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Section 14: Dielectric properties of insulators 

The central quantity in the physics of dielectrics is the polarization of the material P. The 
polarization P is defined as the dipole moment p per unit volume. The dipole moment of a system 
of charges is given by 

i i
i

q=�p r  (1) 

where ri is the position vector of charge qi. The value of the sum is independent of the choice of 
the origin of system, provided that the system in neutral. The simplest case of an electric dipole is 
a system consisting of a positive and negative charge, so that the dipole moment is equal to qa, 
where a is a vector connecting the two charges (from negative to positive). The electric field 
produces by the dipole moment at distances much larger than a is given by (in CGS units) 
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According to electrostatics the electric field E is related to a scalar potential as follows  

ϕ= −∇E , (3) 

which gives the potential 

3
( )

r
ϕ ⋅= p r

r  (4) 

When solving electrostatics problem in many cases it is more convenient to work with the 
potential rather than the field. 

A dielectric acquires a polarization due to an applied electric field. This polarization is the 
consequence of redistribution of charges inside the dielectric. From the macroscopic point of view 
the dielectric can be considered as a material with no net charges in the interior of the material and 
induced negative and positive charges on the left and right surfaces of the dielectric. The fact that 
the average charge inside the dielectric is zero can be understood if we take a macroscopic volume, 
it will contain equal amount of positive and negative charges and the net charge will be zero. On 
the other hand if we consider a volume including a boundary perpendicular to the direction of 
polarization, there is a net positive (negative) charge on the surface which is not compensated by 
charges inside the dielectric. Therefore, the polarization charge appears on the surface on the 
dielectric. 

Polarization of the dielectric produces a macroscopic electric field, which is determined by these 
surface charges. This can be seen from the following consideration. The electrostatic potential (4) 
produced by a dipole can be represented as 

1
( )

r
ϕ = ⋅∇r p . (5) 

Therefore for a volume distribution of the polarization we have: 
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where the integration is performed over the volume of the dielectric. Assuming for simplicity that 
the polarization P is constant throughout the medium and applying the Gauss theorem we obtain: 

( ) dV dS dS
r r r r r r
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� � �
P n P
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where the integration is performed over the surface of the dielectric and σ = ⋅n P  is the fictitious 
surface charge density. Here n is the unit normal to the surface, directed outward from the 
polarized medium. 

Using the potential (7) we can easily calculate the electric field due to the uniform polarization P. 
Note that this field is macroscopic. It is a smooth function on atomic scale because we replaced the 
discrete lattice dipoles with the smoothed polarization P. 

The total macroscopic electric field E is the sum the applied field E0 and the field E1 is the field 
due to the polarization of the solid: 

0 1= +E E E . (8) 

The field E1 is called the depolarization field, for within the body it tends to oppose the applied 
field E0 as in Fig. 1. 

 
 

Fig.l   The depolarization field E1 is opposite to P. The fictitious surface charges 
are indicated: the field of these charges is E1 within the ellipsoid. 

It can be shown that for specimens in the shape of ellipsoids, a class that includes spheres, 
cylinders, and discs as limiting forms, have an advantageous property: a uniform polarization 
produces a uniform depolarization field inside the body. If Px, Py, Pz are the components of the 
polarization P referred to the principal axes of an ellipsoid, then the components of the 
depolarization field are written as 

1 1 1; ;x x x y y y y z zE N P E N P E N P= − = − = − . (9) 

Here Nx, Ny, Nz are the depolarization factors; their values depend on the ratios of the principal 
axes of the ellipsoid. The N's are positive and satisfy the sum rule Nx + Ny + Nz = 4π in CGS. For 
example, for a sphere Nx = Ny = Nz = 4π/3. For a thin slab, normal to the slab Nz = 4π and Nx = Ny 

= 0. 

The polarization is induced by electric field and therefore it is a function of electric field. The 
relationship is written in the following way 
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χ=P E . (10) 

where χ is the dielectric susceptibility. In general χ is a tensor and depends on electric field. Note 
that the electric field which enters this formula in the macroscopic field (8), which includes both 
the external field and the depolarization filed. 

If the dielectric is an ellipsoid and a uniform applied field E0 is applied parallel to the principal 
axis of the ellipsoid, then 

0 1 0E E E E NP= + = − . (11) 

and therefore 

0( )P E E NPχ χ= = − , (12) 

which gives 

01
P E

N

χ
χ

=
+

. (13) 

As is seen the value of the polarization depends on the depolarization factor N.  

