is a series
solution.
> ode := diff( y( x ) , x , x ) + x^3 * diff( y( x ) , x )

+ x * y(x) = 0 ;

ode �
d2

dx2 y(x) + x3
( d
dx

y(x)
)
+ xy(x) = 0

> bcs := y( 0 ) = 0 , D( y )( 0 ) = 2 :
> dsolve( { ode , bcs } , y( x ) , series ) ;

y(x) = 2x − 1
6

x4 − 1
10

x5 +O(x6)

To obtain further terms, it is necessary to increase the value of the Order
environment variable (see Section 3.9). When the series option is
used, the second argument to dsolve (the function for which to solve)
cannot be omitted. To calculate a solution using a numerical method, use
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the numeric option. The dsolve command then generates a procedure
which can be used to obtain the solution given a value for the independent
variable. The second argument to dsolve is mandatory in this case as
well.
> ode := diff( y( x ) , x ) = x + ( x + y( x ) )^4 ;

ode �
d
dx

y(x) = x + (x + y(x))4

> sol := dsolve( { ode , y(0) = 1 } , y( x ) , numeric ) ;

sol � proc(x_rkf45) . . . end proc
> sol( 0.1 ) ; [

x = 0.1, y(x) = 1.16673184290376
]

> sol( 0.2 ) ; [
x = 0.2, y(x) = 1.81574294037041

]
Here, Maple has switched to hardware arithmetic (see Section 2.8) and
computed results to 15 significant figures.

Differential equations make up a huge part of applied mathematics,
and as such a full treatment of all the facilities provided by Maple is
far beyond the scope of this book. More information about the options
available for use with dsolve can be obtained using ?dsolve and
?dsolve,details. Maple can also solve partial differential equations;
for more information see ?pdsolve and ?PDEtools.
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Linear Algebra

This allegedly shallow and outdated mode of thinking has now been
superseded, according to the postmodernists, by a much deeper “nonlin-
ear thought”. The precise content of this new mode of thought is never
explained very clearly — that would, perhaps, be too linear . . .

Alan Sokal, ‘Beyond the Hoax’1

Mechanisms for creating matrices and vectors are available by default
in Maple. Basic operations such as matrix addition and multiplication
are also available. However, to access the full range of linear algebra
facilities, it is necessary to load the LinearAlgebra package.
> with( LinearAlgebra ) :

This (along with the VectorCalculus package) supersedes the older
linalg package, which should not be used in new worksheets. Also
deprecated are the vector and matrix commands (with lower case v
and m). Use Vector and Matrix instead.

� To save time entering long commands and package names, type the
first few letters, and then press escape to bring up a list of possible
completions.

5.1 Creating Matrices and Vectors

There are several ways to create a matrix or a vector. If the entries are to
be typed manually, the most concise method is to use angle brackets <>.
A sequence of entries inside angle brackets produces a column vector,
whereas using vertical bars | in place of commas generates a row vector.

1 Oxford University Press (www.oup.com), 2008. Reprinted with permission.
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> < a , b , c > ; ⎡⎢⎢⎢⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎥⎥⎥⎦
> < a | b | c > ; [

a b c
]

For a matrix, each sequence of entries can represent either a row or a
column. In the former case, the sequences (not the entries!) must be
separated by semicolons, and in the latter by vertical bars.
> < 1 , 2 , 3 ; 4 , 5 , 6 ; 7 , 8 , 9 > ;⎡⎢⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
7 8 9

⎤⎥⎥⎥⎥⎥⎥⎦
> < 1 , 2 | 4 , 5 | 6 , 8 > ;[

1 4 6
2 5 8

]
A number of more elaborate constructions are possible using angle
brackets; execute ?MVshortcut for full details. Zero vectors and zero
matrices can be constructed using the Vector and Matrix commands.
The fill option can be used to initialise a vector or matrix filled with
something other than zeros.
> Vector( 2 ) ; [

0
0

]
> Vector[ row ]( 3 , fill = 1 ) ;[

1 1 1
]

> Matrix( 2 , 3 ) ; [
0 0 0
0 0 0

]
> Matrix( 2 , fill = Pi ) ;[

π π

π π

]
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In the last statement, the number of columns is omitted. Maple assumes
that this is equal to the number of rows, so a square matrix is created.

Lists can be converted into vectors, using the Vector command, or
the convert command.
> U := Vector( [ 5 , -1 ] ) :
> V := Vector[ row ]( [ f , g ] ) :
> U , V ; [

5
−1

]
,
[

f g
]

> U := convert( [ 1 , Pi , q ] , Vector ) :
> V := convert( [ 1 , 2 , 3 ] , Vector[ row ] ) :
> U , V ; ⎡⎢⎢⎢⎢⎢⎢⎣

1
π

q

⎤⎥⎥⎥⎥⎥⎥⎦
,
[
1 2 3

]

There is no command analogous to Vector for conversion back into a
list, but convert( V , list ) is permitted for any vector V. A matrix
can be generated from a list of lists, in which each inner list contains the
entries for one row.
> A := convert( [ [ 1 , 2 ] , [ 4 , 0 ] ] , Matrix ) :
> M := Matrix( [ [ a , b ] , [ 0 , Pi ] ] ) :
> A , M ; [

1 2
4 0

]
,

[
a b
0 π

]
Yet another possibility is to use a functional operator (more generally, a
procedure) to initialise each element of a vector or matrix. This is useful
in cases where the entries follow a simple pattern.
> f := j -> j^2 :
> Vector( 3 , f ) ; ⎡⎢⎢⎢⎢⎢⎢⎣

1
4
9

⎤⎥⎥⎥⎥⎥⎥⎦
> Vector[ row ]( 4 , j -> y^(j-1) ) ;[

1 y y2 y3]

.005
 14:33:22, subject to the Cambridge Core terms



120 Linear Algebra

> f := ( j , p ) -> j^2 + p - 2 :
> Matrix( 3 , 4 , f ) ;⎡⎢⎢⎢⎢⎢⎢⎣

0 1 2 3
3 4 5 6
8 9 10 11

⎤⎥⎥⎥⎥⎥⎥⎦
> g := ( j , p ) -> I^j * x^p :
> Matrix( 4 , g ) ;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I x I x2 I x3 I x4

−x −x2 −x3 −x4

−I x −I x2 −I x3 −I x4

x x2 x3 x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Execute ?Matrix and ?Vector for more details about the options for
constructing matrices and vectors.

5.2 Accessing Vector and Matrix Entries

The individual entries in a vector can be accessed using an index in
square brackets. Assignments to the entries can be made in the usual way.

> V := Vector( 3 ) ;

V �

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
> V[1] ;

0
> V[2] := 4 :
> V ; ⎡⎢⎢⎢⎢⎢⎢⎣

0
4
0

⎤⎥⎥⎥⎥⎥⎥⎦
To access the elements of a matrix, a row number and a column number
must be given, separated by a comma.
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> A := Matrix( 2 , 2 , fill = a ) :
> A[1,2] := 7 :
> A ; [

a 7
a a

]
Parentheses can also be used to access vector and matrix elements, but
V(4) could be mistaken for a function call, whereas V[4] cannot, so
this is not generally recommended. However, there is one effect that can
only be achieved using parentheses: making an assignment to an entry
that is out of range automatically causes the vector or matrix to expand,
whereas it causes an error if square brackets are used.
> M := Matrix( 2 , 2 , fill = 1 ) ;

M �
[
1 1
1 1

]
> M[3,3] := 5 ;
Error, Matrix index out of range
> M(3,3) := 5 ; ⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
0 0 5

⎤⎥⎥⎥⎥⎥⎥⎦
Ranges can be used to access multiple elements of a matrix or vector

simultaneously, exactly as described in Section 2.18. In the next example,
the value π is placed in every entry in the first row of the matrix A.
> A := Matrix( 3 , 3 ) :
> A[1,..] := Pi :
> A ; ⎡⎢⎢⎢⎢⎢⎢⎣

π π π

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, a scalar assignment to a matrix, vector or part thereof causes the
value on the right-hand side to appear in every specified entry on the
left-hand side. It is also possible to overwrite sections of a matrix or
vector with part or all of another matrix or vector.
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> A := Matrix( 3 , 3 ) :
> V := < a , b > :
> A[1,2..3] := V :
> A[2..3,1] := V :
> A ; ⎡⎢⎢⎢⎢⎢⎢⎣

0 a b
a 0 0
b 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Here, the vector V is copied into the top right and the bottom left of
the matrix A. In each case, two entries in A are overwritten by the two
components of V . Overwriting multiple entries in a vector or matrix
with a list has a different effect: the whole list will be copied into each
specified position.
> v := Vector( 4 ) :
> v[1..3] := [ a , b , c ] :
> v ; ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[a, b, c]
[a, b, c]
[a, b, c]

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
To avoid this, convert the list into a matrix or vector before making the
assignment.
> v := Vector( 4 ) :
> v[1..3] := Vector( [ a , b , c ] ) :
> v ; ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
5.3 Displaying Matrices and Vectors

Maple won’t display a matrix or vector whose size in any dimension
is greater than the rtablesize interface variable, the default value of
which is 10. This can be changed using the interface command.

.005
 14:33:22, subject to the Cambridge Core terms



5.4 Addition, Multiplication and Scalar Products 123

> B := Matrix( 2 , 11 ) ;

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 x 11 Matrix
Data Type: anything
Storage: rectangular
Order: Fortran_order

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
> interface( rtablesize = 20 ) :
> B ; [

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

]
� Setting rtablesize to infinity allows Maple to display all matri-

ces and vectors.

5.4 Addition, Multiplication and Scalar Products

Basic calculations involving matrices and vectors, such as addition and
subtraction can be performed using ordinary arithmetic operators; there
is no need to include a tilde symbol to request an element-wise operation
(see Section 2.19).
> A := < a , b ; c , d > ;

A �
[
a b
c d

]
> B := < -a , c ; c , 0 > ;

B �
[−a c

c 0

]
> A + B ; [

0 b + c
2c d

]
> 2 * A ; [

2a 2b
2c 2d

]
> u := < 1 , 2 > :
> v := < 3 , 4 > :
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> u - 2 * v ; [−5
−6

]
Matrix multiplication is indicated using a dot . rather than an asterisk.
> A := < 1 , 2 ; 4 , 0 > ;

A �
[
1 2
4 0

]
> B := < 2 , 3 ; -1 , 4 > ;

B �
[

2 3
−1 4

]
> v := < 5 , -1 > ;

v �
[

5
−1

]
> A . v ; [

3
20

]
> A . B , B . A ; [

0 11
8 12

]
,

[
14 4
15 −2

]
The general rule is that asterisks denote commutative multiplication
(where x ∗ y = y ∗ x) whereas a dot indicates a multiplication that is not
commutative. Scalar products can also be calculated using the . operator.
In general (allowing for complex vector elements), scalar products are
not commutative, due to conjugation of the left operand.
> c := < 1 , 2 > :
> d := < 2 , 1 + I > :
> c . d ;

4 + 2 I
> d . c ;

4 − 2 I

It should be noted that the noncommutative multiplication operator .
has the same level of precedence as the commutative operator * (see

.005
 14:33:22, subject to the Cambridge Core terms



5.5 Vector Products and Norms 125

Section 2.3). This sets a trap for the unwary. Consider the following
example, involving a complex exponential and a scalar product (a type
of expression that appears frequently in wave theory).
> k := < Pi , 0 > ;

k �
[
π

0

]
> r := < 1 / 2 , 1 > ;

r �

⎡⎢⎢⎢⎢⎢⎢⎣
1
2
1

⎤⎥⎥⎥⎥⎥⎥⎦
> exp( I * k . r ) ;

−I

Most human mathematicians would read the expression eik·r as ei(k·r) ,
and since k · r = π/2 here, we might expect Maple to produce the result I.
However, * and . have equal precedence, so by working from left to right,
Maple obtains a scalar product in which the left operand is complex,
and conjugation then causes the appearance of the unexpected minus
sign. One way to avoid this is to use the DotProduct command from
the LinearAlgebra package, but some might consider the necessary
typing excessive and prefer to simply use parentheses.
> with( LinearAlgebra ) :
> k := < Pi , 0 > :
> r := < 1 / 2 , 1 > :
> exp( I * DotProduct( k , r ) ) ;

I

> exp( I * ( k . r ) ) ;

I

5.5 Vector Products and Norms

Vector products can be computed using the CrossProduct command, or
the &x operator, both of which are part of the LinearAlgebra package.
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> with( LinearAlgebra ) :
> b := < 1 , 2 , -1 > :
> c := < 3 , 1 , 0 > :

> CrossProduct( b , c ) ; ⎡⎢⎢⎢⎢⎢⎢⎣
1
−3
−5

⎤⎥⎥⎥⎥⎥⎥⎦
> c &x b ; ⎡⎢⎢⎢⎢⎢⎢⎣

−1
3
5

⎤⎥⎥⎥⎥⎥⎥⎦
The &x operator has higher precedence than the noncommutative multi-
plication operator. The next example works because the vector product is
evaluated before the scalar product (the opposite order would lead to an
error because a · b returns a scalar result, which cannot be used as an
operand in a vector product).
> a := < 4 , 3 , 1 > :
> b := < 1 , 2 , -1 > :
> c := < 3 , 1 , 0 > :
> a . b &x c ;

−10

To calculate the length of a vector, use the Norm command.
> with( LinearAlgebra ) :
> b := < 3 , 4 > :
> Norm( b , 2 ) ;

5

In general, if b has elements b1, . . . , bn , then Norm( b , p ) returns
the value

‖b‖p = ( |b1 |p + |b2 |p + · · · + |bn |p )1/p .

Thus, p = 2 produces the Euclidean norm

‖b‖2 =
√
|b1 |2 + |b2 |2 + · · · + |bn |2.

The Norm command can be used without a second argument, but the
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value it then chooses for p depends on which packages have been
loaded, and in which order. The LinearAlgebra package defaults to
the infinity norm (the largest of the magnitudes |b1 |, . . . , |bn |), whereas
the VectorCalculus package uses the Euclidean norm.
> b := < 1 , 2 , -1 > :
> with( LinearAlgebra ) :
> Norm( b ) ;

2
> with( VectorCalculus ) :
> Norm( b ) ; √

6

� Never use Norm without a second argument.

5.6 Other Matrix Operations

Many commands that operate on matrices have self-explanatory purposes.

> with( LinearAlgebra ) :
> A := < 1 , 2 ; 0 , -4 > ;

A �
[
1 2
0 −4

]
> Transpose( A ) ; [

1 0
2 −4

]
> MatrixInverse( A ) ; ⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

0 − 1
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
> Determinant( A ) ;

−4
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> Eigenvalues( A ) ; [
1
− 4

]

Computing the exact eigenvalues of a 3× 3 or larger matrix may result in
a long and complicated expression. As usual, evalf can be applied to
produce an approximate result. Note that the Eigenvalues command
returns a vector containing the eigenvalues, though a list would perhaps be
a more logical structure to use. Similarly, the Eigenvectors command
returns a vector containing the eigenvalues, followed by a matrix in which
each column is an eigenvector. The next example shows how to obtain
individual eigenvectors.

> with( LinearAlgebra ) :
> A := < 1 , 2 , 1 ; 4 , 0 , 5 ; 3 , 7 , -1 > ;

A �

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 1
4 0 5
3 7 −1

⎤⎥⎥⎥⎥⎥⎥⎦
> (* [2] chooses the matrix containing eigenvectors;

[1] would choose the vector containing eigenvalues *)
> evecs := Eigenvectors( evalf( A ) )[2] :

> evecs[..,1] ; # First eigenvector⎡⎢⎢⎢⎢⎢⎢⎣
0.323515575845761 + 0. I
0.656320721985336 + 0. I
0.681601630043410 + 0. I

⎤⎥⎥⎥⎥⎥⎥⎦
> Norm( % , 2 ) ;

1.

Here, Maple has switched to hardware arithmetic (see Section 2.8),
and given the entries to 15 significant figures. Note that approximately
computed eigenvectors are scaled so that their Euclidean norm is 1. On
the other hand, an exactly computed eigenvector is scaled so that its last
nonzero entry is 1.
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5.7 Solving Linear Systems

If A is a nonsingular n × n matrix and b is a vector with n elements,
then the LinearSolve command can be used to find the vector x which
satisfies the equation

Ax = b.

> A := < 1 , 2 , 1 ; 4 , 0 , 5 ; 3 , 7 , -1 > :
> b := < 1 , 2 , -1 > :

> with( LinearAlgebra ) :
> x := LinearSolve( A , b ) ;

x �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 27
31

12
31
34
31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> Norm( A . x - b , 2 ) ; # Check solution

0

Note that LinearSolve can also be used with matrices and vectors that
contain symbolic entries.

