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Section 16: Magnetic properties of materials (continued) 
 
Ferromagnetism  

Ferromagnetism is the phenomenon of spontaneous magnetization – the magnetization exists in the 
ferromagnetic material in the absence of applied magnetic field. The best-known examples of 
ferromagnets are the transition metals Fe, Co, and Ni, but other elements and alloys involving 
transition or rare-earth elements also show ferromagnetism. Thus the rare-earth metals Gd, Dy, and 
the insulating transition metal oxide CrO2 all become ferromagnetic under suitable circumstances. 

Ferromagnetism involves the alignment of an appreciable fraction of the molecular magnetic 
moments in some favorable direction in the crystal. The fact that the phenomenon is restricted to 
transition and rare-earth elements indicates that it is related to the unfilled 3d and 4f shells in these 
substances. 

Ferromagnetism appears only below a certain temperature, which is known as the ferromagnetic 
transition temperature or simply as the Curie temperature. This temperature depends on the 
substance, but its order of magnitude is about 1000°K for Fe, Co, Gd, Dy. It might be however 
much less. For example it is 70K for EuO and even less for EuS. Thus the ferromagnetic range 
often includes the whole of the usual temperature region. 

Above the Curie temperature, the moments are oriented randomly, resulting in a zero net 
magnetization.  In this region the substance is paramagnetic, and its susceptibility is given by 

C

C

T T
χ =

−
 (1) 

which is the Curie-Weiss law. The constant C is called the Curie constant and TC is the Curie 
temperature.  

The Curie-Weiss law can be derived using arguments proposed by Weiss. In the ferromagnetic 
materials the moments are magnetized spontaneously, which implies the presence of an internal 
field to produce this magnetization. Weiss assumed that this field is proportional to the 
magnetization, i.e. 

E λ=B M  (2) 

where λ is the Weiss constant. Weiss called this field the molecular field and thought that this field 
results from all the molecules in the sample. In reality, the origin of this field is the exchange 
interaction. The exchange interaction is the consequence of the Pauli exclusion principle and the 
Coulomb interaction between electrons. Consider for example the system of two electrons. There 
are two possible arrangements for the spins of the electrons: either parallel or antiparallel. If they 
are parallel, the exclusion principle requires the electrons to remain far apart. If they are antiparallel, 
the electrons may come closer together and their wave functions overlap considerably. These two 
arrangements have different energies because, when the electrons are close together, the energy 
rises as a result of the large Coulomb repulsion. This is actually an explanation of the first Hund 
rule according to which the system of electrons tends to have a high possible spin, which is not 
forbidden by the Pauli principle. As we see from this example the electrostatic energy of an electron 
system depends on the relative orientation of the spins: the difference in energy defines the 
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exchange energy. The exchange interaction is short ranged. Therefore, only nearest neighbor atoms 
are responsible for producing the molecular field. The magnitude of the molecular (exchange) field 
is very large – of the order of 107G or 103T. It is not possible to produce such field in laboratories.        

Weiss logic was as follows. Consider the paramagnetic phase: an applied magnetic field B0 causes a 
finite magnetization. This in turn causes a finite exchange field BE. If χP is the paramagnetic 
susceptibility, the induced magnetization is given by  

( ) ( )0 0p E pχ χ λ= + = +M B B B M  (3) 

Note that the magnetization is equal to a constant susceptibility times a field only if the fractional 
alignment is small: this is where the assumption enters that the specimen is in the paramagnetic 
phase. Equation (3) should be considered as a self-consistent equation for the magnetization. It can 
be solved explicitly for the magnitude of the magnetization so that 
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−

 (4) 

We know that the paramagnetic susceptibility is given by the Curie law χP = C/T, where C is the 
Curie constant. We then find for the susceptibility of the ferromagnetic material 

0 C

M C C

B T C T T
χ

λ
= = =

− −
 (5) 

The susceptibility (5) has a singularity at TC = Cλ. At this temperature (and below) there exists a 
spontaneous magnetization, because if χ is infinite so that we can have a finite M for zero B0. Using 

the expression we obtained earlier for C, i.e. 
2 2

3
B
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µ= , the Curie temperature is given by  
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Fig.1 Reciprocal of the susceptibility per gram of nickel in the 
neighborhood of the Curie temperature (358°C). The dashed line 
is a linear extrapolation from high temperatures.  
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The Curie-Weis law describes fairly well the observed susceptibility variation in the paramagnetic 
region above the Curie point (Fig.1). Only in the vicinity of the Curie temperature a notable 
deviations are observed. This due to the fact that strong fluctuations of the magnetic moments close 
to the phase transition temperature can not be described by the mean field theory which was used 
for deriving the Curie-Weiss law. Accurate calculations predict that  

( )1.33

C

C

T T
χ ∝

−
 (7) 

at temperatures very close to TC. 