Local electric field at an atom 

The value of the local electric field that acts at the site of an atom is significantly different from 
the value of the macroscopic electric field. The reason of that is that by definition the macroscopic 
field is the field which is averaged over large number of dipoles. On the other hand the local field 
which acts on a particular atom is influenced by the nearest surrounding and therefore can deviate 
from the average field. 

As an example we consider the local field at a site with a cubic arrangement of neighbors in a 
crystal of spherical shape. The macroscopic electric field in a sphere is 

0 1 0

4

3

π= + = −E E E E P . (14) 

Now we consider the field that acts on the atom at the center of the sphere. If all dipoles are 
parallel to the z axis and have magnitude p, the z component of the field at the center due to all 
other dipoles is, according to (2), given by 
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The latter equation comes from the fact that the x, y, z directions are equivalent because of the 
symmetry of the lattice and of the sphere; thus 

2 2 2

5 5 5
i i i

i i ii i i

x y z

r r r
= =� � �  (16) 

The correct local field is just equal to the applied field, Eloc = E0, for an atom site with a cubic 
environment in a spherical specimen. Thus the local field is not the same as the macroscopic 
average field E. 
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We now develop an expression for the local field at a general lattice site, not necessarily of cubic 
symmetry. 

To evaluate Eloc we must calculate the total field acting on a certain typical dipole, this field being 
due to the external field as well as all other dipoles in the system. This was done by Lorentz as 
follows: The dipole is imagined to be surrounded by a spherical cavity whose radius R is 
sufficiently large that the matrix lying outside it may be treated as a continuous medium as far as 
the dipole is concerned (Fig.2a). The interaction of our dipole with the other dipoles lying inside 
the cavity is, however, to be treated microscopically, which is necessary since the discrete nature 
of the medium very close to the dipoles should be taken into account. The local field, acting on the 
central dipole, is thus given by the sum 

0 1 2 3loc = + + +E E E E E . (17) 

where 

E0 is the external field, 

E1 is the depolarization field, i.e. the field due to the polarization charges lying at the external 
surfaces of the sample, 

E2 the field due to the polarization charges lying on the surface of the Lorentz sphere, which is 
known as Lorentz field. 

and E3 is the field due to other dipoles lying within the sphere. 

 

 

 

 

 

 

 

 

 

Fig.2 (a) The procedure for computing the local field, (b) The procedure for calculating E2, the field due to the 
polarization charge on the surface of the Lorentz sphere. 

 

Note that the part of the medium between the sphere and the external surface does not contribute 
anything since, the volume polarization charges compensate each other, resulting in a zero net 
charge in this region. 

The contribution E1 + E2 + E3 to the local field is nothing but the total field at one atom caused by 
the dipole moments of all the other atoms in the specimen. Dipoles at distances greater than 
perhaps ten lattice constants from the reference site make a smoothly varying contribution, a 
contribution which may be replaced by two surface integrals. One surface integral is taken over the 
outer surface of the ellipsoidal specimen and defines E1, as in Eq.(7). The second surface integral 
defines E2 and may be taken over any interior surface that is a suitable distance from the reference 

E0 

E1 

E2 
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site. We count in E3 any dipoles not included in the volume bounded by the inner and outer 
surfaces. It is convenient to let the interior surface be spherical. 

Lorentz field, E2: 

The polarization charges on the surface of the Lorentz cavity may be considered as forming a 
continuous distribution. The density of the surface charge is equal to Pcosθ. The field due to the 
charge at a point located at the center of the sphere is, according to Coulomb's law, given by 

( )2
2 2

0

cos 4
cos 2 sin

3
R d

R

π θ πθ θ θ� �= =� �
� �
�

P
E P . (18) 

where the additional factor cosθ is included because we areevaluating only the component of the 
field along the direction of P (other components vanish by symmetry), and the factor 22 sinR dθ θ  
is the surface element along the sphere (see Fig. 2b). Integration of (18) leads to the simple result a 
field in the same direction as the external field. 

Field of dipoles inside cavity, E3: 

The field E3 due to the dipoles within the spherical cavity is the only term that depends on the 
crystal structure. We showed for a reference site with cubic surroundings in a sphere that E3 = 0 if 
all the atoms may be replaced by point dipoles parallel to each other. 