5.8 Copying Matrices and Vectors and Testing for
Equality

Be careful when copying matrices and vectors; the assignment operator
behaves in an ‘unusual’ way.
> U := < 1 , 2 > ;

U �
[
1
2

]
> W := U ;

W �
[
1
2

]
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> W[1] := 5 :
> W[2] := 7 :
> U , W ; [

5
7

]
,

[
5
7

]
After the assignment W := U, changing the elements of W affects U
as well! This is because assigning an object to a new name does not
create a copy. Instead it creates an extra name for the original object.
Consequently, in the above example, the names W and U actually refer to
the same data. To duplicate a matrix or vector, use the copy command.
> U := < 1 , 2 > :
> W := copy( U ) :
> W[1] := 5 :
> W[2] := 7 :
> U , W ; [

1
2

]
,

[
5
7

]
An alternative method is to include the range(s) for the index (indices)
on the right-hand side of the assignment, so W := copy( U ) can be
replaced by W := U[..] in the above example, with the same effect.
The next example demonstrates that references to the same data are
considered equal, but distinct matrices or vectors containing identical
entries are not.
> u := < 1 , 2 > ;

u �
[
1
2

]
> w := u ;

w �
[
1
2

]
> evalb( u = w ) ;

true

> y := < 1 , 2 > ;

y �
[
1
2

]
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> evalb( u = y ) ;

false

> z := copy( u ) ;

z �
[
1
2

]
> evalb( u = z ) ;

false

> { u , w , y } ; { [
1
2

]
,

[
1
2

]}
The last statement constructs a set from the elements u, w and y, each of
which is a vector with entries 1 and 2. Because the names u and w are
references to the same data, one of these entries is deleted. However, y is
a separate entity, and so is not deleted. The EqualEntries command
can be used to test for equality between matrices and vectors in the usual,
mathematical sense.
> M := < 1 , 2 ; 3 , 4 > ;

M �
[
1 2
3 4

]
> T := copy( M ) ;

T �
[
1 2
3 4

]
> evalb( T = M ) ;

false

> EqualEntries( T , M ) ;

true

The reason why these two different notions of equality exist is rather
technical. Maple usually stores only one copy of an object, and if multiple
names are associated with the same object, they must therefore point to
the same memory address. This provides a very efficient way to test for
equality. However, if the test is applied to duplicated matrices or vectors
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it will fail because the copies must be located at different addresses. The
same rules apply to arrays (Section 7.5) and tables (Section 7.6), but
testing for equality between objects of these types is far less common.
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Graphics

Maple can create plots of many different kinds. To see the full range
of possibilities, execute ?PlottingGuide to access the plotting guide.
This chapter focuses on the most common types of plot, but the principles
discussed apply to most of the others as well.

� To export a plot, right-click on it and choose Export . Of the available
formats, Encapsulated Postscript and Portable Document Format

are generally the best options for inclusion in a written document,
whereas JPEG Format and PNG can be used on a webpage.

6.1 Creating Basic Plots

The basic command for creating plots in Maple is plot.
> plot( x^2 ) ;
> plot( cos( theta ) ) ;

Here, the plotting variable (x in the first statement and θ in the second) is
determined automatically; it can also be specified explicitly by providing
a second argument to plot.
> plot( x^2 , x ) ;
> plot( cos( theta ) , theta ) ;

Multiple curves can be plotted by supplying the plot command with a
list as its first argument.
> plot( [ sqrt( x ) , cos( x ) , ln( x ) ] ) ;

Maple chooses what it thinks are sensible ranges for the axes; for the x
axis this is usually [−10, 10] or, when plotting a trigonometric function,
[−2π, 2π]. It is also possible to explicitly set the range for either of the
axes, or both.
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> plot( ( 1 + x ) / ( 1 - 3 * x^2 ) , x = -4 .. 4 ) ;
> plot( ( 1 + x ) / x^2 , x , y = -1 .. 1 ) ;
> plot( ( 2 - x ) / ( 1 - x )^2 , x = -4 .. 4 ,

y = -1 .. 10 ) ;

In the second and third statements, the y appearing in the last argument is
optional; its only effect is to set the label for the y axis. We could provide
only the range, or use a different label. Although this syntax is intuitive
(and still widely used) the preferred approach in modern versions of
Maple is to set the axis labels and ranges using the labels and view
options (see Section 6.2).

� The plot command will accept a set (as opposed to a list) as its
first argument, but remember that the order of the entries in a set is
subject to change. For example, executing the following statement
creates a red straight line and a blue parabola, which is somewhat
counterintuitive.
> plot( { x^2 , x } , colour = [ red , blue ] ) ;

(See Section 6.2 for more about plot options such as colour.)
Consequently, it is best to use a list to specify multiple curves to plot.

The plot command, and others such as polarplot (Section 6.3),
plot3d and contourplot (Section 6.4), can generate graphics using
functional operators (more generally, procedures) as well as expressions.
> plot( cos ) ;
> f := x -> x^3 :
> plot( f ) ;

However, mixing the two forms when plotting multiple curves is not
permitted (though the display command introduced in Section 6.5 can
be used to overcome this restriction).
> plot( [ cos , t^2 ] ) ;
Error, (in plot) cannot determine plotting variable
> plot( [ cos , t -> t^2 ] ) ; # Works!

When a plot is generated using functional operators, the range for the
independent variable, if present, must not be accompanied by a symbol.
> plot( exp , 0 .. 10 ) ; # N.B. no x = before 0 .. 10
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Instead, the labels option (Section 6.2) can be used to set the axis
labels.

Maple evaluates arguments before passing them to plotting commands,
which can lead to unexpected results if the variables have been used
earlier in the worksheet. The next example creates a straight line graph,
because x2 evaluates to 9 before the plot is created.
> x := 3 :
> plot( x^2 ) ;

Explicitly specifying the plotting variable enables Maple to detect prob-
lems of this type, because prior evaluation of the arguments then produces
a nonsensical result. The issue can then be resolved using unevaluation
quotes.
> x := 3 :
> plot( x^2 , x ) ;
Error, (in plot) unexpected option: 3
> plot( 'x^2' , 'x' ) ; # Works

However, the best approach is to use functional operators rather than
expressions, since then there is no danger of prior evaluation.
> x := 3 :
> f := x -> x^2 :
> plot( f ) ; # But not plot( f( x ) )

� If a plot command fails or produces an unexpected result, consider the
effect that prior evaluation has on the arguments, and use unevaluation
quotes where necessary, or consider using functional operators rather
than expressions.

6.2 Customising a Plot

There are many options for the plot command, and, since different
combinations will be used in different cases, these don’t need to be
entered in any particular order. Instead, a ‘keyword = value’ syntax is
used. However, they must be placed after the functional operator(s) or
expressions to be plotted and the range(s) for the variable(s) (if any).
> plot( 2^x , x = -1 .. 1 , colour = black ,

linestyle = dash ) ;
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Both the British spelling ‘colour’ and the American version ‘color’
are acceptable here. The command to generate a plot can end up very
long if multiple options are specified. To avoid this, options and their
values can be stored using variables beforehand.

> rg := x = -5 .. 5 :
> cl := colour = [ red , blue , green ] :
> lg := legend = [ f(x) = x^2 , f(x) = x^3 ,

f(x) = 1 / x^2 ] :
> lb := labels = [ x , f(x) ] :
> tl := title = "Some elementary functions" :

> plot( [ x^2 , x^3 , 1 / x^2 ] , rg , cl , lg , lb , tl ) ;

If the symbols used in the labels or the legend have assigned values,
then it may be necessary to use unevaluation quotes to prevent prior
evaluation.

> f := x -> x * sin( x ) + ( 3 * x - 2 ) * cos( x ) :
> plot( f , labels = [ x , f( x ) ] ) ; # Not good
> plot( f , labels = [ x , 'f'( x ) ] ) ;

The view option can be used to set the y axis range for a plot.

> plot( x^2 , x = -5 .. 5 , view = 0 .. 10 ) ;

By providing view with a list containing two ranges, it is possible to set
both the x and y axis ranges. Choosing a viewing window which extends
beyond the ranges set for the curves themselves does not cause the plots
themselves to extend. The viewing window is independent of the plot
variables, may include all or part of the curves, and may include some
empty space.

> vw := view = [ -0.5 * Pi .. 0.5 * Pi , -0.5 .. 0.5 ] :
> plot( [ cos , sin ] , -Pi .. Pi , vw ) ;

> vw := view = [ -2 * Pi .. 2 * Pi , -1 .. 1 ] :
> plot( [ cos , sin ] , -Pi .. Pi , vw ) ;

The labels and view options override any conflicting settings set using
the older syntax seen in Section 6.1.

To remove vertical asymptotes from a plot, use the discont option.

> plot( 1 / ( 1 + x ) , x = -5 .. 5 , discont ) ;
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To ensure that the same scaling is used for the x and y axes (so that
circles and squares do not appear stretched), use the scaling option.
> plot( sqrt( 1 - x^2 ) , x = -1 .. 1 ,

legend = "A semicircle" , scaling = constrained ) ;

A complete list of options for the plot command can be obtained using
?plot,options; see also ?plot,details.

6.3 Parametric and Polar Plots

Parametric plots are created by specifying x(t) and y(t), followed by the
range for the parameter t, in a list.
> plot( [ t^3 , t , t = -5 .. 5 ] ) ;
> f := t -> 2 * cos( t ) - cos( 3 * t ) :
> plot( [ f , D( f ) , -Pi .. Pi ] ) ;

To plot multiple parametric curves, use a list of lists, in which each inner
list contains the x and y components and parameter range for a single
curve.
> plot( [ [ sqrt( 1 - t^2 ) , t , t = -1 .. 1 ] ,

[ -sqrt( 1 - t^2 ) , t , t = -1 .. 1 ] ] ) ;

Polar coordinates can be used to create parametric plots of the form

(x, y) = r (cos θ, sin θ),

where r = r (t) and θ = θ(t).
> plot( [ cos( t ) , t^4 , t = 0 .. 2 ] , coords = polar ) ;
> plot( [ [ t * cos( t ) , t * sin( t ) , t = 0 .. 3 ] ,

[ t , 1 + t^2 , t = 0 .. 2 ] ] , coords = polar ) ;

If a single expression (or functional operator) is provided as the first
argument to a plot command with the polar option, Maple will assume
that θ(t) = t.
> plot( t^2 , coords = polar ) ;
> plot( t * cos( t ) , t = 0 .. 10 , coords = polar ) ;

Similarly, if a list that does not include a range for the plotting parameter is
used as the first argument, Maple will assume that the elements represent
θ(t) for different plots, with r (t) = t in each case.
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> plot( [ cos( t ) , sin( t ) ] , coords = polar ) ;
> plot( [ cos( t ) , sin( t ) , t = 0 .. Pi ] ,

coords = polar ) ;

It is also possible to change the axis coordinates to polar.
> plot( log( t ) , axiscoordinates = polar ) ;
> plot( [ cos( t ) , sin( t ) , t = -Pi .. Pi ] ,

coords = polar , axiscoordinates = polar ) ;

Alternatively, the polarplot command from the plots package can be
used to change both the axis and variable coordinates to polar.
> with( plots ) :
> polarplot( t^2 ) ;
> polarplot( [ cos( t ) , sin( t ) , t = -Pi .. Pi ] ) ;

6.4 Three-Dimensional Plots

Surface plots can be created using the plot3d command.
> plot3d( x^2 + y^2 , x = -5 .. 5 , y = -5 .. 5 ) ;
> f := ( x , y ) -> 1 / ( 2 + sin( x + y + x * y ) ) :
> plot3d( f , -2 .. 2 , -2 .. 2 ) ;

The ranges were mandatory in Maple 18 and earlier, but they were made
optional in Maple 2015. A very useful option when drawing surface plots
is style, which controls how surfaces are drawn. The possible settings
are line (a wire mesh), point (a discrete set of points), pointline (a
discrete set of points joined by a wire mesh), polygon (shaded polygons
with no outlines) and polygonoutline (shaded polygons with outlines).
This should not be confused with linestyle (see Section 6.2), which
controls the style of lines and has no effect if a style that does not draw
lines is used. Executing the next example illustrates the difference.
> f := ( x , y ) -> 1 / ( 2 + sin( x + y + x * y ) ) :
> plot3d( f , -2 .. 2 , -2 .. 2 , style = line ) ;
> plot3d( f , -2 .. 2 , -2 .. 2 , style = line ,

linestyle = dash ) ;

> plot3d( f , -2 .. 2 , -2 .. 2 , style = polygon ) ;
> plot3d( f , -2 .. 2 , -2 .. 2 , style = polygon ,

linestyle = dash ) ; # linestyle has no effect here
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The plots package also provides the contourplot command.

> with( plots ) :
> contourplot( 1 / ( 1 + x^4 + y^2 ) , x = -5 .. 5 ,

y = -5 .. 5 ) ;
> f := ( x , y ) -> 1 / ( 2 + sin( x + y + x * y ) ) :
> contourplot( f , -2 .. 2 , -2 .. 2 ) ;

This time the ranges are mandatory in versions up to and including
Maple 2016. If a contour plot looks too jagged, increase the grid resolution,
which is set to 25 × 25 by default. The number of contours can also be
adjusted, or the levels (z values) at which the contours are drawn can be
given in a list.

> f := ( x , y ) ->
1 / sqrt( 1 + ( x^2 - 2 * x )^2 + ( y^2 - 2 * y )^2 ) :

> with( plots ) :
> gd := grid = [ 100 , 100 ] :
> contourplot( f , -3 .. 5 , -3 .. 5 , gd ) ;

> c := contours = 20 :
> contourplot( f , -3 .. 5 , -3 .. 5 , gd , c ) ;

> c := contours = [ 0.1 , 0.5 , 0.99 ] :
> contourplot( f , -3 .. 5 , -3 .. 5 , gd , c ) ;

Contour plots with filled regions can also be created.

> with( plots ) :
> contourplot( BesselJ( 0 , x^2 + y ) , x = -2 .. 2 ,

y = -2 .. 2 , filledregions ) ;

One rather unfortunate feature of contourplot (and other 3D plot
commands) is that some options for creating legends cannot be accessed
using commands. To create a legend with an entry to describe each colour
(or line style), right-click on the plot and select Legend � Show Legend .
Then right-click on the legend itself and select Legend � Edit Legend .
This process is unnecessarily time-consuming, especially when creating
multiple plots with similar legends.
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6.5 Combining Plots

A very flexible command for showing two or more plots on the same
axes is display, which is part of the plots package. This is particularly
useful in cases where generating everything in a single step is problematic,
e.g. if two or more curves use different coordinate systems. The next
example creates a plot of a parabola using Cartesian coordinates, and
saves this using the variable p1. Then a parametric plot of a spiral is
created using polar coordinates, and saved as p2. Finally, the two plots
are displayed on the same (Cartesian) axes.
> with( plots ) :
> p1 := plot( x^2 , colour = blue ) :
> p2 := plot( sqrt( t ) , t = 0 .. 25 , coords = polar ) :
> display( [ p1 , p2 ] , view = [ -5 .. 5 , -5 .. 5 ] ) ;

According to its help page (?plots,display), the display will com-
bine a list or set of plots, but in fact it also works with sequences, so
the square brackets in the final statement can be omitted. Note that
options which apply to the whole structure (e.g. axis ranges, labels, etc.)
can be given to display rather than each individual plot. Where there
is a conflict, the options to display take precedence. The display
command can also be used in conjunction with the plottools package,
to draw objects such as arrows, circles and spheres on a plot. The next
example creates a plot of the two functions

Q(x) = x3 − 16x + 32 and L(x) = 3x + 2,

with the three intersection points shown by filled black circles. To
create these, we use a sequence of points generated by the point
command. This expects a list containing the x and y coordinates (or
x, y and z for a three-dimensional plot) as its first argument, and
the symbols it draws are not dependent on the scales on the axes (so
circles are not stretched). The optional arguments used here are self-
explanatory; execute ?plottools,point for details of other options
(see also ?plot,options).
> with( plots ) :
> with( plottools ) :
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> Q := x -> x^3 - 16 * x + 32 :
> L := x -> 3 * x + 2 :

> # Obtain intersection x coordinates
> xc := [ solve( L( x ) = Q( x ) , x ) ] ;

xc � [−5, 2, 3]
> # Store intersection x and y coordinates
> isec := [ seq( [ x , L( x ) ] , x in xc ) ] :

> # Store points
> pts := seq( point( xy , symbol = solidcircle ,

symbolsize = 17 , colour = black ) , xy in isec ) :
> # Store plot
> P := plot( [ Q , L ] ) :

> # Display combined plot
> vw := view = [ -6 .. 6 , -100 .. 100 ] :
> display( [ P , pts ] , labels = [ x , y ] , vw ) ;

6.6 Plots from Data

In Maple 18 and earlier, plots were generated from numerical data
using several commands, some of which have overlapping capabilities.
The situation was further complicated by the fact that many of these
commands accept numerical data contained in some structures, but other
similar structures cause errors. Lists, vectors, matrices, lists of lists and
one- and two-dimensional arrays (see Section 7.5) could be used to create
some, but not all, types of plot. Maple 2015 improved this situation by
introducing the dataplot command, which accepts data in a variety of
formats and can produce many different types of plot. The old commands
are still widely used, so both possibilities are shown in the examples
below. To keep things simple, we will assume that data is provided in
vectors and matrices, since these work with most of the old commands.
The convert, Matrix and Vector commands can be used to create
matrices and vectors from the other data structures (see Section 5.1).
Many of the options for data plots are the same as the options for function
plots, so they need not be discussed again here. However, it is important
to note that the commands discussed below have different default options,
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so the results they produce may not be identical, even if they create plots
of the same type. The style option introduced in Section 6.4, which
is rarely needed with two-dimensional function plots, is important for
all types of data plot, because it determines whether the data points are
plotted individually or joined with lines.