We can also use the mean field approximation below the Curie temperature to find the 
magnetization as a function of temperature. We can proceed as before but instead of the Curie law 
which is valid for not too high magnetic fields and not too low temperatures we can use the 
complete Brillouin function. If we omit the applied magnetic field and replace B by the exchange 
field BE = λM we find 

B
B J

gJ M
M NgJ B

kT

µ λµ � �= � �
� �

, (8) 

where ( )JB x  is the Brillouin function. This is a non-linear equation in M, which we can be solved 

numerically. 

Now we shall see that solutions of this equation with nonzero M exist in the temperature range 
between 0 and TC. To solve (8) we write it in terms of the reduced magnetization Bm NgJ Mµ=  

and the reduced temperature  
2 2 2

B

kT
t

Ng Jµ λ
= , whence 

J

m
m B

t
� �= � �
� �

 (9) 

Fig.2 Graphical solution of Eq. (9) for the reduced 
magnetization m as a function of temperature. The 
left-hand side of Eq. (9) is plotted as a straight line 
m with unit slope. The right-hand side Eq. (9) is 
plotted vs. m for three different values of the 
reduced temperature t = kBT/NµB

2λ = T/TC. The 
three curves correspond to the temperatures 2TC, 
TC,, and 0.5TC. The curve for t = 2 intersects the 
straight line m only at m = 0, as appropriate for the 
paramagnetic region (there is no external applied 
magnetic field). The curve for t = 1 (or T = TC) is 
tangent to the straight line m at the origin; this 
temperature marks the onset of ferromagnetism. 
The curve for t = 0.5 is in the ferromagnetic region 
and intersects the straight line m at about m = 
0.94NµB,. As t → 0 the intercept moves up to m = 
1, so that all magnetic moments are lined up at 
absolute zero. 
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We then plot the right and left sides of this equation separately as functions of m, as in Fig. 2 which 
is plotted for J=S=1/2. The intercept of the two curves gives the value of m at the temperature of 
interest. The critical temperature is t = 1, or TC = NµB

2λ/kB. 

The curves of M versus T obtained in this way reproduce roughly the features of the experimental 
results, as shown in Fig. 3 for nickel. As T increases the magnetization decreases smoothly to zero 
at T = TC. 

 

 

 

 

 

 

 

Fig.3  Saturation magnetization of nickel as a function of 
temperature, together with the theoretical curve for S = 1/2 on the 
mean field theory. 

 

The mean field theory does not give a good description of the variation of M at low temperatures. 
The mean field theory predicts exponential convergence of the magnetization to the value at zero 
temperature. The experimental results show however a much more rapid dependence of ∆M on 
temperature at low temperatures, namely  

3/ 2M
AT

M

∆ =  (10) 

where A is some constant different for different metals. The result (10) finds a natural explanation 
in terms of spin wave theory. 

Spin waves 

In ferromagnetic materials the lowest energy of the system occurs when all spins are parallel to each 
other in the direction of magnetization. When one of the spins is tilted or disturbed, however, it 
begins to precess – due to the field from the other spins. Due to the exchange interaction between 
nearest neighbors the disturbance propagates as a wave through the system, as shown in Fig.4.  

 

 
 
 
 
 
 

Fig.4   A spin wave on a line of spins, (a) The spins viewed in perspective, (b) Spins viewed from above, showing 
one wavelength. The wave is drawn through the ends of the spin vectors. 
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Spin waves are analogous to lattice waves. In lattice waves, atoms oscillate around their equilibrium 
positions, and their displacements are correlated through lattice forces. In spin waves, the spins 
precess around the equilibrium magnetization and their precessions are correlated through exchange 
forces.  