The total local field at a cubic site is, then, 

0 1

4 4

3 3loc

π π= + + = +E E E P E P . (19) 

This is known as the Lorentz relation: the field acting at an atom in a cubic site is the macroscopic 
field E of plus 4πP/3 from the polarization of the other atoms in the specimen. Experimental data 
for cubic ionic crystals support the Lorentz relation. 

The difference between E, which is known as the Maxwell field and the local field Eloc may be 
explained as follows. The field E is a macroscopic quantity, and as such is an average field, the 
average being taken over a large number of molecules (Fig. 3). It is this field which enters into the 
Maxwell equations, which are used for the macroscopic description of dielectric media. In the 
present situation the field E is a constant throughout the medium. 

On the other hand, the local field Eloc is a microscopic field which fluctuates rapidly within the 
medium. As the figure indicates, this field is quite large at the molecular sites themselves. 

 

Fig. 3 The difference between the Maxwell field E and the local field Eloc. Solid circles represent molecules. 
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Dielectric constant and polarizability 

The dielectric constant ε of an isotropic or cubic medium relative to vacuum is defined in terms of 
the macroscopic field E: 

4
1 4

E P

E

πε πχ+= = + . (20) 

Since the polarization of the medium is produced by the field it is convenient to define the 
polarizability  α of an atom in terms of the local electric field at the atom: 

locα=p E . (21) 

where p is the dipole moment. For a non-spherical atom α will be a tensor. 

The polarization of a crystal may be expressed approximately as the product of the polarizabilities 
of the atoms times the local electric field: 

( )i i i i loc
i i

N N iα= =� �P p E  (22) 

where Ni is the concentration and αi the polarizability of atoms i, and Eloc(i) is the local field at 
atom sites i. 

We want to relate the dielectric constant to the polarizabilities; the result will depend on the 
relation that holds between the macroscopic electric field and the local electric field. 

If the local field is given by the Lorentz relation (19), then 

4

3i i
i

N
πα� �� �= +� �� �

� �� �
�P E P  (23) 

and we solve for P to find the susceptibility 

4
1

3

i i
i

i i
i

N
P

E N

α
χ π α

= =
−

�

�
 (24) 

Using Eq.(20) we can then write the expression in terms of the dielectric constant: 

1 4

2 3 i i
i

N
ε π α
ε

− =
+ � . (25) 

This is the Clausius-Mossotti relation. This relates the dielectric constant to the electronic 
polarizability, but only for crystal structures for which the Lorentz local field (19) holds. 

Sources of polarizability 

Now we examine more closely the physical process which gives rise to polarizability. Basically, 
polarizability is a consequence of the fact that the molecules, which are the building blocks of all 
substances, are composed of both positive charges (nuclei) and negative charges (electrons). When 
a field acts on a molecule, the positive charges are displaced along the field, while the negative 
charges are displaced in a direction opposite to that of the field. The effect is therefore to pull the 
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opposite charges apart, i.e., to polarize the molecule. There are different types of polarization 
processes, depending on the structure of the molecules which constitute the solid. If the molecule 
has a permanent moment, i.e., a moment even in the absence of an electric field, we speak of a 
dipolar molecule, and a dipolar substance. 

 

 

 

 

 

 

 

 
Fig.4 (a) The water molecule (b) CO2 molecule. 
 

An example of a dipolar molecule is the H2O molecule in Fig.4a. The dipole moments of the two 
OH bonds add vectorially to give a nonvanishing net dipole moment. Some molecules are 
nondipolar, possessing no permanent moments; a common example is the CO2 molecule in Fig.4b. 
The moments of the two CO bands cancel each other because of the rectilinear shape of the 
molecule, resulting in a zero net dipole moment. 

The water molecule has a permanent moment because the two OH bands do not lie along the same 
straight line, as they do in the CO2 molecule. The moment thus depends on the geometrical 
arrangement of the charges, and by measuring the moment one can therefore gain information 
concerning the structure of the molecule. 

Despite the fact that the individual molecules in a dipolar substance have permanent moments, the 
net polarization vanishes in the absence of an external field because the molecular moments are 
randomly oriented, resulting in a complete cancellation of the polarization. When a field is applied 
to the substance, however, the molecular dipoles tend to align with the field, and this results in a 
net nonvanishing polarization. This leads to the so-called dipolar polarizability. 