A vector containing n numerical values can be interpreted as a set of
y coordinates, with corresponding x coordinates 1, . . . , n. The following
example creates plots of a ‘saw-tooth’ function with vertices at points

(1, 1), (2, 2), (3, 1), (4, 2), (5, 1) and (6, 2),

first using dataplot, and again using the older listplot command,
which is part of the plots package.
> V := < 1 , 2 , 1 , 2 , 1 , 2 > :
> dataplot( V ) ; # Maple 2015 & later
> with( plots ) :
> listplot( V ) ;

If we have the x and y coordinates for the points in two separate vectors,
then the old command is pointplot. The next example draws a square
with vertices (±1,±1) using dataplot and then using pointplot. The
final point is needed so that the closing edge is drawn.
> x_vals := < 1 , 1 , -1 , -1 , 1 > :
> y_vals := < 1 , -1 , -1 , 1 , 1 > :
> dataplot( x_vals , y_vals ) ; # Maple 2015 & later
> with( plots ) :
> pointplot( x_vals , y_vals , style = line ) ;

The pointplot and dataplot commands will also accept point data
stored in a matrix with two columns. In this case, dataplot needs the
points option so that it interprets the entries in each row as an (x, y) pair,
not y values for two different plots. The next example draws an isosceles
triangle by the new and old methods.
> M := < -1 , 0 ; 1 , 0 ; 0 , 1 ; -1 , 0 > :
> dataplot( M , points ) ; # Maple 2015 & later
> with( plots ) :
> pointplot( M , style = line ) ;

The simplest way to plot multiple sets of data on the same axes is to use
display, as described in Section 6.6.
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> with( plots ) :
> M := < 0 , 0 ; 1 , 1 ; 2 , 4 ; 3 , 9 > :
> N := < 0 , 0 ; 1 , 3 ; 2 , -1 ; 3 , 7 > :

> # Maple 2015 & later
p1 := dataplot( M , points , colour = red ) :
p2 := dataplot( N , points , colour = blue ) :
display( [ p1 , p2 ] ) ;

> p3 := pointplot( M , style = line , colour = red ) :
p4 := pointplot( N , style = line , colour = blue ) :
display( [ p3 , p4 ] ) ;

Maple also provides facilities for making three-dimensional plots from
data. A matrix with three columns representing the x, y and z values
can be used to create a surface plot. The next example draws a pyramid,
first using dataplot with the surface option, and then using the older
surfdata command.

> P := < 0 , 0 , 0 ; 0 , 1 , 0 ; 1 , 1 , 0 ;
1 , 0 , 0 ; 0.5 , 0.5 , 1 > ;⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
1 1 0
1 0 0

0.5 0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> dataplot( P , surface ) ; # Maple 2015 & later
> with( plots ) :
> surfdata( P ) ;

Grid data, where the x and y coordinates for each point are determined
by its location in an m × n matrix and the entries in the matrix represent
the z coordinate (so the entry in row 1 and column 1 is the z value
at (x, y) = (1, 1), etc.), may be used to generate a contour plot or a
surface plot. The old command for contour plots from grid data is
listcontplot, whereas dataplot needs the contour option in this
case. Often a contour plot will look rather strange unless a significant
amount of data is provided. However, we can use a functional operator to
generate enough for a simple example.
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> f := ( j , p ) -> ( j - 4 )^2 + ( p - 4 )^2 :
> M := Matrix( 7 , f ) ;

M �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

18 13 10 9 10 13 18
13 8 5 4 5 8 13
10 5 2 1 2 5 10
9 4 1 0 1 4 9

10 5 2 1 2 5 10
13 8 5 4 5 8 13
18 13 10 9 10 13 18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> dataplot( M , contour ) ; # Maple 2015 & later
> dataplot( M , surface ) ; # Maple 2015 & later
> with( plots ) :
> listcontplot( M ) ;
> surfdata( M ) ;

� The dataplot command is actually a wrapper around a num-
ber of older commands, including contourplot, surfdata and
pointplot. Execute ?dataplot for the complete list. Note that
dataplot may reformat the data it receives before passing it on, so
simply replacing it with the more ‘fundamental’ command that it
ultimately uses may lead to errors.

6.7 Animations

An animation can be created from a plot which has a parameter that varies
from frame to frame (i.e. with time). The following example creates a
moving sine wave.
> with( plots ) :
> animate( plot , [ sin( x - t ) ,

x = -2 * Pi .. 2 * Pi ] , t = 0 .. Pi ) ;

When this is executed, Maple displays the first frame, in which t = 0.
Clicking on this causes the animation toolbar to appear near the top of
the window. The toolbar can be used to play the animation, pause it,
choose a frame and adjust the frame rate. Alternatively, an animation
can be controlled by right-clicking the image, hovering the cursor over
Animation and choosing an option from the resulting context menu.
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In general, the first argument to the animate command must be a plot
command, such as plot, contourplot or polarplot. The second is
a list of arguments intended for use by the plot command. Finally, the
animation parameter (t in the above example) must be specified, along
with its range. The animate command also has a few options of its own,
the most useful of which is frames. By default, animations contain 25
frames. The next example creates an animation with 100 frames.
> with( plots ) :
> c := coords = polar :
> plotargs := [ [ r , ( r + t )^2 , r = 0 .. 5 ] , c ] :
> animate( plot , plotargs , t = 0 .. 1 , frames = 100 ) ;

It is also possible for the animation parameter to appear in the ranges
for the plot parameters, to create a curve that is traced out in time. The
next example creates an animation in which the first frame contains no
plot because the x range is initially empty. However, the axis ranges are
automatically set to [−5, 5] and [0, 25] (the largest needed), so that only
the curve changes as the animation progresses.
> with( plots ) :
> animate( plot , [ x^2 , x = -t .. t ] , t = 0 .. 5 ) ;

Three-dimensional animations can be created in much the same way; the
next example creates an expanding and contracting sphere.
> with( plots ) :
> c := coords = spherical :
> plotargs := [ [ 0.5 + sin( t )^2 , theta , phi ] ,

theta = 0 .. 2 * Pi , phi = 0 .. Pi , c ] :
> animargs := t = 0 .. Pi , frames = 100 :
> animate( plot3d , plotargs , animargs ) ;

A special case of the animate command occurs when it is used with
display. For example, suppose we wish to superimpose a moving point
on a curve. We can save the curve using a variable as in Section 6.5, and
the point command from the plottools package can be used to plot
the point. However, the following attempt at creating the animation fails.
> with( plots ) :
> with( plottools ) :
> p := plot( sin , 0 .. 3 * Pi ) :
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> opts := symbol = solidcircle , symbolsize = 17 ,
colour = black :

> animate( display , [ p , point( [ t , sin( t ) ] ,
opts ) , view = -1 .. 1 ] , t = 0 .. 3 * Pi ) ;

Error, (in plottools:-point) incorrect arguments for
creating points structure, try providing the dimension
option

The usual suspect is the root of this: the arguments to animate undergo
prior evaluation (see Section 2.13), so that the point command is invoked
before t has received a numerical value. Preventing prior evaluation
resolves the issue.
> with( plots ) :
> with( plottools ) :
> p := plot( sin , 0 .. 3 * Pi ) :

> opts := symbol = solidcircle , symbolsize = 17 ,
colour = black :

> animate( display , [ p , 'point'( [ t , sin( t ) ] ,
opts ) , view = -1 .. 1 ] , t = 0 .. 3 * Pi ) ;

Note the position of the unevaluation quotes in the last statement: opts
needs to be evaluated before it is passed to point, so only the evaluation
of point itself is deferred.
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Programming

. . . the determined Real Programmer can write Fortran programs in any
language.

Ed Post, ‘Real Programmers Don’t Use Pascal’

Most of the material considered so far involves constructing Maple
worksheets that work sequentially. That is, after pressing the execute
worksheet button (!!!) in the toolbar, the first line is executed, followed
by the second, etc. However, it is often desirable to repeatedly execute
certain statements, or to execute groups of statements only under certain
conditions. In this chapter, some methods for controlling the flow of
execution are considered. Some additional techniques for data storage
and controlling output are also introduced. At their core, many computer
languages are based on very similar ideas. Consequently, mastering
programming in Maple makes learning other languages such as Fortran
or C much easier.

7.1 Conditional Statements

A conditional (if) statement causes Maple to test a condition, then act
differently depending on whether the condition is true or false. Such
a statement begins with if and ends with end if. The latter can be
abbreviated to end or fi, but the former is strongly discouraged, because
several other structures can be terminated with end, which can lead to
confusion. Attempting execution before completing the whole conditional
statement will usually generate a warning, and it may generate an error.
The next example shows the simplest type of conditional statement,
instructing Maple to execute a sequence of statements only in cases
where a simple condition is true. The line breaks shown are produced
using shift and return (see Section 2.4). They are not necessary, but
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serve to improve readability, especially in complex worksheets. Likewise,
there is no obligation to indent the statements between if and end if,
but this makes it easier to see the structure of a worksheet, especially one
that contains conditional statements nested inside one another.
> a := 2 :

> if a >= 0 then
exact := sqrt( a ) ;
approx := evalf( exact ) ;

end if ;

exact �
√

2
approx � 1.414213562

Maple displays the results because the conditional statement is itself
terminated by a semicolon. No output would be produced if a colon
was used here instead. Between if . . . then and end if, colons and
semicolons have no bearing on output, though they are still needed to
separate statements. More information about controlling output from
within conditional statements is contained in Section 7.3.

Any conditional expression can appear between if and then. When
the statement is executed, Maple implicitly applies the evalb command
to evaluate it. Therefore it is important to keep in mind that evalf may
be needed if there is a possibility that one or both of the operands adjacent
to a relational operator could be an exact symbolic value (and that is
should be used instead if there is a danger that nearby values could lead
to incorrect results; see Section 2.15 for details).
> s := sqrt( 2 ) ;

s �
√

2

> if s > 0 then
"s is positive." :

end if ;
Error, cannot determine if this expression is true or
false: 0 < 2^(1/2)
> if evalf( s ) > 0 then # Or if is( s > 0 ) then

"s is positive." :
end if ;

"s is positive."
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Boolean operators including and, not and or can be used to form more
complicated conditional expressions for use with conditional statements.
> a := 13 : # Or any other real number

> if evalf( a ) > 0 and frac( a ) = 0 then
"a is a positive integer." :

end if ;

"a is a positive integer."

Note the frac command, which extracts the fractional part of a number
(execute ?frac for more details). An else clause instructs Maple to take
different actions (rather than none at all) if the conditional expression
evaluates to false.
> a := -13 : # Or any other real number

> if evalf( a ) > 0 then
"a is positive." :

else
"a is not positive." :

end if ;

"a is not positive."

For situations where there are three or more sets of circumstances to be
accounted for, Maple provides the elif (else if) clause. Any number of
these can be used in a conditional statement. The general structure of a
conditional statement is then as follows.
> if first conditional expression then

statements to execute if first conditional evaluates to true
elif second conditional expression then

statements to execute if first conditional evaluates to false and second
evaluates to true

elif third conditional expression then
statements to execute if first two conditionals evaluate to false and third

evaluates to true
...

else
statements to execute if all the above conditional expressions evaluate to

false
end if :
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Maple works downwards from if to end if, and executes the first
statement sequence following a conditional expression that evaluates to
true. If an else clause is included (as above), it must come after all elif
clauses. In this case, precisely one statement sequence is always executed.
Otherwise, one sequence or none may be executed. After the conditional
statement has been processed, execution continues from the statement
following end if.

7.2 Do Loops

A do loop causes Maple to repeatedly execute the same sequence of
statements. The following example displays the approximate value of π
six times.
> from 1 to 6 do

evalf( Pi ) :
end do ;

3.141592654
3.141592654
3.141592654
3.141592654
3.141592654
3.141592654

Here, output is produced at each step because the loop itself, which ends
with end do, is followed by a semicolon. As with conditional statements,
colons and semicolons inside do loops have no bearing on output (see
Section 7.3 for more information). Likewise, the location of the line
breaks and the indentation are for readability purposes only, and end do
can be abbreviated to end or od, the first of which is not recommended.
Attempting to execute a loop that is not properly terminated will produce
a warning or an error.

For many applications, the statements inside a loop must be able to
determine which step is currently being executed, and will often refer
to this value in computations. This is achieved using a loop with an
index variable. The next example uses an index variable j to generate the
squares of the first five natural numbers.
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> for j from 1 to 5 do
j^2 :

end do ;

1
4
9
16
25

Any Maple code can appear in the body of a do loop (between do
and end do), including operations from algebra and calculus. The next
example computes the (real) factorisations of xn − 1 for n from 1 to 4.
> for n from 1 to 4 do

factor( x^n - 1 ) :
end do ;

(x − 1)
(x − 1)(x + 1)

(x − 1)
(
x2 + x + 1

)
(x − 1)(x + 1)

(
x2 + 1

)
All of the above examples could also be produced using the seq command
from Section 2.20, but do loops offer much greater flexibility. In particular,
a do loop can update a variable at each iteration. The next example uses
this idea to compute a factorial. Note that the loop is terminated with
a colon to prevent the display of intermediate values generated in the
process of obtaining the final result.
> f := 1 :
> for j from 2 to 10 do

f := f * j : # Updates the value of f
end do :

> f ;

3628800

Assuming that start and finish are numbers, the general structure of an
indexed do loop of this type is as follows.
> for index from start to finish do

statements
end do :
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Initially, the value start is assigned to the index variable. If from start
is omitted, the initial value defaults to 1. After each iteration, the index
variable is increased by 1. If the result exceeds finish, the loop terminates
immediately. Execution then continues from the statement following
end do, and the index variable now has the value finish + 1. Otherwise
another iteration is performed. If start exceeds finish, the statements
inside the do loop are not executed at all. Increments other than 1 are
also possible, in which case the structure is as follows.
> for index from start by increment to finish do

statements
end do :

If increment is negative, the loop will terminate when index reaches
a value that is smaller than finish, and will not execute at all if finish
exceeds start.
> for j from 5 to 1 by -1 do

j :
end do ;

5
4
3
2
1

Using non-integer values for start or increment leads to a non-integer
index.
> for x from 0 to 1 by 1 / 3 do

x ;
end do ;

0
1
3
2
3

1

This is harmless provided that exact arithmetic is used. On the other
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hand, creating a floating point index is highly inadvisable, because this
can cause an ‘off-by-one’ error: one too few steps will be performed if
rounding causes the index to unexpectedly exceed the final value.
> for x from 0 to 3 by evalf( 3 / 7 ) do

x ;
end do ; # Should finish at 3...

0
0.4285714286
0.8571428572
1.285714286
1.714285715
2.142857144
2.571428573

> x ;

3.000000002

Sometimes it is not possible to predict how many iterations will be
needed for a particular task. In these cases finish can be omitted, and a
break statement can be used to terminate the loop. The next example
finds the first natural number n such that n! > X , for a given X . If the
conditional statement f > X evaluates to true, the break command is
executed and the loop terminates immediately.
> X := 1000000 : # Or any other positive number
> f := 1 :

> for n from 2 do

f := f * n :

if f > X then
break :

end if :

end do :

> n ;

10

It is also possible to create a do loop with no index or limits.
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> do
statements, including at least one break

end do :

Unlimited do loops are not appropriate unless we are absolutely certain
that the condition(s) for a break statement will be met at some point;
otherwise Maple could enter an infinite loop. If we can’t be certain, we
can impose a limit on the number of iterations, and check whether the
loop has been terminated by the break statement. For example, given a
function f and an initial value x0, it is usually difficult to predict whether
the sequence in which x j+1 = f (x j ) is convergent. The next example
experiments with this.
> f := x -> x * sin( x ) :
> x_old := 5 :

> for j from 1 to 1000 do

x_new := evalf( f( x_old ) ) :

if abs( x_new - x_old ) < 0.00001 then
break :

end if:

x_old := x_new :

end do :

if j > 1000 then
"Loop did not break" :

else
"Break at step" , j , "x value:" , x_new :

end if ;

"Break at step", 199, "x value:" − 4.714436279

Here, only the two most recently computed elements of the sequence are
stored at each step (storing all computed elements would be best achieved
with a table; see Section 7.6). In each iteration, there is an old value
(initially 5), from which the new value is computed. The loop terminates
if the old and new values are close together (of course this is not a
rigorous proof of convergence!). Otherwise, the new value becomes the
old value for the next iteration. If the break condition is never achieved,

.007
 14:33:24, subject to the Cambridge Core terms



7.2 Do Loops 155

j will be updated to 1001 before the loop terminates, and this is used as
a test at the end.