Now we derive an expression for the frequency of the spin waves. We consider a linear chain of 
spins with nearest neighbor spins coupled by the Heisenberg interaction:      

1
1

2
N

p p
p

U J +
=

= − ⋅�S S  (11) 

where J is the exchange integral and Sp is spin at site p.  For simplicity we will use classical theory 
in which spin operators are replaces by classical vectors. According to (11) the interaction which 
involves the p-th spin is 

( )1 12 p p pJ − +− ⋅ +S S S . (12) 

This interaction can be rewritten as p p− ⋅� B , where p B pgµ= −� S  is the magnetic moment 

associated with spin Sp and pB  is an effective magnetic field or exchange field acting on this 

moment due to nearest neighbor spins: 

( )1 1

2
p p p

B

J

gµ − += − +B S S . (13) 

According to classical mechanics the rate of change of the angular momentum pS�  is equal to the 

torque p p×� B  which acts on the spin, i.e. 

p
p p

d

dt
= ×

S �
B

�
, (14) 

or 

( ) ( )1 1 1 1
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B
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µ
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 �� �
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S
S S S S S S

� �
, (15) 

Normally the amplitude of excitation is very small, so that z
pS S≈  and ,x y

p pS S S� . This allows to 

linearize Eqs.(15): 

( )
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− +

− +

= − −

= − −

=

�

�
, (16) 

By analogy with the problem of lattice vibrations we look for traveling wave solutions of the form 
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exp ( )

exp ( )

x
p

y
p

S u i pka t

S v i pka t

ω

ω

= −

= −
, (17) 

where u and v are constants and a is the lattice constant. By substitution into (16) we obtain 

( ) ( )

( ) ( )

2 4
2 1 cos

2 4
2 1 cos

ika ika

ika ika

JS JS
i u e e v ka v

JS JS
i v e e u ka u

ω

ω

−

−

− = − − = −

− = − − − = − −
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� �

. (18) 

These equations have a solution if the determinant of coefficients is equal to zero, i.e. 

( )

( )

4
1 cos

0
4

1 cos

JS
i ka

JS
ka i

ω

ω

−
=

− −

�

�

. (19) 

This leads to the dispersion relation 

( )4
1 cos

JS
kaω = −

�
, (20) 

which is plotted in Fig. 5.  

With this solution we find that v iu= − . This corresponds to circular presession of each spin about 
the z axis. We can see this by taking real parts of (17) with v set to –iu. Then 

cos( )

sin( )

x
p

y
p

S u pka t

S u pka t

ω

ω

= −

= −
. (21) 

The corresponding spin wave is shown in Fig.4.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.5   Dispersion relation for magnons in a ferromagnet in one 
dimension with nearest-neighbor interactions. 
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In a long wave limit, 1ka� , we find 

2
22JSa

kω �
�

. (22) 

The frequency is proportional to k2. Note that in the same limit the phonon frequency is 
proportional to k.  

Generalization to a three dimensional cubic lattice with nearest-neighbor interaction results in  

( )4
cos

JS
z

δ
ω � 	= − ⋅
 �

� 

� k �

�
, (23) 

where the summation is over the z vectors denoted by δδδδ which join the central atom to its nearest 
neighbors. In the limit 1ka�  we find for all three cubic lattices 

2
22JSa

kω �
�

, (24) 

which is the same result as (22). 

Thermal excitation of magnons 

Spin waves can be quantized in a similar way as phonons. A quantized spin wave is called magnon.  
The energy of a magnon mode of frequency ωk with nk magnons is given by 

( )½k k kE nω= +� . (25) 

In thermal equilibrium the average number of magnons excited in the mode k is given by the Planck 
distribution 

( )
1

exp / 1B

n
k Tω

=
−k

k�
. (26) 

The total number of magnons excited at temperature T is 

( ) ( )n d D nω ω ω=� �k
k

, (27) 

where ( )D ω  is the number of magnon modes per unit frequency range. The integral is taken over 
allowed values of k lying in the first Brillouin zone. At sufficiently low temperatures we may carry 
the integral between 0 and ∞ because ( ) 0n ω →  exponentially as ω → ∞ . 

Magnons have a single polarization for each value of k. In three dimensions the number of modes 

of wavevector less than k is ( ) ( )3 31/ 2 4 / 3kπ π  per unit volume, whence the number of magnons 

( )D dω ω  with frequency in dω  at ω  is ( ) ( )( )3 21/ 2 4 /k dk d dπ π ω ω . In the longwave limit (24) 

(we can use a longwave limit here because at low temperatures only magnons which have low 
frequency and therefore small wavevector are thermally excited), we find 
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1/ 22 2
1/24 2

2
d JSa JSa

k
dk

ω ω� �
= = � �

� �� �
. (28) 

Therefore the density of magnon modes is  

3/ 2
1/2

2 2

1
( )

4 2
D

JSa
ω ω

π
� �= � �
� �

�
. (29) 

Thus the total number of magnons is 

( )
3/ 23/ 2 1/2 1/ 2

2 2 2 2
0 0

1 1

4 2 exp / 1 4 2 e 1
B

x
B

k Td x dx
n

JSa k T JSa

ω ω
π ω π

∞ ∞
� �� �= =� � � �− −� � � �

� � �k
k

�

�
. (30) 

The definite integral is equal to (0.0587)(4�
2). 