If the molecule contains ionic bonds, then the field tends to stretch the lengths of these bonds. This 
occurs in NaCl, for instance, because the field tends to displace the positive ion Na+ to the right 
(see Fig.5), and the negative ion Cl- to the left, resulting in a stretching in the length of the bond. 
The effect of this change in length is to produce a net dipole moment in the unit cell where 
previously there was none. Since the polarization here is due to the relative displacements of 
oppositely charged ions, we speak of ionic polarizability. 
 

 

 

 

 

Fig.5 Ionic polarization in NaCl. The field displaces Na+ and Cl- ions in opposite directions, changing the bond length. 
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Ionic polarizability exists whenever the substance is either ionic, as in NaCl, or dipolar, as in H2O, 
because in each of these classes there are ionic bonds present. But in substances in which such 
bonds are missing - such as Si and Ge - ionic polarizability is absent. 

The third type of polarizability arises because the individual ions or atoms in a molecule are 
themselves polarized by the field. In the case of NaCl, each of the Na + and Cl - ions are polarized. 
Thus the Na+ ion is polarized because the electrons in its various shells are displaced to the left 
relative to the nucleus, as shown in Fig.6. We are clearly speaking here of electronic polarizability. 

Fig. 6   Electronic polarization:   (a) Unpolarized atom,   (b) Atom polarized as a result of the field. 

Electronic polarizability arises even in the case of a neutral atom, again because of the relative 
displacement of the orbital electrons. 

In general, therefore, the total polarizability is given by 

e i dα α α α= + + , (26) 

which is the sum of the electronic, ionic, and dipolar polarizabilities, respectively. The electronic 
contribution is present in any type of substance, but the presence of the other two terms depends 
on the material under consideration. 

The relative magnitudes of the various contributions in (26) are such that in nondipolar, ionic 
substances the electronic part is often of the same order as the ionic. In dipolar substances, 
however, the greatest contribution comes from the dipolar part. This is the case for water, as we 
shall see. 

Another important distinction between the various polarizabilities emerges when one examines the 
behavior of the ac polarizability that is induced by an alternating field. Figure 7 shows a typical 
dependence of this polarizability on frequency over a wide range, extending from the static all the 
way up to the ultraviolet region. It can be seen that in the range from ω = 0 to ω = ωd, where ωd (d 
for dipolar) is some frequency usually in the microwave region, the polarizability is essentially 
constant. In the neighborhood of ωd, however, the polarizability decreases by a substantial amount. 
This amount corresponds precisely, in fact, to the dipolar contribution αd. The reason for the 
disappearance of αd in the frequency range ω > ωd is that the field now oscillates too rapidly for 
the dipole to follow, and so the dipoles remain essentially stationary. 

The polarizability remains similarly unchanged in the frequency range from ωd to ωi and then 
drops down at the higher frequency. The frequency ωi lies in the infrared region, and corresponds 
to the frequency of the transverse optical phonon in the crystal. For the frequency range ω > ωi the 
ions with their heavy masses are no longer able to follow the very rapidly oscillating field, and 
consequently the ionic polarizibility αi, vanishes, as shown in Fig. 7. 
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Thus in the frequency range above the infrared, only the electronic polarizability remains effective, 
because the electrons, being very light, are still able to follow the field even at the high frequency. 
This range includes both the visible and ultraviolet regions. At still higher frequencies (above the 
electronic frequency ωe, however, the electronic contribution vanishes because even the electrons 
are too heavy to follow the field with its very rapid oscillations. 

The frequencies ωd and ωi, characterizing the dipolar and ionic polarizabilities, respectively, 
depend on the substance considered, and vary from one substance to another. However, their 
orders of magnitude remain in the regions indicated above, i.e., in the microwave and infrared, 
respectively. The various polarizabilities may thus be determined by measuring the substance at 
various appropriate frequencies. 

 

 

 

 

 

 

 

 

Fig.7 Frequency dependence of the several contributions to the polarizability. 

Piezoelectricity 

The term piezoelectricity refers to the fact that, when a crystal is strained, an electric field is 
produced within the substance. As a result of this field, a potential difference develops across the 
sample, and by measuring this potential one may determine the field. The inverse effect - that an 
applied field produces strain - has also been observed.  

The piezoelectric effect is very small. A field of 103 V/cm in quartz (SiO2) produces a strain of 
only 10-7. That is, a rod 1 cm long changes its length by 10Å. Conversely, even small strains can 
produce enormous electric fields. 