Another useful command is next, which causes Maple to omit the
remaining part of the current iteration, and move to the next step in
a do loop. The following example displays the factorisation of natural
numbers into products of prime numbers using the ifactor command.
Steps where the index is itself prime are omitted.
> for j from 2 to 10 do

if isprime( j ) then
next :

end if :

j , ifactor( j ) :

end do ;

4, (2)2

6, (2)(3)
8, (2)3

9, (3)2

10, (2)(5)

The same effect could be achieved using a conditional statement to prevent
Maple from attempting a factorisation when the index is prime. However,
in more complex cases this approach may necessitate enclosing large
blocks of statements between if and end if, so the implementation
using next is often simpler.

A while clause is a less flexible alternative to a break statement.
Whereas any number of break statements can occur anywhere in a do
loop, a while clause is always checked immediately before the start of
each iteration, after the index (if any) has been set in the first step or
updated in subsequent steps. While clauses offer nothing that cannot be
achieved using break statements, and are prone to off-by-one errors if used
without due care. Nevertheless, they often appear in Maple worksheets,
so it’s worth considering them. The following example shows a flawed
attempt to find the first factorial that exceeds 1000 (see page 153 for a
solution to the same problem using a break statement).
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> f := 1 :
for n from 2 while f <= 1000 do

f := f * n :
end do :

> n ;

8

The correct answer is 7, but n is updated to 8 before the test on f is
applied. One way to avoid this is to separate the index from the loop.

> f := 1 :
> n := 1 :

> while f <= 1000 do
n := n + 1 :
f := f * n :

end do :

> n ;

7

Now it’s clear that the update to n takes place after the test on f .
A range of characters can be used for the index in a do loop. The

default behaviour is then to step forward one place in the alphabet in
each iteration, but this can be changed by setting a different increment.

> s := "" :

> for c from "z" to "a" by -1 do
s := cat( s , c ) :

end do :

> s ;

"zyxwvutsrqponmlkjihgfedcba"

As with loops over numeric ranges, there is a final update to the index
after the last iteration.

> for s from "a" to "d" do
s :

end do ;
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"a"
"b"
"c"
"d"

> s ;

"e"

It is also possible to loop over the entries in a larger structure, such as
a list or vector. The following example sums the odd entries in the list
L, using the type operator :: introduced in Section 2.21 to distinguish
these from the even entries.
> L := [ 1 , 2 , 4 , 8 , 25 ] :
> s := 0 :

> for j in L do

if j :: odd then
s := s + j :

end if :

end do :

> s ;

26

Similarly, it is possible to loop over the characters in a string.
> for c in "toad" do

c ;
end do ;

"t"
"o"
"a"
"d"

> c ;

"d"

The result of the last statement shows that there is no extra increment to
the index at the end of a loop that uses the in operator.

.007
 14:33:24, subject to the Cambridge Core terms



158 Programming

� Assignments can be made to an index variable from inside a do loop.
This is rarely a good idea, because it may cause Maple to become
trapped in an infinite loop.

> for j from 1 to 10 do
j := 5 :

end do ; # Don't execute this!

Of course, setting j to 10 (or a larger value) would terminate the loop
at the end of the first step, but using a break statement is generally a
better way to make an early exit.

7.3 Nesting and printlevel

When loops and conditional statements are nested (placed one inside
another), there are two factors to consider in determining which state-
ments will produce output. First, only the termination of the outermost
end do or end if affects output. A colon here ensures that none of the
statements inside have their results displayed. The situation is slightly
more complicated if a semicolon is used. In this case, the results of state-
ments at which the nesting level does not exceed the current value of the
printlevel environment variable will be displayed. The default value
for printlevel is 1. Outside any do loops and conditional statements
(also procedures; see Section 8.8) the nesting level is 0. Each time Maple
enters a do loop or conditional statement, the nesting level increases by 1,
and it decreases by 1 at the end. The next example uses a do loop along
with the isprime command to display prime numbers less than 20.

> printlevel := 2 :

> for j from 2 to 20 do

if isprime( j ) then
j :

end if :

end do ;
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2
3
5
7
11
13
17
19

The last line is terminated by a semicolon, but the innermost statement
has nesting level 2, because it is inside a conditional statement, which is
itself inside a do loop. Therefore it is necessary to set printlevel to 2
(or a larger value), or else no output will be produced.

� Setting a high value for printlevel causes Maple to display in-
formation about the inner workings of some of its own procedures.
However, commands that form part of the kernel (see Section 8.10)
are not affected by printlevel.
> printlevel := 25 :
> add( p^2 , p = 1 .. 3 ) ; # add is a kernel command

14
> sum( 1 / p^2 , p = 1 .. infinity ) ;

# Produces a lot of output

7.4 The print and printf Commands

Often there is no value for printlevel which produces exactly the
desired output; all produce either too much or too little. The print
command can be used to explicitly tell Maple what to display. It is
not affected by the value of printlevel. The next example looks for
Pythagorean triples, that is, integers a, b and c such that

c =
√

a2 + b2.

When a triple is found, a, b and c are printed. Had we tried to do this
by increasing printlevel to 3, the statement which calculates c would
generate a great deal of unwanted output, since it has nesting level 2.
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> N := 20 : # Or any other natural number

> for a from 3 to N do # Why start from 3?
for b from a + 1 to N do

c := sqrt( a^2 + b^2 ) :

if c :: integer then
print( a , b , c ) :

end if :

end do :
end do :

3, 4, 5
5, 12, 13
6, 8, 10
8, 15, 17
9, 12, 15
12, 16, 20
15, 20, 25

Finer control over how the output is displayed can be achieved using
the printf command. This is similar to print, but it takes a for-
mat specification string as its first argument. For example, the string
"%2d %2d %2d\n" tells Maple to expect three integers to display, and
to use two character columns for each with one space in between,
so that single- and two-digit numbers line up neatly. The last part
of the format specification (\n) tells Maple to begin a new line. In
the previous example, print( a , b , c ) could be replaced by
printf( "%2d %2d %2d \n" , a , b , c ), leading to the follow-
ing (somewhat neater) result.
3 4 5
5 12 13
6 8 10
8 15 17
9 12 15

12 16 20
15 20 25

The most important elements used to make up format specification strings
are summarised in Table 7.1. In general, allowing more characters than
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Element Meaning

%a An algebraic expression.
% ja An algebraic expression to be displayed using j characters.
%d An integer.

% jd An integer to be displayed using j characters.
%e A floating point number to be displayed in scientific notation with 6

digits after the decimal point in the mantissa.
% je A floating point number to be displayed in scientific notation using

j characters, with 6 digits after the decimal point in the mantissa.
% j.pe A floating point number to be displayed in scientific notation using

j characters, with p digits after the decimal point in the mantissa.
%f A floating point number to be displayed in decimal format with 6

digits after the decimal point.
% jf A floating point number to be displayed in decimal format using j

characters, with 6 digits after the decimal point.
% j.pf A floating point number to be displayed in decimal format using j

characters, with p digits after the decimal point.
\n Begin a new line.
%s A string.

% js A string to be displayed using j characters.

Table 7.1 Elements of format specification strings and their meanings. Decimal
points and the symbols +, - and e all count toward the total number of

characters used.

necessary causes Maple to pad the output with leading spaces or trailing
zeros so that everything lines up properly. When displaying a numerical
value, omitting the number of places to show after the decimal point
causes this to default to six. If a format specification does not set a
maximum number of characters, Maple will simply use as many as it
needs. If too few character columns are specified then the output is still
produced, but it may not line up as expected.

> a := 123.456 :
> b := 1234.5678 :
> c := 12345.6789 :
> printf( "%8f\n%8f\n%8f\n" , a , b , c ) ;
123.456000
1234.567800
12345.678900
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Exact values such as π and
√

2 are automatically approximated when
used in this context (so there is no need to use evalf), but otherwise
data whose type does not match the format specification string causes an
error.

> printf( "%12f\n%12f" , Pi , sqrt( 2 ) ) ;
3.141593
1.414214

> printf( "%12d \n" , Pi ) :
Error, (in fprintf) integer expected for integer format

Execute ?printf for more details about the printf command.
When print is used to display a string, the surrounding quotes appear

in the output.

> print( "Don't quote me." ) ;

"Don’t quote me."

One way to avoid this is to use name quotes (see Section 2.12).

> print( `Don't quote me.` ) ;

Don’t quote me.

This was common practice in very old versions of Maple, which had no
string type (this was introduced in Maple V release 5). It is difficult to
conceive an example in which it causes a problem, but there is no longer
any reason to use names in this way. Instead, formatting the output using
the more powerful printf command is recommended.

> printf( "%s" , "Don't quote me." ) ;
Don't quote me.

7.5 Arrays

An array is similar to a vector or a matrix (see Chapter 5), but it can have
up to 63 dimensions, and the lower limit for the indices does not have to
be 1. Executing the following statement creates an array A with six rows,
numbered from 0 to 5, and three columns, numbered from −1 to 1.

> A := Array( 0 .. 5 , -1 .. 1 ) :
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Note the capital A in Array, which is important. The older command
array has been deprecated, and should not be used in new worksheets.
By default, arrays are filled with zeros. The entries can be initialised to
another value using the fill option.
> A := Array( 1 .. 3 ) ;

A �
[
0 0 0

]
> B := Array( 1 .. 4 , fill = Pi ) ;

B �
[
π π π π

]
Arrays can also be generated from other structures such as lists, vectors
and matrices using the Array command, or the convert command.
> C := Array( 1 .. 3 , [ a , b , c ] ) ;

C �
[
a b c

]
> E := Array( [ [ 1 , 2 ] , [ 3 , 4 ] ] ) ;

E �
[
1 2
3 4

]
> F := convert( < s , t , w > , Array , 1 .. 3 ) ;

E �
[
s t w

]
Where an array is formed from another structure, omitting the ranges
causes the starting point for the indices to default to 1.

Obviously, Maple cannot conveniently display the contents of an array
with more than two dimensions on a two-dimensional screen. There
are two additional constraints that apply to the display of one- and
two-dimensional arrays. First, the contents will not be displayed if the
size in any dimension exceeds rtablesize (cf. matrices and vectors,
Section 5.3). Second, if the indices do not all start from 1, Maple will
display their ranges, and a set containing nonzero entries and their
corresponding indices. Maple 18 will also display a number of options
associated with the array in this case. To display an array with an index
that does not start from 1 in the usual format, simply convert it to a matrix
or vector.
> B := Array( 3 .. 5 , [ 2 , 6 , 0 ] ) ;

B � Array (3..5, {3 = 2, 4 = 6})
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> Vector( B ) ; [
2 6 0

]
The elements of an array can be accessed using an index (or sequence

of indices) in square brackets.
> C := Array( [ [ d , e ] , [ f , g ] ] ) ;

C �
[
d e
f g

]
> C[1,2] ;

e

> C[2,1] ;

f

> E := Array( -1 .. 1 , [ 2 , 4 , 7 ] ) :
> E[0] ;

4
> E[1] ;

7

As described in Section 2.18 (see also Section 5.2), ranges can be used
to access or set several elements simultaneously.
> A := Array( 1 .. 3 , 1 .. 3 ) :
> A[1,1..2] := 7 :
> A[2,..] := Pi :
> A[3,2..] := k :
> A ; ⎡⎢⎢⎢⎢⎢⎢⎣

7 7 0
π π π

0 k k

⎤⎥⎥⎥⎥⎥⎥⎦
> A[..,2] ; [

7 π k
]

Similarly, all or part of an array can be overwritten by the entries from
another array, or from a matrix or a vector. However, using a list in this
way will produce the same effect as in Section 5.2: the whole list will be
copied into each position.
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> A := Array( 1 .. 5 ) :
> v := < a , b , c > :
> L := [ P , Q ] :
> A[1..3] := v :
> A[4..5] := L :
> A ; [

a b c [P,Q] [P,Q]
]

> A[4..5] := Array( L ) :
> A ; [

a b c P Q
]

The upperbound and lowerbound commands are used to enquire
about the bounds for the indices, so there is no need to keep track of
them manually.
> A := Array( -5 .. 5 ) :
> lowerbound( A ) ;

−5

> upperbound( A ) ;

5

For an array with more than one dimension, the default is to return
a sequence in which the nth entry is the bound in the nth dimension.
Alternatively, a second argument can be used to obtain the bound in a
particular dimension.
> B := Array( -4 .. 4 , 1 .. 3 ) :
> upperbound( B ) ;

4, 3

> lowerbound( B ) ;

−4, 1

> upperbound( B , 1 ) ;

4

> lowerbound( B , 2 ) ;

1

The upperbound and lowerbound commands can also be used with
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lists, sets, vectors and matrices, but remember that the lower bound for
these structures is always 1.

Using parentheses to access array elements has a different effect from
using square brackets. The actual index ranges are ignored, and the
elements are assumed to be numbered starting from 1. For example, if A
is a one-dimensional array, then A(1) always refers to the first element.
> A := Array( -1 .. 1 , [ a , b, c ] ) :
> A[1] ;

c

> A(1) ;

a

An assignment to an out of range element will cause the array to expand
if parentheses are used for the index, whereas it causes an error if square
brackets are used.
> A := Array( -1 .. 1 , fill = a ) :
> A(4) := 7 : # But not A[2] := 7 :
> Vector( A ) ; # Display the contents of the array[

a a a 7
]

> A[2] ;

7

Negative indices for array entries should be used with extreme caution.
If the lower bound for the index of a one-dimensional array A is 1, then
A[-1] and A[-2] refer to the last entry, and the penultimate entry, etc.
just as they do for a set or list (see Section 2.18). However, if the lower
bound is not 1, then A[-j] refers to the entry in position − j (which may
not actually exist).
> A := Array( [ a , b , c ] ) :
> A[-1] ;

c

> B := Array( -1 .. 1 , [ a , b , c ] ) :
> B[-1] ;

a
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> B[-2] ;
Error, Array index out of range

For a multidimensional array, backwards referencing using negative
indices works if the lower bound in all dimensions is 1. To get around
these issues, use parentheses rather than square brackets, since then the
entries are assumed to be numbered from 1.
> A := Array( [ a , b , c ] ) :
> A(-1) ;

c

> B := Array( -1 .. 1 , [ a , b , c ] ) :
> B(-1) ;

c

> B(-2) ;

b

As with matrices and vectors (see Section 5.8), assigning an array to a
new name creates an extra name for the same array, not a copy. When a
copy is required, the copy command can be used, or the range(s) for the
index (indices) can be provided on the right-hand side of the assignment.
> A := Array( 1 .. 3 , fill = a ) :
> B := copy( A ) : # or B := A[..] but not B := A :

> B[1] := 7 :
> # Display the contents of the arrays
> Vector( A ) , Vector( B ) ;[

a a a
]
,
[
7 a a

]
� Although there is no substantive difference between a two-dimensional

array and a matrix, some linear algebra commands will not work with
arrays. Conversion to a matrix solves this problem.
> A := Array( [ [ -2 , 1 ] , [ 1 , 0 ] ] ) :
> with( LinearAlgebra ) :
> MatrixInverse( Matrix( A ) ) ;

# But not MatrixInverse( A )[
0 1
1 2

]
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7.6 Tables

A table is another type of indexed data structure, with properties very
different from those of the array. The index need not be an integer, and
there is no need to define a range of valid indices at the outset. Instead,
entries are inserted into the table as necessary.
> T := table() :
> T[Pi] := 7 ;

Tπ � 7
> T[A] := exp( 1 ) ;

TA � e
> T[Pi] , T[A] ;

7, e

Parentheses cannot be used to access the elements of a table. A very
important property of tables is that indices that have not been associated
with an entry trigger an unevaluated return.
> W := table() :
> W[1] ;

W1

In this respect, the entries in a table behave like ordinary variables,
unlike the elements of an array, which always have a value. Consequently,
unassign can be used to remove an entry from a table.
> t := table() :
> t[1] := 10 :
> t[2] := 27 :
> t[1] , t[2] ;

10, 27
> unassign( 't[1]' ) :
> t[1] , t[2] ;

t1, 27

Similarly, assigned can be used to check whether a particular entry is
in use.
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> w := table() :
> w[1] := 24 :
> assigned( w[1] ) ;

true

> assigned( w[2] ) ;

false

Automatic insertion of table elements is useful in circumstances where
we need to work with a sequence of values, but don’t know a priori how
many such values are needed. Tables are also useful in situations where
we need to store data that doesn’t naturally fit into a rectangular structure
such as an array or a matrix (see Section 9.1 for an example), and in cases
where a sequence of names of the form c0, c1, c2, . . . is more practical
than a, b, c, . . . For example, a polynomial with arbitrary coefficients,
which can be assigned values at a later stage, can be generated as follows.