The number of N of atoms per unit volume is Q/a3, where Q=1,2,4 for sc, bcc and fcc lattices. Since 
the exitation of a magnon corresponds to the reversal of one spin, /n NS� k

k

 is equal to the 

fractional change of magnetization /M M∆ , whence 

3/2
0.0587

2
Bk TM

M SQ JS

∆ � �== � �
� �

. (31) 

The result is the Bloch T3/2 law which is confirmed experimentally.  

Ferrimagnetism  

The Heisenberg model (11) leads to ferromagnetism, if the constant J is positive. The parallel-
aligned state will then have a lower energy then the antiparallel state. The negative constant in 
Eq.(11) leads to antiferromagnetism or ferrimagnetism. Figure 6b illustrates an antiferromagnetic 
arrangement, in which the dipoles have equal moments, but adjacent dipoles point in opposite 
directions. Thus the moments balance each other, resulting in a zero net magnetization. Another 
type of arrangement commonly encountered is the ferrimagnetic pattern shown in Fig.6c. 
Neighboring dipoles point in opposite directions, but since in this case the moments are unequal, 
they do not balance each other completely, and there is a finite net magnetization. Now we discuss 
the ferrimagnetic arrangement.  

 

 

 

 
Fig.6  Magnetic arrangements:    (a) ferromagnetic, (b) antiferromagnetic, (c) ferrimagnetic. 

The most familiar example of a ferrimagnetic material is magnetite, Fe3O4. More explicitly, the 
chemical composition is FeO⋅Fe2O3, showing that there are two types of iron ions: ferrous (doubly 
charged), and ferric (triply charged). The compound crystallizes in the spinel structure. The unit cell 
contains 56 ions, 24 of which are iron ions and the remainder oxygen. The magnetic moments are 
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located on the iron ions. If we study the unit cell closely, we find that the Fe ions are located in 
either of two different coordinate environments: A tetrahedral one, in which the Fe ion is 
surrounded by 4 oxygen ions, and an octahedral one, in which it is surrounded by 6 oxygen ions. Of 
the 16 ferric ions in the unit cell, 8 are in one type of position and 8 are in the other. Furthermore, 
the tetrahedral structure has moments oriented opposite to those of the octahedral one, resulting in a 
complete cancellation of the contribution of the ferric ions. The net moment therefore arises entirely 
from the 8 ferrous ions which occupy octahedral sites. Each of these ions has six 3d electrons, 
whose spin orientations are ↑↑↑↑↑↓. Hence each ion carries a moment equal to 4 Bohr magneton.  

 

 

 

 

 

Fig.7   Spin arrangements in magnetite, FeO⋅Fe2O3, 
showing how the moments of the Fe3+ ions cancel out, 
leaving only the moments of the Fe2+ ions. 

 

There are many other materials which have ferrimagnetic properties. An important class of 
magnetic oxides is known as ferrites. The usual chemical formula of a ferrite is MO⋅Fe2O3, where 
M is a divalent cation, often Zn, Cd, Fe, Ni, Cu, Co, or Mg.  

Now we calculate the Curie temperature and susceptibility of ferromagnets using the mean field 
theory. We assume that the lattice consists of two types of ions which have different magnetic 
moments and positions at sites A and B. We assume that there is an antiparallel interaction between 
the A and B sites so that A Bλ= −B M  and B Aλ= −B M , where λ is positive. We define Curie 
constants CA and CB for the ions on the A and B sites. Within the mean field approximation we 
obtain 

( )

( )

0

0

A
A B

B
B A

C
B

T
C

B
T

λ

λ

= −

= −

M M

M M
, (32) 

where B0 is the applied field. These equations have a nonzero solution for MA and MB in zero applied 
field if  

0A

B

T C

C T

λ
λ

= , (33) 

so that the ferrimagnetic Curie temperature is given by 

C A BT C Cλ= . (34) 

We solve (34) for MA and MB to obtain the susceptibility at T > Tc: 
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( )
2 2

0

2A B A BA B

C

C C T C CM M

B T T

λ
χ

+ −+= =
−

. (35) 

This result is more complicated than that for ferromagnets. Experimental values for Fe3O4 are 
plotted in Fig.8. The curvature of the plot of l/χ versus T is a characteristic feature of a ferrimagnet.  

 

 

 

 

 

 

 

 

 

 

Fig.8   Reciprocal susceptibility of magnetite. 