The piezoelectric effect is often used to convert electrical energy into mechanical energy, and vice 
versa; i.e., the substance is used as a transducer. For instance, an electric signal applied to the end 
of a quartz rod generates a mechanical strain, which consequently leads to the propagation of a 
mechanical wave - a sound wave - down the rod. Quartz is the most familiar piezoelectric 
substance, and the one most frequently used in transducers. 

The microscopic origin of piezoelectricity lies in the displacement of ionic charges within the 
crystal. In the absence of strain, the distribution of the charges at their lattice sites is symmetric, so 
the internal electric field is zero. But when the crystal is strained, the charges are displaced. If the 
charge distribution is no longer symmetric, then a net polarization, and a concomitant electric 
field, develops. It is this field which operates in the piezoelectric effect. 



Physics 927 
E.Y.Tsymbal  

 

 10 

 

Fig. 8   Crystal with center of inversion exhibits no piezoelectric effect,   (b) Origin of piezoelectric effect in quartz: 
crystal lacks a center of inversion. 

It follows that a substance can be piezoelectric only if the unit cell lacks a center of inversion. 
Figure 8 (a) shows this, and demonstrates that if a center of inversion is present, it persists even 
after distortion, and consequently the polarization remains zero. However, when there is no center 
of inversion, as in Fig. 8 (b), distortion produces a polarization. We see, therefore, that no regular 
cubic lattice can exhibit piezoelectricity. 

The lack of inversion center, however, is not sufficient to guarantee piezoelectricity, and only 
relatively few substances, exhibit this phenomenon. 

Ferroelectricity 

Ferroelectric crystal exhibits an electric dipole moment even in the absence of an external electric 
field. In the ferroelectric state the center of positive charge of the crystal does not coincide with the 
center of negative charge. The plot of polarizations versus electric field for the ferroelectric state 
shows a hysteresis loop. A crystal in a normal dielectric state usually does not show significant 
hysteresis when the electric field is increased and then reversed, both slowly. 

In ferroelectric materials the ionic susceptibility is sensitive to variations in temperature. In these 
substances, the static dielectric constant changes with temperature according to the relation 

C

C

T T
ε =

−
, (27) 

where C is a constant independent of temperature. 

This behavior is valid only in the temperature range T > Tc. In the range T < Tc, the material 
becomes spontaneously polarized, i.e., an electric polarization develops in it without the help of an 
external field. (This phenomenon is analogous to the spontaneous magnetization which takes place 
in ferromagnetic materials.) 

A phase transition occurs at the temperature Tc. Above the transition temperature, the substance is 
in the paraelectric phase, in which the elementary dipoles of the various unit cells in the crystal 
are oriented randomly. The dielectric constant is shown in Fig.9a. Below the transition 
temperature, the elementary dipoles interact with each other, and this gives rise to an internal field, 
which lines up the dipoles. The direction of this field and the associated polarization lie in a certain 
favorable orientation in the crystal. Figure 9b shows the variation of the spontaneous polarization 
P with temperature for T < Tc. This polarization increases gradually as the temperature is lowered. 
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Fig. 9 (a) Dielectric constant ε versus T in a ferroelectric substance, (b) Spontaneous polarization PS versus T in a 
ferroelectric substance. 

Table 1 lists some crystals commonly considered to be ferroelectric, along with the transition 
temperature or Curie point TC at which the crystal changes from the low temperature polarized 
state to the high temperature unpolarized state. Thermal motion tends to destroy the ferroelectric 
order. Some ferroelectric crystals have no Curie point because they melt before leaving the 
ferroelectric phase. The table also includes values of the spontaneous polarization PS. 

Table 1    Ferroelectric crystals 
 

 

 

Ferroelectric crystals may be classified into two main groups: order-disorder or displacive.  

In ferroelectric materials exhibiting an order-disorder transition the displacements of atoms are 
about some double-well or multi-well configuration of sites in the paraelectric phase. In the 
ferroelectric phase the displacements are about an ordered subset of these wells. The order-
disorder class of ferroelectrics includes crystals with hydrogen bonds in which the motion of the 
protons is related to the ferroelectric properties, as in potassium dihydrogen phosphate (KH2PO4) 
and isomorphous salts. 