> n := 8 : # Or any other natural number

> c := table() :
> poly := add( c[j] * x^j , j = 0 .. n ) ;

poly � c8x8 + c7x7 + c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0

Had we used an array here, the values of the coefficients cj would need
to be set before defining poly. A more complex example that exploits
this facility is given in Section 9.5.

� If no indexed data structure T exists, an assignment to T[k] automat-
ically creates a table.

> T[1] := 2 :
> Describe( T ) ;

T::table = table([(1)=2])

However, explicitly creating the table with the table command
makes it easier to locate the first place at which it is used, and this
can be helpful when debugging a complex worksheet.
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Tables use last name evaluation (see Section 2.13), which means that
a name assigned to a table evaluates to itself.

> T := table() :
> T[1] := 5 :
> T ;

T

To see the contents of a table, use Describe, or force full evaluation
using eval.

> T := table() :
> T[1] := 3 :
> T[Pi] := 12 :
> Describe( T ) ;

T::table = table([(1)=3,(Pi)=12])

> eval( T ) ;

table
(
[1 = 3, π = 12]

)
Alternatively, the indices and corresponding entries can be displayed
separately.

> W := table() :
> W[a] := Pi :
> W[1] := k :
> W[2] := 27 :
> indices( W ) ;

[1], [2], [a]

> entries( W ) ;

[k], [27], [π]

� The seq, add and mul commands can be used with tables, but the
last name evaluation barrier must be broken using eval.

> T := table() :
> T[a] := 5 :
> T[b] := 10 :
> add( c , c in T ) ;

T
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> add( c , c in eval( T ) ) ;

15

The last statement can be abbreviated to add( eval( T ) ) in
Maple 2015 and later.

An application of eval is also needed to cause whattype to check
whether a name has been associated with a table. However, it is possible
to check this using type in the usual way.
> T := table() :
> whattype( T ) ;

symbol

> whattype( eval( T ) ) ;

table

> type( T , table ) ;

true

As the next example shows, Describe will report that a table is a package
if none of its indices are integers (remember that objects in Maple can
possess more than one type).
> T := table() :
> T[k] := 1 :
> Describe( T ) ;

package T:

k::integer = 1

> whattype( eval( T ) ) ;

table

> T[1] := 3 :
> Describe( T ) ;

T::table = table([(1)=3,(k)=1])

This discrepancy between whattype and Describe does not appear to
have any adverse consequences.
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The type table help page (?type,table) contains no mention of
checking entry types, and indeed the normal syntax for this (taking into
account the fact that there is a command table; see Section 2.21) does
not work, though it does not produce an error.
> T := table() :
> T[1] := 5 :
> type( T , 'table( numeric )' ) ;

false

Bizarrely, omitting the unevaluation quotes does seem to work.
> T := table() :
> W := table() :
> T[a] := 1 :
> T[b] := 5 :
> W[1] := "abc" :
> W[2] := "def" :
> type( T , table( numeric ) ) ;

true

> type( T , table( string ) ) ;

false

> type( W , table( numeric ) ) ;

false

> type( W , table( string ) ) ;

true

Quite why this happens is unclear: Maplesoft technical support would only
say that the syntax is unsupported, and not guaranteed to work in all cases.
A safer approach is to use type( T , tabular( numeric ) ) to
determine whether T is a tabular object containing only numerical entries.
This will also return true if T is an array, matrix or vector containing only
numerical entries, but it can be used alongside type( T , table )
where necessary.
> T := table() :
> T[1] := 2 :
> type( T , tabular( string ) ) and type( T , table ) ;

false
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> type( T , tabular( numeric ) ) and type( T , table ) ;

true

Placing a table name on the right-hand side of an assignment operator
creates an assignment chain (see Section 2.13).
> T := table() :
> S := T :
> S ;

T

> eval( S ) ;

table([ ])

Since there is no meaningful way to define a range for a table index, the
copy command is the only convenient way to duplicate a table.
> T := table() :
> T[1] := 7 :
> W := copy( T ) : # But not W := T :
> T[2] := 5 :
> Describe( W ) ;

W::table = table([(1)=7])

> Describe( T ) ;

T::table = table([(1)=7,(2)=5])

Note that using eval to break through the last name evaluation barrier
with an assignment such as W := eval( T ) would create another name
for the original table, not a copy (cf. matrices and vectors in Section 5.8).
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Procedures

I haven’t seen you before. Are you local?

Tubbs Tattsyrup, ‘The League of Gentlemen’

Section 3.4 explained how to define simple mathematical functions
using arrow notation. A procedure is similar, but it can use any Maple
code to obtain its results, including conditional statements and do loops.
In fact, a functional operator is a special case of a procedure. Proce-
dures provide a means to split complex worksheets into simpler parts,
and to avoid the need to repeat statements. In this chapter, the most
common and important features of procedures are introduced. For a
more complete account, see Chapter 6 of the Programming Guide
(?ProgrammingGuide,chapter06).

� It is important to search the help system before writing a proce-
dure, to check whether the required functionality is provided by
the Maple library. Indeed, the range of features in Maple is so
wide that finding short instructive programming examples that do
something new is very difficult in some cases. Consequently, the
harmonic_number procedure in Section 8.9, the contains_char
procedure in Section 8.6 and the sorting procedure in Section 9.4 all
provide functionality that is already available (execute ?harmonic,
?StringTools,Search and ?sort for details).

8.1 A Basic Procedure

The next example shows a basic (and rather trivial) procedure called
double. The procedure definition begins with the proc keyword, and
ends with end proc, which can be abbreviated to end, though this is
not recommended (cf. end if in Section 7.1). The location of the line
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breaks and the indentation of the statement inside the procedure are
for readability purposes only. The statement in which the procedure
definition is assigned to the name double needs to be executed before the
procedure can be used. When this occurs, Maple displays the procedure
definition because end proc is terminated with a semicolon. The amount
of output displayed in these circumstances can be reduced by setting
the verboseproc interface variable to 0 (see Section 8.10), but in any
case displaying a procedure definition in the output immediately after it
appears in the input is rarely useful. Therefore a colon will be used to
terminate subsequent procedure definitions.
> double := proc( x )

return 2 * x :

end proc ;

double � proc(x) return 2 ∗ x end proc

> a := 1 :
> double( a ) ; # First test

2

> 16 + double( 5 ) ; # Second test

26

The double procedure takes a single argument as its input. For the first
test this is a and in the second it is 5. The argument is first evaluated and
then bound to the parameter x. This means that, wherever the parameter
x appears inside the procedure, it is literally replaced by the result of
evaluating the argument (1 in the first test and 5 in the second). The
procedure terminates when execution reaches the return command. The
result of the procedure is specified by the value that appears between
the return command and the colon terminating the return statement
(2x here). A procedure can also have multiple return values, or none; see
Section 8.6 for more details. After the procedure terminates, execution
continues from the point at which it was invoked. The following steps
take place when the statement double( a ) is executed.

• The argument a is evaluated to 1.
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• The double procedure is invoked, with 1 in place of x.
• The procedure is terminated by the statement return 2 * x, causing

it to return 2 as its result.

The return value should not be confused with the output displayed on
the screen (see Section 2.7). When double( a ) is executed, the return
value is displayed because this is the result of the statement. On the other
hand, when the last statement is executed, the result of double( 5 )
is computed, returned, and added to 16. The result of the statement is
displayed, not the return value of the procedure.

� If Maple reports an error when a procedure definition is executed, this
is probably caused by a syntax problem such as a missing (semi)colon.
The set of possible locations for the error can be narrowed down by
deactivating sections of code using # or (* and *) (see Section 2.4),
and executing the definition again.

� When writing a procedure, keep the definition in an executable
state: after typing proc( . . . ), do or if . . . then, insert the corre-
sponding end proc, end do or end if immediately. This way, an
unfinished procedure definition can be executed to check for syntax
errors each time a few lines are added.

� If Maple unexpectedly returns an expression unevaluated, check that
all necessary procedure definitions have been executed.

8.2 The Structure of a Procedure

For the purposes of this book, a Maple procedure definition has the
following general structure (the return type declaration, which is relatively
unimportant in Maple, is omitted).
> procedure name := proc( parameter sequence )

description
option declarations
local and global declarations

statement sequence

end proc :
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The description, declarations and statement sequence are optional, and
each can be used or not as appropriate. It is generally good practice to give
each procedure a descriptive name, and to include a brief explanation of
what it does and (if this is not obvious) how. This makes it easier to reuse
the procedure at a later date. Comments can be used for this purpose,
but it is better to use the purpose-built description facility because the
information will then be shown when Describe is used.

> my_proc := proc()

description "A very nice procedure" :

end proc :

> Describe( my_proc ) ;

# A very nice procedure
my_proc( )

To save space, the description is omitted from subsequent examples in
this chapter, since the purpose of the procedures is explained in the text.
The other elements that make up a procedure are more complex, and will
be discussed throughout this chapter. It is not practical to consider each
in isolation, due to the way in which they interact. The order in which
the description and option, local and global declarations appear does not
matter (though in the author’s view it makes sense for the description to
appear first of all). However, if any of these elements are present then
they must appear before the statement sequence, which makes up the
remainder of the procedure. The next example shows a very common
syntax error related to this.

> my_proc := proc() :

option remember :

end proc :
Error, reserved word `option` or `options` unexpected

The problem here is caused by the colon immediately after proc(),
which should not be present. Its effect is to create an empty statement,
and, since this is not an option, global or local declaration, Maple treats
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it as part of the statement sequence. Therefore the requirement on the
ordering of statements is violated, leading to an error.

8.3 Local and Global Variables

Procedures can have their own internal variables, which cannot be
accessed from elsewhere in the worksheet. These are called local variables.
Variables elsewhere in the worksheet with the same name are separate
entities. In the next example, the truncated_exp procedure computes
the sum

en (x) =
n∑
j=0

x j

j!
.

To do this, it uses local variables s and j to serve as a running total
and a loop index, respectively. The local keyword is used to declare
the existence of these variables. There are also variables called s and j
outside the procedure, but these are separate entities, so their values do
not change either when the procedure is defined or when it is used.
> s := 25 :
> j := Pi :
> truncated_exp := proc( x , n )

local s , j :

s := 1 :

for j from 1 to n do
s := s + x^j / j! :

end do :

return s :

end proc :

> truncated_exp( 1.3 , 100 ) ;

3.669296667

> s , j ;

25, π
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The fact that multiple variables with the same name can exist may seem
confusing at first, but it’s important to keep in mind that a complex
project may use a very large number of procedures. Keeping track of
which names have been used and how the data they refer to might be
affected by procedure calls would be very difficult (and annoying) in
such circumstances. Instead, local variables allow the internal operations
of each procedure to be independent from the rest of the worksheet.

Variables that are not local are said to be global. Only one global
variable with each name can exist in a worksheet. It can be accessed from
inside a procedure using the global keyword. The next example shows
a direct comparison between the behaviour of local and global variables.
> local_global_demo := proc()

local a :
global b :

print( a , b ) :
a := 1 : b := 2 :
print( a , b ) :

return :

end proc :

> a := Pi : b := Pi :
> local_global_demo() ;

a, π
1, 2

> a , b ;

π, 2

> local_global_demo() ;

a, 2
1, 2

Here, there are two objects called a: the global variable, which exists
outside the procedure, and the local variable, which is only visible
inside. Before the procedure is used, the global a is assigned the value π.
However, in the two print commands, a refers to the local variable. In
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the first instance this has not been assigned a value, so a is printed. In
the second, a has the value 1. Since the penultimate statement is outside
the procedure, it refers to the global a, whose value is still π. When the
procedure is invoked for a second time, the local a is again undefined
at the first print statement. It does not retain the value 1 because new
instances of local variables are created each time a procedure is used, and
discarded when it terminates. On the other hand, the statement global b
tells Maple that occurrences of b inside and outside the procedure refer
to the same entity. Thus, when the first print command is executed, b
has the value π. The subsequent assignment to b globally changes its
value. The penultimate statement demonstrates that the value of b outside
the procedure has indeed changed from π to 2, and it still has this value
when the procedure is invoked again. This behaviour can lead to errors,
because it is easy to forget which global variables are affected by which
procedures. In most cases, there are much better ways to share information
with the rest of the worksheet. See Sections 8.4 and 8.6 for details.

� A procedure should not access or (worse) change data via the global
keyword unless this is absolutely necessary.

� If a variable is used in a procedure but is not declared to be either local
or global, Maple automatically declares it global, unless it appears
on the left-hand side of an assignment, or as the index variable in a
do loop. In these last two cases, Maple will automatically declare it
local and issue a warning.

� Variables can be assigned values as part of a global or local
declaration. For example, in a procedure that contains the declaration
local j := 1 the local variable j will be assigned the initial value 1
each time the procedure is executed.

Local variables are subject to one-level evaluation rules. This means
that chains of assignments are not automatically followed to the end,
as they are for global variables (see Section 2.13). When the print
command in the next example is executed, d evaluates to c, but c does
not further evaluate to 1.
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> my_proc := proc()

local c , d :

d := c :
c := 1 :

print( d ) :

return :

end proc :

> my_proc() ;

c

One way around this is to force a full evaluation by using eval, but the
issue can be avoided entirely by placing the assignment to c before the
assignment to d. In fact, there are very few situations in which one-level
evaluation problems cannot be avoided by arranging the statements in a
procedure in a more logical order.

Another important property of local variables is that they may ‘escape’
from a procedure. In the next example, the unevaluation quotes cause
the name a to be returned, as opposed to its value 1. The next time
this escaped local variable occurs in a context that causes evaluation,
it evaluates to 1. None of this affects the fact that the global a has
been assigned the value 32 outside the procedure, so we briefly have a
situation in which two variables with the name a and different values are
in existence in the main part of the worksheet. However, in this case, the
escaped local variable is both short-lived and harmless.

> a := 32 :
> my_proc := proc()

local a := 1 :

return 'a' :

end proc :
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> my_proc() ;

a

> % ;

1

> a ;

32

Let us now consider an example in which naive programming leads to
more serious problems with one-level evaluation rules and escaped locals.

> my_proc := proc( x )

local p , y , t :

p := y^2 + 1 :
y := t + 1 :

# 2nd argument should be eval( p )
return subs( t = x , p ) :

end proc :

> my_proc( z ) ;

y2 + 1

> evalb( % = y^2 + 1 ) ;

false

Before the subs command is executed, its second argument, p, evaluates
to y2 + 1 but y does not evaluate to t + 1 (as it would if p were global).
Consequently, the substitution fails, and y2 + 1 is returned, and not
(z + 1)2 + 1 as might have been expected. To make matters worse, the
y in the returned expression is an escaped local, so it is not the same
as the symbol y used outside the procedure. These problems can be
prevented either by using eval, or by making the assignment to y before
the assignment to p. Escaped local variables can also be created when
an object that uses last name evaluation is returned as the result of a
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procedure. Consider the following example, in which the local variable t
is associated with a table.
> my_proc := proc()

local t := table() :

t[1] := 5 :

return t : # Should be return eval( t ) :

end proc :

> w := my_proc() :
> w[1] ;

5
> w ;

t

> t[1] ;

t1

When the procedure is executed, the name t is returned as its result, and
assigned as the value of w. The elements of the table can be accessed
through its association with w, so w[1] evaluates to 5. However, w itself
evaluates to t, and, because t is an escaped local variable, it cannot be
accessed outside the procedure in any other way. Consequently, when
the last statement is executed, t[1] does not refer to a table entry, and
evaluates to itself. To prevent this slightly confusing situation, we should
use return eval( t ) to ensure that the table (and not its name) is
returned.

8.4 Arguments and Parameters

Leaving aside the possibility of global variables, the data required by a
procedure is provided via the argument sequence, which is enclosed in
parentheses, and immediately follows the name of the procedure in the
invoking statement. The argument sequence in the next example is k , 2.
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> show := proc( a , b )

print( a , b ) :

end proc :

> k := 3 :
> show( k , 2 ) :

3, 2

Under normal evaluation rules, the arguments are evaluated before being
bound to the corresponding entries in the parameter sequence, which
is enclosed in parentheses and immediately follows the proc keyword.
In the above example, the parameter sequence is a , b. It is important
to consistently and correctly distinguish between the meanings of the
terms argument and parameter. Alliteration provides a good method for
recollection: the parameter sequence follows the proc keyword. When
the show procedure is invoked, the parameters a and b are replaced by 3
and 2, respectively. Note that a procedure that takes no arguments is
permitted, in which case the parameter sequence is empty. Maple also
provides facilities for optional arguments, the ‘keyword = value’ syntax
used by some of its own procedures (see Section 6.2 for example), and
many other possibilities besides. See Chapter 6 of the Programming
Guide (?ProgrammingGuide,Chapter06) for full details.

Another feature worthy of a special mention is that procedures can
accept the names of other procedures in their argument sequence. The
definition of a procedure used as an argument can be accessed using the
associated parameter name. For example, suppose we wish to define an
operator similar to D (see Section 3.7) but for integration. That is,

A(g) =
∫ x

0
g(t) dt

for any function g, assuming the integral exists. This can be achieved as
follows.