 

Many ferromagnets exhibit a very interesting behavior of the saturation magnetization versus 
temperature which his shown in Fig.9.  

 

 

Fig.9 Experimental values of the saturation 
magnetization versus temperature of various iron 
garnets. The formula unit is M3Fe5O12, where M 
is a trivalent metal ion. The temperature at which 
the magnetization crosses zero is called the 
compensation temperature; here the 
magnetization of the M sublattice is equal and 
opposite to the net magnetization of the ferric ion 
sublattices. Per formula unit there are 3 Fe3+ ions 
on tetrahedral sides d; 2 Fe3+ ions on octahedral 
sites a; and 3 M3+ ions on sites denoted by c. The 
ferric ions contribute (3 - 2)5µB = 5µB per 
formula unit. The ferric ion coupling is strong 
and determines the Curie temperature. If the M3+ 

ions are rare-earth ions they are magnetized 
opposite to the resultant of the Fe3+ ions. The 
M3+ contribution drops rapidly with increasing 
temperature because the M-Fe coupling is weak. 
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Antiferromagnetism 
 
An antiferromagnet is a special case of a ferrimagnet for which both sublattices A and B have equal 
saturation magnetizations. In an antiferromagnet the spins are ordered in an antiparallel arrange-
ment with zero net moment at temperatures below the ordering temperature which is called the Néel 
temperature.  Thus CA = CB in (34), and  

NT Cλ= , (36) 

where C refers to a single sublattice. This expression is identical to that we obtained earlier for 
ferromagnetic materials. However, in this case the susceptibility in the paramagnetic region behaves 
in a different fashion. For T > TN we obtain from (35)  

( )
2

22

2 2 2

N

CT C C

T TT C

λχ
λ

−= =
+−

. (37) 

At and above the Néel temperature the susceptibility is nearly independent of the direction of the 
field relative to the spin axis. However, below the Néel temperature the susceptibility of 
antiferromagnets depends strongly on the orientation of magnetic field. There are two situations: 
with the applied magnetic field perpendicular to the axis of the spins; and with the field parallel to 
the axis of the spins.  

For B0 perpendicular to the axis of the spins we can calculate the susceptibility from the energy 
density which is 

( ) 2 2
0 0

1

2
1 (2 ) 2A B A BU M B Mλ λ ϕ ϕ� �= ⋅ − ⋅ + ≅ − − −� �
� �

M M B M M , (38) 

where A BM = =M M , and 2ϕ is the angle the spins make with each other (Fig.10a).  

 

 

 
 
 
 
 
 
 
 

Fig.10   Magnetic susceptibility parallel and perpendicular to the tetragonal axis.  

The energy is a minimum when 

2
0

0

0 4 2

2

dU
M B M

d

B

M

λ ϕ
ϕ

ϕ
λ

= = −

=
, (39) 
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so that  

0

2 1M

B

ϕχ
λ⊥ = = . (40) 

In the parallel orientation (Fig.10b) the magnetic energy is not changed if the spins make equal 
angles with the field. Thus the susceptibility at T=0K is zero: 

0χ =
�

. (41) 

The parallel susceptibility increases smoothly with temperature up to TN. The χ⊥  and χ
�
 for MnF2 

are shown in Fig.11.  

 
 

 

 

 

 

 

 

 

 

 

Fig.11 Magnetic susceptibility of manganese fluoride, MnF2, parallel and perpendicular to the tetragonal axis.  
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Magnetic domains in ferromagnetic materials 
Magnetization curve  

If we apply a magnetic field to a previously demagnetized ferromagnetic specimen its 
magnetization will gradually increase. Starting from point O, the magnetization increases relatively 
fast at first, then the increase becomes slower, until it reaches a constant value at point A. At this 
point, the specimen is saturated. This curve is the initial magnetization curve. The saturation 
magnetization, Ms, is equal to the spontaneous magnetization.  

 

 

 

 

 

 

 

 

Fig.12 The magnetization curve. The coercivity Bc is the reverse field that reduces M to zero. The remanence Mr is the 
value of M at B = 0. The saturation magnetization Ms is the limit of M at large B. 

If the field, B, is now decreased, M does not retrace the initial magnetization curve, but decreases 
more slowly and when B reaches zero, M still has a non-zero value Mr. This is the largest 
magnetization we can get in zero field. It is called the remanent magnetization or remanence. In 
order to decrease M further, we must apply a field in the opposite direction. When the reverse field 
is sufficiently large, M passes through zero. The reverse field needed to bring the magnetization to 
zero from remanence is called the coercive field or coercivity, Bc. A further increase of the reverse 
field   results in increasing M in the direction in which H is now applied. Eventually, M reaches the 
saturation value Ms again. If we continue to change B between large values in opposite directions, 
M will vary repeatedly along the closed loop. This loop is called the hysteresis loop.  