In ferroelectric materials exhibiting a displacive transition the atomic displacements represent 
oscillations about a nonpolar site in the paraelectric phase. After a displacive transition  
(ferroelectric phase) the oscillations are about a polar site. The displacive class of ferroelectrics 
includes ionic crystal structures closely related to the perovskite and ilmenite structures. The 
simplest ferroelectric crystal is GeTe with the sodium chloride structure.  

 
 

 
 

TC, in K 
 

PS, in µC cm-2 
 

KDP type 
 

KH2PO4 
 

123 
 

4.75 
  KD2P04 213 4.83 

 RbH2PO4 147 5.6 
 
 

KH2AsO4 
 

97 
 

5.0 
  

 
GeTe 

 
670 

 
— 
 TGS type 

 
Tri-glycine sulfate 

 
322 

 
2.8 

  Tri-glycine selenate 295 3.2 
Perovskites BaTiOs 408 26.0 

 KNbO3 708 30.0 
 
 

PbTiO3 
 

765 
 

>50 
  LiTaO3 938 50 

 
 

LiNb03 
 

1480 
 

71 
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As a concrete example of ferroelectric structure transformation, Fig. 10 shows the appropriate 
structure for BaTiO3. Above the Curie temperature the structure is cubic, but as the temperature is 
lowered to TC, the Ba2+ and Ti4 + ions are displaced as shown, producing a slightly compressed 
cubic structure. Although the displacement is small - only about 0.15Å - it is enough to give the 
observed polarization. 

Fig. 10    Structure of BaTiO3 in cubic phase (above TC). 

The occurrence of ferroelectricity in many perovskite-structure crystals suggests that this structure 
is favorably disposed to a displacive transition. Local field calculations make clear the reason for 
the favored position of this structure: the O2- ions do not have cubic surroundings, and the local 
field factors turn out to be unusually large. 

We give a simple form of the microscopic theory of ferroelectric transition, supposing that the 

local field at all atoms is equal to 0 1

4 4

3 3loc

π π= + + = +E E E P E P . We rewrite the Clausius-

Mossotti relation (25) for the dielectric constant in the form 

8
1

3
4

1
3

i i
i

i i
i

N

N

π α
ε π α

+
=

−

�

�
. (28) 

where iα  is the electronic plus ionic polarizability of an ion of type i and iN  is the number of ions 

i per unit volume. The dielectric constant becomes infinite and permits a finite polarization in zero 
applied field when 

3

4i i
i

N α
π

=� . (29) 

This is the condition for a polarization catastrophe. 

The value of ε in (29) is sensitive to small departures of i i
i

N α�  from the critical value 3/ 4π . If 

we write 
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4
1 3

3 i i
i

N s
π α = −� . (30) 

where 1s� , the dielectric constant in (28) becomes 

1/ sε � . (31) 

Suppose near the critical temperature s varies linearly with temperature: 

( ) /Cs T T C−� , (32) 

where C is a constant. Such a variation of s or i i
i

N α�  might come from normal thermal 

expansion of the lattice. The dielectric constant has therefore the form 

C

C

T T
ε =

−
, (33) 

close to the observed temperature variation in the paraelectric state, Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 Dielectric constant versus 1/(T - Tc) in the paraelectric state (T > Tc) of perovskites. 

 

The transition to ferroelectric state can be both the first- and second-order transitions. In a second-
order transition there is no latent heat; the order parameter (in this instance, the polarization) is not 
discontinuous at the transition temperature. In a first-order transition the order parameter changes 
discontinuously at the transition temperature. For example, second order transition occurs in 
LiTaO3 (Fig. 12) whereas the first order transition occurs in BaTaO3 (Fig. 13). 
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Fig.12   Spontaneous polarization in LiTaO3 versus temperature, for a second-order phase transition. 

Fig. 13 Calculated values of the spontaneous polarization as a function of temperature for barium titanate. 

 

Ferroelectric domains 

A substance which is in its ferroelectric phase undergoes spontaneous polarization, but the 
direction of the polarization is not the same throughout the sample. The material is divided into a 
number of small domains, in each of which the polarization is constant. But the polarization in the 
different domains are different, so that the net total polarization of the whole sample vanishes in 
the equilibrium situation (Fig. 13). 
 

 
Fig. 13 Domain structure in an unpolarized ferroelectric sample. 
 

When an external field is applied, the domains whose polarization is parallel to the field grow, 
while the domains of opposite polarization shrink. These growing and shrinking processes 
continue as the field increases until, at a sufficiently high field, the whole of the sample is 
polarized parallel to the field. 