> A := proc( g )

local G , t , x :
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G := int( g( t ) , t = 0 .. x ) :

return unapply( G , x ) :

end proc :

> f := x -> x^2 :
> A( f ) ;

x → 1
3

x3

> A( sin )( Pi ) ;

2

Here, the procedure A first integrates its argument, and then converts the
result from an expression into an operator using unapply (returning the
expression G would create an escaped local). The presence of ( Pi )
at the end of the last statement causes the result obtained by computing
A(sin) (i.e. x → 1 − cos(x)) to be evaluated at the point x = π, just as it
would for D.

It is usually best to think of arguments as input to a procedure, and to
use a return statement for output (see Section 8.6). Procedures written
in this way do not modify their arguments (this is the most natural
approach: one would not expect the value of x to change if we ask Maple
to compute tan x, for example). Where a procedure needs to modify a
parameter value during execution, the usual technique is to copy this into
a local variable, so that the value outside the procedure is not affected.

> my_proc := proc( x0 )

local x := x0 :
#Now do as we please with x, without affecting x0

statements

end proc :

However, if an argument is an indexed data structure such as an array,
then changing the elements from within the procedure is quite common,
especially in cases where retaining a copy of the original data is unneces-
sary. A simple example, in which a procedure assigns a value to every
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entry in an array, is shown below; the sorting procedure discussed in
Section 9.4 uses this feature in a more practical way.
> fill_with := proc( A , x )

local j :

for j from lowerbound( A ) to upperbound( A ) do
A[j] := x :

end do :

return :

end proc:

> A := Array( 1 .. 5 ) ; [
0 0 0 0 0

]
> fill_with( A , Pi ) :
> A ; [

π π π π π
]

The situation becomes more complicated if a procedure needs to alter
scalar arguments. Whilst it must be stressed that this is unusual, it is a
good exercise in understanding Maple’s evaluation rules. Consider the
following example.
> set_to_zero := proc( a )

a := 0 :
end proc :

> b := 7 :
> set_to_zero( b ) ;
Error, (in set_to_zero) illegal use of a formal parameter
> set_to_zero( c ) :
> c ;

0

Naively, it may appear that the first invocation of the procedure sets the
value of the variable b to zero, but it is not so. Prior evaluation of b results
in the value 7 being bound to a. An error occurs because a subsequently
appears on the left-hand side of an assignment. In general, if a parameter
is bound to something other than a name, it cannot appear on the left-hand
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side of an assignment. On the other hand, if a parameter is bound to a
name, an assignment to that name from within the procedure is permitted.
Before the second invocation of the set_to_zero procedure, c has no
value, and is therefore unaffected by prior evaluation. In this way, an
argument with no assigned value can be used to retrieve output from a
procedure.

By default, parameters do not evaluate beyond their binding to the
evaluated arguments. Consequently, if an assignment is made to a
parameter which is bound to a name then access to that value can only
be gained by forcing full evaluation using eval. To see this, consider the
following.

> test := proc( a )

a := 1 :
print( a , eval( a ) ) :

end proc :

> test( b ) ;

b, 1

Here, the name b is bound to the parameter a, which is subsequently
assigned the value 1. However, when a is printed it is not evaluated
beyond its binding to b, unless eval is applied first. In the next example,
unevaluation quotes are used to prevent prior evaluation of b. Since a is
then bound to a name, it can appear on the left-hand side of an assignment.
Its current value can be accessed using eval. In this way, the procedure
is able to retrieve the existing value of b, and to assign a new value which
then persists outside the procedure.

> another_test := proc( a )

print( eval( a ) ) :
a := 42 :

return :

end proc :
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> b := 7 :
> another_test( 'b' ) :

7

> b ;

42

Procedures which automatically block prior evaluation of their argu-
ments can be created using the evaln modifier, or the uneval modifier.
For an argument which is a name, the effect of these is exactly the
same: prior evaluation is prevented, so that the corresponding procedure
parameter is bound to the name, not to its value. The current value of such
a parameter must be obtained using the eval command, but assignments
can be made in the usual way.

> yet_another_test := proc( a :: evaln )

print( eval( a ) ) :
a := 42 :

return :

end proc :

> b := 7 :
> yet_another_test( b ) : # No uneval quotes needed.

7

> b ;

42

The difference between the evaln and uneval modifiers becomes appar-
ent when the argument is not a name. The uneval modifier simply blocks
all prior evaluation, whereas evaln attempts to evaluate the argument to
a name and flags an error if this fails. For example, a literal numerical
argument can be bound to a parameter with the uneval modifier (though
of course assignments to this parameter will not then be possible), but
evaln will not permit this. Execute ?parameter_modifiers for more
details.
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8.5 Checking Argument Validity

In most cases, procedures are not executed directly by a human — they
are executed automatically by other parts of the worksheet. Therefore it
is generally a good idea to check that the input received by a procedure
is valid. Without such ‘defences’, an automated worksheet may continue
to run for some time after a problem arises, in which case tracing the
source of an eventual error (or incorrect result) can be very difficult and
time-consuming. The type operator :: introduced in Section 2.21 can be
used for this purpose. For example, suppose that the procedure my_proc
uses two parameters, a and b. Both must be numeric values, and a must
be positive. These restrictions can be enforced as follows.

> my_proc := proc( a :: positive , b :: numeric )

statements

end proc :

With this definition, both of the following statements result in an error.

> my_proc( 'Arthur' , 'Pewty' ) :
> my_proc( -1 , 1 ) :

If a procedure requires a container structure (vector, matrix, array, etc.)
as part of its input, we can test either the type of the argument itself or
the type of the argument and the type of its elements. Unlike the situation
discussed in Section 2.21, there is no need for unevaluation quotes.
For example, if my_proc uses a single parameter A, which is an array
containing real numbers, then the following declaration is appropriate.

> my_proc := proc( A :: Array( numeric ) )

statements

end proc :

Under some circumstances, type checking alone is not sufficient.
Conditional statements can be used to perform other tests and, where
necessary, the error command can be used to display a message and
terminate execution. For example, suppose that the procedure my_proc

.008
 14:33:27, subject to the Cambridge Core terms



190 Procedures

requires distinct integers m and n as its input. Type checking will account
for the first condition, and the error command is used if m = n.
> my_proc := proc( m :: integer , n :: integer )

if m = n then
error "Doesn't work if m = n" :

end if :

statements

end proc :

By default, Maple allows procedures to be invoked with more argu-
ments than necessary. There are applications for this, but in most cases it
only serves to expose users to potential errors. Consider the next example,
which (incorrectly) uses the double procedure from the beginning of
this chapter.
> double := proc( x )

return 2 * x :

end proc :

> double( 0,42 * Pi ) ;

0

Here, the invoking statement contains a typographical error: a comma
where a decimal point is intended. The effect of this is to pass two
arguments, 0 and 42π, to the procedure. The former is bound to the
parameter x and the latter is ignored. To prevent a procedure from
accepting extra arguments, terminate the parameter sequence with a
dollar symbol $. With this modification, extraneous arguments cause
Maple to flag an error.
> double := proc( x , $ )

return 2 * x :

end proc :

> double( 0,42 * Pi ) ;
Error, invalid input: too many and/or wrong type of
arguments passed to double; first unused argument is 42*Pi
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8.6 Data Returned by Procedures

The concept of a return statement, which can be used to set the return
value for a procedure, was briefly introduced in Section 8.1. Such a
statement has the following general structure.
return return values :

Here, return values can be a single object or a sequence of objects, or it
can be omitted, in which case the procedure returns no result (cf. results
returned by statements in Section 2.7). In the examples considered so
far, the return statement has always been placed immediately before
end proc, but this is not necessary. Any number of return statements
can occur anywhere in a procedure, and the procedure is terminated if
one of these is executed. This is useful for dealing with cases where
certain situations should trigger an immediate return, but processing
should otherwise continue. The next example shows a procedure that
determines whether a particular character c is a member of a string s.
It does this by comparing c with the characters of s, one at a time. An
immediate return is triggered if a match occurs, and in this case the return
value is true. Otherwise the process continues until the end of the string
is reached. If no match is found, the loop terminates, and the return value
is false.
> contains_char := proc( s :: string , c :: character )

local r :

for r in s do

if r = c then
return true :

end if :

end do :

return false : # No match found if we get to here

end proc :

> contains_char( "abc" , "d" ) ; # First test

false
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> contains_char( "abc" , "a" ) ; # Second test

true

In a case where no return statement is encountered, and execution
reaches end proc, the return value is the last result computed within
the procedure. This feature can easily lead to mistakes, so its use is not
recommended. Including a return statement that is not strictly required
is harmless, but forgetting one that is necessary may create a procedure
that returns incorrect or nonsensical results. The time required to find
and eliminate one such error can easily exceed the time needed to type
hundreds or even thousands of unnecessary return statements.

8.7 Returning Unevaluated

Under some circumstances, it is useful to allow a procedure to take one
or more names as input, and defer processing until values have been
assigned to those names. Consider the following.
> y := k! ;

y � k!
> k := 12 :
> y ;

479001600

Here, k is initially undefined, so the factorial cannot be evaluated when
the first statement is executed. However, applying the factorial to a symbol
is not an error. It may be possible to evaluate it at a later stage, and
indeed, after assigning the value 12 to k, the evaluation occurs at the
next instance of the variable y. The key point here is that the factorial is
returned unevaluated if Maple has insufficient information to compute a
result. The next example shows a naive attempt to implement the factorial
function using a procedure, and a very common error that occurs when
the argument has not been assigned a value.
> my_fact := proc( n )

local f , j :
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f := 1 :

for j from 1 to n do
f := f * j :

end do :

return f :

end proc :

> my_fact( 7 ) ;

5040

> my_fact( p ) ;
Error, (in my_fact) final value in for loop must be numeric
or character

In the last statement, the parameter n is bound to the symbol p (which
has no value), and the procedure fails when it attempts to set up the loop,
because the final value is not a number. We could insist that n should be
bound to a nonnegative integer (see Section 8.5), but this would simply
change the error message after the last statement. To allow n to be bound
to a name or a nonnegative integer, we can delay evaluation as follows.

> my_fact := proc( n )

local f , j :

if type( n , name ) then
return 'my_fact( n )' :

elif not type( n , nonnegint ) then
error( "Argument must be a name or a

nonnegative integer" ) :
end if :

f := 1 :

for j from 1 to n do
f := f * j :

end do :

return f :

end proc :
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> my_fact( 7 ) ;

5040

> f := my_fact( p ) ;

f � my_fact(p)

> p := 5 :
> f ;

120

Now, when the statement f := my_fact( p ) is executed, the symbol
p is bound to the parameter n, and this subsequently causes the conditional
statement type( n , name ) to evaluate to true. Note that this test
also evaluates to true if n is bound to an unassigned table entry, whereas
type( n , symbol ) would evaluate to false in such cases. Evaluation
of the return value causes the removal of the unevaluation quotes, so that
my_fact( p ) is the result of the procedure. The next time f appears
in a context that causes evaluation, p has the value 5, so my_fact( 5 )
is evaluated.

Many of Maple’s own procedures are programmed to accept any input
and return unevaluated in any case where a result cannot be computed.
This has the advantage that algebraic expressions can be used as argu-
ments; thus (k + 1)! is acceptable input, whereas my_fact( k + 1 )
would lead to an error in the above example. On the other hand, it has
the disadvantage of allowing nonsensical input.

> p := plot( x^2 ) :
> p! ;

!
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� A useful shortcut for an unevaluated return from a procedure that
has a long name, or that accepts a large number of parameters, is
return 'procname( _passed )'. The special names procname
and _passed will automatically be replaced by the procedure name
and the evaluated argument sequence, respectively.

8.8 Output Displayed from Within Procedures

When a procedure is executed, the results of statements enclosed between
proc( . . . ) and end proc will be displayed if their nesting level does
not exceed the current value of printlevel (see Section 7.3). Colons
and semicolons inside the procedure body have no bearing on output (cf.
conditionals and loops, Sections 7.1 and 7.2, respectively). The nesting
level increases by 5 when Maple enters a procedure, and decreases by 5
when the procedure terminates. Since procedures often contain loops
and conditionals, and may invoke other procedures, it may be necessary
to set printlevel to a very large value in order to cause Maple to
display the result of a particular statement. Therefore it is usually better
to use print or printf to show the inner workings of a procedure (see
Section 7.4). In most cases this is useful for debugging purposes only;
once the procedure is working the print and printf commands are
removed or deactivated to prevent unnecessary output, which can slow
Maple down significantly.

8.9 Remember Tables and Recursion

A procedure can be made to store the result(s) of each invocation in
a remember table. The stored results will be used if the procedure is
executed again with the same values for its parameters, saving time. To
allow a procedure to construct a remember table, simply insert

option remember :

somewhere inside the procedure body, before the statement sequence. A
remember table can grow to any size, which can cause problems with
excessive memory usage. Therefore a cache table, obtained by using
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option cache in place of option remember, may be preferable. By
default, this stores results from the most recent 512 invocations. The
number can be changed by using option cache( N ), where N is a
positive integer.

Cache tables and remember tables are often used with recursive
procedures, that is, procedures which invoke themselves. The procedure
in the next example computes the harmonic numbers

Sn =
n∑
j=1

1
n
,

using the facts that S1 = 1 and

Sn = Sn−1 +
1
n
, n ≥ 2.

For example, S3 is computed as

S3 =
1
3
+ S2

=
1
3
+

1
2
+ S1

=
1
3
+

1
2
+ 1

=
11
6
.

Computing S3 causes S3, S2 and S1 to be added to the remember table.
Increasing printlevel (see Section 8.8) and calling the procedure again
with n = 4 shows that Maple has indeed remembered the value of S3,
and uses this to compute S4 in a single step.
> harmonic_number := proc( n :: posint )

option remember :

if n = 1 then
return 1 :

else
return harmonic_number( n - 1 ) + 1 / n :

end if :

end proc :
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> harmonic_number( 3 ) ;
11
6

> printlevel := 20 :
> harmonic_number( 4 ) ;
{--> enter harmonic_number, args = 4
value remembered (in harmonic_number): harmonic_number(3)
-> 11/6
<-- exit harmonic_number (now at top level) = 25/12}

25
12

� It is possible to insert an entry into a procedure’s remember table by
making an assignment to a function call.
> harmonic_number( 10 ) := 7381 / 2520 :

However, this is not recommended, because it changes the behaviour
of the procedure from outside its definition.

� Some of Maple’s own commands use remember tables; these include
diff, evalf, expand, normal and series.

� The time command can be used to assess the performance of Maple
code. Obviously timing will produce different results on different
machines, but one must also be wary of remember tables when using
this facility.
> time( evalf[ 100000 ]( Pi ) ) ;

0.295

> time( evalf[ 100000 ]( Pi ) ) ;

0.

8.10 Viewing a Procedure Definition

Procedures use last name evaluation, which means that a procedure name
evaluates to itself. This is the reason why eval was needed in Section 3.4
to reveal that the name tan is associated with a procedure.
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verboseproc value 0 1 2 3

Maple library procedure PS PS FD FDRT
User-defined procedure PS FD FD FDRT

Table 8.1 Output produced by applying eval to a procedure name. Key: PS –
parameter sequence, FD – full definition, FDRT – full definition and remember

table. The default value of verboseproc is 1.

> whattype( tan ) ;

symbol

> whattype( eval( tan ) ) ;

procedure

Forcing a full evaluation using eval is a useful way to obtain information
about procedures whose definition is not located in the current worksheet.
This could be a user-defined procedure stored in a library (execute
?LibraryTools for details), or one of Maple’s own procedures. Exactly
what is displayed depends on the verboseproc interface variable. The
effects of eval at different values are shown in Table 8.1 There is one
caveat concerning Maple’s own procedures. The core part of Maple
(called the kernel) is implemented in C. Procedures that form part
of the kernel are said to be built-in, and their definitions cannot be
viewed. However, most commands are part of the Maple library, which
is implemented in the Maple language itself. Full definitions of library
commands can be viewed using eval.
> interface( verboseproc = 2 ) :
> eval( seq ) ; # seq is a kernel command

proc( ) option builtin = seq; end proc
> interface( verboseproc = 2 ) :
> eval( tan ) ; # tan is a library command.

# This generates a lot of output.

An alternative method is to use the showstat command, which is not
affected by verboseproc. However, showstat omits options and will
generate a lot of additional output if printlevel is set to a high value.
Applying showstat to a kernel command results in an error.
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> showstat( seq ) ;
Error, (in showstat) cannot debug built-in functions
> showstat( tan ) ; # This generates a lot of output
> printlevel := 20 :
> showstat( tan ) ; # This generates even more output

The showstat command has some additional features to assist with
debugging; execute ?showstat for details.
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Example Programs

We end this book with some examples that bring together many of the
ideas introduced. In each case, a brief analysis of a problem is presented
along with a Maple procedure to solve it, and some annotations to explain
the thinking that went into each part of the code.