Magnetic domains 

A question which arises from considering the hysteresis curves is why the magnetization can be 
much less than the saturation magnetization and even equal to zero? The answer to this question is 
“magnetic domains” . Within each domain the magnetization is uniform and equal to the 
spontaneous magnetization. However different domains are magnetized in different directions. Now 
if we calculate the average magnetization of this sample it will not be equal to the spontaneous 
magnetization. The average magnetization of a specimen will be than Ms and could even be zero (if 
we have the appropriate domain configuration).      

The next question we need to answer is why ferromagnetic materials are subdivided into domains 
rather than be uniformly magnetized? We know than a system will always be in a state in which its 
energy is minimum. We have to explain therefore why a subdivided state has a smaller energy than 

B 
Bc 

-Bc 

 

Ms 

Mr 
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a uniformly magnetized state. There are four types of energy which contribute to the total energy of 
the material.  

1. Exchange energy  

This is the energy which is responsible for ferromagnetism of magnetic materials. The exchange 
coupling between nearest neighbors is significant and results in parallel alignment of the 
magnetizations in ferromagnetic materials. In a classical view of the Heisenberg representation the 
exchange coupling between nearest spins can be written as follows: 

-2 -2 cos  ex i j i jE J JSS θ= =S S  (42) 

where J is the exchange integral and Si and Sj are two neighboring spins. The sign of the exchange 
integral determines whether we have ferromagnetic or antiferromagnetic coupling. For 
ferromagnetic materials J is positive. 

If there were no other type of energy to consider, then obviously all magnetic materials would be 
magnetized to saturation all the time. In the presence of other interactions the exchange coupling 
tries to ensure that the angle between them is as small as possible. Because the exchange interaction 
is strong, we may assume that the angle between two spins δϕ is small. In this case 

2
2  

2
2exE JS const

δφ +�  (43) 

where we assumed that S=Si=Sj. The constant is independent of angle and can be put equal to zero 
because we can measure all the energies relative to this constant.   

Now consider a material with a simple cubic structure with a lattice constant a. Let x, y and z to be 
the Cartesian axes and assume for simplicity that the magnetic moments are parallel everywhere to 
yz plane. The orientation of magnetic moments varies with x so that φ is the angle between the 
magnetic moment and the y-axis and δφ is the angle between neighboring moments. Because δφ is 
normally very small we can regard it as a continuous function of x and therefore 

 d
a

dx

φδφ �  (44) 

Therefore the exchange energy per unit volume is  

2 22 2   
ex

JS a d d
E A

V dx dx

φ φ� � � �=� � � �
� � � �

�  (45) 

where A is the exchange stiffness constant, which can serve as a characteristic of a ferromagnetic 
material. A typical value for the exchange stiffness constant in ferromagnetic metals is 10-6erg/cm.   

2. Magnetostatic energy  

Now we come to the question of why a magnetic material should not always be uniformly 
magnetized like as is shown in Fig.13a. The state of uniform magnetization has the lowest possible 
exchange energy, since all adjacent spins are parallel to each other. However, the exchange energy 
is not the only type of energy that a magnetic material has. This state costs a large amount of 
magnetostatic energy. The magnetization generates north poles on the top surface and south poles 
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on the bottom surface. These poles act as the source of magnetic field. They can be thought as 
“magnetic”  charges.  These poles produce a magnetic field which is shown in Fig.13a. 

 

 

 

 

 

 

 

Fig. 13 (a) A ferromagnet in a state of uniform magnetization; (b) A ferromagnet divided into two ferromagnetic 
domains. Note that field lines are now confined primarily to end regions. (c) Subdividing into four domains (d) Domain 
closure – further reduction of the magnetostatic energy (e) Small edge domains due to magnetoelastic energy.  

In addition to the field outside the specimen there is also field inside the specimen which is not 
shown here. This field is in the opposite direction to the magnetization. This field tries to 
demagnetize the specimen and is called the demagnetization field Bd. The respective energy is 
called magnetostatic or demagnetization energy. The density of this energy is given by  

1

2
m dE = − MB  (46) 

The value of Bd depends on the shape of the specimen, and is usually written as  

dx x x dy y y dz z zB N M B N M B N M= − = − = −  (47) 

where Nx,  Ny, and  Nz are the demagnetization factors. This factor, which is large for a flat sample 
and small for an elongated sample, is equal to unity for a sample in the shape of a thin, flat disc 
normal to the field. The magnetostatic energy is of the order of 107 erg/cm3. The fields which are 
produced by the uniformly magnetized sample are huge and the magnetic system will try to reduce 
them.  

What happens if the specimen is subdivided into two domains (Fig.13b). In this case the top surface 
carries north poles on the left and south poles on the right, and the bottom surface carries south 
poles on the left and north poles on the right. The demagnetizing field does not extend from the top 
surface to the bottom, but it is confined to the region near the two ends of the specimen. As the 
specimen is further subdivided into smaller domains, the effect of the demagnetizing field becomes 
even smaller (Fig.13c,d).  

What happens with the exchange energy in a state where the magnetic sample is subdivided into 
domains. You see that this state does not correspond to a minimum of the exchange energy. The 
exchange energy is minimized for uniformly magnetized material. However, the exchange 
interaction is quite short-ranged. Therefore, only spins near domain boundaries will experience 
unfavorable exchange interactions with the nearby spins in the neighboring misaligned domain. On 
the contrary, the dipolar interaction is long-ranged. Therefore, all the spins in the sample are 
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involved in the magnetic dipolar interactions. And therefore, subdivision into domains is 
energetically favorable.  

We see therefore that the main reason for the subdivision into domains is magnetostatic energy. 
However, it is not the whole story.  

3. Anisotropy energy 

We can ask ourselves, what is wrong with a configuration in which magnetization is gradually 
rotates? If the magnetization rotates very slowly, it has very little exchange energy. It appears 
however that this configuration does not normally exist. There is usually a structure consisting of 
uniformly magnetized domains, separated by narrow boundaries. The reason is that there is another 
kind of energy which is called magnetic anisotropy. It arises from the crystalline nature of most 
magnetic materials. That is why it is often called magnetocrystalline anisotropy. 

Due to crystalline structure of most magnetic materials the directions in which the magnetization is 
allowed to point are restricted. The magnetization prefers to be parallel to certain crystallographic 
directions. In this sense crystals are anisotropic. If the magnetization deviates from these directions 
there is an extra cost in energy which is called the anisotropy energy.  

The origin of magnetocrystalline anisotropy is spin-orbit interaction. The magnetization of the 
crystal sees the crystal lattice through orbital overlap of the electrons: the spin interacts with the 
orbital motion by means of the spin-orbit coupling.  

Magnetic anisotropy reflects the symmetry of the lattice. In cubic monocrystals the anisotropy 
energy can be expressed as 

2 2 2 2 2 2 2 2 2
1 1 2 1 3 2 3 2 1 2 3( )aE K Kα α α α α α α α α= + + +  (48) 

where K1 is the first order and K2 is the second order anisotropy constants and α1, α2, α3 are the 
direction cosines referred to the cube axes. This form of the expression comes from symmetry 
considerations. It can be shown that this expression is invariant under all transformation of the cubic 
symmetry.  If constants K1 and K2 are positive (of the order of 105 erg/cm3) which is the case for Fe 
and Ni, the anisotropy energy has a minimum when the magnetization is aligned along (100) 
direction. This is the case for example for iron. (100) is called the easy axis because the 
magnetization can be very easily saturated if the magnetic field is applied in this direction.  

 

 

 

 

 

Fig.14 Magnetization curves for single crystal of iron. From the curves for 
iron we see that the [100] directions are easy directions of magnetization and 
the [110] and [111] directions are hard directions.  
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This can be seen from Fig.14, where the magnetization of iron as a function of the magnetic field is 
shown. If the magnetic field is applied along (100) direction the magnetization very rapidly riches 
the saturation. On the contrary, if the magnetic field is applied along (110) or (111) directions the 
magnetizations riches the saturation only in a relatively high fields. That is why (110) and (111) 
axes are called the hard axes of magnetization.  

In uniaxial crystals which have tetragonal, hexagonal and trigonal symmetries, the anisotropy per 
unit volume can be written as  

2 4
1 2sin sinaE K Kθ θ= +  (49) 

where θ is the angle between the magnetization and the main symmetry axis. If K1>0 the 
magnetization prefers to be parallel to the symmetry axis. In this case this axis is called the easy 
axis. If K1<0 it prefers to be perpendicular to the symmetry axis. In this case it is called the hard 
axis.  