9.1 Pascal’s Triangle

Pascal’s triangle contains the binomial coefficients

Cn
j =

(
n
j

)
=

n!
j!(n − j)!

, n = 0, 1, . . . j = 0, 1, . . . n.

Here, n is the row number and j is the column number. The first few
rows are shown below.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Evidently, if j = 0 or j = n then Cn
j = 1. Elsewhere, the entries may be

obtained from those in the preceding row using the relationship

Cn
j = Cn−1

j + Cn−1
j−1 ,

which requires far less work than using the binomial formula directly.
Program 9.1 shows a procedure that uses this to generate the first N + 1
rows of Pascal’s triangle. Let us examine how this works.

1 & 17 The beginning and end of the procedure definition are marked

200
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by proc and end proc, respectively. We give the procedure a
sensible name, and insist that N (the last row in which coefficients
are to be calculated) must be a nonnegative integer.

2–3 The description is particularly important here because an unwary
user could easily commit an off-by-one error by failing to realise
that the rows are numbered from zero.

4 The local variables n and j will be used as loop indices for the row
and column numbers, respectively.

5 Since the shape of the data is not rectangular, a table is the most
natural choice of container in which to store the results. Using
an ordinary array or matrix here would lead to a large amount of
redundant storage, though one might consider a sparse matrix or
sparse array (only the nonzero entries in a sparse structure are
stored; execute ?sparse for details).

6 & 15 The outer do loop; the index n loops over rows 0 to N of the
triangle.

7 & 14 The inner do loop; the index j loops over columns 0 to n in row n.
8–13 Entries on the left and right edges are all given by Cn

0 = Cn
n = 1.

Elsewhere, the recurrence relation is used.
16 The eval command is applied to the return value, to prevent the

appearance of an escaped local variable (see Section 8.3).

Note the use of the seq command introduced in Section 2.20 in testing
the procedure by displaying rows of results; it is not possible to retrieve
a sequence of values from a table using the range operator.
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1 > Pascal := proc( N :: nonnegint )

2 description "Generates rows 0 .. N of Pascal's
3 triangle" :
4 local n , j :
5 local C := table() :

6 for n from 0 to N do # n is the row number
7 for j from 0 to n do # j is the column number

8 if j = 0 or j = n then
9 C[j,n] := 1 :

10 else
11 # Recurrence relation
12 C[j,n] := C[j,n-1] + C[j-1,n-1] :
13 end if :

14 end do :
15 end do :

16 return eval( C ) :

17 end proc :

> # Test
> C := Pascal( 8 ) :
> seq( C[j,4] , j = 0 .. 4 ) ;

1, 4, 6, 4, 1
> seq( C[j,8] , j = 0 .. 8 ) ;

1, 8, 28, 56, 70, 56, 28, 8, 1

Program 9.1 A procedure for generating Pascal’s triangle.
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9.2 The Collatz Problem

For a given initial value n0, the sequence defined by

n j+1 =
⎧⎪⎪⎨⎪⎪⎩

n j

2
if n is even,

3n j + 1 if n is odd,

may eventually settle into the cycle 1, 4, 2, 1, 4, 2, . . .Determining whether
this happens for every n0 ∈ N is known as the Collatz problem, which
remains unsolved at the time of writing. Program 9.2 shows a procedure
that tests the outcome for a given initial value and number of iterations.
Let us examine how this works.

1–2 & 21 The beginning and end of the procedure definition are marked
by proc and end proc, respectively. We give the procedure a
sensible name, and insist that the initial value is a positive integer.
Users of the procedure are able to set the maximum number
of iterations to try, and to decide whether to display the values
obtained at each step.

3–4 A brief description explaining the purpose of the procedure.
5 The initial value n0 is copied into a local variable n, which can

subsequently be changed (see Section 8.4).
6 A local variable j is declared for use as the step number.

7 & 19 The do loop. Since we don’t know a priori that the iteration will
enter the cycle, a limit is imposed on the number of steps.

8–12 The conditional statement determines whether n is currently odd
or even, using the mod command (execute ?mod for more details).
The value is then updated to the next member of the sequence.

13–15 The step number and the value of n in the current step are displayed,
if display evaluates to true.

16–18 If the cycle has been entered, the procedure terminates, and returns
true as its result.

20 This line is reached only if the loop ends without the sequence
entering the cycle 1, 4, 2, 1, 4, 2, . . . Therefore false is returned as
the result in this case.
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1 > Collatz := proc( n0 :: posint , max_its :: posint ,
2 display :: boolean )

3 description "Tests the Collatz problem with initial
4 value n0" :

5 local n := n0 :
6 local j :

7 for j from 1 to max_its do

8 if n mod 2 = 0 then
9 n := n / 2 :

10 else
11 n := 3 * n + 1 :
12 end if :

13 if display then
14 printf( "%8d %8d\n" , j , n ) :
15 end if :

16 if n = 1 or n = 2 or n = 4 then
17 return true :
18 end if :

19 end do :

20 return false :

21 end proc :

> Collatz( 10 , 100000 , true ) : # Test 1
1 5
2 16
3 8
4 4

> Collatz( 999999 , 100000 , false ) ; # Test 2

true

Program 9.2 A demonstration of the Collatz problem.
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y

xxn xn+1

f (xn )

f (x)

Figure 9.1 Schematic diagram illustrating one step of the Newton–
Raphson iteration.

9.3 A Newton–Raphson Iteration

Suppose that xn is close to a root of the function f . The point at which
the tangent to the graph of f (x) at x = xn intercepts the x axis is often
closer to the root than xn itself (see Figure 9.1). Since this tangent is a
straight line through the point (xn, f (xn )), its equation is

y = (x − xn ) f ′(xn ) + f (xn ).

Setting y = 0 and x = xn+1 (the new estimate), we obtain the Newton–
Raphson iteration formula

xn+1 = xn − f (xn )
f ′(xn )

,

which is widely used to home in on solutions to nonlinear equations.
Program 9.3 shows a procedure that can be used to apply this method to
an arbitrary function. The purpose of each line is described below.

1–2 & 15 The beginning and end of the procedure definition are marked
by proc and end proc, respectively. We give the procedure a
sensible name, and insist that each argument has the correct
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type. The procedure requires an operator f , an initial estimate for
the root x0 (which must be a number), a maximum number of
iterations and a tolerance ε . There is no guarantee that a Newton–
Raphson iteration will converge, but the procedure will terminate
if | f (x) | < ε at any step.

3–4 A brief description of the procedure and its purpose.
5 The initial estimate x0 is copied into a local variable x, which can

subsequently be changed (see Section 8.4).
6 The derivative of f is obtained, using the D operator (see Sec-

tion 3.7).
7 & 13 The do loop allows for a limited number of iterations, as specified

by the parameter max_its.
8 The comment here serves as a reminder that the iteration can

generate very large expressions if it feeds exact results back into
the formula.

9 The iteration formula is used to update x.
10–12 An immediate return is triggered if | f (x) | < ε . In this case, the

procedure returns the final value of x followed by true, to indicate
that the iteration has achieved the required tolerance.

14 This line is reached only if the do loop terminates having performed
the maximum allowed number of iterations without achieving the
required condition | f (x) | < ε . Therefore the final value of x is
now followed by false.

Note the small number of steps used in testing the procedure; when a
Newton–Raphson iteration converges it usually does so very rapidly.
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1 > Newton_Raphson := proc( f :: operator , x0 :: numeric ,
2 max_its :: posint , epsilon :: positive )

3 description "Applies the Newton-Raphson formula to
4 f( x ), using the initial value x0" :

5 local x := x0 : # Initial guess
6 local df := D( f ) : # Obtain derivative

7 from 1 to max_its do

8 #Don't forget evalf when using Newton-Raphson
9 x := evalf( x - f( x ) / df( x ) ) :

10 if ( abs( f( x ) ) < epsilon ) then
11 return x , true :
12 end if

13 end do :

14 return x , false :

15 end proc :

> f := x -> x^2 - 2 : # Test 1
> r := Newton_Raphson( f , 1.5 , 3 , 10^(-8) ) ;

r � 1.414213562, true
> f( r[1] ) ;

−1. 10−9

> g := x -> sin( x ) * exp( x ) - 2 * x : # Test 2
> r := Newton_Raphson( g , 1 , 5 , 10^(-8) ) ;

0.8030341928, true
> g( r[1] ) ;

0.

Program 9.3 A Newton–Raphson procedure.



208 Example Programs

9.4 Sorting Data

A common programming task is to sort an array containing numerical
data into ascending order. There are many algorithms that can be used for
sorting. We will use a selection sort, which works by finding the smallest
array element, and swapping it with the first. Next it finds the second
smallest element, and swaps this with the second element, etc. Suppose
we start with an array containing the five elements 1, 3, −2, 7 and −3
(in this order). For this small example, the algorithm is represented
diagrammatically in Figure 9.2. In locating the correct entry for position
j, any preceding elements can be ignored, because these have already
been positioned correctly by earlier steps. After four steps, four elements
are positioned correctly, so the last element has been automatically moved
into the correct position because there is nowhere else for it to go. An
implementation for an array of arbitrary size is given in Program 9.4.
The purpose of each line is described below.

1 & 19 The beginning and end of the procedure definition are marked
by proc and end proc, respectively. We give the procedure
a sensible name, and insist that the input consists of an array
containing numerical values.

2–3 A brief description explaining the purpose of the procedure.

first entry

last entry

−3−3 −3 −3

−3

−2

−2

−2−2

−2

1

11

11

3

3

3

3

3

7

7

777

step 1 step 2 step 3 step 4

Figure 9.2 Sorting an array into ascending order by selection. Shaded
areas show where elements have been positioned correctly by preceding
steps.
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4–5 Local variable declarations.
7–9 We check for a potential problem with the input: the array must be

one-dimensional, or the sorting algorithm will not work.
10–11 The bounds for the array index are stored for later use.

12 & 17 The do loop. The index j refers to the position at which the entry is
to be corrected during the current step. Thus, the smallest element
is placed into the first position on the first step, etc. The loop stops
one step before the end of the array. As noted above, if all but one
of the elements have been swapped into place then the last element
must also be in the correct position.

13 This comment explains the purpose of line 14, which may not be
immediately apparent.

14 The min command with the index option locates the smallest
element that currently resides in position j or later. This (along
with a corresponding option for max) was introduced in Maple
2015; in earlier versions another loop would be needed to perform
the search.

15 The syntax by which Maple allows variables to be swapped in a
single step is not widely known, so an explanatory comment is
included.

16 The current element ( j) is swapped with the smallest element in
position j or later (m). This has no effect if j and m have the same
value.

18 The return statement. The effect of this procedure is to rearrange
the entries of A, so there is no return value.
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1 > sort_ascending := proc( A :: Array( numeric ) )

2 description "Uses a selection sort to put the entries
3 of A into ascending order." :

4 local lb , ub :
5 local j , m :

6 # Check number of dimensions
7 if ArrayNumDims( A ) <> 1 then
8 error "Only 1D arrays can be sorted." :
9 end if :

10 lb := lowerbound( A ) :
11 ub := upperbound( A ) :

12 for j from lb to ub - 1 do

13 # Find the smallest element in position j or later
14 m := min[ index ]( A[j..] ) : # Maple 2015 & later

15 # Swap elements into position
16 A[j] , A[m] := A[m] , A[j] :

17 end do :

18 return :

19 end proc :

> # Test
> A := Array( [ 2 , -1 , 7 , 23 , 3 , 1 , 0 , -10 ] ) :
> sort_ascending( A ) ;
> A ; [−10,−1, 0, 1, 2, 3, 7, 23

]

Program 9.4 A selection sort procedure.



9.5 Quadrature Formulae 211

9.5 Quadrature Formulae

If |b − a | is small, we might approximate the integral

I =
∫ b
a

f (x) dx

using the area of the trapezium with vertices

(a, 0), (a, f (a)), (b, 0) and (b, f (b))

(see Figure 9.3). This gives us the trapezium rule

I ≈ b − a
2

[
f (a) + f (b)

]
.

A more accurate approximation is Simpson’s rule, which uses f (a) and
f (b) alongside the value of the function f at the centre of the integration
range; thus

I ≈ b − a
6

[
f (a) + 4 f

(
b + a

2

)
+ f (b)

]
.

In general, if we write

x j = a + jΔx with Δx =
b − a

N
,

these approximations (which are called Newton–Cotes quadrature rules)
have the form

I ≈ (b − a)
[
w0 f (x0) + w1 f (x1) + · · · + wN f (xN )

]
.

Note that x0 = a and xN = b. Since the index starts from 0, there are N+1
nodes x j and N +1 weights w j . One way to find the weights is to demand
that the result should be exact if f (x) = xp , for p = 0, 1, . . . , N . It turns
out that the end-points a and b can be chosen arbitrarily (provided b � a).
We will take a = 0 and b = 1 to obtain a result of the form∫ 1

0
f (x) dx ≈ [

w0 f (x0) + w1 f (x1) + · · · + wN f (xN )
]
,

where now x j = j/N , but we can return to the integral over [a, b] by
writing

f (x) = g
(
a + (b − a)x

)
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xa b

f (a)
f (b)

f (x)

Figure 9.3 Schematic diagram showing the approximation used by the
trapezium rule.

and then making the substitution t = a + (b − a)x. None of this affects
the values of the weights w j . Now, if f (x) = xp , then

∫ 1

0
xp dx =

1
p + 1

,

so we must have
1

p + 1
= w0xp

0 + w1xp
1 + · · · + wN xp

N for p = 0, 1, . . . , N . (∗)

The trapezium rule uses two nodes, so N = 1, and it should give an exact
result if f (x) = x0 ≡ 1, or f (x) = x. Setting p = 0 in (∗), we find that

1 = w0 + w1,

and then with p = 1 we obtain
1
2
= w1,

so that w0 = 1/2 as well. We can obtain Simpson’s rule in the same way,
setting N = 2 so that there are three weights w0, w1 and w2, and requiring
exact results for f (x) ≡ 1, f (x) = x and f (x) = x2, corresponding to the
cases where p = 0, 1 and 2, respectively. However, doing this manually
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becomes very tedious as the number of nodes is increased. Program 9.5
automates the process. Let us examine how this works.

1 & 17 The beginning and end of the procedure definition are marked
by proc and end proc, respectively. We give the procedure a
sensible name, and insist that N is a nonnegative integer.

2–3 A brief description explaining the purpose of the procedure, noting
that it computes weights for N + 1 point quadrature (which is why
N = 0 is permitted). As in the case of Pascal’s triangle (Section 9.1),
the description helps users avoid a potential off-by-one error.

4–6 Local variable declarations. Capital letters are used for the variables
LHS and RHS, to avoid confusion with the lhs and rhs commands.

7 A table for storing the weights w j is assigned. We need to form a
system of equations and solve for these values, and we will take
advantage of the fact that unassigned table entries can be treated
like ordinary variables (see Section 7.6).

8 An array for storing the equations is assigned.
9 & 13 This do loop forms the equations to be solved. Each iteration

generates one equation, with the index p corresponding to the
power in xp . Ultimately, the loop creates N + 1 equations for the
N + 1 unknowns, because p ranges from 0 to N .

10 The left-hand side of equation p from (∗) is stored.
11 The right-hand side of equation p is constructed using add.
12 Equation p is stored.
14 A set of variables is formed. Recall that the solve command

solves a set of equations for a set of unknowns (see Section 4.2).
15 The array containing the equations is converted into a set before

being passed to the solve command. Note the use of assign (see
Section 4.2) to convert the solutions into assignments so that they
are stored for later use.

16 The weights are returned in a list.
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1 > NC_weights := proc( N :: nonnegint )

2 description "Computes weights for N + 1 point
3 Newton-Cotes quadrature" :

4 local p , j :
5 local LHS , RHS :
6 local w , eqns , vars :

7 w := table() :
8 eqns := Array( 0 .. N ) :

9 for p from 0 to N do

10 LHS := 1 / ( p + 1 ) :
11 RHS := add( w[j] * ( j / N )^p , j = 0 .. N ) :

12 eqns[p] := LHS = RHS : # Store equations

13 end do :

14 vars := { seq( w[p] , p = 0 .. N ) } :

15 assign( solve( convert( eqns , set ) , vars ) ) :

16 return [ seq( w[p] , p = 0 .. N ) ] :

17 end proc :

> # Test
> NC_weights( 2 ) ; [1

6
,
2
3
,
1
6

]
> NC_weights( 5 ) ;[ 19

288
,
25
96
,

25
144
,

25
144
,
25
96
,

19
288

]
Program 9.5 Derivation of Newton–Cotes quadrature rules.
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9.6 Necklaces

Suppose that a necklace is to be made from n beads, each of which can be
either black or white. We wish to determine how many distinct designs
are possible. The answer isn’t 2n (i.e. two colour choices in each of the n
positions), because many of the arrangements can be obtained from others
by rotation. We need to find a way to eliminate these duplicate designs,
and since 2n grows very rapidly with n, our method will need to be very
efficient. The key observation to make is that a unique integer value can
be assigned to each arrangement by cutting the necklace, putting the
beads in a straight line, and treating this as a binary sequence, taking
black and white beads to represent 1 and 0, respectively. An example is
shown in Figure 9.4. Rotating the necklace can be simulated by moving
the digit from the left end of the sequence to the right end. For the 8-bit
sequence in Figure 9.4, this would mean subtracting 128 to remove the
leftmost digit, multiplying by 2 to shift the remaining digits to the left,
and adding 1 to set the rightmost bit to 1. Hence, the result of rotating by
one place is

2(177 − 128) + 1 = 99 = 26 + 25 + 21 + 20.