Now let us return to the domain structures. The domain configuration with gradually rotating 
magnetization is not possible because it would cost too much anisotropy energy because in a large 
part of the specimen the magnetization is not parallel to an easy direction. The magnetization 
prefers certain direction in crystals and can not rotate gradually over long distances. In order to 
reduce the anisotropy energy the domains have to have abrupt boundaries. 

This configuration would have very little exchange, magnetostatic and anisotropy energy if this is a 
cubic crystal and this is (100) direction.  It turns out however that simple structures with large 
domains do not usually occur. We usually have a much larger number of much smaller domains. In 
order to understand why it happens we have to consider the magnetoelastic energy.  

4. Magnetoelastic energy 

When the magnetization of the material is changed, there is a slight change in its dimensions, 
generally of the order of 10-5 or less. Some materials expand in the direction of the magnetization, 
others, for example nickel, contract. This effect is called magnetostriction. The materials which 
expend are said to have positive magnetostriction, the materials which contract are said to have 
negative magnetostriction. Therefore, the change in the magnetization of the material results in 
elastic distortions. The energy associated with these distortions is called the magnetoelastic energy. 
The larger the domains are, the more elastic energy is needed. It is therefore favorable to form 
smaller domains at the domain boundaries of larger domains (Fig.13e). This costs less elastic 
energy to hold the domains together.         

Domain walls 

In order to complete the picture about domain structures we should consider the boundary between 
neighboring domains which called domain walls. Qualitatively it is clear that the width of the 
domain wall is determined by the balance between the exchange energy and the anisotropy energy. 
If the exchange is very strong and anisotropy is small we can expect that the width of the domain 
wall is large. On the contrary, in the case when the exchange energy is small and anisotropy is large 
the width of the domain wall should be small.  
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 In order to calculate the width of the domain wall we assume that we have a 180o domain wall as is 
shown in Fig.15. That means that this wall separates two domains magnetized in opposite directions 
– the magnetization rotates by 180 degrees.  

 

 

 

 

 

 

 

Fig.15  The structure of the Bloch wall separating domains.  

 

 

 

The exchange energy per unit area of the domain wall is  

2
 

ex

d
E A

dx

φ δ� �= � �
� �

, (50) 

where δ  is the domain wall width. For the case considered we can use estimate 

2 2

2
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φ π
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, (51) 

so that  

2

ex

A
E

π
δ

= . (52) 

For the anisotropy energy per unit area we take a rough estimate   

aE Kδ=  (53) 

where K is anisotropy constant. The total energy of the domain wall per unit area is 

2

ex a

A
E E E K

π δ
δ

= + = + . (54) 

In the equilibrium we have 

0
dE

dδ
= , (55) 

which gives 
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/A Kδ π=  (56) 

and  

2E AKπ= . (57) 

For typical values A~10-6erg/cm and K~105erg/cm3 we have δ~100nm. The typical size of the 
domains is 1-100µm and therefore the width of the domain walls is much smaller. That is why the 
domain structure consists of uniformly magnetized domains separated by narrow boundaries.  

The effect of applied field and domain wall motion 

Now we consider qualitatively the effect of applied field on the domain structure. The applied 
magnetic field tends to align the magnetization parallel to the field. There are two ways to reduce 
the energy. First, the domain wall can move, thereby increasing the volume of the domain whose 
energy is lower and decreasing the volume of the other. Second, the magnetization direction of the 
two domains can change. Both these processes, i.e. the domain wall motion and the magnetization 
rotation, can occur in practice.  

The position of the domain walls depends on the demagnetizing energy. When the external field is 
applied, the magnetic field inside the specimen is the sum of the demagnetizing field and the 
applied field. The domain walls will therefore generally move to new positions. On the other hand, 
the magnetization orientations are determined mainly by the anisotropy, which resists the rotation of 
the magnetization.  In general therefore domain wall motion tends to occur in small applied fields, 
and the magnetization rotation only begins as the field is large enough.  

Domain walls move reversibly in very small magnetic fields. In other words, the domain walls are 
displaced by a small amount when the field is applied, but if the field is removed, they return to 
their original positions. In larger fields the domain wall motion becomes irreversible - the walls do 
not return to their original positions when the field is removed. The main reason of that is that the 
domain wall energy is not a constant but varies in an irregular manner because of imperfections of 
the specimen. These imperfections are dislocations, grain boundaries, voids, lattice distortions, 
impurities. When the aligning field is removed, these defects may prevent the domain walls from 
returning to their original configuration. It then becomes necessary to apply a rather strong field in 
the opposite direction to restore the unmagnetized configuration. This is the origin of the hysteresis 
in ferromagnetic materials. 

 

 

 

 