Since the leftmost bit is now set to 0, another rotation can be performed
by simply doubling, which shifts each digit to the left and introduces a
trailing zero.

Now consider the general case, in which an integer j is represented by
an n-bit binary sequence. The highest possible value for j is 2n − 1, and
the lowest is 0. The value of the leftmost bit is 2n−1, so if j < 2n−1 then
the sequence must begin with a zero. After discarding this, multiplying
by 2 shifts the remaining digits left one place, and introduces a trailing
zero in the rightmost position. On the other hand, if j ≥ 2n−1, then the
leftmost bit must first be removed by subtracting 2n−1. The resulting
value must then be doubled to shift left and finally increased by 1 to
change the rightmost bit to 1. Our rotation operator is therefore given by

r ( j) =
⎧⎪⎨⎪⎩

2 j if j < 2n−1,

2( j − 2n−1) + 1 otherwise.

Since the value of 2n−1 is fixed for each n, a rotation requires one
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1 0 1 1 0 0 0 1

Figure 9.4 Representation of a necklace by a binary sequence. In this case
the value of the sequence is 27 + 25 + 24 + 20 = 128 + 32 + 16 + 1 = 177.

conditional statement and two arithmetic operations on average. Clearly,
n rotations will return the starting value, but fewer rotations will achieve
this in some cases (for example r (0) = 0 and r (2n − 1) = 2n − 1; these
correspond to the case in which all of the beads are white, and the case in
which all of the beads are black, respectively). A procedure that computes
the number of possible necklaces for a given n is shown in Program 9.6.
Let us examine how this works.

1 & 27 The beginning and end of the procedure definition are marked
by proc and end proc, respectively. We give the procedure a
sensible name, and insist that the number of beads n is a positive
integer.

2–3 A brief description of the procedure and its purpose.
4 The local variable ud will be used to count the number of unique

designs found. It is initially set to zero.
5 The value of the leftmost bit in the binary sequence, 2n−1, is stored

to avoid repeated computation.
6 An array with its entries initially set to true is created. The index

ranges from 0 to 2n − 1. If we find that the binary representation of
j corresponds to a necklace design that has already been counted,
then Aj will be set to false.

7 The local variable j will be used as a loop index. The local variable
c will be used to store values obtained by repeatedly applying the
rotation operation r , starting with the initial value j.

8 & 25 The outer do loop. The index j ranges over all valid indices in the
array A.

9–11 If Aj has already been set to false, then j, and all values that can
be obtained by repeatedly applying the rotation operation starting
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from j, have been discounted. Therefore we move immediately to
the next step in the outer loop.

12 If this point is reached, then a unique necklace design has been
found. The counter is updated.

13 The current value of the index j is copied into another local
variable, c.

14 & 24 The inner do loop. A new value for c is obtained at each step by
applying the rotation operator r to the old value. After n steps, we
will always return to the original value, but this may happen sooner,
so a loop with a break statement and no limits is appropriate.

15–19 The value of c is updated by applying the rotation operator.
20–22 If c has returned to its original value ( j), then all possible values

that can be obtained by rotation have been discarded, and nothing
can be gained by further iterations. The inner do loop is then
terminated by the break statement.

23 If c has not returned to its original value, then the design cor-
responding to c is a rotation of the design corresponding to j.
Therefore Ac is set to false.

26 The number of unique designs is returned as the result of the
procedure.

Even for a modern computer, the demands of this procedure are very
high, and using a large value for n may cause Maple to freeze.
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1 > necklace_number := proc( n :: posint )

2 description "Finds the number of distinct necklaces
3 with n beads; each bead is either black or white." :

4 local ud := 0 :
5 local lbv := 2^(n-1) : # left bit value
6 local A := Array( 0 .. 2^n - 1 , fill = true ) :
7 local j , c :

8 for j from 0 to upperbound( A ) do

9 if not A[j] then
10 next :
11 end if :

12 ud := ud + 1 :
13 c := j :

14 do
15 if c < lbv then
16 c := 2 * c :
17 else
18 c := 2 * ( c - lbv ) + 1 :
19 end if :

20 if c = j then
21 break :
22 end if :

23 A[c] := false :

24 end do :
25 end do :

26 return ud :

27 end proc :

> necklace_number( 2 ) , necklace_number( 18 ) ; # Tests

3, 14602

Program 9.6 Counting necklace designs.



Other Ways to Run Maple

Command line Maple is useful for batch processing, and places less
demand on system resources than the Standard Worksheet Interface. It
has limited features for displaying results, but exactly the same processing
power as the full version. To access command line Maple conveniently,
it is generally best to update the PATH environment variable so that
the system command interpreter can find the executable file. This is
called maple (with a lower case ‘m’) on unix systems (including Macs)
and cmaple.exe on Windows. The exact procedure for changing PATH
varies from one platform to another; contact your system administrator for
assistance. Once the PATH environment variable has been set, command
line Maple can be started by entering maple (cmaple on Windows) at
the system command prompt, which is represented by the symbol % in
the following examples.
% maple

|\^/| Maple 2016 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of ...
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> expand( ( x + 1 )^2 ) ;

2
x + 2 x + 1

> evalf( BesselJ( 1 , 2.5 ) ) ;
0.4970941025

> quit ;
memory used=0.6MB, alloc=8.3MB, time=0.04
%

Note the quit command, which is used to terminate command line
Maple (this is disabled in the Standard Worksheet Interface). Previous
commands (including those from earlier sessions) can be retrieved using
the cursor up arrow key, after which they can be edited and executed

219
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again. There is no concept of an execution group in command line Maple,
and holding shift does not change the effect of pressing return .
Instead, input that is not terminated by a colon or semicolon is assumed
to continue on the next line. The next example would cause an error in
the Standard Worksheet Interface.

> x := 2 ; y :=
x := 2

> 5 ;
y := 5

The read command is often used to cause command line Maple to read
statements from a plain text file (not a worksheet!). Files used for this
purpose are usually given the extension .mpl. By default, statements read
in are not displayed, but this can be changed by using the interface
command to set the echo interface variable to 2, 3 or 4. The next
two examples assume that the file test.mpl contains the following
statements.

simplify( sin( x )^2 + cos( x )^2 ) ;
print( "That was easy" ) ;

> read( "test.mpl" ) ;
1

"That was easy"
> interface( echo = 2 ) :
> read( "test.mpl" ) ;
> simplify( sin( x )^2 + cos( x )^2 ) ;

1
> print( "That was easy" ) ;

"That was easy"

It is also possible to read an mpl file directly from the system command
line. In this case, the commands read will be displayed unless Maple is
started with the -q (quiet) option.

% maple -q test.mpl
1

"That was easy"
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The save command is a partial analogue to read. It can be used to store
variables and procedure definitions in a plain text file.
> a := 13 :
> f := proc( x )
> return x^3 :
> end proc :
> save( a , f , "test2.mpl" ) :
> unassign( 'a' , 'f' ) :
> a , f( -2 ) ;

a, f(-2)
> read( "test2.mpl" ) :
> a , f( -2 ) ;

13, -8

Of course these facilities are also available in the Standard Worksheet
Interface, but the LibraryTools package offers more sophisticated
facilities for storing and reusing code. Another command that is frequently
used with command line Maple is fprintf, which is similar to printf
(see Section 7.4), but sends output to a file. The file must be opened
using fopen, and it’s best to close it using fclose when it is no longer
needed, because data may not be written to the disk until this happens.
Maple automatically closes files upon exit, but data that has not been
written to the disk may be lost if the session terminates unexpectedly. In
the next example, the file results.txt is associated with the name F.
Subsequently, fprintf is used to write the approximate value of π
into this file. Because the second argument to fopen is WRITE, any
existing file results.txt in the current directory will be overwritten.
Alternatively, APPEND can be used, in which case new material is added
to the end of an existing file.
> F := fopen( "results.txt" , WRITE ) :
> fprintf( F , "%15.10f" , Pi ) :
> fclose( F ) :

Execute ?maple for more information about command line Maple.
It is also possible for other software to interact directly with the Maple

engine. This is achieved using OpenMaple, which provides application
programmer interfaces (APIs) for C, C#, Java and Visual Basic. A
program written in one of these languages can use OpenMaple to execute
Maple commands and retrieve results. Example programs can be found
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in the samples folder, which is part of a standard Maple installation.
Execute ?OpenMaple for full details of OpenMaple.



Terminating Characters

Many of the examples in this book include terminating characters —
meaning colons or semicolons — in locations where they are optional.
This helps to keep things simple: including a terminating character
when it is not needed is harmless, but omitting one that is needed will
cause a syntax error or worse. Nevertheless, some users may be keen to
save typing, so let us now summarise the rules concerning terminating
characters.

• Where a terminating character is optional, omitting it is equivalent to
using a semicolon.
• Help requests using the ? operator do not need a terminating character.
• In the Standard Worksheet Interface for Maple 2015 and later, state-

ments at the top level (i.e. outside any procedures, loops and conditional
statements) do not need a terminating character, unless followed by a
comment or another statement in the same execution group.
> 2 + 2

4

> 2 + 2 # Semicolon needed before hash symbol
>
Warning, premature end of input, use <Shift> + <Enter>
to avoid this message.
> 2 + 2

3 + 3
Error, unexpected number

• In the Standard Worksheet Interface for Maple 18 and earlier, top level
statements generate warnings unless they have terminating characters.
> 2 + 2
Warning, inserted missing semicolon at end of statement

4

223
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• In command line Maple (all versions), a top level statement that is not
a help request will not be processed until it has been terminated with a
colon or a semicolon (see Appendix A).
• Inside a procedure, do loop or conditional statement, all statements

need terminating characters, except those immediately preceding
end proc, elif, else, end if or end do (or the abbreviations end,
fi or od). A comment is permitted to follow such a statement, even if
the terminating character is omitted (cf. top level statements, above).
However, omitting the terminating characters in these cases can lead to
syntax errors when statements are rearranged, so it is not recommended.

> a := 1 :
> if a > 0 then

print( "Hello" ) : # (semi)colon needed
print( "Goodbye" ) # (semi)colon not needed

end if :
"Hello"

"Goodbye"

Similar rules apply to some other structures not discussed in this book
(such as modules).
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! 13
" 34
# 17
$ (sequence operator) 92
$ (for terminating parameter

sequences) 190
% (ditto operator) 14
% (in format strings) 160–161
%% 14–15
%%% 14–15
&x 125–126
' 37–39, 41
( ) (for grouping) 12
( ) (for command arguments) 12
( ) (for indices) 121, 166–167
* 13
(* *) 17
** 16, 25
+ 13
, 48
- 13
-> 81–86
. (decimal point) 21
. (for noncommutative

multiplication) 124–125
.. 55, 58–59
/ 13
: 19–20, 148, 150, 158, 223–224
:- 65
:: 64, 188–189
:= 31
; (for terminating matrix rows) 118
; (for terminating statements) 10–11, 21,

148, 150, 158, 223–224
< (relational operator) 44–48
<= 44–48
<> (relational operator) 44–48

< > (delimiters) 117–118
= 31–32, 44–48
> (prompt symbol) 10, 18
> (relational operator) 44–48
>= 44–48
? 9–10
[ ] (for creating lists) 51
[ ] (for indices) 53–56, 120–122, 164–168
\n 160–161
^ 13, 25, 74
_ passed 195
` 35
{ } 49–51
| 117–118
|| 43–44
~ 56–58
about 100
abs 25, 28
add 60–62, 90, 170
aleph 35
algsubs 79
allvalues 108
alpha 35
anames 36
and 46, 83, 99, 149
animate 144–146
APPEND 221
arccos 25
arccosh 25
arcsin 25
arcsinh 25
arctan 25–26
arctanh 25
argument 28
array 163
Array (command) 163
Array (option) 163

225
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ArrayNumDims 210
assign 107–108
assume 99–102
assuming 75, 99
axiscoordinates 138
BesselJ 139
beta 48
black 135
blue 136
break 153–155
by 152–153
cat 42–44
coeff 76–77
collect 76–77
color 136
colour 135
complex (option) 72, 109
complex (type) 63
conjugate 28
constrained 137
contour 143–144
contourplot 139, 144
contours 139
convert 28, 75, 97, 119, 141, 163
coords 137–138
copy 130–132, 167, 173
cos 25
cosh 25
CrossProduct 125
D 92–93, 114–115
dash 135
dataplot 141–144
DefiniteSum 89
denom 77–78
Describe 32–33, 170, 177
description 177
Determinant 127
Diff 92
diff 92–93, 197
Digits 23
discont 106, 136
display 140–143, 145–146
do 150–158
DotProduct 125
dsolve 103, 113–116

echo 220
Eigenvalues 128
Eigenvectors 128
elif 149–150
else 149–150
end 147, 150, 174
end do 150
end if 147–148
end proc 174–175, 192
entries 170
EqualEntries 131
error 190
eval 40–42, 80, 170, 181–183, 187–188,

197–198
evalb 45–48, 64, 100
evalc 29
evalf 22–23, 197
evalhf 24
evaln (command) 42
evaln (modifier) 188
exp (command) 25–27, 30
exp (option) 30
expand 72–73, 197
expanded 75
explicit 105, 108
external_calling 70
factor 71–72
fclose 221
fi 147
fibonacci 66
fill 118, 163
filledregions 106, 139
fopen 221
for 151–158
fprintf 221
frac 149
frames 145
from 150–157
frontend 73
fsolve 103, 109–113
Gamma 35
gamma 22
global 179–180
green 136
harmonic 174
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HFloat 24
I 27–28, 30
if 147–150
ifactor 155
Im 28
imaginaryunit 30
in 52, 59–60, 157
index 209, 210
indices 170
infinity 87, 89, 94
Int 94–96
int 94–96
integer 62
interface 30, 102, 122–123, 198, 220
intersect 50
is 47–48, 100
isprime 155, 158
kernelopts 23–24
labels 134, 136
legend 136
lhs 44–45
Limit 88
limit 87–88
line 138
Linear 107
LinearSolve 129
linestyle 135, 138
list 63, 119
listcontplot 143–144
listplot 142
ln 25, 26
local 178–183
log 25, 26
log10 25
lowerbound 165–166
macro 27
map 58
map2 58
matrix 117
Matrix (command) 117–120, 141
Matrix (option) 119
MatrixInverse 127
max 49, 209
maxdigits 23
member 49, 52

min 49, 209, 210
minus 50
mod 203, 204
mul 61–62, 105, 170
next 155
Norm 126–127
normal 75, 197
not 46, 149
numelems 52
numer 77–78
numeric (option) 115–116
numeric (type) 62–63
od 150
odd 157
op 51–52, 78–79
option cache 196
option remember 195–196
or 46, 83, 149
Order 97, 115
parfrac 75
pdsolve 116
permute 65
PI 35–36
Pi 11, 21, 35–36
pi 35–36
piecewise 83
plot 133–138
plot3d 138
point (command) 66, 140–141
point (option) 138
pointline 138
pointplot 142, 144
points 142
polar (command) 29
polar (option) 29, 137
polarplot 138
polygon 138
polygonoutline 138
polynom 97
print 159–160, 162
printf 160–162
printlevel 158–159, 198
proc 174–197
procname 195
protect 36
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quit 219
Re 28
read 220–221
red 136
restart 32–33, 39
return 175, 191–192
rhs 44–45, 114–115
RootOf 105, 108
row 118–119
rtablesize 122–123
save 221
scaling 137
Search 174
seq 58–62, 170
series (command) 97–99, 197
series (option) 115
set 63
showassumed 102
showstat 198–199
simplify 74–75
sin 25
sinh 25
solidcircle 141
solve 103–109
sort 174
spherical 145
sqrt 25, 74
style 138–139, 142
subs 79–80
subset 50
Sum 89, 91–92
sum 89–92
surd 30
surface 143–144
surfdata 143–144
symbol 141
symbolic 75
symbolsize 141
table 168, 172–173
tabular 172–173
tan 25
tanh 25
Telescoping 89–90
then 147–150
time 197

title 136
to 150–157
Transpose 127
trig 30
type 62–64, 171–173
unapply 84–86, 93, 114
unassign 32, 168
uneval 188
union 50
unprotect 36
unwith 65
upperbound 165–166
user 36
value 88, 89, 92, 94
vector 117
Vector (command) 117–120, 141, 164
Vector (option) 119
verboseproc 175, 198
view 134, 136–137
whattype 62, 63, 171
while 155–156
with 65
WRITE 221
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